1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
  27  */
  28 
  29 /*
  30  * This file contains global data and code shared between master and slave parts
  31  * of the pseudo-terminal driver.
  32  *
  33  * Pseudo terminals (or pt's for short) are allocated dynamically.
  34  * pt's are put in the global ptms_slots array indexed by minor numbers.
  35  *
  36  * The slots array is initially small (of the size NPTY_MIN). When more pt's are
  37  * needed than the slot array size, the larger slot array is allocated and all
  38  * opened pt's move to the new one.
  39  *
  40  * Resource allocation:
  41  *
  42  *      pt_ttys structures are allocated via pt_ttys_alloc, which uses
  43  *              kmem_cache_alloc().
  44  *      Minor number space is allocated via vmem_alloc() interface.
  45  *      ptms_slots arrays are allocated via kmem_alloc().
  46  *
  47  *   Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case
  48  *   of failure. Also, in anticipation of removing clone device interface to
  49  *   pseudo-terminal subsystem, minor 0 should not be used. (Potential future
  50  *   development).
  51  *
  52  *   After the table slot size reaches pt_maxdelta, we stop 2^N extension
  53  *   algorithm and start extending the slot table size by pt_maxdelta.
  54  *
  55  *   Device entries /dev/pts directory are created dynamically by the
  56  *   /dev filesystem. We no longer call ddi_create_minor_node() on
  57  *   behalf of the slave driver. The /dev filesystem creates /dev/pts
  58  *   nodes based on the pt_ttys array.
  59  *
  60  * Synchronization:
  61  *
  62  *   All global data synchronization between ptm/pts is done via global
  63  *   ptms_lock mutex which is implicitly initialized by declaring it global.
  64  *
  65  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
  66  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
  67  *
  68  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
  69  *   which allow reader locks to be reacquired by the same thread (usual
  70  *   reader/writer locks can't be used for that purpose since it is illegal for
  71  *   a thread to acquire a lock it already holds, even as a reader). The sole
  72  *   purpose of these macros is to guarantee that the peer queue will not
  73  *   disappear (due to closing peer) while it is used. It is safe to use
  74  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
  75  *   they are not real locks but reference counts).
  76  *
  77  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
  78  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
  79  *   be set to appropriate queues *after* qprocson() is called during open (to
  80  *   prevent peer from accessing the queue with incomplete plumbing) and set to
  81  *   NULL before qprocsoff() is called during close. Put and service procedures
  82  *   use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes.
  83  *
  84  *   The pt_nullmsg field is only used in open/close routines and is also
  85  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
  86  *   holds.
  87  *
  88  * Lock Ordering:
  89  *
  90  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
  91  *   be entered first, followed by per-pty lock.
  92  *
  93  * Global functions:
  94  *
  95  * void ptms_init(void);
  96  *
  97  *      Called by pts/ptm _init entry points. It performes one-time
  98  *      initialization needed for both pts and ptm. This initialization is done
  99  *      here and not in ptms_initspace because all these data structures are not
 100  *      needed if pseudo-terminals are not used in the system.
 101  *
 102  * struct pt_ttys *pt_ttys_alloc(void);
 103  *
 104  *      Allocate new minor number and pseudo-terminal entry. May sleep.
 105  *      New minor number is recorded in pt_minor field of the entry returned.
 106  *      This routine also initializes pt_minor and pt_state fields of the new
 107  *      pseudo-terminal and puts a pointer to it into ptms_slots array.
 108  *
 109  * struct pt_ttys *ptms_minor2ptty(minor_t minor)
 110  *
 111  *      Find pt_ttys structure by minor number.
 112  *      Returns NULL when minor is out of range.
 113  *
 114  * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid)
 115  *
 116  *      Check if minor refers to an allocated pty in the current zone.
 117  *      Returns
 118  *               0 if not allocated or not for this zone.
 119  *               1 if an allocated pty in the current zone.
 120  *      Also returns owner of pty.
 121  *
 122  * int ptms_minor_exists(minor_t minor)
 123  *      Check if minor refers to an allocated pty (in any zone)
 124  *      Returns
 125  *              0 if not an allocated pty
 126  *              1 if an allocated pty
 127  *
 128  * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid)
 129  *
 130  *      Sets the owner associated with a pty.
 131  *
 132  * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear);
 133  *
 134  *      Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not
 135  *      set) free pt entry and corresponding slot.
 136  *
 137  * Tuneables and configuration:
 138  *
 139  *      pt_cnt: minimum number of pseudo-terminals in the system. The system
 140  *              should provide at least this number of ptys (provided sufficient
 141  *              memory is available). It is different from the older semantics
 142  *              of pt_cnt meaning maximum number of ptys.
