1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2018 Nexenta Systems, Inc.
  14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
  15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
  16  * Copyright 2018 Joyent, Inc.
  17  */
  18 
  19 /*
  20  * blkdev driver for NVMe compliant storage devices
  21  *
  22  * This driver was written to conform to version 1.2.1 of the NVMe
  23  * specification.  It may work with newer versions, but that is completely
  24  * untested and disabled by default.
  25  *
  26  * The driver has only been tested on x86 systems and will not work on big-
  27  * endian systems without changes to the code accessing registers and data
  28  * structures used by the hardware.
  29  *
  30  *
  31  * Interrupt Usage:
  32  *
  33  * The driver will use a single interrupt while configuring the device as the
  34  * specification requires, but contrary to the specification it will try to use
  35  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
  36  * will switch to multiple-message MSI(-X) if supported. The driver wants to
  37  * have one interrupt vector per CPU, but it will work correctly if less are
  38  * available. Interrupts can be shared by queues, the interrupt handler will
  39  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
  40  * the admin queue will share an interrupt with one I/O queue. The interrupt
  41  * handler will retrieve completed commands from all queues sharing an interrupt
  42  * vector and will post them to a taskq for completion processing.
  43  *
  44  *
  45  * Command Processing:
  46  *
  47  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
  48  * to 65536 I/O commands. The driver will configure one I/O queue pair per
  49  * available interrupt vector, with the queue length usually much smaller than
  50  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
  51  * interrupt vectors will be used.
  52  *
  53  * Additionally the hardware provides a single special admin queue pair that can
  54  * hold up to 4096 admin commands.
  55  *
  56  * From the hardware perspective both queues of a queue pair are independent,
  57  * but they share some driver state: the command array (holding pointers to
  58  * commands currently being processed by the hardware) and the active command
  59  * counter. Access to a queue pair and the shared state is protected by
  60  * nq_mutex.
  61  *
  62  * When a command is submitted to a queue pair the active command counter is
  63  * incremented and a pointer to the command is stored in the command array. The
  64  * array index is used as command identifier (CID) in the submission queue
  65  * entry. Some commands may take a very long time to complete, and if the queue
  66  * wraps around in that time a submission may find the next array slot to still
  67  * be used by a long-running command. In this case the array is sequentially
  68  * searched for the next free slot. The length of the command array is the same
  69  * as the configured queue length. Queue overrun is prevented by the semaphore,
  70  * so a command submission may block if the queue is full.
  71  *
  72  *
  73  * Polled I/O Support:
  74  *
  75  * For kernel core dump support the driver can do polled I/O. As interrupts are
  76  * turned off while dumping the driver will just submit a command in the regular
  77  * way, and then repeatedly attempt a command retrieval until it gets the
  78  * command back.
  79  *
  80  *
  81  * Namespace Support:
  82  *
  83  * NVMe devices can have multiple namespaces, each being a independent data
  84  * store. The driver supports multiple namespaces and creates a blkdev interface
  85  * for each namespace found. Namespaces can have various attributes to support
  86  * protection information. This driver does not support any of this and ignores
  87  * namespaces that have these attributes.
  88  *
  89  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
  90  * (EUI64). This driver uses the EUI64 if present to generate the devid and
  91  * passes it to blkdev to use it in the device node names. As this is currently
  92  * untested namespaces with EUI64 are ignored by default.
  93  *
  94  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
  95  * single controller. This is an artificial limit imposed by the driver to be
  96  * able to address a reasonable number of controllers and namespaces using a
  97  * 32bit minor node number.
  98  *
  99  *
 100  * Minor nodes:
 101  *
 102  * For each NVMe device the driver exposes one minor node for the controller and
 103  * one minor node for each namespace. The only operations supported by those
 104  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
 105  * interface for the nvmeadm(1M) utility.
 106  *
 107  *
 108  * Blkdev Interface:
 109  *
 110  * This driver uses blkdev to do all the heavy lifting involved with presenting
 111  * a disk device to the system. As a result, the processing of I/O requests is
 112  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
 113  * setup, and splitting of transfers into manageable chunks.
 114  *
 115  * I/O requests coming in from blkdev are turned into NVM commands and posted to
 116  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
 117  * queues. There is currently no timeout handling of I/O commands.
 118  *
 119  * Blkdev also supports querying device/media information and generating a
 120  * devid. The driver reports the best block size as determined by the namespace
 121  * format back to blkdev as physical block size to support partition and block
 122  * alignment. The devid is either based on the namespace EUI64, if present, or
 123  * composed using the device vendor ID, model number, serial number, and the
 124  * namespace ID.
 125  *
 126  *
 127  * Error Handling:
 128  *
 129  * Error handling is currently limited to detecting fatal hardware errors,
 130  * either by asynchronous events, or synchronously through command status or
 131  * admin command timeouts. In case of severe errors the device is fenced off,
 132  * all further requests will return EIO. FMA is then called to fault the device.
 133  *
 134  * The hardware has a limit for outstanding asynchronous event requests. Before
 135  * this limit is known the driver assumes it is at least 1 and posts a single
 136  * asynchronous request. Later when the limit is known more asynchronous event
 137  * requests are posted to allow quicker reception of error information. When an
 138  * asynchronous event is posted by the hardware the driver will parse the error
 139  * status fields and log information or fault the device, depending on the
 140  * severity of the asynchronous event. The asynchronous event request is then
 141  * reused and posted to the admin queue again.
 142  *
 143  * On command completion the command status is checked for errors. In case of
 144  * errors indicating a driver bug the driver panics. Almost all other error
 145  * status values just cause EIO to be returned.
 146  *
 147  * Command timeouts are currently detected for all admin commands except
 148  * asynchronous event requests. If a command times out and the hardware appears
 149  * to be healthy the driver attempts to abort the command. The original command
 150  * timeout is also applied to the abort command. If the abort times out too the
 151  * driver assumes the device to be dead, fences it off, and calls FMA to retire
 152  * it. In all other cases the aborted command should return immediately with a
 153  * status indicating it was aborted, and the driver will wait indefinitely for
 154  * that to happen. No timeout handling of normal I/O commands is presently done.
 155  *
 156  * Any command that times out due to the controller dropping dead will be put on
 157  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
 158  * memory being reused by the system and later be written to by a "dead" NVMe
 159  * controller.
 160  *
 161  *
 162  * Locking:
 163  *
 164  * Each queue pair has its own nq_mutex, which must be held when accessing the
 165  * associated queue registers or the shared state of the queue pair. Callers of
 166  * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
 167  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
 168  * themselves.
 169  *
 170  * Each command also has its own nc_mutex, which is associated with the
 171  * condition variable nc_cv. It is only used on admin commands which are run
 172  * synchronously. In that case it must be held across calls to
 173  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
 174  * nvme_admin_cmd(). It must also be held whenever the completion state of the
 175  * command is changed or while a admin command timeout is handled.
 176  *
 177  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
 178  * More than one nc_mutex may only be held when aborting commands. In this case,
 179  * the nc_mutex of the command to be aborted must be held across the call to
 180  * nvme_abort_cmd() to prevent the command from completing while the abort is in
 181  * progress.
 182  *
 183  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
 184  * and exclusive-open flag nm_oexcl.
 185  *
 186  *
 187  * Quiesce / Fast Reboot:
 188  *
 189  * The driver currently does not support fast reboot. A quiesce(9E) entry point
 190  * is still provided which is used to send a shutdown notification to the
 191  * device.
 192  *
 193  *
 194  * Driver Configuration:
 195  *
 196  * The following driver properties can be changed to control some aspects of the
 197  * drivers operation:
 198  * - strict-version: can be set to 0 to allow devices conforming to newer
 199  *   major versions to be used
 200  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
 201  *   specific command status as a fatal error leading device faulting
 202  * - admin-queue-len: the maximum length of the admin queue (16-4096)
 203  * - io-queue-len: the maximum length of the I/O queues (16-65536)
 204  * - async-event-limit: the maximum number of asynchronous event requests to be
 205  *   posted by the driver
 206  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
 207  *   cache
 208  * - min-phys-block-size: the minimum physical block size to report to blkdev,
 209  *   which is among other things the basis for ZFS vdev ashift
 210  *
 211  *
 212  * TODO:
 213  * - figure out sane default for I/O queue depth reported to blkdev
 214  * - FMA handling of media errors
 215  * - support for devices supporting very large I/O requests using chained PRPs
 216  * - support for configuring hardware parameters like interrupt coalescing
 217  * - support for media formatting and hard partitioning into namespaces
 218  * - support for big-endian systems
 219  * - support for fast reboot
 220  * - support for firmware updates
 221  * - support for NVMe Subsystem Reset (1.1)
 222  * - support for Scatter/Gather lists (1.1)
 223  * - support for Reservations (1.1)
 224  * - support for power management
 225  */
 226 
 227 #include <sys/byteorder.h>
 228 #ifdef _BIG_ENDIAN
 229 #error nvme driver needs porting for big-endian platforms
 230 #endif
 231 
 232 #include <sys/modctl.h>
 233 #include <sys/conf.h>
 234 #include <sys/devops.h>
 235 #include <sys/ddi.h>
 236 #include <sys/sunddi.h>
 237 #include <sys/sunndi.h>
 238 #include <sys/bitmap.h>
 239 #include <sys/sysmacros.h>
 240 #include <sys/param.h>
 241 #include <sys/varargs.h>
 242 #include <sys/cpuvar.h>
 243 #include <sys/disp.h>
 244 #include <sys/blkdev.h>
 245 #include <sys/atomic.h>
 246 #include <sys/archsystm.h>
 247 #include <sys/sata/sata_hba.h>
 248 #include <sys/stat.h>
 249 #include <sys/policy.h>
 250 #include <sys/list.h>
 251 
 252 #include <sys/nvme.h>
 253 
 254 #ifdef __x86
 255 #include <sys/x86_archext.h>
 256 #endif
 257 
 258 #include "nvme_reg.h"
 259 #include "nvme_var.h"
 260 
 261 /*
 262  * Assertions to make sure that we've properly captured various aspects of the
 263  * packed structures and haven't broken them during updates.
 264  */
 265 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
 266 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
 267 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
 268 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
 269 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
 270 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
 271 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
 272 
 273 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
 274 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
 275 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
 276 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
 277 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
 278 
 279 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
 280 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
 281 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
 282 
 283 
 284 /* NVMe spec version supported */
 285 static const int nvme_version_major = 1;
 286 
 287 /* tunable for admin command timeout in seconds, default is 1s */
 288 int nvme_admin_cmd_timeout = 1;
 289 
 290 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
 291 int nvme_format_cmd_timeout = 600;
 292 
 293 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
 294 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
 295 static int nvme_quiesce(dev_info_t *);
 296 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
 297 static int nvme_setup_interrupts(nvme_t *, int, int);
 298 static void nvme_release_interrupts(nvme_t *);
 299 static uint_t nvme_intr(caddr_t, caddr_t);
 300 
 301 static void nvme_shutdown(nvme_t *, int, boolean_t);
 302 static boolean_t nvme_reset(nvme_t *, boolean_t);
 303 static int nvme_init(nvme_t *);
 304 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
 305 static void nvme_free_cmd(nvme_cmd_t *);
 306 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
 307     bd_xfer_t *);
 308 static void nvme_admin_cmd(nvme_cmd_t *, int);
 309 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
 310 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
 311 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
 312 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
 313 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
 314 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
 315 static void nvme_wakeup_cmd(void *);
 316 static void nvme_async_event_task(void *);
 317 
 318 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
 319 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
 320 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
 321 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
 322 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
 323 static inline int nvme_check_cmd_status(nvme_cmd_t *);
 324 
 325 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
 326 static void nvme_async_event(nvme_t *);
 327 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
 328     boolean_t, uint8_t);
 329 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
 330 static int nvme_identify(nvme_t *, uint32_t, void **);
 331 static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
 332     uint32_t *);
 333 static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
 334     void **, size_t *);
 335 static int nvme_write_cache_set(nvme_t *, boolean_t);
 336 static int nvme_set_nqueues(nvme_t *, uint16_t *);
 337 
 338 static void nvme_free_dma(nvme_dma_t *);
 339 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
 340     nvme_dma_t **);
 341 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
 342     nvme_dma_t **);
 343 static void nvme_free_qpair(nvme_qpair_t *);
 344 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
 345 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
 346 
 347 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
 348 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
 349 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
 350 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
 351 
 352 static boolean_t nvme_check_regs_hdl(nvme_t *);
 353 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
 354 
 355 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
 356 
 357 static void nvme_bd_xfer_done(void *);
 358 static void nvme_bd_driveinfo(void *, bd_drive_t *);
 359 static int nvme_bd_mediainfo(void *, bd_media_t *);
 360 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
 361 static int nvme_bd_read(void *, bd_xfer_t *);
 362 static int nvme_bd_write(void *, bd_xfer_t *);
 363 static int nvme_bd_sync(void *, bd_xfer_t *);
 364 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
 365 
 366 static int nvme_prp_dma_constructor(void *, void *, int);
 367 static void nvme_prp_dma_destructor(void *, void *);
 368 
 369 static void nvme_prepare_devid(nvme_t *, uint32_t);
 370 
 371 static int nvme_open(dev_t *, int, int, cred_t *);
 372 static int nvme_close(dev_t, int, int, cred_t *);
 373 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
 374 
 375 #define NVME_MINOR_INST_SHIFT   9
 376 #define NVME_MINOR(inst, nsid)  (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
 377 #define NVME_MINOR_INST(minor)  ((minor) >> NVME_MINOR_INST_SHIFT)
 378 #define NVME_MINOR_NSID(minor)  ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
 379 #define NVME_MINOR_MAX          (NVME_MINOR(1, 0) - 2)
 380 
 381 static void *nvme_state;
 382 static kmem_cache_t *nvme_cmd_cache;
 383 
 384 /*
 385  * DMA attributes for queue DMA memory
 386  *
 387  * Queue DMA memory must be page aligned. The maximum length of a queue is
 388  * 65536 entries, and an entry can be 64 bytes long.
 389  */
 390 static ddi_dma_attr_t nvme_queue_dma_attr = {
 391         .dma_attr_version       = DMA_ATTR_V0,
 392         .dma_attr_addr_lo       = 0,
 393         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 394         .dma_attr_count_max     = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
 395         .dma_attr_align         = 0x1000,
 396         .dma_attr_burstsizes    = 0x7ff,
 397         .dma_attr_minxfer       = 0x1000,
 398         .dma_attr_maxxfer       = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
 399         .dma_attr_seg           = 0xffffffffffffffffULL,
 400         .dma_attr_sgllen        = 1,
 401         .dma_attr_granular      = 1,
 402         .dma_attr_flags         = 0,
 403 };
 404 
 405 /*
 406  * DMA attributes for transfers using Physical Region Page (PRP) entries
 407  *
 408  * A PRP entry describes one page of DMA memory using the page size specified
 409  * in the controller configuration's memory page size register (CC.MPS). It uses
 410  * a 64bit base address aligned to this page size. There is no limitation on
 411  * chaining PRPs together for arbitrarily large DMA transfers.
