Print this page
    
MFV: illumos-gate@48d370f1e98a10b1bdf160dd83a49e0f49f6c1b7
9809 nvme driver should attach to all NVMe 1.x devices
9810 Update parts of NVMe headers for newer specs
9811 nvmeadm(1M) should have ctf
Reviewed by: Hans Rosenfeld <hans.rosenfeld@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Yuri Pankov <yuripv@yuripv.net>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Andy Fiddaman <omnios@citrus-it.co.uk>
Approved by: Dan McDonald <danmcd@joyent.com>
Author: Robert Mustacchi <rm@joyent.com>
NEX-18067 Catch up with illumos 8806 8805
8806 xattr_dir_inactive() releases used vnode with kernel panic
Reviewed by: Marcel Telka <marcel@telka.sk>
Reviewed by: Gordon Ross <gordon.w.ross@gmail.com>
Approved by: Dan McDonald <danmcd@joyent.com>
8805 xattr_dir_lookup() can leak a vnode hold
Reviewed by: Marcel Telka <marcel@telka.sk>
Reviewed by: Gordon Ross <gordon.w.ross@gmail.com>
Approved by: Dan McDonald <danmcd@joyent.com>
NEX-17991 emulated NVMe controller on ESXi 6.7 fails to attach
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-16749 some NVMe controllers get upset about NS ID of 0 when checking "Error Recovery" feature
Reviewed by: Cynthia Eastham <cynthia.eastham@nexenta.com>
Reviewed by: Roman Strashkin <roman.strashkin@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-16880 update NVME code
8804 nvme: add alias for pciclass,010802
Reviewed by: Peter Tribble <peter.tribble@gmail.com>
Reviewed by: Michal Nowak <mnowak@startmail.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
8979 nvmeadm(1m): ctl/[ns] -> ctl[/ns]
Reviewed by: Yuri Pankov <yuripv@gmx.com>
Reviewed by: Rich Lowe <richlowe@richlowe.net>
Reviewed by: Rob Johnston <rob.johnston@joyent.com>
Reviewed by: Toomas Soome <tsoome@me.com>
Approved by: Dan McDonald <danmcd@joyent.com>
8945 nvme panics when async events are not supported
Reviewed by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Reviewed by: Yuri Pankov <yuripv@yuripv.net>
Reviewed by: Michal Nowak <mnowak@startmail.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
NEX-16549 nvme: "programming error: invalid NS/format" doing 'nvmeadm list' on a controller without namespaces
Reviewed by: Roman Strashkin <roman.strashkin@nexenta.com>
Reviewed by: Dan Fields <dan.fields@nexenta.com>
NEX-15208 nvme: Software Progress Marker feature is optional
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Cynthia Eastham <cynthia.eastham@nexenta.com>
NEX-8020 illumos nvme changes
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
NEX-7539 nvme fails to get error log page from Samsung PM1725
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
NEX-7538 nvme shouldn't ignore namespaces that support extended data LBAs
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-7373 nvme queue DMA attribute count_max is 0-based
Reviewed by: Gordon Ross <gordon.ross@nexenta.com
Reviewed by: Dan Fields <dan.fields@nexenta.com>
NEX-7369 bump nvme admin command timeout to 1s
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-6740 nvme checksum errors with blocksize < 4096
Reviewed by: Hans Rosenfeld <hans.rosenfeld@nexenta.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-7349 nvme ignores interrupt enabling failure
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-7336 nvme initial interrupt issues
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Evan Layton <evan.layton@nexenta.com>
NEX-7322 nvme fix from Tegile needs a fix
Reviewed by: Evan Layton <evan.layton@nexenta.com>
Reviewed by: Bayard Bell <bayard.bell@nexenta.com>
Reviewed by: Dan Fields <dan.fields@nexenta.com>
NEX-7321 nvme version number check is broken again
Reviewed by: Steve Peng <steve.peng@nexenta.com>
Reviewed by: Rob Gittins <rob.gittins@nexenta.com>
NEX-7291 several small nvme fixes from Tegile
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
NEX-7290 nvme: id_nlbaf field is 0-based
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
NEX-7236 nvme shouldn't use ddi_intr_enable/disable to block interrupts
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com>
NEX-5192 Samsung SSD SM951-NVMe shows checksum errors
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
NEX-5792 support NVMe namespace EUI64
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-6132 nvmeadm(1M) get-feature command could use some cleanup
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-6130 basic NVMe 1.1 support
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Rick McNeal <rick.mcneal@nexenta.com>
NEX-5791 support NVMe volatile write cache
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
NEX-4431 want NVMe management utility
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Sanjay Nadkarni <sanjay.nadkarni@nexenta.com>
NEX-4849 nvme version number check is broken
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Toomas Soome <tsoome@me.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Approved by: Robert Mustacchi <rm@joyent.com>
NEX-4850 off-by-one in nvme_get_logpage()
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Toomas Soome <tsoome@me.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Approved by: Robert Mustacchi <rm@joyent.com>
NEX-4427 blkdev should provide the device_error kstat for iostat -E
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
NEX-4424 kstat module needs cleanup
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
NEX-4420 format(1M) should be able to use device inquiry properties
Reviewed by: Dan McDonald <danmcd@omniti.com>
NEX-4419 blkdev and blkdev drivers should provide inquiry properties
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
NEX-2182 need driver for Intel NVM Express (nvme)
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Robert Mustacchi <rm@joyent.com>
NEX-2182 need driver for Intel NVM Express (nvme) (preview)
Reviewed by: Dan Fields <dan.fields@nexenta.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/io/nvme/nvme.c
          +++ new/usr/src/uts/common/io/nvme/nvme.c
   1    1  /*
   2    2   * This file and its contents are supplied under the terms of the
  
    | 
      ↓ open down ↓ | 
    2 lines elided | 
    
      ↑ open up ↑ | 
  
   3    3   * Common Development and Distribution License ("CDDL"), version 1.0.
   4    4   * You may only use this file in accordance with the terms of version
   5    5   * 1.0 of the CDDL.
   6    6   *
   7    7   * A full copy of the text of the CDDL should have accompanied this
   8    8   * source.  A copy of the CDDL is also available via the Internet at
   9    9   * http://www.illumos.org/license/CDDL.
  10   10   */
  11   11  
  12   12  /*
  13      - * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
       13 + * Copyright 2018 Nexenta Systems, Inc.
  14   14   * Copyright 2016 Tegile Systems, Inc. All rights reserved.
  15   15   * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
  16      - * Copyright 2017 Joyent, Inc.
       16 + * Copyright 2018 Joyent, Inc.
  17   17   */
  18   18  
  19   19  /*
  20   20   * blkdev driver for NVMe compliant storage devices
  21   21   *
  22   22   * This driver was written to conform to version 1.2.1 of the NVMe
  23   23   * specification.  It may work with newer versions, but that is completely
  24   24   * untested and disabled by default.
  25   25   *
  26   26   * The driver has only been tested on x86 systems and will not work on big-
  27   27   * endian systems without changes to the code accessing registers and data
  28   28   * structures used by the hardware.
  29   29   *
  30   30   *
  31   31   * Interrupt Usage:
  32   32   *
  33   33   * The driver will use a single interrupt while configuring the device as the
  34   34   * specification requires, but contrary to the specification it will try to use
  35   35   * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
  36   36   * will switch to multiple-message MSI(-X) if supported. The driver wants to
  37   37   * have one interrupt vector per CPU, but it will work correctly if less are
  38   38   * available. Interrupts can be shared by queues, the interrupt handler will
  39   39   * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
  40   40   * the admin queue will share an interrupt with one I/O queue. The interrupt
  41   41   * handler will retrieve completed commands from all queues sharing an interrupt
  42   42   * vector and will post them to a taskq for completion processing.
  43   43   *
  44   44   *
  45   45   * Command Processing:
  46   46   *
  47   47   * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
  48   48   * to 65536 I/O commands. The driver will configure one I/O queue pair per
  49   49   * available interrupt vector, with the queue length usually much smaller than
  50   50   * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
  51   51   * interrupt vectors will be used.
  52   52   *
  53   53   * Additionally the hardware provides a single special admin queue pair that can
  54   54   * hold up to 4096 admin commands.
  55   55   *
  56   56   * From the hardware perspective both queues of a queue pair are independent,
  57   57   * but they share some driver state: the command array (holding pointers to
  58   58   * commands currently being processed by the hardware) and the active command
  59   59   * counter. Access to a queue pair and the shared state is protected by
  60   60   * nq_mutex.
  61   61   *
  62   62   * When a command is submitted to a queue pair the active command counter is
  63   63   * incremented and a pointer to the command is stored in the command array. The
  64   64   * array index is used as command identifier (CID) in the submission queue
  65   65   * entry. Some commands may take a very long time to complete, and if the queue
  66   66   * wraps around in that time a submission may find the next array slot to still
  67   67   * be used by a long-running command. In this case the array is sequentially
  68   68   * searched for the next free slot. The length of the command array is the same
  69   69   * as the configured queue length. Queue overrun is prevented by the semaphore,
  70   70   * so a command submission may block if the queue is full.
  71   71   *
  72   72   *
  73   73   * Polled I/O Support:
  74   74   *
  75   75   * For kernel core dump support the driver can do polled I/O. As interrupts are
  
    | 
      ↓ open down ↓ | 
    49 lines elided | 
    
      ↑ open up ↑ | 
  
  76   76   * turned off while dumping the driver will just submit a command in the regular
  77   77   * way, and then repeatedly attempt a command retrieval until it gets the
  78   78   * command back.
  79   79   *
  80   80   *
  81   81   * Namespace Support:
  82   82   *
  83   83   * NVMe devices can have multiple namespaces, each being a independent data
  84   84   * store. The driver supports multiple namespaces and creates a blkdev interface
  85   85   * for each namespace found. Namespaces can have various attributes to support
  86      - * thin provisioning and protection information. This driver does not support
  87      - * any of this and ignores namespaces that have these attributes.
       86 + * protection information. This driver does not support any of this and ignores
       87 + * namespaces that have these attributes.
  88   88   *
  89   89   * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
  90   90   * (EUI64). This driver uses the EUI64 if present to generate the devid and
  91   91   * passes it to blkdev to use it in the device node names. As this is currently
  92   92   * untested namespaces with EUI64 are ignored by default.
  93   93   *
  94   94   * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
  95   95   * single controller. This is an artificial limit imposed by the driver to be
  96   96   * able to address a reasonable number of controllers and namespaces using a
  97   97   * 32bit minor node number.
  98   98   *
  99   99   *
 100  100   * Minor nodes:
 101  101   *
 102  102   * For each NVMe device the driver exposes one minor node for the controller and
 103  103   * one minor node for each namespace. The only operations supported by those
 104  104   * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
 105  105   * interface for the nvmeadm(1M) utility.
 106  106   *
 107  107   *
 108  108   * Blkdev Interface:
 109  109   *
 110  110   * This driver uses blkdev to do all the heavy lifting involved with presenting
 111  111   * a disk device to the system. As a result, the processing of I/O requests is
 112  112   * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
 113  113   * setup, and splitting of transfers into manageable chunks.
 114  114   *
 115  115   * I/O requests coming in from blkdev are turned into NVM commands and posted to
 116  116   * an I/O queue. The queue is selected by taking the CPU id modulo the number of
 117  117   * queues. There is currently no timeout handling of I/O commands.
 118  118   *
 119  119   * Blkdev also supports querying device/media information and generating a
 120  120   * devid. The driver reports the best block size as determined by the namespace
 121  121   * format back to blkdev as physical block size to support partition and block
 122  122   * alignment. The devid is either based on the namespace EUI64, if present, or
 123  123   * composed using the device vendor ID, model number, serial number, and the
 124  124   * namespace ID.
 125  125   *
 126  126   *
 127  127   * Error Handling:
 128  128   *
 129  129   * Error handling is currently limited to detecting fatal hardware errors,
 130  130   * either by asynchronous events, or synchronously through command status or
 131  131   * admin command timeouts. In case of severe errors the device is fenced off,
 132  132   * all further requests will return EIO. FMA is then called to fault the device.
 133  133   *
 134  134   * The hardware has a limit for outstanding asynchronous event requests. Before
 135  135   * this limit is known the driver assumes it is at least 1 and posts a single
 136  136   * asynchronous request. Later when the limit is known more asynchronous event
 137  137   * requests are posted to allow quicker reception of error information. When an
 138  138   * asynchronous event is posted by the hardware the driver will parse the error
 139  139   * status fields and log information or fault the device, depending on the
 140  140   * severity of the asynchronous event. The asynchronous event request is then
 141  141   * reused and posted to the admin queue again.
 142  142   *
 143  143   * On command completion the command status is checked for errors. In case of
 144  144   * errors indicating a driver bug the driver panics. Almost all other error
 145  145   * status values just cause EIO to be returned.
 146  146   *
 147  147   * Command timeouts are currently detected for all admin commands except
 148  148   * asynchronous event requests. If a command times out and the hardware appears
 149  149   * to be healthy the driver attempts to abort the command. The original command
 150  150   * timeout is also applied to the abort command. If the abort times out too the
 151  151   * driver assumes the device to be dead, fences it off, and calls FMA to retire
 152  152   * it. In all other cases the aborted command should return immediately with a
 153  153   * status indicating it was aborted, and the driver will wait indefinitely for
 154  154   * that to happen. No timeout handling of normal I/O commands is presently done.
 155  155   *
 156  156   * Any command that times out due to the controller dropping dead will be put on
 157  157   * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
 158  158   * memory being reused by the system and later be written to by a "dead" NVMe
 159  159   * controller.
 160  160   *
 161  161   *
 162  162   * Locking:
 163  163   *
 164  164   * Each queue pair has its own nq_mutex, which must be held when accessing the
 165  165   * associated queue registers or the shared state of the queue pair. Callers of
 166  166   * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
 167  167   * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
 168  168   * themselves.
 169  169   *
 170  170   * Each command also has its own nc_mutex, which is associated with the
 171  171   * condition variable nc_cv. It is only used on admin commands which are run
 172  172   * synchronously. In that case it must be held across calls to
 173  173   * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
 174  174   * nvme_admin_cmd(). It must also be held whenever the completion state of the
 175  175   * command is changed or while a admin command timeout is handled.
 176  176   *
 177  177   * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
 178  178   * More than one nc_mutex may only be held when aborting commands. In this case,
 179  179   * the nc_mutex of the command to be aborted must be held across the call to
 180  180   * nvme_abort_cmd() to prevent the command from completing while the abort is in
 181  181   * progress.
 182  182   *
 183  183   * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
 184  184   * and exclusive-open flag nm_oexcl.
 185  185   *
 186  186   *
 187  187   * Quiesce / Fast Reboot:
 188  188   *
  
    | 
      ↓ open down ↓ | 
    91 lines elided | 
    
      ↑ open up ↑ | 
  
 189  189   * The driver currently does not support fast reboot. A quiesce(9E) entry point
 190  190   * is still provided which is used to send a shutdown notification to the
 191  191   * device.
 192  192   *
 193  193   *
 194  194   * Driver Configuration:
 195  195   *
 196  196   * The following driver properties can be changed to control some aspects of the
 197  197   * drivers operation:
 198  198   * - strict-version: can be set to 0 to allow devices conforming to newer
 199      - *   versions or namespaces with EUI64 to be used
      199 + *   major versions to be used
 200  200   * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
 201  201   *   specific command status as a fatal error leading device faulting
 202  202   * - admin-queue-len: the maximum length of the admin queue (16-4096)
 203  203   * - io-queue-len: the maximum length of the I/O queues (16-65536)
 204  204   * - async-event-limit: the maximum number of asynchronous event requests to be
 205  205   *   posted by the driver
 206  206   * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
 207  207   *   cache
 208  208   * - min-phys-block-size: the minimum physical block size to report to blkdev,
 209  209   *   which is among other things the basis for ZFS vdev ashift
 210  210   *
 211  211   *
 212  212   * TODO:
 213  213   * - figure out sane default for I/O queue depth reported to blkdev
 214  214   * - FMA handling of media errors
 215  215   * - support for devices supporting very large I/O requests using chained PRPs
 216  216   * - support for configuring hardware parameters like interrupt coalescing
 217  217   * - support for media formatting and hard partitioning into namespaces
 218  218   * - support for big-endian systems
 219  219   * - support for fast reboot
 220  220   * - support for firmware updates
 221  221   * - support for NVMe Subsystem Reset (1.1)
 222  222   * - support for Scatter/Gather lists (1.1)
 223  223   * - support for Reservations (1.1)
 224  224   * - support for power management
 225  225   */
 226  226  
 227  227  #include <sys/byteorder.h>
 228  228  #ifdef _BIG_ENDIAN
 229  229  #error nvme driver needs porting for big-endian platforms
 230  230  #endif
 231  231  
 232  232  #include <sys/modctl.h>
 233  233  #include <sys/conf.h>
 234  234  #include <sys/devops.h>
 235  235  #include <sys/ddi.h>
 236  236  #include <sys/sunddi.h>
 237  237  #include <sys/sunndi.h>
 238  238  #include <sys/bitmap.h>
 239  239  #include <sys/sysmacros.h>
 240  240  #include <sys/param.h>
 241  241  #include <sys/varargs.h>
 242  242  #include <sys/cpuvar.h>
 243  243  #include <sys/disp.h>
 244  244  #include <sys/blkdev.h>
 245  245  #include <sys/atomic.h>
 246  246  #include <sys/archsystm.h>
 247  247  #include <sys/sata/sata_hba.h>
 248  248  #include <sys/stat.h>
 249  249  #include <sys/policy.h>
 250  250  #include <sys/list.h>
  