 143  *              Set to 0 by default.
 144  *
 145  *      pt_max_pty: Maximum number of pseudo-terminals in the system. The system
 146  *              should not allocate more ptys than pt_max_pty (although, it may
 147  *              impose stricter maximum). Zero value means no user-defined
 148  *              maximum. This is intended to be used as "denial-of-service"
 149  *              protection.
 150  *              Set to 0 by default.
 151  *
 152  *         Both pt_cnt and pt_max_pty may be modified during system lifetime
 153  *         with their semantics preserved.
 154  *
 155  *      pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL.
 156  *
 157  *      pt_ptyofmem: Approximate percentage of system memory that may be
 158  *              occupied by pty data structures. Initially set to NPTY_PERCENT.
 159  *              This variable is used once during initialization to estimate
 160  *              maximum number of ptys in the system. The actual maximum is
 161  *              determined as minimum of pt_max_pty and calculated value.
 162  *
 163  *      pt_maxdelta: Maximum extension chunk of the slot table.
 164  */
 165 
 166 
 167 
 168 #include <sys/types.h>
 169 #include <sys/param.h>
 170 #include <sys/termios.h>
 171 #include <sys/stream.h>
 172 #include <sys/stropts.h>
 173 #include <sys/kmem.h>
 174 #include <sys/ptms.h>
 175 #include <sys/stat.h>
 176 #include <sys/sunddi.h>
 177 #include <sys/ddi.h>
 178 #include <sys/bitmap.h>
 179 #include <sys/sysmacros.h>
 180 #include <sys/ddi_impldefs.h>
 181 #include <sys/zone.h>
 182 #ifdef DEBUG
 183 #include <sys/strlog.h>
 184 #endif
 185 
 186 
 187 /* Initial number of ptms slots */
 188 #define NPTY_INITIAL 16
 189 
 190 #define NPTY_PERCENT 5
 191 
 192 /* Maximum increment of the slot table size */
 193 #define PTY_MAXDELTA 128
 194 
 195 /*
 196  * Tuneable variables.
 197  */
 198 volatile uint_t pt_cnt = 0;             /* Minimum number of ptys */
 199 volatile size_t pt_max_pty = 0;         /* Maximum number of ptys */
 200 uint_t  pt_init_cnt = NPTY_INITIAL;     /* Initial number of ptms slots */
 201 volatile uint_t pt_pctofmem = NPTY_PERCENT;     /* Percent of memory to use */
 202                                                 /* for ptys */
 203 uint_t  pt_maxdelta = PTY_MAXDELTA;     /* Max increment for slot table size */
 204 
 205 /* Other global variables */
 206 
 207 kmutex_t ptms_lock;                     /* Global data access lock */
 208 
 209 /*
 210  * Slot array and its management variables
 211  */
 212 static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */
 213 static size_t ptms_nslots = 0;          /* Size of slot array */
 214 static size_t ptms_ptymax = 0;          /* Maximum number of ptys */
 215 static size_t ptms_inuse = 0;           /* # of ptys currently allocated */
 216 
 217 dev_info_t      *pts_dip = NULL;        /* set if slave is attached */
 218 
 219 static struct kmem_cache *ptms_cache = NULL;    /* pty cache */
 220 
 221 static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */
 222 
 223 static uint_t ptms_roundup(uint_t);
 224 static int ptms_constructor(void *, void *, int);
 225 static void ptms_destructor(void *, void *);
 226 static minor_t ptms_grow(void);
 227 
 228 /*
 229  * Total size occupied by one pty. Each pty master/slave pair consumes one
 230  * pointer for ptms_slots array, one pt_ttys structure and one empty message
 231  * preallocated for pts close.
 232  */
 233 
 234 #define PTY_SIZE (sizeof (struct pt_ttys) + \
 235     sizeof (struct pt_ttys *) + \
 236     sizeof (dblk_t))
 237 
 238 #ifdef DEBUG
 239 int ptms_debug = 0;
 240 #define PTMOD_ID 5
 241 #endif
 242 
 243 /*
 244  * Clear all bits of x except the highest bit
 245  */
 246 #define truncate(x)     ((x) <= 2 ? (x) : (1 << (highbit(x) - 1)))
 247 
 248 /*
 249  * Roundup the number to the nearest power of 2
 250  */
 251 static uint_t
 252 ptms_roundup(uint_t x)
 253 {
 254         uint_t p = truncate(x); /* x with non-high bits stripped */
 255 
 256         /*
 257          * If x is a power of 2, return x, otherwise roundup.