 412  */
 413 static ddi_dma_attr_t nvme_prp_dma_attr = {
 414         .dma_attr_version       = DMA_ATTR_V0,
 415         .dma_attr_addr_lo       = 0,
 416         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 417         .dma_attr_count_max     = 0xfff,
 418         .dma_attr_align         = 0x1000,
 419         .dma_attr_burstsizes    = 0x7ff,
 420         .dma_attr_minxfer       = 0x1000,
 421         .dma_attr_maxxfer       = 0x1000,
 422         .dma_attr_seg           = 0xfff,
 423         .dma_attr_sgllen        = -1,
 424         .dma_attr_granular      = 1,
 425         .dma_attr_flags         = 0,
 426 };
 427 
 428 /*
 429  * DMA attributes for transfers using scatter/gather lists
 430  *
 431  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
 432  * 32bit length field. SGL Segment and SGL Last Segment entries require the
 433  * length to be a multiple of 16 bytes.
 434  */
 435 static ddi_dma_attr_t nvme_sgl_dma_attr = {
 436         .dma_attr_version       = DMA_ATTR_V0,
 437         .dma_attr_addr_lo       = 0,
 438         .dma_attr_addr_hi       = 0xffffffffffffffffULL,
 439         .dma_attr_count_max     = 0xffffffffUL,
 440         .dma_attr_align         = 1,
 441         .dma_attr_burstsizes    = 0x7ff,
 442         .dma_attr_minxfer       = 0x10,
 443         .dma_attr_maxxfer       = 0xfffffffffULL,
 444         .dma_attr_seg           = 0xffffffffffffffffULL,
 445         .dma_attr_sgllen        = -1,
 446         .dma_attr_granular      = 0x10,
 447         .dma_attr_flags         = 0
 448 };
 449 
 450 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
 451         .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 452         .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 453         .devacc_attr_dataorder  = DDI_STRICTORDER_ACC
 454 };
 455 
 456 static struct cb_ops nvme_cb_ops = {
 457         .cb_open        = nvme_open,
 458         .cb_close       = nvme_close,
 459         .cb_strategy    = nodev,
 460         .cb_print       = nodev,
 461         .cb_dump        = nodev,
 462         .cb_read        = nodev,
 463         .cb_write       = nodev,
 464         .cb_ioctl       = nvme_ioctl,
 465         .cb_devmap      = nodev,
 466         .cb_mmap        = nodev,
 467         .cb_segmap      = nodev,
 468         .cb_chpoll      = nochpoll,
 469         .cb_prop_op     = ddi_prop_op,
 470         .cb_str         = 0,
 471         .cb_flag        = D_NEW | D_MP,
 472         .cb_rev         = CB_REV,
 473         .cb_aread       = nodev,
 474         .cb_awrite      = nodev
 475 };
 476 
 477 static struct dev_ops nvme_dev_ops = {
 478         .devo_rev       = DEVO_REV,
 479         .devo_refcnt    = 0,
 480         .devo_getinfo   = ddi_no_info,
 481         .devo_identify  = nulldev,
 482         .devo_probe     = nulldev,
 483         .devo_attach    = nvme_attach,
 484         .devo_detach    = nvme_detach,
 485         .devo_reset     = nodev,
 486         .devo_cb_ops    = &nvme_cb_ops,
 487         .devo_bus_ops   = NULL,
 488         .devo_power     = NULL,
 489         .devo_quiesce   = nvme_quiesce,
 490 };
 491 
 492 static struct modldrv nvme_modldrv = {
 493         .drv_modops     = &mod_driverops,
 494         .drv_linkinfo   = "NVMe v1.1b",
 495         .drv_dev_ops    = &nvme_dev_ops
 496 };
 497 
 498 static struct modlinkage nvme_modlinkage = {
 499         .ml_rev         = MODREV_1,
 500         .ml_linkage     = { &nvme_modldrv, NULL }
 501 };
 502 
 503 static bd_ops_t nvme_bd_ops = {
 504         .o_version      = BD_OPS_VERSION_0,
 505         .o_drive_info   = nvme_bd_driveinfo,
 506         .o_media_info   = nvme_bd_mediainfo,
 507         .o_devid_init   = nvme_bd_devid,
 508         .o_sync_cache   = nvme_bd_sync,
 509         .o_read         = nvme_bd_read,
 510         .o_write        = nvme_bd_write,
 511 };
 512 
 513 /*
 514  * This list will hold commands that have timed out and couldn't be aborted.
 515  * As we don't know what the hardware may still do with the DMA memory we can't
 516  * free them, so we'll keep them forever on this list where we can easily look
 517  * at them with mdb.
 518  */
 519 static struct list nvme_lost_cmds;
 520 static kmutex_t nvme_lc_mutex;
 521 
 522 int
 523 _init(void)
 524 {
 525         int error;
 526 
 527         error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
 528         if (error != DDI_SUCCESS)
 529                 return (error);
 530 
 531         nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
 532             sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
 533 
 534         mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
 535         list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
 536             offsetof(nvme_cmd_t, nc_list));
 537 
 538         bd_mod_init(&nvme_dev_ops);
 539 
 540         error = mod_install(&nvme_modlinkage);
 541         if (error != DDI_SUCCESS) {
 542                 ddi_soft_state_fini(&nvme_state);
 543                 mutex_destroy(&nvme_lc_mutex);
 544                 list_destroy(&nvme_lost_cmds);
 545                 bd_mod_fini(&nvme_dev_ops);
 546         }
 547 
 548         return (error);
 549 }
 550 
 551 int
 552 _fini(void)
 553 {
 554         int error;
 555 
 556         if (!list_is_empty(&nvme_lost_cmds))
 557                 return (DDI_FAILURE);
 558 
 559         error = mod_remove(&nvme_modlinkage);
 560         if (error == DDI_SUCCESS) {
 561                 ddi_soft_state_fini(&nvme_state);
 562                 kmem_cache_destroy(nvme_cmd_cache);
 563                 mutex_destroy(&nvme_lc_mutex);
 564                 list_destroy(&nvme_lost_cmds);
 565                 bd_mod_fini(&nvme_dev_ops);
 566         }
 567 
 568         return (error);
 569 }
 570 
 571 int
 572 _info(struct modinfo *modinfop)
 573 {
 574         return (mod_info(&nvme_modlinkage, modinfop));
 575 }
 576 
 577 static inline void
 578 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
 579 {
 580         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 581 
 582         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 583         ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
 584 }
 585 
 586 static inline void
 587 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
 588 {
 589         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 590 
 591         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 592         ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
 593 }
 594 
 595 static inline uint64_t
 596 nvme_get64(nvme_t *nvme, uintptr_t reg)
 597 {
 598         uint64_t val;
 599 
 600         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
 601 
 602         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 603         val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
 604 
 605         return (val);
 606 }
 607 
 608 static inline uint32_t
 609 nvme_get32(nvme_t *nvme, uintptr_t reg)
 610 {
 611         uint32_t val;
 612 
 613         ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
 614 
 615         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
 616         val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
 617 
 618         return (val);
 619 }
 620 
 621 static boolean_t
 622 nvme_check_regs_hdl(nvme_t *nvme)
 623 {
 624         ddi_fm_error_t error;
 625 
 626         ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
 627 
 628         if (error.fme_status != DDI_FM_OK)
 629                 return (B_TRUE);
 630 
 631         return (B_FALSE);
 632 }
 633 
 634 static boolean_t
 635 nvme_check_dma_hdl(nvme_dma_t *dma)
 636 {
 637         ddi_fm_error_t error;
 638 
 639         if (dma == NULL)
 640                 return (B_FALSE);
 641 
 642         ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
 643 
 644         if (error.fme_status != DDI_FM_OK)
 645                 return (B_TRUE);
 646 
 647         return (B_FALSE);
 648 }
 649 
 650 static void
 651 nvme_free_dma_common(nvme_dma_t *dma)
 652 {
 653         if (dma->nd_dmah != NULL)
 654                 (void) ddi_dma_unbind_handle(dma->nd_dmah);
 655         if (dma->nd_acch != NULL)
 656                 ddi_dma_mem_free(&dma->nd_acch);
 657         if (dma->nd_dmah != NULL)
 658                 ddi_dma_free_handle(&dma->nd_dmah);
 659 }
 660 
 661 static void
 662 nvme_free_dma(nvme_dma_t *dma)
 663 {
 664         nvme_free_dma_common(dma);
 665         kmem_free(dma, sizeof (*dma));
 666 }
 667 
 668 /* ARGSUSED */
 669 static void
 670 nvme_prp_dma_destructor(void *buf, void *private)
 671 {
 672         nvme_dma_t *dma = (nvme_dma_t *)buf;
 673 
 674         nvme_free_dma_common(dma);
 675 }
 676 
 677 static int
 678 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
 679     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
 680 {
 681         if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
 682             &dma->nd_dmah) != DDI_SUCCESS) {
 683                 /*
 684                  * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
 685                  * the only other possible error is DDI_DMA_BADATTR which
 686                  * indicates a driver bug which should cause a panic.
 687                  */
 688                 dev_err(nvme->n_dip, CE_PANIC,
 689                     "!failed to get DMA handle, check DMA attributes");
 690                 return (DDI_FAILURE);
 691         }
 692 
 693         /*
 694          * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
 695          * or the flags are conflicting, which isn't the case here.
 696          */
 697         (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
 698             DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
 699             &dma->nd_len, &dma->nd_acch);
 700 
 701         if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
 702             dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
 703             &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
 704                 dev_err(nvme->n_dip, CE_WARN,
 705                     "!failed to bind DMA memory");
 706                 atomic_inc_32(&nvme->n_dma_bind_err);
 707                 nvme_free_dma_common(dma);
 708                 return (DDI_FAILURE);
 709         }
 710 
 711         return (DDI_SUCCESS);
 712 }
 713 
 714 static int
 715 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
 716     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
 717 {
 718         nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
 719 
 720         if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
 721             DDI_SUCCESS) {
 722                 *ret = NULL;
 723                 kmem_free(dma, sizeof (nvme_dma_t));
 724                 return (DDI_FAILURE);
 725         }
 726 
 727         bzero(dma->nd_memp, dma->nd_len);
 728 
 729         *ret = dma;
 730         return (DDI_SUCCESS);
 731 }
 732 
 733 /* ARGSUSED */
 734 static int
 735 nvme_prp_dma_constructor(void *buf, void *private, int flags)
 736 {
 737         nvme_dma_t *dma = (nvme_dma_t *)buf;
 738         nvme_t *nvme = (nvme_t *)private;
 739 
 740         dma->nd_dmah = NULL;
 741         dma->nd_acch = NULL;
 742 
 743         if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
 744             DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
 745                 return (-1);
 746         }
 747 
 748         ASSERT(dma->nd_ncookie == 1);
 749 
 750         dma->nd_cached = B_TRUE;
 751 
 752         return (0);
 753 }
 754 
 755 static int
 756 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
 757     uint_t flags, nvme_dma_t **dma)
 758 {
 759         uint32_t len = nentry * qe_len;
 760         ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
 761 
 762         len = roundup(len, nvme->n_pagesize);
 763 
 764         q_dma_attr.dma_attr_minxfer = len;
 765 
 766         if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
 767             != DDI_SUCCESS) {
 768                 dev_err(nvme->n_dip, CE_WARN,
 769                     "!failed to get DMA memory for queue");
 770                 goto fail;
 771         }
 772 
 773         if ((*dma)->nd_ncookie != 1) {
 774                 dev_err(nvme->n_dip, CE_WARN,
 775                     "!got too many cookies for queue DMA");
 776                 goto fail;
 777         }
 778 
 779         return (DDI_SUCCESS);
 780 
 781 fail:
 782         if (*dma) {
 783                 nvme_free_dma(*dma);
 784                 *dma = NULL;
 785         }
 786 
 787         return (DDI_FAILURE);
 788 }
 789 
 790 static void
 791 nvme_free_qpair(nvme_qpair_t *qp)
 792 {
 793         int i;
 794 
 795         mutex_destroy(&qp->nq_mutex);
 796         sema_destroy(&qp->nq_sema);
 797 
 798         if (qp->nq_sqdma != NULL)
 799                 nvme_free_dma(qp->nq_sqdma);
 800         if (qp->nq_cqdma != NULL)
 801                 nvme_free_dma(qp->nq_cqdma);
 802 
 803         if (qp->nq_active_cmds > 0)
 804                 for (i = 0; i != qp->nq_nentry; i++)
 805                         if (qp->nq_cmd[i] != NULL)
 806                                 nvme_free_cmd(qp->nq_cmd[i]);
 807 
 808         if (qp->nq_cmd != NULL)
 809                 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
 810 
 811         kmem_free(qp, sizeof (nvme_qpair_t));
 812 }
 813 
 814 static int
 815 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
 816     int idx)
 817 {
 818         nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
 819 
 820         mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
 821             DDI_INTR_PRI(nvme->n_intr_pri));
 822         sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
 823 
 824         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
 825             DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
 826                 goto fail;
 827 
 828         if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
 829             DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
 830                 goto fail;
 831 
 832         qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
 833         qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
 834         qp->nq_nentry = nentry;
 835 
 836         qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
 837         qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
 838 
 839         qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
 840         qp->nq_next_cmd = 0;
 841 
 842         *nqp = qp;
 843         return (DDI_SUCCESS);
 844 
 845 fail:
 846         nvme_free_qpair(qp);
 847         *nqp = NULL;
 848 
 849         return (DDI_FAILURE);
 850 }
 851 
 852 static nvme_cmd_t *
 853 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
 854 {
 855         nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
 856 
 857         if (cmd == NULL)
 858                 return (cmd);
 859 
 860         bzero(cmd, sizeof (nvme_cmd_t));
 861 
 862         cmd->nc_nvme = nvme;
 863 
 864         mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
 865             DDI_INTR_PRI(nvme->n_intr_pri));
 866         cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
 867 
 868         return (cmd);
 869 }
 870 
 871 static void
 872 nvme_free_cmd(nvme_cmd_t *cmd)
 873 {
 874         /* Don't free commands on the lost commands list. */
 875         if (list_link_active(&cmd->nc_list))
 876                 return;
 877 
 878         if (cmd->nc_dma) {
 879                 if (cmd->nc_dma->nd_cached)
 880                         kmem_cache_free(cmd->nc_nvme->n_prp_cache,
 881                             cmd->nc_dma);
 882                 else
 883                         nvme_free_dma(cmd->nc_dma);
 884                 cmd->nc_dma = NULL;
 885         }
 886 
 887         cv_destroy(&cmd->nc_cv);
 888         mutex_destroy(&cmd->nc_mutex);
 889 
 890         kmem_cache_free(nvme_cmd_cache, cmd);
 891 }
 892 
 893 static void
 894 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 895 {
 896         sema_p(&qp->nq_sema);
 897         nvme_submit_cmd_common(qp, cmd);
 898 }
 899 
 900 static int
 901 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 902 {
 903         if (sema_tryp(&qp->nq_sema) == 0)
 904                 return (EAGAIN);
 905 
 906         nvme_submit_cmd_common(qp, cmd);
 907         return (0);
 908 }
 909 
 910 static void
 911 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
 912 {
 913         nvme_reg_sqtdbl_t tail = { 0 };
 914 
 915         mutex_enter(&qp->nq_mutex);
 916         cmd->nc_completed = B_FALSE;
 917 
 918         /*
 919          * Try to insert the cmd into the active cmd array at the nq_next_cmd
 920          * slot. If the slot is already occupied advance to the next slot and
 921          * try again. This can happen for long running commands like async event
 922          * requests.