    | 
      ↓ open down ↓ | 
    41 lines elided | 
    
      ↑ open up ↑ | 
  
 251  251  
 252  252  #include <sys/nvme.h>
 253  253  
 254  254  #ifdef __x86
 255  255  #include <sys/x86_archext.h>
 256  256  #endif
 257  257  
 258  258  #include "nvme_reg.h"
 259  259  #include "nvme_var.h"
 260  260  
      261 +/*
      262 + * Assertions to make sure that we've properly captured various aspects of the
      263 + * packed structures and haven't broken them during updates.
      264 + */
      265 +CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
      266 +CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
      267 +CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
      268 +CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
      269 +CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
      270 +CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
      271 +CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
 261  272  
      273 +CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
      274 +CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
      275 +CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
      276 +CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
      277 +CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
      278 +
      279 +CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
      280 +CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
      281 +CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
      282 +
      283 +
 262  284  /* NVMe spec version supported */
 263  285  static const int nvme_version_major = 1;
 264      -static const int nvme_version_minor = 2;
 265  286  
 266  287  /* tunable for admin command timeout in seconds, default is 1s */
 267  288  int nvme_admin_cmd_timeout = 1;
 268  289  
 269  290  /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
 270  291  int nvme_format_cmd_timeout = 600;
 271  292  
 272  293  static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
 273  294  static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
 274  295  static int nvme_quiesce(dev_info_t *);
 275  296  static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
 276  297  static int nvme_setup_interrupts(nvme_t *, int, int);
 277  298  static void nvme_release_interrupts(nvme_t *);
 278  299  static uint_t nvme_intr(caddr_t, caddr_t);
 279  300  
 280  301  static void nvme_shutdown(nvme_t *, int, boolean_t);
 281  302  static boolean_t nvme_reset(nvme_t *, boolean_t);
 282  303  static int nvme_init(nvme_t *);
 283  304  static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
 284  305  static void nvme_free_cmd(nvme_cmd_t *);
 285  306  static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
 286  307      bd_xfer_t *);
 287  308  static void nvme_admin_cmd(nvme_cmd_t *, int);
 288  309  static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
 289  310  static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
 290  311  static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
 291  312  static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
 292  313  static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
 293  314  static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
 294  315  static void nvme_wakeup_cmd(void *);
 295  316  static void nvme_async_event_task(void *);
 296  317  
 297  318  static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
 298  319  static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
 299  320  static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
 300  321  static int nvme_check_specific_cmd_status(nvme_cmd_t *);
 301  322  static int nvme_check_generic_cmd_status(nvme_cmd_t *);
 302  323  static inline int nvme_check_cmd_status(nvme_cmd_t *);
 303  324  
 304  325  static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
 305  326  static void nvme_async_event(nvme_t *);
 306  327  static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
 307  328      boolean_t, uint8_t);
 308  329  static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
 309  330  static int nvme_identify(nvme_t *, uint32_t, void **);
 310  331  static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
 311  332      uint32_t *);
 312  333  static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
 313  334      void **, size_t *);
 314  335  static int nvme_write_cache_set(nvme_t *, boolean_t);
 315  336  static int nvme_set_nqueues(nvme_t *, uint16_t *);
 316  337  
 317  338  static void nvme_free_dma(nvme_dma_t *);
 318  339  static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
 319  340      nvme_dma_t **);
 320  341  static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
 321  342      nvme_dma_t **);
 322  343  static void nvme_free_qpair(nvme_qpair_t *);
 323  344  static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
 324  345  static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
 325  346  
 326  347  static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
 327  348  static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
 328  349  static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
 329  350  static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
 330  351  
 331  352  static boolean_t nvme_check_regs_hdl(nvme_t *);
 332  353  static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
 333  354  
 334  355  static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
 335  356  
 336  357  static void nvme_bd_xfer_done(void *);
 337  358  static void nvme_bd_driveinfo(void *, bd_drive_t *);
 338  359  static int nvme_bd_mediainfo(void *, bd_media_t *);
 339  360  static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
 340  361  static int nvme_bd_read(void *, bd_xfer_t *);
 341  362  static int nvme_bd_write(void *, bd_xfer_t *);
 342  363  static int nvme_bd_sync(void *, bd_xfer_t *);
 343  364  static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
 344  365  
 345  366  static int nvme_prp_dma_constructor(void *, void *, int);
 346  367  static void nvme_prp_dma_destructor(void *, void *);
 347  368  
 348  369  static void nvme_prepare_devid(nvme_t *, uint32_t);
 349  370  
 350  371  static int nvme_open(dev_t *, int, int, cred_t *);
 351  372  static int nvme_close(dev_t, int, int, cred_t *);
 352  373  static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
 353  374  
 354  375  #define NVME_MINOR_INST_SHIFT   9
 355  376  #define NVME_MINOR(inst, nsid)  (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
 356  377  #define NVME_MINOR_INST(minor)  ((minor) >> NVME_MINOR_INST_SHIFT)
 357  378  #define NVME_MINOR_NSID(minor)  ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
 358  379  #define NVME_MINOR_MAX          (NVME_MINOR(1, 0) - 2)
 359  380  
 360  381  static void *nvme_state;
 361  382  static kmem_cache_t *nvme_cmd_cache;
 362  383  
 363  384  /*
 364  385   * DMA attributes for queue DMA memory
 365  386   *
 366  387   * Queue DMA memory must be page aligned. The maximum length of a queue is
 367  388   * 65536 entries, and an entry can be 64 bytes long.
 368  389   */
 369  390  static ddi_dma_attr_t nvme_queue_dma_attr = {
 370  391          .dma_attr_version       = DMA_ATTR_V0,
 371  392          .dma_attr_addr_lo       = 0,
 372  393          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 373  394          .dma_attr_count_max     = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
 374  395          .dma_attr_align         = 0x1000,
 375  396          .dma_attr_burstsizes    = 0x7ff,
 376  397          .dma_attr_minxfer       = 0x1000,
 377  398          .dma_attr_maxxfer       = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
 378  399          .dma_attr_seg           = 0xffffffffffffffffULL,
 379  400          .dma_attr_sgllen        = 1,
 380  401          .dma_attr_granular      = 1,
 381  402          .dma_attr_flags         = 0,
 382  403  };
 383  404  
 384  405  /*
 385  406   * DMA attributes for transfers using Physical Region Page (PRP) entries
 386  407   *
 387  408   * A PRP entry describes one page of DMA memory using the page size specified
 388  409   * in the controller configuration's memory page size register (CC.MPS). It uses
 389  410   * a 64bit base address aligned to this page size. There is no limitation on
 390  411   * chaining PRPs together for arbitrarily large DMA transfers.
 391  412   */
 392  413  static ddi_dma_attr_t nvme_prp_dma_attr = {
 393  414          .dma_attr_version       = DMA_ATTR_V0,
 394  415          .dma_attr_addr_lo       = 0,
 395  416          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 396  417          .dma_attr_count_max     = 0xfff,
 397  418          .dma_attr_align         = 0x1000,
 398  419          .dma_attr_burstsizes    = 0x7ff,
 399  420          .dma_attr_minxfer       = 0x1000,
 400  421          .dma_attr_maxxfer       = 0x1000,
 401  422          .dma_attr_seg           = 0xfff,
 402  423          .dma_attr_sgllen        = -1,
 403  424          .dma_attr_granular      = 1,
 404  425          .dma_attr_flags         = 0,
 405  426  };
 406  427  
 407  428  /*
 408  429   * DMA attributes for transfers using scatter/gather lists
 409  430   *
 410  431   * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
 411  432   * 32bit length field. SGL Segment and SGL Last Segment entries require the
 412  433   * length to be a multiple of 16 bytes.
 413  434   */
 414  435  static ddi_dma_attr_t nvme_sgl_dma_attr = {
 415  436          .dma_attr_version       = DMA_ATTR_V0,
 416  437          .dma_attr_addr_lo       = 0,
 417  438          .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 418  439          .dma_attr_count_max     = 0xffffffffUL,
 419  440          .dma_attr_align         = 1,
 420  441          .dma_attr_burstsizes    = 0x7ff,
 421  442          .dma_attr_minxfer       = 0x10,
 422  443          .dma_attr_maxxfer       = 0xfffffffffULL,
 423  444          .dma_attr_seg           = 0xffffffffffffffffULL,
 424  445          .dma_attr_sgllen        = -1,
 425  446          .dma_attr_granular      = 0x10,
 426  447          .dma_attr_flags         = 0
 427  448  };
 428  449  
 429  450  static ddi_device_acc_attr_t nvme_reg_acc_attr = {
 430  451          .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 431  452          .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 432  453          .devacc_attr_dataorder  = DDI_STRICTORDER_ACC
 433  454  };
 434  455  
 435  456  static struct cb_ops nvme_cb_ops = {
 436  457          .cb_open        = nvme_open,
 437  458          .cb_close       = nvme_close,
 438  459          .cb_strategy    = nodev,
 439  460          .cb_print       = nodev,
 440  461          .cb_dump        = nodev,
 441  462          .cb_read        = nodev,
 442  463          .cb_write       = nodev,
 443  464          .cb_ioctl       = nvme_ioctl,
 444  465          .cb_devmap      = nodev,
 445  466          .cb_mmap        = nodev,
 446  467          .cb_segmap      = nodev,
 447  468          .cb_chpoll      = nochpoll,
 448  469          .cb_prop_op     = ddi_prop_op,
 449  470          .cb_str         = 0,
 450  471          .cb_flag        = D_NEW | D_MP,
 451  472          .cb_rev         = CB_REV,
 452  473          .cb_aread       = nodev,
 453  474          .cb_awrite      = nodev
 454  475  };
 455  476  
 456  477  static struct dev_ops nvme_dev_ops = {
 457  478          .devo_rev       = DEVO_REV,
 458  479          .devo_refcnt    = 0,
 459  480          .devo_getinfo   = ddi_no_info,
 460  481          .devo_identify  = nulldev,
 461  482          .devo_probe     = nulldev,
 462  483          .devo_attach    = nvme_attach,
 463  484          .devo_detach    = nvme_detach,
 464  485          .devo_reset     = nodev,
 465  486          .devo_cb_ops    = &nvme_cb_ops,
 466  487          .devo_bus_ops   = NULL,
 467  488          .devo_power     = NULL,
 468  489          .devo_quiesce   = nvme_quiesce,
 469  490  };
 470  491  
 471  492  static struct modldrv nvme_modldrv = {
 472  493          .drv_modops     = &mod_driverops,
 473  494          .drv_linkinfo   = "NVMe v1.1b",
 474  495          .drv_dev_ops    = &nvme_dev_ops
 475  496  };
 476  497  
 477  498  static struct modlinkage nvme_modlinkage = {
 478  499          .ml_rev         = MODREV_1,
 479  500          .ml_linkage     = { &nvme_modldrv, NULL }
 480  501  };
 481  502  
 482  503  static bd_ops_t nvme_bd_ops = {
 483  504          .o_version      = BD_OPS_VERSION_0,
 484  505          .o_drive_info   = nvme_bd_driveinfo,
 485  506          .o_media_info   = nvme_bd_mediainfo,
 486  507          .o_devid_init   = nvme_bd_devid,
 487  508          .o_sync_cache   = nvme_bd_sync,
 488  509          .o_read         = nvme_bd_read,
 489  510          .o_write        = nvme_bd_write,
 490  511  };
 491  512  
 492  513  /*
 493  514   * This list will hold commands that have timed out and couldn't be aborted.
 494  515   * As we don't know what the hardware may still do with the DMA memory we can't
 495  516   * free them, so we'll keep them forever on this list where we can easily look
 496  517   * at them with mdb.
 497  518   */
 498  519  static struct list nvme_lost_cmds;
 499  520  static kmutex_t nvme_lc_mutex;
 500  521  
 501  522  int
 502  523  _init(void)
 503  524  {
 504  525          int error;
 505  526  
 506  527          error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
 507  528          if (error != DDI_SUCCESS)
 508  529                  return (error);
 509  530  
 510  531          nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
 511  532              sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
 512  533  
 513  534          mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
 514  535          list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
 515  536              offsetof(nvme_cmd_t, nc_list));
 516  537  
 517  538          bd_mod_init(&nvme_dev_ops);
 518  539  
 519  540          error = mod_install(&nvme_modlinkage);
 520  541          if (error != DDI_SUCCESS) {
 521  542                  ddi_soft_state_fini(&nvme_state);
 522  543                  mutex_destroy(&nvme_lc_mutex);
 523  544                  list_destroy(&nvme_lost_cmds);
 524  545                  bd_mod_fini(&nvme_dev_ops);
 525  546          }
 526  547  
 527  548          return (error);
 528  549  }
 529  550  
 530  551  int
 531  552  _fini(void)
 532  553  {
 533  554          int error;
 534  555  
 535  556          if (!list_is_empty(&nvme_lost_cmds))
 536  557                  return (DDI_FAILURE);
 537  558  
 538  559          error = mod_remove(&nvme_modlinkage);
 539  560          if (error == DDI_SUCCESS) {
 540  561                  ddi_soft_state_fini(&nvme_state);
 541  562                  kmem_cache_destroy(nvme_cmd_cache);
 542  563                  mutex_destroy(&nvme_lc_mutex);
 543  564                  list_destroy(&nvme_lost_cmds);
 544  565                  bd_mod_fini(&nvme_dev_ops);
 545  566          }
 546  567  
 547  568          return (error);
 548  569  }
 549  570  
 550  571  int
 551  572  _info(struct modinfo *modinfop)
 552  573  {
 553  574          return (mod_info(&nvme_modlinkage, modinfop));
 554  575  }
 555  576  
 556  577  static inline void
 557  578  nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
 558  579  {
 559  580          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 560  581  
 561  582          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 562  583          ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
 563  584  }
 564  585  
 565  586  static inline void
 566  587  nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
 567  588  {
 568  589          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 569  590  
 570  591          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 571  592          ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
 572  593  }
 573  594  
 574  595  static inline uint64_t
 575  596  nvme_get64(nvme_t *nvme, uintptr_t reg)
 576  597  {
 577  598          uint64_t val;
 578  599  
 579  600          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 580  601  
 581  602          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 582  603          val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
 583  604  
 584  605          return (val);
 585  606  }
 586  607  
 587  608  static inline uint32_t
 588  609  nvme_get32(nvme_t *nvme, uintptr_t reg)
 589  610  {
 590  611          uint32_t val;
 591  612  
 592  613          ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 593  614  
 594  615          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 595  616          val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
 596  617  
 597  618          return (val);
 598  619  }
 599  620  
 600  621  static boolean_t
 601  622  nvme_check_regs_hdl(nvme_t *nvme)
 602  623  {
 603  624          ddi_fm_error_t error;
 604  625  
 605  626          ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
 606  627  
 607  628          if (error.fme_status != DDI_FM_OK)
 608  629                  return (B_TRUE);
 609  630  
 610  631          return (B_FALSE);
 611  632  }
 612  633  
 613  634  static boolean_t
 614  635  nvme_check_dma_hdl(nvme_dma_t *dma)
 615  636  {
 616  637          ddi_fm_error_t error;
 617  638  
 618  639          if (dma == NULL)
 619  640                  return (B_FALSE);
 620  641  
 621  642          ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
 622  643  
 623  644          if (error.fme_status != DDI_FM_OK)
 624  645                  return (B_TRUE);
 625  646  
 626  647          return (B_FALSE);
 627  648  }
 628  649  
 629  650  static void
 630  651  nvme_free_dma_common(nvme_dma_t *dma)
 631  652  {
 632  653          if (dma->nd_dmah != NULL)
 633  654                  (void) ddi_dma_unbind_handle(dma->nd_dmah);
 634  655          if (dma->nd_acch != NULL)
 635  656                  ddi_dma_mem_free(&dma->nd_acch);
 636  657          if (dma->nd_dmah != NULL)
 637  658                  ddi_dma_free_handle(&dma->nd_dmah);
 638  659  }
 639  660  
 640  661  static void
 641  662  nvme_free_dma(nvme_dma_t *dma)
 642  663  {
 643  664          nvme_free_dma_common(dma);
 644  665          kmem_free(dma, sizeof (*dma));
 645  666  }
 646  667  
 647  668  /* ARGSUSED */
 648  669  static void
 649  670  nvme_prp_dma_destructor(void *buf, void *private)
 650  671  {
 651  672          nvme_dma_t *dma = (nvme_dma_t *)buf;
 652  673  
 653  674          nvme_free_dma_common(dma);
 654  675  }
 655  676  
 656  677  static int
 657  678  nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
 658  679      size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
 659  680  {
 660  681          if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
 661  682              &dma->nd_dmah) != DDI_SUCCESS) {
 662  683                  /*
 663  684                   * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
 664  685                   * the only other possible error is DDI_DMA_BADATTR which
 665  686                   * indicates a driver bug which should cause a panic.
 666  687                   */
 667  688                  dev_err(nvme->n_dip, CE_PANIC,
 668  689                      "!failed to get DMA handle, check DMA attributes");
 669  690                  return (DDI_FAILURE);
 670  691          }
 671  692  
 672  693          /*
 673  694           * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
 674  695           * or the flags are conflicting, which isn't the case here.
 675  696           */
 676  697          (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
 677  698              DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
 678  699              &dma->nd_len, &dma->nd_acch);
 679  700  
 680  701          if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
 681  702              dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
 682  703              &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
 683  704                  dev_err(nvme->n_dip, CE_WARN,
 684  705                      "!failed to bind DMA memory");
 685  706                  atomic_inc_32(&nvme->n_dma_bind_err);
 686  707                  nvme_free_dma_common(dma);
 687  708                  return (DDI_FAILURE);
 688  709          }
 689  710  
 690  711          return (DDI_SUCCESS);
 691  712  }
 692  713  
 693  714  static int
 694  715  nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
 695  716      ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
 696  717  {
 697  718          nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
 698  719  
 699  720          if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
 700  721              DDI_SUCCESS) {
 701  722                  *ret = NULL;
 702  723                  kmem_free(dma, sizeof (nvme_dma_t));
 703  724                  return (DDI_FAILURE);
 704  725          }
 705  726  
 706  727          bzero(dma->nd_memp, dma->nd_len);
 707  728  
 708  729          *ret = dma;
 709  730          return (DDI_SUCCESS);
 710  731  }
 711  732  
 712  733  /* ARGSUSED */
 713  734  static int
 714  735  nvme_prp_dma_constructor(void *buf, void *private, int flags)
 715  736  {
 716  737          nvme_dma_t *dma = (nvme_dma_t *)buf;
 717  738          nvme_t *nvme = (nvme_t *)private;
 718  739  
 719  740          dma->nd_dmah = NULL;
 720  741          dma->nd_acch = NULL;
 721  742  
 722  743          if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
 723  744              DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
 724  745                  return (-1);
 725  746          }
 726  747  
 727  748          ASSERT(dma->nd_ncookie == 1);
 728  749  
 729  750          dma->nd_cached = B_TRUE;
 730  751  
 731  752          return (0);
 732  753  }
 733  754  
 734  755  static int
 735  756  nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
 736  757      uint_t flags, nvme_dma_t **dma)
 737  758  {
 738  759          uint32_t len = nentry * qe_len;
 739  760          ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
 740  761  
 741  762          len = roundup(len, nvme->n_pagesize);
 742  763  
 743  764          q_dma_attr.dma_attr_minxfer = len;
 744  765  
 745  766          if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
 746  767              != DDI_SUCCESS) {
 747  768                  dev_err(nvme->n_dip, CE_WARN,
 748  769                      "!failed to get DMA memory for queue");
 749  770                  goto fail;
 750  771          }
 751  772  
 752  773          if ((*dma)->nd_ncookie != 1) {
 753  774                  dev_err(nvme->n_dip, CE_WARN,
 754  775                      "!got too many cookies for queue DMA");
 755  776                  goto fail;
 756  777          }
 757  778  
 758  779          return (DDI_SUCCESS);
 759  780  
 760  781  fail:
 761  782          if (*dma) {
 762  783                  nvme_free_dma(*dma);
 763  784                  *dma = NULL;
 764  785          }
 765  786  
 766  787          return (DDI_FAILURE);
 767  788  }
 768  789  
 769  790  static void
 770  791  nvme_free_qpair(nvme_qpair_t *qp)
 771  792  {
 772  793          int i;
 773  794  
 774  795          mutex_destroy(&qp->nq_mutex);
 775  796          sema_destroy(&qp->nq_sema);
 776  797  
 777  798          if (qp->nq_sqdma != NULL)
 778  799                  nvme_free_dma(qp->nq_sqdma);
 779  800          if (qp->nq_cqdma != NULL)
 780  801                  nvme_free_dma(qp->nq_cqdma);
 781  802  
 782  803          if (qp->nq_active_cmds > 0)
 783  804                  for (i = 0; i != qp->nq_nentry; i++)
 784  805                          if (qp->nq_cmd[i] != NULL)
 785  806                                  nvme_free_cmd(qp->nq_cmd[i]);
 786  807  
 787  808          if (qp->nq_cmd != NULL)
 788  809                  kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
 789  810  
 790  811          kmem_free(qp, sizeof (nvme_qpair_t));
 791  812  }
 792  813  
 793  814  static int
 794  815  nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
 795  816      int idx)
 796  817  {
 797  818          nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
 798  819  
 799  820          mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
 800  821              DDI_INTR_PRI(nvme->n_intr_pri));
 801  822          sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
 802  823  
 803  824          if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
 804  825              DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
 805  826                  goto fail;
 806  827  
 807  828          if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
 808  829              DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
 809  830                  goto fail;
 810  831  
 811  832          qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
 812  833          qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
 813  834          qp->nq_nentry = nentry;
 814  835  
 815  836          qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
 816  837          qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
 817  838  
 818  839          qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
 819  840          qp->nq_next_cmd = 0;
 820  841  
 821  842          *nqp = qp;
 822  843          return (DDI_SUCCESS);
 823  844  
 824  845  fail:
 825  846          nvme_free_qpair(qp);
 826  847          *nqp = NULL;
 827  848  
 828  849          return (DDI_FAILURE);
 829  850  }
 830  851  
 831  852  static nvme_cmd_t *
 832  853  nvme_alloc_cmd(nvme_t *nvme, int kmflag)
 833  854  {
 834  855          nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
 835  856  
 836  857          if (cmd == NULL)
 837  858                  return (cmd);
 838  859  
 839  860          bzero(cmd, sizeof (nvme_cmd_t));
 840  861  
 841  862          cmd->nc_nvme = nvme;
 842  863  
 843  864          mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
 844  865              DDI_INTR_PRI(nvme->n_intr_pri));
 845  866          cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
 846  867  
 847  868          return (cmd);
 848  869  }
 849  870  
 850  871  static void
 851  872  nvme_free_cmd(nvme_cmd_t *cmd)
 852  873  {
 853  874          /* Don't free commands on the lost commands list. */
 854  875          if (list_link_active(&cmd->nc_list))
 855  876                  return;
 856  877  
 857  878          if (cmd->nc_dma) {
 858  879                  if (cmd->nc_dma->nd_cached)
 859  880                          kmem_cache_free(cmd->nc_nvme->n_prp_cache,
 860  881                              cmd->nc_dma);
 861  882                  else
 862  883                          nvme_free_dma(cmd->nc_dma);
 863  884                  cmd->nc_dma = NULL;
 864  885          }
 865  886  
 866  887          cv_destroy(&cmd->nc_cv);
 867  888          mutex_destroy(&cmd->nc_mutex);
 868  889  
 869  890          kmem_cache_free(nvme_cmd_cache, cmd);
 870  891  }
 871  892  
 872  893  static void
 873  894  nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 874  895  {
 875  896          sema_p(&qp->nq_sema);
 876  897          nvme_submit_cmd_common(qp, cmd);
 877  898  }
 878  899  
 879  900  static int
 880  901  nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 881  902  {
 882  903          if (sema_tryp(&qp->nq_sema) == 0)
 883  904                  return (EAGAIN);
 884  905  
 885  906          nvme_submit_cmd_common(qp, cmd);
 886  907          return (0);
 887  908  }
 888  909  
 889  910  static void
 890  911  nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 891  912  {
 892  913          nvme_reg_sqtdbl_t tail = { 0 };
 893  914  
 894  915          mutex_enter(&qp->nq_mutex);
 895  916          cmd->nc_completed = B_FALSE;
 896  917  
 897  918          /*
 898  919           * Try to insert the cmd into the active cmd array at the nq_next_cmd
 899  920           * slot. If the slot is already occupied advance to the next slot and
 900  921           * try again. This can happen for long running commands like async event
 901  922           * requests.
 902  923           */
 903  924          while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
 904  925                  qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 905  926          qp->nq_cmd[qp->nq_next_cmd] = cmd;
 906  927  
 907  928          qp->nq_active_cmds++;
 908  929  
 909  930          cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
 910  931          bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
 911  932          (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
 912  933              sizeof (nvme_sqe_t) * qp->nq_sqtail,
 913  934              sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
 914  935          qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 915  936  
 916  937          tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
 917  938          nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
 918  939  
 919  940          mutex_exit(&qp->nq_mutex);
 920  941  }
 921  942  
 922  943  static nvme_cmd_t *
 923  944  nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
 924  945  {
 925  946          nvme_cmd_t *cmd;
 926  947  
 927  948          ASSERT(mutex_owned(&qp->nq_mutex));
 928  949          ASSERT3S(cid, <, qp->nq_nentry);
 929  950  
 930  951          cmd = qp->nq_cmd[cid];
 931  952          qp->nq_cmd[cid] = NULL;
 932  953          ASSERT3U(qp->nq_active_cmds, >, 0);
 933  954          qp->nq_active_cmds--;
 934  955          sema_v(&qp->nq_sema);
 935  956  
 936  957          ASSERT3P(cmd, !=, NULL);
 937  958          ASSERT3P(cmd->nc_nvme, ==, nvme);
 938  959          ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
 939  960  
 940  961          return (cmd);
 941  962  }
 942  963  
 943  964  static nvme_cmd_t *
 944  965  nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
 945  966  {
 946  967          nvme_reg_cqhdbl_t head = { 0 };
 947  968  
 948  969          nvme_cqe_t *cqe;
 949  970          nvme_cmd_t *cmd;
 950  971  
 951  972          (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
 952  973              sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
 953  974  
 954  975          mutex_enter(&qp->nq_mutex);
 955  976          cqe = &qp->nq_cq[qp->nq_cqhead];
 956  977  
 957  978          /* Check phase tag of CQE. Hardware inverts it for new entries. */
 958  979          if (cqe->cqe_sf.sf_p == qp->nq_phase) {
 959  980                  mutex_exit(&qp->nq_mutex);
 960  981                  return (NULL);
 961  982          }
 962  983  
 963  984          ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
 964  985  
 965  986          cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
 966  987  
 967  988          ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
 968  989          bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
 969  990  
 970  991          qp->nq_sqhead = cqe->cqe_sqhd;
 971  992  
 972  993          head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
 973  994  
 974  995          /* Toggle phase on wrap-around. */
 975  996          if (qp->nq_cqhead == 0)
 976  997                  qp->nq_phase = qp->nq_phase ? 0 : 1;
 977  998  
 978  999          nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
 979 1000          mutex_exit(&qp->nq_mutex);
 980 1001  
 981 1002          return (cmd);
 982 1003  }
 983 1004  
 984 1005  static int
 985 1006  nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
 986 1007  {
 987 1008          nvme_cqe_t *cqe = &cmd->nc_cqe;
 988 1009  
 989 1010          dev_err(cmd->nc_nvme->n_dip, CE_WARN,
 990 1011              "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
 991 1012              "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
 992 1013              cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
 993 1014              cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
 994 1015  
 995 1016          if (cmd->nc_xfer != NULL)
 996 1017                  bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
 997 1018  
 998 1019          if (cmd->nc_nvme->n_strict_version) {
 999 1020                  cmd->nc_nvme->n_dead = B_TRUE;
1000 1021                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1001 1022          }
1002 1023  
1003 1024          return (EIO);
1004 1025  }
1005 1026  
1006 1027  static int
1007 1028  nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1008 1029  {
1009 1030          nvme_cqe_t *cqe = &cmd->nc_cqe;
1010 1031  
1011 1032          dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012 1033              "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013 1034              "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014 1035              cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015 1036              cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1016 1037          if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1017 1038                  cmd->nc_nvme->n_dead = B_TRUE;
1018 1039                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1019 1040          }
1020 1041  
1021 1042          return (EIO);
1022 1043  }
1023 1044  
1024 1045  static int
1025 1046  nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1026 1047  {
1027 1048          nvme_cqe_t *cqe = &cmd->nc_cqe;
1028 1049  
1029 1050          switch (cqe->cqe_sf.sf_sc) {
1030 1051          case NVME_CQE_SC_INT_NVM_WRITE:
1031 1052                  /* write fail */
1032 1053                  /* TODO: post ereport */
1033 1054                  if (cmd->nc_xfer != NULL)
1034 1055                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1035 1056                  return (EIO);
1036 1057  
1037 1058          case NVME_CQE_SC_INT_NVM_READ:
1038 1059                  /* read fail */
1039 1060                  /* TODO: post ereport */
1040 1061                  if (cmd->nc_xfer != NULL)
1041 1062                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1042 1063                  return (EIO);
1043 1064  
1044 1065          default:
1045 1066                  return (nvme_check_unknown_cmd_status(cmd));
1046 1067          }
1047 1068  }
1048 1069  
1049 1070  static int
1050 1071  nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1051 1072  {
1052 1073          nvme_cqe_t *cqe = &cmd->nc_cqe;
1053 1074  
1054 1075          switch (cqe->cqe_sf.sf_sc) {
1055 1076          case NVME_CQE_SC_GEN_SUCCESS:
1056 1077                  return (0);
1057 1078  
1058 1079          /*
1059 1080           * Errors indicating a bug in the driver should cause a panic.
1060 1081           */
1061 1082          case NVME_CQE_SC_GEN_INV_OPC:
1062 1083                  /* Invalid Command Opcode */
1063 1084                  if (!cmd->nc_dontpanic)
1064 1085                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1065 1086                              "programming error: invalid opcode in cmd %p",
1066 1087                              (void *)cmd);
1067 1088                  return (EINVAL);
1068 1089  
1069 1090          case NVME_CQE_SC_GEN_INV_FLD:
1070 1091                  /* Invalid Field in Command */
1071 1092                  if (!cmd->nc_dontpanic)
1072 1093                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1073 1094                              "programming error: invalid field in cmd %p",
1074 1095                              (void *)cmd);
1075 1096                  return (EIO);
1076 1097  
  