 258          */
 259         return (p == x ? p : (p * 2));
 260 }
 261 
 262 /*
 263  * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is
 264  * only called once during system lifetime. Called from ptm or pts _init
 265  * routine.
 266  */
 267 void
 268 ptms_init(void)
 269 {
 270         mutex_enter(&ptms_lock);
 271 
 272         if (ptms_slots == NULL) {
 273                 ptms_slots = kmem_zalloc(pt_init_cnt *
 274                     sizeof (struct pt_ttys *), KM_SLEEP);
 275 
 276                 ptms_cache = kmem_cache_create("pty_map",
 277                     sizeof (struct pt_ttys), 0, ptms_constructor,
 278                     ptms_destructor, NULL, NULL, NULL, 0);
 279 
 280                 ptms_nslots = pt_init_cnt;
 281 
 282                 /* Allocate integer space for minor numbers */
 283                 ptms_minor_arena = vmem_create("ptms_minor", (void *)1,
 284                     ptms_nslots, 1, NULL, NULL, NULL, 0,
 285                     VM_SLEEP | VMC_IDENTIFIER);
 286 
 287                 /*
 288                  * Calculate available number of ptys - how many ptys can we
 289                  * allocate in pt_pctofmem % of available memory. The value is
 290                  * rounded up to the nearest power of 2.
 291                  */
 292                 ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) /
 293                     (100 * PTY_SIZE));
 294         }
 295         mutex_exit(&ptms_lock);
 296 }
 297 
 298 /*
 299  * This routine attaches the pts dip.
 300  */
 301 int
 302 ptms_attach_slave(void)
 303 {
 304         if (pts_dip == NULL && i_ddi_attach_pseudo_node("pts") == NULL)
 305                 return (-1);
 306 
 307         ASSERT(pts_dip);
 308         return (0);
 309 }
 310 
 311 /*
 312  * Called from /dev fs. Checks if dip is attached,
 313  * and if it is, returns its major number.
 314  */
 315 major_t
 316 ptms_slave_attached(void)
 317 {
 318         major_t maj = DDI_MAJOR_T_NONE;
 319 
 320         mutex_enter(&ptms_lock);
 321         if (pts_dip)
 322                 maj = ddi_driver_major(pts_dip);
 323         mutex_exit(&ptms_lock);
 324 
 325         return (maj);
 326 }
 327 
 328 /*
 329  * Allocate new minor number and pseudo-terminal entry. Returns the new entry or
 330  * NULL if no memory or maximum number of entries reached.
 331  */
 332 struct pt_ttys *
 333 pt_ttys_alloc(void)
 334 {
 335         minor_t dminor;
 336         struct pt_ttys *pt = NULL;
 337 
 338         mutex_enter(&ptms_lock);
 339 
 340         /*
 341          * Always try to allocate new pty when pt_cnt minimum limit is not
 342          * achieved. If it is achieved, the maximum is determined by either
 343          * user-specified value (if it is non-zero) or our memory estimations -
 344          * whatever is less.
 345          */
 346         if (ptms_inuse >= pt_cnt) {
 347                 /*
 348                  * When system achieved required minimum of ptys, check for the
 349                  *   denial of service limits.
 350                  *
 351                  * Since pt_max_pty may be zero, the formula below is used to
 352                  * avoid conditional expression. It will equal to pt_max_pty if
 353                  * it is not zero and ptms_ptymax otherwise.
 354                  */
 355                 size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty);
 356 
 357                 /* Do not try to allocate more than allowed */
 358                 if (ptms_inuse >= min(ptms_ptymax, user_max)) {
 359                         mutex_exit(&ptms_lock);
 360                         return (NULL);
 361                 }
 362         }
 363         ptms_inuse++;
 364 
 365         /*
 366          * Allocate new minor number. If this fails, all slots are busy and
 367          * we need to grow the hash.
 368          */
 369         dminor = (minor_t)(uintptr_t)
 370             vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP);
 371 
 372         if (dminor == 0) {
 373                 /* Grow the cache and retry allocation */
 374                 dminor = ptms_grow();
 375         }
 376 
 377         if (dminor == 0) {
 378                 /* Not enough memory now */
 379                 ptms_inuse--;
 380                 mutex_exit(&ptms_lock);
 381                 return (NULL);
 382         }
 383 
 384         pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP);
 385         if (pt == NULL) {
 386                 /* Not enough memory - this entry can't be used now. */
 387                 vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1);
 388                 ptms_inuse--;
 389         } else {
 390                 pt->pt_minor = dminor;
 391                 pt->pt_pid = curproc->p_pid;      /* For debugging */
 392                 pt->pt_state = (PTMOPEN | PTLOCK);
 393                 pt->pt_zoneid = getzoneid();
 394                 pt->pt_ruid = 0; /* we don't know uid/gid yet. Report as root */
 395                 pt->pt_rgid = 0;
 396                 ASSERT(ptms_slots[dminor - 1] == NULL);
 397                 ptms_slots[dminor - 1] = pt;
 398         }
 399 
 400         mutex_exit(&ptms_lock);
 401         return (pt);
 402 }
 403 
 404 /*
 405  * Get pt_ttys structure by minor number.