 923          */
 924         while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
 925                 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 926         qp->nq_cmd[qp->nq_next_cmd] = cmd;
 927 
 928         qp->nq_active_cmds++;
 929 
 930         cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
 931         bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
 932         (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
 933             sizeof (nvme_sqe_t) * qp->nq_sqtail,
 934             sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
 935         qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
 936 
 937         tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
 938         nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
 939 
 940         mutex_exit(&qp->nq_mutex);
 941 }
 942 
 943 static nvme_cmd_t *
 944 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
 945 {
 946         nvme_cmd_t *cmd;
 947 
 948         ASSERT(mutex_owned(&qp->nq_mutex));
 949         ASSERT3S(cid, <, qp->nq_nentry);
 950 
 951         cmd = qp->nq_cmd[cid];
 952         qp->nq_cmd[cid] = NULL;
 953         ASSERT3U(qp->nq_active_cmds, >, 0);
 954         qp->nq_active_cmds--;
 955         sema_v(&qp->nq_sema);
 956 
 957         ASSERT3P(cmd, !=, NULL);
 958         ASSERT3P(cmd->nc_nvme, ==, nvme);
 959         ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
 960 
 961         return (cmd);
 962 }
 963 
 964 static nvme_cmd_t *
 965 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
 966 {
 967         nvme_reg_cqhdbl_t head = { 0 };
 968 
 969         nvme_cqe_t *cqe;
 970         nvme_cmd_t *cmd;
 971 
 972         (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
 973             sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
 974 
 975         mutex_enter(&qp->nq_mutex);
 976         cqe = &qp->nq_cq[qp->nq_cqhead];
 977 
 978         /* Check phase tag of CQE. Hardware inverts it for new entries. */
 979         if (cqe->cqe_sf.sf_p == qp->nq_phase) {
 980                 mutex_exit(&qp->nq_mutex);
 981                 return (NULL);
 982         }
 983 
 984         ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
 985 
 986         cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
 987 
 988         ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
 989         bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
 990 
 991         qp->nq_sqhead = cqe->cqe_sqhd;
 992 
 993         head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
 994 
 995         /* Toggle phase on wrap-around. */
 996         if (qp->nq_cqhead == 0)
 997                 qp->nq_phase = qp->nq_phase ? 0 : 1;
 998 
 999         nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
1000         mutex_exit(&qp->nq_mutex);
1001 
1002         return (cmd);
1003 }
1004 
1005 static int
1006 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1007 {
1008         nvme_cqe_t *cqe = &cmd->nc_cqe;
1009 
1010         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1011             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1012             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1013             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1014             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1015 
1016         if (cmd->nc_xfer != NULL)
1017                 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1018 
1019         if (cmd->nc_nvme->n_strict_version) {
1020                 cmd->nc_nvme->n_dead = B_TRUE;
1021                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1022         }
1023 
1024         return (EIO);
1025 }
1026 
1027 static int
1028 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1029 {
1030         nvme_cqe_t *cqe = &cmd->nc_cqe;
1031 
1032         dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1033             "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1034             "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1035             cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1036             cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1037         if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1038                 cmd->nc_nvme->n_dead = B_TRUE;
1039                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1040         }
1041 
1042         return (EIO);
1043 }
1044 
1045 static int
1046 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1047 {
1048         nvme_cqe_t *cqe = &cmd->nc_cqe;
1049 
1050         switch (cqe->cqe_sf.sf_sc) {
1051         case NVME_CQE_SC_INT_NVM_WRITE:
1052                 /* write fail */
1053                 /* TODO: post ereport */
1054                 if (cmd->nc_xfer != NULL)
1055                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1056                 return (EIO);
1057 
1058         case NVME_CQE_SC_INT_NVM_READ:
1059                 /* read fail */
1060                 /* TODO: post ereport */
1061                 if (cmd->nc_xfer != NULL)
1062                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1063                 return (EIO);
1064 
1065         default:
1066                 return (nvme_check_unknown_cmd_status(cmd));
1067         }
1068 }
1069 
1070 static int
1071 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1072 {
1073         nvme_cqe_t *cqe = &cmd->nc_cqe;
1074 
1075         switch (cqe->cqe_sf.sf_sc) {
1076         case NVME_CQE_SC_GEN_SUCCESS:
1077                 return (0);
1078 
1079         /*
1080          * Errors indicating a bug in the driver should cause a panic.
1081          */
1082         case NVME_CQE_SC_GEN_INV_OPC:
1083                 /* Invalid Command Opcode */
1084                 if (!cmd->nc_dontpanic)
1085                         dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1086                             "programming error: invalid opcode in cmd %p",
1087                             (void *)cmd);
1088                 return (EINVAL);
1089 
1090         case NVME_CQE_SC_GEN_INV_FLD:
1091                 /* Invalid Field in Command */
1092                 if (!cmd->nc_dontpanic)
1093                         dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1094                             "programming error: invalid field in cmd %p",
1095                             (void *)cmd);
1096                 return (EIO);
1097 
1098         case NVME_CQE_SC_GEN_ID_CNFL:
1099                 /* Command ID Conflict */
1100                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1101                     "cmd ID conflict in cmd %p", (void *)cmd);
1102                 return (0);
1103 
1104         case NVME_CQE_SC_GEN_INV_NS:
1105                 /* Invalid Namespace or Format */
1106                 if (!cmd->nc_dontpanic)
1107                         dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1108                             "programming error: invalid NS/format in cmd %p",
1109                             (void *)cmd);
1110                 return (EINVAL);
1111 
1112         case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1113                 /* LBA Out Of Range */
1114                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1115                     "LBA out of range in cmd %p", (void *)cmd);
1116                 return (0);
1117 
1118         /*
1119          * Non-fatal errors, handle gracefully.
1120          */
1121         case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1122                 /* Data Transfer Error (DMA) */
1123                 /* TODO: post ereport */
1124                 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1125                 if (cmd->nc_xfer != NULL)
1126                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1127                 return (EIO);
1128 
1129         case NVME_CQE_SC_GEN_INTERNAL_ERR:
1130                 /*
1131                  * Internal Error. The spec (v1.0, section 4.5.1.2) says
1132                  * detailed error information is returned as async event,
1133                  * so we pretty much ignore the error here and handle it
1134                  * in the async event handler.
1135                  */
1136                 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1137                 if (cmd->nc_xfer != NULL)
1138                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1139                 return (EIO);
1140 
1141         case NVME_CQE_SC_GEN_ABORT_REQUEST:
1142                 /*
1143                  * Command Abort Requested. This normally happens only when a
1144                  * command times out.
1145                  */
1146                 /* TODO: post ereport or change blkdev to handle this? */
1147                 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1148                 return (ECANCELED);
1149 
1150         case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1151                 /* Command Aborted due to Power Loss Notification */
1152                 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1153                 cmd->nc_nvme->n_dead = B_TRUE;
1154                 return (EIO);
1155 
1156         case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1157                 /* Command Aborted due to SQ Deletion */
1158                 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1159                 return (EIO);
1160 
1161         case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1162                 /* Capacity Exceeded */
1163                 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1164                 if (cmd->nc_xfer != NULL)
1165                         bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1166                 return (EIO);
1167 
1168         case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1169                 /* Namespace Not Ready */
1170                 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1171                 if (cmd->nc_xfer != NULL)
1172                         bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1173                 return (EIO);
1174 
1175         default:
1176                 return (nvme_check_unknown_cmd_status(cmd));
1177         }
1178 }
1179 
1180 static int
1181 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1182 {
1183         nvme_cqe_t *cqe = &cmd->nc_cqe;
1184 
1185         switch (cqe->cqe_sf.sf_sc) {
1186         case NVME_CQE_SC_SPC_INV_CQ:
1187                 /* Completion Queue Invalid */
1188                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1189                 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1190                 return (EINVAL);
1191 
1192         case NVME_CQE_SC_SPC_INV_QID:
1193                 /* Invalid Queue Identifier */
1194                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1195                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1196                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1197                     cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1198                 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1199                 return (EINVAL);
1200 
1201         case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1202                 /* Max Queue Size Exceeded */
1203                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1204                     cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1205                 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1206                 return (EINVAL);
1207 
1208         case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1209                 /* Abort Command Limit Exceeded */
1210                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1211                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1212                     "abort command limit exceeded in cmd %p", (void *)cmd);
1213                 return (0);
1214 
1215         case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1216                 /* Async Event Request Limit Exceeded */
1217                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1218                 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1219                     "async event request limit exceeded in cmd %p",
1220                     (void *)cmd);
1221                 return (0);
1222 
1223         case NVME_CQE_SC_SPC_INV_INT_VECT:
1224                 /* Invalid Interrupt Vector */
1225                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1226                 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1227                 return (EINVAL);
1228 
1229         case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1230                 /* Invalid Log Page */
1231                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1232                 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1233                 return (EINVAL);
1234 
1235         case NVME_CQE_SC_SPC_INV_FORMAT:
1236                 /* Invalid Format */
1237                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1238                 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1239                 if (cmd->nc_xfer != NULL)
1240                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1241                 return (EINVAL);
1242 
1243         case NVME_CQE_SC_SPC_INV_Q_DEL:
1244                 /* Invalid Queue Deletion */
1245                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1246                 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1247                 return (EINVAL);
1248 
1249         case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1250                 /* Conflicting Attributes */
1251                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1252                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1253                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1254                 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1255                 if (cmd->nc_xfer != NULL)
1256                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1257                 return (EINVAL);
1258 
1259         case NVME_CQE_SC_SPC_NVM_INV_PROT:
1260                 /* Invalid Protection Information */
1261                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1262                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1263                     cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1264                 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1265                 if (cmd->nc_xfer != NULL)
1266                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1267                 return (EINVAL);
1268 
1269         case NVME_CQE_SC_SPC_NVM_READONLY:
1270                 /* Write to Read Only Range */
1271                 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1272                 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1273                 if (cmd->nc_xfer != NULL)
1274                         bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1275                 return (EROFS);
1276 
1277         default:
1278                 return (nvme_check_unknown_cmd_status(cmd));
1279         }
1280 }
1281 
1282 static inline int
1283 nvme_check_cmd_status(nvme_cmd_t *cmd)
1284 {
1285         nvme_cqe_t *cqe = &cmd->nc_cqe;
1286 
1287         /*
1288          * Take a shortcut if the controller is dead, or if
1289          * command status indicates no error.
1290          */
1291         if (cmd->nc_nvme->n_dead)
1292                 return (EIO);
1293 
1294         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1295             cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1296                 return (0);
1297 
1298         if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1299                 return (nvme_check_generic_cmd_status(cmd));
1300         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1301                 return (nvme_check_specific_cmd_status(cmd));
1302         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1303                 return (nvme_check_integrity_cmd_status(cmd));
1304         else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1305                 return (nvme_check_vendor_cmd_status(cmd));
1306 
1307         return (nvme_check_unknown_cmd_status(cmd));
1308 }
1309 
1310 static int
1311 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1312 {
1313         nvme_t *nvme = abort_cmd->nc_nvme;
1314         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1315         nvme_abort_cmd_t ac = { 0 };
1316         int ret = 0;
1317 
1318         sema_p(&nvme->n_abort_sema);
1319 
1320         ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1321         ac.b.ac_sqid = abort_cmd->nc_sqid;
1322 
1323         cmd->nc_sqid = 0;
1324         cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1325         cmd->nc_callback = nvme_wakeup_cmd;
1326         cmd->nc_sqe.sqe_cdw10 = ac.r;
1327 
1328         /*
1329          * Send the ABORT to the hardware. The ABORT command will return _after_
1330          * the aborted command has completed (aborted or otherwise), but since
1331          * we still hold the aborted command's mutex its callback hasn't been
1332          * processed yet.
1333          */
1334         nvme_admin_cmd(cmd, sec);
1335         sema_v(&nvme->n_abort_sema);
1336 
1337         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1338                 dev_err(nvme->n_dip, CE_WARN,
1339                     "!ABORT failed with sct = %x, sc = %x",
1340                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1341                 atomic_inc_32(&nvme->n_abort_failed);
1342         } else {
1343                 dev_err(nvme->n_dip, CE_WARN,
1344                     "!ABORT of command %d/%d %ssuccessful",
1345                     abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1346                     cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1347                 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1348                         atomic_inc_32(&nvme->n_cmd_aborted);
1349         }
1350 
1351         nvme_free_cmd(cmd);
1352         return (ret);
1353 }
1354 
1355 /*
1356  * nvme_wait_cmd -- wait for command completion or timeout
1357  *
1358  * In case of a serious error or a timeout of the abort command the hardware
1359  * will be declared dead and FMA will be notified.
1360  */
1361 static void
1362 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1363 {
1364         clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1365         nvme_t *nvme = cmd->nc_nvme;
1366         nvme_reg_csts_t csts;
1367         nvme_qpair_t *qp;
1368 
1369         ASSERT(mutex_owned(&cmd->nc_mutex));
1370 
1371         while (!cmd->nc_completed) {
1372                 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1373                         break;
1374         }
1375 
1376         if (cmd->nc_completed)
1377                 return;
1378 
1379         /*
1380          * The command timed out.
1381          *
1382          * Check controller for fatal status, any errors associated with the
1383          * register or DMA handle, or for a double timeout (abort command timed
1384          * out). If necessary log a warning and call FMA.
1385          */
1386         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1387         dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1388             "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1389             cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1390         atomic_inc_32(&nvme->n_cmd_timeout);
1391 
1392         if (csts.b.csts_cfs ||
1393             nvme_check_regs_hdl(nvme) ||
1394             nvme_check_dma_hdl(cmd->nc_dma) ||
1395             cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1396                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1397                 nvme->n_dead = B_TRUE;
1398         } else if (nvme_abort_cmd(cmd, sec) == 0) {
1399                 /*
1400                  * If the abort succeeded the command should complete
1401                  * immediately with an appropriate status.
1402                  */
1403                 while (!cmd->nc_completed)
1404                         cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1405 
1406                 return;
1407         }
1408 
1409         qp = nvme->n_ioq[cmd->nc_sqid];
1410 
1411         mutex_enter(&qp->nq_mutex);
1412         (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1413         mutex_exit(&qp->nq_mutex);
1414 
1415         /*
1416          * As we don't know what the presumed dead hardware might still do with
1417          * the DMA memory, we'll put the command on the lost commands list if it
1418          * has any DMA memory.
1419          */
1420         if (cmd->nc_dma != NULL) {
1421                 mutex_enter(&nvme_lc_mutex);
1422                 list_insert_head(&nvme_lost_cmds, cmd);
1423                 mutex_exit(&nvme_lc_mutex);
1424         }
1425 }
1426 
1427 static void
1428 nvme_wakeup_cmd(void *arg)
1429 {
1430         nvme_cmd_t *cmd = arg;
1431 
1432         mutex_enter(&cmd->nc_mutex);
1433         cmd->nc_completed = B_TRUE;
1434         cv_signal(&cmd->nc_cv);
1435         mutex_exit(&cmd->nc_mutex);
1436 }
1437 
1438 static void
1439 nvme_async_event_task(void *arg)
1440 {
1441         nvme_cmd_t *cmd = arg;
1442         nvme_t *nvme = cmd->nc_nvme;
1443         nvme_error_log_entry_t *error_log = NULL;
1444         nvme_health_log_t *health_log = NULL;
1445         size_t logsize = 0;
1446         nvme_async_event_t event;
1447 
1448         /*
1449          * Check for errors associated with the async request itself. The only
1450          * command-specific error is "async event limit exceeded", which
1451          * indicates a programming error in the driver and causes a panic in
1452          * nvme_check_cmd_status().
1453          *
1454          * Other possible errors are various scenarios where the async request
1455          * was aborted, or internal errors in the device. Internal errors are
1456          * reported to FMA, the command aborts need no special handling here.
1457          *
1458          * And finally, at least qemu nvme does not support async events,
1459          * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1460          * will avoid posting async events.
1461          */
1462 
1463         if (nvme_check_cmd_status(cmd) != 0) {
1464                 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1465                     "!async event request returned failure, sct = %x, "
1466                     "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1467                     cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1468                     cmd->nc_cqe.cqe_sf.sf_m);
1469 
1470                 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1471                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1472                         cmd->nc_nvme->n_dead = B_TRUE;
1473                         ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1474                             DDI_SERVICE_LOST);
1475                 }
1476 
1477                 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1478                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1479                     cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1480                         nvme->n_async_event_supported = B_FALSE;
1481                 }
1482 
1483                 nvme_free_cmd(cmd);
1484                 return;
1485         }
1486 
1487 
1488         event.r = cmd->nc_cqe.cqe_dw0;
1489 
1490         /* Clear CQE and re-submit the async request. */
1491         bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1492         nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1493 
1494         switch (event.b.ae_type) {
1495         case NVME_ASYNC_TYPE_ERROR:
1496                 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1497                         (void) nvme_get_logpage(nvme, (void **)&error_log,
1498                             &logsize, event.b.ae_logpage);
1499                 } else {
1500                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1501                             "async event reply: %d", event.b.ae_logpage);
1502                         atomic_inc_32(&nvme->n_wrong_logpage);
1503                 }
1504 
1505                 switch (event.b.ae_info) {
1506                 case NVME_ASYNC_ERROR_INV_SQ:
1507                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1508                             "invalid submission queue");
1509                         return;
1510 
1511                 case NVME_ASYNC_ERROR_INV_DBL:
1512                         dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1513                             "invalid doorbell write value");
1514                         return;
1515 
1516                 case NVME_ASYNC_ERROR_DIAGFAIL:
1517                         dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1518                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1519                         nvme->n_dead = B_TRUE;
1520                         atomic_inc_32(&nvme->n_diagfail_event);
1521                         break;
1522 
1523                 case NVME_ASYNC_ERROR_PERSISTENT:
1524                         dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1525                             "device error");
1526                         ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1527                         nvme->n_dead = B_TRUE;
1528                         atomic_inc_32(&nvme->n_persistent_event);
1529                         break;
1530 
1531                 case NVME_ASYNC_ERROR_TRANSIENT:
1532                         dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1533                             "device error");
1534                         /* TODO: send ereport */
1535                         atomic_inc_32(&nvme->n_transient_event);
1536                         break;
1537 
1538                 case NVME_ASYNC_ERROR_FW_LOAD:
1539                         dev_err(nvme->n_dip, CE_WARN,
1540                             "!firmware image load error");
1541                         atomic_inc_32(&nvme->n_fw_load_event);
1542                         break;
1543                 }
1544                 break;
1545 
1546         case NVME_ASYNC_TYPE_HEALTH:
1547                 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1548                         (void) nvme_get_logpage(nvme, (void **)&health_log,
1549                             &logsize, event.b.ae_logpage, -1);
1550                 } else {
1551                         dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1552                             "async event reply: %d", event.b.ae_logpage);
1553                         atomic_inc_32(&nvme->n_wrong_logpage);
1554                 }
1555 
1556                 switch (event.b.ae_info) {
1557                 case NVME_ASYNC_HEALTH_RELIABILITY:
1558                         dev_err(nvme->n_dip, CE_WARN,
1559                             "!device reliability compromised");
1560                         /* TODO: send ereport */
1561                         atomic_inc_32(&nvme->n_reliability_event);
1562                         break;
1563 
1564                 case NVME_ASYNC_HEALTH_TEMPERATURE:
1565                         dev_err(nvme->n_dip, CE_WARN,
1566                             "!temperature above threshold");
1567                         /* TODO: send ereport */
1568                         atomic_inc_32(&nvme->n_temperature_event);
1569                         break;
1570 
1571                 case NVME_ASYNC_HEALTH_SPARE:
1572                         dev_err(nvme->n_dip, CE_WARN,
1573                             "!spare space below threshold");
1574                         /* TODO: send ereport */
1575                         atomic_inc_32(&nvme->n_spare_event);
1576                         break;
1577                 }
1578                 break;
1579 
1580         case NVME_ASYNC_TYPE_VENDOR:
1581                 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1582                     "received, info = %x, logpage = %x", event.b.ae_info,
1583                     event.b.ae_logpage);
1584                 atomic_inc_32(&nvme->n_vendor_event);
1585                 break;
1586 
1587         default:
1588                 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1589                     "type = %x, info = %x, logpage = %x", event.b.ae_type,
1590                     event.b.ae_info, event.b.ae_logpage);
1591                 atomic_inc_32(&nvme->n_unknown_event);
1592                 break;
1593         }
1594 
1595         if (error_log)
1596                 kmem_free(error_log, logsize);
1597 
1598         if (health_log)
1599                 kmem_free(health_log, logsize);
1600 }
1601 
1602 static void
1603 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1604 {
1605         mutex_enter(&cmd->nc_mutex);
1606         nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1607         nvme_wait_cmd(cmd, sec);
1608         mutex_exit(&cmd->nc_mutex);
1609 }
1610 
1611 static void
1612 nvme_async_event(nvme_t *nvme)
1613 {
1614         nvme_cmd_t *cmd;
1615 
1616         cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1617         cmd->nc_sqid = 0;
1618         cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1619         cmd->nc_callback = nvme_async_event_task;
1620         cmd->nc_dontpanic = B_TRUE;
1621 
1622         nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1623 }
1624 
1625 static int
1626 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1627     uint8_t pi, boolean_t pil, uint8_t ses)
1628 {
1629         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1630         nvme_format_nvm_t format_nvm = { 0 };
1631         int ret;
1632 
1633         format_nvm.b.fm_lbaf = lbaf & 0xf;
1634         format_nvm.b.fm_ms = ms ? 1 : 0;
1635         format_nvm.b.fm_pi = pi & 0x7;
1636         format_nvm.b.fm_pil = pil ? 1 : 0;
1637         format_nvm.b.fm_ses = ses & 0x7;
1638 
1639         cmd->nc_sqid = 0;
1640         cmd->nc_callback = nvme_wakeup_cmd;
1641         cmd->nc_sqe.sqe_nsid = nsid;
1642         cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1643         cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1644 
1645         /*
1646          * Some devices like Samsung SM951 don't allow formatting of all
1647          * namespaces in one command. Handle that gracefully.
1648          */
1649         if (nsid == (uint32_t)-1)
1650                 cmd->nc_dontpanic = B_TRUE;
1651 
1652         nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1653 
1654         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1655                 dev_err(nvme->n_dip, CE_WARN,
1656                     "!FORMAT failed with sct = %x, sc = %x",
1657                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1658         }
1659 
1660         nvme_free_cmd(cmd);
1661         return (ret);
1662 }
1663 
1664 static int
1665 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1666     ...)
1667 {
1668         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1669         nvme_getlogpage_t getlogpage = { 0 };
1670         va_list ap;
1671         int ret;
1672 
1673         va_start(ap, logpage);
1674 
1675         cmd->nc_sqid = 0;
1676         cmd->nc_callback = nvme_wakeup_cmd;
1677         cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1678 
1679         getlogpage.b.lp_lid = logpage;
1680 
1681         switch (logpage) {
1682         case NVME_LOGPAGE_ERROR:
1683                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1684                 /*
1685                  * The GET LOG PAGE command can use at most 2 pages to return
1686                  * data, PRP lists are not supported.
1687                  */
1688                 *bufsize = MIN(2 * nvme->n_pagesize,
1689                     nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1690                 break;
1691 
1692         case NVME_LOGPAGE_HEALTH:
1693                 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1694                 *bufsize = sizeof (nvme_health_log_t);
1695                 break;
1696 
1697         case NVME_LOGPAGE_FWSLOT:
1698                 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1699                 *bufsize = sizeof (nvme_fwslot_log_t);
1700                 break;
1701 
1702         default:
1703                 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1704                     logpage);
1705                 atomic_inc_32(&nvme->n_unknown_logpage);
1706                 ret = EINVAL;
1707                 goto fail;
1708         }
1709 
1710         va_end(ap);
1711 
1712         getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1713 
1714         cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1715 
1716         if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1717             DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1718                 dev_err(nvme->n_dip, CE_WARN,
1719                     "!nvme_zalloc_dma failed for GET LOG PAGE");
1720                 ret = ENOMEM;
1721                 goto fail;
1722         }
1723 
1724         if (cmd->nc_dma->nd_ncookie > 2) {
1725                 dev_err(nvme->n_dip, CE_WARN,
1726                     "!too many DMA cookies for GET LOG PAGE");
1727                 atomic_inc_32(&nvme->n_too_many_cookies);
1728                 ret = ENOMEM;
1729                 goto fail;
1730         }
1731 
1732         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1733         if (cmd->nc_dma->nd_ncookie > 1) {
1734                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1735                     &cmd->nc_dma->nd_cookie);
1736                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1737                     cmd->nc_dma->nd_cookie.dmac_laddress;
1738         }
1739 
1740         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1741 
1742         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1743                 dev_err(nvme->n_dip, CE_WARN,
1744                     "!GET LOG PAGE failed with sct = %x, sc = %x",
1745                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1746                 goto fail;
1747         }
1748 
1749         *buf = kmem_alloc(*bufsize, KM_SLEEP);
1750         bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1751 
1752 fail:
1753         nvme_free_cmd(cmd);
1754 
1755         return (ret);
1756 }
1757 
1758 static int
1759 nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1760 {
1761         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1762         int ret;
1763 
1764         if (buf == NULL)
1765                 return (EINVAL);
1766 
1767         cmd->nc_sqid = 0;
1768         cmd->nc_callback = nvme_wakeup_cmd;
1769         cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1770         cmd->nc_sqe.sqe_nsid = nsid;
1771         cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1772 
1773         if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1774             &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1775                 dev_err(nvme->n_dip, CE_WARN,
1776                     "!nvme_zalloc_dma failed for IDENTIFY");
1777                 ret = ENOMEM;
1778                 goto fail;
1779         }
1780 
1781         if (cmd->nc_dma->nd_ncookie > 2) {
1782                 dev_err(nvme->n_dip, CE_WARN,
1783                     "!too many DMA cookies for IDENTIFY");
1784                 atomic_inc_32(&nvme->n_too_many_cookies);
1785                 ret = ENOMEM;
1786                 goto fail;
1787         }
1788 
1789         cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1790         if (cmd->nc_dma->nd_ncookie > 1) {
1791                 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1792                     &cmd->nc_dma->nd_cookie);
1793                 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1794                     cmd->nc_dma->nd_cookie.dmac_laddress;
1795         }
1796 
1797         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1798 
1799         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1800                 dev_err(nvme->n_dip, CE_WARN,
1801                     "!IDENTIFY failed with sct = %x, sc = %x",
1802                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1803                 goto fail;
1804         }
1805 
1806         *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1807         bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1808 
1809 fail:
1810         nvme_free_cmd(cmd);
1811 
1812         return (ret);
1813 }
1814 
1815 static int
1816 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1817     uint32_t *res)
1818 {
1819         _NOTE(ARGUNUSED(nsid));
1820         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1821         int ret = EINVAL;
1822 
1823         ASSERT(res != NULL);
1824 
1825         cmd->nc_sqid = 0;
1826         cmd->nc_callback = nvme_wakeup_cmd;
1827         cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1828         cmd->nc_sqe.sqe_cdw10 = feature;
1829         cmd->nc_sqe.sqe_cdw11 = val;
1830 
1831         switch (feature) {
1832         case NVME_FEAT_WRITE_CACHE:
1833                 if (!nvme->n_write_cache_present)
1834                         goto fail;
1835                 break;
1836 
1837         case NVME_FEAT_NQUEUES:
1838                 break;
1839 
1840         default:
1841                 goto fail;
1842         }
1843 
1844         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1845 
1846         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1847                 dev_err(nvme->n_dip, CE_WARN,
1848                     "!SET FEATURES %d failed with sct = %x, sc = %x",
1849                     feature, cmd->nc_cqe.cqe_sf.sf_sct,
1850                     cmd->nc_cqe.cqe_sf.sf_sc);
1851                 goto fail;
1852         }
1853 
1854         *res = cmd->nc_cqe.cqe_dw0;
1855 
1856 fail:
1857         nvme_free_cmd(cmd);
1858         return (ret);
1859 }
1860 
1861 static int
1862 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1863     void **buf, size_t *bufsize)
1864 {
1865         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1866         int ret = EINVAL;
1867 
1868         ASSERT(res != NULL);
1869 
1870         if (bufsize != NULL)
1871                 *bufsize = 0;
1872 
1873         cmd->nc_sqid = 0;
1874         cmd->nc_callback = nvme_wakeup_cmd;
1875         cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1876         cmd->nc_sqe.sqe_cdw10 = feature;
1877         cmd->nc_sqe.sqe_cdw11 = *res;
1878 
1879         /*
1880          * For some of the optional features there doesn't seem to be a method
1881          * of detecting whether it is supported other than using it.  This will
1882          * cause "Invalid Field in Command" error, which is normally considered
1883          * a programming error.  Set the nc_dontpanic flag to override the panic
1884          * in nvme_check_generic_cmd_status().
1885          */
1886         switch (feature) {
1887         case NVME_FEAT_ARBITRATION:
1888         case NVME_FEAT_POWER_MGMT:
1889         case NVME_FEAT_TEMPERATURE:
1890         case NVME_FEAT_NQUEUES:
1891         case NVME_FEAT_INTR_COAL:
1892         case NVME_FEAT_INTR_VECT:
1893         case NVME_FEAT_WRITE_ATOM:
1894         case NVME_FEAT_ASYNC_EVENT:
1895                 break;
1896 
1897         case NVME_FEAT_ERROR:
1898                 /*
1899                  * Per-namespace Deallocated or Unwritten Logical Block
1900                  * Error Enable (DULBE) feature was added after initial NVMe
1901                  * specification, but we currently only check this feature with
1902                  * NS ID of 0 (the controller itself), and some controllers get
1903                  * upset, reporting the error.  For the moment, override the
1904                  * panic by setting the nc_dontpanic flag.
1905                  */
1906                 cmd->nc_dontpanic = B_TRUE;
1907                 break;
1908 
1909         case NVME_FEAT_WRITE_CACHE:
1910                 if (!nvme->n_write_cache_present)
1911                         goto fail;
1912                 break;
1913 
1914         case NVME_FEAT_LBA_RANGE:
1915                 if (!nvme->n_lba_range_supported)
1916                         goto fail;
1917 
1918                 cmd->nc_dontpanic = B_TRUE;
1919                 cmd->nc_sqe.sqe_nsid = nsid;
1920                 ASSERT(bufsize != NULL);
1921                 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1922                 break;
1923 
1924         case NVME_FEAT_AUTO_PST:
1925                 if (!nvme->n_auto_pst_supported)
1926                         goto fail;
1927 
1928                 ASSERT(bufsize != NULL);
1929                 *bufsize = NVME_AUTO_PST_BUFSIZE;
1930                 break;
1931 
1932         case NVME_FEAT_PROGRESS:
1933                 if (!nvme->n_progress_supported)
1934                         goto fail;
1935 
1936                 cmd->nc_dontpanic = B_TRUE;
1937                 break;
1938 
1939         default:
1940                 goto fail;
1941         }
1942 
1943         if (bufsize != NULL && *bufsize != 0) {
1944                 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1945                     &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1946                         dev_err(nvme->n_dip, CE_WARN,
1947                             "!nvme_zalloc_dma failed for GET FEATURES");
1948                         ret = ENOMEM;
1949                         goto fail;
1950                 }
1951 
1952                 if (cmd->nc_dma->nd_ncookie > 2) {
1953                         dev_err(nvme->n_dip, CE_WARN,
1954                             "!too many DMA cookies for GET FEATURES");
1955                         atomic_inc_32(&nvme->n_too_many_cookies);
1956                         ret = ENOMEM;
1957                         goto fail;
1958                 }
1959 
1960                 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1961                     cmd->nc_dma->nd_cookie.dmac_laddress;
1962                 if (cmd->nc_dma->nd_ncookie > 1) {
1963                         ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1964                             &cmd->nc_dma->nd_cookie);
1965                         cmd->nc_sqe.sqe_dptr.d_prp[1] =
1966                             cmd->nc_dma->nd_cookie.dmac_laddress;
1967                 }
1968         }
1969 
1970         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1971 
1972         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1973                 boolean_t known = B_TRUE;
1974 
1975                 /* Check if this is unsupported optional feature */
1976                 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1977                     cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
1978                         switch (feature) {
1979                         case NVME_FEAT_LBA_RANGE:
1980                                 nvme->n_lba_range_supported = B_FALSE;
1981                                 break;
1982                         case NVME_FEAT_PROGRESS:
1983                                 nvme->n_progress_supported = B_FALSE;
1984                                 break;
1985                         default:
1986                                 known = B_FALSE;
1987                                 break;
1988                         }
1989                 } else {
1990                         known = B_FALSE;
1991                 }
1992 
1993                 /* Report the error otherwise */
1994                 if (!known) {
1995                         dev_err(nvme->n_dip, CE_WARN,
1996                             "!GET FEATURES %d failed with sct = %x, sc = %x",
1997                             feature, cmd->nc_cqe.cqe_sf.sf_sct,
1998                             cmd->nc_cqe.cqe_sf.sf_sc);
1999                 }
2000 
2001                 goto fail;
2002         }
2003 
2004         if (bufsize != NULL && *bufsize != 0) {
2005                 ASSERT(buf != NULL);
2006                 *buf = kmem_alloc(*bufsize, KM_SLEEP);
2007                 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2008         }
2009 
2010         *res = cmd->nc_cqe.cqe_dw0;
2011 
2012 fail:
2013         nvme_free_cmd(cmd);
2014         return (ret);
2015 }
2016 
2017 static int
2018 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2019 {
2020         nvme_write_cache_t nwc = { 0 };
2021 
2022         if (enable)
2023                 nwc.b.wc_wce = 1;
2024 
2025         return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
2026             &nwc.r));
2027 }
2028 
2029 static int
2030 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
2031 {
2032         nvme_nqueues_t nq = { 0 };
2033         int ret;
2034 
2035         nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
2036 
2037         ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
2038 
2039         if (ret == 0) {
2040                 /*
2041                  * Always use the same number of submission and completion
2042                  * queues, and never use more than the requested number of
2043                  * queues.
2044                  */
2045                 *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
2046         }
2047 
2048         return (ret);
2049 }
2050 
2051 static int
2052 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2053 {
2054         nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2055         nvme_create_queue_dw10_t dw10 = { 0 };
2056         nvme_create_cq_dw11_t c_dw11 = { 0 };
2057         nvme_create_sq_dw11_t s_dw11 = { 0 };
2058         int ret;
2059 
2060         dw10.b.q_qid = idx;
2061         dw10.b.q_qsize = qp->nq_nentry - 1;
2062 
2063         c_dw11.b.cq_pc = 1;
2064         c_dw11.b.cq_ien = 1;
2065         c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2066 
2067         cmd->nc_sqid = 0;
2068         cmd->nc_callback = nvme_wakeup_cmd;
2069         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2070         cmd->nc_sqe.sqe_cdw10 = dw10.r;
2071         cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2072         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2073 
2074         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2075 
2076         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2077                 dev_err(nvme->n_dip, CE_WARN,
2078                     "!CREATE CQUEUE failed with sct = %x, sc = %x",
2079                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2080                 goto fail;
2081         }
2082 
2083         nvme_free_cmd(cmd);
2084 
2085         s_dw11.b.sq_pc = 1;
2086         s_dw11.b.sq_cqid = idx;
2087 
2088         cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2089         cmd->nc_sqid = 0;
2090         cmd->nc_callback = nvme_wakeup_cmd;
2091         cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2092         cmd->nc_sqe.sqe_cdw10 = dw10.r;
2093         cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2094         cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2095 
2096         nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2097 
2098         if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2099                 dev_err(nvme->n_dip, CE_WARN,
2100                     "!CREATE SQUEUE failed with sct = %x, sc = %x",
2101                     cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2102                 goto fail;
2103         }
2104 
2105 fail:
2106         nvme_free_cmd(cmd);
2107 
2108         return (ret);
2109 }
2110 
2111 static boolean_t
2112 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2113 {
2114         nvme_reg_csts_t csts;
2115         int i;
2116 
2117         nvme_put32(nvme, NVME_REG_CC, 0);
2118 
2119         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2120         if (csts.b.csts_rdy == 1) {
2121                 nvme_put32(nvme, NVME_REG_CC, 0);
2122                 for (i = 0; i != nvme->n_timeout * 10; i++) {
2123                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2124                         if (csts.b.csts_rdy == 0)
2125                                 break;
2126 
2127                         if (quiesce)
2128                                 drv_usecwait(50000);
2129                         else
2130                                 delay(drv_usectohz(50000));
2131                 }
2132         }
2133 
2134         nvme_put32(nvme, NVME_REG_AQA, 0);
2135         nvme_put32(nvme, NVME_REG_ASQ, 0);
2136         nvme_put32(nvme, NVME_REG_ACQ, 0);
2137 
2138         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2139         return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2140 }
2141 
2142 static void
2143 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2144 {
2145         nvme_reg_cc_t cc;
2146         nvme_reg_csts_t csts;
2147         int i;
2148 
2149         ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2150 
2151         cc.r = nvme_get32(nvme, NVME_REG_CC);
2152         cc.b.cc_shn = mode & 0x3;
2153         nvme_put32(nvme, NVME_REG_CC, cc.r);
2154 
2155         for (i = 0; i != 10; i++) {
2156                 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2157                 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2158                         break;
2159 
2160                 if (quiesce)
2161                         drv_usecwait(100000);
2162                 else
2163                         delay(drv_usectohz(100000));
2164         }
2165 }
2166 
2167 
2168 static void
2169 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2170 {
2171         /*
2172          * Section 7.7 of the spec describes how to get a unique ID for
2173          * the controller: the vendor ID, the model name and the serial
2174          * number shall be unique when combined.
2175          *
2176          * If a namespace has no EUI64 we use the above and add the hex
2177          * namespace ID to get a unique ID for the namespace.
2178          */
2179         char model[sizeof (nvme->n_idctl->id_model) + 1];
2180         char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2181 
2182         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2183         bcopy(nvme->n_idctl->id_serial, serial,
2184             sizeof (nvme->n_idctl->id_serial));
2185 
2186         model[sizeof (nvme->n_idctl->id_model)] = '\0';
2187         serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2188 
2189         nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2190             nvme->n_idctl->id_vid, model, serial, nsid);
2191 }
2192 
2193 static int
2194 nvme_init_ns(nvme_t *nvme, int nsid)
2195 {
2196         nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2197         nvme_identify_nsid_t *idns;
2198         int last_rp;
2199 
2200         ns->ns_nvme = nvme;
2201 
2202         if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2203                 dev_err(nvme->n_dip, CE_WARN,
2204                     "!failed to identify namespace %d", nsid);
2205                 return (DDI_FAILURE);
2206         }
2207 
2208         ns->ns_idns = idns;
2209         ns->ns_id = nsid;
2210         ns->ns_block_count = idns->id_nsize;
2211         ns->ns_block_size =
2212             1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2213         ns->ns_best_block_size = ns->ns_block_size;
2214 
2215         /*
2216          * Get the EUI64 if present. Use it for devid and device node names.
2217          */
2218         if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2219                 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2220 
2221         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2222         if (*(uint64_t *)ns->ns_eui64 != 0) {
2223                 uint8_t *eui64 = ns->ns_eui64;
2224 
2225                 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2226                     "%02x%02x%02x%02x%02x%02x%02x%02x",
2227                     eui64[0], eui64[1], eui64[2], eui64[3],
2228                     eui64[4], eui64[5], eui64[6], eui64[7]);
2229         } else {
2230                 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2231                     ns->ns_id);
2232 
2233                 nvme_prepare_devid(nvme, ns->ns_id);
2234         }
2235 
2236         /*
2237          * Find the LBA format with no metadata and the best relative
2238          * performance. A value of 3 means "degraded", 0 is best.
2239          */
2240         last_rp = 3;
2241         for (int j = 0; j <= idns->id_nlbaf; j++) {
2242                 if (idns->id_lbaf[j].lbaf_lbads == 0)
2243                         break;
2244                 if (idns->id_lbaf[j].lbaf_ms != 0)
2245                         continue;
2246                 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2247                         continue;
2248                 last_rp = idns->id_lbaf[j].lbaf_rp;
2249                 ns->ns_best_block_size =
2250                     1 << idns->id_lbaf[j].lbaf_lbads;
2251         }
2252 
2253         if (ns->ns_best_block_size < nvme->n_min_block_size)
2254                 ns->ns_best_block_size = nvme->n_min_block_size;
2255 
2256         /*
2257          * We currently don't support namespaces that use either:
2258          * - protection information
2259          * - illegal block size (< 512)
2260          */
2261         if (idns->id_dps.dp_pinfo) {
2262                 dev_err(nvme->n_dip, CE_WARN,
2263                     "!ignoring namespace %d, unsupported feature: "
2264                     "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2265                 ns->ns_ignore = B_TRUE;
2266         } else if (ns->ns_block_size < 512) {
2267                 dev_err(nvme->n_dip, CE_WARN,
2268                     "!ignoring namespace %d, unsupported block size %"PRIu64,
2269                     nsid, (uint64_t)ns->ns_block_size);
2270                 ns->ns_ignore = B_TRUE;
2271         } else {
2272                 ns->ns_ignore = B_FALSE;
2273         }
2274 
2275         return (DDI_SUCCESS);
2276 }
2277 
2278 static int
2279 nvme_init(nvme_t *nvme)
2280 {
2281         nvme_reg_cc_t cc = { 0 };
2282         nvme_reg_aqa_t aqa = { 0 };
2283         nvme_reg_asq_t asq = { 0 };
2284         nvme_reg_acq_t acq = { 0 };
2285         nvme_reg_cap_t cap;
2286         nvme_reg_vs_t vs;
2287         nvme_reg_csts_t csts;
2288         int i = 0;
2289         uint16_t nqueues;
2290         char model[sizeof (nvme->n_idctl->id_model) + 1];
2291         char *vendor, *product;
2292 
2293         /* Check controller version */
2294         vs.r = nvme_get32(nvme, NVME_REG_VS);
2295         nvme->n_version.v_major = vs.b.vs_mjr;
2296         nvme->n_version.v_minor = vs.b.vs_mnr;
2297         dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2298             nvme->n_version.v_major, nvme->n_version.v_minor);
2299 
2300         if (nvme->n_version.v_major > nvme_version_major) {
2301                 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2302                     nvme_version_major);
2303                 if (nvme->n_strict_version)
2304                         goto fail;
2305         }
2306 
2307         /* retrieve controller configuration */
2308         cap.r = nvme_get64(nvme, NVME_REG_CAP);
2309 
2310         if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2311                 dev_err(nvme->n_dip, CE_WARN,
2312                     "!NVM command set not supported by hardware");
2313                 goto fail;
2314         }
2315 
2316         nvme->n_nssr_supported = cap.b.cap_nssrs;
2317         nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2318         nvme->n_timeout = cap.b.cap_to;
2319         nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2320         nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2321         nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2322 
2323         /*
2324          * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2325          * the base page size of 4k (1<<12), so add 12 here to get the real
2326          * page size value.
2327          */
2328         nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2329             cap.b.cap_mpsmax + 12);
2330         nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2331 
2332         /*
2333          * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2334          */
2335         nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2336         nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2337 
2338         /*
2339          * Set up PRP DMA to transfer 1 page-aligned page at a time.
2340          * Maxxfer may be increased after we identified the controller limits.
2341          */
2342         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2343         nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2344         nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2345         nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2346 
2347         /*
2348          * Reset controller if it's still in ready state.
2349          */
2350         if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2351                 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2352                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2353                 nvme->n_dead = B_TRUE;
2354                 goto fail;
2355         }
2356 
2357         /*
2358          * Create the admin queue pair.
2359          */
2360         if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2361             != DDI_SUCCESS) {
2362                 dev_err(nvme->n_dip, CE_WARN,
2363                     "!unable to allocate admin qpair");
2364                 goto fail;
2365         }
2366         nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2367         nvme->n_ioq[0] = nvme->n_adminq;
2368 
2369         nvme->n_progress |= NVME_ADMIN_QUEUE;
2370 
2371         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2372             "admin-queue-len", nvme->n_admin_queue_len);
2373 
2374         aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2375         asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2376         acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2377 
2378         ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2379         ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2380 
2381         nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2382         nvme_put64(nvme, NVME_REG_ASQ, asq);
2383         nvme_put64(nvme, NVME_REG_ACQ, acq);
2384 
2385         cc.b.cc_ams = 0;        /* use Round-Robin arbitration */
2386         cc.b.cc_css = 0;        /* use NVM command set */
2387         cc.b.cc_mps = nvme->n_pageshift - 12;
2388         cc.b.cc_shn = 0;        /* no shutdown in progress */
2389         cc.b.cc_en = 1;         /* enable controller */
2390         cc.b.cc_iosqes = 6;     /* submission queue entry is 2^6 bytes long */
2391         cc.b.cc_iocqes = 4;     /* completion queue entry is 2^4 bytes long */
2392 
2393         nvme_put32(nvme, NVME_REG_CC, cc.r);
2394 
2395         /*
2396          * Wait for the controller to become ready.
2397          */
2398         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2399         if (csts.b.csts_rdy == 0) {
2400                 for (i = 0; i != nvme->n_timeout * 10; i++) {
2401                         delay(drv_usectohz(50000));
2402                         csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2403 
2404                         if (csts.b.csts_cfs == 1) {
2405                                 dev_err(nvme->n_dip, CE_WARN,
2406                                     "!controller fatal status at init");
2407                                 ddi_fm_service_impact(nvme->n_dip,
2408                                     DDI_SERVICE_LOST);
2409                                 nvme->n_dead = B_TRUE;
2410                                 goto fail;
2411                         }
2412 
2413                         if (csts.b.csts_rdy == 1)
2414                                 break;
2415                 }
2416         }
2417 
2418         if (csts.b.csts_rdy == 0) {
2419                 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2420                 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2421                 nvme->n_dead = B_TRUE;
2422                 goto fail;
2423         }
2424 
2425         /*
2426          * Assume an abort command limit of 1. We'll destroy and re-init
2427          * that later when we know the true abort command limit.
2428          */
2429         sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2430 
2431         /*
2432          * Setup initial interrupt for admin queue.
2433          */
2434         if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2435             != DDI_SUCCESS) &&
2436             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2437             != DDI_SUCCESS) &&
2438             (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2439             != DDI_SUCCESS)) {
2440                 dev_err(nvme->n_dip, CE_WARN,
2441                     "!failed to setup initial interrupt");
2442                 goto fail;
2443         }
2444 
2445         /*
2446          * Post an asynchronous event command to catch errors.
2447          * We assume the asynchronous events are supported as required by
2448          * specification (Figure 40 in section 5 of NVMe 1.2).
2449          * However, since at least qemu does not follow the specification,
2450          * we need a mechanism to protect ourselves.
2451          */
2452         nvme->n_async_event_supported = B_TRUE;
2453         nvme_async_event(nvme);
2454 
2455         /*
2456          * Identify Controller
2457          */
2458         if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2459                 dev_err(nvme->n_dip, CE_WARN,
2460                     "!failed to identify controller");
2461                 goto fail;
2462         }
2463 
2464         /*
2465          * Get Vendor & Product ID
2466          */
2467         bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2468         model[sizeof (nvme->n_idctl->id_model)] = '\0';
2469         sata_split_model(model, &vendor, &product);
2470 
2471         if (vendor == NULL)
2472                 nvme->n_vendor = strdup("NVMe");
2473         else
2474                 nvme->n_vendor = strdup(vendor);
2475 
2476         nvme->n_product = strdup(product);
2477 
2478         /*
2479          * Get controller limits.
2480          */
2481         nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2482             MIN(nvme->n_admin_queue_len / 10,
2483             MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2484 
2485         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2486             "async-event-limit", nvme->n_async_event_limit);
2487 
2488         nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2489 
2490         /*
2491          * Reinitialize the semaphore with the true abort command limit
2492          * supported by the hardware. It's not necessary to disable interrupts
2493          * as only command aborts use the semaphore, and no commands are
2494          * executed or aborted while we're here.
2495          */
2496         sema_destroy(&nvme->n_abort_sema);
2497         sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2498             SEMA_DRIVER, NULL);
2499 
2500         nvme->n_progress |= NVME_CTRL_LIMITS;
2501 
2502         if (nvme->n_idctl->id_mdts == 0)
2503                 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2504         else
2505                 nvme->n_max_data_transfer_size =
2506                     1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2507 
2508         nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2509 
2510         /*
2511          * Limit n_max_data_transfer_size to what we can handle in one PRP.
2512          * Chained PRPs are currently unsupported.
2513          *
2514          * This is a no-op on hardware which doesn't support a transfer size
2515          * big enough to require chained PRPs.
2516          */
2517         nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2518             (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2519 
2520         nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2521 
2522         /*
2523          * Make sure the minimum/maximum queue entry sizes are not
2524          * larger/smaller than the default.
2525          */
2526 
2527         if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2528             ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2529             ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2530             ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2531                 goto fail;
2532 
2533         /*
2534          * Check for the presence of a Volatile Write Cache. If present,
2535          * enable or disable based on the value of the property
2536          * volatile-write-cache-enable (default is enabled).
2537          */
2538         nvme->n_write_cache_present =
2539             nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2540 
2541         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2542             "volatile-write-cache-present",
2543             nvme->n_write_cache_present ? 1 : 0);
2544 
2545         if (!nvme->n_write_cache_present) {
2546                 nvme->n_write_cache_enabled = B_FALSE;
2547         } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2548             != 0) {
2549                 dev_err(nvme->n_dip, CE_WARN,
2550                     "!failed to %sable volatile write cache",
2551                     nvme->n_write_cache_enabled ? "en" : "dis");
2552                 /*
2553                  * Assume the cache is (still) enabled.
2554                  */
2555                 nvme->n_write_cache_enabled = B_TRUE;
2556         }
2557 
2558         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2559             "volatile-write-cache-enable",
2560             nvme->n_write_cache_enabled ? 1 : 0);
2561 
2562         /*
2563          * Assume LBA Range Type feature is supported. If it isn't this
2564          * will be set to B_FALSE by nvme_get_features().
2565          */
2566         nvme->n_lba_range_supported = B_TRUE;
2567 
2568         /*
2569          * Check support for Autonomous Power State Transition.
2570          */
2571         if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2572                 nvme->n_auto_pst_supported =
2573                     nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2574 
2575         /*
2576          * Assume Software Progress Marker feature is supported.  If it isn't
2577          * this will be set to B_FALSE by nvme_get_features().
2578          */
2579         nvme->n_progress_supported = B_TRUE;
2580 
2581         /*
2582          * Identify Namespaces
2583          */
2584         nvme->n_namespace_count = nvme->n_idctl->id_nn;
2585 
2586         if (nvme->n_namespace_count == 0) {
2587                 dev_err(nvme->n_dip, CE_WARN,
2588                     "!controllers without namespaces are not supported");
2589                 goto fail;
2590         }
2591 
2592         if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2593                 dev_err(nvme->n_dip, CE_WARN,
2594                     "!too many namespaces: %d, limiting to %d\n",
2595                     nvme->n_namespace_count, NVME_MINOR_MAX);
2596                 nvme->n_namespace_count = NVME_MINOR_MAX;
2597         }
2598 
2599         nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2600             nvme->n_namespace_count, KM_SLEEP);
2601 
2602         for (i = 0; i != nvme->n_namespace_count; i++) {
2603                 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2604                     NULL);
2605                 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2606                         goto fail;
2607         }
2608 
2609         /*
2610          * Try to set up MSI/MSI-X interrupts.
2611          */
2612         if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2613             != 0) {
2614                 nvme_release_interrupts(nvme);
2615 
2616                 nqueues = MIN(UINT16_MAX, ncpus);
2617 
2618                 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2619                     nqueues) != DDI_SUCCESS) &&
2620                     (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2621                     nqueues) != DDI_SUCCESS)) {
2622                         dev_err(nvme->n_dip, CE_WARN,
2623                             "!failed to setup MSI/MSI-X interrupts");
2624                         goto fail;
2625                 }
2626         }
2627 
2628         nqueues = nvme->n_intr_cnt;
2629 
2630         /*
2631          * Create I/O queue pairs.
2632          */
2633 
2634         if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2635                 dev_err(nvme->n_dip, CE_WARN,
2636                     "!failed to set number of I/O queues to %d",
2637                     nvme->n_intr_cnt);
2638                 goto fail;
2639         }
2640 
2641         /*
2642          * Reallocate I/O queue array
2643          */
2644         kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2645         nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2646             (nqueues + 1), KM_SLEEP);
2647         nvme->n_ioq[0] = nvme->n_adminq;
2648 
2649         nvme->n_ioq_count = nqueues;
2650 
2651         /*
2652          * If we got less queues than we asked for we might as well give
2653          * some of the interrupt vectors back to the system.
2654          */
2655         if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2656                 nvme_release_interrupts(nvme);
2657 
2658                 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2659                     nvme->n_ioq_count) != DDI_SUCCESS) {
2660                         dev_err(nvme->n_dip, CE_WARN,
2661                             "!failed to reduce number of interrupts");
2662                         goto fail;
2663                 }
2664         }
2665 
2666         /*
2667          * Alloc & register I/O queue pairs
2668          */
2669         nvme->n_io_queue_len =
2670             MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2671         (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2672             nvme->n_io_queue_len);
2673 
2674         for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2675                 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2676                     &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2677                         dev_err(nvme->n_dip, CE_WARN,
2678                             "!unable to allocate I/O qpair %d", i);
2679                         goto fail;
2680                 }
2681 
2682                 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2683                         dev_err(nvme->n_dip, CE_WARN,
2684                             "!unable to create I/O qpair %d", i);
2685                         goto fail;
2686                 }
2687         }
2688 
2689         /*
2690          * Post more asynchronous events commands to reduce event reporting
2691          * latency as suggested by the spec.
2692          */
2693         if (nvme->n_async_event_supported) {
2694                 for (i = 1; i != nvme->n_async_event_limit; i++)
2695                         nvme_async_event(nvme);
2696         }
2697 
2698         return (DDI_SUCCESS);
2699 
2700 fail:
2701         (void) nvme_reset(nvme, B_FALSE);
2702         return (DDI_FAILURE);
2703 }
2704 
2705 static uint_t
2706 nvme_intr(caddr_t arg1, caddr_t arg2)
2707 {
2708         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2709         nvme_t *nvme = (nvme_t *)arg1;
2710         int inum = (int)(uintptr_t)arg2;
2711         int ccnt = 0;
2712         int qnum;
2713         nvme_cmd_t *cmd;
2714 
2715         if (inum >= nvme->n_intr_cnt)
2716                 return (DDI_INTR_UNCLAIMED);
2717 
2718         if (nvme->n_dead)
2719                 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2720                     DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2721 
2722         /*
2723          * The interrupt vector a queue uses is calculated as queue_idx %
2724          * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2725          * in steps of n_intr_cnt to process all queues using this vector.
2726          */
2727         for (qnum = inum;
2728             qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2729             qnum += nvme->n_intr_cnt) {
2730                 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2731                         taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2732                             cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2733                         ccnt++;
2734                 }
2735         }
2736 
2737         return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2738 }
2739 
2740 static void
2741 nvme_release_interrupts(nvme_t *nvme)
2742 {
2743         int i;
2744 
2745         for (i = 0; i < nvme->n_intr_cnt; i++) {
2746                 if (nvme->n_inth[i] == NULL)
2747                         break;
2748 
2749                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2750                         (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2751                 else
2752                         (void) ddi_intr_disable(nvme->n_inth[i]);
2753 
2754                 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2755                 (void) ddi_intr_free(nvme->n_inth[i]);
2756         }
2757 
2758         kmem_free(nvme->n_inth, nvme->n_inth_sz);
2759         nvme->n_inth = NULL;
2760         nvme->n_inth_sz = 0;
2761 
2762         nvme->n_progress &= ~NVME_INTERRUPTS;
2763 }
2764 
2765 static int
2766 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2767 {
2768         int nintrs, navail, count;
2769         int ret;
2770         int i;
2771 
2772         if (nvme->n_intr_types == 0) {
2773                 ret = ddi_intr_get_supported_types(nvme->n_dip,
2774                     &nvme->n_intr_types);
2775                 if (ret != DDI_SUCCESS) {
2776                         dev_err(nvme->n_dip, CE_WARN,
2777                             "!%s: ddi_intr_get_supported types failed",
2778                             __func__);
2779                         return (ret);
2780                 }
2781 #ifdef __x86
2782                 if (get_hwenv() == HW_VMWARE)
2783                         nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2784 #endif
2785         }
2786 
2787         if ((nvme->n_intr_types & intr_type) == 0)
2788                 return (DDI_FAILURE);
2789 
2790         ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2791         if (ret != DDI_SUCCESS) {
2792                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2793                     __func__);
2794                 return (ret);
2795         }
2796 
2797         ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2798         if (ret != DDI_SUCCESS) {
2799                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2800                     __func__);
2801                 return (ret);
2802         }
2803 
2804         /* We want at most one interrupt per queue pair. */
2805         if (navail > nqpairs)
2806                 navail = nqpairs;
2807 
2808         nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2809         nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2810 
2811         ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2812             &count, 0);
2813         if (ret != DDI_SUCCESS) {
2814                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2815                     __func__);
2816                 goto fail;
2817         }
2818 
2819         nvme->n_intr_cnt = count;
2820 
2821         ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2822         if (ret != DDI_SUCCESS) {
2823                 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2824                     __func__);
2825                 goto fail;
2826         }
2827 
2828         for (i = 0; i < count; i++) {
2829                 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2830                     (void *)nvme, (void *)(uintptr_t)i);
2831                 if (ret != DDI_SUCCESS) {
2832                         dev_err(nvme->n_dip, CE_WARN,
2833                             "!%s: ddi_intr_add_handler failed", __func__);
2834                         goto fail;
2835                 }
2836         }
2837 
2838         (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2839 
2840         for (i = 0; i < count; i++) {
2841                 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2842                         ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2843                 else
2844                         ret = ddi_intr_enable(nvme->n_inth[i]);
2845 
2846                 if (ret != DDI_SUCCESS) {
2847                         dev_err(nvme->n_dip, CE_WARN,
2848                             "!%s: enabling interrupt %d failed", __func__, i);
2849                         goto fail;
2850                 }
2851         }
2852 
2853         nvme->n_intr_type = intr_type;
2854 
2855         nvme->n_progress |= NVME_INTERRUPTS;
2856 
2857         return (DDI_SUCCESS);
2858 
2859 fail:
2860         nvme_release_interrupts(nvme);
2861 
2862         return (ret);
2863 }
2864 
2865 static int
2866 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2867 {
2868         _NOTE(ARGUNUSED(arg));
2869 
2870         pci_ereport_post(dip, fm_error, NULL);
2871         return (fm_error->fme_status);
2872 }
2873 
2874 static int
2875 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2876 {
2877         nvme_t *nvme;
2878         int instance;
2879         int nregs;
2880         off_t regsize;
2881         int i;
2882         char name[32];
2883 
2884         if (cmd != DDI_ATTACH)
2885                 return (DDI_FAILURE);
2886 
2887         instance = ddi_get_instance(dip);
2888 
2889         if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2890                 return (DDI_FAILURE);
2891 
2892         nvme = ddi_get_soft_state(nvme_state, instance);
2893         ddi_set_driver_private(dip, nvme);
2894         nvme->n_dip = dip;
2895 
2896         mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2897 
2898         nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2899             DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2900         nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2901             dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2902             B_TRUE : B_FALSE;
2903         nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2904             DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2905         nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2906             DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2907         nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2908             DDI_PROP_DONTPASS, "async-event-limit",
2909             NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2910         nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2911             DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2912             B_TRUE : B_FALSE;
2913         nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2914             DDI_PROP_DONTPASS, "min-phys-block-size",
2915             NVME_DEFAULT_MIN_BLOCK_SIZE);
2916 
2917         if (!ISP2(nvme->n_min_block_size) ||
2918             (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2919                 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2920                     "using default %d", ISP2(nvme->n_min_block_size) ?
2921                     "too low" : "not a power of 2",
2922                     NVME_DEFAULT_MIN_BLOCK_SIZE);
2923                 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2924         }
2925 
2926         if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2927                 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2928         else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2929                 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2930 
2931         if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2932                 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2933 
2934         if (nvme->n_async_event_limit < 1)
2935                 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2936 
2937         nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2938         nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2939         nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2940         nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2941 
2942         /*
2943          * Setup FMA support.
2944          */
2945         nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2946             DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2947             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2948             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2949 
2950         ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2951 
2952         if (nvme->n_fm_cap) {
2953                 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2954                         nvme->n_reg_acc_attr.devacc_attr_access =
2955                             DDI_FLAGERR_ACC;
2956 
2957                 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2958                         nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2959                         nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2960                 }
2961 
2962                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2963                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2964                         pci_ereport_setup(dip);
2965 
2966                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2967                         ddi_fm_handler_register(dip, nvme_fm_errcb,
2968                             (void *)nvme);
2969         }
2970 
2971         nvme->n_progress |= NVME_FMA_INIT;
2972 
2973         /*
2974          * The spec defines several register sets. Only the controller
2975          * registers (set 1) are currently used.
2976          */
2977         if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2978             nregs < 2 ||
2979             ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2980                 goto fail;
2981 
2982         if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2983             &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2984                 dev_err(dip, CE_WARN, "!failed to map regset 1");
2985                 goto fail;
2986         }
2987 
2988         nvme->n_progress |= NVME_REGS_MAPPED;
2989 
2990         /*
2991          * Create taskq for command completion.
2992          */
2993         (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2994             ddi_driver_name(dip), ddi_get_instance(dip));
2995         nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2996             TASKQ_DEFAULTPRI, 0);
2997         if (nvme->n_cmd_taskq == NULL) {
2998                 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2999                 goto fail;
3000         }
3001 
3002         /*
3003          * Create PRP DMA cache
3004          */
3005         (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3006             ddi_driver_name(dip), ddi_get_instance(dip));
3007         nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3008             0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3009             NULL, (void *)nvme, NULL, 0);
3010 
3011         if (nvme_init(nvme) != DDI_SUCCESS)
3012                 goto fail;
3013 
3014         /*
3015          * Attach the blkdev driver for each namespace.
3016          */
3017         for (i = 0; i != nvme->n_namespace_count; i++) {
3018                 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3019                     S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3020                     DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3021                         dev_err(dip, CE_WARN,
3022                             "!failed to create minor node for namespace %d", i);
3023                         goto fail;
3024                 }
3025 
3026                 if (nvme->n_ns[i].ns_ignore)
3027                         continue;
3028 
3029                 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3030                     &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3031 
3032                 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3033                         dev_err(dip, CE_WARN,
3034                             "!failed to get blkdev handle for namespace %d", i);
3035                         goto fail;
3036                 }
3037 
3038                 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3039                     != DDI_SUCCESS) {
3040                         dev_err(dip, CE_WARN,
3041                             "!failed to attach blkdev handle for namespace %d",
3042                             i);
3043                         goto fail;
3044                 }
3045         }
3046 
3047         if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3048             NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3049             != DDI_SUCCESS) {
3050                 dev_err(dip, CE_WARN, "nvme_attach: "
3051                     "cannot create devctl minor node");
3052                 goto fail;
3053         }
3054 
3055         return (DDI_SUCCESS);
3056 
3057 fail:
3058         /* attach successful anyway so that FMA can retire the device */
3059         if (nvme->n_dead)
3060                 return (DDI_SUCCESS);
3061 
3062         (void) nvme_detach(dip, DDI_DETACH);
3063 
3064         return (DDI_FAILURE);
3065 }
3066 
3067 static int
3068 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3069 {
3070         int instance, i;
3071         nvme_t *nvme;
3072 
3073         if (cmd != DDI_DETACH)
3074                 return (DDI_FAILURE);
3075 
3076         instance = ddi_get_instance(dip);
3077 
3078         nvme = ddi_get_soft_state(nvme_state, instance);
3079 
3080         if (nvme == NULL)
3081                 return (DDI_FAILURE);
3082 
3083         ddi_remove_minor_node(dip, "devctl");
3084         mutex_destroy(&nvme->n_minor.nm_mutex);
3085 
3086         if (nvme->n_ns) {
3087                 for (i = 0; i != nvme->n_namespace_count; i++) {
3088                         ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3089                         mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3090 
3091                         if (nvme->n_ns[i].ns_bd_hdl) {
3092                                 (void) bd_detach_handle(
3093                                     nvme->n_ns[i].ns_bd_hdl);
3094                                 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3095                         }
3096 
3097                         if (nvme->n_ns[i].ns_idns)
3098                                 kmem_free(nvme->n_ns[i].ns_idns,
3099                                     sizeof (nvme_identify_nsid_t));
3100                         if (nvme->n_ns[i].ns_devid)
3101                                 strfree(nvme->n_ns[i].ns_devid);
3102                 }
3103 
3104                 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3105                     nvme->n_namespace_count);
3106         }
3107 
3108         if (nvme->n_progress & NVME_INTERRUPTS)
3109                 nvme_release_interrupts(nvme);
3110 
3111         if (nvme->n_cmd_taskq)
3112                 ddi_taskq_wait(nvme->n_cmd_taskq);
3113 
3114         if (nvme->n_ioq_count > 0) {
3115                 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3116                         if (nvme->n_ioq[i] != NULL) {
3117                                 /* TODO: send destroy queue commands */
3118                                 nvme_free_qpair(nvme->n_ioq[i]);
3119                         }
3120                 }
3121 
3122                 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3123                     (nvme->n_ioq_count + 1));
3124         }
3125 
3126         if (nvme->n_prp_cache != NULL) {
3127                 kmem_cache_destroy(nvme->n_prp_cache);
3128         }
3129 
3130         if (nvme->n_progress & NVME_REGS_MAPPED) {
3131                 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3132                 (void) nvme_reset(nvme, B_FALSE);
3133         }
3134 
3135         if (nvme->n_cmd_taskq)
3136                 ddi_taskq_destroy(nvme->n_cmd_taskq);
3137 
3138         if (nvme->n_progress & NVME_CTRL_LIMITS)
3139                 sema_destroy(&nvme->n_abort_sema);
3140 
3141         if (nvme->n_progress & NVME_ADMIN_QUEUE)
3142                 nvme_free_qpair(nvme->n_adminq);
3143 
3144         if (nvme->n_idctl)
3145                 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3146 
3147         if (nvme->n_progress & NVME_REGS_MAPPED)
3148                 ddi_regs_map_free(&nvme->n_regh);
3149 
3150         if (nvme->n_progress & NVME_FMA_INIT) {
3151                 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3152                         ddi_fm_handler_unregister(nvme->n_dip);
3153 
3154                 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3155                     DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3156                         pci_ereport_teardown(nvme->n_dip);
3157 
3158                 ddi_fm_fini(nvme->n_dip);
3159         }
3160 
3161         if (nvme->n_vendor != NULL)
3162                 strfree(nvme->n_vendor);
3163 
3164         if (nvme->n_product != NULL)
3165                 strfree(nvme->n_product);
3166 
3167         ddi_soft_state_free(nvme_state, instance);
3168 
3169         return (DDI_SUCCESS);
3170 }
3171 
3172 static int
3173 nvme_quiesce(dev_info_t *dip)
3174 {
3175         int instance;
3176         nvme_t *nvme;
3177 
3178         instance = ddi_get_instance(dip);
3179 
3180         nvme = ddi_get_soft_state(nvme_state, instance);
3181 
3182         if (nvme == NULL)
3183                 return (DDI_FAILURE);
3184 
3185         nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3186 
3187         (void) nvme_reset(nvme, B_TRUE);
3188 
3189         return (DDI_FAILURE);
3190 }
3191 
3192 static int
3193 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3194 {
3195         nvme_t *nvme = cmd->nc_nvme;
3196         int nprp_page, nprp;
3197         uint64_t *prp;
3198 
3199         if (xfer->x_ndmac == 0)
3200                 return (DDI_FAILURE);
3201 
3202         cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3203         ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3204 
3205         if (xfer->x_ndmac == 1) {
3206                 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3207                 return (DDI_SUCCESS);
3208         } else if (xfer->x_ndmac == 2) {
3209                 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3210                 return (DDI_SUCCESS);
3211         }
3212 
3213         xfer->x_ndmac--;
3214 
3215         nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3216         ASSERT(nprp_page > 0);
3217         nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3218 
3219         /*
3220          * We currently don't support chained PRPs and set up our DMA
3221          * attributes to reflect that. If we still get an I/O request
3222          * that needs a chained PRP something is very wrong.
3223          */
3224         VERIFY(nprp == 1);
3225 
3226         cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3227         bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3228 
3229         cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3230 
3231         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3232         for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3233             xfer->x_ndmac > 0;
3234             prp++, xfer->x_ndmac--) {
3235                 *prp = xfer->x_dmac.dmac_laddress;
3236                 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3237         }
3238 
3239         (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3240             DDI_DMA_SYNC_FORDEV);
3241         return (DDI_SUCCESS);
3242 }
3243 
3244 static nvme_cmd_t *
3245 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3246 {
3247         nvme_t *nvme = ns->ns_nvme;
3248         nvme_cmd_t *cmd;
3249 
3250         /*
3251          * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3252          */
3253         cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3254             KM_NOSLEEP : KM_SLEEP);
3255 
3256         if (cmd == NULL)
3257                 return (NULL);
3258 
3259         cmd->nc_sqe.sqe_opc = opc;
3260         cmd->nc_callback = nvme_bd_xfer_done;
3261         cmd->nc_xfer = xfer;
3262 
3263         switch (opc) {
3264         case NVME_OPC_NVM_WRITE:
3265         case NVME_OPC_NVM_READ:
3266                 VERIFY(xfer->x_nblks <= 0x10000);
3267 
3268                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3269 
3270                 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3271                 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3272                 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3273 
3274                 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3275                         goto fail;
3276                 break;
3277 
3278         case NVME_OPC_NVM_FLUSH:
3279                 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3280                 break;
3281 
3282         default:
3283                 goto fail;
3284         }
3285 
3286         return (cmd);
3287 
3288 fail:
3289         nvme_free_cmd(cmd);
3290         return (NULL);
3291 }
3292 
3293 static void
3294 nvme_bd_xfer_done(void *arg)
3295 {
3296         nvme_cmd_t *cmd = arg;
3297         bd_xfer_t *xfer = cmd->nc_xfer;
3298         int error = 0;
3299 
3300         error = nvme_check_cmd_status(cmd);
3301         nvme_free_cmd(cmd);
3302 
3303         bd_xfer_done(xfer, error);
3304 }
3305 
3306 static void
3307 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3308 {
3309         nvme_namespace_t *ns = arg;
3310         nvme_t *nvme = ns->ns_nvme;
3311 
3312         /*
3313          * blkdev maintains one queue size per instance (namespace),
3314          * but all namespace share the I/O queues.
3315          * TODO: need to figure out a sane default, or use per-NS I/O queues,
3316          * or change blkdev to handle EAGAIN
3317          */
3318         drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3319             / nvme->n_namespace_count;
3320 
3321         /*
3322          * d_maxxfer is not set, which means the value is taken from the DMA
3323          * attributes specified to bd_alloc_handle.
3324          */
3325 
3326         drive->d_removable = B_FALSE;
3327         drive->d_hotpluggable = B_FALSE;
3328 
3329         bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3330         drive->d_target = ns->ns_id;
3331         drive->d_lun = 0;
3332 
3333         drive->d_model = nvme->n_idctl->id_model;
3334         drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3335         drive->d_vendor = nvme->n_vendor;
3336         drive->d_vendor_len = strlen(nvme->n_vendor);
3337         drive->d_product = nvme->n_product;
3338         drive->d_product_len = strlen(nvme->n_product);
3339         drive->d_serial = nvme->n_idctl->id_serial;
3340         drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3341         drive->d_revision = nvme->n_idctl->id_fwrev;
3342         drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3343 }
3344 
3345 static int
3346 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3347 {
3348         nvme_namespace_t *ns = arg;
3349 
3350         media->m_nblks = ns->ns_block_count;
3351         media->m_blksize = ns->ns_block_size;
3352         media->m_readonly = B_FALSE;
3353         media->m_solidstate = B_TRUE;
3354 
3355         media->m_pblksize = ns->ns_best_block_size;
3356 
3357         return (0);
3358 }
3359 
3360 static int
3361 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3362 {
3363         nvme_t *nvme = ns->ns_nvme;
3364         nvme_cmd_t *cmd;
3365         nvme_qpair_t *ioq;
3366         boolean_t poll;
3367         int ret;
3368 
3369         if (nvme->n_dead)
3370                 return (EIO);
3371 
3372         cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3373         if (cmd == NULL)
3374                 return (ENOMEM);
3375 
3376         cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3377         ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3378         ioq = nvme->n_ioq[cmd->nc_sqid];
3379 
3380         /*
3381          * Get the polling flag before submitting the command. The command may
3382          * complete immediately after it was submitted, which means we must
3383          * treat both cmd and xfer as if they have been freed already.
3384          */
3385         poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3386 
3387         ret = nvme_submit_io_cmd(ioq, cmd);
3388 
3389         if (ret != 0)
3390                 return (ret);
3391 
3392         if (!poll)
3393                 return (0);
3394 
3395         do {
3396                 cmd = nvme_retrieve_cmd(nvme, ioq);
3397                 if (cmd != NULL)
3398                         nvme_bd_xfer_done(cmd);
3399                 else
3400                         drv_usecwait(10);
3401         } while (ioq->nq_active_cmds != 0);
3402 
3403         return (0);
3404 }
3405 
3406 static int
3407 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3408 {
3409         nvme_namespace_t *ns = arg;
3410 
3411         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3412 }
3413 
3414 static int
3415 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3416 {
3417         nvme_namespace_t *ns = arg;
3418 
3419         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3420 }
3421 
3422 static int
3423 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3424 {
3425         nvme_namespace_t *ns = arg;
3426 
3427         if (ns->ns_nvme->n_dead)
3428                 return (EIO);
3429 
3430         /*
3431          * If the volatile write cache is not present or not enabled the FLUSH
3432          * command is a no-op, so we can take a shortcut here.
3433          */
3434         if (!ns->ns_nvme->n_write_cache_present) {
3435                 bd_xfer_done(xfer, ENOTSUP);
3436                 return (0);
3437         }
3438 
3439         if (!ns->ns_nvme->n_write_cache_enabled) {
3440                 bd_xfer_done(xfer, 0);
3441                 return (0);
3442         }
3443 
3444         return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3445 }
3446 
3447 static int
3448 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3449 {
3450         nvme_namespace_t *ns = arg;
3451 
3452         /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3453         if (*(uint64_t *)ns->ns_eui64 != 0) {
3454                 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3455                     sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3456         } else {
3457                 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3458                     strlen(ns->ns_devid), ns->ns_devid, devid));
3459         }
3460 }
3461 
3462 static int
3463 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3464 {
3465 #ifndef __lock_lint
3466         _NOTE(ARGUNUSED(cred_p));
3467 #endif
3468         minor_t minor = getminor(*devp);
3469         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3470         int nsid = NVME_MINOR_NSID(minor);
3471         nvme_minor_state_t *nm;
3472         int rv = 0;
3473 
3474         if (otyp != OTYP_CHR)
3475                 return (EINVAL);
3476 
3477         if (nvme == NULL)
3478                 return (ENXIO);
3479 
3480         if (nsid > nvme->n_namespace_count)
3481                 return (ENXIO);
3482 
3483         if (nvme->n_dead)
3484                 return (EIO);
3485 
3486         nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3487 
3488         mutex_enter(&nm->nm_mutex);
3489         if (nm->nm_oexcl) {
3490                 rv = EBUSY;
3491                 goto out;
3492         }
3493 
3494         if (flag & FEXCL) {
3495                 if (nm->nm_ocnt != 0) {
3496                         rv = EBUSY;
3497                         goto out;
3498                 }
3499                 nm->nm_oexcl = B_TRUE;
3500         }
3501 
3502         nm->nm_ocnt++;
3503 
3504 out:
3505         mutex_exit(&nm->nm_mutex);
3506         return (rv);
3507 
3508 }
3509 
3510 static int
3511 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3512 {
3513 #ifndef __lock_lint
3514         _NOTE(ARGUNUSED(cred_p));
3515         _NOTE(ARGUNUSED(flag));
3516 #endif
3517         minor_t minor = getminor(dev);
3518         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3519         int nsid = NVME_MINOR_NSID(minor);
3520         nvme_minor_state_t *nm;
3521 
3522         if (otyp != OTYP_CHR)
3523                 return (ENXIO);
3524 
3525         if (nvme == NULL)
3526                 return (ENXIO);
3527 
3528         if (nsid > nvme->n_namespace_count)
3529                 return (ENXIO);
3530 
3531         nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3532 
3533         mutex_enter(&nm->nm_mutex);
3534         if (nm->nm_oexcl)
3535                 nm->nm_oexcl = B_FALSE;
3536 
3537         ASSERT(nm->nm_ocnt > 0);
3538         nm->nm_ocnt--;
3539         mutex_exit(&nm->nm_mutex);
3540 
3541         return (0);
3542 }
3543 
3544 static int
3545 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3546     cred_t *cred_p)
3547 {
3548         _NOTE(ARGUNUSED(cred_p));
3549         int rv = 0;
3550         void *idctl;
3551 
3552         if ((mode & FREAD) == 0)
3553                 return (EPERM);
3554 
3555         if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3556                 return (EINVAL);
3557 
3558         if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3559                 return (rv);
3560 
3561         if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3562             != 0)
3563                 rv = EFAULT;
3564 
3565         kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3566 
3567         return (rv);
3568 }
3569 
3570 static int
3571 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3572     int mode, cred_t *cred_p)
3573 {
3574         _NOTE(ARGUNUSED(nsid, cred_p));
3575         int rv = 0;
3576         nvme_reg_cap_t cap = { 0 };
3577         nvme_capabilities_t nc;
3578 
3579         if ((mode & FREAD) == 0)
3580                 return (EPERM);
3581 
3582         if (nioc->n_len < sizeof (nc))
3583                 return (EINVAL);
3584 
3585         cap.r = nvme_get64(nvme, NVME_REG_CAP);
3586 
3587         /*
3588          * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3589          * specify the base page size of 4k (1<<12), so add 12 here to
3590          * get the real page size value.
3591          */
3592         nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3593         nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3594 
3595         if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3596                 rv = EFAULT;
3597 
3598         return (rv);
3599 }
3600 
3601 static int
3602 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3603     int mode, cred_t *cred_p)
3604 {
3605         _NOTE(ARGUNUSED(cred_p));
3606         void *log = NULL;
3607         size_t bufsize = 0;
3608         int rv = 0;
3609 
3610         if ((mode & FREAD) == 0)
3611                 return (EPERM);
3612 
3613         switch (nioc->n_arg) {
3614         case NVME_LOGPAGE_ERROR:
3615                 if (nsid != 0)
3616                         return (EINVAL);
3617                 break;
3618         case NVME_LOGPAGE_HEALTH:
3619                 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3620                         return (EINVAL);
3621 
3622                 if (nsid == 0)
3623                         nsid = (uint32_t)-1;
3624 
3625                 break;
3626         case NVME_LOGPAGE_FWSLOT:
3627                 if (nsid != 0)
3628                         return (EINVAL);
3629                 break;
3630         default:
3631                 return (EINVAL);
3632         }
3633 
3634         if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3635             != DDI_SUCCESS)
3636                 return (EIO);
3637 
3638         if (nioc->n_len < bufsize) {
3639                 kmem_free(log, bufsize);
3640                 return (EINVAL);
3641         }
3642 
3643         if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3644                 rv = EFAULT;
3645 
3646         nioc->n_len = bufsize;
3647         kmem_free(log, bufsize);
3648 
3649         return (rv);
3650 }
3651 
3652 static int
3653 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3654     int mode, cred_t *cred_p)
3655 {
3656         _NOTE(ARGUNUSED(cred_p));
3657         void *buf = NULL;
3658         size_t bufsize = 0;
3659         uint32_t res = 0;
3660         uint8_t feature;
3661         int rv = 0;
3662 
3663         if ((mode & FREAD) == 0)
3664                 return (EPERM);
3665 
3666         if ((nioc->n_arg >> 32) > 0xff)
3667                 return (EINVAL);
3668 
3669         feature = (uint8_t)(nioc->n_arg >> 32);
3670 
3671         switch (feature) {
3672         case NVME_FEAT_ARBITRATION:
3673         case NVME_FEAT_POWER_MGMT:
3674         case NVME_FEAT_TEMPERATURE:
3675         case NVME_FEAT_ERROR:
3676         case NVME_FEAT_NQUEUES:
3677         case NVME_FEAT_INTR_COAL:
3678         case NVME_FEAT_WRITE_ATOM:
3679         case NVME_FEAT_ASYNC_EVENT:
3680         case NVME_FEAT_PROGRESS:
3681                 if (nsid != 0)
3682                         return (EINVAL);
3683                 break;
3684 
3685         case NVME_FEAT_INTR_VECT:
3686                 if (nsid != 0)
3687                         return (EINVAL);
3688 
3689                 res = nioc->n_arg & 0xffffffffUL;
3690                 if (res >= nvme->n_intr_cnt)
3691                         return (EINVAL);
3692                 break;
3693 
3694         case NVME_FEAT_LBA_RANGE:
3695                 if (nvme->n_lba_range_supported == B_FALSE)
3696                         return (EINVAL);
3697 
3698                 if (nsid == 0 ||
3699                     nsid > nvme->n_namespace_count)
3700                         return (EINVAL);
3701 
3702                 break;
3703 
3704         case NVME_FEAT_WRITE_CACHE:
3705                 if (nsid != 0)
3706                         return (EINVAL);
3707 
3708                 if (!nvme->n_write_cache_present)
3709                         return (EINVAL);
3710 
3711                 break;
3712 
3713         case NVME_FEAT_AUTO_PST:
3714                 if (nsid != 0)
3715                         return (EINVAL);
3716 
3717                 if (!nvme->n_auto_pst_supported)
3718                         return (EINVAL);
3719 
3720                 break;
3721 
3722         default:
3723                 return (EINVAL);
3724         }
3725 
3726         rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3727         if (rv != 0)
3728                 return (rv);
3729 
3730         if (nioc->n_len < bufsize) {
3731                 kmem_free(buf, bufsize);
3732                 return (EINVAL);
3733         }
3734 
3735         if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3736                 rv = EFAULT;
3737 
3738         kmem_free(buf, bufsize);
3739         nioc->n_arg = res;
3740         nioc->n_len = bufsize;
3741 
3742         return (rv);
3743 }
3744 
3745 static int
3746 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3747     cred_t *cred_p)
3748 {
3749         _NOTE(ARGUNUSED(nsid, mode, cred_p));
3750 
3751         if ((mode & FREAD) == 0)
3752                 return (EPERM);
3753 
3754         nioc->n_arg = nvme->n_intr_cnt;
3755         return (0);
3756 }
3757 
3758 static int
3759 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3760     cred_t *cred_p)
3761 {
3762         _NOTE(ARGUNUSED(nsid, cred_p));
3763         int rv = 0;
3764 
3765         if ((mode & FREAD) == 0)
3766                 return (EPERM);
3767 
3768         if (nioc->n_len < sizeof (nvme->n_version))
3769                 return (ENOMEM);
3770 
3771         if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3772             sizeof (nvme->n_version), mode) != 0)
3773                 rv = EFAULT;
3774 
3775         return (rv);
3776 }
3777 
3778 static int
3779 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3780     cred_t *cred_p)
3781 {
3782         _NOTE(ARGUNUSED(mode));
3783         nvme_format_nvm_t frmt = { 0 };
3784         int c_nsid = nsid != 0 ? nsid - 1 : 0;
3785 
3786         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3787                 return (EPERM);
3788 
3789         frmt.r = nioc->n_arg & 0xffffffff;
3790 
3791         /*
3792          * Check whether the FORMAT NVM command is supported.
3793          */
3794         if (nvme->n_idctl->id_oacs.oa_format == 0)
3795                 return (EINVAL);
3796 
3797         /*
3798          * Don't allow format or secure erase of individual namespace if that
3799          * would cause a format or secure erase of all namespaces.
3800          */
3801         if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3802                 return (EINVAL);
3803 
3804         if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3805             nvme->n_idctl->id_fna.fn_sec_erase != 0)
3806                 return (EINVAL);
3807 
3808         /*
3809          * Don't allow formatting with Protection Information.
3810          */
3811         if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3812                 return (EINVAL);
3813 
3814         /*
3815          * Don't allow formatting using an illegal LBA format, or any LBA format
3816          * that uses metadata.
3817          */
3818         if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3819             nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3820                 return (EINVAL);
3821 
3822         /*
3823          * Don't allow formatting using an illegal Secure Erase setting.
3824          */
3825         if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3826             (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3827             nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3828                 return (EINVAL);
3829 
3830         if (nsid == 0)
3831                 nsid = (uint32_t)-1;
3832 
3833         return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3834             frmt.b.fm_ses));
3835 }
3836 
3837 static int
3838 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3839     cred_t *cred_p)
3840 {
3841         _NOTE(ARGUNUSED(nioc, mode));
3842         int rv = 0;
3843 
3844         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3845                 return (EPERM);
3846 
3847         if (nsid == 0)
3848                 return (EINVAL);
3849 
3850         rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3851         if (rv != DDI_SUCCESS)
3852                 rv = EBUSY;
3853 
3854         return (rv);
3855 }
3856 
3857 static int
3858 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3859     cred_t *cred_p)
3860 {
3861         _NOTE(ARGUNUSED(nioc, mode));
3862         nvme_identify_nsid_t *idns;
3863         int rv = 0;
3864 
3865         if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3866                 return (EPERM);
3867 
3868         if (nsid == 0)
3869                 return (EINVAL);
3870 
3871         /*
3872          * Identify namespace again, free old identify data.
3873          */
3874         idns = nvme->n_ns[nsid - 1].ns_idns;
3875         if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3876                 return (EIO);
3877 
3878         kmem_free(idns, sizeof (nvme_identify_nsid_t));
3879 
3880         rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3881         if (rv != DDI_SUCCESS)
3882                 rv = EBUSY;
3883 
3884         return (rv);
3885 }
3886 
3887 static int
3888 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3889     int *rval_p)
3890 {
3891 #ifndef __lock_lint
3892         _NOTE(ARGUNUSED(rval_p));
3893 #endif
3894         minor_t minor = getminor(dev);
3895         nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3896         int nsid = NVME_MINOR_NSID(minor);
3897         int rv = 0;
3898         nvme_ioctl_t nioc;
3899 
3900         int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3901                 NULL,
3902                 nvme_ioctl_identify,
3903                 nvme_ioctl_identify,
3904                 nvme_ioctl_capabilities,
3905                 nvme_ioctl_get_logpage,
3906                 nvme_ioctl_get_features,
3907                 nvme_ioctl_intr_cnt,
3908                 nvme_ioctl_version,
3909                 nvme_ioctl_format,
3910                 nvme_ioctl_detach,
3911                 nvme_ioctl_attach
3912         };
3913 
3914         if (nvme == NULL)
3915                 return (ENXIO);
3916 
3917         if (nsid > nvme->n_namespace_count)
3918                 return (ENXIO);
3919 
3920         if (IS_DEVCTL(cmd))
3921                 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3922 
3923 #ifdef _MULTI_DATAMODEL
3924         switch (ddi_model_convert_from(mode & FMODELS)) {
3925         case DDI_MODEL_ILP32: {
3926                 nvme_ioctl32_t nioc32;
3927                 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3928                     mode) != 0)
3929                         return (EFAULT);
3930                 nioc.n_len = nioc32.n_len;
3931                 nioc.n_buf = nioc32.n_buf;
3932                 nioc.n_arg = nioc32.n_arg;
3933                 break;
3934         }
3935         case DDI_MODEL_NONE:
3936 #endif
3937                 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3938                     != 0)
3939                         return (EFAULT);
3940 #ifdef _MULTI_DATAMODEL
3941                 break;
3942         }
3943 #endif
3944 
3945         if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3946                 return (EIO);
3947 
3948 
3949         if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3950                 /*
3951                  * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3952                  * attachment point nodes.
3953                  */
3954                 nsid = 0;
3955         } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3956                 /*
3957                  * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3958                  * will always return identify data for namespace 1.
3959                  */
3960                 nsid = 1;
3961         }
3962 
3963         if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3964                 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3965                     cred_p);
3966         else
3967                 rv = EINVAL;
3968 
3969 #ifdef _MULTI_DATAMODEL
3970         switch (ddi_model_convert_from(mode & FMODELS)) {
3971         case DDI_MODEL_ILP32: {
3972                 nvme_ioctl32_t nioc32;
3973 
3974                 nioc32.n_len = (size32_t)nioc.n_len;
3975                 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3976                 nioc32.n_arg = nioc.n_arg;
3977 
3978                 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3979                     mode) != 0)
3980                         return (EFAULT);
3981                 break;
3982         }
3983         case DDI_MODEL_NONE:
3984 #endif
3985                 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3986                     != 0)
3987                         return (EFAULT);
3988 #ifdef _MULTI_DATAMODEL
3989                 break;
3990         }
3991 #endif
3992 
3993         return (rv);
3994 }