    | 
      ↓ open down ↓ | 
    802 lines elided | 
    
      ↑ open up ↑ | 
  
1077 1098          case NVME_CQE_SC_GEN_ID_CNFL:
1078 1099                  /* Command ID Conflict */
1079 1100                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1080 1101                      "cmd ID conflict in cmd %p", (void *)cmd);
1081 1102                  return (0);
1082 1103  
1083 1104          case NVME_CQE_SC_GEN_INV_NS:
1084 1105                  /* Invalid Namespace or Format */
1085 1106                  if (!cmd->nc_dontpanic)
1086 1107                          dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1087      -                            "programming error: " "invalid NS/format in cmd %p",
     1108 +                            "programming error: invalid NS/format in cmd %p",
1088 1109                              (void *)cmd);
1089 1110                  return (EINVAL);
1090 1111  
1091 1112          case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1092 1113                  /* LBA Out Of Range */
1093 1114                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1094 1115                      "LBA out of range in cmd %p", (void *)cmd);
1095 1116                  return (0);
1096 1117  
1097 1118          /*
1098 1119           * Non-fatal errors, handle gracefully.
1099 1120           */
1100 1121          case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1101 1122                  /* Data Transfer Error (DMA) */
1102 1123                  /* TODO: post ereport */
1103 1124                  atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1104 1125                  if (cmd->nc_xfer != NULL)
1105 1126                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1106 1127                  return (EIO);
1107 1128  
1108 1129          case NVME_CQE_SC_GEN_INTERNAL_ERR:
1109 1130                  /*
1110 1131                   * Internal Error. The spec (v1.0, section 4.5.1.2) says
1111 1132                   * detailed error information is returned as async event,
1112 1133                   * so we pretty much ignore the error here and handle it
1113 1134                   * in the async event handler.
1114 1135                   */
1115 1136                  atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1116 1137                  if (cmd->nc_xfer != NULL)
1117 1138                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1118 1139                  return (EIO);
1119 1140  
1120 1141          case NVME_CQE_SC_GEN_ABORT_REQUEST:
1121 1142                  /*
1122 1143                   * Command Abort Requested. This normally happens only when a
1123 1144                   * command times out.
1124 1145                   */
1125 1146                  /* TODO: post ereport or change blkdev to handle this? */
1126 1147                  atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1127 1148                  return (ECANCELED);
1128 1149  
1129 1150          case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1130 1151                  /* Command Aborted due to Power Loss Notification */
1131 1152                  ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1132 1153                  cmd->nc_nvme->n_dead = B_TRUE;
1133 1154                  return (EIO);
1134 1155  
1135 1156          case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1136 1157                  /* Command Aborted due to SQ Deletion */
1137 1158                  atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1138 1159                  return (EIO);
1139 1160  
1140 1161          case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1141 1162                  /* Capacity Exceeded */
1142 1163                  atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1143 1164                  if (cmd->nc_xfer != NULL)
1144 1165                          bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1145 1166                  return (EIO);
1146 1167  
1147 1168          case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1148 1169                  /* Namespace Not Ready */
1149 1170                  atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1150 1171                  if (cmd->nc_xfer != NULL)
1151 1172                          bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1152 1173                  return (EIO);
1153 1174  
1154 1175          default:
1155 1176                  return (nvme_check_unknown_cmd_status(cmd));
1156 1177          }
1157 1178  }
1158 1179  
1159 1180  static int
1160 1181  nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1161 1182  {
1162 1183          nvme_cqe_t *cqe = &cmd->nc_cqe;
1163 1184  
1164 1185          switch (cqe->cqe_sf.sf_sc) {
1165 1186          case NVME_CQE_SC_SPC_INV_CQ:
1166 1187                  /* Completion Queue Invalid */
1167 1188                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1168 1189                  atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1169 1190                  return (EINVAL);
1170 1191  
1171 1192          case NVME_CQE_SC_SPC_INV_QID:
1172 1193                  /* Invalid Queue Identifier */
1173 1194                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1174 1195                      cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1175 1196                      cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1176 1197                      cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1177 1198                  atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1178 1199                  return (EINVAL);
1179 1200  
1180 1201          case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1181 1202                  /* Max Queue Size Exceeded */
1182 1203                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1183 1204                      cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1184 1205                  atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1185 1206                  return (EINVAL);
1186 1207  
1187 1208          case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1188 1209                  /* Abort Command Limit Exceeded */
1189 1210                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1190 1211                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1191 1212                      "abort command limit exceeded in cmd %p", (void *)cmd);
1192 1213                  return (0);
1193 1214  
1194 1215          case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1195 1216                  /* Async Event Request Limit Exceeded */
1196 1217                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1197 1218                  dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1198 1219                      "async event request limit exceeded in cmd %p",
1199 1220                      (void *)cmd);
1200 1221                  return (0);
1201 1222  
1202 1223          case NVME_CQE_SC_SPC_INV_INT_VECT:
1203 1224                  /* Invalid Interrupt Vector */
1204 1225                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1205 1226                  atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1206 1227                  return (EINVAL);
1207 1228  
1208 1229          case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1209 1230                  /* Invalid Log Page */
1210 1231                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1211 1232                  atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1212 1233                  return (EINVAL);
1213 1234  
1214 1235          case NVME_CQE_SC_SPC_INV_FORMAT:
1215 1236                  /* Invalid Format */
1216 1237                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1217 1238                  atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1218 1239                  if (cmd->nc_xfer != NULL)
1219 1240                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1220 1241                  return (EINVAL);
1221 1242  
1222 1243          case NVME_CQE_SC_SPC_INV_Q_DEL:
1223 1244                  /* Invalid Queue Deletion */
1224 1245                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1225 1246                  atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1226 1247                  return (EINVAL);
1227 1248  
1228 1249          case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1229 1250                  /* Conflicting Attributes */
1230 1251                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1231 1252                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1232 1253                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1233 1254                  atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1234 1255                  if (cmd->nc_xfer != NULL)
1235 1256                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1236 1257                  return (EINVAL);
1237 1258  
1238 1259          case NVME_CQE_SC_SPC_NVM_INV_PROT:
1239 1260                  /* Invalid Protection Information */
1240 1261                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1241 1262                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1242 1263                      cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1243 1264                  atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1244 1265                  if (cmd->nc_xfer != NULL)
1245 1266                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1246 1267                  return (EINVAL);
1247 1268  
1248 1269          case NVME_CQE_SC_SPC_NVM_READONLY:
1249 1270                  /* Write to Read Only Range */
1250 1271                  ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1251 1272                  atomic_inc_32(&cmd->nc_nvme->n_readonly);
1252 1273                  if (cmd->nc_xfer != NULL)
1253 1274                          bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1254 1275                  return (EROFS);
1255 1276  
1256 1277          default:
1257 1278                  return (nvme_check_unknown_cmd_status(cmd));
1258 1279          }
1259 1280  }
1260 1281  
1261 1282  static inline int
1262 1283  nvme_check_cmd_status(nvme_cmd_t *cmd)
1263 1284  {
1264 1285          nvme_cqe_t *cqe = &cmd->nc_cqe;
1265 1286  
1266 1287          /*
1267 1288           * Take a shortcut if the controller is dead, or if
1268 1289           * command status indicates no error.
1269 1290           */
1270 1291          if (cmd->nc_nvme->n_dead)
1271 1292                  return (EIO);
1272 1293  
1273 1294          if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1274 1295              cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1275 1296                  return (0);
1276 1297  
1277 1298          if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1278 1299                  return (nvme_check_generic_cmd_status(cmd));
1279 1300          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1280 1301                  return (nvme_check_specific_cmd_status(cmd));
1281 1302          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1282 1303                  return (nvme_check_integrity_cmd_status(cmd));
1283 1304          else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1284 1305                  return (nvme_check_vendor_cmd_status(cmd));
1285 1306  
1286 1307          return (nvme_check_unknown_cmd_status(cmd));
1287 1308  }
1288 1309  
1289 1310  static int
1290 1311  nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1291 1312  {
1292 1313          nvme_t *nvme = abort_cmd->nc_nvme;
1293 1314          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1294 1315          nvme_abort_cmd_t ac = { 0 };
1295 1316          int ret = 0;
1296 1317  
1297 1318          sema_p(&nvme->n_abort_sema);
1298 1319  
1299 1320          ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1300 1321          ac.b.ac_sqid = abort_cmd->nc_sqid;
1301 1322  
1302 1323          cmd->nc_sqid = 0;
1303 1324          cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1304 1325          cmd->nc_callback = nvme_wakeup_cmd;
1305 1326          cmd->nc_sqe.sqe_cdw10 = ac.r;
1306 1327  
1307 1328          /*
1308 1329           * Send the ABORT to the hardware. The ABORT command will return _after_
1309 1330           * the aborted command has completed (aborted or otherwise), but since
1310 1331           * we still hold the aborted command's mutex its callback hasn't been
1311 1332           * processed yet.
1312 1333           */
1313 1334          nvme_admin_cmd(cmd, sec);
1314 1335          sema_v(&nvme->n_abort_sema);
1315 1336  
1316 1337          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1317 1338                  dev_err(nvme->n_dip, CE_WARN,
1318 1339                      "!ABORT failed with sct = %x, sc = %x",
1319 1340                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1320 1341                  atomic_inc_32(&nvme->n_abort_failed);
1321 1342          } else {
1322 1343                  dev_err(nvme->n_dip, CE_WARN,
1323 1344                      "!ABORT of command %d/%d %ssuccessful",
1324 1345                      abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1325 1346                      cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1326 1347                  if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1327 1348                          atomic_inc_32(&nvme->n_cmd_aborted);
1328 1349          }
1329 1350  
1330 1351          nvme_free_cmd(cmd);
1331 1352          return (ret);
1332 1353  }
1333 1354  
1334 1355  /*
1335 1356   * nvme_wait_cmd -- wait for command completion or timeout
1336 1357   *
1337 1358   * In case of a serious error or a timeout of the abort command the hardware
1338 1359   * will be declared dead and FMA will be notified.
1339 1360   */
1340 1361  static void
1341 1362  nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1342 1363  {
1343 1364          clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1344 1365          nvme_t *nvme = cmd->nc_nvme;
1345 1366          nvme_reg_csts_t csts;
1346 1367          nvme_qpair_t *qp;
1347 1368  
1348 1369          ASSERT(mutex_owned(&cmd->nc_mutex));
1349 1370  
1350 1371          while (!cmd->nc_completed) {
1351 1372                  if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1352 1373                          break;
1353 1374          }
1354 1375  
1355 1376          if (cmd->nc_completed)
1356 1377                  return;
1357 1378  
1358 1379          /*
1359 1380           * The command timed out.
1360 1381           *
1361 1382           * Check controller for fatal status, any errors associated with the
1362 1383           * register or DMA handle, or for a double timeout (abort command timed
1363 1384           * out). If necessary log a warning and call FMA.
1364 1385           */
1365 1386          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1366 1387          dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1367 1388              "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1368 1389              cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1369 1390          atomic_inc_32(&nvme->n_cmd_timeout);
1370 1391  
1371 1392          if (csts.b.csts_cfs ||
1372 1393              nvme_check_regs_hdl(nvme) ||
1373 1394              nvme_check_dma_hdl(cmd->nc_dma) ||
1374 1395              cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1375 1396                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1376 1397                  nvme->n_dead = B_TRUE;
1377 1398          } else if (nvme_abort_cmd(cmd, sec) == 0) {
1378 1399                  /*
1379 1400                   * If the abort succeeded the command should complete
1380 1401                   * immediately with an appropriate status.
1381 1402                   */
1382 1403                  while (!cmd->nc_completed)
1383 1404                          cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1384 1405  
1385 1406                  return;
1386 1407          }
1387 1408  
1388 1409          qp = nvme->n_ioq[cmd->nc_sqid];
1389 1410  
1390 1411          mutex_enter(&qp->nq_mutex);
1391 1412          (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1392 1413          mutex_exit(&qp->nq_mutex);
1393 1414  
1394 1415          /*
1395 1416           * As we don't know what the presumed dead hardware might still do with
1396 1417           * the DMA memory, we'll put the command on the lost commands list if it
1397 1418           * has any DMA memory.
1398 1419           */
1399 1420          if (cmd->nc_dma != NULL) {
1400 1421                  mutex_enter(&nvme_lc_mutex);
1401 1422                  list_insert_head(&nvme_lost_cmds, cmd);
1402 1423                  mutex_exit(&nvme_lc_mutex);
1403 1424          }
1404 1425  }
1405 1426  
1406 1427  static void
1407 1428  nvme_wakeup_cmd(void *arg)
1408 1429  {
1409 1430          nvme_cmd_t *cmd = arg;
1410 1431  
1411 1432          mutex_enter(&cmd->nc_mutex);
1412 1433          cmd->nc_completed = B_TRUE;
1413 1434          cv_signal(&cmd->nc_cv);
1414 1435          mutex_exit(&cmd->nc_mutex);
1415 1436  }
1416 1437  
1417 1438  static void
1418 1439  nvme_async_event_task(void *arg)
1419 1440  {
1420 1441          nvme_cmd_t *cmd = arg;
1421 1442          nvme_t *nvme = cmd->nc_nvme;
1422 1443          nvme_error_log_entry_t *error_log = NULL;
1423 1444          nvme_health_log_t *health_log = NULL;
1424 1445          size_t logsize = 0;
1425 1446          nvme_async_event_t event;
1426 1447  
1427 1448          /*
1428 1449           * Check for errors associated with the async request itself. The only
1429 1450           * command-specific error is "async event limit exceeded", which
1430 1451           * indicates a programming error in the driver and causes a panic in
1431 1452           * nvme_check_cmd_status().
1432 1453           *
1433 1454           * Other possible errors are various scenarios where the async request
1434 1455           * was aborted, or internal errors in the device. Internal errors are
1435 1456           * reported to FMA, the command aborts need no special handling here.
1436 1457           *
1437 1458           * And finally, at least qemu nvme does not support async events,
1438 1459           * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1439 1460           * will avoid posting async events.
1440 1461           */
1441 1462  
1442 1463          if (nvme_check_cmd_status(cmd) != 0) {
1443 1464                  dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1444 1465                      "!async event request returned failure, sct = %x, "
1445 1466                      "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1446 1467                      cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1447 1468                      cmd->nc_cqe.cqe_sf.sf_m);
1448 1469  
1449 1470                  if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1450 1471                      cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1451 1472                          cmd->nc_nvme->n_dead = B_TRUE;
1452 1473                          ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1453 1474                              DDI_SERVICE_LOST);
1454 1475                  }
1455 1476  
1456 1477                  if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1457 1478                      cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1458 1479                      cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1459 1480                          nvme->n_async_event_supported = B_FALSE;
1460 1481                  }
1461 1482  
1462 1483                  nvme_free_cmd(cmd);
1463 1484                  return;
1464 1485          }
1465 1486  
1466 1487  
1467 1488          event.r = cmd->nc_cqe.cqe_dw0;
1468 1489  
1469 1490          /* Clear CQE and re-submit the async request. */
1470 1491          bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1471 1492          nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1472 1493  
1473 1494          switch (event.b.ae_type) {
1474 1495          case NVME_ASYNC_TYPE_ERROR:
1475 1496                  if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1476 1497                          (void) nvme_get_logpage(nvme, (void **)&error_log,
1477 1498                              &logsize, event.b.ae_logpage);
1478 1499                  } else {
1479 1500                          dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1480 1501                              "async event reply: %d", event.b.ae_logpage);
1481 1502                          atomic_inc_32(&nvme->n_wrong_logpage);
1482 1503                  }
1483 1504  
1484 1505                  switch (event.b.ae_info) {
1485 1506                  case NVME_ASYNC_ERROR_INV_SQ:
1486 1507                          dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1487 1508                              "invalid submission queue");
1488 1509                          return;
1489 1510  
1490 1511                  case NVME_ASYNC_ERROR_INV_DBL:
1491 1512                          dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1492 1513                              "invalid doorbell write value");
1493 1514                          return;
1494 1515  
1495 1516                  case NVME_ASYNC_ERROR_DIAGFAIL:
1496 1517                          dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1497 1518                          ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1498 1519                          nvme->n_dead = B_TRUE;
1499 1520                          atomic_inc_32(&nvme->n_diagfail_event);
1500 1521                          break;
1501 1522  
1502 1523                  case NVME_ASYNC_ERROR_PERSISTENT:
1503 1524                          dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1504 1525                              "device error");
1505 1526                          ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1506 1527                          nvme->n_dead = B_TRUE;
1507 1528                          atomic_inc_32(&nvme->n_persistent_event);
1508 1529                          break;
1509 1530  
1510 1531                  case NVME_ASYNC_ERROR_TRANSIENT:
1511 1532                          dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1512 1533                              "device error");
1513 1534                          /* TODO: send ereport */
1514 1535                          atomic_inc_32(&nvme->n_transient_event);
1515 1536                          break;
1516 1537  
1517 1538                  case NVME_ASYNC_ERROR_FW_LOAD:
1518 1539                          dev_err(nvme->n_dip, CE_WARN,
1519 1540                              "!firmware image load error");
1520 1541                          atomic_inc_32(&nvme->n_fw_load_event);
1521 1542                          break;
1522 1543                  }
1523 1544                  break;
1524 1545  
1525 1546          case NVME_ASYNC_TYPE_HEALTH:
1526 1547                  if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1527 1548                          (void) nvme_get_logpage(nvme, (void **)&health_log,
1528 1549                              &logsize, event.b.ae_logpage, -1);
1529 1550                  } else {
1530 1551                          dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1531 1552                              "async event reply: %d", event.b.ae_logpage);
1532 1553                          atomic_inc_32(&nvme->n_wrong_logpage);
1533 1554                  }
1534 1555  
1535 1556                  switch (event.b.ae_info) {
1536 1557                  case NVME_ASYNC_HEALTH_RELIABILITY:
1537 1558                          dev_err(nvme->n_dip, CE_WARN,
1538 1559                              "!device reliability compromised");
1539 1560                          /* TODO: send ereport */
1540 1561                          atomic_inc_32(&nvme->n_reliability_event);
1541 1562                          break;
1542 1563  
1543 1564                  case NVME_ASYNC_HEALTH_TEMPERATURE:
1544 1565                          dev_err(nvme->n_dip, CE_WARN,
1545 1566                              "!temperature above threshold");
1546 1567                          /* TODO: send ereport */
1547 1568                          atomic_inc_32(&nvme->n_temperature_event);
1548 1569                          break;
1549 1570  
1550 1571                  case NVME_ASYNC_HEALTH_SPARE:
1551 1572                          dev_err(nvme->n_dip, CE_WARN,
1552 1573                              "!spare space below threshold");
1553 1574                          /* TODO: send ereport */
1554 1575                          atomic_inc_32(&nvme->n_spare_event);
1555 1576                          break;
1556 1577                  }
1557 1578                  break;
1558 1579  
1559 1580          case NVME_ASYNC_TYPE_VENDOR:
1560 1581                  dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1561 1582                      "received, info = %x, logpage = %x", event.b.ae_info,
1562 1583                      event.b.ae_logpage);
1563 1584                  atomic_inc_32(&nvme->n_vendor_event);
1564 1585                  break;
1565 1586  
1566 1587          default:
1567 1588                  dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1568 1589                      "type = %x, info = %x, logpage = %x", event.b.ae_type,
1569 1590                      event.b.ae_info, event.b.ae_logpage);
1570 1591                  atomic_inc_32(&nvme->n_unknown_event);
1571 1592                  break;
1572 1593          }
1573 1594  
1574 1595          if (error_log)
1575 1596                  kmem_free(error_log, logsize);
1576 1597  
1577 1598          if (health_log)
1578 1599                  kmem_free(health_log, logsize);
1579 1600  }
1580 1601  
1581 1602  static void
1582 1603  nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1583 1604  {
1584 1605          mutex_enter(&cmd->nc_mutex);
1585 1606          nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1586 1607          nvme_wait_cmd(cmd, sec);
1587 1608          mutex_exit(&cmd->nc_mutex);
1588 1609  }
1589 1610  
1590 1611  static void
1591 1612  nvme_async_event(nvme_t *nvme)
1592 1613  {
1593 1614          nvme_cmd_t *cmd;
1594 1615  
1595 1616          cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1596 1617          cmd->nc_sqid = 0;
1597 1618          cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1598 1619          cmd->nc_callback = nvme_async_event_task;
1599 1620          cmd->nc_dontpanic = B_TRUE;
1600 1621  
1601 1622          nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1602 1623  }
1603 1624  
1604 1625  static int
1605 1626  nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1606 1627      uint8_t pi, boolean_t pil, uint8_t ses)
1607 1628  {
1608 1629          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1609 1630          nvme_format_nvm_t format_nvm = { 0 };
1610 1631          int ret;
1611 1632  
1612 1633          format_nvm.b.fm_lbaf = lbaf & 0xf;
1613 1634          format_nvm.b.fm_ms = ms ? 1 : 0;
1614 1635          format_nvm.b.fm_pi = pi & 0x7;
1615 1636          format_nvm.b.fm_pil = pil ? 1 : 0;
1616 1637          format_nvm.b.fm_ses = ses & 0x7;
1617 1638  
1618 1639          cmd->nc_sqid = 0;
1619 1640          cmd->nc_callback = nvme_wakeup_cmd;
1620 1641          cmd->nc_sqe.sqe_nsid = nsid;
1621 1642          cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1622 1643          cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1623 1644  
1624 1645          /*
1625 1646           * Some devices like Samsung SM951 don't allow formatting of all
1626 1647           * namespaces in one command. Handle that gracefully.
1627 1648           */
1628 1649          if (nsid == (uint32_t)-1)
1629 1650                  cmd->nc_dontpanic = B_TRUE;
1630 1651  
1631 1652          nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1632 1653  
1633 1654          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1634 1655                  dev_err(nvme->n_dip, CE_WARN,
1635 1656                      "!FORMAT failed with sct = %x, sc = %x",
1636 1657                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1637 1658          }
1638 1659  
1639 1660          nvme_free_cmd(cmd);
1640 1661          return (ret);
1641 1662  }
1642 1663  
1643 1664  static int
1644 1665  nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1645 1666      ...)
1646 1667  {
1647 1668          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1648 1669          nvme_getlogpage_t getlogpage = { 0 };
1649 1670          va_list ap;
1650 1671          int ret;
1651 1672  
1652 1673          va_start(ap, logpage);
1653 1674  
1654 1675          cmd->nc_sqid = 0;
1655 1676          cmd->nc_callback = nvme_wakeup_cmd;
1656 1677          cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1657 1678  
1658 1679          getlogpage.b.lp_lid = logpage;
1659 1680  
1660 1681          switch (logpage) {
1661 1682          case NVME_LOGPAGE_ERROR:
1662 1683                  cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1663 1684                  /*
1664 1685                   * The GET LOG PAGE command can use at most 2 pages to return
1665 1686                   * data, PRP lists are not supported.
1666 1687                   */
1667 1688                  *bufsize = MIN(2 * nvme->n_pagesize,
1668 1689                      nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1669 1690                  break;
1670 1691  
1671 1692          case NVME_LOGPAGE_HEALTH:
1672 1693                  cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1673 1694                  *bufsize = sizeof (nvme_health_log_t);
1674 1695                  break;
1675 1696  
1676 1697          case NVME_LOGPAGE_FWSLOT:
1677 1698                  cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1678 1699                  *bufsize = sizeof (nvme_fwslot_log_t);
1679 1700                  break;
1680 1701  
1681 1702          default:
1682 1703                  dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1683 1704                      logpage);
1684 1705                  atomic_inc_32(&nvme->n_unknown_logpage);
1685 1706                  ret = EINVAL;
1686 1707                  goto fail;
1687 1708          }
1688 1709  
1689 1710          va_end(ap);
1690 1711  
1691 1712          getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1692 1713  
1693 1714          cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1694 1715  
1695 1716          if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1696 1717              DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1697 1718                  dev_err(nvme->n_dip, CE_WARN,
1698 1719                      "!nvme_zalloc_dma failed for GET LOG PAGE");
1699 1720                  ret = ENOMEM;
1700 1721                  goto fail;
1701 1722          }
1702 1723  
1703 1724          if (cmd->nc_dma->nd_ncookie > 2) {
1704 1725                  dev_err(nvme->n_dip, CE_WARN,
1705 1726                      "!too many DMA cookies for GET LOG PAGE");
1706 1727                  atomic_inc_32(&nvme->n_too_many_cookies);
1707 1728                  ret = ENOMEM;
1708 1729                  goto fail;
1709 1730          }
1710 1731  
1711 1732          cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1712 1733          if (cmd->nc_dma->nd_ncookie > 1) {
1713 1734                  ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1714 1735                      &cmd->nc_dma->nd_cookie);
1715 1736                  cmd->nc_sqe.sqe_dptr.d_prp[1] =
1716 1737                      cmd->nc_dma->nd_cookie.dmac_laddress;
1717 1738          }
1718 1739  
1719 1740          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1720 1741  
1721 1742          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1722 1743                  dev_err(nvme->n_dip, CE_WARN,
1723 1744                      "!GET LOG PAGE failed with sct = %x, sc = %x",
1724 1745                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1725 1746                  goto fail;
1726 1747          }
1727 1748  
1728 1749          *buf = kmem_alloc(*bufsize, KM_SLEEP);
1729 1750          bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1730 1751  
1731 1752  fail:
1732 1753          nvme_free_cmd(cmd);
1733 1754  
1734 1755          return (ret);
1735 1756  }
1736 1757  
1737 1758  static int
1738 1759  nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1739 1760  {
1740 1761          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1741 1762          int ret;
1742 1763  
1743 1764          if (buf == NULL)
1744 1765                  return (EINVAL);
1745 1766  
1746 1767          cmd->nc_sqid = 0;
1747 1768          cmd->nc_callback = nvme_wakeup_cmd;
1748 1769          cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1749 1770          cmd->nc_sqe.sqe_nsid = nsid;
1750 1771          cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1751 1772  
1752 1773          if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1753 1774              &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1754 1775                  dev_err(nvme->n_dip, CE_WARN,
1755 1776                      "!nvme_zalloc_dma failed for IDENTIFY");
1756 1777                  ret = ENOMEM;
1757 1778                  goto fail;
1758 1779          }
1759 1780  
1760 1781          if (cmd->nc_dma->nd_ncookie > 2) {
1761 1782                  dev_err(nvme->n_dip, CE_WARN,
1762 1783                      "!too many DMA cookies for IDENTIFY");
1763 1784                  atomic_inc_32(&nvme->n_too_many_cookies);
1764 1785                  ret = ENOMEM;
1765 1786                  goto fail;
1766 1787          }
1767 1788  
1768 1789          cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1769 1790          if (cmd->nc_dma->nd_ncookie > 1) {
1770 1791                  ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1771 1792                      &cmd->nc_dma->nd_cookie);
1772 1793                  cmd->nc_sqe.sqe_dptr.d_prp[1] =
1773 1794                      cmd->nc_dma->nd_cookie.dmac_laddress;
1774 1795          }
1775 1796  
1776 1797          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1777 1798  
1778 1799          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1779 1800                  dev_err(nvme->n_dip, CE_WARN,
1780 1801                      "!IDENTIFY failed with sct = %x, sc = %x",
1781 1802                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1782 1803                  goto fail;
1783 1804          }
1784 1805  
1785 1806          *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1786 1807          bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1787 1808  
1788 1809  fail:
1789 1810          nvme_free_cmd(cmd);
1790 1811  
1791 1812          return (ret);
1792 1813  }
1793 1814  
1794 1815  static int
1795 1816  nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1796 1817      uint32_t *res)
1797 1818  {
1798 1819          _NOTE(ARGUNUSED(nsid));
1799 1820          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1800 1821          int ret = EINVAL;
1801 1822  
1802 1823          ASSERT(res != NULL);
1803 1824  
1804 1825          cmd->nc_sqid = 0;
1805 1826          cmd->nc_callback = nvme_wakeup_cmd;
1806 1827          cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1807 1828          cmd->nc_sqe.sqe_cdw10 = feature;
1808 1829          cmd->nc_sqe.sqe_cdw11 = val;
1809 1830  
1810 1831          switch (feature) {
1811 1832          case NVME_FEAT_WRITE_CACHE:
1812 1833                  if (!nvme->n_write_cache_present)
1813 1834                          goto fail;
1814 1835                  break;
1815 1836  
1816 1837          case NVME_FEAT_NQUEUES:
1817 1838                  break;
1818 1839  
1819 1840          default:
1820 1841                  goto fail;
1821 1842          }
1822 1843  
1823 1844          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1824 1845  
1825 1846          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1826 1847                  dev_err(nvme->n_dip, CE_WARN,
1827 1848                      "!SET FEATURES %d failed with sct = %x, sc = %x",
1828 1849                      feature, cmd->nc_cqe.cqe_sf.sf_sct,
1829 1850                      cmd->nc_cqe.cqe_sf.sf_sc);
1830 1851                  goto fail;
1831 1852          }
1832 1853  
1833 1854          *res = cmd->nc_cqe.cqe_dw0;
1834 1855  
1835 1856  fail:
1836 1857          nvme_free_cmd(cmd);
1837 1858          return (ret);
1838 1859  }
1839 1860  
1840 1861  static int
1841 1862  nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1842 1863      void **buf, size_t *bufsize)
1843 1864  {
1844 1865          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1845 1866          int ret = EINVAL;
1846 1867  
1847 1868          ASSERT(res != NULL);
  