 406  * Returns NULL when minor is out of range.
 407  */
 408 struct pt_ttys *
 409 ptms_minor2ptty(minor_t dminor)
 410 {
 411         struct pt_ttys *pt = NULL;
 412 
 413         ASSERT(mutex_owned(&ptms_lock));
 414         if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL)
 415                 pt = ptms_slots[dminor - 1];
 416 
 417         return (pt);
 418 }
 419 
 420 /*
 421  * Invoked in response to chown on /dev/pts nodes to change the
 422  * permission on a pty
 423  */
 424 void
 425 ptms_set_owner(minor_t dminor, uid_t ruid, gid_t rgid)
 426 {
 427         struct pt_ttys *pt;
 428 
 429         ASSERT(ruid >= 0);
 430         ASSERT(rgid >= 0);
 431 
 432         if (ruid < 0 || rgid < 0)
 433                 return;
 434 
 435         /*
 436          * /dev/pts/0 is not used, but some applications may check it. There
 437          * is no pty backing it - so we have nothing to do.
 438          */
 439         if (dminor == 0)
 440                 return;
 441 
 442         mutex_enter(&ptms_lock);
 443         pt = ptms_minor2ptty(dminor);
 444         if (pt != NULL && pt->pt_zoneid == getzoneid()) {
 445                 pt->pt_ruid = ruid;
 446                 pt->pt_rgid = rgid;
 447         }
 448         mutex_exit(&ptms_lock);
 449 }
 450 
 451 /*
 452  * Given a ptm/pts minor number
 453  * returns:
 454  *      1 if the pty is allocated to the current zone.
 455  *      0 otherwise
 456  *
 457  * If the pty is allocated to the current zone, it also returns the owner.
 458  */
 459 int
 460 ptms_minor_valid(minor_t dminor, uid_t *ruid, gid_t *rgid)
 461 {
 462         struct pt_ttys *pt;
 463         int ret;
 464 
 465         ASSERT(ruid);
 466         ASSERT(rgid);
 467 
 468         *ruid = (uid_t)-1;
 469         *rgid = (gid_t)-1;
 470 
 471         /*
 472          * /dev/pts/0 is not used, but some applications may check it, so create
 473          * it also. Report the owner as root. It belongs to all zones.
 474          */
 475         if (dminor == 0) {
 476                 *ruid = 0;
 477                 *rgid = 0;
 478                 return (1);
 479         }
 480 
 481         ret = 0;
 482         mutex_enter(&ptms_lock);
 483         pt = ptms_minor2ptty(dminor);
 484         if (pt != NULL) {
 485                 ASSERT(pt->pt_ruid >= 0);
 486                 ASSERT(pt->pt_rgid >= 0);
 487                 if (pt->pt_zoneid == getzoneid()) {
 488                         ret = 1;
 489                         *ruid = pt->pt_ruid;
 490                         *rgid = pt->pt_rgid;
 491                 }
 492         }
 493         mutex_exit(&ptms_lock);
 494 
 495         return (ret);
 496 }
 497 
 498 /*
 499  * Given a ptm/pts minor number
 500  * returns:
 501  *      0 if the pty is not allocated
 502  *      1 if the pty is allocated
 503  */
 504 int
 505 ptms_minor_exists(minor_t dminor)
 506 {
 507         int ret;
 508 
 509         mutex_enter(&ptms_lock);
 510         ret = ptms_minor2ptty(dminor) ? 1 : 0;
 511         mutex_exit(&ptms_lock);
 512 
 513         return (ret);
 514 }
 515 
 516 /*
 517  * Close the pt and clear flags_to_clear.
 518  * If pt device is not opened by someone else, free it and clear its slot.