    | 
      ↓ open down ↓ | 
    750 lines elided | 
    
      ↑ open up ↑ | 
  
1848 1869  
1849 1870          if (bufsize != NULL)
1850 1871                  *bufsize = 0;
1851 1872  
1852 1873          cmd->nc_sqid = 0;
1853 1874          cmd->nc_callback = nvme_wakeup_cmd;
1854 1875          cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1855 1876          cmd->nc_sqe.sqe_cdw10 = feature;
1856 1877          cmd->nc_sqe.sqe_cdw11 = *res;
1857 1878  
     1879 +        /*
     1880 +         * For some of the optional features there doesn't seem to be a method
     1881 +         * of detecting whether it is supported other than using it.  This will
     1882 +         * cause "Invalid Field in Command" error, which is normally considered
     1883 +         * a programming error.  Set the nc_dontpanic flag to override the panic
     1884 +         * in nvme_check_generic_cmd_status().
     1885 +         */
1858 1886          switch (feature) {
1859 1887          case NVME_FEAT_ARBITRATION:
1860 1888          case NVME_FEAT_POWER_MGMT:
1861 1889          case NVME_FEAT_TEMPERATURE:
1862      -        case NVME_FEAT_ERROR:
1863 1890          case NVME_FEAT_NQUEUES:
1864 1891          case NVME_FEAT_INTR_COAL:
1865 1892          case NVME_FEAT_INTR_VECT:
1866 1893          case NVME_FEAT_WRITE_ATOM:
1867 1894          case NVME_FEAT_ASYNC_EVENT:
1868      -        case NVME_FEAT_PROGRESS:
1869 1895                  break;
1870 1896  
     1897 +        case NVME_FEAT_ERROR:
     1898 +                /*
     1899 +                 * Per-namespace Deallocated or Unwritten Logical Block
     1900 +                 * Error Enable (DULBE) feature was added after initial NVMe
     1901 +                 * specification, but we currently only check this feature with
     1902 +                 * NS ID of 0 (the controller itself), and some controllers get
     1903 +                 * upset, reporting the error.  For the moment, override the
     1904 +                 * panic by setting the nc_dontpanic flag.
     1905 +                 */
     1906 +                cmd->nc_dontpanic = B_TRUE;
     1907 +                break;
     1908 +
1871 1909          case NVME_FEAT_WRITE_CACHE:
1872 1910                  if (!nvme->n_write_cache_present)
1873 1911                          goto fail;
1874 1912                  break;
1875 1913  
1876 1914          case NVME_FEAT_LBA_RANGE:
1877 1915                  if (!nvme->n_lba_range_supported)
1878 1916                          goto fail;
1879 1917  
1880      -                /*
1881      -                 * The LBA Range Type feature is optional. There doesn't seem
1882      -                 * be a method of detecting whether it is supported other than
1883      -                 * using it. This will cause a "invalid field in command" error,
1884      -                 * which is normally considered a programming error and causes
1885      -                 * panic in nvme_check_generic_cmd_status().
1886      -                 */
1887 1918                  cmd->nc_dontpanic = B_TRUE;
1888 1919                  cmd->nc_sqe.sqe_nsid = nsid;
1889 1920                  ASSERT(bufsize != NULL);
1890 1921                  *bufsize = NVME_LBA_RANGE_BUFSIZE;
1891      -
1892 1922                  break;
1893 1923  
1894 1924          case NVME_FEAT_AUTO_PST:
1895 1925                  if (!nvme->n_auto_pst_supported)
1896 1926                          goto fail;
1897 1927  
1898 1928                  ASSERT(bufsize != NULL);
1899 1929                  *bufsize = NVME_AUTO_PST_BUFSIZE;
1900 1930                  break;
1901 1931  
     1932 +        case NVME_FEAT_PROGRESS:
     1933 +                if (!nvme->n_progress_supported)
     1934 +                        goto fail;
     1935 +
     1936 +                cmd->nc_dontpanic = B_TRUE;
     1937 +                break;
     1938 +
1902 1939          default:
1903 1940                  goto fail;
1904 1941          }
1905 1942  
1906 1943          if (bufsize != NULL && *bufsize != 0) {
1907 1944                  if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1908 1945                      &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1909 1946                          dev_err(nvme->n_dip, CE_WARN,
1910 1947                              "!nvme_zalloc_dma failed for GET FEATURES");
1911 1948                          ret = ENOMEM;
1912 1949                          goto fail;
1913 1950                  }
1914 1951  
1915 1952                  if (cmd->nc_dma->nd_ncookie > 2) {
1916 1953                          dev_err(nvme->n_dip, CE_WARN,
1917 1954                              "!too many DMA cookies for GET FEATURES");
1918 1955                          atomic_inc_32(&nvme->n_too_many_cookies);
1919 1956                          ret = ENOMEM;
1920 1957                          goto fail;
1921 1958                  }
1922 1959  
1923 1960                  cmd->nc_sqe.sqe_dptr.d_prp[0] =
1924 1961                      cmd->nc_dma->nd_cookie.dmac_laddress;
1925 1962                  if (cmd->nc_dma->nd_ncookie > 1) {
  
    | 
      ↓ open down ↓ | 
    14 lines elided | 
    
      ↑ open up ↑ | 
  
1926 1963                          ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1927 1964                              &cmd->nc_dma->nd_cookie);
1928 1965                          cmd->nc_sqe.sqe_dptr.d_prp[1] =
1929 1966                              cmd->nc_dma->nd_cookie.dmac_laddress;
1930 1967                  }
1931 1968          }
1932 1969  
1933 1970          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1934 1971  
1935 1972          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1936      -                if (feature == NVME_FEAT_LBA_RANGE &&
1937      -                    cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1938      -                    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1939      -                        nvme->n_lba_range_supported = B_FALSE;
1940      -                else
     1973 +                boolean_t known = B_TRUE;
     1974 +
     1975 +                /* Check if this is unsupported optional feature */
     1976 +                if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
     1977 +                    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
     1978 +                        switch (feature) {
     1979 +                        case NVME_FEAT_LBA_RANGE:
     1980 +                                nvme->n_lba_range_supported = B_FALSE;
     1981 +                                break;
     1982 +                        case NVME_FEAT_PROGRESS:
     1983 +                                nvme->n_progress_supported = B_FALSE;
     1984 +                                break;
     1985 +                        default:
     1986 +                                known = B_FALSE;
     1987 +                                break;
     1988 +                        }
     1989 +                } else {
     1990 +                        known = B_FALSE;
     1991 +                }
     1992 +
     1993 +                /* Report the error otherwise */
     1994 +                if (!known) {
1941 1995                          dev_err(nvme->n_dip, CE_WARN,
1942 1996                              "!GET FEATURES %d failed with sct = %x, sc = %x",
1943 1997                              feature, cmd->nc_cqe.cqe_sf.sf_sct,
1944 1998                              cmd->nc_cqe.cqe_sf.sf_sc);
     1999 +                }
     2000 +
1945 2001                  goto fail;
1946 2002          }
1947 2003  
1948 2004          if (bufsize != NULL && *bufsize != 0) {
1949 2005                  ASSERT(buf != NULL);
1950 2006                  *buf = kmem_alloc(*bufsize, KM_SLEEP);
1951 2007                  bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1952 2008          }
1953 2009  
1954 2010          *res = cmd->nc_cqe.cqe_dw0;
1955 2011  
1956 2012  fail:
1957 2013          nvme_free_cmd(cmd);
1958 2014          return (ret);
1959 2015  }
1960 2016  
1961 2017  static int
1962 2018  nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1963 2019  {
1964 2020          nvme_write_cache_t nwc = { 0 };
1965 2021  
1966 2022          if (enable)
1967 2023                  nwc.b.wc_wce = 1;
1968 2024  
1969 2025          return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
1970 2026              &nwc.r));
1971 2027  }
1972 2028  
1973 2029  static int
1974 2030  nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
1975 2031  {
1976 2032          nvme_nqueues_t nq = { 0 };
1977 2033          int ret;
1978 2034  
1979 2035          nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
1980 2036  
1981 2037          ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
1982 2038  
1983 2039          if (ret == 0) {
1984 2040                  /*
1985 2041                   * Always use the same number of submission and completion
1986 2042                   * queues, and never use more than the requested number of
1987 2043                   * queues.
1988 2044                   */
1989 2045                  *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
1990 2046          }
1991 2047  
1992 2048          return (ret);
1993 2049  }
1994 2050  
1995 2051  static int
1996 2052  nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1997 2053  {
1998 2054          nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1999 2055          nvme_create_queue_dw10_t dw10 = { 0 };
2000 2056          nvme_create_cq_dw11_t c_dw11 = { 0 };
2001 2057          nvme_create_sq_dw11_t s_dw11 = { 0 };
2002 2058          int ret;
2003 2059  
2004 2060          dw10.b.q_qid = idx;
2005 2061          dw10.b.q_qsize = qp->nq_nentry - 1;
2006 2062  
2007 2063          c_dw11.b.cq_pc = 1;
2008 2064          c_dw11.b.cq_ien = 1;
2009 2065          c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2010 2066  
2011 2067          cmd->nc_sqid = 0;
2012 2068          cmd->nc_callback = nvme_wakeup_cmd;
2013 2069          cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2014 2070          cmd->nc_sqe.sqe_cdw10 = dw10.r;
2015 2071          cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2016 2072          cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2017 2073  
2018 2074          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2019 2075  
2020 2076          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2021 2077                  dev_err(nvme->n_dip, CE_WARN,
2022 2078                      "!CREATE CQUEUE failed with sct = %x, sc = %x",
2023 2079                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2024 2080                  goto fail;
2025 2081          }
2026 2082  
2027 2083          nvme_free_cmd(cmd);
2028 2084  
2029 2085          s_dw11.b.sq_pc = 1;
2030 2086          s_dw11.b.sq_cqid = idx;
2031 2087  
2032 2088          cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2033 2089          cmd->nc_sqid = 0;
2034 2090          cmd->nc_callback = nvme_wakeup_cmd;
2035 2091          cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2036 2092          cmd->nc_sqe.sqe_cdw10 = dw10.r;
2037 2093          cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2038 2094          cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2039 2095  
2040 2096          nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2041 2097  
2042 2098          if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2043 2099                  dev_err(nvme->n_dip, CE_WARN,
2044 2100                      "!CREATE SQUEUE failed with sct = %x, sc = %x",
2045 2101                      cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2046 2102                  goto fail;
2047 2103          }
2048 2104  
2049 2105  fail:
2050 2106          nvme_free_cmd(cmd);
2051 2107  
2052 2108          return (ret);
2053 2109  }
2054 2110  
2055 2111  static boolean_t
2056 2112  nvme_reset(nvme_t *nvme, boolean_t quiesce)
2057 2113  {
2058 2114          nvme_reg_csts_t csts;
2059 2115          int i;
2060 2116  
2061 2117          nvme_put32(nvme, NVME_REG_CC, 0);
2062 2118  
2063 2119          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2064 2120          if (csts.b.csts_rdy == 1) {
2065 2121                  nvme_put32(nvme, NVME_REG_CC, 0);
2066 2122                  for (i = 0; i != nvme->n_timeout * 10; i++) {
2067 2123                          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2068 2124                          if (csts.b.csts_rdy == 0)
2069 2125                                  break;
2070 2126  
2071 2127                          if (quiesce)
2072 2128                                  drv_usecwait(50000);
2073 2129                          else
2074 2130                                  delay(drv_usectohz(50000));
2075 2131                  }
2076 2132          }
2077 2133  
2078 2134          nvme_put32(nvme, NVME_REG_AQA, 0);
2079 2135          nvme_put32(nvme, NVME_REG_ASQ, 0);
2080 2136          nvme_put32(nvme, NVME_REG_ACQ, 0);
2081 2137  
2082 2138          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2083 2139          return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2084 2140  }
2085 2141  
2086 2142  static void
2087 2143  nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2088 2144  {
2089 2145          nvme_reg_cc_t cc;
2090 2146          nvme_reg_csts_t csts;
2091 2147          int i;
2092 2148  
2093 2149          ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2094 2150  
2095 2151          cc.r = nvme_get32(nvme, NVME_REG_CC);
2096 2152          cc.b.cc_shn = mode & 0x3;
2097 2153          nvme_put32(nvme, NVME_REG_CC, cc.r);
2098 2154  
2099 2155          for (i = 0; i != 10; i++) {
2100 2156                  csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2101 2157                  if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2102 2158                          break;
2103 2159  
2104 2160                  if (quiesce)
2105 2161                          drv_usecwait(100000);
2106 2162                  else
2107 2163                          delay(drv_usectohz(100000));
2108 2164          }
2109 2165  }
2110 2166  
2111 2167  
2112 2168  static void
2113 2169  nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2114 2170  {
2115 2171          /*
2116 2172           * Section 7.7 of the spec describes how to get a unique ID for
2117 2173           * the controller: the vendor ID, the model name and the serial
2118 2174           * number shall be unique when combined.
2119 2175           *
2120 2176           * If a namespace has no EUI64 we use the above and add the hex
2121 2177           * namespace ID to get a unique ID for the namespace.
2122 2178           */
2123 2179          char model[sizeof (nvme->n_idctl->id_model) + 1];
2124 2180          char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2125 2181  
2126 2182          bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2127 2183          bcopy(nvme->n_idctl->id_serial, serial,
2128 2184              sizeof (nvme->n_idctl->id_serial));
2129 2185  
2130 2186          model[sizeof (nvme->n_idctl->id_model)] = '\0';
2131 2187          serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2132 2188  
2133 2189          nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2134 2190              nvme->n_idctl->id_vid, model, serial, nsid);
2135 2191  }
2136 2192  
2137 2193  static int
2138 2194  nvme_init_ns(nvme_t *nvme, int nsid)
2139 2195  {
2140 2196          nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2141 2197          nvme_identify_nsid_t *idns;
2142 2198          int last_rp;
2143 2199  
2144 2200          ns->ns_nvme = nvme;
2145 2201  
2146 2202          if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2147 2203                  dev_err(nvme->n_dip, CE_WARN,
2148 2204                      "!failed to identify namespace %d", nsid);
2149 2205                  return (DDI_FAILURE);
2150 2206          }
2151 2207  
2152 2208          ns->ns_idns = idns;
2153 2209          ns->ns_id = nsid;
2154 2210          ns->ns_block_count = idns->id_nsize;
2155 2211          ns->ns_block_size =
2156 2212              1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2157 2213          ns->ns_best_block_size = ns->ns_block_size;
2158 2214  
2159 2215          /*
2160 2216           * Get the EUI64 if present. Use it for devid and device node names.
2161 2217           */
2162 2218          if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2163 2219                  bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2164 2220  
2165 2221          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2166 2222          if (*(uint64_t *)ns->ns_eui64 != 0) {
2167 2223                  uint8_t *eui64 = ns->ns_eui64;
2168 2224  
2169 2225                  (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2170 2226                      "%02x%02x%02x%02x%02x%02x%02x%02x",
2171 2227                      eui64[0], eui64[1], eui64[2], eui64[3],
2172 2228                      eui64[4], eui64[5], eui64[6], eui64[7]);
2173 2229          } else {
2174 2230                  (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2175 2231                      ns->ns_id);
2176 2232  
2177 2233                  nvme_prepare_devid(nvme, ns->ns_id);
2178 2234          }
2179 2235  
2180 2236          /*
2181 2237           * Find the LBA format with no metadata and the best relative
2182 2238           * performance. A value of 3 means "degraded", 0 is best.
2183 2239           */
2184 2240          last_rp = 3;
2185 2241          for (int j = 0; j <= idns->id_nlbaf; j++) {
2186 2242                  if (idns->id_lbaf[j].lbaf_lbads == 0)
2187 2243                          break;
2188 2244                  if (idns->id_lbaf[j].lbaf_ms != 0)
2189 2245                          continue;
2190 2246                  if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2191 2247                          continue;
  
    | 
      ↓ open down ↓ | 
    237 lines elided | 
    
      ↑ open up ↑ | 
  
2192 2248                  last_rp = idns->id_lbaf[j].lbaf_rp;
2193 2249                  ns->ns_best_block_size =
2194 2250                      1 << idns->id_lbaf[j].lbaf_lbads;
2195 2251          }
2196 2252  
2197 2253          if (ns->ns_best_block_size < nvme->n_min_block_size)
2198 2254                  ns->ns_best_block_size = nvme->n_min_block_size;
2199 2255  
2200 2256          /*
2201 2257           * We currently don't support namespaces that use either:
2202      -         * - thin provisioning
2203 2258           * - protection information
2204 2259           * - illegal block size (< 512)
2205 2260           */
2206      -        if (idns->id_nsfeat.f_thin ||
2207      -            idns->id_dps.dp_pinfo) {
     2261 +        if (idns->id_dps.dp_pinfo) {
2208 2262                  dev_err(nvme->n_dip, CE_WARN,
2209      -                    "!ignoring namespace %d, unsupported features: "
2210      -                    "thin = %d, pinfo = %d", nsid,
2211      -                    idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
     2263 +                    "!ignoring namespace %d, unsupported feature: "
     2264 +                    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2212 2265                  ns->ns_ignore = B_TRUE;
2213 2266          } else if (ns->ns_block_size < 512) {
2214 2267                  dev_err(nvme->n_dip, CE_WARN,
2215 2268                      "!ignoring namespace %d, unsupported block size %"PRIu64,
2216 2269                      nsid, (uint64_t)ns->ns_block_size);
2217 2270                  ns->ns_ignore = B_TRUE;
2218 2271          } else {
2219 2272                  ns->ns_ignore = B_FALSE;
2220 2273          }
2221 2274  
2222 2275          return (DDI_SUCCESS);
2223 2276  }
2224 2277  
2225 2278  static int
2226 2279  nvme_init(nvme_t *nvme)
2227 2280  {
2228 2281          nvme_reg_cc_t cc = { 0 };
2229 2282          nvme_reg_aqa_t aqa = { 0 };
2230 2283          nvme_reg_asq_t asq = { 0 };
2231 2284          nvme_reg_acq_t acq = { 0 };
2232 2285          nvme_reg_cap_t cap;
2233 2286          nvme_reg_vs_t vs;
2234 2287          nvme_reg_csts_t csts;
2235 2288          int i = 0;
2236 2289          uint16_t nqueues;
  
    | 
      ↓ open down ↓ | 
    15 lines elided | 
    
      ↑ open up ↑ | 
  
2237 2290          char model[sizeof (nvme->n_idctl->id_model) + 1];
2238 2291          char *vendor, *product;
2239 2292  
2240 2293          /* Check controller version */
2241 2294          vs.r = nvme_get32(nvme, NVME_REG_VS);
2242 2295          nvme->n_version.v_major = vs.b.vs_mjr;
2243 2296          nvme->n_version.v_minor = vs.b.vs_mnr;
2244 2297          dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2245 2298              nvme->n_version.v_major, nvme->n_version.v_minor);
2246 2299  
2247      -        if (NVME_VERSION_HIGHER(&nvme->n_version,
2248      -            nvme_version_major, nvme_version_minor)) {
2249      -                dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
2250      -                    nvme_version_major, nvme_version_minor);
     2300 +        if (nvme->n_version.v_major > nvme_version_major) {
     2301 +                dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
     2302 +                    nvme_version_major);
2251 2303                  if (nvme->n_strict_version)
2252 2304                          goto fail;
2253 2305          }
2254 2306  
2255 2307          /* retrieve controller configuration */
2256 2308          cap.r = nvme_get64(nvme, NVME_REG_CAP);
2257 2309  
2258 2310          if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2259 2311                  dev_err(nvme->n_dip, CE_WARN,
2260 2312                      "!NVM command set not supported by hardware");
2261 2313                  goto fail;
2262 2314          }
2263 2315  
2264 2316          nvme->n_nssr_supported = cap.b.cap_nssrs;
2265 2317          nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2266 2318          nvme->n_timeout = cap.b.cap_to;
2267 2319          nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2268 2320          nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2269 2321          nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2270 2322  
2271 2323          /*
2272 2324           * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2273 2325           * the base page size of 4k (1<<12), so add 12 here to get the real
2274 2326           * page size value.
2275 2327           */
2276 2328          nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2277 2329              cap.b.cap_mpsmax + 12);
2278 2330          nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2279 2331  
2280 2332          /*
2281 2333           * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2282 2334           */
2283 2335          nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2284 2336          nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2285 2337  
2286 2338          /*
2287 2339           * Set up PRP DMA to transfer 1 page-aligned page at a time.
2288 2340           * Maxxfer may be increased after we identified the controller limits.
2289 2341           */
2290 2342          nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2291 2343          nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2292 2344          nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2293 2345          nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2294 2346  
2295 2347          /*
2296 2348           * Reset controller if it's still in ready state.
2297 2349           */
2298 2350          if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2299 2351                  dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2300 2352                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2301 2353                  nvme->n_dead = B_TRUE;
2302 2354                  goto fail;
2303 2355          }
2304 2356  
2305 2357          /*
2306 2358           * Create the admin queue pair.
2307 2359           */
2308 2360          if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2309 2361              != DDI_SUCCESS) {
2310 2362                  dev_err(nvme->n_dip, CE_WARN,
2311 2363                      "!unable to allocate admin qpair");
2312 2364                  goto fail;
2313 2365          }
2314 2366          nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2315 2367          nvme->n_ioq[0] = nvme->n_adminq;
2316 2368  
2317 2369          nvme->n_progress |= NVME_ADMIN_QUEUE;
2318 2370  
2319 2371          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2320 2372              "admin-queue-len", nvme->n_admin_queue_len);
2321 2373  
2322 2374          aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2323 2375          asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2324 2376          acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2325 2377  
2326 2378          ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2327 2379          ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2328 2380  
2329 2381          nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2330 2382          nvme_put64(nvme, NVME_REG_ASQ, asq);
2331 2383          nvme_put64(nvme, NVME_REG_ACQ, acq);
2332 2384  
2333 2385          cc.b.cc_ams = 0;        /* use Round-Robin arbitration */
2334 2386          cc.b.cc_css = 0;        /* use NVM command set */
2335 2387          cc.b.cc_mps = nvme->n_pageshift - 12;
2336 2388          cc.b.cc_shn = 0;        /* no shutdown in progress */
2337 2389          cc.b.cc_en = 1;         /* enable controller */
2338 2390          cc.b.cc_iosqes = 6;     /* submission queue entry is 2^6 bytes long */
2339 2391          cc.b.cc_iocqes = 4;     /* completion queue entry is 2^4 bytes long */
2340 2392  
2341 2393          nvme_put32(nvme, NVME_REG_CC, cc.r);
2342 2394  
2343 2395          /*
2344 2396           * Wait for the controller to become ready.
2345 2397           */
2346 2398          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2347 2399          if (csts.b.csts_rdy == 0) {
2348 2400                  for (i = 0; i != nvme->n_timeout * 10; i++) {
2349 2401                          delay(drv_usectohz(50000));
2350 2402                          csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2351 2403  
2352 2404                          if (csts.b.csts_cfs == 1) {
2353 2405                                  dev_err(nvme->n_dip, CE_WARN,
2354 2406                                      "!controller fatal status at init");
2355 2407                                  ddi_fm_service_impact(nvme->n_dip,
2356 2408                                      DDI_SERVICE_LOST);
2357 2409                                  nvme->n_dead = B_TRUE;
2358 2410                                  goto fail;
2359 2411                          }
2360 2412  
2361 2413                          if (csts.b.csts_rdy == 1)
2362 2414                                  break;
2363 2415                  }
2364 2416          }
2365 2417  
2366 2418          if (csts.b.csts_rdy == 0) {
2367 2419                  dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2368 2420                  ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2369 2421                  nvme->n_dead = B_TRUE;
2370 2422                  goto fail;
2371 2423          }
2372 2424  
2373 2425          /*
2374 2426           * Assume an abort command limit of 1. We'll destroy and re-init
2375 2427           * that later when we know the true abort command limit.
2376 2428           */
2377 2429          sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2378 2430  
2379 2431          /*
2380 2432           * Setup initial interrupt for admin queue.
2381 2433           */
2382 2434          if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2383 2435              != DDI_SUCCESS) &&
2384 2436              (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2385 2437              != DDI_SUCCESS) &&
2386 2438              (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2387 2439              != DDI_SUCCESS)) {
2388 2440                  dev_err(nvme->n_dip, CE_WARN,
2389 2441                      "!failed to setup initial interrupt");
2390 2442                  goto fail;
2391 2443          }
2392 2444  
2393 2445          /*
2394 2446           * Post an asynchronous event command to catch errors.
2395 2447           * We assume the asynchronous events are supported as required by
2396 2448           * specification (Figure 40 in section 5 of NVMe 1.2).
2397 2449           * However, since at least qemu does not follow the specification,
2398 2450           * we need a mechanism to protect ourselves.
2399 2451           */
2400 2452          nvme->n_async_event_supported = B_TRUE;
2401 2453          nvme_async_event(nvme);
2402 2454  
2403 2455          /*
2404 2456           * Identify Controller
2405 2457           */
2406 2458          if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2407 2459                  dev_err(nvme->n_dip, CE_WARN,
2408 2460                      "!failed to identify controller");
2409 2461                  goto fail;
2410 2462          }
2411 2463  
2412 2464          /*
2413 2465           * Get Vendor & Product ID
2414 2466           */
2415 2467          bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2416 2468          model[sizeof (nvme->n_idctl->id_model)] = '\0';
2417 2469          sata_split_model(model, &vendor, &product);
2418 2470  
2419 2471          if (vendor == NULL)
2420 2472                  nvme->n_vendor = strdup("NVMe");
2421 2473          else
2422 2474                  nvme->n_vendor = strdup(vendor);
2423 2475  
2424 2476          nvme->n_product = strdup(product);
2425 2477  
2426 2478          /*
2427 2479           * Get controller limits.
2428 2480           */
2429 2481          nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2430 2482              MIN(nvme->n_admin_queue_len / 10,
2431 2483              MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2432 2484  
2433 2485          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2434 2486              "async-event-limit", nvme->n_async_event_limit);
2435 2487  
2436 2488          nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2437 2489  
2438 2490          /*
2439 2491           * Reinitialize the semaphore with the true abort command limit
2440 2492           * supported by the hardware. It's not necessary to disable interrupts
2441 2493           * as only command aborts use the semaphore, and no commands are
2442 2494           * executed or aborted while we're here.
2443 2495           */
2444 2496          sema_destroy(&nvme->n_abort_sema);
2445 2497          sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2446 2498              SEMA_DRIVER, NULL);
2447 2499  
2448 2500          nvme->n_progress |= NVME_CTRL_LIMITS;
2449 2501  
2450 2502          if (nvme->n_idctl->id_mdts == 0)
2451 2503                  nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2452 2504          else
2453 2505                  nvme->n_max_data_transfer_size =
2454 2506                      1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2455 2507  
2456 2508          nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2457 2509  
2458 2510          /*
2459 2511           * Limit n_max_data_transfer_size to what we can handle in one PRP.
2460 2512           * Chained PRPs are currently unsupported.
2461 2513           *
2462 2514           * This is a no-op on hardware which doesn't support a transfer size
2463 2515           * big enough to require chained PRPs.
2464 2516           */
2465 2517          nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2466 2518              (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2467 2519  
2468 2520          nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2469 2521  
2470 2522          /*
2471 2523           * Make sure the minimum/maximum queue entry sizes are not
2472 2524           * larger/smaller than the default.
2473 2525           */
2474 2526  
2475 2527          if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2476 2528              ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2477 2529              ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2478 2530              ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2479 2531                  goto fail;
2480 2532  
2481 2533          /*
2482 2534           * Check for the presence of a Volatile Write Cache. If present,
2483 2535           * enable or disable based on the value of the property
2484 2536           * volatile-write-cache-enable (default is enabled).
2485 2537           */
2486 2538          nvme->n_write_cache_present =
2487 2539              nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2488 2540  
2489 2541          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2490 2542              "volatile-write-cache-present",
2491 2543              nvme->n_write_cache_present ? 1 : 0);
2492 2544  
2493 2545          if (!nvme->n_write_cache_present) {
2494 2546                  nvme->n_write_cache_enabled = B_FALSE;
2495 2547          } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2496 2548              != 0) {
2497 2549                  dev_err(nvme->n_dip, CE_WARN,
2498 2550                      "!failed to %sable volatile write cache",
2499 2551                      nvme->n_write_cache_enabled ? "en" : "dis");
2500 2552                  /*
2501 2553                   * Assume the cache is (still) enabled.
2502 2554                   */
2503 2555                  nvme->n_write_cache_enabled = B_TRUE;
2504 2556          }
2505 2557  
2506 2558          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2507 2559              "volatile-write-cache-enable",
2508 2560              nvme->n_write_cache_enabled ? 1 : 0);
2509 2561  
2510 2562          /*
2511 2563           * Assume LBA Range Type feature is supported. If it isn't this
2512 2564           * will be set to B_FALSE by nvme_get_features().
2513 2565           */
  