 519  */
 520 void
 521 ptms_close(struct pt_ttys *pt, uint_t flags_to_clear)
 522 {
 523         uint_t flags;
 524 
 525         ASSERT(MUTEX_NOT_HELD(&ptms_lock));
 526         ASSERT(pt != NULL);
 527 
 528         mutex_enter(&ptms_lock);
 529 
 530         mutex_enter(&pt->pt_lock);
 531         pt->pt_state &= ~flags_to_clear;
 532         flags = pt->pt_state;
 533         mutex_exit(&pt->pt_lock);
 534 
 535         if (! (flags & (PTMOPEN | PTSOPEN))) {
 536                 /* No one owns the entry - free it */
 537 
 538                 ASSERT(pt->ptm_rdq == NULL);
 539                 ASSERT(pt->pts_rdq == NULL);
 540                 ASSERT(pt->pt_nullmsg == NULL);
 541                 ASSERT(pt->pt_refcnt == 0);
 542                 ASSERT(pt->pt_minor <= ptms_nslots);
 543                 ASSERT(ptms_slots[pt->pt_minor - 1] == pt);
 544                 ASSERT(ptms_inuse > 0);
 545 
 546                 ptms_inuse--;
 547 
 548                 pt->pt_pid = 0;
 549 
 550                 ptms_slots[pt->pt_minor - 1] = NULL;
 551                 /* Return minor number to the pool of minors */
 552                 vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1);
 553                 /* Return pt to the cache */
 554                 kmem_cache_free(ptms_cache, pt);
 555         }
 556         mutex_exit(&ptms_lock);
 557 }
 558 
 559 /*
 560  * Allocate another slot table twice as large as the original one (limited to
 561  * global maximum). Migrate all pt to the new slot table and free the original
 562  * one. Create more /devices entries for new devices.
 563  */
 564 static minor_t
 565 ptms_grow()
 566 {
 567         minor_t old_size = ptms_nslots;
 568         minor_t delta = MIN(pt_maxdelta, old_size);
 569         minor_t new_size = old_size + delta;
 570         struct pt_ttys **ptms_old = ptms_slots;
 571         struct pt_ttys **ptms_new;
 572         void  *vaddr;                   /* vmem_add return value */
 573 
 574         ASSERT(MUTEX_HELD(&ptms_lock));
 575 
 576         DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse);
 577 
 578         /* Allocate new ptms array */
 579         ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *),
 580             KM_NOSLEEP);
 581         if (ptms_new == NULL)
 582                 return ((minor_t)0);
 583 
 584         /* Increase clone index space */
 585         vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1),
 586             new_size - old_size, VM_NOSLEEP);
 587 
 588         if (vaddr == NULL) {
 589                 kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
 590                 return ((minor_t)0);
 591         }
 592 
 593         /* Migrate pt entries to a new location */
 594         ptms_nslots = new_size;
 595         bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *));
 596         ptms_slots = ptms_new;
 597         kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *));
 598 
 599         /* Allocate minor number and return it */
 600         return ((minor_t)(uintptr_t)
 601             vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP));
 602 }
 603 
 604 /*ARGSUSED*/
 605 static int
 606 ptms_constructor(void *maddr, void *arg, int kmflags)
 607 {
 608         struct pt_ttys *pt = maddr;
 609 
 610         pt->pts_rdq = NULL;
 611         pt->ptm_rdq = NULL;
 612         pt->pt_nullmsg = NULL;
 613         pt->pt_pid = NULL;
 614         pt->pt_minor = NULL;
 615         pt->pt_refcnt = 0;
 616         pt->pt_state = 0;
 617         pt->pt_zoneid = GLOBAL_ZONEID;
 618 
 619         cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL);
 620         mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL);
 621         return (0);
 622 }
 623 
 624 /*ARGSUSED*/
 625 static void
 626 ptms_destructor(void *maddr, void *arg)
 627 {
 628         struct pt_ttys *pt = maddr;
 629 
 630         ASSERT(pt->pt_refcnt == 0);
 631         ASSERT(pt->pt_state == 0);
 632         ASSERT(pt->ptm_rdq == NULL);
 633         ASSERT(pt->pts_rdq == NULL);
 634 
 635         mutex_destroy(&pt->pt_lock);
 636         cv_destroy(&pt->pt_cv);
 637 }
 638 
 639 #ifdef DEBUG
 640 void
 641 ptms_log(char *str, uint_t arg)
 642 {
 643         if (ptms_debug) {
 644                 if (ptms_debug & 2)
 645                         cmn_err(CE_CONT, str, arg);
 646                 if (ptms_debug & 4)
 647                         (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
 648                             str, arg);
 649                 else
 650                         (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
 651         }
 652 }
 653 
 654 void
 655 ptms_logp(char *str, uintptr_t arg)
 656 {
 657         if (ptms_debug) {
 658                 if (ptms_debug & 2)
 659                         cmn_err(CE_CONT, str, arg);
 660                 if (ptms_debug & 4)
 661                         (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
 662                             str, arg);
 663                 else
 664                         (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
 665         }
 666 }
 667 #endif