    | 
      ↓ open down ↓ | 
    253 lines elided | 
    
      ↑ open up ↑ | 
  
2514 2566          nvme->n_lba_range_supported = B_TRUE;
2515 2567  
2516 2568          /*
2517 2569           * Check support for Autonomous Power State Transition.
2518 2570           */
2519 2571          if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2520 2572                  nvme->n_auto_pst_supported =
2521 2573                      nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2522 2574  
2523 2575          /*
     2576 +         * Assume Software Progress Marker feature is supported.  If it isn't
     2577 +         * this will be set to B_FALSE by nvme_get_features().
     2578 +         */
     2579 +        nvme->n_progress_supported = B_TRUE;
     2580 +
     2581 +        /*
2524 2582           * Identify Namespaces
2525 2583           */
2526 2584          nvme->n_namespace_count = nvme->n_idctl->id_nn;
     2585 +
     2586 +        if (nvme->n_namespace_count == 0) {
     2587 +                dev_err(nvme->n_dip, CE_WARN,
     2588 +                    "!controllers without namespaces are not supported");
     2589 +                goto fail;
     2590 +        }
     2591 +
2527 2592          if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2528 2593                  dev_err(nvme->n_dip, CE_WARN,
2529 2594                      "!too many namespaces: %d, limiting to %d\n",
2530 2595                      nvme->n_namespace_count, NVME_MINOR_MAX);
2531 2596                  nvme->n_namespace_count = NVME_MINOR_MAX;
2532 2597          }
2533 2598  
2534 2599          nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2535 2600              nvme->n_namespace_count, KM_SLEEP);
2536 2601  
2537 2602          for (i = 0; i != nvme->n_namespace_count; i++) {
2538 2603                  mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2539 2604                      NULL);
2540 2605                  if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2541 2606                          goto fail;
2542 2607          }
2543 2608  
2544 2609          /*
2545 2610           * Try to set up MSI/MSI-X interrupts.
2546 2611           */
2547 2612          if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2548 2613              != 0) {
2549 2614                  nvme_release_interrupts(nvme);
2550 2615  
2551 2616                  nqueues = MIN(UINT16_MAX, ncpus);
2552 2617  
2553 2618                  if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2554 2619                      nqueues) != DDI_SUCCESS) &&
2555 2620                      (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2556 2621                      nqueues) != DDI_SUCCESS)) {
2557 2622                          dev_err(nvme->n_dip, CE_WARN,
2558 2623                              "!failed to setup MSI/MSI-X interrupts");
2559 2624                          goto fail;
2560 2625                  }
2561 2626          }
2562 2627  
2563 2628          nqueues = nvme->n_intr_cnt;
2564 2629  
2565 2630          /*
2566 2631           * Create I/O queue pairs.
2567 2632           */
2568 2633  
2569 2634          if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2570 2635                  dev_err(nvme->n_dip, CE_WARN,
2571 2636                      "!failed to set number of I/O queues to %d",
2572 2637                      nvme->n_intr_cnt);
2573 2638                  goto fail;
2574 2639          }
2575 2640  
2576 2641          /*
2577 2642           * Reallocate I/O queue array
2578 2643           */
2579 2644          kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2580 2645          nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2581 2646              (nqueues + 1), KM_SLEEP);
2582 2647          nvme->n_ioq[0] = nvme->n_adminq;
2583 2648  
2584 2649          nvme->n_ioq_count = nqueues;
2585 2650  
2586 2651          /*
2587 2652           * If we got less queues than we asked for we might as well give
2588 2653           * some of the interrupt vectors back to the system.
2589 2654           */
2590 2655          if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2591 2656                  nvme_release_interrupts(nvme);
2592 2657  
2593 2658                  if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2594 2659                      nvme->n_ioq_count) != DDI_SUCCESS) {
2595 2660                          dev_err(nvme->n_dip, CE_WARN,
2596 2661                              "!failed to reduce number of interrupts");
2597 2662                          goto fail;
2598 2663                  }
2599 2664          }
2600 2665  
2601 2666          /*
2602 2667           * Alloc & register I/O queue pairs
2603 2668           */
2604 2669          nvme->n_io_queue_len =
2605 2670              MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2606 2671          (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2607 2672              nvme->n_io_queue_len);
2608 2673  
2609 2674          for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2610 2675                  if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2611 2676                      &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2612 2677                          dev_err(nvme->n_dip, CE_WARN,
2613 2678                              "!unable to allocate I/O qpair %d", i);
2614 2679                          goto fail;
2615 2680                  }
2616 2681  
2617 2682                  if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2618 2683                          dev_err(nvme->n_dip, CE_WARN,
2619 2684                              "!unable to create I/O qpair %d", i);
2620 2685                          goto fail;
2621 2686                  }
2622 2687          }
2623 2688  
2624 2689          /*
2625 2690           * Post more asynchronous events commands to reduce event reporting
2626 2691           * latency as suggested by the spec.
2627 2692           */
2628 2693          if (nvme->n_async_event_supported) {
2629 2694                  for (i = 1; i != nvme->n_async_event_limit; i++)
2630 2695                          nvme_async_event(nvme);
2631 2696          }
2632 2697  
2633 2698          return (DDI_SUCCESS);
2634 2699  
2635 2700  fail:
2636 2701          (void) nvme_reset(nvme, B_FALSE);
2637 2702          return (DDI_FAILURE);
2638 2703  }
2639 2704  
2640 2705  static uint_t
2641 2706  nvme_intr(caddr_t arg1, caddr_t arg2)
2642 2707  {
2643 2708          /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2644 2709          nvme_t *nvme = (nvme_t *)arg1;
2645 2710          int inum = (int)(uintptr_t)arg2;
2646 2711          int ccnt = 0;
2647 2712          int qnum;
2648 2713          nvme_cmd_t *cmd;
2649 2714  
2650 2715          if (inum >= nvme->n_intr_cnt)
2651 2716                  return (DDI_INTR_UNCLAIMED);
2652 2717  
2653 2718          if (nvme->n_dead)
2654 2719                  return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2655 2720                      DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2656 2721  
2657 2722          /*
2658 2723           * The interrupt vector a queue uses is calculated as queue_idx %
2659 2724           * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2660 2725           * in steps of n_intr_cnt to process all queues using this vector.
2661 2726           */
2662 2727          for (qnum = inum;
2663 2728              qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2664 2729              qnum += nvme->n_intr_cnt) {
2665 2730                  while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2666 2731                          taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2667 2732                              cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2668 2733                          ccnt++;
2669 2734                  }
2670 2735          }
2671 2736  
2672 2737          return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2673 2738  }
2674 2739  
2675 2740  static void
2676 2741  nvme_release_interrupts(nvme_t *nvme)
2677 2742  {
2678 2743          int i;
2679 2744  
2680 2745          for (i = 0; i < nvme->n_intr_cnt; i++) {
2681 2746                  if (nvme->n_inth[i] == NULL)
2682 2747                          break;
2683 2748  
2684 2749                  if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2685 2750                          (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2686 2751                  else
2687 2752                          (void) ddi_intr_disable(nvme->n_inth[i]);
2688 2753  
2689 2754                  (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2690 2755                  (void) ddi_intr_free(nvme->n_inth[i]);
2691 2756          }
2692 2757  
2693 2758          kmem_free(nvme->n_inth, nvme->n_inth_sz);
2694 2759          nvme->n_inth = NULL;
2695 2760          nvme->n_inth_sz = 0;
2696 2761  
2697 2762          nvme->n_progress &= ~NVME_INTERRUPTS;
2698 2763  }
2699 2764  
2700 2765  static int
2701 2766  nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2702 2767  {
2703 2768          int nintrs, navail, count;
2704 2769          int ret;
2705 2770          int i;
2706 2771  
2707 2772          if (nvme->n_intr_types == 0) {
2708 2773                  ret = ddi_intr_get_supported_types(nvme->n_dip,
2709 2774                      &nvme->n_intr_types);
2710 2775                  if (ret != DDI_SUCCESS) {
2711 2776                          dev_err(nvme->n_dip, CE_WARN,
2712 2777                              "!%s: ddi_intr_get_supported types failed",
2713 2778                              __func__);
2714 2779                          return (ret);
2715 2780                  }
2716 2781  #ifdef __x86
2717 2782                  if (get_hwenv() == HW_VMWARE)
2718 2783                          nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2719 2784  #endif
2720 2785          }
2721 2786  
2722 2787          if ((nvme->n_intr_types & intr_type) == 0)
2723 2788                  return (DDI_FAILURE);
2724 2789  
2725 2790          ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2726 2791          if (ret != DDI_SUCCESS) {
2727 2792                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2728 2793                      __func__);
2729 2794                  return (ret);
2730 2795          }
2731 2796  
2732 2797          ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2733 2798          if (ret != DDI_SUCCESS) {
2734 2799                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2735 2800                      __func__);
2736 2801                  return (ret);
2737 2802          }
2738 2803  
2739 2804          /* We want at most one interrupt per queue pair. */
2740 2805          if (navail > nqpairs)
2741 2806                  navail = nqpairs;
2742 2807  
2743 2808          nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2744 2809          nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2745 2810  
2746 2811          ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2747 2812              &count, 0);
2748 2813          if (ret != DDI_SUCCESS) {
2749 2814                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2750 2815                      __func__);
2751 2816                  goto fail;
2752 2817          }
2753 2818  
2754 2819          nvme->n_intr_cnt = count;
2755 2820  
2756 2821          ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2757 2822          if (ret != DDI_SUCCESS) {
2758 2823                  dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2759 2824                      __func__);
2760 2825                  goto fail;
2761 2826          }
2762 2827  
2763 2828          for (i = 0; i < count; i++) {
2764 2829                  ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2765 2830                      (void *)nvme, (void *)(uintptr_t)i);
2766 2831                  if (ret != DDI_SUCCESS) {
2767 2832                          dev_err(nvme->n_dip, CE_WARN,
2768 2833                              "!%s: ddi_intr_add_handler failed", __func__);
2769 2834                          goto fail;
2770 2835                  }
2771 2836          }
2772 2837  
2773 2838          (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2774 2839  
2775 2840          for (i = 0; i < count; i++) {
2776 2841                  if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2777 2842                          ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2778 2843                  else
2779 2844                          ret = ddi_intr_enable(nvme->n_inth[i]);
2780 2845  
2781 2846                  if (ret != DDI_SUCCESS) {
2782 2847                          dev_err(nvme->n_dip, CE_WARN,
2783 2848                              "!%s: enabling interrupt %d failed", __func__, i);
2784 2849                          goto fail;
2785 2850                  }
2786 2851          }
2787 2852  
2788 2853          nvme->n_intr_type = intr_type;
2789 2854  
2790 2855          nvme->n_progress |= NVME_INTERRUPTS;
2791 2856  
2792 2857          return (DDI_SUCCESS);
2793 2858  
2794 2859  fail:
2795 2860          nvme_release_interrupts(nvme);
2796 2861  
2797 2862          return (ret);
2798 2863  }
2799 2864  
2800 2865  static int
2801 2866  nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2802 2867  {
2803 2868          _NOTE(ARGUNUSED(arg));
2804 2869  
2805 2870          pci_ereport_post(dip, fm_error, NULL);
2806 2871          return (fm_error->fme_status);
2807 2872  }
2808 2873  
2809 2874  static int
2810 2875  nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2811 2876  {
2812 2877          nvme_t *nvme;
2813 2878          int instance;
2814 2879          int nregs;
2815 2880          off_t regsize;
2816 2881          int i;
2817 2882          char name[32];
2818 2883  
2819 2884          if (cmd != DDI_ATTACH)
2820 2885                  return (DDI_FAILURE);
2821 2886  
2822 2887          instance = ddi_get_instance(dip);
2823 2888  
2824 2889          if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2825 2890                  return (DDI_FAILURE);
2826 2891  
2827 2892          nvme = ddi_get_soft_state(nvme_state, instance);
2828 2893          ddi_set_driver_private(dip, nvme);
2829 2894          nvme->n_dip = dip;
2830 2895  
2831 2896          mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2832 2897  
2833 2898          nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2834 2899              DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2835 2900          nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2836 2901              dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2837 2902              B_TRUE : B_FALSE;
2838 2903          nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2839 2904              DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2840 2905          nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2841 2906              DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2842 2907          nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2843 2908              DDI_PROP_DONTPASS, "async-event-limit",
2844 2909              NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2845 2910          nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2846 2911              DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2847 2912              B_TRUE : B_FALSE;
2848 2913          nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2849 2914              DDI_PROP_DONTPASS, "min-phys-block-size",
2850 2915              NVME_DEFAULT_MIN_BLOCK_SIZE);
2851 2916  
2852 2917          if (!ISP2(nvme->n_min_block_size) ||
2853 2918              (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2854 2919                  dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2855 2920                      "using default %d", ISP2(nvme->n_min_block_size) ?
2856 2921                      "too low" : "not a power of 2",
2857 2922                      NVME_DEFAULT_MIN_BLOCK_SIZE);
2858 2923                  nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2859 2924          }
2860 2925  
2861 2926          if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2862 2927                  nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2863 2928          else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2864 2929                  nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2865 2930  
2866 2931          if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2867 2932                  nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2868 2933  
2869 2934          if (nvme->n_async_event_limit < 1)
2870 2935                  nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2871 2936  
2872 2937          nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2873 2938          nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2874 2939          nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2875 2940          nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2876 2941  
2877 2942          /*
2878 2943           * Setup FMA support.
2879 2944           */
2880 2945          nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2881 2946              DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2882 2947              DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2883 2948              DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2884 2949  
2885 2950          ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2886 2951  
2887 2952          if (nvme->n_fm_cap) {
2888 2953                  if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2889 2954                          nvme->n_reg_acc_attr.devacc_attr_access =
2890 2955                              DDI_FLAGERR_ACC;
2891 2956  
2892 2957                  if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2893 2958                          nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2894 2959                          nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2895 2960                  }
2896 2961  
2897 2962                  if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2898 2963                      DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2899 2964                          pci_ereport_setup(dip);
2900 2965  
2901 2966                  if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2902 2967                          ddi_fm_handler_register(dip, nvme_fm_errcb,
2903 2968                              (void *)nvme);
2904 2969          }
2905 2970  
2906 2971          nvme->n_progress |= NVME_FMA_INIT;
2907 2972  
2908 2973          /*
2909 2974           * The spec defines several register sets. Only the controller
2910 2975           * registers (set 1) are currently used.
2911 2976           */
2912 2977          if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2913 2978              nregs < 2 ||
2914 2979              ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE)
2915 2980                  goto fail;
2916 2981  
2917 2982          if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2918 2983              &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2919 2984                  dev_err(dip, CE_WARN, "!failed to map regset 1");
2920 2985                  goto fail;
2921 2986          }
2922 2987  
2923 2988          nvme->n_progress |= NVME_REGS_MAPPED;
2924 2989  
2925 2990          /*
2926 2991           * Create taskq for command completion.
2927 2992           */
2928 2993          (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2929 2994              ddi_driver_name(dip), ddi_get_instance(dip));
2930 2995          nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2931 2996              TASKQ_DEFAULTPRI, 0);
2932 2997          if (nvme->n_cmd_taskq == NULL) {
2933 2998                  dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2934 2999                  goto fail;
2935 3000          }
2936 3001  
2937 3002          /*
2938 3003           * Create PRP DMA cache
2939 3004           */
2940 3005          (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2941 3006              ddi_driver_name(dip), ddi_get_instance(dip));
2942 3007          nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2943 3008              0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2944 3009              NULL, (void *)nvme, NULL, 0);
2945 3010  
2946 3011          if (nvme_init(nvme) != DDI_SUCCESS)
2947 3012                  goto fail;
2948 3013  
2949 3014          /*
2950 3015           * Attach the blkdev driver for each namespace.
2951 3016           */
2952 3017          for (i = 0; i != nvme->n_namespace_count; i++) {
2953 3018                  if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2954 3019                      S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2955 3020                      DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2956 3021                          dev_err(dip, CE_WARN,
2957 3022                              "!failed to create minor node for namespace %d", i);
2958 3023                          goto fail;
2959 3024                  }
2960 3025  
2961 3026                  if (nvme->n_ns[i].ns_ignore)
2962 3027                          continue;
2963 3028  
2964 3029                  nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2965 3030                      &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2966 3031  
2967 3032                  if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2968 3033                          dev_err(dip, CE_WARN,
2969 3034                              "!failed to get blkdev handle for namespace %d", i);
2970 3035                          goto fail;
2971 3036                  }
2972 3037  
2973 3038                  if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2974 3039                      != DDI_SUCCESS) {
2975 3040                          dev_err(dip, CE_WARN,
2976 3041                              "!failed to attach blkdev handle for namespace %d",
2977 3042                              i);
2978 3043                          goto fail;
2979 3044                  }
2980 3045          }
2981 3046  
2982 3047          if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2983 3048              NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2984 3049              != DDI_SUCCESS) {
2985 3050                  dev_err(dip, CE_WARN, "nvme_attach: "
2986 3051                      "cannot create devctl minor node");
2987 3052                  goto fail;
2988 3053          }
2989 3054  
2990 3055          return (DDI_SUCCESS);
2991 3056  
2992 3057  fail:
2993 3058          /* attach successful anyway so that FMA can retire the device */
2994 3059          if (nvme->n_dead)
2995 3060                  return (DDI_SUCCESS);
2996 3061  
2997 3062          (void) nvme_detach(dip, DDI_DETACH);
2998 3063  
2999 3064          return (DDI_FAILURE);
3000 3065  }
3001 3066  
3002 3067  static int
3003 3068  nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3004 3069  {
3005 3070          int instance, i;
3006 3071          nvme_t *nvme;
3007 3072  
3008 3073          if (cmd != DDI_DETACH)
3009 3074                  return (DDI_FAILURE);
3010 3075  
3011 3076          instance = ddi_get_instance(dip);
3012 3077  
3013 3078          nvme = ddi_get_soft_state(nvme_state, instance);
3014 3079  
3015 3080          if (nvme == NULL)
3016 3081                  return (DDI_FAILURE);
3017 3082  
3018 3083          ddi_remove_minor_node(dip, "devctl");
3019 3084          mutex_destroy(&nvme->n_minor.nm_mutex);
3020 3085  
3021 3086          if (nvme->n_ns) {
3022 3087                  for (i = 0; i != nvme->n_namespace_count; i++) {
3023 3088                          ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3024 3089                          mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3025 3090  
3026 3091                          if (nvme->n_ns[i].ns_bd_hdl) {
3027 3092                                  (void) bd_detach_handle(
3028 3093                                      nvme->n_ns[i].ns_bd_hdl);
3029 3094                                  bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3030 3095                          }
3031 3096  
3032 3097                          if (nvme->n_ns[i].ns_idns)
3033 3098                                  kmem_free(nvme->n_ns[i].ns_idns,
3034 3099                                      sizeof (nvme_identify_nsid_t));
3035 3100                          if (nvme->n_ns[i].ns_devid)
3036 3101                                  strfree(nvme->n_ns[i].ns_devid);
3037 3102                  }
3038 3103  
3039 3104                  kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3040 3105                      nvme->n_namespace_count);
3041 3106          }
3042 3107  
3043 3108          if (nvme->n_progress & NVME_INTERRUPTS)
3044 3109                  nvme_release_interrupts(nvme);
3045 3110  
3046 3111          if (nvme->n_cmd_taskq)
3047 3112                  ddi_taskq_wait(nvme->n_cmd_taskq);
3048 3113  
3049 3114          if (nvme->n_ioq_count > 0) {
3050 3115                  for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3051 3116                          if (nvme->n_ioq[i] != NULL) {
3052 3117                                  /* TODO: send destroy queue commands */
3053 3118                                  nvme_free_qpair(nvme->n_ioq[i]);
3054 3119                          }
3055 3120                  }
3056 3121  
3057 3122                  kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3058 3123                      (nvme->n_ioq_count + 1));
3059 3124          }
3060 3125  
3061 3126          if (nvme->n_prp_cache != NULL) {
3062 3127                  kmem_cache_destroy(nvme->n_prp_cache);
3063 3128          }
3064 3129  
3065 3130          if (nvme->n_progress & NVME_REGS_MAPPED) {
3066 3131                  nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3067 3132                  (void) nvme_reset(nvme, B_FALSE);
3068 3133          }
3069 3134  
3070 3135          if (nvme->n_cmd_taskq)
3071 3136                  ddi_taskq_destroy(nvme->n_cmd_taskq);
3072 3137  
3073 3138          if (nvme->n_progress & NVME_CTRL_LIMITS)
3074 3139                  sema_destroy(&nvme->n_abort_sema);
3075 3140  
3076 3141          if (nvme->n_progress & NVME_ADMIN_QUEUE)
3077 3142                  nvme_free_qpair(nvme->n_adminq);
3078 3143  
3079 3144          if (nvme->n_idctl)
3080 3145                  kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3081 3146  
3082 3147          if (nvme->n_progress & NVME_REGS_MAPPED)
3083 3148                  ddi_regs_map_free(&nvme->n_regh);
3084 3149  
3085 3150          if (nvme->n_progress & NVME_FMA_INIT) {
3086 3151                  if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3087 3152                          ddi_fm_handler_unregister(nvme->n_dip);
3088 3153  
3089 3154                  if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3090 3155                      DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3091 3156                          pci_ereport_teardown(nvme->n_dip);
3092 3157  
3093 3158                  ddi_fm_fini(nvme->n_dip);
3094 3159          }
3095 3160  
3096 3161          if (nvme->n_vendor != NULL)
3097 3162                  strfree(nvme->n_vendor);
3098 3163  
3099 3164          if (nvme->n_product != NULL)
3100 3165                  strfree(nvme->n_product);
3101 3166  
3102 3167          ddi_soft_state_free(nvme_state, instance);
3103 3168  
3104 3169          return (DDI_SUCCESS);
3105 3170  }
3106 3171  
3107 3172  static int
3108 3173  nvme_quiesce(dev_info_t *dip)
3109 3174  {
3110 3175          int instance;
3111 3176          nvme_t *nvme;
3112 3177  
3113 3178          instance = ddi_get_instance(dip);
3114 3179  
3115 3180          nvme = ddi_get_soft_state(nvme_state, instance);
3116 3181  
3117 3182          if (nvme == NULL)
3118 3183                  return (DDI_FAILURE);
3119 3184  
3120 3185          nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3121 3186  
3122 3187          (void) nvme_reset(nvme, B_TRUE);
3123 3188  
3124 3189          return (DDI_FAILURE);
3125 3190  }
3126 3191  
3127 3192  static int
3128 3193  nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3129 3194  {
3130 3195          nvme_t *nvme = cmd->nc_nvme;
3131 3196          int nprp_page, nprp;
3132 3197          uint64_t *prp;
3133 3198  
3134 3199          if (xfer->x_ndmac == 0)
3135 3200                  return (DDI_FAILURE);
3136 3201  
3137 3202          cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3138 3203          ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3139 3204  
3140 3205          if (xfer->x_ndmac == 1) {
3141 3206                  cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3142 3207                  return (DDI_SUCCESS);
3143 3208          } else if (xfer->x_ndmac == 2) {
3144 3209                  cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3145 3210                  return (DDI_SUCCESS);
3146 3211          }
3147 3212  
3148 3213          xfer->x_ndmac--;
3149 3214  
3150 3215          nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3151 3216          ASSERT(nprp_page > 0);
3152 3217          nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3153 3218  
3154 3219          /*
3155 3220           * We currently don't support chained PRPs and set up our DMA
3156 3221           * attributes to reflect that. If we still get an I/O request
3157 3222           * that needs a chained PRP something is very wrong.
3158 3223           */
3159 3224          VERIFY(nprp == 1);
3160 3225  
3161 3226          cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3162 3227          bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3163 3228  
3164 3229          cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3165 3230  
3166 3231          /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3167 3232          for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3168 3233              xfer->x_ndmac > 0;
3169 3234              prp++, xfer->x_ndmac--) {
3170 3235                  *prp = xfer->x_dmac.dmac_laddress;
3171 3236                  ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3172 3237          }
3173 3238  
3174 3239          (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3175 3240              DDI_DMA_SYNC_FORDEV);
3176 3241          return (DDI_SUCCESS);
3177 3242  }
3178 3243  
3179 3244  static nvme_cmd_t *
3180 3245  nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3181 3246  {
3182 3247          nvme_t *nvme = ns->ns_nvme;
3183 3248          nvme_cmd_t *cmd;
3184 3249  
3185 3250          /*
3186 3251           * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3187 3252           */
3188 3253          cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3189 3254              KM_NOSLEEP : KM_SLEEP);
3190 3255  
3191 3256          if (cmd == NULL)
3192 3257                  return (NULL);
3193 3258  
3194 3259          cmd->nc_sqe.sqe_opc = opc;
3195 3260          cmd->nc_callback = nvme_bd_xfer_done;
3196 3261          cmd->nc_xfer = xfer;
3197 3262  
3198 3263          switch (opc) {
3199 3264          case NVME_OPC_NVM_WRITE:
3200 3265          case NVME_OPC_NVM_READ:
3201 3266                  VERIFY(xfer->x_nblks <= 0x10000);
3202 3267  
3203 3268                  cmd->nc_sqe.sqe_nsid = ns->ns_id;
3204 3269  
3205 3270                  cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3206 3271                  cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3207 3272                  cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3208 3273  
3209 3274                  if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3210 3275                          goto fail;
3211 3276                  break;
3212 3277  
3213 3278          case NVME_OPC_NVM_FLUSH:
3214 3279                  cmd->nc_sqe.sqe_nsid = ns->ns_id;
3215 3280                  break;
3216 3281  
3217 3282          default:
3218 3283                  goto fail;
3219 3284          }
3220 3285  
3221 3286          return (cmd);
3222 3287  
3223 3288  fail:
3224 3289          nvme_free_cmd(cmd);
3225 3290          return (NULL);
3226 3291  }
3227 3292  
3228 3293  static void
3229 3294  nvme_bd_xfer_done(void *arg)
3230 3295  {
3231 3296          nvme_cmd_t *cmd = arg;
3232 3297          bd_xfer_t *xfer = cmd->nc_xfer;
3233 3298          int error = 0;
3234 3299  
3235 3300          error = nvme_check_cmd_status(cmd);
3236 3301          nvme_free_cmd(cmd);
3237 3302  
3238 3303          bd_xfer_done(xfer, error);
3239 3304  }
3240 3305  
3241 3306  static void
3242 3307  nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3243 3308  {
3244 3309          nvme_namespace_t *ns = arg;
3245 3310          nvme_t *nvme = ns->ns_nvme;
3246 3311  
3247 3312          /*
3248 3313           * blkdev maintains one queue size per instance (namespace),
3249 3314           * but all namespace share the I/O queues.
3250 3315           * TODO: need to figure out a sane default, or use per-NS I/O queues,
3251 3316           * or change blkdev to handle EAGAIN
3252 3317           */
3253 3318          drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3254 3319              / nvme->n_namespace_count;
3255 3320  
3256 3321          /*
3257 3322           * d_maxxfer is not set, which means the value is taken from the DMA
3258 3323           * attributes specified to bd_alloc_handle.
3259 3324           */
3260 3325  
3261 3326          drive->d_removable = B_FALSE;
3262 3327          drive->d_hotpluggable = B_FALSE;
3263 3328  
3264 3329          bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3265 3330          drive->d_target = ns->ns_id;
3266 3331          drive->d_lun = 0;
3267 3332  
3268 3333          drive->d_model = nvme->n_idctl->id_model;
3269 3334          drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3270 3335          drive->d_vendor = nvme->n_vendor;
3271 3336          drive->d_vendor_len = strlen(nvme->n_vendor);
3272 3337          drive->d_product = nvme->n_product;
3273 3338          drive->d_product_len = strlen(nvme->n_product);
3274 3339          drive->d_serial = nvme->n_idctl->id_serial;
3275 3340          drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3276 3341          drive->d_revision = nvme->n_idctl->id_fwrev;
3277 3342          drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3278 3343  }
3279 3344  
3280 3345  static int
3281 3346  nvme_bd_mediainfo(void *arg, bd_media_t *media)
3282 3347  {
3283 3348          nvme_namespace_t *ns = arg;
3284 3349  
3285 3350          media->m_nblks = ns->ns_block_count;
3286 3351          media->m_blksize = ns->ns_block_size;
3287 3352          media->m_readonly = B_FALSE;
3288 3353          media->m_solidstate = B_TRUE;
3289 3354  
3290 3355          media->m_pblksize = ns->ns_best_block_size;
3291 3356  
3292 3357          return (0);
3293 3358  }
3294 3359  
3295 3360  static int
3296 3361  nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3297 3362  {
3298 3363          nvme_t *nvme = ns->ns_nvme;
3299 3364          nvme_cmd_t *cmd;
3300 3365          nvme_qpair_t *ioq;
3301 3366          boolean_t poll;
3302 3367          int ret;
3303 3368  
3304 3369          if (nvme->n_dead)
3305 3370                  return (EIO);
3306 3371  
3307 3372          cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3308 3373          if (cmd == NULL)
3309 3374                  return (ENOMEM);
3310 3375  
3311 3376          cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3312 3377          ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3313 3378          ioq = nvme->n_ioq[cmd->nc_sqid];
3314 3379  
3315 3380          /*
3316 3381           * Get the polling flag before submitting the command. The command may
3317 3382           * complete immediately after it was submitted, which means we must
3318 3383           * treat both cmd and xfer as if they have been freed already.
3319 3384           */
3320 3385          poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3321 3386  
3322 3387          ret = nvme_submit_io_cmd(ioq, cmd);
3323 3388  
3324 3389          if (ret != 0)
3325 3390                  return (ret);
3326 3391  
3327 3392          if (!poll)
3328 3393                  return (0);
3329 3394  
3330 3395          do {
3331 3396                  cmd = nvme_retrieve_cmd(nvme, ioq);
3332 3397                  if (cmd != NULL)
3333 3398                          nvme_bd_xfer_done(cmd);
3334 3399                  else
3335 3400                          drv_usecwait(10);
3336 3401          } while (ioq->nq_active_cmds != 0);
3337 3402  
3338 3403          return (0);
3339 3404  }
3340 3405  
3341 3406  static int
3342 3407  nvme_bd_read(void *arg, bd_xfer_t *xfer)
3343 3408  {
3344 3409          nvme_namespace_t *ns = arg;
3345 3410  
3346 3411          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3347 3412  }
3348 3413  
3349 3414  static int
3350 3415  nvme_bd_write(void *arg, bd_xfer_t *xfer)
3351 3416  {
3352 3417          nvme_namespace_t *ns = arg;
3353 3418  
3354 3419          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3355 3420  }
3356 3421  
3357 3422  static int
3358 3423  nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3359 3424  {
3360 3425          nvme_namespace_t *ns = arg;
3361 3426  
3362 3427          if (ns->ns_nvme->n_dead)
3363 3428                  return (EIO);
3364 3429  
3365 3430          /*
3366 3431           * If the volatile write cache is not present or not enabled the FLUSH
3367 3432           * command is a no-op, so we can take a shortcut here.
3368 3433           */
3369 3434          if (!ns->ns_nvme->n_write_cache_present) {
3370 3435                  bd_xfer_done(xfer, ENOTSUP);
3371 3436                  return (0);
3372 3437          }
3373 3438  
3374 3439          if (!ns->ns_nvme->n_write_cache_enabled) {
3375 3440                  bd_xfer_done(xfer, 0);
3376 3441                  return (0);
3377 3442          }
3378 3443  
3379 3444          return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3380 3445  }
3381 3446  
3382 3447  static int
3383 3448  nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3384 3449  {
3385 3450          nvme_namespace_t *ns = arg;
3386 3451  
3387 3452          /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3388 3453          if (*(uint64_t *)ns->ns_eui64 != 0) {
3389 3454                  return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3390 3455                      sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3391 3456          } else {
3392 3457                  return (ddi_devid_init(devinfo, DEVID_ENCAP,
3393 3458                      strlen(ns->ns_devid), ns->ns_devid, devid));
3394 3459          }
3395 3460  }
3396 3461  
3397 3462  static int
3398 3463  nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3399 3464  {
3400 3465  #ifndef __lock_lint
3401 3466          _NOTE(ARGUNUSED(cred_p));
3402 3467  #endif
3403 3468          minor_t minor = getminor(*devp);
3404 3469          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3405 3470          int nsid = NVME_MINOR_NSID(minor);
3406 3471          nvme_minor_state_t *nm;
3407 3472          int rv = 0;
3408 3473  
3409 3474          if (otyp != OTYP_CHR)
3410 3475                  return (EINVAL);
3411 3476  
3412 3477          if (nvme == NULL)
3413 3478                  return (ENXIO);
3414 3479  
3415 3480          if (nsid > nvme->n_namespace_count)
3416 3481                  return (ENXIO);
3417 3482  
3418 3483          if (nvme->n_dead)
3419 3484                  return (EIO);
3420 3485  
3421 3486          nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3422 3487  
3423 3488          mutex_enter(&nm->nm_mutex);
3424 3489          if (nm->nm_oexcl) {
3425 3490                  rv = EBUSY;
3426 3491                  goto out;
3427 3492          }
3428 3493  
3429 3494          if (flag & FEXCL) {
3430 3495                  if (nm->nm_ocnt != 0) {
3431 3496                          rv = EBUSY;
3432 3497                          goto out;
3433 3498                  }
3434 3499                  nm->nm_oexcl = B_TRUE;
3435 3500          }
3436 3501  
3437 3502          nm->nm_ocnt++;
3438 3503  
3439 3504  out:
3440 3505          mutex_exit(&nm->nm_mutex);
3441 3506          return (rv);
3442 3507  
3443 3508  }
3444 3509  
3445 3510  static int
3446 3511  nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3447 3512  {
3448 3513  #ifndef __lock_lint
3449 3514          _NOTE(ARGUNUSED(cred_p));
3450 3515          _NOTE(ARGUNUSED(flag));
3451 3516  #endif
3452 3517          minor_t minor = getminor(dev);
3453 3518          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3454 3519          int nsid = NVME_MINOR_NSID(minor);
3455 3520          nvme_minor_state_t *nm;
3456 3521  
3457 3522          if (otyp != OTYP_CHR)
3458 3523                  return (ENXIO);
3459 3524  
3460 3525          if (nvme == NULL)
3461 3526                  return (ENXIO);
3462 3527  
3463 3528          if (nsid > nvme->n_namespace_count)
3464 3529                  return (ENXIO);
3465 3530  
3466 3531          nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3467 3532  
3468 3533          mutex_enter(&nm->nm_mutex);
3469 3534          if (nm->nm_oexcl)
3470 3535                  nm->nm_oexcl = B_FALSE;
3471 3536  
3472 3537          ASSERT(nm->nm_ocnt > 0);
3473 3538          nm->nm_ocnt--;
3474 3539          mutex_exit(&nm->nm_mutex);
3475 3540  
3476 3541          return (0);
3477 3542  }
3478 3543  
3479 3544  static int
3480 3545  nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3481 3546      cred_t *cred_p)
3482 3547  {
3483 3548          _NOTE(ARGUNUSED(cred_p));
3484 3549          int rv = 0;
3485 3550          void *idctl;
3486 3551  
3487 3552          if ((mode & FREAD) == 0)
3488 3553                  return (EPERM);
3489 3554  
3490 3555          if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3491 3556                  return (EINVAL);
3492 3557  
3493 3558          if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3494 3559                  return (rv);
3495 3560  
3496 3561          if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3497 3562              != 0)
3498 3563                  rv = EFAULT;
3499 3564  
3500 3565          kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3501 3566  
3502 3567          return (rv);
3503 3568  }
3504 3569  
3505 3570  static int
3506 3571  nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3507 3572      int mode, cred_t *cred_p)
3508 3573  {
3509 3574          _NOTE(ARGUNUSED(nsid, cred_p));
3510 3575          int rv = 0;
3511 3576          nvme_reg_cap_t cap = { 0 };
3512 3577          nvme_capabilities_t nc;
3513 3578  
3514 3579          if ((mode & FREAD) == 0)
3515 3580                  return (EPERM);
3516 3581  
3517 3582          if (nioc->n_len < sizeof (nc))
3518 3583                  return (EINVAL);
3519 3584  
3520 3585          cap.r = nvme_get64(nvme, NVME_REG_CAP);
3521 3586  
3522 3587          /*
3523 3588           * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3524 3589           * specify the base page size of 4k (1<<12), so add 12 here to
3525 3590           * get the real page size value.
3526 3591           */
3527 3592          nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3528 3593          nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3529 3594  
3530 3595          if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3531 3596                  rv = EFAULT;
3532 3597  
3533 3598          return (rv);
3534 3599  }
3535 3600  
3536 3601  static int
3537 3602  nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3538 3603      int mode, cred_t *cred_p)
3539 3604  {
3540 3605          _NOTE(ARGUNUSED(cred_p));
3541 3606          void *log = NULL;
3542 3607          size_t bufsize = 0;
3543 3608          int rv = 0;
3544 3609  
3545 3610          if ((mode & FREAD) == 0)
3546 3611                  return (EPERM);
3547 3612  
3548 3613          switch (nioc->n_arg) {
3549 3614          case NVME_LOGPAGE_ERROR:
3550 3615                  if (nsid != 0)
3551 3616                          return (EINVAL);
3552 3617                  break;
3553 3618          case NVME_LOGPAGE_HEALTH:
3554 3619                  if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3555 3620                          return (EINVAL);
3556 3621  
3557 3622                  if (nsid == 0)
3558 3623                          nsid = (uint32_t)-1;
3559 3624  
3560 3625                  break;
3561 3626          case NVME_LOGPAGE_FWSLOT:
3562 3627                  if (nsid != 0)
3563 3628                          return (EINVAL);
3564 3629                  break;
3565 3630          default:
3566 3631                  return (EINVAL);
3567 3632          }
3568 3633  
3569 3634          if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3570 3635              != DDI_SUCCESS)
3571 3636                  return (EIO);
3572 3637  
3573 3638          if (nioc->n_len < bufsize) {
3574 3639                  kmem_free(log, bufsize);
3575 3640                  return (EINVAL);
3576 3641          }
3577 3642  
3578 3643          if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3579 3644                  rv = EFAULT;
3580 3645  
3581 3646          nioc->n_len = bufsize;
3582 3647          kmem_free(log, bufsize);
3583 3648  
3584 3649          return (rv);
3585 3650  }
3586 3651  
3587 3652  static int
3588 3653  nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3589 3654      int mode, cred_t *cred_p)
3590 3655  {
3591 3656          _NOTE(ARGUNUSED(cred_p));
3592 3657          void *buf = NULL;
3593 3658          size_t bufsize = 0;
3594 3659          uint32_t res = 0;
3595 3660          uint8_t feature;
3596 3661          int rv = 0;
3597 3662  
3598 3663          if ((mode & FREAD) == 0)
3599 3664                  return (EPERM);
3600 3665  
3601 3666          if ((nioc->n_arg >> 32) > 0xff)
3602 3667                  return (EINVAL);
3603 3668  
3604 3669          feature = (uint8_t)(nioc->n_arg >> 32);
3605 3670  
3606 3671          switch (feature) {
3607 3672          case NVME_FEAT_ARBITRATION:
3608 3673          case NVME_FEAT_POWER_MGMT:
3609 3674          case NVME_FEAT_TEMPERATURE:
3610 3675          case NVME_FEAT_ERROR:
3611 3676          case NVME_FEAT_NQUEUES:
3612 3677          case NVME_FEAT_INTR_COAL:
3613 3678          case NVME_FEAT_WRITE_ATOM:
3614 3679          case NVME_FEAT_ASYNC_EVENT:
3615 3680          case NVME_FEAT_PROGRESS:
3616 3681                  if (nsid != 0)
3617 3682                          return (EINVAL);
3618 3683                  break;
3619 3684  
3620 3685          case NVME_FEAT_INTR_VECT:
3621 3686                  if (nsid != 0)
3622 3687                          return (EINVAL);
3623 3688  
3624 3689                  res = nioc->n_arg & 0xffffffffUL;
3625 3690                  if (res >= nvme->n_intr_cnt)
3626 3691                          return (EINVAL);
3627 3692                  break;
3628 3693  
3629 3694          case NVME_FEAT_LBA_RANGE:
3630 3695                  if (nvme->n_lba_range_supported == B_FALSE)
3631 3696                          return (EINVAL);
3632 3697  
3633 3698                  if (nsid == 0 ||
3634 3699                      nsid > nvme->n_namespace_count)
3635 3700                          return (EINVAL);
3636 3701  
3637 3702                  break;
3638 3703  
3639 3704          case NVME_FEAT_WRITE_CACHE:
3640 3705                  if (nsid != 0)
3641 3706                          return (EINVAL);
3642 3707  
3643 3708                  if (!nvme->n_write_cache_present)
3644 3709                          return (EINVAL);
3645 3710  
3646 3711                  break;
3647 3712  
3648 3713          case NVME_FEAT_AUTO_PST:
3649 3714                  if (nsid != 0)
3650 3715                          return (EINVAL);
3651 3716  
3652 3717                  if (!nvme->n_auto_pst_supported)
3653 3718                          return (EINVAL);
3654 3719  
3655 3720                  break;
3656 3721  
3657 3722          default:
3658 3723                  return (EINVAL);
3659 3724          }
3660 3725  
3661 3726          rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3662 3727          if (rv != 0)
3663 3728                  return (rv);
3664 3729  
3665 3730          if (nioc->n_len < bufsize) {
3666 3731                  kmem_free(buf, bufsize);
3667 3732                  return (EINVAL);
3668 3733          }
3669 3734  
3670 3735          if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3671 3736                  rv = EFAULT;
3672 3737  
3673 3738          kmem_free(buf, bufsize);
3674 3739          nioc->n_arg = res;
3675 3740          nioc->n_len = bufsize;
3676 3741  
3677 3742          return (rv);
3678 3743  }
3679 3744  
3680 3745  static int
3681 3746  nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3682 3747      cred_t *cred_p)
3683 3748  {
3684 3749          _NOTE(ARGUNUSED(nsid, mode, cred_p));
3685 3750  
3686 3751          if ((mode & FREAD) == 0)
3687 3752                  return (EPERM);
3688 3753  
3689 3754          nioc->n_arg = nvme->n_intr_cnt;
3690 3755          return (0);
3691 3756  }
3692 3757  
3693 3758  static int
3694 3759  nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3695 3760      cred_t *cred_p)
3696 3761  {
3697 3762          _NOTE(ARGUNUSED(nsid, cred_p));
3698 3763          int rv = 0;
3699 3764  
3700 3765          if ((mode & FREAD) == 0)
3701 3766                  return (EPERM);
3702 3767  
3703 3768          if (nioc->n_len < sizeof (nvme->n_version))
3704 3769                  return (ENOMEM);
3705 3770  
3706 3771          if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3707 3772              sizeof (nvme->n_version), mode) != 0)
3708 3773                  rv = EFAULT;
3709 3774  
3710 3775          return (rv);
3711 3776  }
3712 3777  
3713 3778  static int
3714 3779  nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3715 3780      cred_t *cred_p)
3716 3781  {
3717 3782          _NOTE(ARGUNUSED(mode));
3718 3783          nvme_format_nvm_t frmt = { 0 };
3719 3784          int c_nsid = nsid != 0 ? nsid - 1 : 0;
3720 3785  
3721 3786          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3722 3787                  return (EPERM);
3723 3788  
3724 3789          frmt.r = nioc->n_arg & 0xffffffff;
3725 3790  
3726 3791          /*
3727 3792           * Check whether the FORMAT NVM command is supported.
3728 3793           */
3729 3794          if (nvme->n_idctl->id_oacs.oa_format == 0)
3730 3795                  return (EINVAL);
3731 3796  
3732 3797          /*
3733 3798           * Don't allow format or secure erase of individual namespace if that
3734 3799           * would cause a format or secure erase of all namespaces.
3735 3800           */
3736 3801          if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3737 3802                  return (EINVAL);
3738 3803  
3739 3804          if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3740 3805              nvme->n_idctl->id_fna.fn_sec_erase != 0)
3741 3806                  return (EINVAL);
3742 3807  
3743 3808          /*
3744 3809           * Don't allow formatting with Protection Information.
3745 3810           */
3746 3811          if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3747 3812                  return (EINVAL);
3748 3813  
3749 3814          /*
3750 3815           * Don't allow formatting using an illegal LBA format, or any LBA format
3751 3816           * that uses metadata.
3752 3817           */
3753 3818          if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3754 3819              nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3755 3820                  return (EINVAL);
3756 3821  
3757 3822          /*
3758 3823           * Don't allow formatting using an illegal Secure Erase setting.
3759 3824           */
3760 3825          if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3761 3826              (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3762 3827              nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3763 3828                  return (EINVAL);
3764 3829  
3765 3830          if (nsid == 0)
3766 3831                  nsid = (uint32_t)-1;
3767 3832  
3768 3833          return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3769 3834              frmt.b.fm_ses));
3770 3835  }
3771 3836  
3772 3837  static int
3773 3838  nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3774 3839      cred_t *cred_p)
3775 3840  {
3776 3841          _NOTE(ARGUNUSED(nioc, mode));
3777 3842          int rv = 0;
3778 3843  
3779 3844          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3780 3845                  return (EPERM);
3781 3846  
3782 3847          if (nsid == 0)
3783 3848                  return (EINVAL);
3784 3849  
3785 3850          rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3786 3851          if (rv != DDI_SUCCESS)
3787 3852                  rv = EBUSY;
3788 3853  
3789 3854          return (rv);
3790 3855  }
3791 3856  
3792 3857  static int
3793 3858  nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3794 3859      cred_t *cred_p)
3795 3860  {
3796 3861          _NOTE(ARGUNUSED(nioc, mode));
3797 3862          nvme_identify_nsid_t *idns;
3798 3863          int rv = 0;
3799 3864  
3800 3865          if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3801 3866                  return (EPERM);
3802 3867  
3803 3868          if (nsid == 0)
3804 3869                  return (EINVAL);
3805 3870  
3806 3871          /*
3807 3872           * Identify namespace again, free old identify data.
3808 3873           */
3809 3874          idns = nvme->n_ns[nsid - 1].ns_idns;
3810 3875          if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3811 3876                  return (EIO);
3812 3877  
3813 3878          kmem_free(idns, sizeof (nvme_identify_nsid_t));
3814 3879  
3815 3880          rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3816 3881          if (rv != DDI_SUCCESS)
3817 3882                  rv = EBUSY;
3818 3883  
3819 3884          return (rv);
3820 3885  }
3821 3886  
3822 3887  static int
3823 3888  nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3824 3889      int *rval_p)
3825 3890  {
3826 3891  #ifndef __lock_lint
3827 3892          _NOTE(ARGUNUSED(rval_p));
3828 3893  #endif
3829 3894          minor_t minor = getminor(dev);
3830 3895          nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3831 3896          int nsid = NVME_MINOR_NSID(minor);
3832 3897          int rv = 0;
3833 3898          nvme_ioctl_t nioc;
3834 3899  
3835 3900          int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3836 3901                  NULL,
3837 3902                  nvme_ioctl_identify,
3838 3903                  nvme_ioctl_identify,
3839 3904                  nvme_ioctl_capabilities,
3840 3905                  nvme_ioctl_get_logpage,
3841 3906                  nvme_ioctl_get_features,
3842 3907                  nvme_ioctl_intr_cnt,
3843 3908                  nvme_ioctl_version,
3844 3909                  nvme_ioctl_format,
3845 3910                  nvme_ioctl_detach,
3846 3911                  nvme_ioctl_attach
3847 3912          };
3848 3913  
3849 3914          if (nvme == NULL)
3850 3915                  return (ENXIO);
3851 3916  
3852 3917          if (nsid > nvme->n_namespace_count)
3853 3918                  return (ENXIO);
3854 3919  
3855 3920          if (IS_DEVCTL(cmd))
3856 3921                  return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3857 3922  
3858 3923  #ifdef _MULTI_DATAMODEL
3859 3924          switch (ddi_model_convert_from(mode & FMODELS)) {
3860 3925          case DDI_MODEL_ILP32: {
3861 3926                  nvme_ioctl32_t nioc32;
3862 3927                  if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3863 3928                      mode) != 0)
3864 3929                          return (EFAULT);
3865 3930                  nioc.n_len = nioc32.n_len;
3866 3931                  nioc.n_buf = nioc32.n_buf;
3867 3932                  nioc.n_arg = nioc32.n_arg;
3868 3933                  break;
3869 3934          }
3870 3935          case DDI_MODEL_NONE:
3871 3936  #endif
3872 3937                  if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3873 3938                      != 0)
3874 3939                          return (EFAULT);
3875 3940  #ifdef _MULTI_DATAMODEL
3876 3941                  break;
3877 3942          }
3878 3943  #endif
3879 3944  
3880 3945          if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3881 3946                  return (EIO);
3882 3947  
3883 3948  
3884 3949          if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3885 3950                  /*
3886 3951                   * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3887 3952                   * attachment point nodes.
3888 3953                   */
3889 3954                  nsid = 0;
3890 3955          } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3891 3956                  /*
3892 3957                   * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3893 3958                   * will always return identify data for namespace 1.
3894 3959                   */
3895 3960                  nsid = 1;
3896 3961          }
3897 3962  
3898 3963          if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3899 3964                  rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3900 3965                      cred_p);
3901 3966          else
3902 3967                  rv = EINVAL;
3903 3968  
3904 3969  #ifdef _MULTI_DATAMODEL
3905 3970          switch (ddi_model_convert_from(mode & FMODELS)) {
3906 3971          case DDI_MODEL_ILP32: {
3907 3972                  nvme_ioctl32_t nioc32;
3908 3973  
3909 3974                  nioc32.n_len = (size32_t)nioc.n_len;
3910 3975                  nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3911 3976                  nioc32.n_arg = nioc.n_arg;
3912 3977  
3913 3978                  if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3914 3979                      mode) != 0)
3915 3980                          return (EFAULT);
3916 3981                  break;
3917 3982          }
3918 3983          case DDI_MODEL_NONE:
3919 3984  #endif
3920 3985                  if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3921 3986                      != 0)
3922 3987                          return (EFAULT);
3923 3988  #ifdef _MULTI_DATAMODEL
3924 3989                  break;
3925 3990          }
3926 3991  #endif
3927 3992  
3928 3993          return (rv);
3929 3994  }
  
    | 
      ↓ open down ↓ | 
    1393 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX