1 /*      $NetBSD: if_iwn.c,v 1.78 2016/06/10 13:27:14 ozaki-r Exp $      */
   2 /*      $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $     */
   3 
   4 /*-
   5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
   6  *
   7  * Permission to use, copy, modify, and distribute this software for any
   8  * purpose with or without fee is hereby granted, provided that the above
   9  * copyright notice and this permission notice appear in all copies.
  10  *
  11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18  */
  19 
  20 /*
  21  * Copyright 2016 Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
  22  */
  23 
  24 /*
  25  * Driver for Intel WiFi Link 4965 and 100/1000/2000/5000/6000 Series 802.11
  26  * network adapters.
  27  */
  28 
  29 /*
  30  * TODO:
  31  * - turn tunables into driver properties
  32  */
  33 
  34 #undef IWN_HWCRYPTO     /* XXX does not even compile yet */
  35 
  36 #include <sys/modctl.h>
  37 #include <sys/ddi.h>
  38 #include <sys/sunddi.h>
  39 #include <sys/stat.h>
  40 
  41 #include <sys/param.h>
  42 #include <sys/sockio.h>
  43 #include <sys/proc.h>
  44 #include <sys/socket.h>
  45 #include <sys/systm.h>
  46 #include <sys/mutex.h>
  47 #include <sys/conf.h>
  48 
  49 #include <sys/pci.h>
  50 #include <sys/pcie.h>
  51 
  52 #include <net/if.h>
  53 #include <net/if_arp.h>
  54 #include <net/if_dl.h>
  55 #include <net/if_types.h>
  56 
  57 #include <netinet/in.h>
  58 #include <netinet/in_systm.h>
  59 #include <netinet/in_var.h>
  60 #include <netinet/ip.h>
  61 
  62 #include <sys/dlpi.h>
  63 #include <sys/mac_provider.h>
  64 #include <sys/mac_wifi.h>
  65 #include <sys/net80211.h>
  66 #include <sys/firmload.h>
  67 #include <sys/queue.h>
  68 #include <sys/strsun.h>
  69 #include <sys/strsubr.h>
  70 #include <sys/sysmacros.h>
  71 #include <sys/types.h>
  72 #include <sys/kstat.h>
  73 
  74 #include <sys/sdt.h>
  75 
  76 #include "if_iwncompat.h"
  77 #include "if_iwnreg.h"
  78 #include "if_iwnvar.h"
  79 #include <inet/wifi_ioctl.h>
  80 
  81 #ifdef DEBUG
  82 #define IWN_DEBUG
  83 #endif
  84 
  85 /*
  86  * regs access attributes
  87  */
  88 static ddi_device_acc_attr_t iwn_reg_accattr = {
  89         .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
  90         .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
  91         .devacc_attr_dataorder  = DDI_STRICTORDER_ACC,
  92         .devacc_attr_access     = DDI_DEFAULT_ACC
  93 };
  94 
  95 /*
  96  * DMA access attributes for descriptor
  97  */
  98 static ddi_device_acc_attr_t iwn_dma_descattr = {
  99         .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 100         .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
 101         .devacc_attr_dataorder  = DDI_STRICTORDER_ACC,
 102         .devacc_attr_access     = DDI_DEFAULT_ACC
 103 };
 104 
 105 /*
 106  * DMA access attributes
 107  */
 108 static ddi_device_acc_attr_t iwn_dma_accattr = {
 109         .devacc_attr_version    = DDI_DEVICE_ATTR_V0,
 110         .devacc_attr_endian_flags = DDI_NEVERSWAP_ACC,
 111         .devacc_attr_dataorder  = DDI_STRICTORDER_ACC,
 112         .devacc_attr_access     = DDI_DEFAULT_ACC
 113 };
 114 
 115 
 116 /*
 117  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
 118  */
 119 static const struct ieee80211_rateset iwn_rateset_11a =
 120         { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
 121 
 122 static const struct ieee80211_rateset iwn_rateset_11b =
 123         { 4, { 2, 4, 11, 22 } };
 124 
 125 static const struct ieee80211_rateset iwn_rateset_11g =
 126         { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
 127 
 128 static void     iwn_kstat_create(struct iwn_softc *, const char *, size_t,
 129     kstat_t **, void **);
 130 static void     iwn_kstat_free(kstat_t *, void *, size_t);
 131 static void     iwn_kstat_init(struct iwn_softc *);
 132 static void     iwn_kstat_init_2000(struct iwn_softc *);
 133 static void     iwn_kstat_init_4965(struct iwn_softc *);
 134 static void     iwn_kstat_init_6000(struct iwn_softc *);
 135 static void     iwn_intr_teardown(struct iwn_softc *);
 136 static int      iwn_intr_add(struct iwn_softc *, int);
 137 static int      iwn_intr_setup(struct iwn_softc *);
 138 static int      iwn_attach(dev_info_t *, ddi_attach_cmd_t);
 139 static int      iwn4965_attach(struct iwn_softc *);
 140 static int      iwn5000_attach(struct iwn_softc *, uint16_t);
 141 static int      iwn_detach(dev_info_t *, ddi_detach_cmd_t);
 142 static int      iwn_quiesce(dev_info_t *);
 143 static int      iwn_nic_lock(struct iwn_softc *);
 144 static int      iwn_eeprom_lock(struct iwn_softc *);
 145 static int      iwn_init_otprom(struct iwn_softc *);
 146 static int      iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
 147 static int      iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
 148     uint_t, uint_t, void **, ddi_device_acc_attr_t *, uint_t);
 149 static void     iwn_dma_contig_free(struct iwn_dma_info *);
 150 static int      iwn_alloc_sched(struct iwn_softc *);
 151 static void     iwn_free_sched(struct iwn_softc *);
 152 static int      iwn_alloc_kw(struct iwn_softc *);
 153 static void     iwn_free_kw(struct iwn_softc *);
 154 static int      iwn_alloc_ict(struct iwn_softc *);
 155 static void     iwn_free_ict(struct iwn_softc *);
 156 static int      iwn_alloc_fwmem(struct iwn_softc *);
 157 static void     iwn_free_fwmem(struct iwn_softc *);
 158 static int      iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
 159 static void     iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
 160 static void     iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
 161 static int      iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
 162                     int);
 163 static void     iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
 164 static void     iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
 165 static void     iwn5000_ict_reset(struct iwn_softc *);
 166 static int      iwn_read_eeprom(struct iwn_softc *);
 167 static void     iwn4965_read_eeprom(struct iwn_softc *);
 168 
 169 #ifdef IWN_DEBUG
 170 static void     iwn4965_print_power_group(struct iwn_softc *, int);
 171 #endif
 172 static void     iwn5000_read_eeprom(struct iwn_softc *);
 173 static void     iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
 174 static void     iwn_read_eeprom_enhinfo(struct iwn_softc *);
 175 static struct   ieee80211_node *iwn_node_alloc(ieee80211com_t *);
 176 static void     iwn_node_free(ieee80211_node_t *);
 177 static void     iwn_newassoc(struct ieee80211_node *, int);
 178 static int      iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
 179 static void     iwn_iter_func(void *, struct ieee80211_node *);
 180 static void     iwn_calib_timeout(void *);
 181 static void     iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
 182                     struct iwn_rx_data *);
 183 static void     iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
 184                     struct iwn_rx_data *);
 185 #ifndef IEEE80211_NO_HT
 186 static void     iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
 187                     struct iwn_rx_data *);
 188 #endif
 189 static void     iwn5000_rx_calib_results(struct iwn_softc *,
 190                     struct iwn_rx_desc *, struct iwn_rx_data *);
 191 static void     iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
 192                     struct iwn_rx_data *);
 193 static void     iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
 194                     struct iwn_rx_data *);
 195 static void     iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
 196                     struct iwn_rx_data *);
 197 static void     iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
 198                     uint8_t);
 199 static void     iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
 200 static void     iwn_notif_intr(struct iwn_softc *);
 201 static void     iwn_wakeup_intr(struct iwn_softc *);
 202 static void     iwn_fatal_intr(struct iwn_softc *);
 203 static uint_t   iwn_intr(caddr_t, caddr_t);
 204 static void     iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
 205                     uint16_t);
 206 static void     iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
 207                     uint16_t);
 208 #ifdef notyet
 209 static void     iwn5000_reset_sched(struct iwn_softc *, int, int);
 210 #endif
 211 static int      iwn_send(ieee80211com_t *, mblk_t *, uint8_t);
 212 static void     iwn_watchdog(void *);
 213 static int      iwn_cmd(struct iwn_softc *, uint8_t, void *, int, int);
 214 static int      iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
 215                     int);
 216 static int      iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
 217                     int);
 218 static int      iwn_set_link_quality(struct iwn_softc *,
 219                     struct ieee80211_node *);
 220 static int      iwn_add_broadcast_node(struct iwn_softc *, int);
 221 static void     iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
 222 static int      iwn_set_critical_temp(struct iwn_softc *);
 223 static int      iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
 224 static void     iwn4965_power_calibration(struct iwn_softc *, int);
 225 static int      iwn4965_set_txpower(struct iwn_softc *, int);
 226 static int      iwn5000_set_txpower(struct iwn_softc *, int);
 227 static int      iwn4965_get_rssi(const struct iwn_rx_stat *);
 228 static int      iwn5000_get_rssi(const struct iwn_rx_stat *);
 229 static int      iwn_get_noise(const struct iwn_rx_general_stats *);
 230 static int      iwn4965_get_temperature(struct iwn_softc *);
 231 static int      iwn5000_get_temperature(struct iwn_softc *);
 232 static int      iwn_init_sensitivity(struct iwn_softc *);
 233 static void     iwn_collect_noise(struct iwn_softc *,
 234                     const struct iwn_rx_general_stats *);
 235 static int      iwn4965_init_gains(struct iwn_softc *);
 236 static int      iwn5000_init_gains(struct iwn_softc *);
 237 static int      iwn4965_set_gains(struct iwn_softc *);
 238 static int      iwn5000_set_gains(struct iwn_softc *);
 239 static void     iwn_tune_sensitivity(struct iwn_softc *,
 240                     const struct iwn_rx_stats *);
 241 static int      iwn_send_sensitivity(struct iwn_softc *);
 242 static int      iwn_set_pslevel(struct iwn_softc *, int, int, int);
 243 static int      iwn5000_runtime_calib(struct iwn_softc *);
 244 
 245 static int      iwn_config_bt_coex_bluetooth(struct iwn_softc *);
 246 static int      iwn_config_bt_coex_prio_table(struct iwn_softc *);
 247 static int      iwn_config_bt_coex_adv1(struct iwn_softc *);
 248 static int      iwn_config_bt_coex_adv2(struct iwn_softc *);
 249 
 250 static int      iwn_config(struct iwn_softc *);
 251 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
 252                     uint8_t);
 253 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
 254 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
 255 static int      iwn_scan(struct iwn_softc *, uint16_t);
 256 static int      iwn_auth(struct iwn_softc *);
 257 static int      iwn_run(struct iwn_softc *);
 258 #ifdef IWN_HWCRYPTO
 259 static int      iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
 260                     struct ieee80211_key *);
 261 static void     iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
 262                     struct ieee80211_key *);
 263 #endif
 264 static int      iwn_wme_update(struct ieee80211com *);
 265 #ifndef IEEE80211_NO_HT
 266 static int      iwn_ampdu_rx_start(struct ieee80211com *,
 267                     struct ieee80211_node *, uint8_t);
 268 static void     iwn_ampdu_rx_stop(struct ieee80211com *,
 269                     struct ieee80211_node *, uint8_t);
 270 static int      iwn_ampdu_tx_start(struct ieee80211com *,
 271                     struct ieee80211_node *, uint8_t);
 272 static void     iwn_ampdu_tx_stop(struct ieee80211com *,
 273                     struct ieee80211_node *, uint8_t);
 274 static void     iwn4965_ampdu_tx_start(struct iwn_softc *,
 275                     struct ieee80211_node *, uint8_t, uint16_t);
 276 static void     iwn4965_ampdu_tx_stop(struct iwn_softc *,
 277                     uint8_t, uint16_t);
 278 static void     iwn5000_ampdu_tx_start(struct iwn_softc *,
 279                     struct ieee80211_node *, uint8_t, uint16_t);
 280 static void     iwn5000_ampdu_tx_stop(struct iwn_softc *,
 281                     uint8_t, uint16_t);
 282 #endif
 283 static int      iwn5000_query_calibration(struct iwn_softc *);
 284 static int      iwn5000_send_calibration(struct iwn_softc *);
 285 static int      iwn5000_send_wimax_coex(struct iwn_softc *);
 286 static int      iwn6000_temp_offset_calib(struct iwn_softc *);
 287 static int      iwn2000_temp_offset_calib(struct iwn_softc *);
 288 static int      iwn4965_post_alive(struct iwn_softc *);
 289 static int      iwn5000_post_alive(struct iwn_softc *);
 290 static int      iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
 291                     int);
 292 static int      iwn4965_load_firmware(struct iwn_softc *);
 293 static int      iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
 294                     const uint8_t *, int);
 295 static int      iwn5000_load_firmware(struct iwn_softc *);
 296 static int      iwn_read_firmware_leg(struct iwn_softc *,
 297                     struct iwn_fw_info *);
 298 static int      iwn_read_firmware_tlv(struct iwn_softc *,
 299                     struct iwn_fw_info *, uint16_t);
 300 static int      iwn_read_firmware(struct iwn_softc *);
 301 static int      iwn_clock_wait(struct iwn_softc *);
 302 static int      iwn_apm_init(struct iwn_softc *);
 303 static void     iwn_apm_stop_master(struct iwn_softc *);
 304 static void     iwn_apm_stop(struct iwn_softc *);
 305 static int      iwn4965_nic_config(struct iwn_softc *);
 306 static int      iwn5000_nic_config(struct iwn_softc *);
 307 static int      iwn_hw_prepare(struct iwn_softc *);
 308 static int      iwn_hw_init(struct iwn_softc *);
 309 static void     iwn_hw_stop(struct iwn_softc *, boolean_t);
 310 static int      iwn_init(struct iwn_softc *);
 311 static void     iwn_abort_scan(void *);
 312 static void     iwn_periodic(void *);
 313 static int      iwn_fast_recover(struct iwn_softc *);
 314 
 315 static uint8_t  *ieee80211_add_ssid(uint8_t *, const uint8_t *, uint32_t);
 316 static uint8_t  *ieee80211_add_rates(uint8_t *,
 317     const struct ieee80211_rateset *);
 318 static uint8_t  *ieee80211_add_xrates(uint8_t *,
 319     const struct ieee80211_rateset *);
 320 
 321 static void     iwn_fix_channel(struct iwn_softc *, mblk_t *,
 322                     struct iwn_rx_stat *);
 323 
 324 #ifdef IWN_DEBUG
 325 
 326 #define IWN_DBG(...)    iwn_dbg("?" __VA_ARGS__)
 327 
 328 static int iwn_dbg_print = 0;
 329 
 330 static void
 331 iwn_dbg(const char *fmt, ...)
 332 {
 333         va_list ap;
 334 
 335         if (iwn_dbg_print != 0) {
 336                 va_start(ap, fmt);
 337                 vcmn_err(CE_CONT, fmt, ap);
 338                 va_end(ap);
 339         }
 340 }
 341 
 342 #else
 343 #define IWN_DBG(...)
 344 #endif
 345 
 346 /*
 347  * tunables
 348  */
 349 
 350 /*
 351  * enable 5GHz scanning
 352  */
 353 int iwn_enable_5ghz = 1;
 354 
 355 /*
 356  * If more than 50 consecutive beacons are missed,
 357  * we've probably lost our connection.
 358  * If more than 5 consecutive beacons are missed,
 359  * reinitialize the sensitivity state machine.
 360  */
 361 int iwn_beacons_missed_disconnect = 50;
 362 int iwn_beacons_missed_sensitivity = 5;
 363 
 364 /*
 365  * iwn_periodic interval, in units of msec
 366  */
 367 int iwn_periodic_interval = 100;
 368 
 369 /*
 370  * scan timeout in sec
 371  */
 372 int iwn_scan_timeout = 20;
 373 
 374 static ether_addr_t etherbroadcastaddr = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
 375 
 376 static void *iwn_state = NULL;
 377 
 378 /*
 379  * Mac Call Back entries
 380  */
 381 static int      iwn_m_stat(void *, uint_t, uint64_t *);
 382 static int      iwn_m_start(void *);
 383 static void     iwn_m_stop(void *);
 384 static int      iwn_m_unicst(void *, const uint8_t *);
 385 static int      iwn_m_multicst(void *, boolean_t, const uint8_t *);
 386 static int      iwn_m_promisc(void *, boolean_t);
 387 static mblk_t   *iwn_m_tx(void *, mblk_t *);
 388 static void     iwn_m_ioctl(void *, queue_t *, mblk_t *);
 389 static int      iwn_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
 390     const void *);
 391 static int      iwn_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
 392     void *);
 393 static void     iwn_m_propinfo(void *, const char *, mac_prop_id_t,
 394     mac_prop_info_handle_t);
 395 
 396 mac_callbacks_t iwn_m_callbacks = {
 397         .mc_callbacks   = MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
 398         .mc_getstat     = iwn_m_stat,
 399         .mc_start       = iwn_m_start,
 400         .mc_stop        = iwn_m_stop,
 401         .mc_setpromisc  = iwn_m_promisc,
 402         .mc_multicst    = iwn_m_multicst,
 403         .mc_unicst      = iwn_m_unicst,
 404         .mc_tx          = iwn_m_tx,
 405         .mc_reserved    = NULL,
 406         .mc_ioctl       = iwn_m_ioctl,
 407         .mc_getcapab    = NULL,
 408         .mc_open        = NULL,
 409         .mc_close       = NULL,
 410         .mc_setprop     = iwn_m_setprop,
 411         .mc_getprop     = iwn_m_getprop,
 412         .mc_propinfo    = iwn_m_propinfo
 413 };
 414 
 415 static inline uint32_t
 416 iwn_read(struct iwn_softc *sc, int reg)
 417 {
 418         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
 419         return (ddi_get32(sc->sc_regh, (uint32_t *)(sc->sc_base + reg)));
 420 }
 421 
 422 static inline void
 423 iwn_write(struct iwn_softc *sc, int reg, uint32_t val)
 424 {
 425         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
 426         ddi_put32(sc->sc_regh, (uint32_t *)(sc->sc_base + reg), val);
 427 }
 428 
 429 static inline void
 430 iwn_write_1(struct iwn_softc *sc, int reg, uint8_t val)
 431 {
 432         ddi_put8(sc->sc_regh, (uint8_t *)(sc->sc_base + reg), val);
 433 }
 434 
 435 static void
 436 iwn_kstat_create(struct iwn_softc *sc, const char *name, size_t size,
 437     kstat_t **ks, void **data)
 438 {
 439         *ks = kstat_create(ddi_driver_name(sc->sc_dip),
 440             ddi_get_instance(sc->sc_dip), name, "misc", KSTAT_TYPE_NAMED,
 441             size / sizeof (kstat_named_t), 0);
 442         if (*ks == NULL)
 443                 *data = kmem_zalloc(size, KM_SLEEP);
 444         else
 445                 *data = (*ks)->ks_data;
 446 }
 447 
 448 static void
 449 iwn_kstat_free(kstat_t *ks, void *data, size_t size)
 450 {
 451         if (ks != NULL)
 452                 kstat_delete(ks);
 453         else if (data != NULL)
 454                 kmem_free(data, size);
 455 }
 456 
 457 static void
 458 iwn_kstat_init(struct iwn_softc *sc)
 459 {
 460         if (sc->sc_ks_misc != NULL)
 461                 sc->sc_ks_misc->ks_lock = &sc->sc_mtx;
 462         if (sc->sc_ks_ant != NULL)
 463                 sc->sc_ks_ant->ks_lock = &sc->sc_mtx;
 464         if (sc->sc_ks_sens != NULL)
 465                 sc->sc_ks_sens->ks_lock = &sc->sc_mtx;
 466         if (sc->sc_ks_timing != NULL)
 467                 sc->sc_ks_timing->ks_lock = &sc->sc_mtx;
 468         if (sc->sc_ks_edca != NULL)
 469                 sc->sc_ks_edca->ks_lock = &sc->sc_mtx;
 470 
 471         kstat_named_init(&sc->sc_misc->temp,
 472             "temperature", KSTAT_DATA_ULONG);
 473         kstat_named_init(&sc->sc_misc->crit_temp,
 474             "critical temperature", KSTAT_DATA_ULONG);
 475         kstat_named_init(&sc->sc_misc->pslevel,
 476             "power saving level", KSTAT_DATA_ULONG);
 477         kstat_named_init(&sc->sc_misc->noise,
 478             "noise", KSTAT_DATA_LONG);
 479 
 480 
 481         kstat_named_init(&sc->sc_ant->tx_ant,
 482             "TX mask", KSTAT_DATA_ULONG);
 483         kstat_named_init(&sc->sc_ant->rx_ant,
 484             "RX mask", KSTAT_DATA_ULONG);
 485         kstat_named_init(&sc->sc_ant->conn_ant,
 486             "connected mask", KSTAT_DATA_ULONG);
 487         kstat_named_init(&sc->sc_ant->gain[0],
 488             "gain A", KSTAT_DATA_ULONG);
 489         kstat_named_init(&sc->sc_ant->gain[1],
 490             "gain B", KSTAT_DATA_ULONG);
 491         kstat_named_init(&sc->sc_ant->gain[2],
 492             "gain C", KSTAT_DATA_ULONG);
 493 
 494         kstat_named_init(&sc->sc_sens->ofdm_x1,
 495             "OFDM X1", KSTAT_DATA_ULONG);
 496         kstat_named_init(&sc->sc_sens->ofdm_mrc_x1,
 497             "OFDM MRC X1", KSTAT_DATA_ULONG);
 498         kstat_named_init(&sc->sc_sens->ofdm_x4,
 499             "OFDM X4", KSTAT_DATA_ULONG);
 500         kstat_named_init(&sc->sc_sens->ofdm_mrc_x4,
 501             "OFDM MRC X4", KSTAT_DATA_ULONG);
 502         kstat_named_init(&sc->sc_sens->cck_x4,
 503             "CCK X4", KSTAT_DATA_ULONG);
 504         kstat_named_init(&sc->sc_sens->cck_mrc_x4,
 505             "CCK MRC X4", KSTAT_DATA_ULONG);
 506         kstat_named_init(&sc->sc_sens->energy_cck,
 507             "energy CCK", KSTAT_DATA_ULONG);
 508 
 509         kstat_named_init(&sc->sc_timing->bintval,
 510             "bintval", KSTAT_DATA_ULONG);
 511         kstat_named_init(&sc->sc_timing->tstamp,
 512             "timestamp", KSTAT_DATA_ULONGLONG);
 513         kstat_named_init(&sc->sc_timing->init,
 514             "init", KSTAT_DATA_ULONG);
 515 
 516         kstat_named_init(&sc->sc_edca->ac[0].cwmin,
 517             "background cwmin", KSTAT_DATA_ULONG);
 518         kstat_named_init(&sc->sc_edca->ac[0].cwmax,
 519             "background cwmax", KSTAT_DATA_ULONG);
 520         kstat_named_init(&sc->sc_edca->ac[0].aifsn,
 521             "background aifsn", KSTAT_DATA_ULONG);
 522         kstat_named_init(&sc->sc_edca->ac[0].txop,
 523             "background txop", KSTAT_DATA_ULONG);
 524         kstat_named_init(&sc->sc_edca->ac[1].cwmin,
 525             "best effort cwmin", KSTAT_DATA_ULONG);
 526         kstat_named_init(&sc->sc_edca->ac[1].cwmax,
 527             "best effort cwmax", KSTAT_DATA_ULONG);
 528         kstat_named_init(&sc->sc_edca->ac[1].aifsn,
 529             "best effort aifsn", KSTAT_DATA_ULONG);
 530         kstat_named_init(&sc->sc_edca->ac[1].txop,
 531             "best effort txop", KSTAT_DATA_ULONG);
 532         kstat_named_init(&sc->sc_edca->ac[2].cwmin,
 533             "video cwmin", KSTAT_DATA_ULONG);
 534         kstat_named_init(&sc->sc_edca->ac[2].cwmax,
 535             "video cwmax", KSTAT_DATA_ULONG);
 536         kstat_named_init(&sc->sc_edca->ac[2].aifsn,
 537             "video aifsn", KSTAT_DATA_ULONG);
 538         kstat_named_init(&sc->sc_edca->ac[2].txop,
 539             "video txop", KSTAT_DATA_ULONG);
 540         kstat_named_init(&sc->sc_edca->ac[3].cwmin,
 541             "voice cwmin", KSTAT_DATA_ULONG);
 542         kstat_named_init(&sc->sc_edca->ac[3].cwmax,
 543             "voice cwmax", KSTAT_DATA_ULONG);
 544         kstat_named_init(&sc->sc_edca->ac[3].aifsn,
 545             "voice aifsn", KSTAT_DATA_ULONG);
 546         kstat_named_init(&sc->sc_edca->ac[3].txop,
 547             "voice txop", KSTAT_DATA_ULONG);
 548 }
 549 
 550 static void
 551 iwn_kstat_init_2000(struct iwn_softc *sc)
 552 {
 553         if (sc->sc_ks_toff != NULL)
 554                 sc->sc_ks_toff->ks_lock = &sc->sc_mtx;
 555 
 556         kstat_named_init(&sc->sc_toff.t2000->toff_lo,
 557             "temperature offset low", KSTAT_DATA_LONG);
 558         kstat_named_init(&sc->sc_toff.t2000->toff_hi,
 559             "temperature offset high", KSTAT_DATA_LONG);
 560         kstat_named_init(&sc->sc_toff.t2000->volt,
 561             "reference voltage", KSTAT_DATA_LONG);
 562 }
 563 
 564 static void
 565 iwn_kstat_init_4965(struct iwn_softc *sc)
 566 {
 567         int i, r;
 568 
 569         if (sc->sc_ks_txpower != NULL)
 570                 sc->sc_ks_txpower->ks_lock = &sc->sc_mtx;
 571 
 572         kstat_named_init(&sc->sc_txpower->vdiff,
 573             "voltage comp", KSTAT_DATA_LONG);
 574         kstat_named_init(&sc->sc_txpower->chan,
 575             "channel", KSTAT_DATA_LONG);
 576         kstat_named_init(&sc->sc_txpower->group,
 577             "attenuation group", KSTAT_DATA_LONG);
 578         kstat_named_init(&sc->sc_txpower->subband,
 579             "sub-band", KSTAT_DATA_LONG);
 580         for (i = 0; i != 2; i++) {
 581                 char tmp[KSTAT_STRLEN];
 582 
 583                 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d power", i);
 584                 kstat_named_init(&sc->sc_txpower->txchain[i].power,
 585                     tmp, KSTAT_DATA_LONG);
 586 
 587                 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d gain", i);
 588                 kstat_named_init(&sc->sc_txpower->txchain[i].gain,
 589                     tmp, KSTAT_DATA_LONG);
 590 
 591                 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d temperature", i);
 592                 kstat_named_init(&sc->sc_txpower->txchain[i].temp,
 593                     tmp, KSTAT_DATA_LONG);
 594 
 595                 (void) snprintf(tmp, KSTAT_STRLEN - 1,
 596                     "Ant %d temperature compensation", i);
 597                 kstat_named_init(&sc->sc_txpower->txchain[i].tcomp,
 598                     tmp, KSTAT_DATA_LONG);
 599 
 600                 for (r = 0; r != IWN_RIDX_MAX; r++) {
 601                         (void) snprintf(tmp, KSTAT_STRLEN - 1,
 602                             "Ant %d Rate %d RF gain", i, r);
 603                         kstat_named_init(
 604                             &sc->sc_txpower->txchain[i].rate[r].rf_gain,
 605                             tmp, KSTAT_DATA_LONG);
 606 
 607                         (void) snprintf(tmp, KSTAT_STRLEN - 1,
 608                             "Ant %d Rate %d DSP gain", i, r);
 609                         kstat_named_init(
 610                             &sc->sc_txpower->txchain[0].rate[0].dsp_gain,
 611                             tmp, KSTAT_DATA_LONG);
 612                 }
 613         }
 614 }
 615 
 616 static void
 617 iwn_kstat_init_6000(struct iwn_softc *sc)
 618 {
 619         if (sc->sc_ks_toff != NULL)
 620                 sc->sc_ks_toff->ks_lock = &sc->sc_mtx;
 621 
 622         kstat_named_init(&sc->sc_toff.t6000->toff,
 623             "temperature offset", KSTAT_DATA_LONG);
 624 }
 625 
 626 static void
 627 iwn_intr_teardown(struct iwn_softc *sc)
 628 {
 629         if (sc->sc_intr_htable != NULL) {
 630                 if ((sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) != 0) {
 631                         (void) ddi_intr_block_disable(sc->sc_intr_htable,
 632                             sc->sc_intr_count);
 633                 } else {
 634                         (void) ddi_intr_disable(sc->sc_intr_htable[0]);
 635                 }
 636                 (void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
 637                 (void) ddi_intr_free(sc->sc_intr_htable[0]);
 638                 sc->sc_intr_htable[0] = NULL;
 639 
 640                 kmem_free(sc->sc_intr_htable, sc->sc_intr_size);
 641                 sc->sc_intr_size = 0;
 642                 sc->sc_intr_htable = NULL;
 643         }
 644 }
 645 
 646 static int
 647 iwn_intr_add(struct iwn_softc *sc, int intr_type)
 648 {
 649         int ni, na;
 650         int ret;
 651         char *func;
 652 
 653         if (ddi_intr_get_nintrs(sc->sc_dip, intr_type, &ni) != DDI_SUCCESS)
 654                 return (DDI_FAILURE);
 655 
 656 
 657         if (ddi_intr_get_navail(sc->sc_dip, intr_type, &na) != DDI_SUCCESS)
 658                 return (DDI_FAILURE);
 659 
 660         sc->sc_intr_size = sizeof (ddi_intr_handle_t);
 661         sc->sc_intr_htable = kmem_zalloc(sc->sc_intr_size, KM_SLEEP);
 662 
 663         ret = ddi_intr_alloc(sc->sc_dip, sc->sc_intr_htable, intr_type, 0, 1,
 664             &sc->sc_intr_count, DDI_INTR_ALLOC_STRICT);
 665         if (ret != DDI_SUCCESS) {
 666                 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_alloc() failed");
 667                 return (DDI_FAILURE);
 668         }
 669 
 670         ret = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri);
 671         if (ret != DDI_SUCCESS) {
 672                 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_get_pri() failed");
 673                 return (DDI_FAILURE);
 674         }
 675 
 676         ret = ddi_intr_add_handler(sc->sc_intr_htable[0], iwn_intr, (caddr_t)sc,
 677             NULL);
 678         if (ret != DDI_SUCCESS) {
 679                 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_add_handler() failed");
 680                 return (DDI_FAILURE);
 681         }
 682 
 683         ret = ddi_intr_get_cap(sc->sc_intr_htable[0], &sc->sc_intr_cap);
 684         if (ret != DDI_SUCCESS) {
 685                 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_get_cap() failed");
 686                 return (DDI_FAILURE);
 687         }
 688 
 689         if ((sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) != 0) {
 690                 ret = ddi_intr_block_enable(sc->sc_intr_htable,
 691                     sc->sc_intr_count);
 692                 func = "ddi_intr_enable_block";
 693         } else {
 694                 ret = ddi_intr_enable(sc->sc_intr_htable[0]);
 695                 func = "ddi_intr_enable";
 696         }
 697 
 698         if (ret != DDI_SUCCESS) {
 699                 dev_err(sc->sc_dip, CE_WARN, "!%s() failed", func);
 700                 return (DDI_FAILURE);
 701         }
 702 
 703         return (DDI_SUCCESS);
 704 }
 705 
 706 static int
 707 iwn_intr_setup(struct iwn_softc *sc)
 708 {
 709         int intr_type;
 710         int ret;
 711 
 712         ret = ddi_intr_get_supported_types(sc->sc_dip, &intr_type);
 713         if (ret != DDI_SUCCESS) {
 714                 dev_err(sc->sc_dip, CE_WARN,
 715                     "!ddi_intr_get_supported_types() failed");
 716                 return (DDI_FAILURE);
 717         }
 718 
 719         if ((intr_type & DDI_INTR_TYPE_MSIX)) {
 720                 if (iwn_intr_add(sc, DDI_INTR_TYPE_MSIX) == DDI_SUCCESS)
 721                         return (DDI_SUCCESS);
 722                 iwn_intr_teardown(sc);
 723         }
 724 
 725         if ((intr_type & DDI_INTR_TYPE_MSI)) {
 726                 if (iwn_intr_add(sc, DDI_INTR_TYPE_MSI) == DDI_SUCCESS)
 727                         return (DDI_SUCCESS);
 728                 iwn_intr_teardown(sc);
 729         }
 730 
 731         if ((intr_type & DDI_INTR_TYPE_FIXED)) {
 732                 if (iwn_intr_add(sc, DDI_INTR_TYPE_FIXED) == DDI_SUCCESS)
 733                         return (DDI_SUCCESS);
 734                 iwn_intr_teardown(sc);
 735         }
 736 
 737         dev_err(sc->sc_dip, CE_WARN, "!iwn_intr_setup() failed");
 738         return (DDI_FAILURE);
 739 }
 740 
 741 static int
 742 iwn_pci_get_capability(ddi_acc_handle_t pcih, int cap, int *cap_off)
 743 {
 744         uint8_t ptr;
 745         uint8_t val;
 746 
 747         for (ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR);
 748             ptr != 0 && ptr != 0xff;
 749             ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR)) {
 750                 val = pci_config_get8(pcih, ptr + PCIE_CAP_ID);
 751                 if (val == 0xff)
 752                         return (DDI_FAILURE);
 753 
 754                 if (cap != val)
 755                         continue;
 756 
 757                 *cap_off = ptr;
 758                 return (DDI_SUCCESS);
 759         }
 760 
 761         return (DDI_FAILURE);
 762 }
 763 
 764 static int
 765 iwn_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
 766 {
 767         int instance;
 768 
 769         struct iwn_softc *sc;
 770         struct ieee80211com *ic;
 771         char strbuf[32];
 772         wifi_data_t wd = { 0 };
 773         mac_register_t *macp;
 774         uint32_t reg;
 775         int i, error;
 776 
 777         switch (cmd) {
 778         case DDI_ATTACH:
 779                 break;
 780 
 781         case DDI_RESUME:
 782                 instance = ddi_get_instance(dip);
 783                 sc = ddi_get_soft_state(iwn_state,
 784                     instance);
 785                 ASSERT(sc != NULL);
 786 
 787                 if (sc->sc_flags & IWN_FLAG_RUNNING) {
 788                         (void) iwn_init(sc);
 789                 }
 790 
 791                 sc->sc_flags &= ~IWN_FLAG_SUSPEND;
 792 
 793                 return (DDI_SUCCESS);
 794         default:
 795                 return (DDI_FAILURE);
 796         }
 797 
 798         instance = ddi_get_instance(dip);
 799 
 800         if (ddi_soft_state_zalloc(iwn_state, instance) != DDI_SUCCESS) {
 801                 dev_err(dip, CE_WARN, "!ddi_soft_state_zalloc() failed");
 802                 return (DDI_FAILURE);
 803         }
 804 
 805         sc = ddi_get_soft_state(iwn_state, instance);
 806         ddi_set_driver_private(dip, (caddr_t)sc);
 807 
 808         ic = &sc->sc_ic;
 809 
 810         sc->sc_dip = dip;
 811 
 812         iwn_kstat_create(sc, "hw_state", sizeof (struct iwn_ks_misc),
 813             &sc->sc_ks_misc, (void **)&sc->sc_misc);
 814         iwn_kstat_create(sc, "antennas", sizeof (struct iwn_ks_ant),
 815             &sc->sc_ks_ant, (void **)&sc->sc_ant);
 816         iwn_kstat_create(sc, "sensitivity", sizeof (struct iwn_ks_sens),
 817             &sc->sc_ks_sens, (void **)&sc->sc_sens);
 818         iwn_kstat_create(sc, "timing", sizeof (struct iwn_ks_timing),
 819             &sc->sc_ks_timing, (void **)&sc->sc_timing);
 820         iwn_kstat_create(sc, "edca", sizeof (struct iwn_ks_edca),
 821             &sc->sc_ks_edca, (void **)&sc->sc_edca);
 822 
 823         if (pci_config_setup(dip, &sc->sc_pcih) != DDI_SUCCESS) {
 824                 dev_err(sc->sc_dip, CE_WARN, "!pci_config_setup() failed");
 825                 goto fail_pci_config;
 826         }
 827 
 828         /*
 829          * Get the offset of the PCI Express Capability Structure in PCI
 830          * Configuration Space.
 831          */
 832         error = iwn_pci_get_capability(sc->sc_pcih, PCI_CAP_ID_PCI_E,
 833             &sc->sc_cap_off);
 834         if (error != DDI_SUCCESS) {
 835                 dev_err(sc->sc_dip, CE_WARN,
 836                     "!PCIe capability structure not found!");
 837                 goto fail_pci_capab;
 838         }
 839 
 840         /* Clear device-specific "PCI retry timeout" register (41h). */
 841         reg = pci_config_get8(sc->sc_pcih, 0x41);
 842         if (reg)
 843                 pci_config_put8(sc->sc_pcih, 0x41, 0);
 844 
 845         error = ddi_regs_map_setup(dip, 1, &sc->sc_base, 0, 0, &iwn_reg_accattr,
 846             &sc->sc_regh);
 847         if (error != DDI_SUCCESS) {
 848                 dev_err(sc->sc_dip, CE_WARN, "!ddi_regs_map_setup() failed");
 849                 goto fail_regs_map;
 850         }
 851 
 852         /* Clear pending interrupts. */
 853         IWN_WRITE(sc, IWN_INT, 0xffffffff);
 854 
 855         /* Disable all interrupts. */
 856         IWN_WRITE(sc, IWN_INT_MASK, 0);
 857 
 858         /* Install interrupt handler. */
 859         if (iwn_intr_setup(sc) != DDI_SUCCESS)
 860                 goto fail_intr;
 861 
 862         mutex_init(&sc->sc_mtx, NULL, MUTEX_DRIVER,
 863             DDI_INTR_PRI(sc->sc_intr_pri));
 864         mutex_init(&sc->sc_tx_mtx, NULL, MUTEX_DRIVER,
 865             DDI_INTR_PRI(sc->sc_intr_pri));
 866         mutex_init(&sc->sc_mt_mtx, NULL, MUTEX_DRIVER,
 867             DDI_INTR_PRI(sc->sc_intr_pri));
 868 
 869         cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
 870         cv_init(&sc->sc_scan_cv, NULL, CV_DRIVER, NULL);
 871         cv_init(&sc->sc_fhdma_cv, NULL, CV_DRIVER, NULL);
 872         cv_init(&sc->sc_alive_cv, NULL, CV_DRIVER, NULL);
 873         cv_init(&sc->sc_calib_cv, NULL, CV_DRIVER, NULL);
 874 
 875         iwn_kstat_init(sc);
 876 
 877         /* Read hardware revision and attach. */
 878         sc->hw_type =
 879             (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
 880               >> IWN_HW_REV_TYPE_SHIFT;
 881         if (sc->hw_type == IWN_HW_REV_TYPE_4965)
 882                 error = iwn4965_attach(sc);
 883         else
 884                 error = iwn5000_attach(sc, sc->sc_devid);
 885         if (error != 0) {
 886                 dev_err(sc->sc_dip, CE_WARN, "!could not attach device");
 887                 goto fail_hw;
 888         }
 889 
 890         if ((error = iwn_hw_prepare(sc)) != 0) {
 891                 dev_err(sc->sc_dip, CE_WARN, "!hardware not ready");
 892                 goto fail_hw;
 893         }
 894 
 895         /* Read MAC address, channels, etc from EEPROM. */
 896         if ((error = iwn_read_eeprom(sc)) != 0) {
 897                 dev_err(sc->sc_dip, CE_WARN, "!could not read EEPROM");
 898                 goto fail_hw;
 899         }
 900 
 901         /* Allocate DMA memory for firmware transfers. */
 902         if ((error = iwn_alloc_fwmem(sc)) != 0) {
 903                 dev_err(sc->sc_dip, CE_WARN,
 904                     "!could not allocate memory for firmware");
 905                 goto fail_fwmem;
 906         }
 907 
 908         /* Allocate "Keep Warm" page. */
 909         if ((error = iwn_alloc_kw(sc)) != 0) {
 910                 dev_err(sc->sc_dip, CE_WARN,
 911                     "!could not allocate keep warm page");
 912                 goto fail_kw;
 913         }
 914 
 915         /* Allocate ICT table for 5000 Series. */
 916         if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
 917             (error = iwn_alloc_ict(sc)) != 0) {
 918                 dev_err(sc->sc_dip, CE_WARN, "!could not allocate ICT table");
 919                 goto fail_ict;
 920         }
 921 
 922         /* Allocate TX scheduler "rings". */
 923         if ((error = iwn_alloc_sched(sc)) != 0) {
 924                 dev_err(sc->sc_dip, CE_WARN,
 925                     "!could not allocate TX scheduler rings");
 926                 goto fail_sched;
 927         }
 928 
 929         /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
 930         for (i = 0; i < sc->ntxqs; i++) {
 931                 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
 932                         dev_err(sc->sc_dip, CE_WARN,
 933                             "!could not allocate TX ring %d", i);
 934                         while (--i >= 0)
 935                                 iwn_free_tx_ring(sc, &sc->txq[i]);
 936                         goto fail_txring;
 937                 }
 938         }
 939 
 940         /* Allocate RX ring. */
 941         if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
 942                 dev_err(sc->sc_dip, CE_WARN, "!could not allocate RX ring");
 943                 goto fail_rxring;
 944         }
 945 
 946         /* Clear pending interrupts. */
 947         IWN_WRITE(sc, IWN_INT, 0xffffffff);
 948 
 949         /* Count the number of available chains. */
 950         sc->ntxchains =
 951             ((sc->txchainmask >> 2) & 1) +
 952             ((sc->txchainmask >> 1) & 1) +
 953             ((sc->txchainmask >> 0) & 1);
 954         sc->nrxchains =
 955             ((sc->rxchainmask >> 2) & 1) +
 956             ((sc->rxchainmask >> 1) & 1) +
 957             ((sc->rxchainmask >> 0) & 1);
 958         dev_err(sc->sc_dip, CE_CONT, "!MIMO %dT%dR, %s, address %s",
 959             sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
 960             ieee80211_macaddr_sprintf(ic->ic_macaddr));
 961 
 962         sc->sc_ant->tx_ant.value.ul = sc->txchainmask;
 963         sc->sc_ant->rx_ant.value.ul = sc->rxchainmask;
 964 
 965         ic->ic_phytype = IEEE80211_T_OFDM;   /* not only, but not used */
 966         ic->ic_opmode = IEEE80211_M_STA;     /* default to BSS mode */
 967         ic->ic_state = IEEE80211_S_INIT;
 968 
 969         /* Set device capabilities. */
 970         /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
 971          * and IEEE80211_C_PMGT too. */
 972         ic->ic_caps =
 973             IEEE80211_C_IBSS |          /* IBSS mode support */
 974             IEEE80211_C_WPA |           /* 802.11i */
 975             IEEE80211_C_MONITOR |       /* monitor mode supported */
 976             IEEE80211_C_TXPMGT |        /* tx power management */
 977             IEEE80211_C_SHSLOT |        /* short slot time supported */
 978             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
 979             IEEE80211_C_WME;            /* 802.11e */
 980 
 981 #ifndef IEEE80211_NO_HT
 982         if (sc->sc_flags & IWN_FLAG_HAS_11N) {
 983                 /* Set HT capabilities. */
 984                 ic->ic_htcaps =
 985 #if IWN_RBUF_SIZE == 8192
 986                     IEEE80211_HTCAP_AMSDU7935 |
 987 #endif
 988                     IEEE80211_HTCAP_CBW20_40 |
 989                     IEEE80211_HTCAP_SGI20 |
 990                     IEEE80211_HTCAP_SGI40;
 991                 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
 992                         ic->ic_htcaps |= IEEE80211_HTCAP_GF;
 993                 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
 994                         ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
 995                 else
 996                         ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
 997         }
 998 #endif  /* !IEEE80211_NO_HT */
 999 
1000         /* Set supported legacy rates. */
1001         ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
1002         ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
1003         if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
1004                 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
1005         }
1006 #ifndef IEEE80211_NO_HT
1007         if (sc->sc_flags & IWN_FLAG_HAS_11N) {
1008                 /* Set supported HT rates. */
1009                 ic->ic_sup_mcs[0] = 0xff;            /* MCS 0-7 */
1010                 if (sc->nrxchains > 1)
1011                         ic->ic_sup_mcs[1] = 0xff;    /* MCS 7-15 */
1012                 if (sc->nrxchains > 2)
1013                         ic->ic_sup_mcs[2] = 0xff;    /* MCS 16-23 */
1014         }
1015 #endif
1016 
1017         /* IBSS channel undefined for now. */
1018         ic->ic_ibss_chan = &ic->ic_sup_channels[0];
1019 
1020         ic->ic_node_newassoc = iwn_newassoc;
1021         ic->ic_xmit = iwn_send;
1022 #ifdef IWN_HWCRYPTO
1023         ic->ic_crypto.cs_key_set = iwn_set_key;
1024         ic->ic_crypto.cs_key_delete = iwn_delete_key;
1025 #endif
1026         ic->ic_wme.wme_update = iwn_wme_update;
1027 #ifndef IEEE80211_NO_HT
1028         ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
1029         ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
1030         ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
1031         ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
1032 #endif
1033         /*
1034          * attach to 802.11 module
1035          */
1036         ieee80211_attach(ic);
1037 
1038         ieee80211_register_door(ic, ddi_driver_name(dip), ddi_get_instance(dip));
1039 
1040         /* Override 802.11 state transition machine. */
1041         sc->sc_newstate = ic->ic_newstate;
1042         ic->ic_newstate = iwn_newstate;
1043         ic->ic_watchdog = iwn_watchdog;
1044 
1045         ic->ic_node_alloc = iwn_node_alloc;
1046         ic->ic_node_free = iwn_node_free;
1047 
1048         ieee80211_media_init(ic);
1049 
1050         /*
1051          * initialize default tx key
1052          */
1053         ic->ic_def_txkey = 0;
1054 
1055         sc->amrr.amrr_min_success_threshold =  1;
1056         sc->amrr.amrr_max_success_threshold = 15;
1057 
1058         /*
1059          * Initialize pointer to device specific functions
1060          */
1061         wd.wd_secalloc = WIFI_SEC_NONE;
1062         wd.wd_opmode = ic->ic_opmode;
1063         IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
1064 
1065         /*
1066          * create relation to GLD
1067          */
1068         macp = mac_alloc(MAC_VERSION);
1069         if (NULL == macp) {
1070                 dev_err(sc->sc_dip, CE_WARN, "!mac_alloc() failed");
1071                 goto fail_mac_alloc;
1072         }
1073 
1074         macp->m_type_ident   = MAC_PLUGIN_IDENT_WIFI;
1075         macp->m_driver               = sc;
1076         macp->m_dip          = dip;
1077         macp->m_src_addr     = ic->ic_macaddr;
1078         macp->m_callbacks    = &iwn_m_callbacks;
1079         macp->m_min_sdu              = 0;
1080         macp->m_max_sdu              = IEEE80211_MTU;
1081         macp->m_pdata                = &wd;
1082         macp->m_pdata_size   = sizeof (wd);
1083 
1084         /*
1085          * Register the macp to mac
1086          */
1087         error = mac_register(macp, &ic->ic_mach);
1088         mac_free(macp);
1089         if (error != DDI_SUCCESS) {
1090                 dev_err(sc->sc_dip, CE_WARN, "!mac_register() failed");
1091                 goto fail_mac_alloc;
1092         }
1093 
1094         /*
1095          * Create minor node of type DDI_NT_NET_WIFI
1096          */
1097         (void) snprintf(strbuf, sizeof (strbuf), "iwn%d", instance);
1098         error = ddi_create_minor_node(dip, strbuf, S_IFCHR,
1099             instance + 1, DDI_NT_NET_WIFI, 0);
1100         if (error != DDI_SUCCESS) {
1101                 dev_err(sc->sc_dip, CE_WARN, "!ddi_create_minor_node() failed");
1102                 goto fail_minor;
1103         }
1104 
1105         /*
1106          * Notify link is down now
1107          */
1108         mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
1109 
1110         sc->sc_periodic = ddi_periodic_add(iwn_periodic, sc,
1111             iwn_periodic_interval * MICROSEC, 0);
1112 
1113         if (sc->sc_ks_misc)
1114                 kstat_install(sc->sc_ks_misc);
1115         if (sc->sc_ks_ant)
1116                 kstat_install(sc->sc_ks_ant);
1117         if (sc->sc_ks_sens)
1118                 kstat_install(sc->sc_ks_sens);
1119         if (sc->sc_ks_timing)
1120                 kstat_install(sc->sc_ks_timing);
1121         if (sc->sc_ks_edca)
1122                 kstat_install(sc->sc_ks_edca);
1123         if (sc->sc_ks_txpower)
1124                 kstat_install(sc->sc_ks_txpower);
1125         if (sc->sc_ks_toff)
1126                 kstat_install(sc->sc_ks_toff);
1127 
1128         sc->sc_flags |= IWN_FLAG_ATTACHED;
1129 
1130         return (DDI_SUCCESS);
1131 
1132         /* Free allocated memory if something failed during attachment. */
1133 fail_minor:
1134         mac_unregister(ic->ic_mach);
1135 
1136 fail_mac_alloc:
1137         ieee80211_detach(ic);
1138         iwn_free_rx_ring(sc, &sc->rxq);
1139 
1140 fail_rxring:
1141         for (i = 0; i < sc->ntxqs; i++)
1142                 iwn_free_tx_ring(sc, &sc->txq[i]);
1143 
1144 fail_txring:
1145         iwn_free_sched(sc);
1146 
1147 fail_sched:
1148         if (sc->ict != NULL)
1149                 iwn_free_ict(sc);
1150 
1151 fail_ict:
1152         iwn_free_kw(sc);
1153 
1154 fail_kw:
1155         iwn_free_fwmem(sc);
1156 
1157 fail_fwmem:
1158 fail_hw:
1159         iwn_intr_teardown(sc);
1160 
1161         iwn_kstat_free(sc->sc_ks_txpower, sc->sc_txpower,
1162             sizeof (struct iwn_ks_txpower));
1163 
1164         if (sc->hw_type == IWN_HW_REV_TYPE_6005)
1165                 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t6000,
1166                     sizeof (struct iwn_ks_toff_6000));
1167         else
1168                 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t2000,
1169                     sizeof (struct iwn_ks_toff_2000));
1170 
1171 fail_intr:
1172         ddi_regs_map_free(&sc->sc_regh);
1173 
1174 fail_regs_map:
1175 fail_pci_capab:
1176         pci_config_teardown(&sc->sc_pcih);
1177 
1178 fail_pci_config:
1179         iwn_kstat_free(sc->sc_ks_misc, sc->sc_misc,
1180             sizeof (struct iwn_ks_misc));
1181         iwn_kstat_free(sc->sc_ks_ant, sc->sc_ant,
1182             sizeof (struct iwn_ks_ant));
1183         iwn_kstat_free(sc->sc_ks_sens, sc->sc_sens,
1184             sizeof (struct iwn_ks_sens));
1185         iwn_kstat_free(sc->sc_ks_timing, sc->sc_timing,
1186             sizeof (struct iwn_ks_timing));
1187         iwn_kstat_free(sc->sc_ks_edca, sc->sc_edca,
1188             sizeof (struct iwn_ks_edca));
1189 
1190         ddi_soft_state_free(iwn_state, instance);
1191 
1192         return (DDI_FAILURE);
1193 }
1194 
1195 int
1196 iwn4965_attach(struct iwn_softc *sc)
1197 {
1198         struct iwn_ops *ops = &sc->ops;
1199 
1200         ops->load_firmware = iwn4965_load_firmware;
1201         ops->read_eeprom = iwn4965_read_eeprom;
1202         ops->post_alive = iwn4965_post_alive;
1203         ops->nic_config = iwn4965_nic_config;
1204         ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
1205         ops->update_sched = iwn4965_update_sched;
1206         ops->get_temperature = iwn4965_get_temperature;
1207         ops->get_rssi = iwn4965_get_rssi;
1208         ops->set_txpower = iwn4965_set_txpower;
1209         ops->init_gains = iwn4965_init_gains;
1210         ops->set_gains = iwn4965_set_gains;
1211         ops->add_node = iwn4965_add_node;
1212         ops->tx_done = iwn4965_tx_done;
1213 #ifndef IEEE80211_NO_HT
1214         ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1215         ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1216 #endif
1217         sc->ntxqs = IWN4965_NTXQUEUES;
1218         sc->ndmachnls = IWN4965_NDMACHNLS;
1219         sc->broadcast_id = IWN4965_ID_BROADCAST;
1220         sc->rxonsz = IWN4965_RXONSZ;
1221         sc->schedsz = IWN4965_SCHEDSZ;
1222         sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1223         sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1224         sc->fwsz = IWN4965_FWSZ;
1225         sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1226         sc->limits = &iwn4965_sensitivity_limits;
1227         sc->fwname = "iwlwifi-4965-2.ucode";
1228         /* Override chains masks, ROM is known to be broken. */
1229         sc->txchainmask = IWN_ANT_AB;
1230         sc->rxchainmask = IWN_ANT_ABC;
1231 
1232         iwn_kstat_create(sc, "txpower", sizeof (struct iwn_ks_txpower),
1233             &sc->sc_ks_txpower, (void **)&sc->sc_txpower);
1234         iwn_kstat_init_4965(sc);
1235 
1236         return 0;
1237 }
1238 
1239 int
1240 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1241 {
1242         struct iwn_ops *ops = &sc->ops;
1243 
1244         ops->load_firmware = iwn5000_load_firmware;
1245         ops->read_eeprom = iwn5000_read_eeprom;
1246         ops->post_alive = iwn5000_post_alive;
1247         ops->nic_config = iwn5000_nic_config;
1248         ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
1249         ops->update_sched = iwn5000_update_sched;
1250         ops->get_temperature = iwn5000_get_temperature;
1251         ops->get_rssi = iwn5000_get_rssi;
1252         ops->set_txpower = iwn5000_set_txpower;
1253         ops->init_gains = iwn5000_init_gains;
1254         ops->set_gains = iwn5000_set_gains;
1255         ops->add_node = iwn5000_add_node;
1256         ops->tx_done = iwn5000_tx_done;
1257 #ifndef IEEE80211_NO_HT
1258         ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1259         ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1260 #endif
1261         sc->ntxqs = IWN5000_NTXQUEUES;
1262         sc->ndmachnls = IWN5000_NDMACHNLS;
1263         sc->broadcast_id = IWN5000_ID_BROADCAST;
1264         sc->rxonsz = IWN5000_RXONSZ;
1265         sc->schedsz = IWN5000_SCHEDSZ;
1266         sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1267         sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1268         sc->fwsz = IWN5000_FWSZ;
1269         sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1270 
1271         switch (sc->hw_type) {
1272         case IWN_HW_REV_TYPE_5100:
1273                 sc->limits = &iwn5000_sensitivity_limits;
1274                 sc->fwname = "iwlwifi-5000-2.ucode";
1275                 /* Override chains masks, ROM is known to be broken. */
1276                 sc->txchainmask = IWN_ANT_B;
1277                 sc->rxchainmask = IWN_ANT_AB;
1278                 break;
1279         case IWN_HW_REV_TYPE_5150:
1280                 sc->limits = &iwn5150_sensitivity_limits;
1281                 sc->fwname = "iwlwifi-5150-2.ucode";
1282                 break;
1283         case IWN_HW_REV_TYPE_5300:
1284         case IWN_HW_REV_TYPE_5350:
1285                 sc->limits = &iwn5000_sensitivity_limits;
1286                 sc->fwname = "iwlwifi-5000-2.ucode";
1287                 break;
1288         case IWN_HW_REV_TYPE_1000:
1289                 sc->limits = &iwn1000_sensitivity_limits;
1290                 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
1291                     pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
1292                         sc->fwname = "iwlwifi-100-5.ucode";
1293                 else
1294                         sc->fwname = "iwlwifi-1000-3.ucode";
1295                 break;
1296         case IWN_HW_REV_TYPE_6000:
1297                 sc->limits = &iwn6000_sensitivity_limits;
1298                 sc->fwname = "iwlwifi-6000-4.ucode";
1299                 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
1300                     pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
1301                         sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
1302                         /* Override chains masks, ROM is known to be broken. */
1303                         sc->txchainmask = IWN_ANT_BC;
1304                         sc->rxchainmask = IWN_ANT_BC;
1305                 }
1306                 break;
1307         case IWN_HW_REV_TYPE_6050:
1308                 sc->limits = &iwn6000_sensitivity_limits;
1309                 sc->fwname = "iwlwifi-6050-5.ucode";
1310                 break;
1311         case IWN_HW_REV_TYPE_6005:
1312                 sc->limits = &iwn6000_sensitivity_limits;
1313                 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
1314                 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
1315                     pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
1316                     pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
1317                     pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
1318                     pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
1319                     pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
1320                         sc->fwname = "iwlwifi-6000g2b-6.ucode";
1321                         ops->config_bt_coex = iwn_config_bt_coex_adv1;
1322                 }
1323                 else
1324                         sc->fwname = "iwlwifi-6000g2a-6.ucode";
1325 
1326                 iwn_kstat_create(sc, "temp_offset",
1327                     sizeof (struct iwn_ks_toff_6000),
1328                     &sc->sc_ks_toff, (void **)&sc->sc_toff.t6000);
1329                 iwn_kstat_init_6000(sc);
1330                 break;
1331         case IWN_HW_REV_TYPE_2030:
1332                 sc->limits = &iwn2000_sensitivity_limits;
1333                 sc->fwname = "iwlwifi-2030-6.ucode";
1334                 ops->config_bt_coex = iwn_config_bt_coex_adv2;
1335 
1336                 iwn_kstat_create(sc, "temp_offset",
1337                     sizeof (struct iwn_ks_toff_2000),
1338                     &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000);
1339                 iwn_kstat_init_2000(sc);
1340                 break;
1341         case IWN_HW_REV_TYPE_2000:
1342                 sc->limits = &iwn2000_sensitivity_limits;
1343                 sc->fwname = "iwlwifi-2000-6.ucode";
1344 
1345                 iwn_kstat_create(sc, "temp_offset",
1346                     sizeof (struct iwn_ks_toff_2000),
1347                     &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000);
1348                 iwn_kstat_init_2000(sc);
1349                 break;
1350         case IWN_HW_REV_TYPE_135:
1351                 sc->limits = &iwn2000_sensitivity_limits;
1352                 sc->fwname = "iwlwifi-135-6.ucode";
1353                 ops->config_bt_coex = iwn_config_bt_coex_adv2;
1354 
1355                 iwn_kstat_create(sc, "temp_offset",
1356                     sizeof (struct iwn_ks_toff_2000),
1357                     &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000);
1358                 iwn_kstat_init_2000(sc);
1359                 break;
1360         case IWN_HW_REV_TYPE_105:
1361                 sc->limits = &iwn2000_sensitivity_limits;
1362                 sc->fwname = "iwlwifi-105-6.ucode";
1363 
1364                 iwn_kstat_create(sc, "temp_offset",
1365                     sizeof (struct iwn_ks_toff_2000),
1366                     &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000);
1367                 iwn_kstat_init_2000(sc);
1368                 break;
1369         default:
1370                 dev_err(sc->sc_dip, CE_WARN, "!adapter type %d not supported",
1371                     sc->hw_type);
1372                 return ENOTSUP;
1373         }
1374         return 0;
1375 }
1376 
1377 static int
1378 iwn_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1379 {
1380         struct iwn_softc *sc = ddi_get_driver_private(dip);
1381         ieee80211com_t *ic = &sc->sc_ic;
1382         int qid, error;
1383 
1384         switch (cmd) {
1385         case DDI_DETACH:
1386                 break;
1387         case DDI_SUSPEND:
1388                 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER;
1389                 sc->sc_flags &= ~IWN_FLAG_RATE_AUTO_CTL;
1390 
1391                 sc->sc_flags |= IWN_FLAG_SUSPEND;
1392 
1393                 if (sc->sc_flags & IWN_FLAG_RUNNING) {
1394                         iwn_hw_stop(sc, B_TRUE);
1395                         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1396 
1397                 }
1398 
1399                 return (DDI_SUCCESS);
1400         default:
1401                 return (DDI_FAILURE);
1402         }
1403 
1404         if (!(sc->sc_flags & IWN_FLAG_ATTACHED)) {
1405                 return (DDI_FAILURE);
1406         }
1407 
1408         error = mac_disable(ic->ic_mach);
1409         if (error != DDI_SUCCESS)
1410                 return (error);
1411 
1412         mutex_enter(&sc->sc_mtx);
1413         sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO;
1414         mutex_exit(&sc->sc_mtx);
1415 
1416         if (sc->calib_to != 0)
1417                 (void) untimeout(sc->calib_to);
1418         sc->calib_to = 0;
1419 
1420         if (sc->scan_to != 0)
1421                 (void) untimeout(sc->scan_to);
1422         sc->scan_to = 0;
1423 
1424         ddi_periodic_delete(sc->sc_periodic);
1425 
1426         /*
1427          * stop chipset
1428          */
1429         iwn_hw_stop(sc, B_TRUE);
1430 
1431         /*
1432          * Unregister from GLD
1433          */
1434         (void) mac_unregister(ic->ic_mach);
1435         ieee80211_detach(ic);
1436 
1437         /* Uninstall interrupt handler. */
1438         iwn_intr_teardown(sc);
1439 
1440         /* Free DMA resources. */
1441         mutex_enter(&sc->sc_mtx);
1442         iwn_free_rx_ring(sc, &sc->rxq);
1443         for (qid = 0; qid < sc->ntxqs; qid++)
1444                 iwn_free_tx_ring(sc, &sc->txq[qid]);
1445         iwn_free_sched(sc);
1446         iwn_free_kw(sc);
1447         if (sc->ict != NULL)
1448                 iwn_free_ict(sc);
1449         iwn_free_fwmem(sc);
1450         mutex_exit(&sc->sc_mtx);
1451 
1452         iwn_kstat_free(sc->sc_ks_misc, sc->sc_misc,
1453             sizeof (struct iwn_ks_misc));
1454         iwn_kstat_free(sc->sc_ks_ant, sc->sc_ant,
1455             sizeof (struct iwn_ks_ant));
1456         iwn_kstat_free(sc->sc_ks_sens, sc->sc_sens,
1457             sizeof (struct iwn_ks_sens));
1458         iwn_kstat_free(sc->sc_ks_timing, sc->sc_timing,
1459             sizeof (struct iwn_ks_timing));
1460         iwn_kstat_free(sc->sc_ks_edca, sc->sc_edca,
1461             sizeof (struct iwn_ks_edca));
1462         iwn_kstat_free(sc->sc_ks_txpower, sc->sc_txpower,
1463             sizeof (struct iwn_ks_txpower));
1464 
1465         if (sc->hw_type == IWN_HW_REV_TYPE_6005)
1466                 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t6000,
1467                     sizeof (struct iwn_ks_toff_6000));
1468         else
1469                 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t2000,
1470                     sizeof (struct iwn_ks_toff_2000));
1471 
1472         ddi_regs_map_free(&sc->sc_regh);
1473         pci_config_teardown(&sc->sc_pcih);
1474         ddi_remove_minor_node(dip, NULL);
1475         ddi_soft_state_free(iwn_state, ddi_get_instance(dip));
1476 
1477         return 0;
1478 }
1479 
1480 static int
1481 iwn_quiesce(dev_info_t *dip)
1482 {
1483         struct iwn_softc *sc;
1484 
1485         sc = ddi_get_soft_state(iwn_state, ddi_get_instance(dip));
1486         if (sc == NULL)
1487                 return (DDI_FAILURE);
1488 
1489 #ifdef IWN_DEBUG
1490         /* bypass any messages */
1491         iwn_dbg_print = 0;
1492 #endif
1493 
1494         /*
1495          * No more blocking is allowed while we are in the
1496          * quiesce(9E) entry point.
1497          */
1498         sc->sc_flags |= IWN_FLAG_QUIESCED;
1499 
1500         /*
1501          * Disable and mask all interrupts.
1502          */
1503         iwn_hw_stop(sc, B_FALSE);
1504 
1505         return (DDI_SUCCESS);
1506 }
1507 
1508 static int
1509 iwn_nic_lock(struct iwn_softc *sc)
1510 {
1511         int ntries;
1512 
1513         /* Request exclusive access to NIC. */
1514         IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1515 
1516         /* Spin until we actually get the lock. */
1517         for (ntries = 0; ntries < 1000; ntries++) {
1518                 if ((IWN_READ(sc, IWN_GP_CNTRL) &
1519                      (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1520                     IWN_GP_CNTRL_MAC_ACCESS_ENA)
1521                         return 0;
1522                 DELAY(10);
1523         }
1524         return ETIMEDOUT;
1525 }
1526 
1527 static __inline void
1528 iwn_nic_unlock(struct iwn_softc *sc)
1529 {
1530         IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1531 }
1532 
1533 static __inline uint32_t
1534 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1535 {
1536         IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1537         IWN_BARRIER_READ_WRITE(sc);
1538         return IWN_READ(sc, IWN_PRPH_RDATA);
1539 }
1540 
1541 static __inline void
1542 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1543 {
1544         IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1545         IWN_BARRIER_WRITE(sc);
1546         IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1547 }
1548 
1549 static __inline void
1550 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1551 {
1552         iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1553 }
1554 
1555 static __inline void
1556 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1557 {
1558         iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1559 }
1560 
1561 static __inline void
1562 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1563     const uint32_t *data, int count)
1564 {
1565         for (; count > 0; count--, data++, addr += 4)
1566                 iwn_prph_write(sc, addr, *data);
1567 }
1568 
1569 static __inline uint32_t
1570 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1571 {
1572         IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1573         IWN_BARRIER_READ_WRITE(sc);
1574         return IWN_READ(sc, IWN_MEM_RDATA);
1575 }
1576 
1577 static __inline void
1578 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1579 {
1580         IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1581         IWN_BARRIER_WRITE(sc);
1582         IWN_WRITE(sc, IWN_MEM_WDATA, data);
1583 }
1584 
1585 #ifndef IEEE80211_NO_HT
1586 static __inline void
1587 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1588 {
1589         uint32_t tmp;
1590 
1591         tmp = iwn_mem_read(sc, addr & ~3);
1592         if (addr & 3)
1593                 tmp = (tmp & 0x0000ffff) | data << 16;
1594         else
1595                 tmp = (tmp & 0xffff0000) | data;
1596         iwn_mem_write(sc, addr & ~3, tmp);
1597 }
1598 #endif
1599 
1600 static __inline void
1601 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1602     int count)
1603 {
1604         for (; count > 0; count--, addr += 4)
1605                 *data++ = iwn_mem_read(sc, addr);
1606 }
1607 
1608 static __inline void
1609 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1610     int count)
1611 {
1612         for (; count > 0; count--, addr += 4)
1613                 iwn_mem_write(sc, addr, val);
1614 }
1615 
1616 static int
1617 iwn_eeprom_lock(struct iwn_softc *sc)
1618 {
1619         int i, ntries;
1620 
1621         for (i = 0; i < 100; i++) {
1622                 /* Request exclusive access to EEPROM. */
1623                 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1624                     IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1625 
1626                 /* Spin until we actually get the lock. */
1627                 for (ntries = 0; ntries < 100; ntries++) {
1628                         if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1629                             IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1630                                 return 0;
1631                         DELAY(10);
1632                 }
1633         }
1634         return ETIMEDOUT;
1635 }
1636 
1637 static __inline void
1638 iwn_eeprom_unlock(struct iwn_softc *sc)
1639 {
1640         IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1641 }
1642 
1643 /*
1644  * Initialize access by host to One Time Programmable ROM.
1645  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1646  */
1647 static int
1648 iwn_init_otprom(struct iwn_softc *sc)
1649 {
1650         uint16_t prev = 0, base, next;
1651         int count, error;
1652 
1653         /* Wait for clock stabilization before accessing prph. */
1654         if ((error = iwn_clock_wait(sc)) != 0)
1655                 return error;
1656 
1657         if ((error = iwn_nic_lock(sc)) != 0)
1658                 return error;
1659         iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1660         DELAY(5);
1661         iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1662         iwn_nic_unlock(sc);
1663 
1664         /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1665         if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1666                 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1667                     IWN_RESET_LINK_PWR_MGMT_DIS);
1668         }
1669         IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1670         /* Clear ECC status. */
1671         IWN_SETBITS(sc, IWN_OTP_GP,
1672             IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1673 
1674         /*
1675          * Find the block before last block (contains the EEPROM image)
1676          * for HW without OTP shadow RAM.
1677          */
1678         if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1679                 /* Switch to absolute addressing mode. */
1680                 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1681                 base = 0;
1682                 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1683                         error = iwn_read_prom_data(sc, base, &next, 2);
1684                         if (error != 0)
1685                                 return error;
1686                         if (next == 0)  /* End of linked-list. */
1687                                 break;
1688                         prev = base;
1689                         base = le16toh(next);
1690                 }
1691                 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1692                         return EIO;
1693                 /* Skip "next" word. */
1694                 sc->prom_base = prev + 1;
1695         }
1696         return 0;
1697 }
1698 
1699 static int
1700 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1701 {
1702         uint8_t *out = data;
1703         uint32_t val, tmp;
1704         int ntries;
1705 
1706         addr += sc->prom_base;
1707         for (; count > 0; count -= 2, addr++) {
1708                 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1709                 for (ntries = 0; ntries < 10; ntries++) {
1710                         val = IWN_READ(sc, IWN_EEPROM);
1711                         if (val & IWN_EEPROM_READ_VALID)
1712                                 break;
1713                         DELAY(5);
1714                 }
1715                 if (ntries == 10) {
1716                         dev_err(sc->sc_dip, CE_WARN,
1717                             "!timeout reading ROM at 0x%x", addr);
1718                         return ETIMEDOUT;
1719                 }
1720                 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1721                         /* OTPROM, check for ECC errors. */
1722                         tmp = IWN_READ(sc, IWN_OTP_GP);
1723                         if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1724                                 dev_err(sc->sc_dip, CE_WARN,
1725                                     "!OTPROM ECC error at 0x%x", addr);
1726                                 return EIO;
1727                         }
1728                         if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1729                                 /* Correctable ECC error, clear bit. */
1730                                 IWN_SETBITS(sc, IWN_OTP_GP,
1731                                     IWN_OTP_GP_ECC_CORR_STTS);
1732                         }
1733                 }
1734                 *out++ = val >> 16;
1735                 if (count > 1)
1736                         *out++ = val >> 24;
1737         }
1738         return 0;
1739 }
1740 
1741 static int
1742 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1743     uint_t size, uint_t flags, void **kvap, ddi_device_acc_attr_t *acc_attr,
1744     uint_t align)
1745 {
1746         ddi_dma_attr_t dma_attr = {
1747                 .dma_attr_version       = DMA_ATTR_V0,
1748                 .dma_attr_addr_lo       = 0,
1749                 .dma_attr_addr_hi       = 0xfffffffffULL,
1750                 .dma_attr_count_max     = 0xfffffffffULL,
1751                 .dma_attr_align         = align,
1752                 .dma_attr_burstsizes    = 0x7ff,
1753                 .dma_attr_minxfer       = 1,
1754                 .dma_attr_maxxfer       = 0xfffffffffULL,
1755                 .dma_attr_seg           = 0xfffffffffULL,
1756                 .dma_attr_sgllen        = 1,
1757                 .dma_attr_granular      = 1,
1758                 .dma_attr_flags         = 0,
1759         };
1760         int error;
1761 
1762         error = ddi_dma_alloc_handle(sc->sc_dip, &dma_attr, DDI_DMA_SLEEP, NULL,
1763             &dma->dma_hdl);
1764         if (error != DDI_SUCCESS) {
1765                 dev_err(sc->sc_dip, CE_WARN,
1766                     "ddi_dma_alloc_handle() failed, error = %d", error);
1767                 goto fail;
1768         }
1769 
1770         error = ddi_dma_mem_alloc(dma->dma_hdl, size, acc_attr,
1771             flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), DDI_DMA_SLEEP, 0,
1772             &dma->vaddr, &dma->length, &dma->acc_hdl);
1773         if (error != DDI_SUCCESS) {
1774                 dev_err(sc->sc_dip, CE_WARN,
1775                     "ddi_dma_mem_alloc() failed, error = %d", error);
1776                 goto fail2;
1777         }
1778 
1779         bzero(dma->vaddr, dma->length);
1780 
1781         error = ddi_dma_addr_bind_handle(dma->dma_hdl, NULL, dma->vaddr,
1782             dma->length, flags, DDI_DMA_SLEEP, NULL, &dma->cookie,
1783             &dma->ncookies);
1784         if (error != DDI_DMA_MAPPED) {
1785                 dma->ncookies = 0;
1786                 dev_err(sc->sc_dip, CE_WARN,
1787                     "ddi_dma_addr_bind_handle() failed, error = %d", error);
1788                 goto fail3;
1789         }
1790 
1791         dma->size = size;
1792         dma->paddr = dma->cookie.dmac_laddress;
1793 
1794         if (kvap != NULL)
1795                 *kvap = (void *)dma->vaddr;
1796 
1797         return (DDI_SUCCESS);
1798 
1799 fail3:
1800         ddi_dma_mem_free(&dma->acc_hdl);
1801 fail2:
1802         ddi_dma_free_handle(&dma->dma_hdl);
1803 fail:
1804         bzero(dma, sizeof (struct iwn_dma_info));
1805         return (DDI_FAILURE);
1806 }
1807 
1808 static void
1809 iwn_dma_contig_free(struct iwn_dma_info *dma)
1810 {
1811         if (dma->dma_hdl != NULL) {
1812                 if (dma->ncookies)
1813                         (void) ddi_dma_unbind_handle(dma->dma_hdl);
1814                 ddi_dma_free_handle(&dma->dma_hdl);
1815         }
1816 
1817         if (dma->acc_hdl != NULL)
1818                 ddi_dma_mem_free(&dma->acc_hdl);
1819 
1820         bzero(dma, sizeof (struct iwn_dma_info));
1821 }
1822 
1823 static int
1824 iwn_alloc_sched(struct iwn_softc *sc)
1825 {
1826         /* TX scheduler rings must be aligned on a 1KB boundary. */
1827 
1828         return iwn_dma_contig_alloc(sc, &sc->sched_dma, sc->schedsz,
1829             DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&sc->sched,
1830             &iwn_dma_accattr, 1024);
1831 }
1832 
1833 static void
1834 iwn_free_sched(struct iwn_softc *sc)
1835 {
1836         iwn_dma_contig_free(&sc->sched_dma);
1837 }
1838 
1839 static int
1840 iwn_alloc_kw(struct iwn_softc *sc)
1841 {
1842         /* "Keep Warm" page must be aligned on a 4KB boundary. */
1843 
1844         return iwn_dma_contig_alloc(sc, &sc->kw_dma, IWN_KW_SIZE,
1845             DDI_DMA_CONSISTENT | DDI_DMA_RDWR, NULL, &iwn_dma_accattr, 4096);
1846 }
1847 
1848 static void
1849 iwn_free_kw(struct iwn_softc *sc)
1850 {
1851         iwn_dma_contig_free(&sc->kw_dma);
1852 }
1853 
1854 static int
1855 iwn_alloc_ict(struct iwn_softc *sc)
1856 {
1857         /* ICT table must be aligned on a 4KB boundary. */
1858 
1859         return iwn_dma_contig_alloc(sc, &sc->ict_dma, IWN_ICT_SIZE,
1860             DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&sc->ict,
1861             &iwn_dma_descattr, 4096);
1862 }
1863 
1864 static void
1865 iwn_free_ict(struct iwn_softc *sc)
1866 {
1867         iwn_dma_contig_free(&sc->ict_dma);
1868 }
1869 
1870 static int
1871 iwn_alloc_fwmem(struct iwn_softc *sc)
1872 {
1873         /* Must be aligned on a 16-byte boundary. */
1874         return iwn_dma_contig_alloc(sc, &sc->fw_dma, sc->fwsz,
1875             DDI_DMA_CONSISTENT | DDI_DMA_RDWR, NULL, &iwn_dma_accattr, 16);
1876 }
1877 
1878 static void
1879 iwn_free_fwmem(struct iwn_softc *sc)
1880 {
1881         iwn_dma_contig_free(&sc->fw_dma);
1882 }
1883 
1884 static int
1885 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1886 {
1887         size_t size;
1888         int i, error;
1889 
1890         ring->cur = 0;
1891 
1892         /* Allocate RX descriptors (256-byte aligned). */
1893         size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1894         error = iwn_dma_contig_alloc(sc, &ring->desc_dma, size,
1895             DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&ring->desc,
1896             &iwn_dma_descattr, 256);
1897         if (error != DDI_SUCCESS) {
1898                 dev_err(sc->sc_dip, CE_WARN,
1899                     "!could not allocate RX ring DMA memory");
1900                 goto fail;
1901         }
1902 
1903         /* Allocate RX status area (16-byte aligned). */
1904         error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1905             sizeof (struct iwn_rx_status), DDI_DMA_CONSISTENT | DDI_DMA_RDWR,
1906             (void **)&ring->stat, &iwn_dma_descattr, 16);
1907         if (error != DDI_SUCCESS) {
1908                 dev_err(sc->sc_dip, CE_WARN,
1909                     "!could not allocate RX status DMA memory");
1910                 goto fail;
1911         }
1912 
1913         /*
1914          * Allocate and map RX buffers.
1915          */
1916         for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1917                 struct iwn_rx_data *data = &ring->data[i];
1918 
1919                 error = iwn_dma_contig_alloc(sc, &data->dma_data, IWN_RBUF_SIZE,
1920                     DDI_DMA_CONSISTENT | DDI_DMA_READ, NULL, &iwn_dma_accattr,
1921                     256);
1922                 if (error != DDI_SUCCESS) {
1923                         dev_err(sc->sc_dip, CE_WARN,
1924                             "!could not create RX buf DMA map");
1925                         goto fail;
1926                 }
1927 
1928                 /* Set physical address of RX buffer (256-byte aligned). */
1929                 ring->desc[i] = htole32(data->dma_data.paddr >> 8);
1930         }
1931 
1932         (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
1933 
1934         return 0;
1935 
1936 fail:   iwn_free_rx_ring(sc, ring);
1937         return error;
1938 }
1939 
1940 static void
1941 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1942 {
1943         int ntries;
1944 
1945         if (iwn_nic_lock(sc) == 0) {
1946                 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1947                 for (ntries = 0; ntries < 1000; ntries++) {
1948                         if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1949                             IWN_FH_RX_STATUS_IDLE)
1950                                 break;
1951                         DELAY(10);
1952                 }
1953                 iwn_nic_unlock(sc);
1954         }
1955         ring->cur = 0;
1956         sc->last_rx_valid = 0;
1957 }
1958 
1959 static void
1960 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1961 {
1962         _NOTE(ARGUNUSED(sc));
1963         int i;
1964 
1965         iwn_dma_contig_free(&ring->desc_dma);
1966         iwn_dma_contig_free(&ring->stat_dma);
1967 
1968         for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1969                 struct iwn_rx_data *data = &ring->data[i];
1970 
1971                 if (data->dma_data.dma_hdl)
1972                         iwn_dma_contig_free(&data->dma_data);
1973         }
1974 }
1975 
1976 static int
1977 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1978 {
1979         uintptr_t paddr;
1980         size_t size;
1981         int i, error;
1982 
1983         ring->qid = qid;
1984         ring->queued = 0;
1985         ring->cur = 0;
1986 
1987         /* Allocate TX descriptors (256-byte aligned). */
1988         size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1989         error = iwn_dma_contig_alloc(sc, &ring->desc_dma, size,
1990             DDI_DMA_CONSISTENT | DDI_DMA_WRITE, (void **)&ring->desc,
1991             &iwn_dma_descattr, 256);
1992         if (error != DDI_SUCCESS) {
1993                 dev_err(sc->sc_dip, CE_WARN,
1994                     "!could not allocate TX ring DMA memory");
1995                 goto fail;
1996         }
1997         /*
1998          * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1999          * to allocate commands space for other rings.
2000          * XXX Do we really need to allocate descriptors for other rings?
2001          */
2002         if (qid > 4)
2003                 return 0;
2004 
2005         size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2006         error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, size,
2007             DDI_DMA_CONSISTENT | DDI_DMA_WRITE, (void **)&ring->cmd,
2008             &iwn_dma_accattr, 4);
2009         if (error != DDI_SUCCESS) {
2010                 dev_err(sc->sc_dip, CE_WARN,
2011                     "!could not allocate TX cmd DMA memory");
2012                 goto fail;
2013         }
2014 
2015         paddr = ring->cmd_dma.paddr;
2016         for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2017                 struct iwn_tx_data *data = &ring->data[i];
2018 
2019                 data->cmd_paddr = paddr;
2020                 data->scratch_paddr = paddr + 12;
2021                 paddr += sizeof (struct iwn_tx_cmd);
2022 
2023                 error = iwn_dma_contig_alloc(sc, &data->dma_data, IWN_TBUF_SIZE,
2024                     DDI_DMA_CONSISTENT | DDI_DMA_WRITE, NULL, &iwn_dma_accattr,
2025                     256);
2026                 if (error != DDI_SUCCESS) {
2027                         dev_err(sc->sc_dip, CE_WARN,
2028                             "!could not create TX buf DMA map");
2029                         goto fail;
2030                 }
2031         }
2032         return 0;
2033 
2034 fail:   iwn_free_tx_ring(sc, ring);
2035         return error;
2036 }
2037 
2038 static void
2039 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2040 {
2041         int i;
2042 
2043         if (ring->qid < 4)
2044                 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2045                         struct iwn_tx_data *data = &ring->data[i];
2046 
2047                         (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0,
2048                             DDI_DMA_SYNC_FORDEV);
2049                 }
2050 
2051         /* Clear TX descriptors. */
2052         memset(ring->desc, 0, ring->desc_dma.size);
2053         (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
2054         sc->qfullmsk &= ~(1 << ring->qid);
2055         ring->queued = 0;
2056         ring->cur = 0;
2057 }
2058 
2059 static void
2060 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2061 {
2062         _NOTE(ARGUNUSED(sc));
2063         int i;
2064 
2065         iwn_dma_contig_free(&ring->desc_dma);
2066         iwn_dma_contig_free(&ring->cmd_dma);
2067 
2068         for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2069                 struct iwn_tx_data *data = &ring->data[i];
2070 
2071                 if (data->dma_data.dma_hdl)
2072                         iwn_dma_contig_free(&data->dma_data);
2073         }
2074 }
2075 
2076 static void
2077 iwn5000_ict_reset(struct iwn_softc *sc)
2078 {
2079         /* Disable interrupts. */
2080         IWN_WRITE(sc, IWN_INT_MASK, 0);
2081 
2082         /* Reset ICT table. */
2083         memset(sc->ict, 0, IWN_ICT_SIZE);
2084         sc->ict_cur = 0;
2085 
2086         /* Set physical address of ICT table (4KB aligned). */
2087         IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2088             IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2089 
2090         /* Enable periodic RX interrupt. */
2091         sc->int_mask |= IWN_INT_RX_PERIODIC;
2092         /* Switch to ICT interrupt mode in driver. */
2093         sc->sc_flags |= IWN_FLAG_USE_ICT;
2094 
2095         /* Re-enable interrupts. */
2096         IWN_WRITE(sc, IWN_INT, 0xffffffff);
2097         IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2098 }
2099 
2100 static int
2101 iwn_read_eeprom(struct iwn_softc *sc)
2102 {
2103         struct iwn_ops *ops = &sc->ops;
2104         struct ieee80211com *ic = &sc->sc_ic;
2105         uint16_t val;
2106         int error;
2107 
2108         /* Check whether adapter has an EEPROM or an OTPROM. */
2109         if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2110             (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2111                 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2112         IWN_DBG("%s found",
2113             (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2114 
2115         /* Adapter has to be powered on for EEPROM access to work. */
2116         if ((error = iwn_apm_init(sc)) != 0) {
2117                 dev_err(sc->sc_dip, CE_WARN,
2118                     "!could not power ON adapter");
2119                 return error;
2120         }
2121 
2122         if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2123                 dev_err(sc->sc_dip, CE_WARN,
2124                     "!bad ROM signature");
2125                 return EIO;
2126         }
2127         if ((error = iwn_eeprom_lock(sc)) != 0) {
2128                 dev_err(sc->sc_dip, CE_WARN,
2129                     "!could not lock ROM (error=%d)", error);
2130                 return error;
2131         }
2132         if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2133                 if ((error = iwn_init_otprom(sc)) != 0) {
2134                         dev_err(sc->sc_dip, CE_WARN,
2135                             "!could not initialize OTPROM");
2136                         return error;
2137                 }
2138         }
2139 
2140         iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2141         IWN_DBG("SKU capabilities=0x%04x", le16toh(val));
2142         /* Check if HT support is bonded out. */
2143         if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2144                 sc->sc_flags |= IWN_FLAG_HAS_11N;
2145 
2146         iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2147         sc->rfcfg = le16toh(val);
2148         IWN_DBG("radio config=0x%04x", sc->rfcfg);
2149         /* Read Tx/Rx chains from ROM unless it's known to be broken. */
2150         if (sc->txchainmask == 0)
2151                 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2152         if (sc->rxchainmask == 0)
2153                 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2154 
2155         /* Read MAC address. */
2156         iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_macaddr, 6);
2157 
2158         /* Read adapter-specific information from EEPROM. */
2159         ops->read_eeprom(sc);
2160 
2161         iwn_apm_stop(sc);       /* Power OFF adapter. */
2162 
2163         iwn_eeprom_unlock(sc);
2164         return 0;
2165 }
2166 
2167 static void
2168 iwn4965_read_eeprom(struct iwn_softc *sc)
2169 {
2170         uint32_t addr;
2171         uint16_t val;
2172         int i;
2173 
2174         /* Read regulatory domain (4 ASCII characters). */
2175         iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2176 
2177         /* Read the list of authorized channels (20MHz ones only). */
2178         for (i = 0; i < 5; i++) {
2179                 addr = iwn4965_regulatory_bands[i];
2180                 iwn_read_eeprom_channels(sc, i, addr);
2181         }
2182 
2183         /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2184         iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2185         sc->maxpwr2GHz = val & 0xff;
2186         sc->maxpwr5GHz = val >> 8;
2187         /* Check that EEPROM values are within valid range. */
2188         if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2189                 sc->maxpwr5GHz = 38;
2190         if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2191                 sc->maxpwr2GHz = 38;
2192         IWN_DBG("maxpwr 2GHz=%d 5GHz=%d", sc->maxpwr2GHz, sc->maxpwr5GHz);
2193 
2194         /* Read samples for each TX power group. */
2195         iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2196             sizeof sc->bands);
2197 
2198         /* Read voltage at which samples were taken. */
2199         iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2200         sc->eeprom_voltage = (int16_t)le16toh(val);
2201         IWN_DBG("voltage=%d (in 0.3V)", sc->eeprom_voltage);
2202 
2203 #ifdef IWN_DEBUG
2204         /* Print samples. */
2205         if (iwn_dbg_print != 0) {
2206                 for (i = 0; i < IWN_NBANDS; i++)
2207                         iwn4965_print_power_group(sc, i);
2208         }
2209 #endif
2210 }
2211 
2212 #ifdef IWN_DEBUG
2213 static void
2214 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2215 {
2216         struct iwn4965_eeprom_band *band = &sc->bands[i];
2217         struct iwn4965_eeprom_chan_samples *chans = band->chans;
2218         int j, c;
2219 
2220         dev_err(sc->sc_dip, CE_CONT, "!===band %d===", i);
2221         dev_err(sc->sc_dip, CE_CONT, "!chan lo=%d, chan hi=%d", band->lo,
2222             band->hi);
2223         dev_err(sc->sc_dip, CE_CONT,  "!chan1 num=%d", chans[0].num);
2224         for (c = 0; c < 2; c++) {
2225                 for (j = 0; j < IWN_NSAMPLES; j++) {
2226                         dev_err(sc->sc_dip, CE_CONT, "!chain %d, sample %d: "
2227                             "temp=%d gain=%d power=%d pa_det=%d", c, j,
2228                             chans[0].samples[c][j].temp,
2229                             chans[0].samples[c][j].gain,
2230                             chans[0].samples[c][j].power,
2231                             chans[0].samples[c][j].pa_det);
2232                 }
2233         }
2234         dev_err(sc->sc_dip, CE_CONT, "!chan2 num=%d", chans[1].num);
2235         for (c = 0; c < 2; c++) {
2236                 for (j = 0; j < IWN_NSAMPLES; j++) {
2237                         dev_err(sc->sc_dip, CE_CONT, "!chain %d, sample %d: "
2238                             "temp=%d gain=%d power=%d pa_det=%d", c, j,
2239                             chans[1].samples[c][j].temp,
2240                             chans[1].samples[c][j].gain,
2241                             chans[1].samples[c][j].power,
2242                             chans[1].samples[c][j].pa_det);
2243                 }
2244         }
2245 }
2246 #endif
2247 
2248 static void
2249 iwn5000_read_eeprom(struct iwn_softc *sc)
2250 {
2251         struct iwn5000_eeprom_calib_hdr hdr;
2252         int32_t volt;
2253         uint32_t base, addr;
2254         uint16_t val;
2255         int i;
2256 
2257         /* Read regulatory domain (4 ASCII characters). */
2258         iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2259         base = le16toh(val);
2260         iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2261             sc->eeprom_domain, 4);
2262 
2263         /* Read the list of authorized channels (20MHz ones only). */
2264         for (i = 0; i < 5; i++) {
2265                 addr = base + iwn5000_regulatory_bands[i];
2266                 iwn_read_eeprom_channels(sc, i, addr);
2267         }
2268 
2269         /* Read enhanced TX power information for 6000 Series. */
2270         if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
2271                 iwn_read_eeprom_enhinfo(sc);
2272 
2273         iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2274         base = le16toh(val);
2275         iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2276         IWN_DBG("calib version=%u pa type=%u voltage=%u",
2277             hdr.version, hdr.pa_type, le16toh(hdr.volt));
2278         sc->calib_ver = hdr.version;
2279 
2280         if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2281             sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2282             sc->hw_type == IWN_HW_REV_TYPE_135  ||
2283             sc->hw_type == IWN_HW_REV_TYPE_105) {
2284                 sc->eeprom_voltage = le16toh(hdr.volt);
2285                 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2286                 sc->eeprom_temp = le16toh(val);
2287                 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
2288                 sc->eeprom_rawtemp = le16toh(val);
2289         }
2290 
2291         if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2292                 /* Compute temperature offset. */
2293                 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2294                 sc->eeprom_temp = le16toh(val);
2295                 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2296                 volt = le16toh(val);
2297                 sc->temp_off = sc->eeprom_temp - (volt / -5);
2298                 IWN_DBG("temp=%d volt=%d offset=%dK",
2299                     sc->eeprom_temp, volt, sc->temp_off);
2300         } else {
2301                 /* Read crystal calibration. */
2302                 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2303                     &sc->eeprom_crystal, sizeof (uint32_t));
2304                 IWN_DBG("crystal calibration 0x%08x",
2305                     le32toh(sc->eeprom_crystal));
2306         }
2307 }
2308 
2309 static void
2310 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2311 {
2312         struct ieee80211com *ic = &sc->sc_ic;
2313         const struct iwn_chan_band *band = &iwn_bands[n];
2314         struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2315         uint8_t chan;
2316         int i;
2317 
2318         iwn_read_prom_data(sc, addr, channels,
2319             band->nchan * sizeof (struct iwn_eeprom_chan));
2320 
2321         for (i = 0; i < band->nchan; i++) {
2322                 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
2323                         continue;
2324 
2325                 chan = band->chan[i];
2326 
2327                 if (n == 0) {   /* 2GHz band */
2328                         ic->ic_sup_channels[chan].ich_freq =
2329                             ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2330                         ic->ic_sup_channels[chan].ich_flags =
2331                             IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2332                             IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2333 
2334                 } else {        /* 5GHz band */
2335                         /*
2336                          * Some adapters support channels 7, 8, 11 and 12
2337                          * both in the 2GHz and 4.9GHz bands.
2338                          * Because of limitations in our net80211 layer,
2339                          * we don't support them in the 4.9GHz band.
2340                          */
2341                         if (chan <= 14)
2342                                 continue;
2343 
2344                         ic->ic_sup_channels[chan].ich_freq =
2345                             ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2346                         ic->ic_sup_channels[chan].ich_flags =
2347                             IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM;
2348                         /* We have at least one valid 5GHz channel. */
2349                         sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
2350                 }
2351 
2352                 /* Is active scan allowed on this channel? */
2353                 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
2354                         ic->ic_sup_channels[chan].ich_flags |=
2355                             IEEE80211_CHAN_PASSIVE;
2356                 }
2357 
2358                 /* Save maximum allowed TX power for this channel. */
2359                 sc->maxpwr[chan] = channels[i].maxpwr;
2360 
2361                 IWN_DBG("adding chan %d flags=0x%x maxpwr=%d",
2362                     chan, channels[i].flags, sc->maxpwr[chan]);
2363         }
2364 }
2365 
2366 static void
2367 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2368 {
2369         struct iwn_eeprom_enhinfo enhinfo[35];
2370         uint16_t val, base;
2371         int8_t maxpwr;
2372         int i;
2373 
2374         iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2375         base = le16toh(val);
2376         iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2377             enhinfo, sizeof enhinfo);
2378 
2379         memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
2380         for (i = 0; i < __arraycount(enhinfo); i++) {
2381                 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
2382                         continue;       /* Skip invalid entries. */
2383 
2384                 maxpwr = 0;
2385                 if (sc->txchainmask & IWN_ANT_A)
2386                         maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2387                 if (sc->txchainmask & IWN_ANT_B)
2388                         maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2389                 if (sc->txchainmask & IWN_ANT_C)
2390                         maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2391                 if (sc->ntxchains == 2)
2392                         maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2393                 else if (sc->ntxchains == 3)
2394                         maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2395                 maxpwr /= 2;    /* Convert half-dBm to dBm. */
2396 
2397                 IWN_DBG("enhinfo %d, maxpwr=%d", i, maxpwr);
2398                 sc->enh_maxpwr[i] = maxpwr;
2399         }
2400 }
2401 
2402 static struct ieee80211_node *
2403 iwn_node_alloc(ieee80211com_t *ic)
2404 {
2405         _NOTE(ARGUNUSED(ic));
2406         return (kmem_zalloc(sizeof (struct iwn_node), KM_NOSLEEP));
2407 }
2408 
2409 static void
2410 iwn_node_free(ieee80211_node_t *in)
2411 {
2412         ASSERT(in != NULL);
2413         ASSERT(in->in_ic != NULL);
2414 
2415         if (in->in_wpa_ie != NULL)
2416                 ieee80211_free(in->in_wpa_ie);
2417 
2418         if (in->in_wme_ie != NULL)
2419                 ieee80211_free(in->in_wme_ie);
2420 
2421         if (in->in_htcap_ie != NULL)
2422                 ieee80211_free(in->in_htcap_ie);
2423 
2424         kmem_free(in, sizeof (struct iwn_node));
2425 }
2426 
2427 static void
2428 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2429 {
2430         _NOTE(ARGUNUSED(isnew));
2431         struct iwn_softc *sc = (struct iwn_softc *)&ni->in_ic;
2432         struct iwn_node *wn = (void *)ni;
2433         uint8_t rate, ridx;
2434         int i;
2435 
2436         ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
2437         /*
2438          * Select a medium rate and depend on AMRR to raise/lower it.
2439          */
2440         ni->in_txrate = ni->in_rates.ir_nrates / 2;
2441 
2442         for (i = 0; i < ni->in_rates.ir_nrates; i++) {
2443                 rate = ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL;
2444                 /* Map 802.11 rate to HW rate index. */
2445                 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
2446                         if (iwn_rates[ridx].rate == rate)
2447                                 break;
2448                 wn->ridx[i] = ridx;
2449         }
2450 }
2451 
2452 static int
2453 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2454 {
2455         struct iwn_softc *sc = (struct iwn_softc *)ic;
2456         enum ieee80211_state ostate;
2457         int error;
2458 
2459         mutex_enter(&sc->sc_mtx);
2460         sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO;
2461         mutex_exit(&sc->sc_mtx);
2462 
2463         (void) untimeout(sc->calib_to);
2464         sc->calib_to = 0;
2465 
2466         mutex_enter(&sc->sc_mtx);
2467         ostate = ic->ic_state;
2468 
2469         DTRACE_PROBE5(new__state, int, sc->sc_flags,
2470             enum ieee80211_state, ostate,
2471             const char *, ieee80211_state_name[ostate],
2472             enum ieee80211_state, nstate,
2473             const char *, ieee80211_state_name[nstate]);
2474 
2475         if ((sc->sc_flags & IWN_FLAG_RADIO_OFF) && nstate != IEEE80211_S_INIT) {
2476                 mutex_exit(&sc->sc_mtx);
2477                 return (IWN_FAIL);
2478         }
2479 
2480         if (!(sc->sc_flags & IWN_FLAG_HW_INITED) &&
2481             nstate != IEEE80211_S_INIT) {
2482                 mutex_exit(&sc->sc_mtx);
2483                 return (IWN_FAIL);
2484         }
2485 
2486         switch (nstate) {
2487         case IEEE80211_S_SCAN:
2488                 /* XXX Do not abort a running scan. */
2489                 if (sc->sc_flags & IWN_FLAG_SCANNING) {
2490                         if (ostate != nstate)
2491                                 dev_err(sc->sc_dip, CE_WARN, "!scan request(%d)"
2492                                     " while scanning(%d) ignored", nstate,
2493                                     ostate);
2494                         mutex_exit(&sc->sc_mtx);
2495                         return (0);
2496                 }
2497 
2498                 bcopy(&sc->rxon, &sc->rxon_save, sizeof (sc->rxon));
2499                 sc->sc_ostate = ostate;
2500 
2501                 /* XXX Not sure if call and flags are needed. */
2502                 ieee80211_node_table_reset(&ic->ic_scan);
2503                 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
2504                 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
2505 
2506                 /* Make the link LED blink while we're scanning. */
2507                 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
2508 
2509                 ic->ic_state = nstate;
2510 
2511                 error = iwn_scan(sc, IEEE80211_CHAN_2GHZ);
2512                 if (error != 0) {
2513                         dev_err(sc->sc_dip, CE_WARN,
2514                             "!could not initiate scan");
2515                         sc->sc_flags &= ~IWN_FLAG_SCANNING;
2516                         mutex_exit(&sc->sc_mtx);
2517                         return (error);
2518                 }
2519 
2520                 mutex_exit(&sc->sc_mtx);
2521                 sc->scan_to = timeout(iwn_abort_scan, sc, iwn_scan_timeout *
2522                     drv_usectohz(MICROSEC));
2523                 return (error);
2524 
2525         case IEEE80211_S_ASSOC:
2526                 if (ostate != IEEE80211_S_RUN) {
2527                         mutex_exit(&sc->sc_mtx);
2528                         break;
2529                 }
2530                 /* FALLTHROUGH */
2531         case IEEE80211_S_AUTH:
2532                 /* Reset state to handle reassociations correctly. */
2533                 sc->rxon.associd = 0;
2534                 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2535                 sc->calib.state = IWN_CALIB_STATE_INIT;
2536 
2537                 if ((error = iwn_auth(sc)) != 0) {
2538                         mutex_exit(&sc->sc_mtx);
2539                         dev_err(sc->sc_dip, CE_WARN,
2540                             "!could not move to auth state");
2541                         return error;
2542                 }
2543                 mutex_exit(&sc->sc_mtx);
2544                 break;
2545 
2546         case IEEE80211_S_RUN:
2547                 if ((error = iwn_run(sc)) != 0) {
2548                         mutex_exit(&sc->sc_mtx);
2549                         dev_err(sc->sc_dip, CE_WARN,
2550                             "!could not move to run state");
2551                         return error;
2552                 }
2553                 mutex_exit(&sc->sc_mtx);
2554                 break;
2555 
2556         case IEEE80211_S_INIT:
2557                 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2558                 sc->calib.state = IWN_CALIB_STATE_INIT;
2559 
2560                 /*
2561                  * set LED off after init
2562                  */
2563                 iwn_set_led(sc, IWN_LED_LINK, 1, 0);
2564 
2565                 cv_signal(&sc->sc_scan_cv);
2566                 mutex_exit(&sc->sc_mtx);
2567                 if (sc->scan_to != 0)
2568                         (void) untimeout(sc->scan_to);
2569                 sc->scan_to = 0;
2570                 break;
2571         }
2572 
2573         error = sc->sc_newstate(ic, nstate, arg);
2574 
2575         if (nstate == IEEE80211_S_RUN)
2576                 ieee80211_start_watchdog(ic, 1);
2577 
2578         return (error);
2579 }
2580 
2581 static void
2582 iwn_iter_func(void *arg, struct ieee80211_node *ni)
2583 {
2584         struct iwn_softc *sc = arg;
2585         struct iwn_node *wn = (struct iwn_node *)ni;
2586 
2587         ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2588 }
2589 
2590 static void
2591 iwn_calib_timeout(void *arg)
2592 {
2593         struct iwn_softc *sc = arg;
2594         struct ieee80211com *ic = &sc->sc_ic;
2595 
2596         mutex_enter(&sc->sc_mtx);
2597 
2598         if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2599                 if (ic->ic_opmode == IEEE80211_M_STA)
2600                         iwn_iter_func(sc, ic->ic_bss);
2601                 else
2602                         ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
2603         }
2604         /* Force automatic TX power calibration every 60 secs. */
2605         if (++sc->calib_cnt >= 120) {
2606                 uint32_t flags = 0;
2607 
2608                 DTRACE_PROBE(get__statistics);
2609                 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2610                     sizeof flags, 1);
2611                 sc->calib_cnt = 0;
2612         }
2613 
2614         /* Automatic rate control triggered every 500ms. */
2615         if ((sc->sc_flags & IWN_FLAG_STOP_CALIB_TO) == 0)
2616                 sc->calib_to = timeout(iwn_calib_timeout, sc,
2617                     drv_usectohz(500000));
2618 
2619         mutex_exit(&sc->sc_mtx);
2620 }
2621 
2622 /*
2623  * Process an RX_PHY firmware notification.  This is usually immediately
2624  * followed by an MPDU_RX_DONE notification.
2625  */
2626 static void
2627 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2628     struct iwn_rx_data *data)
2629 {
2630         struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2631 
2632         (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
2633             sizeof (*stat), DDI_DMA_SYNC_FORKERNEL);
2634 
2635         DTRACE_PROBE1(rx__phy, struct iwn_rx_stat *, stat);
2636 
2637         /* Save RX statistics, they will be used on MPDU_RX_DONE. */
2638         memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2639         sc->last_rx_valid = 1;
2640 }
2641 
2642 /*
2643  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2644  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2645  */
2646 static void
2647 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2648     struct iwn_rx_data *data)
2649 {
2650         struct iwn_ops *ops = &sc->ops;
2651         struct ieee80211com *ic = &sc->sc_ic;
2652         struct iwn_rx_ring *ring = &sc->rxq;
2653         struct ieee80211_frame *wh;
2654         struct ieee80211_node *ni;
2655         mblk_t *m;
2656         struct iwn_rx_stat *stat;
2657         char    *head;
2658         uint32_t flags;
2659         int len, rssi;
2660 
2661         if (desc->type == IWN_MPDU_RX_DONE) {
2662                 /* Check for prior RX_PHY notification. */
2663                 if (!sc->last_rx_valid) {
2664                         dev_err(sc->sc_dip, CE_WARN,
2665                             "missing RX_PHY");
2666                         return;
2667                 }
2668                 sc->last_rx_valid = 0;
2669                 stat = &sc->last_rx_stat;
2670         } else
2671                 stat = (struct iwn_rx_stat *)(desc + 1);
2672 
2673         (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0,
2674             DDI_DMA_SYNC_FORKERNEL);
2675 
2676         if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2677                 dev_err(sc->sc_dip, CE_WARN,
2678                     "!invalid RX statistic header");
2679                 return;
2680         }
2681         if (desc->type == IWN_MPDU_RX_DONE) {
2682                 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2683                 head = (char *)(mpdu + 1);
2684                 len = le16toh(mpdu->len);
2685         } else {
2686                 head = (char *)(stat + 1) + stat->cfg_phy_len;
2687                 len = le16toh(stat->len);
2688         }
2689         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2690         flags = le32toh(*(uint32_t *)(head + len));
2691 
2692         /* Discard frames with a bad FCS early. */
2693         if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2694                 sc->sc_rx_err++;
2695                 ic->ic_stats.is_fcs_errors++;
2696                 return;
2697         }
2698         /* Discard frames that are too short. */
2699         if (len < sizeof (*wh)) {
2700                 sc->sc_rx_err++;
2701                 return;
2702         }
2703 
2704         m = allocb(len, BPRI_MED);
2705         if (m == NULL) {
2706                 sc->sc_rx_nobuf++;
2707                 return;
2708         }
2709 
2710         /* Update RX descriptor. */
2711         ring->desc[ring->cur] =
2712             htole32(data->dma_data.paddr >> 8);
2713         (void) ddi_dma_sync(ring->desc_dma.dma_hdl,
2714             ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2715             DDI_DMA_SYNC_FORDEV);
2716 
2717         /* Grab a reference to the source node. */
2718         wh = (struct ieee80211_frame*)head;
2719         ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame *)wh);
2720 
2721         /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2722         /* NetBSD does decryption in ieee80211_input. */
2723 
2724         rssi = ops->get_rssi(stat);
2725 
2726         /*
2727          * convert dBm to percentage
2728          */
2729         rssi = (100 * 75 * 75 - (-20 - rssi) * (15 * 75 + 62 * (-20 - rssi)))
2730             / (75 * 75);
2731         if (rssi > 100)
2732                 rssi = 100;
2733         else if (rssi < 1)
2734                 rssi = 1;
2735 
2736         bcopy(wh, m->b_wptr, len);
2737         m->b_wptr += len;
2738 
2739         /* XXX Added for NetBSD: scans never stop without it */
2740         if (ic->ic_state == IEEE80211_S_SCAN)
2741                 iwn_fix_channel(sc, m, stat);
2742 
2743         /* Send the frame to the 802.11 layer. */
2744         ieee80211_input(ic, m, ni, rssi, 0);
2745 
2746         /* Node is no longer needed. */
2747         ieee80211_free_node(ni);
2748 }
2749 
2750 #ifndef IEEE80211_NO_HT
2751 /* Process an incoming Compressed BlockAck. */
2752 static void
2753 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2754     struct iwn_rx_data *data)
2755 {
2756         struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2757         struct iwn_tx_ring *txq;
2758 
2759         (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
2760             sizeof (*ba), DDI_DMA_SYNC_FORKERNEL);
2761 
2762         txq = &sc->txq[le16toh(ba->qid)];
2763         /* XXX TBD */
2764 }
2765 #endif
2766 
2767 /*
2768  * Process a CALIBRATION_RESULT notification sent by the initialization
2769  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2770  */
2771 static void
2772 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2773     struct iwn_rx_data *data)
2774 {
2775         struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2776         int len, idx = -1;
2777 
2778         /* Runtime firmware should not send such a notification. */
2779         if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2780                 return;
2781 
2782         len = (le32toh(desc->len) & 0x3fff) - 4;
2783         (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), len,
2784             DDI_DMA_SYNC_FORKERNEL);
2785 
2786         switch (calib->code) {
2787         case IWN5000_PHY_CALIB_DC:
2788                 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2789                     sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2790                     sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2791                     sc->hw_type == IWN_HW_REV_TYPE_135  ||
2792                     sc->hw_type == IWN_HW_REV_TYPE_105)
2793                         idx = 0;
2794                 break;
2795         case IWN5000_PHY_CALIB_LO:
2796                 idx = 1;
2797                 break;
2798         case IWN5000_PHY_CALIB_TX_IQ:
2799                 idx = 2;
2800                 break;
2801         case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2802                 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2803                     sc->hw_type != IWN_HW_REV_TYPE_5150)
2804                         idx = 3;
2805                 break;
2806         case IWN5000_PHY_CALIB_BASE_BAND:
2807                 idx = 4;
2808                 break;
2809         }
2810         if (idx == -1)  /* Ignore other results. */
2811                 return;
2812 
2813         /* Save calibration result. */
2814         if (sc->calibcmd[idx].buf != NULL)
2815                 kmem_free(sc->calibcmd[idx].buf, sc->calibcmd[idx].len);
2816         sc->calibcmd[idx].buf = kmem_zalloc(len, KM_NOSLEEP);
2817         if (sc->calibcmd[idx].buf == NULL) {
2818                 return;
2819         }
2820         sc->calibcmd[idx].len = len;
2821         memcpy(sc->calibcmd[idx].buf, calib, len);
2822 }
2823 
2824 /*
2825  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2826  * The latter is sent by the firmware after each received beacon.
2827  */
2828 static void
2829 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2830     struct iwn_rx_data *data)
2831 {
2832         struct iwn_ops *ops = &sc->ops;
2833         struct ieee80211com *ic = &sc->sc_ic;
2834         struct iwn_calib_state *calib = &sc->calib;
2835         struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2836         int temp = 0;
2837 
2838         /* Ignore statistics received during a scan. */
2839         if (ic->ic_state != IEEE80211_S_RUN)
2840                 return;
2841 
2842         (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
2843             sizeof (*stats), DDI_DMA_SYNC_FORKERNEL);
2844 
2845         sc->calib_cnt = 0;   /* Reset TX power calibration timeout. */
2846 
2847         /* Test if temperature has changed. */
2848         if (stats->general.temp != sc->rawtemp) {
2849                 /* Convert "raw" temperature to degC. */
2850                 sc->rawtemp = stats->general.temp;
2851                 temp = ops->get_temperature(sc);
2852                 sc->sc_misc->temp.value.ul = temp;
2853 
2854                 /* Update TX power if need be (4965AGN only). */
2855                 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2856                         iwn4965_power_calibration(sc, temp);
2857         }
2858 
2859         DTRACE_PROBE2(rx__statistics, struct iwn_stats *, stats, int, temp);
2860 
2861         if (desc->type != IWN_BEACON_STATISTICS)
2862                 return; /* Reply to a statistics request. */
2863 
2864         sc->noise = iwn_get_noise(&stats->rx.general);
2865         sc->sc_misc->noise.value.l = sc->noise;
2866 
2867         /* Test that RSSI and noise are present in stats report. */
2868         if (le32toh(stats->rx.general.flags) != 1) {
2869                 return;
2870         }
2871 
2872         /*
2873          * XXX Differential gain calibration makes the 6005 firmware
2874          * crap out, so skip it for now.  This effectively disables
2875          * sensitivity tuning as well.
2876          */
2877         if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2878                 return;
2879 
2880         if (calib->state == IWN_CALIB_STATE_ASSOC)
2881                 iwn_collect_noise(sc, &stats->rx.general);
2882         else if (calib->state == IWN_CALIB_STATE_RUN)
2883                 iwn_tune_sensitivity(sc, &stats->rx);
2884 }
2885 
2886 /*
2887  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2888  * and 5000 adapters have different incompatible TX status formats.
2889  */
2890 static void
2891 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2892     struct iwn_rx_data *data)
2893 {
2894         struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2895 
2896         (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
2897             sizeof (*stat), DDI_DMA_SYNC_FORKERNEL);
2898         iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2899 }
2900 
2901 static void
2902 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2903     struct iwn_rx_data *data)
2904 {
2905         struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2906 
2907 #ifdef notyet
2908         /* Reset TX scheduler slot. */
2909         iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2910 #endif
2911 
2912         (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
2913             sizeof (*stat), DDI_DMA_SYNC_FORKERNEL);
2914         iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2915 }
2916 
2917 /*
2918  * Adapter-independent backend for TX_DONE firmware notifications.
2919  */
2920 static void
2921 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2922     uint8_t status)
2923 {
2924         struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2925         struct iwn_tx_data *data = &ring->data[desc->idx];
2926         struct iwn_node *wn = (struct iwn_node *)data->ni;
2927 
2928         /* Update rate control statistics. */
2929         wn->amn.amn_txcnt++;
2930         if (ackfailcnt > 0)
2931                 wn->amn.amn_retrycnt++;
2932 
2933         if (status != 1 && status != 2)
2934                 sc->sc_tx_err++;
2935         else
2936                 sc->sc_ic.ic_stats.is_tx_frags++;
2937 
2938         ieee80211_free_node(data->ni);
2939         data->ni = NULL;
2940 
2941         mutex_enter(&sc->sc_tx_mtx);
2942         sc->sc_tx_timer = 0;
2943         if (--ring->queued < IWN_TX_RING_LOMARK) {
2944                 sc->qfullmsk &= ~(1 << ring->qid);
2945         }
2946         mac_tx_update(sc->sc_ic.ic_mach);
2947         mutex_exit(&sc->sc_tx_mtx);
2948 }
2949 
2950 /*
2951  * Process a "command done" firmware notification.  This is where we wakeup
2952  * processes waiting for a synchronous command completion.
2953  */
2954 static void
2955 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2956 {
2957         struct iwn_tx_ring *ring = &sc->txq[IWN_CMD_QUEUE_NUM];
2958         struct iwn_tx_data *data;
2959 
2960         if ((desc->qid & 0xf) != IWN_CMD_QUEUE_NUM)
2961                 return; /* Not a command ack. */
2962 
2963         data = &ring->data[desc->idx];
2964 
2965         (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
2966 
2967         /* If the command was mapped in an extra buffer, free it. */
2968         if (data->cmd_dma.dma_hdl) {
2969                 (void) ddi_dma_sync(data->cmd_dma.dma_hdl, 0, 0,
2970                     DDI_DMA_SYNC_FORDEV);
2971                 iwn_dma_contig_free(&data->cmd_dma);
2972         }
2973 
2974         mutex_enter(&sc->sc_mtx);
2975         sc->sc_cmd_flag = SC_CMD_FLG_DONE;
2976         cv_signal(&sc->sc_cmd_cv);
2977         mutex_exit(&sc->sc_mtx);
2978 }
2979 
2980 /*
2981  * Process an INT_FH_RX or INT_SW_RX interrupt.
2982  */
2983 static void
2984 iwn_notif_intr(struct iwn_softc *sc)
2985 {
2986         struct iwn_ops *ops = &sc->ops;
2987         struct ieee80211com *ic = &sc->sc_ic;
2988         uint16_t hw;
2989 
2990         ASSERT(sc != NULL);
2991 
2992         (void) ddi_dma_sync(sc->rxq.stat_dma.dma_hdl, 0, 0,
2993             DDI_DMA_SYNC_FORKERNEL);
2994 
2995         hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2996         while (sc->rxq.cur != hw) {
2997                 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2998                 struct iwn_rx_desc *desc;
2999 
3000                 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, sizeof (*desc),
3001                     DDI_DMA_SYNC_FORKERNEL);
3002                 desc = (struct iwn_rx_desc *)data->dma_data.vaddr;
3003 
3004                 DTRACE_PROBE1(notification__intr, struct iwn_rx_desc *, desc);
3005 
3006                 if (!(desc->qid & 0x80)) /* Reply to a command. */
3007                         iwn_cmd_done(sc, desc);
3008 
3009                 switch (desc->type) {
3010                 case IWN_RX_PHY:
3011                         iwn_rx_phy(sc, desc, data);
3012                         break;
3013 
3014                 case IWN_RX_DONE:               /* 4965AGN only. */
3015                 case IWN_MPDU_RX_DONE:
3016                         /* An 802.11 frame has been received. */
3017                         iwn_rx_done(sc, desc, data);
3018                         break;
3019 #ifndef IEEE80211_NO_HT
3020                 case IWN_RX_COMPRESSED_BA:
3021                         /* A Compressed BlockAck has been received. */
3022                         iwn_rx_compressed_ba(sc, desc, data);
3023                         break;
3024 #endif
3025                 case IWN_TX_DONE:
3026                         /* An 802.11 frame has been transmitted. */
3027                         ops->tx_done(sc, desc, data);
3028                         break;
3029 
3030                 case IWN_RX_STATISTICS:
3031                 case IWN_BEACON_STATISTICS:
3032                         mutex_enter(&sc->sc_mtx);
3033                         iwn_rx_statistics(sc, desc, data);
3034                         mutex_exit(&sc->sc_mtx);
3035                         break;
3036 
3037                 case IWN_BEACON_MISSED:
3038                 {
3039                         struct iwn_beacon_missed *miss =
3040                             (struct iwn_beacon_missed *)(desc + 1);
3041 
3042                         (void) ddi_dma_sync(data->dma_data.dma_hdl,
3043                             sizeof (*desc), sizeof (*miss),
3044                             DDI_DMA_SYNC_FORKERNEL);
3045                         /*
3046                          * If more than iwn_beacons_missed_disconnect
3047                          * consecutive beacons are missed, we've probably lost
3048                          * our connection.
3049                          * If more than iwn_beacons_missed_sensitivity
3050                          * consecutive beacons are missed, reinitialize the
3051                          * sensitivity state machine.
3052                          */
3053                         DTRACE_PROBE1(beacons__missed,
3054                             struct iwn_beacon_missed *, miss);
3055                         if (ic->ic_state == IEEE80211_S_RUN) {
3056                                 if (le32toh(miss->consecutive)
3057                                     > iwn_beacons_missed_disconnect) {
3058                                         dev_err(sc->sc_dip, CE_WARN,
3059                                             "!iwn_notif_intr(): %d consecutive "
3060                                             "beacons missed, disconnecting",
3061                                             le32toh(miss->consecutive));
3062                                         ieee80211_new_state(ic,
3063                                             IEEE80211_S_INIT, -1);
3064                                 } else if (le32toh(miss->consecutive)
3065                                     > iwn_beacons_missed_sensitivity) {
3066                                         mutex_enter(&sc->sc_mtx);
3067                                         (void)iwn_init_sensitivity(sc);
3068                                         mutex_exit(&sc->sc_mtx);
3069                                 }
3070                         }
3071                         break;
3072                 }
3073                 case IWN_UC_READY:
3074                 {
3075                         struct iwn_ucode_info *uc =
3076                             (struct iwn_ucode_info *)(desc + 1);
3077 
3078                         /* The microcontroller is ready. */
3079                         (void) ddi_dma_sync(data->dma_data.dma_hdl,
3080                             sizeof (*desc), sizeof (*uc),
3081                             DDI_DMA_SYNC_FORKERNEL);
3082                         DTRACE_PROBE1(uc__ready, struct iwn_ucode_info *, uc)
3083 
3084                         if (le32toh(uc->valid) != 1) {
3085                                 dev_err(sc->sc_dip, CE_WARN,
3086                                     "!microcontroller initialization failed");
3087                                 break;
3088                         }
3089                         if (uc->subtype == IWN_UCODE_INIT) {
3090                                 /* Save microcontroller report. */
3091                                 memcpy(&sc->ucode_info, uc, sizeof (*uc));
3092                         }
3093                         /* Save the address of the error log in SRAM. */
3094                         sc->errptr = le32toh(uc->errptr);
3095                         break;
3096                 }
3097                 case IWN_STATE_CHANGED:
3098                 {
3099                         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3100                         uint32_t *status = (uint32_t *)(desc + 1);
3101 
3102                         /* Enabled/disabled notification. */
3103                         (void) ddi_dma_sync(data->dma_data.dma_hdl,
3104                             sizeof (*desc), sizeof (*status),
3105                             DDI_DMA_SYNC_FORKERNEL);
3106                         DTRACE_PROBE1(state__changed, uint32_t, *status);
3107 
3108                         if (le32toh(*status) & 1) {
3109                                 /* The radio button has to be pushed. */
3110                                 dev_err(sc->sc_dip, CE_WARN,
3111                                     "!Radio transmitter is off");
3112                                 /* Turn the interface down. */
3113                                 mutex_enter(&sc->sc_mtx);
3114                                 sc->sc_flags |=
3115                                     IWN_FLAG_HW_ERR_RECOVER |
3116                                     IWN_FLAG_RADIO_OFF;
3117                                 mutex_exit(&sc->sc_mtx);
3118                                 ieee80211_new_state(&sc->sc_ic,
3119                                     IEEE80211_S_INIT, -1);
3120 
3121                                 return; /* No further processing. */
3122                         }
3123                         break;
3124                 }
3125                 case IWN_START_SCAN:
3126                 {
3127                         struct iwn_start_scan *scan =
3128                             (struct iwn_start_scan *)(desc + 1);
3129 
3130                         (void) ddi_dma_sync(data->dma_data.dma_hdl,
3131                             sizeof (*desc), sizeof (*scan),
3132                             DDI_DMA_SYNC_FORKERNEL);
3133                         DTRACE_PROBE2(start__scan, uint8_t, scan->chan,
3134                             uint32_t, le32toh(scan->status));
3135 
3136                         /* Fix current channel. */
3137                         ic->ic_curchan = ic->ic_bss->in_chan =
3138                             &ic->ic_sup_channels[scan->chan];
3139                         break;
3140                 }
3141                 case IWN_STOP_SCAN:
3142                 {
3143                         struct iwn_stop_scan *scan =
3144                             (struct iwn_stop_scan *)(desc + 1);
3145 
3146                         (void) ddi_dma_sync(data->dma_data.dma_hdl,
3147                             sizeof (*desc), sizeof (*scan),
3148                             DDI_DMA_SYNC_FORKERNEL);
3149                         DTRACE_PROBE3(stop__scan, uint8_t, scan->chan,
3150                             uint32_t, le32toh(scan->status),
3151                             uint8_t, scan->nchan);
3152 
3153                         if (iwn_enable_5ghz != 0 &&
3154                             (sc->sc_flags & IWN_FLAG_SCANNING_2GHZ) &&
3155                             (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
3156                                 /*
3157                                  * We just finished scanning 2GHz channels,
3158                                  * start scanning 5GHz ones.
3159                                  */
3160                                 mutex_enter(&sc->sc_mtx);
3161                                 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
3162                                 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
3163                                 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) {
3164                                         mutex_exit(&sc->sc_mtx);
3165                                         break;
3166                                 }
3167                                 mutex_exit(&sc->sc_mtx);
3168                         }
3169                         ieee80211_end_scan(ic);
3170                         mutex_enter(&sc->sc_mtx);
3171                         sc->sc_flags &= ~IWN_FLAG_SCANNING;
3172                         cv_signal(&sc->sc_scan_cv);
3173                         mutex_exit(&sc->sc_mtx);
3174                         (void) untimeout(sc->scan_to);
3175                         sc->scan_to = 0;
3176                         break;
3177                 }
3178                 case IWN5000_CALIBRATION_RESULT:
3179                         iwn5000_rx_calib_results(sc, desc, data);
3180                         break;
3181 
3182                 case IWN5000_CALIBRATION_DONE:
3183                         mutex_enter(&sc->sc_mtx);
3184                         sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3185                         cv_signal(&sc->sc_calib_cv);
3186                         mutex_exit(&sc->sc_mtx);
3187                         break;
3188                 }
3189 
3190                 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3191         }
3192 
3193         /* Tell the firmware what we have processed. */
3194         hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3195         IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3196 }
3197 
3198 /*
3199  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3200  * from power-down sleep mode.
3201  */
3202 static void
3203 iwn_wakeup_intr(struct iwn_softc *sc)
3204 {
3205         int qid;
3206 
3207         DTRACE_PROBE(wakeup__intr);
3208 
3209         /* Wakeup RX and TX rings. */
3210         IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3211         for (qid = 0; qid < sc->ntxqs; qid++) {
3212                 struct iwn_tx_ring *ring = &sc->txq[qid];
3213                 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3214         }
3215 }
3216 
3217 /*
3218  * Dump the error log of the firmware when a firmware panic occurs.  Although
3219  * we can't debug the firmware because it is neither open source nor free, it
3220  * can help us to identify certain classes of problems.
3221  */
3222 static void
3223 iwn_fatal_intr(struct iwn_softc *sc)
3224 {
3225         struct iwn_fw_dump dump;
3226         int i;
3227 
3228         /* Force a complete recalibration on next init. */
3229         sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3230 
3231         /* Check that the error log address is valid. */
3232         if (sc->errptr < IWN_FW_DATA_BASE ||
3233             sc->errptr + sizeof (dump) >
3234             IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3235                 dev_err(sc->sc_dip, CE_WARN,
3236                     "!bad firmware error log address 0x%08x", sc->errptr);
3237                 return;
3238         }
3239         if (iwn_nic_lock(sc) != 0) {
3240                 dev_err(sc->sc_dip, CE_WARN,
3241                     "!could not read firmware error log");
3242                 return;
3243         }
3244         /* Read firmware error log from SRAM. */
3245         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3246         iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3247             sizeof (dump) / sizeof (uint32_t));
3248         iwn_nic_unlock(sc);
3249 
3250         if (dump.valid == 0) {
3251                 dev_err(sc->sc_dip, CE_WARN,
3252                     "!firmware error log is empty");
3253                 return;
3254         }
3255         dev_err(sc->sc_dip, CE_WARN, "!firmware error log:");
3256         dev_err(sc->sc_dip, CE_CONT, "!  error type      = \"%s\" (0x%08X)",
3257             (dump.id < __arraycount(iwn_fw_errmsg)) ?
3258                 iwn_fw_errmsg[dump.id] : "UNKNOWN",
3259             dump.id);
3260         dev_err(sc->sc_dip, CE_CONT, "!  program counter = 0x%08X", dump.pc);
3261         dev_err(sc->sc_dip, CE_CONT, "!  source line     = 0x%08X",
3262             dump.src_line);
3263         dev_err(sc->sc_dip, CE_CONT, "!  error data      = 0x%08X%08X",
3264             dump.error_data[0], dump.error_data[1]);
3265         dev_err(sc->sc_dip, CE_CONT, "!  branch link     = 0x%08X%08X",
3266             dump.branch_link[0], dump.branch_link[1]);
3267         dev_err(sc->sc_dip, CE_CONT, "!  interrupt link  = 0x%08X%08X",
3268             dump.interrupt_link[0], dump.interrupt_link[1]);
3269         dev_err(sc->sc_dip, CE_CONT, "!  time            = %u", dump.time[0]);
3270 
3271         /* Dump driver status (TX and RX rings) while we're here. */
3272         dev_err(sc->sc_dip, CE_WARN, "!driver status:");
3273         for (i = 0; i < sc->ntxqs; i++) {
3274                 struct iwn_tx_ring *ring = &sc->txq[i];
3275                 dev_err(sc->sc_dip, CE_WARN,
3276                     "!  tx ring %2d: qid=%2d cur=%3d queued=%3d",
3277                     i, ring->qid, ring->cur, ring->queued);
3278         }
3279         dev_err(sc->sc_dip, CE_WARN, "!  rx ring: cur=%d", sc->rxq.cur);
3280         dev_err(sc->sc_dip, CE_WARN, "!  802.11 state %d", sc->sc_ic.ic_state);
3281 }
3282 
3283 /*ARGSUSED1*/
3284 static uint_t
3285 iwn_intr(caddr_t arg, caddr_t unused)
3286 {
3287         _NOTE(ARGUNUSED(unused));
3288         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3289         struct iwn_softc *sc = (struct iwn_softc *)arg;
3290         uint32_t r1, r2, tmp;
3291 
3292         if (sc == NULL)
3293                 return (DDI_INTR_UNCLAIMED);
3294 
3295         /* Disable interrupts. */
3296         IWN_WRITE(sc, IWN_INT_MASK, 0);
3297 
3298         /* Read interrupts from ICT (fast) or from registers (slow). */
3299         if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3300                 (void) ddi_dma_sync(sc->ict_dma.dma_hdl, 0, 0,
3301                     DDI_DMA_SYNC_FORKERNEL);
3302                 tmp = 0;
3303                 while (sc->ict[sc->ict_cur] != 0) {
3304                         tmp |= sc->ict[sc->ict_cur];
3305                         sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
3306                         sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3307                 }
3308                 (void) ddi_dma_sync(sc->ict_dma.dma_hdl, 0, 0,
3309                     DDI_DMA_SYNC_FORDEV);
3310                 tmp = le32toh(tmp);
3311                 if (tmp == 0xffffffff)  /* Shouldn't happen. */
3312                         tmp = 0;
3313                 else if (tmp & 0xc0000)     /* Workaround a HW bug. */
3314                         tmp |= 0x8000;
3315                 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3316                 r2 = 0; /* Unused. */
3317         } else {
3318                 r1 = IWN_READ(sc, IWN_INT);
3319                 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3320                         return (DDI_INTR_UNCLAIMED);    /* Hardware gone! */
3321                 r2 = IWN_READ(sc, IWN_FH_INT);
3322         }
3323         if (r1 == 0 && r2 == 0) {
3324                 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3325                 return (DDI_INTR_UNCLAIMED);    /* Interrupt not for us. */
3326         }
3327 
3328         /* Acknowledge interrupts. */
3329         IWN_WRITE(sc, IWN_INT, r1);
3330         if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3331                 IWN_WRITE(sc, IWN_FH_INT, r2);
3332 
3333         if (r1 & IWN_INT_RF_TOGGLED) {
3334                 tmp = IWN_READ(sc, IWN_GP_CNTRL);
3335                 dev_err(sc->sc_dip, CE_NOTE,
3336                     "!RF switch: radio %s",
3337                     (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3338         }
3339         if (r1 & IWN_INT_CT_REACHED) {
3340                 dev_err(sc->sc_dip, CE_WARN,
3341                     "!critical temperature reached!");
3342         }
3343         if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3344                 dev_err(sc->sc_dip, CE_WARN,
3345                     "!fatal firmware error");
3346                 /* Dump firmware error log and stop. */
3347                 iwn_fatal_intr(sc);
3348                 iwn_hw_stop(sc, B_TRUE);
3349                 if (!IWN_CHK_FAST_RECOVER(sc))
3350                         ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
3351                 mutex_enter(&sc->sc_mtx);
3352                 sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER;
3353                 mutex_exit(&sc->sc_mtx);
3354 
3355                 return (DDI_INTR_CLAIMED);
3356         }
3357         if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3358             (r2 & IWN_FH_INT_RX)) {
3359                 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3360                         int ena = (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX));
3361 
3362                         if (ena)
3363                                 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3364                         IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3365                             IWN_INT_PERIODIC_DIS);
3366                         iwn_notif_intr(sc);
3367                         if (ena)
3368                                 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3369                                     IWN_INT_PERIODIC_ENA);
3370                 } else {
3371                         iwn_notif_intr(sc);
3372                 }
3373         }
3374 
3375         if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3376                 if (sc->sc_flags & IWN_FLAG_USE_ICT)
3377                         IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3378                 mutex_enter(&sc->sc_mtx);
3379                 sc->sc_flags |= IWN_FLAG_FW_DMA;
3380                 cv_signal(&sc->sc_fhdma_cv);
3381                 mutex_exit(&sc->sc_mtx);
3382         }
3383 
3384         if (r1 & IWN_INT_ALIVE) {
3385                 mutex_enter(&sc->sc_mtx);
3386                 sc->sc_flags |= IWN_FLAG_FW_ALIVE;
3387                 cv_signal(&sc->sc_alive_cv);
3388                 mutex_exit(&sc->sc_mtx);
3389         }
3390 
3391         if (r1 & IWN_INT_WAKEUP)
3392                 iwn_wakeup_intr(sc);
3393 
3394         /* Re-enable interrupts. */
3395         IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3396         return (DDI_INTR_CLAIMED);
3397 }
3398 
3399 /*
3400  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3401  * 5000 adapters use a slightly different format).
3402  */
3403 static void
3404 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3405     uint16_t len)
3406 {
3407         _NOTE(ARGUNUSED(id));
3408         int w_idx = qid * IWN4965_SCHED_COUNT + idx;
3409         uint16_t *w = &sc->sched[w_idx];
3410 
3411         *w = htole16(len + 8);
3412         (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t),
3413             sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
3414         if (idx < IWN_SCHED_WINSZ) {
3415                 *(w + IWN_TX_RING_COUNT) = *w;
3416                 (void) ddi_dma_sync(sc->sched_dma.dma_hdl,
3417                     (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t),
3418                     sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
3419         }
3420 }
3421 
3422 static void
3423 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3424     uint16_t len)
3425 {
3426         int w_idx = qid * IWN5000_SCHED_COUNT + idx;
3427         uint16_t *w = &sc->sched[w_idx];
3428 
3429         *w = htole16(id << 12 | (len + 8));
3430         (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t),
3431             sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
3432         if (idx < IWN_SCHED_WINSZ) {
3433                 *(w + IWN_TX_RING_COUNT) = *w;
3434                 (void) ddi_dma_sync(sc->sched_dma.dma_hdl,
3435                     (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t),
3436                     sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
3437         }
3438 }
3439 
3440 #ifdef notyet
3441 static void
3442 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3443 {
3444         int w_idx = qid * IWN5000_SCHED_COUNT + idx;
3445         uint16_t *w = &sc->sched[w_idx];
3446 
3447         *w = (*w & htole16(0xf000)) | htole16(1);
3448         (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t),
3449             sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
3450         if (idx < IWN_SCHED_WINSZ) {
3451                 *(w + IWN_TX_RING_COUNT) = *w;
3452                 (void) ddi_dma_sync(sc->sched_dma.dma_hdl,
3453                     (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t),
3454                     sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
3455         }
3456 }
3457 #endif
3458 
3459 /*
3460  * This function is only for compatibility with Net80211 module.
3461  * iwn_qosparam_to_hw() is the actual function updating EDCA
3462  * parameters to hardware.
3463  */
3464 static int
3465 iwn_wme_update(struct ieee80211com *ic)
3466 {
3467         _NOTE(ARGUNUSED(ic));
3468         return (0);
3469 }
3470 
3471 static int
3472 iwn_wme_to_qos_ac(struct iwn_softc *sc, int wme_ac)
3473 {
3474         int qos_ac;
3475 
3476         switch (wme_ac) {
3477         case WME_AC_BE:
3478                 qos_ac = QOS_AC_BK;
3479                 break;
3480         case WME_AC_BK:
3481                 qos_ac = QOS_AC_BE;
3482                 break;
3483         case WME_AC_VI:
3484                 qos_ac = QOS_AC_VI;
3485                 break;
3486         case WME_AC_VO:
3487                 qos_ac = QOS_AC_VO;
3488                 break;
3489         default:
3490                 dev_err(sc->sc_dip, CE_WARN, "!iwn_wme_to_qos_ac(): "
3491                     "WME AC index is not in suitable range.\n");
3492                 qos_ac = QOS_AC_INVALID;
3493                 break;
3494         }
3495 
3496         return (qos_ac);
3497 }
3498 
3499 static uint16_t
3500 iwn_cw_e_to_cw(uint8_t cw_e)
3501 {
3502         uint16_t cw = 1;
3503 
3504         while (cw_e > 0) {
3505                 cw <<= 1;
3506                 cw_e--;
3507         }
3508 
3509         cw -= 1;
3510         return (cw);
3511 }
3512 
3513 static int
3514 iwn_wmeparam_check(struct iwn_softc *sc, struct wmeParams *wmeparam)
3515 {
3516         int i;
3517 
3518         for (i = 0; i < WME_NUM_AC; i++) {
3519 
3520                 if ((wmeparam[i].wmep_logcwmax > QOS_CW_RANGE_MAX) ||
3521                     (wmeparam[i].wmep_logcwmin >= wmeparam[i].wmep_logcwmax)) {
3522                         cmn_err(CE_WARN, "iwn_wmeparam_check(): "
3523                             "Contention window is not in suitable range.\n");
3524                         return (IWN_FAIL);
3525                 }
3526 
3527                 if ((wmeparam[i].wmep_aifsn < QOS_AIFSN_MIN) ||
3528                     (wmeparam[i].wmep_aifsn > QOS_AIFSN_MAX)) {
3529                         dev_err(sc->sc_dip, CE_WARN, "!iwn_wmeparam_check(): "
3530                             "Arbitration interframe space number"
3531                             "is not in suitable range.\n");
3532                         return (IWN_FAIL);
3533                 }
3534         }
3535 
3536         return (IWN_SUCCESS);
3537 }
3538 
3539 /*
3540  * This function updates EDCA parameters into hardware.
3541  * FIFO0-background, FIFO1-best effort, FIFO2-video, FIFO3-voice.
3542  */
3543 static int
3544 iwn_qosparam_to_hw(struct iwn_softc *sc, int async)
3545 {
3546         ieee80211com_t *ic = &sc->sc_ic;
3547         ieee80211_node_t *in = ic->ic_bss;
3548         struct wmeParams *wmeparam;
3549         struct iwn_edca_params edcaparam;
3550         int i, j;
3551         int err = IWN_FAIL;
3552 
3553         if ((in->in_flags & IEEE80211_NODE_QOS) &&
3554             (IEEE80211_M_STA == ic->ic_opmode)) {
3555                 wmeparam = ic->ic_wme.wme_chanParams.cap_wmeParams;
3556         } else {
3557                 return (IWN_SUCCESS);
3558         }
3559 
3560         (void) memset(&edcaparam, 0, sizeof (edcaparam));
3561 
3562         err = iwn_wmeparam_check(sc, wmeparam);
3563         if (err != IWN_SUCCESS) {
3564                 return (err);
3565         }
3566 
3567         if (in->in_flags & IEEE80211_NODE_QOS) {
3568                 edcaparam.flags |= QOS_PARAM_FLG_UPDATE_EDCA;
3569         }
3570 
3571         if (in->in_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)) {
3572                 edcaparam.flags |= QOS_PARAM_FLG_TGN;
3573         }
3574 
3575         for (i = 0; i < WME_NUM_AC; i++) {
3576 
3577                 j = iwn_wme_to_qos_ac(sc, i);
3578                 if (j < QOS_AC_BK || j > QOS_AC_VO) {
3579                         return (IWN_FAIL);
3580                 }
3581 
3582                 sc->sc_edca->ac[j].cwmin.value.ul = edcaparam.ac[j].cwmin =
3583                     iwn_cw_e_to_cw(wmeparam[i].wmep_logcwmin);
3584                 sc->sc_edca->ac[j].cwmax.value.ul = edcaparam.ac[j].cwmax =
3585                     iwn_cw_e_to_cw(wmeparam[i].wmep_logcwmax);
3586                 sc->sc_edca->ac[j].aifsn.value.ul = edcaparam.ac[j].aifsn =
3587                     wmeparam[i].wmep_aifsn;
3588                 sc->sc_edca->ac[j].txop.value.ul = edcaparam.ac[j].txoplimit =
3589                     (uint16_t)(wmeparam[i].wmep_txopLimit * 32);
3590         }
3591 
3592         err = iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &edcaparam,
3593             sizeof (edcaparam), async);
3594         if (err != IWN_SUCCESS) {
3595                 dev_err(sc->sc_dip, CE_WARN, "!iwn_qosparam_to_hw(): "
3596                     "failed to update QoS parameters into hardware.");
3597                 return (err);
3598         }
3599 
3600         return (err);
3601 }
3602 
3603 static inline int
3604 iwn_wme_tid_qos_ac(int tid)
3605 {
3606         switch (tid) {
3607         case 1:
3608         case 2:
3609                 return (QOS_AC_BK);
3610         case 0:
3611         case 3:
3612                 return (QOS_AC_BE);
3613         case 4:
3614         case 5:
3615                 return (QOS_AC_VI);
3616         case 6:
3617         case 7:
3618                 return (QOS_AC_VO);
3619         }
3620 
3621         return (QOS_AC_BE);
3622 }
3623 
3624 static inline int
3625 iwn_qos_ac_to_txq(int qos_ac)
3626 {
3627         switch (qos_ac) {
3628         case QOS_AC_BK:
3629                 return (QOS_AC_BK_TO_TXQ);
3630         case QOS_AC_BE:
3631                 return (QOS_AC_BE_TO_TXQ);
3632         case QOS_AC_VI:
3633                 return (QOS_AC_VI_TO_TXQ);
3634         case QOS_AC_VO:
3635                 return (QOS_AC_VO_TO_TXQ);
3636         }
3637 
3638         return (QOS_AC_BE_TO_TXQ);
3639 }
3640 
3641 static int
3642 iwn_wme_tid_to_txq(struct iwn_softc *sc, int tid)
3643 {
3644         int queue_n = TXQ_FOR_AC_INVALID;
3645         int qos_ac;
3646 
3647         if (tid < WME_TID_MIN ||
3648             tid > WME_TID_MAX) {
3649                 dev_err(sc->sc_dip, CE_WARN, "!wme_tid_to_txq(): "
3650                     "TID is not in suitable range.");
3651                 return (queue_n);
3652         }
3653 
3654         qos_ac = iwn_wme_tid_qos_ac(tid);
3655         queue_n = iwn_qos_ac_to_txq(qos_ac);
3656 
3657         return (queue_n);
3658 }
3659 
3660 static int
3661 iwn_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
3662 {
3663         struct iwn_softc *sc = (struct iwn_softc *)ic;
3664         struct iwn_node *wn;
3665         struct iwn_tx_ring *ring;
3666         struct iwn_tx_desc *desc;
3667         struct iwn_tx_data *data;
3668         struct iwn_tx_cmd *cmd;
3669         struct iwn_cmd_data *tx;
3670         ieee80211_node_t *in;
3671         const struct iwn_rate *rinfo;
3672         struct ieee80211_frame *wh;
3673         struct ieee80211_key *k = NULL;
3674         uint32_t flags;
3675         uint_t hdrlen;
3676         uint8_t ridx, txant;
3677         int i, totlen, seglen, pad;
3678         int txq_id = NON_QOS_TXQ;
3679         struct ieee80211_qosframe *qwh = NULL;
3680         uint8_t tid = WME_TID_INVALID;
3681         ddi_dma_cookie_t cookie;
3682         mblk_t *m0, *m;
3683         int mblen, off;
3684 
3685         int noack = 0;
3686 
3687         if (ic == NULL)
3688                 return (EIO);
3689 
3690         if ((mp == NULL) || (MBLKL(mp) <= 0))
3691                 return (EIO);
3692 
3693         if (sc->sc_flags & IWN_FLAG_SUSPEND) {
3694                 freemsg(mp);
3695                 sc->sc_tx_err++;
3696                 return(EIO);
3697         }
3698 
3699         wh = (struct ieee80211_frame *)mp->b_rptr;
3700 
3701         hdrlen = ieee80211_hdrspace(ic, mp->b_rptr);
3702 
3703         /*
3704          * determine send which AP or station in IBSS
3705          */
3706         in = ieee80211_find_txnode(ic, wh->i_addr1);
3707         if (in == NULL) {
3708                 dev_err(sc->sc_dip, CE_WARN, "!iwn_send(): "
3709                     "failed to find tx node");
3710                 freemsg(mp);
3711                 sc->sc_tx_err++;
3712                 return(EIO);
3713         }
3714 
3715         wn = (struct iwn_node *)in;
3716 
3717         /*
3718          * Determine TX queue according to traffic ID in frame
3719          * if working in QoS mode.
3720          */
3721         if (in->in_flags & IEEE80211_NODE_QOS) {
3722                 if ((type & IEEE80211_FC0_TYPE_MASK) ==
3723                     IEEE80211_FC0_TYPE_DATA) {
3724                         if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3725                                 qwh = (struct ieee80211_qosframe *)wh;
3726 
3727                                 tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
3728                                 txq_id = iwn_wme_tid_to_txq(sc, tid);
3729 
3730                                 if (txq_id < TXQ_FOR_AC_MIN ||
3731                                     (txq_id > TXQ_FOR_AC_MAX)) {
3732                                         freemsg(mp);
3733                                         sc->sc_tx_err++;
3734                                         return(EIO);
3735                                 }
3736                         } else {
3737                                 txq_id = NON_QOS_TXQ;
3738                         }
3739                 } else if ((type & IEEE80211_FC0_TYPE_MASK) ==
3740                     IEEE80211_FC0_TYPE_MGT) {
3741                         txq_id = QOS_TXQ_FOR_MGT;
3742                 } else {
3743                         txq_id = NON_QOS_TXQ;
3744                 }
3745         } else {
3746                 txq_id = NON_QOS_TXQ;
3747         }
3748 
3749         if (sc->qfullmsk & (1 << txq_id)) {
3750                 sc->sc_tx_err++;
3751                 /* net80211-initiated send */
3752                 if ((type & IEEE80211_FC0_TYPE_MASK) !=
3753                     IEEE80211_FC0_TYPE_DATA)
3754                         freemsg(mp);
3755                 return (EAGAIN);
3756         }
3757 
3758         /* Choose a TX rate index. */
3759         if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3760             type != IEEE80211_FC0_TYPE_DATA) {
3761                 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3762                     IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3763         } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
3764                 ridx = sc->fixed_ridx;
3765         } else
3766                 ridx = wn->ridx[in->in_txrate];
3767         rinfo = &iwn_rates[ridx];
3768 
3769         m = allocb(msgdsize(mp) + 32, BPRI_MED);
3770         if (m) {
3771                 for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
3772                         mblen = MBLKL(m0);
3773                         bcopy(m0->b_rptr, m->b_rptr + off, mblen);
3774                         off += mblen;
3775                 }
3776 
3777                 m->b_wptr += off;
3778 
3779                 freemsg(mp);
3780                 mp = m;
3781 
3782                 wh = (struct ieee80211_frame *)mp->b_rptr;
3783         } else {
3784                 dev_err(sc->sc_dip, CE_WARN, "!iwn_send(): can't copy");
3785                 /* net80211-initiated send */
3786                 if ((type & IEEE80211_FC0_TYPE_MASK) !=
3787                     IEEE80211_FC0_TYPE_DATA)
3788                         freemsg(mp);
3789                 return (EAGAIN);
3790         }
3791 
3792 
3793         /*
3794          * Net80211 module encapsulate outbound data frames.
3795          * Add some fields of 80211 frame.
3796          */
3797         if ((type & IEEE80211_FC0_TYPE_MASK) ==
3798             IEEE80211_FC0_TYPE_DATA)
3799                 (void) ieee80211_encap(ic, mp, in);
3800 
3801         /* Encrypt the frame if need be. */
3802         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3803                 k = ieee80211_crypto_encap(ic, mp);
3804                 if (k == NULL) {
3805                         freemsg(mp);
3806                         return(EIO);
3807                 }
3808                 /* Packet header may have moved, reset our local pointer. */
3809                 wh = (struct ieee80211_frame *)mp->b_rptr;
3810         }
3811         totlen = msgdsize(mp);
3812 
3813         mutex_enter(&sc->sc_tx_mtx);
3814         ring = &sc->txq[txq_id];
3815         desc = &ring->desc[ring->cur];
3816         data = &ring->data[ring->cur];
3817 
3818         /* Prepare TX firmware command. */
3819         cmd = &ring->cmd[ring->cur];
3820         cmd->code = IWN_CMD_TX_DATA;
3821         cmd->flags = 0;
3822         cmd->qid = ring->qid;
3823         cmd->idx = ring->cur;
3824 
3825         tx = (struct iwn_cmd_data *)cmd->data;
3826         /* NB: No need to clear tx, all fields are reinitialized here. */
3827         tx->scratch = 0;     /* clear "scratch" area */
3828 
3829         flags = 0;
3830         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3831                 /* Unicast frame, check if an ACK is expected. */
3832                 if (!noack)
3833                         flags |= IWN_TX_NEED_ACK;
3834         }
3835 
3836         if ((wh->i_fc[0] &
3837             (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3838             (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3839                 flags |= IWN_TX_IMM_BA;         /* Cannot happen yet. */
3840 
3841         ASSERT((flags & IWN_TX_IMM_BA) == 0);
3842 
3843         if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3844                 flags |= IWN_TX_MORE_FRAG;      /* Cannot happen yet. */
3845 
3846         ASSERT((flags & IWN_TX_MORE_FRAG) == 0);
3847 
3848         /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3849         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3850                 /* NB: Group frames are sent using CCK in 802.11b/g. */
3851                 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3852                         flags |= IWN_TX_NEED_RTS;
3853                 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3854                     ridx >= IWN_RIDX_OFDM6) {
3855                         if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3856                                 flags |= IWN_TX_NEED_CTS;
3857                         else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3858                                 flags |= IWN_TX_NEED_RTS;
3859                 }
3860                 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3861                         if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3862                                 /* 5000 autoselects RTS/CTS or CTS-to-self. */
3863                                 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3864                                 flags |= IWN_TX_NEED_PROTECTION;
3865                         } else
3866                                 flags |= IWN_TX_FULL_TXOP;
3867                 }
3868         }
3869 
3870         if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3871             type != IEEE80211_FC0_TYPE_DATA)
3872                 tx->id = sc->broadcast_id;
3873         else
3874                 tx->id = wn->id;
3875 
3876         if (type == IEEE80211_FC0_TYPE_MGT) {
3877                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3878 
3879 #ifndef IEEE80211_STA_ONLY
3880                 /* Tell HW to set timestamp in probe responses. */
3881                 /* XXX NetBSD rev 1.11 added probe requests here but */
3882                 /* probe requests do not take timestamps (from Bergamini). */
3883                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3884                         flags |= IWN_TX_INSERT_TSTAMP;
3885 #endif
3886                 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3887                 /* changes here. These are not needed (from Bergamini). */
3888                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3889                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3890                         tx->timeout = htole16(3);
3891                 else
3892                         tx->timeout = htole16(2);
3893         } else
3894                 tx->timeout = htole16(0);
3895 
3896         if (hdrlen & 3) {
3897                 /* First segment length must be a multiple of 4. */
3898                 flags |= IWN_TX_NEED_PADDING;
3899                 pad = 4 - (hdrlen & 3);
3900         } else
3901                 pad = 0;
3902 
3903         if (tid != WME_TID_INVALID) {
3904                 flags &= ~IWN_TX_AUTO_SEQ;
3905         } else {
3906                 flags |= IWN_TX_AUTO_SEQ;
3907                 tid = 0;
3908         }
3909 
3910         tx->len = htole16(totlen);
3911         tx->tid = tid;
3912         tx->rts_ntries = 60;
3913         tx->data_ntries = 15;
3914         tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3915         tx->plcp = rinfo->plcp;
3916         tx->rflags = rinfo->flags;
3917         if (tx->id == sc->broadcast_id) {
3918                 /* Group or management frame. */
3919                 tx->linkq = 0;
3920                 /* XXX Alternate between antenna A and B? */
3921                 txant = IWN_LSB(sc->txchainmask);
3922                 tx->rflags |= IWN_RFLAG_ANT(txant);
3923         } else {
3924                 tx->linkq = in->in_rates.ir_nrates - in->in_txrate - 1;
3925                 flags |= IWN_TX_LINKQ;  /* enable MRR */
3926         }
3927         /* Set physical address of "scratch area". */
3928         tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3929         tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3930 
3931         /* Copy 802.11 header in TX command. */
3932         /* XXX NetBSD changed this in rev 1.20 */
3933         memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3934         mp->b_rptr += hdrlen;
3935 
3936         bcopy(mp->b_rptr, data->dma_data.vaddr, totlen - hdrlen);
3937         tx->security = 0;
3938         tx->flags = htole32(flags);
3939 
3940         data->ni = in;
3941 
3942         DTRACE_PROBE4(tx, int, ring->qid, int, ring->cur, size_t, MBLKL(mp),
3943             int, data->dma_data.ncookies);
3944 
3945         /* Fill TX descriptor. */
3946         desc->nsegs = 1 + data->dma_data.ncookies;
3947         /* First DMA segment is used by the TX command. */
3948         desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3949         desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3950             (4 + sizeof (*tx) + hdrlen + pad) << 4);
3951 
3952         /* Other DMA segments are for data payload. */
3953         cookie = data->dma_data.cookie;
3954         for (i = 1, seglen = totlen - hdrlen;
3955              i <= data->dma_data.ncookies;
3956              i++, seglen -= cookie.dmac_size) {
3957                 desc->segs[i].addr = htole32(IWN_LOADDR(cookie.dmac_laddress));
3958                 desc->segs[i].len  = htole16(IWN_HIADDR(cookie.dmac_laddress) |
3959                     seglen << 4);
3960                 if (i < data->dma_data.ncookies)
3961                         ddi_dma_nextcookie(data->dma_data.dma_hdl, &cookie);
3962         }
3963 
3964         (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
3965         (void) ddi_dma_sync(ring->cmd_dma.dma_hdl, ring->cur * sizeof (*cmd),
3966             sizeof (*cmd), DDI_DMA_SYNC_FORDEV);
3967         (void) ddi_dma_sync(ring->desc_dma.dma_hdl, ring->cur * sizeof (*desc),
3968             sizeof (*desc), DDI_DMA_SYNC_FORDEV);
3969 
3970         /* Update TX scheduler. */
3971         sc->ops.update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3972 
3973         /* Kick TX ring. */
3974         ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3975         IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3976 
3977         /* Mark TX ring as full if we reach a certain threshold. */
3978         if (++ring->queued > IWN_TX_RING_HIMARK)
3979                 sc->qfullmsk |= 1 << ring->qid;
3980         mutex_exit(&sc->sc_tx_mtx);
3981         freemsg(mp);
3982 
3983         ic->ic_stats.is_tx_bytes += totlen;
3984 
3985         mutex_enter(&sc->sc_mt_mtx);
3986         if (sc->sc_tx_timer == 0)
3987                 sc->sc_tx_timer = 5;
3988         mutex_exit(&sc->sc_mt_mtx);
3989 
3990         return 0;
3991 }
3992 
3993 static mblk_t *
3994 iwn_m_tx(void *arg, mblk_t *mp)
3995 {
3996         struct iwn_softc *sc;
3997         ieee80211com_t *ic;
3998         mblk_t *next;
3999 
4000         sc = (struct iwn_softc *)arg;
4001         ASSERT(sc != NULL);
4002         ic = &sc->sc_ic;
4003 
4004         if (sc->sc_flags & IWN_FLAG_SUSPEND) {
4005                 freemsgchain(mp);
4006                 return (NULL);
4007         }
4008 
4009         if (ic->ic_state != IEEE80211_S_RUN) {
4010                 freemsgchain(mp);
4011                 return (NULL);
4012         }
4013 
4014         if ((sc->sc_flags & IWN_FLAG_HW_ERR_RECOVER)) {
4015                 freemsgchain(mp);
4016                 return (NULL);
4017         }
4018 
4019         while (mp != NULL) {
4020                 next = mp->b_next;
4021                 mp->b_next = NULL;
4022                 if (iwn_send(ic, mp, IEEE80211_FC0_TYPE_DATA) == EAGAIN) {
4023                         mp->b_next = next;
4024                         break;
4025                 }
4026                 mp = next;
4027         }
4028 
4029         return (mp);
4030 }
4031 
4032 static void
4033 iwn_watchdog(void *arg)
4034 {
4035         struct iwn_softc *sc = (struct iwn_softc *)arg;
4036         ieee80211com_t *ic = &sc->sc_ic;
4037         timeout_id_t timeout_id = ic->ic_watchdog_timer;
4038 
4039         ieee80211_stop_watchdog(ic);
4040 
4041         mutex_enter(&sc->sc_mt_mtx);
4042         if (sc->sc_tx_timer > 0) {
4043                 if (--sc->sc_tx_timer == 0) {
4044                         dev_err(sc->sc_dip, CE_WARN, "!device timeout");
4045                         sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER;
4046                         sc->sc_ostate = IEEE80211_S_RUN;
4047                         DTRACE_PROBE(recover__send__fail);
4048                 }
4049         }
4050         mutex_exit(&sc->sc_mt_mtx);
4051 
4052         if ((ic->ic_state != IEEE80211_S_AUTH) &&
4053             (ic->ic_state != IEEE80211_S_ASSOC))
4054                 return;
4055 
4056         if (ic->ic_bss->in_fails > 10) {
4057                 DTRACE_PROBE2(watchdog__reset, timeout_id_t, timeout_id,
4058                     struct ieee80211node *, ic->ic_bss);
4059                 dev_err(sc->sc_dip, CE_WARN, "!iwn_watchdog reset");
4060                 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
4061         } else {
4062                 ic->ic_bss->in_fails++;
4063 
4064                 DTRACE_PROBE2(watchdog__timeout, timeout_id_t, timeout_id,
4065                     struct ieee80211node *, ic->ic_bss);
4066 
4067                 ieee80211_watchdog(ic);
4068         }
4069 }
4070 
4071 static void
4072 iwn_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
4073 {
4074         struct iwn_softc *sc;
4075         struct ieee80211com *ic;
4076         int  error = 0;
4077 
4078         sc = (struct iwn_softc *)arg;
4079         ASSERT(sc != NULL);
4080         ic = &sc->sc_ic;
4081 
4082         mutex_enter(&sc->sc_mtx);
4083         while (sc->sc_flags & IWN_FLAG_SCANNING)
4084                 cv_wait(&sc->sc_scan_cv, &sc->sc_mtx);
4085         mutex_exit(&sc->sc_mtx);
4086 
4087         error = ieee80211_ioctl(ic, wq, mp);
4088         if (error == ENETRESET) {
4089                 /*
4090                  * This is special for the hidden AP connection.
4091                  * In any case, we should make sure only one 'scan'
4092                  * in the driver for a 'connect' CLI command. So
4093                  * when connecting to a hidden AP, the scan is just
4094                  * sent out to the air when we know the desired
4095                  * essid of the AP we want to connect.
4096                  */
4097                 if (ic->ic_des_esslen) {
4098                         if (sc->sc_flags & IWN_FLAG_RUNNING) {
4099                                 DTRACE_PROBE(netreset);
4100                                 iwn_m_stop(sc);
4101                                 (void) iwn_m_start(sc);
4102                                 (void) ieee80211_new_state(ic,
4103                                     IEEE80211_S_SCAN, -1);
4104                         }
4105                 }
4106         }
4107 }
4108 
4109 /*
4110  * Call back functions for get/set property
4111  */
4112 static int
4113 iwn_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
4114     uint_t wldp_length, void *wldp_buf)
4115 {
4116         struct iwn_softc *sc;
4117 
4118         sc = (struct iwn_softc *)arg;
4119         ASSERT(sc != NULL);
4120 
4121         return (ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
4122             wldp_length, wldp_buf));
4123 }
4124 
4125 static void
4126 iwn_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
4127     mac_prop_info_handle_t prh)
4128 {
4129         struct iwn_softc *sc;
4130 
4131         sc = (struct iwn_softc *)arg;
4132         ASSERT(sc != NULL);
4133 
4134         ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh);
4135 }
4136 
4137 static int
4138 iwn_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
4139     uint_t wldp_length, const void *wldp_buf)
4140 {
4141         struct iwn_softc *sc;
4142         ieee80211com_t *ic;
4143         int err = EINVAL;
4144 
4145         sc = (struct iwn_softc *)arg;
4146         ASSERT(sc != NULL);
4147         ic = &sc->sc_ic;
4148 
4149         mutex_enter(&sc->sc_mtx);
4150         while (sc->sc_flags & IWN_FLAG_SCANNING)
4151                 cv_wait(&sc->sc_scan_cv, &sc->sc_mtx);
4152         mutex_exit(&sc->sc_mtx);
4153 
4154         err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length,
4155             wldp_buf);
4156 
4157         if (err == ENETRESET) {
4158                 if (ic->ic_des_esslen) {
4159                         if (sc->sc_flags & IWN_FLAG_RUNNING) {
4160                                 DTRACE_PROBE(netreset);
4161                                 iwn_m_stop(sc);
4162                                 (void) iwn_m_start(sc);
4163                                 (void) ieee80211_new_state(ic,
4164                                     IEEE80211_S_SCAN, -1);
4165                         }
4166                 }
4167                 err = 0;
4168         }
4169 
4170         return (err);
4171 }
4172 
4173 /*
4174  * invoked by GLD get statistics from NIC and driver
4175  */
4176 static int
4177 iwn_m_stat(void *arg, uint_t stat, uint64_t *val)
4178 {
4179         struct iwn_softc *sc;
4180         ieee80211com_t *ic;
4181         ieee80211_node_t *in;
4182 
4183         sc = (struct iwn_softc *)arg;
4184         ASSERT(sc != NULL);
4185         ic = &sc->sc_ic;
4186 
4187         mutex_enter(&sc->sc_mtx);
4188 
4189         switch (stat) {
4190         case MAC_STAT_IFSPEED:
4191                 in = ic->ic_bss;
4192                 *val = ((IEEE80211_FIXED_RATE_NONE == ic->ic_fixed_rate) ?
4193                     IEEE80211_RATE(in->in_txrate) :
4194                     ic->ic_fixed_rate) / 2 * 1000000;
4195                 break;
4196         case MAC_STAT_NOXMTBUF:
4197                 *val = sc->sc_tx_nobuf;
4198                 break;
4199         case MAC_STAT_NORCVBUF:
4200                 *val = sc->sc_rx_nobuf;
4201                 break;
4202         case MAC_STAT_IERRORS:
4203                 *val = sc->sc_rx_err;
4204                 break;
4205         case MAC_STAT_RBYTES:
4206                 *val = ic->ic_stats.is_rx_bytes;
4207                 break;
4208         case MAC_STAT_IPACKETS:
4209                 *val = ic->ic_stats.is_rx_frags;
4210                 break;
4211         case MAC_STAT_OBYTES:
4212                 *val = ic->ic_stats.is_tx_bytes;
4213                 break;
4214         case MAC_STAT_OPACKETS:
4215                 *val = ic->ic_stats.is_tx_frags;
4216                 break;
4217         case MAC_STAT_OERRORS:
4218         case WIFI_STAT_TX_FAILED:
4219                 *val = sc->sc_tx_err;
4220                 break;
4221         case WIFI_STAT_TX_RETRANS:
4222                 *val = sc->sc_tx_retries;
4223                 break;
4224         case WIFI_STAT_FCS_ERRORS:
4225         case WIFI_STAT_WEP_ERRORS:
4226         case WIFI_STAT_TX_FRAGS:
4227         case WIFI_STAT_MCAST_TX:
4228         case WIFI_STAT_RTS_SUCCESS:
4229         case WIFI_STAT_RTS_FAILURE:
4230         case WIFI_STAT_ACK_FAILURE:
4231         case WIFI_STAT_RX_FRAGS:
4232         case WIFI_STAT_MCAST_RX:
4233         case WIFI_STAT_RX_DUPS:
4234                 mutex_exit(&sc->sc_mtx);
4235                 return (ieee80211_stat(ic, stat, val));
4236         default:
4237                 mutex_exit(&sc->sc_mtx);
4238                 return (ENOTSUP);
4239         }
4240 
4241         mutex_exit(&sc->sc_mtx);
4242 
4243         return (0);
4244 
4245 }
4246 
4247 /*
4248  * invoked by GLD to configure NIC
4249  */
4250 static int
4251 iwn_m_unicst(void *arg, const uint8_t *macaddr)
4252 {
4253         struct iwn_softc *sc;
4254         ieee80211com_t  *ic;
4255         int err = IWN_SUCCESS;
4256 
4257         sc = (struct iwn_softc *)arg;
4258         ASSERT(sc != NULL);
4259         ic = &sc->sc_ic;
4260 
4261         if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
4262                 mutex_enter(&sc->sc_mtx);
4263                 IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
4264                 err = iwn_config(sc);
4265                 mutex_exit(&sc->sc_mtx);
4266                 if (err != IWN_SUCCESS) {
4267                         dev_err(sc->sc_dip, CE_WARN, "!iwn_m_unicst(): "
4268                             "failed to configure device");
4269                         goto fail;
4270                 }
4271         }
4272 
4273         return (err);
4274 
4275 fail:
4276         return (err);
4277 }
4278 
4279 /*ARGSUSED*/
4280 static int
4281 iwn_m_multicst(void *arg, boolean_t add, const uint8_t *m)
4282 {
4283         return (IWN_SUCCESS);
4284 }
4285 
4286 /*ARGSUSED*/
4287 static int
4288 iwn_m_promisc(void *arg, boolean_t on)
4289 {
4290         _NOTE(ARGUNUSED(on));
4291 
4292         return (IWN_SUCCESS);
4293 }
4294 
4295 static void
4296 iwn_abort_scan(void *arg)
4297 {
4298         struct iwn_softc *sc = (struct iwn_softc *)arg;
4299         ieee80211com_t *ic = &sc->sc_ic;
4300 
4301         mutex_enter(&sc->sc_mtx);
4302         if ((sc->sc_flags & IWN_FLAG_SCANNING) == 0) {
4303                 mutex_exit(&sc->sc_mtx);
4304                 return;
4305         }
4306 
4307         dev_err(sc->sc_dip, CE_WARN,
4308             "!aborting scan, flags = %x, state = %s",
4309             sc->sc_flags, ieee80211_state_name[ic->ic_state]);
4310         sc->sc_flags &= ~IWN_FLAG_SCANNING;
4311         iwn_hw_stop(sc, B_FALSE);
4312         mutex_exit(&sc->sc_mtx);
4313 
4314         sc->scan_to = 0;
4315         (void) iwn_init(sc);
4316         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
4317 }
4318 
4319 /*
4320  * periodic function to deal with RF switch and HW error recovery
4321  */
4322 static void
4323 iwn_periodic(void *arg)
4324 {
4325         struct iwn_softc *sc = (struct iwn_softc *)arg;
4326         ieee80211com_t  *ic = &sc->sc_ic;
4327         int err;
4328         uint32_t tmp;
4329 
4330         mutex_enter(&sc->sc_mtx);
4331         tmp = IWN_READ(sc, IWN_GP_CNTRL);
4332         if (tmp & IWN_GP_CNTRL_RFKILL) {
4333                 sc->sc_flags &= ~IWN_FLAG_RADIO_OFF;
4334         } else {
4335                 sc->sc_flags |= IWN_FLAG_RADIO_OFF;
4336         }
4337 
4338         /*
4339          * If the RF is OFF, do nothing.
4340          */
4341         if (sc->sc_flags & IWN_FLAG_RADIO_OFF) {
4342                 mutex_exit(&sc->sc_mtx);
4343                 return;
4344         }
4345 
4346         mutex_exit(&sc->sc_mtx);
4347 
4348         /*
4349          * recovery fatal error
4350          */
4351         if (ic->ic_mach &&
4352             (sc->sc_flags & IWN_FLAG_HW_ERR_RECOVER)) {
4353                 dev_err(sc->sc_dip, CE_WARN,
4354                     "!trying to restore previous state");
4355 
4356                 mutex_enter(&sc->sc_mtx);
4357                 sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO;
4358                 mutex_exit(&sc->sc_mtx);
4359 
4360                 if (sc->calib_to != 0)
4361                         (void) untimeout(sc->calib_to);
4362                 sc->calib_to = 0;
4363 
4364                 if (sc->scan_to != 0)
4365                         (void) untimeout(sc->scan_to);
4366                 sc->scan_to = 0;
4367 
4368                 iwn_hw_stop(sc, B_TRUE);
4369 
4370                 if (IWN_CHK_FAST_RECOVER(sc)) {
4371                         /* save runtime configuration */
4372                         bcopy(&sc->rxon, &sc->rxon_save, sizeof (sc->rxon));
4373                 } else {
4374                         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
4375                 }
4376 
4377                 err = iwn_init(sc);
4378                 if (err != IWN_SUCCESS)
4379                         return;
4380 
4381                 mutex_enter(&sc->sc_mtx);
4382                 sc->sc_flags |= IWN_FLAG_RUNNING;
4383                 mutex_exit(&sc->sc_mtx);
4384 
4385                 if (!IWN_CHK_FAST_RECOVER(sc) ||
4386                     iwn_fast_recover(sc) != IWN_SUCCESS) {
4387                         mutex_enter(&sc->sc_mtx);
4388                         sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER;
4389                         mutex_exit(&sc->sc_mtx);
4390                         if (sc->sc_ostate != IEEE80211_S_INIT) {
4391                                 ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
4392                         }
4393                 }
4394         }
4395 }
4396 
4397 /*
4398  * Send a command to the firmware.
4399  */
4400 static int
4401 iwn_cmd(struct iwn_softc *sc, uint8_t code, void *buf, int size, int async)
4402 {
4403         struct iwn_tx_ring *ring = &sc->txq[IWN_CMD_QUEUE_NUM];
4404         struct iwn_tx_desc *desc;
4405         struct iwn_tx_data *data;
4406         struct iwn_tx_cmd *cmd;
4407         clock_t clk;
4408         uintptr_t paddr;
4409         int totlen, ret;
4410 
4411         ASSERT(mutex_owned(&sc->sc_mtx));
4412 
4413         desc = &ring->desc[ring->cur];
4414         data = &ring->data[ring->cur];
4415         totlen = 4 + size;
4416 
4417         if (size > sizeof (cmd->data)) {
4418                 /* Command is too large to fit in a descriptor. */
4419                 if (iwn_dma_contig_alloc(sc, &data->cmd_dma, totlen,
4420                     DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&cmd,
4421                     &iwn_dma_accattr, 1) != DDI_SUCCESS)
4422                         return ENOBUFS;
4423                 paddr = data->cmd_dma.paddr;
4424         } else {
4425                 cmd = &ring->cmd[ring->cur];
4426                 paddr = data->cmd_paddr;
4427         }
4428 
4429         cmd->code = code;
4430         cmd->flags = 0;
4431         cmd->qid = ring->qid;
4432         cmd->idx = ring->cur;
4433         bzero(cmd->data, size);
4434         memcpy(cmd->data, buf, size);
4435 
4436         bzero(desc, sizeof(*desc));
4437         desc->nsegs = 1;
4438         desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4439         desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4440 
4441         if (size > sizeof cmd->data) {
4442                 (void) ddi_dma_sync(data->cmd_dma.dma_hdl, 0, totlen,
4443                     DDI_DMA_SYNC_FORDEV);
4444         } else {
4445                 (void) ddi_dma_sync(ring->cmd_dma.dma_hdl,
4446                     ring->cur * sizeof (*cmd),
4447                     totlen, DDI_DMA_SYNC_FORDEV);
4448         }
4449         (void) ddi_dma_sync(ring->desc_dma.dma_hdl,
4450             ring->cur * sizeof (*desc),
4451             sizeof (*desc), DDI_DMA_SYNC_FORDEV);
4452 
4453         /* Update TX scheduler. */
4454         sc->ops.update_sched(sc, ring->qid, ring->cur, 0, 0);
4455 
4456         /* Kick command ring. */
4457         ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4458         IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4459 
4460         if (async)
4461                 return (IWN_SUCCESS);
4462 
4463         sc->sc_cmd_flag = SC_CMD_FLG_NONE;
4464         clk = ddi_get_lbolt() + drv_usectohz(2000000);
4465         while (sc->sc_cmd_flag != SC_CMD_FLG_DONE)
4466                 if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_mtx, clk) < 0)
4467                         break;
4468 
4469         ret = (sc->sc_cmd_flag == SC_CMD_FLG_DONE) ? IWN_SUCCESS : IWN_FAIL;
4470         sc->sc_cmd_flag = SC_CMD_FLG_NONE;
4471 
4472         return (ret);
4473 }
4474 
4475 static int
4476 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4477 {
4478         struct iwn4965_node_info hnode;
4479         char *src, *dst;
4480 
4481         /*
4482          * We use the node structure for 5000 Series internally (it is
4483          * a superset of the one for 4965AGN). We thus copy the common
4484          * fields before sending the command.
4485          */
4486         src = (char *)node;
4487         dst = (char *)&hnode;
4488         memcpy(dst, src, 48);
4489         /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4490         memcpy(dst + 48, src + 72, 20);
4491         return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4492 }
4493 
4494 static int
4495 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4496 {
4497         /* Direct mapping. */
4498         return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4499 }
4500 
4501 static int
4502 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4503 {
4504         struct iwn_node *wn = (void *)ni;
4505         struct ieee80211_rateset *rs = &ni->in_rates;
4506         struct iwn_cmd_link_quality linkq;
4507         const struct iwn_rate *rinfo;
4508         uint8_t txant;
4509         int i, txrate;
4510 
4511         /* Use the first valid TX antenna. */
4512         txant = IWN_LSB(sc->txchainmask);
4513 
4514         memset(&linkq, 0, sizeof linkq);
4515         linkq.id = wn->id;
4516         linkq.antmsk_1stream = txant;
4517         linkq.antmsk_2stream = IWN_ANT_AB;
4518         linkq.ampdu_max = 31;
4519         linkq.ampdu_threshold = 3;
4520         linkq.ampdu_limit = htole16(4000);      /* 4ms */
4521 
4522         /* Start at highest available bit-rate. */
4523         txrate = rs->ir_nrates - 1;
4524         for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4525                 rinfo = &iwn_rates[wn->ridx[txrate]];
4526                 linkq.retry[i].plcp = rinfo->plcp;
4527                 linkq.retry[i].rflags = rinfo->flags;
4528                 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
4529                 /* Next retry at immediate lower bit-rate. */
4530                 if (txrate > 0)
4531                         txrate--;
4532         }
4533         return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4534 }
4535 
4536 /*
4537  * Broadcast node is used to send group-addressed and management frames.
4538  */
4539 static int
4540 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4541 {
4542         struct iwn_ops *ops = &sc->ops;
4543         struct iwn_node_info node;
4544         struct iwn_cmd_link_quality linkq;
4545         const struct iwn_rate *rinfo;
4546         uint8_t txant;
4547         int i, error;
4548 
4549         memset(&node, 0, sizeof node);
4550         IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
4551         node.id = sc->broadcast_id;
4552         DTRACE_PROBE(add__broadcast__node);
4553         if ((error = ops->add_node(sc, &node, async)) != 0)
4554                 return error;
4555 
4556         /* Use the first valid TX antenna. */
4557         txant = IWN_LSB(sc->txchainmask);
4558 
4559         memset(&linkq, 0, sizeof linkq);
4560         linkq.id = sc->broadcast_id;
4561         linkq.antmsk_1stream = txant;
4562         linkq.antmsk_2stream = IWN_ANT_AB;
4563         linkq.ampdu_max = 64;
4564         linkq.ampdu_threshold = 3;
4565         linkq.ampdu_limit = htole16(4000);      /* 4ms */
4566 
4567         /* Use lowest mandatory bit-rate. */
4568         rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
4569             &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
4570         linkq.retry[0].plcp = rinfo->plcp;
4571         linkq.retry[0].rflags = rinfo->flags;
4572         linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
4573         /* Use same bit-rate for all TX retries. */
4574         for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4575                 linkq.retry[i].plcp = linkq.retry[0].plcp;
4576                 linkq.retry[i].rflags = linkq.retry[0].rflags;
4577         }
4578         return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4579 }
4580 
4581 static void
4582 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4583 {
4584         struct iwn_cmd_led led;
4585 
4586         /* Clear microcode LED ownership. */
4587         IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4588 
4589         led.which = which;
4590         led.unit = htole32(10000);      /* on/off in unit of 100ms */
4591         led.off = off;
4592         led.on = on;
4593         DTRACE_PROBE1(led__change, const char *,
4594             (off != 0 && on != 0) ? "blinking" :
4595             (off != 0) ? "off" : "on");
4596         (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4597 }
4598 
4599 /*
4600  * Set the critical temperature at which the firmware will stop the radio
4601  * and notify us.
4602  */
4603 static int
4604 iwn_set_critical_temp(struct iwn_softc *sc)
4605 {
4606         struct iwn_critical_temp crit;
4607         int32_t temp;
4608 
4609         IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4610 
4611         if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4612                 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4613         else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4614                 temp = IWN_CTOK(110);
4615         else
4616                 temp = 110;
4617 
4618         sc->sc_misc->crit_temp.value.ul = temp;
4619 
4620         memset(&crit, 0, sizeof crit);
4621         crit.tempR = htole32(temp);
4622         return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4623 }
4624 
4625 static int
4626 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4627 {
4628         struct iwn_cmd_timing cmd;
4629         uint64_t val, mod;
4630 
4631         memset(&cmd, 0, sizeof cmd);
4632         memcpy(&cmd.tstamp, ni->in_tstamp.data, sizeof (uint64_t));
4633         cmd.bintval = htole16(ni->in_intval);
4634         cmd.lintval = htole16(10);
4635 
4636         /* Compute remaining time until next beacon. */
4637         val = (uint64_t)ni->in_intval * 1024;        /* msecs -> usecs */
4638         mod = le64toh(cmd.tstamp) % val;
4639         cmd.binitval = htole32((uint32_t)(val - mod));
4640 
4641         sc->sc_timing->bintval.value.ul = ni->in_intval;
4642         sc->sc_timing->tstamp.value.ul = ni->in_tstamp.tsf;
4643         sc->sc_timing->init.value.ul = (uint32_t)(val - mod);
4644 
4645         return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4646 }
4647 
4648 static void
4649 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4650 {
4651         /* Adjust TX power if need be (delta >= 3 degC). */
4652         IWN_DBG("temperature %d->%d", sc->temp, temp);
4653         if (abs(temp - sc->temp) >= 3) {
4654                 /* Record temperature of last calibration. */
4655                 sc->temp = temp;
4656                 (void)iwn4965_set_txpower(sc, 1);
4657         }
4658 }
4659 
4660 /*
4661  * Set TX power for current channel (each rate has its own power settings).
4662  * This function takes into account the regulatory information from EEPROM,
4663  * the current temperature and the current voltage.
4664  */
4665 static int
4666 iwn4965_set_txpower(struct iwn_softc *sc, int async)
4667 {
4668 /* Fixed-point arithmetic division using a n-bit fractional part. */
4669 #define fdivround(a, b, n)      \
4670         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4671 /* Linear interpolation. */
4672 #define interpolate(x, x1, y1, x2, y2, n)       \
4673         ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4674 
4675         static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4676         struct ieee80211com *ic = &sc->sc_ic;
4677         struct iwn_ucode_info *uc = &sc->ucode_info;
4678         struct ieee80211_channel *ch;
4679         struct iwn4965_cmd_txpower cmd;
4680         struct iwn4965_eeprom_chan_samples *chans;
4681         const uint8_t *rf_gain, *dsp_gain;
4682         int32_t vdiff, tdiff;
4683         int i, c, grp, maxpwr;
4684         uint8_t chan;
4685 
4686         /* Retrieve current channel from last RXON. */
4687         chan = sc->rxon.chan;
4688         sc->sc_txpower->chan.value.l = chan;
4689         ch = &ic->ic_sup_channels[chan];
4690 
4691         memset(&cmd, 0, sizeof cmd);
4692         cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4693         cmd.chan = chan;
4694 
4695         if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4696                 maxpwr   = sc->maxpwr5GHz;
4697                 rf_gain  = iwn4965_rf_gain_5ghz;
4698                 dsp_gain = iwn4965_dsp_gain_5ghz;
4699         } else {
4700                 maxpwr   = sc->maxpwr2GHz;
4701                 rf_gain  = iwn4965_rf_gain_2ghz;
4702                 dsp_gain = iwn4965_dsp_gain_2ghz;
4703         }
4704 
4705         /* Compute voltage compensation. */
4706         vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4707         if (vdiff > 0)
4708                 vdiff *= 2;
4709         if (abs(vdiff) > 2)
4710                 vdiff = 0;
4711         sc->sc_txpower->vdiff.value.l = vdiff;
4712 
4713         /* Get channel attenuation group. */
4714         if (chan <= 20)              /* 1-20 */
4715                 grp = 4;
4716         else if (chan <= 43) /* 34-43 */
4717                 grp = 0;
4718         else if (chan <= 70) /* 44-70 */
4719                 grp = 1;
4720         else if (chan <= 124)        /* 71-124 */
4721                 grp = 2;
4722         else                    /* 125-200 */
4723                 grp = 3;
4724         sc->sc_txpower->group.value.l = grp;
4725 
4726         /* Get channel sub-band. */
4727         for (i = 0; i < IWN_NBANDS; i++)
4728                 if (sc->bands[i].lo != 0 &&
4729                     sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4730                         break;
4731         if (i == IWN_NBANDS)    /* Can't happen in real-life. */
4732                 return EINVAL;
4733         chans = sc->bands[i].chans;
4734         sc->sc_txpower->subband.value.l = i;
4735 
4736         for (c = 0; c < 2; c++) {
4737                 uint8_t power, gain, temp;
4738                 int maxchpwr, pwr, ridx, idx;
4739 
4740                 power = interpolate(chan,
4741                     chans[0].num, chans[0].samples[c][1].power,
4742                     chans[1].num, chans[1].samples[c][1].power, 1);
4743                 gain  = interpolate(chan,
4744                     chans[0].num, chans[0].samples[c][1].gain,
4745                     chans[1].num, chans[1].samples[c][1].gain, 1);
4746                 temp  = interpolate(chan,
4747                     chans[0].num, chans[0].samples[c][1].temp,
4748                     chans[1].num, chans[1].samples[c][1].temp, 1);
4749                 sc->sc_txpower->txchain[c].power.value.l = power;
4750                 sc->sc_txpower->txchain[c].gain.value.l = gain;
4751                 sc->sc_txpower->txchain[c].temp.value.l = temp;
4752 
4753                 /* Compute temperature compensation. */
4754                 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4755                 sc->sc_txpower->txchain[c].tcomp.value.l = tdiff;
4756 
4757                 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4758                         /* Convert dBm to half-dBm. */
4759                         maxchpwr = sc->maxpwr[chan] * 2;
4760                         if ((ridx / 8) & 1)
4761                                 maxchpwr -= 6;  /* MIMO 2T: -3dB */
4762 
4763                         pwr = maxpwr;
4764 
4765                         /* Adjust TX power based on rate. */
4766                         if ((ridx % 8) == 5)
4767                                 pwr -= 15;      /* OFDM48: -7.5dB */
4768                         else if ((ridx % 8) == 6)
4769                                 pwr -= 17;      /* OFDM54: -8.5dB */
4770                         else if ((ridx % 8) == 7)
4771                                 pwr -= 20;      /* OFDM60: -10dB */
4772                         else
4773                                 pwr -= 10;      /* Others: -5dB */
4774 
4775                         /* Do not exceed channel max TX power. */
4776                         if (pwr > maxchpwr)
4777                                 pwr = maxchpwr;
4778 
4779                         idx = gain - (pwr - power) - tdiff - vdiff;
4780                         if ((ridx / 8) & 1) /* MIMO */
4781                                 idx += (int32_t)le32toh(uc->atten[grp][c]);
4782 
4783                         if (cmd.band == 0)
4784                                 idx += 9;       /* 5GHz */
4785                         if (ridx == IWN_RIDX_MAX)
4786                                 idx += 5;       /* CCK */
4787 
4788                         /* Make sure idx stays in a valid range. */
4789                         if (idx < 0)
4790                                 idx = 0;
4791                         else if (idx > IWN4965_MAX_PWR_INDEX)
4792                                 idx = IWN4965_MAX_PWR_INDEX;
4793 
4794                         sc->sc_txpower->txchain[c].rate[ridx].rf_gain.value.l =
4795                             cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4796                         sc->sc_txpower->txchain[c].rate[ridx].dsp_gain.value.l =
4797                             cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4798                 }
4799         }
4800 
4801         return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4802 
4803 #undef interpolate
4804 #undef fdivround
4805 }
4806 
4807 static int
4808 iwn5000_set_txpower(struct iwn_softc *sc, int async)
4809 {
4810         struct iwn5000_cmd_txpower cmd;
4811 
4812         /*
4813          * TX power calibration is handled automatically by the firmware
4814          * for 5000 Series.
4815          */
4816         memset(&cmd, 0, sizeof cmd);
4817         cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
4818         cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4819         cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4820         return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4821 }
4822 
4823 /*
4824  * Retrieve the maximum RSSI (in dBm) among receivers.
4825  */
4826 static int
4827 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
4828 {
4829         const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
4830         uint8_t mask, agc;
4831         int rssi;
4832 
4833         mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4834         agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4835 
4836         rssi = 0;
4837         if (mask & IWN_ANT_A)
4838                 rssi = MAX(rssi, phy->rssi[0]);
4839         if (mask & IWN_ANT_B)
4840                 rssi = MAX(rssi, phy->rssi[2]);
4841         if (mask & IWN_ANT_C)
4842                 rssi = MAX(rssi, phy->rssi[4]);
4843 
4844         return rssi - agc - IWN_RSSI_TO_DBM;
4845 }
4846 
4847 static int
4848 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
4849 {
4850         const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
4851         uint8_t agc;
4852         int rssi;
4853 
4854         agc = (le32toh(phy->agc) >> 9) & 0x7f;
4855 
4856         rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4857                    le16toh(phy->rssi[1]) & 0xff);
4858         rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4859 
4860         return rssi - agc - IWN_RSSI_TO_DBM;
4861 }
4862 
4863 /*
4864  * Retrieve the average noise (in dBm) among receivers.
4865  */
4866 static int
4867 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4868 {
4869         int i, total, nbant, noise;
4870 
4871         total = nbant = 0;
4872         for (i = 0; i < 3; i++) {
4873                 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4874                         continue;
4875                 total += noise;
4876                 nbant++;
4877         }
4878         /* There should be at least one antenna but check anyway. */
4879         return (nbant == 0) ? -127 : (total / nbant) - 107;
4880 }
4881 
4882 /*
4883  * Compute temperature (in degC) from last received statistics.
4884  */
4885 static int
4886 iwn4965_get_temperature(struct iwn_softc *sc)
4887 {
4888         struct iwn_ucode_info *uc = &sc->ucode_info;
4889         int32_t r1, r2, r3, r4, temp;
4890 
4891         r1 = le32toh(uc->temp[0].chan20MHz);
4892         r2 = le32toh(uc->temp[1].chan20MHz);
4893         r3 = le32toh(uc->temp[2].chan20MHz);
4894         r4 = le32toh(sc->rawtemp);
4895 
4896         if (r1 == r3)   /* Prevents division by 0 (should not happen). */
4897                 return 0;
4898 
4899         /* Sign-extend 23-bit R4 value to 32-bit. */
4900         r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4901         /* Compute temperature in Kelvin. */
4902         temp = (259 * (r4 - r2)) / (r3 - r1);
4903         temp = (temp * 97) / 100 + 8;
4904 
4905         return IWN_KTOC(temp);
4906 }
4907 
4908 static int
4909 iwn5000_get_temperature(struct iwn_softc *sc)
4910 {
4911         int32_t temp;
4912 
4913         /*
4914          * Temperature is not used by the driver for 5000 Series because
4915          * TX power calibration is handled by firmware.  We export it to
4916          * users through a kstat though.
4917          */
4918         temp = le32toh(sc->rawtemp);
4919         if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4920                 temp = (temp / -5) + sc->temp_off;
4921                 temp = IWN_KTOC(temp);
4922         }
4923         return temp;
4924 }
4925 
4926 /*
4927  * Initialize sensitivity calibration state machine.
4928  */
4929 static int
4930 iwn_init_sensitivity(struct iwn_softc *sc)
4931 {
4932         struct iwn_ops *ops = &sc->ops;
4933         struct iwn_calib_state *calib = &sc->calib;
4934         uint32_t flags;
4935         int error;
4936 
4937         /* Reset calibration state machine. */
4938         memset(calib, 0, sizeof (*calib));
4939         calib->state = IWN_CALIB_STATE_INIT;
4940         calib->cck_state = IWN_CCK_STATE_HIFA;
4941         /* Set initial correlation values. */
4942         calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4943         calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4944         calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4945         calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4946         calib->cck_x4      = 125;
4947         calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4948         calib->energy_cck  = sc->limits->energy_cck;
4949 
4950         /* Write initial sensitivity. */
4951         if ((error = iwn_send_sensitivity(sc)) != 0)
4952                 return error;
4953 
4954         /* Write initial gains. */
4955         if ((error = ops->init_gains(sc)) != 0)
4956                 return error;
4957 
4958         /* Request statistics at each beacon interval. */
4959         flags = 0;
4960         return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4961 }
4962 
4963 /*
4964  * Collect noise and RSSI statistics for the first 20 beacons received
4965  * after association and use them to determine connected antennas and
4966  * to set differential gains.
4967  */
4968 static void
4969 iwn_collect_noise(struct iwn_softc *sc,
4970     const struct iwn_rx_general_stats *stats)
4971 {
4972         struct iwn_ops *ops = &sc->ops;
4973         struct iwn_calib_state *calib = &sc->calib;
4974         uint32_t val;
4975         int i;
4976 
4977         /* Accumulate RSSI and noise for all 3 antennas. */
4978         for (i = 0; i < 3; i++) {
4979                 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4980                 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4981         }
4982         /* NB: We update differential gains only once after 20 beacons. */
4983         if (++calib->nbeacons < 20)
4984                 return;
4985 
4986         /* Determine highest average RSSI. */
4987         val = MAX(calib->rssi[0], calib->rssi[1]);
4988         val = MAX(calib->rssi[2], val);
4989 
4990         /* Determine which antennas are connected. */
4991         sc->chainmask = sc->rxchainmask;
4992         for (i = 0; i < 3; i++)
4993                 if (val - calib->rssi[i] > 15 * 20)
4994                         sc->chainmask &= ~(1 << i);
4995 
4996         sc->sc_ant->conn_ant.value.ul = sc->chainmask;
4997 
4998         /* If none of the TX antennas are connected, keep at least one. */
4999         if ((sc->chainmask & sc->txchainmask) == 0)
5000                 sc->chainmask |= IWN_LSB(sc->txchainmask);
5001 
5002         (void)ops->set_gains(sc);
5003         calib->state = IWN_CALIB_STATE_RUN;
5004 
5005 #ifdef notyet
5006         /* XXX Disable RX chains with no antennas connected. */
5007         sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5008         DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz);
5009         (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5010 #endif
5011 
5012         /* Enable power-saving mode if requested by user. */
5013         if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
5014                 (void)iwn_set_pslevel(sc, 0, 3, 1);
5015 }
5016 
5017 static int
5018 iwn4965_init_gains(struct iwn_softc *sc)
5019 {
5020         struct iwn_phy_calib_gain cmd;
5021 
5022         memset(&cmd, 0, sizeof cmd);
5023         cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5024         /* Differential gains initially set to 0 for all 3 antennas. */
5025         return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5026 }
5027 
5028 static int
5029 iwn5000_init_gains(struct iwn_softc *sc)
5030 {
5031         struct iwn_phy_calib cmd;
5032 
5033         memset(&cmd, 0, sizeof cmd);
5034         cmd.code = sc->reset_noise_gain;
5035         cmd.ngroups = 1;
5036         cmd.isvalid = 1;
5037         return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5038 }
5039 
5040 static int
5041 iwn4965_set_gains(struct iwn_softc *sc)
5042 {
5043         struct iwn_calib_state *calib = &sc->calib;
5044         struct iwn_phy_calib_gain cmd;
5045         int i, delta, noise;
5046 
5047         /* Get minimal noise among connected antennas. */
5048         noise = INT_MAX;        /* NB: There's at least one antenna. */
5049         for (i = 0; i < 3; i++)
5050                 if (sc->chainmask & (1 << i))
5051                         noise = MIN(calib->noise[i], noise);
5052 
5053         memset(&cmd, 0, sizeof cmd);
5054         cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5055         /* Set differential gains for connected antennas. */
5056         for (i = 0; i < 3; i++) {
5057                 if (sc->chainmask & (1 << i)) {
5058                         /* Compute attenuation (in unit of 1.5dB). */
5059                         delta = (noise - calib->noise[i]) / 30;
5060                         /* NB: delta <= 0 */
5061                         /* Limit to [-4.5dB,0]. */
5062                         cmd.gain[i] = (uint8_t)MIN(abs(delta), 3);
5063                         if (delta < 0)
5064                                 cmd.gain[i] |= 1 << 2;    /* sign bit */
5065                         sc->sc_ant->gain[i].value.ul = cmd.gain[i];
5066                 }
5067         }
5068         return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5069 }
5070 
5071 static int
5072 iwn5000_set_gains(struct iwn_softc *sc)
5073 {
5074         struct iwn_calib_state *calib = &sc->calib;
5075         struct iwn_phy_calib_gain cmd;
5076         int i, ant, div, delta;
5077 
5078         /* We collected 20 beacons and !=6050 need a 1.5 factor. */
5079         div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5080 
5081         memset(&cmd, 0, sizeof cmd);
5082         cmd.code = sc->noise_gain;
5083         cmd.ngroups = 1;
5084         cmd.isvalid = 1;
5085         /* Get first available RX antenna as referential. */
5086         ant = IWN_LSB(sc->rxchainmask);
5087         /* Set differential gains for other antennas. */
5088         for (i = ant + 1; i < 3; i++) {
5089                 if (sc->chainmask & (1 << i)) {
5090                         /* The delta is relative to antenna "ant". */
5091                         delta = (calib->noise[ant] - calib->noise[i]) / div;
5092                         /* Limit to [-4.5dB,+4.5dB]. */
5093                         cmd.gain[i - 1] = (uint8_t)MIN(abs(delta), 3);
5094                         if (delta < 0)
5095                                 cmd.gain[i - 1] |= 1 << 2;        /* sign bit */
5096                         sc->sc_ant->gain[i - 1].value.ul
5097                             = cmd.gain[i - 1];
5098                 }
5099         }
5100         return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5101 }
5102 
5103 /*
5104  * Tune RF RX sensitivity based on the number of false alarms detected
5105  * during the last beacon period.
5106  */
5107 static void
5108 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5109 {
5110 #define inc(val, inc, max)                      \
5111         if ((val) < (max)) {                 \
5112                 if ((val) < (max) - (inc))   \
5113                         (val) += (inc);         \
5114                 else                            \
5115                         (val) = (max);          \
5116                 needs_update = 1;               \
5117         }
5118 #define dec(val, dec, min)                      \
5119         if ((val) > (min)) {                 \
5120                 if ((val) > (min) + (dec))   \
5121                         (val) -= (dec);         \
5122                 else                            \
5123                         (val) = (min);          \
5124                 needs_update = 1;               \
5125         }
5126 
5127         const struct iwn_sensitivity_limits *limits = sc->limits;
5128         struct iwn_calib_state *calib = &sc->calib;
5129         uint32_t val, rxena, fa;
5130         uint32_t energy[3], energy_min;
5131         uint8_t noise[3], noise_ref;
5132         int i, needs_update = 0;
5133 
5134         /* Check that we've been enabled long enough. */
5135         if ((rxena = le32toh(stats->general.load)) == 0)
5136                 return;
5137 
5138         /* Compute number of false alarms since last call for OFDM. */
5139         fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5140         fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5141         fa *= 200 * 1024;       /* 200TU */
5142 
5143         /* Save counters values for next call. */
5144         calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
5145         calib->fa_ofdm = le32toh(stats->ofdm.fa);
5146 
5147         if (fa > 50 * rxena) {
5148                 /* High false alarm count, decrease sensitivity. */
5149                 IWN_DBG("OFDM high false alarm count: %u", fa);
5150                 inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5151                 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5152                 inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5153                 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5154 
5155         } else if (fa < 5 * rxena) {
5156                 /* Low false alarm count, increase sensitivity. */
5157                 IWN_DBG("OFDM low false alarm count: %u", fa);
5158                 dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5159                 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5160                 dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5161                 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5162         }
5163 
5164         /* Compute maximum noise among 3 receivers. */
5165         for (i = 0; i < 3; i++)
5166                 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5167         val = MAX(noise[0], noise[1]);
5168         val = MAX(noise[2], val);
5169         /* Insert it into our samples table. */
5170         calib->noise_samples[calib->cur_noise_sample] = (uint8_t)val;
5171         calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5172 
5173         /* Compute maximum noise among last 20 samples. */
5174         noise_ref = calib->noise_samples[0];
5175         for (i = 1; i < 20; i++)
5176                 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5177 
5178         /* Compute maximum energy among 3 receivers. */
5179         for (i = 0; i < 3; i++)
5180                 energy[i] = le32toh(stats->general.energy[i]);
5181         val = MIN(energy[0], energy[1]);
5182         val = MIN(energy[2], val);
5183         /* Insert it into our samples table. */
5184         calib->energy_samples[calib->cur_energy_sample] = val;
5185         calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5186 
5187         /* Compute minimum energy among last 10 samples. */
5188         energy_min = calib->energy_samples[0];
5189         for (i = 1; i < 10; i++)
5190                 energy_min = MAX(energy_min, calib->energy_samples[i]);
5191         energy_min += 6;
5192 
5193         /* Compute number of false alarms since last call for CCK. */
5194         fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5195         fa += le32toh(stats->cck.fa) - calib->fa_cck;
5196         fa *= 200 * 1024;       /* 200TU */
5197 
5198         /* Save counters values for next call. */
5199         calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
5200         calib->fa_cck = le32toh(stats->cck.fa);
5201 
5202         if (fa > 50 * rxena) {
5203                 /* High false alarm count, decrease sensitivity. */
5204                 IWN_DBG("CCK high false alarm count: %u", fa);
5205                 calib->cck_state = IWN_CCK_STATE_HIFA;
5206                 calib->low_fa = 0;
5207 
5208                 if (calib->cck_x4 > 160) {
5209                         calib->noise_ref = noise_ref;
5210                         if (calib->energy_cck > 2)
5211                                 dec(calib->energy_cck, 2, energy_min);
5212                 }
5213                 if (calib->cck_x4 < 160) {
5214                         calib->cck_x4 = 161;
5215                         needs_update = 1;
5216                 } else
5217                         inc(calib->cck_x4, 3, limits->max_cck_x4);
5218 
5219                 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5220 
5221         } else if (fa < 5 * rxena) {
5222                 /* Low false alarm count, increase sensitivity. */
5223                 IWN_DBG("CCK low false alarm count: %u", fa);
5224                 calib->cck_state = IWN_CCK_STATE_LOFA;
5225                 calib->low_fa++;
5226 
5227                 if (calib->cck_state != IWN_CCK_STATE_INIT &&
5228                     (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5229                      calib->low_fa > 100)) {
5230                         inc(calib->energy_cck, 2, limits->min_energy_cck);
5231                         dec(calib->cck_x4,     3, limits->min_cck_x4);
5232                         dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5233                 }
5234         } else {
5235                 /* Not worth to increase or decrease sensitivity. */
5236                 IWN_DBG("CCK normal false alarm count: %u", fa);
5237                 calib->low_fa = 0;
5238                 calib->noise_ref = noise_ref;
5239 
5240                 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5241                         /* Previous interval had many false alarms. */
5242                         dec(calib->energy_cck, 8, energy_min);
5243                 }
5244                 calib->cck_state = IWN_CCK_STATE_INIT;
5245         }
5246 
5247         if (needs_update)
5248                 (void)iwn_send_sensitivity(sc);
5249 #undef dec
5250 #undef inc
5251 }
5252 
5253 static int
5254 iwn_send_sensitivity(struct iwn_softc *sc)
5255 {
5256         struct iwn_calib_state *calib = &sc->calib;
5257         struct iwn_enhanced_sensitivity_cmd cmd;
5258         int len;
5259 
5260         memset(&cmd, 0, sizeof cmd);
5261         len = sizeof (struct iwn_sensitivity_cmd);
5262         cmd.which = IWN_SENSITIVITY_WORKTBL;
5263         /* OFDM modulation. */
5264         cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
5265         cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
5266         cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
5267         cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
5268         cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
5269         cmd.energy_ofdm_th   = htole16(62);
5270         /* CCK modulation. */
5271         cmd.corr_cck_x4      = htole16(calib->cck_x4);
5272         cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
5273         cmd.energy_cck       = htole16(calib->energy_cck);
5274         /* Barker modulation: use default values. */
5275         cmd.corr_barker      = htole16(190);
5276         cmd.corr_barker_mrc  = htole16(390);
5277         if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
5278                 goto send;
5279         /* Enhanced sensitivity settings. */
5280         len = sizeof (struct iwn_enhanced_sensitivity_cmd);
5281         cmd.ofdm_det_slope_mrc = htole16(668);
5282         cmd.ofdm_det_icept_mrc = htole16(4);
5283         cmd.ofdm_det_slope     = htole16(486);
5284         cmd.ofdm_det_icept     = htole16(37);
5285         cmd.cck_det_slope_mrc  = htole16(853);
5286         cmd.cck_det_icept_mrc  = htole16(4);
5287         cmd.cck_det_slope      = htole16(476);
5288         cmd.cck_det_icept      = htole16(99);
5289 send:
5290 
5291         sc->sc_sens->ofdm_x1.value.ul = calib->ofdm_x1;
5292         sc->sc_sens->ofdm_mrc_x1.value.ul = calib->ofdm_mrc_x1;
5293         sc->sc_sens->ofdm_x4.value.ul = calib->ofdm_x4;
5294         sc->sc_sens->ofdm_mrc_x4.value.ul = calib->ofdm_mrc_x4;
5295         sc->sc_sens->cck_x4.value.ul = calib->cck_x4;
5296         sc->sc_sens->cck_mrc_x4.value.ul = calib->cck_mrc_x4;
5297         sc->sc_sens->energy_cck.value.ul = calib->energy_cck;
5298 
5299         return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
5300 }
5301 
5302 /*
5303  * Set STA mode power saving level (between 0 and 5).
5304  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
5305  */
5306 static int
5307 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
5308 {
5309         struct iwn_pmgt_cmd cmd;
5310         const struct iwn_pmgt *pmgt;
5311         uint32_t maxp, skip_dtim;
5312         uint32_t reg;
5313         int i;
5314 
5315         /* Select which PS parameters to use. */
5316         if (dtim <= 2)
5317                 pmgt = &iwn_pmgt[0][level];
5318         else if (dtim <= 10)
5319                 pmgt = &iwn_pmgt[1][level];
5320         else
5321                 pmgt = &iwn_pmgt[2][level];
5322 
5323         memset(&cmd, 0, sizeof cmd);
5324         if (level != 0) /* not CAM */
5325                 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
5326         if (level == 5)
5327                 cmd.flags |= htole16(IWN_PS_FAST_PD);
5328         /* Retrieve PCIe Active State Power Management (ASPM). */
5329         reg = pci_config_get32(sc->sc_pcih,
5330             sc->sc_cap_off + PCIE_LINKCTL);
5331         if (!(reg & PCIE_LINKCTL_ASPM_CTL_L0S)) /* L0s Entry disabled. */
5332                 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
5333         cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
5334         cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
5335 
5336         if (dtim == 0) {
5337                 dtim = 1;
5338                 skip_dtim = 0;
5339         } else
5340                 skip_dtim = pmgt->skip_dtim;
5341         if (skip_dtim != 0) {
5342                 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
5343                 maxp = pmgt->intval[4];
5344                 if (maxp == (uint32_t)-1)
5345                         maxp = dtim * (skip_dtim + 1);
5346                 else if (maxp > dtim)
5347                         maxp = (maxp / dtim) * dtim;
5348         } else
5349                 maxp = dtim;
5350         for (i = 0; i < 5; i++)
5351                 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
5352 
5353         sc->sc_misc->pslevel.value.ul = level;
5354         return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
5355 }
5356 
5357 int
5358 iwn5000_runtime_calib(struct iwn_softc *sc)
5359 {
5360         struct iwn5000_calib_config cmd;
5361 
5362         memset(&cmd, 0, sizeof cmd);
5363         cmd.ucode.once.enable = 0xffffffff;
5364         cmd.ucode.once.start = IWN5000_CALIB_DC;
5365         return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
5366 }
5367 
5368 static int
5369 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
5370 {
5371         struct iwn_bluetooth bluetooth;
5372 
5373         memset(&bluetooth, 0, sizeof bluetooth);
5374         bluetooth.flags = IWN_BT_COEX_ENABLE;
5375         bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
5376         bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
5377 
5378         return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
5379 }
5380 
5381 static int
5382 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
5383 {
5384         uint8_t prio_table[16];
5385 
5386         memset(&prio_table, 0, sizeof prio_table);
5387         prio_table[ 0] =  6;    /* init calibration 1           */
5388         prio_table[ 1] =  7;    /* init calibration 2           */
5389         prio_table[ 2] =  2;    /* periodic calib low 1         */
5390         prio_table[ 3] =  3;    /* periodic calib low 2         */
5391         prio_table[ 4] =  4;    /* periodic calib high 1        */
5392         prio_table[ 5] =  5;    /* periodic calib high 2        */
5393         prio_table[ 6] =  6;    /* dtim                         */
5394         prio_table[ 7] =  8;    /* scan52                       */
5395         prio_table[ 8] = 10;    /* scan24                       */
5396 
5397         return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
5398                        &prio_table, sizeof prio_table, 0);
5399 }
5400 
5401 static int
5402 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
5403     size_t len)
5404 {
5405         struct iwn_btcoex_prot btprot;
5406         int error;
5407 
5408         basic->bt.flags = IWN_BT_COEX_ENABLE;
5409         basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
5410         basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
5411         basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
5412         basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
5413         basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
5414         basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
5415         basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
5416         basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
5417         basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
5418         basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
5419         basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
5420         basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
5421         basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
5422         basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
5423         basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
5424         basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
5425         basic->bt3_lookup_table[ 9] = htole32(0x00004000);
5426         basic->bt3_lookup_table[10] = htole32(0xf0005000);
5427         basic->bt3_lookup_table[11] = htole32(0xf0005000);
5428         basic->reduce_txpower = 0; /* as not implemented */
5429         basic->valid = IWN_BT_ALL_VALID_MASK;
5430 
5431         error = iwn_cmd(sc, IWN_CMD_BT_COEX, &basic, len, 0);
5432         if (error != 0) {
5433                 dev_err(sc->sc_dip, CE_WARN,
5434                     "!could not configure advanced bluetooth coexistence");
5435                 return error;
5436         }
5437 
5438         error = iwn_config_bt_coex_prio_table(sc);
5439         if (error != 0) {
5440                 dev_err(sc->sc_dip, CE_WARN,
5441                     "!could not configure send BT priority table");
5442                 return error;
5443         }
5444 
5445         /* Force BT state machine change */
5446         memset(&btprot, 0, sizeof btprot);
5447         btprot.open = 1;
5448         btprot.type = 1;
5449         error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
5450         if (error != 0) {
5451                 dev_err(sc->sc_dip, CE_WARN, "!could not open BT protcol");
5452                 return error;
5453         }
5454 
5455         btprot.open = 0;
5456         error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
5457         if (error != 0) {
5458                 dev_err(sc->sc_dip, CE_WARN, "!could not close BT protcol");
5459                 return error;
5460         }
5461         return 0;
5462 }
5463 
5464 static int
5465 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
5466 {
5467         struct iwn_bt_adv1 d;
5468 
5469         memset(&d, 0, sizeof d);
5470         d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
5471         d.tx_prio_boost = 0;
5472         d.rx_prio_boost = 0;
5473         return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
5474 }
5475 
5476 static int
5477 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
5478 {
5479         struct iwn_bt_adv2 d;
5480 
5481         memset(&d, 0, sizeof d);
5482         d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
5483         d.tx_prio_boost = 0;
5484         d.rx_prio_boost = 0;
5485         return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
5486 }
5487 
5488 static int
5489 iwn_config(struct iwn_softc *sc)
5490 {
5491         struct iwn_ops *ops = &sc->ops;
5492         struct ieee80211com *ic = &sc->sc_ic;
5493         uint32_t txmask;
5494         uint16_t rxchain;
5495         int error;
5496 
5497         error = ops->config_bt_coex(sc);
5498         if (error != 0) {
5499                 dev_err(sc->sc_dip, CE_WARN,
5500                     "!could not configure bluetooth coexistence");
5501                 return error;
5502         }
5503 
5504         /* Set radio temperature sensor offset. */
5505         if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
5506                 error = iwn6000_temp_offset_calib(sc);
5507                 if (error != 0) {
5508                         dev_err(sc->sc_dip, CE_WARN,
5509                             "!could not set temperature offset");
5510                         return error;
5511                 }
5512         }
5513 
5514         if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
5515             sc->hw_type == IWN_HW_REV_TYPE_2000 ||
5516             sc->hw_type == IWN_HW_REV_TYPE_135  ||
5517             sc->hw_type == IWN_HW_REV_TYPE_105) {
5518                 error = iwn2000_temp_offset_calib(sc);
5519                 if (error != 0) {
5520                         dev_err(sc->sc_dip, CE_WARN,
5521                             "!could not set temperature offset");
5522                         return error;
5523                 }
5524         }
5525 
5526         if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5527             sc->hw_type == IWN_HW_REV_TYPE_6005) {
5528                 /* Configure runtime DC calibration. */
5529                 error = iwn5000_runtime_calib(sc);
5530                 if (error != 0) {
5531                         dev_err(sc->sc_dip, CE_WARN,
5532                             "!could not configure runtime calibration");
5533                         return error;
5534                 }
5535         }
5536 
5537         /* Configure valid TX chains for 5000 Series. */
5538         if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
5539                 txmask = htole32(sc->txchainmask);
5540                 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
5541                     sizeof txmask, 0);
5542                 if (error != 0) {
5543                         dev_err(sc->sc_dip, CE_WARN,
5544                             "!could not configure valid TX chains");
5545                         return error;
5546                 }
5547         }
5548 
5549         /* Set mode, channel, RX filter and enable RX. */
5550         memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5551         IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_macaddr);
5552         IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_macaddr);
5553         sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
5554         sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5555         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
5556                 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5557         switch (ic->ic_opmode) {
5558         case IEEE80211_M_IBSS:
5559                 sc->rxon.mode = IWN_MODE_IBSS;
5560                 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5561                 break;
5562         case IEEE80211_M_STA:
5563                 sc->rxon.mode = IWN_MODE_STA;
5564                 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5565                 break;
5566         case IEEE80211_M_MONITOR:
5567                 sc->rxon.mode = IWN_MODE_MONITOR;
5568                 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5569                     IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5570                 break;
5571         default:
5572                 /* Should not get there. */
5573                 ASSERT(ic->ic_opmode == IEEE80211_M_IBSS ||
5574                     ic->ic_opmode == IEEE80211_M_STA ||
5575                     ic->ic_opmode == IEEE80211_M_MONITOR);
5576                 break;
5577         }
5578         sc->rxon.cck_mask  = 0x0f;   /* not yet negotiated */
5579         sc->rxon.ofdm_mask = 0xff;   /* not yet negotiated */
5580         sc->rxon.ht_single_mask = 0xff;
5581         sc->rxon.ht_dual_mask = 0xff;
5582         sc->rxon.ht_triple_mask = 0xff;
5583         rxchain =
5584             IWN_RXCHAIN_VALID(sc->rxchainmask) |
5585             IWN_RXCHAIN_MIMO_COUNT(2) |
5586             IWN_RXCHAIN_IDLE_COUNT(2);
5587         sc->rxon.rxchain = htole16(rxchain);
5588         DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz);
5589         error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5590         if (error != 0) {
5591                 dev_err(sc->sc_dip, CE_WARN,
5592                     "!RXON command failed");
5593                 return error;
5594         }
5595 
5596         if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
5597                 dev_err(sc->sc_dip, CE_WARN,
5598                     "!could not add broadcast node");
5599                 return error;
5600         }
5601 
5602         /* Configuration has changed, set TX power accordingly. */
5603         if ((error = ops->set_txpower(sc, 0)) != 0) {
5604                 dev_err(sc->sc_dip, CE_WARN,
5605                     "!could not set TX power");
5606                 return error;
5607         }
5608 
5609         if ((error = iwn_set_critical_temp(sc)) != 0) {
5610                 dev_err(sc->sc_dip, CE_WARN,
5611                     "!could not set critical temperature");
5612                 return error;
5613         }
5614 
5615         /* Set power saving level to CAM during initialization. */
5616         if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5617                 dev_err(sc->sc_dip, CE_WARN,
5618                     "!could not set power saving level");
5619                 return error;
5620         }
5621         return 0;
5622 }
5623 
5624 static uint16_t
5625 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
5626     uint8_t n_probes)
5627 {
5628         _NOTE(ARGUNUSED(sc));
5629 
5630         /* No channel? Default to 2GHz settings */
5631         if (flags & IEEE80211_CHAN_2GHZ)
5632                 return IWN_ACTIVE_DWELL_TIME_2GHZ +
5633                     IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
5634 
5635         /* 5GHz dwell time */
5636         return IWN_ACTIVE_DWELL_TIME_5GHZ +
5637             IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
5638 }
5639 
5640 /*
5641  * Limit the total dwell time to 85% of the beacon interval.
5642  *
5643  * Returns the dwell time in milliseconds.
5644  */
5645 static uint16_t
5646 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
5647 {
5648         _NOTE(ARGUNUSED(dwell_time));
5649 
5650         struct ieee80211com *ic = &sc->sc_ic;
5651         struct ieee80211_node *ni = ic->ic_bss;
5652         int bintval = 0;
5653 
5654         /* bintval is in TU (1.024mS) */
5655         if (ni != NULL)
5656                 bintval = ni->in_intval;
5657 
5658         /*
5659          * If it's non-zero, we should calculate the minimum of
5660          * it and the DWELL_BASE.
5661          *
5662          * XXX Yes, the math should take into account that bintval
5663          * is 1.024mS, not 1mS..
5664          */
5665         if (bintval > 0)
5666                 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
5667 
5668         /* No association context? Default */
5669         return IWN_PASSIVE_DWELL_BASE;
5670 }
5671 
5672 static uint16_t
5673 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
5674 {
5675         uint16_t passive;
5676         if (flags & IEEE80211_CHAN_2GHZ)
5677                 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
5678         else
5679                 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
5680 
5681         /* Clamp to the beacon interval if we're associated */
5682         return iwn_limit_dwell(sc, passive);
5683 }
5684 
5685 static int
5686 iwn_scan(struct iwn_softc *sc, uint16_t flags)
5687 {
5688         struct ieee80211com *ic = &sc->sc_ic;
5689         struct iwn_scan_hdr *hdr;
5690         struct iwn_cmd_data *tx;
5691         struct iwn_scan_essid *essid;
5692         struct iwn_scan_chan *chan;
5693         struct ieee80211_frame *wh;
5694         struct ieee80211_rateset *rs;
5695         struct ieee80211_channel *c;
5696         uint8_t *buf, *frm;
5697         uint16_t rxchain, dwell_active, dwell_passive;
5698         uint8_t txant;
5699         int buflen, error, is_active;
5700 
5701         buf = kmem_zalloc(IWN_SCAN_MAXSZ, KM_NOSLEEP);
5702         if (buf == NULL) {
5703                 dev_err(sc->sc_dip, CE_WARN,
5704                     "!could not allocate buffer for scan command");
5705                 return ENOMEM;
5706         }
5707         hdr = (struct iwn_scan_hdr *)buf;
5708         /*
5709          * Move to the next channel if no frames are received within 20ms
5710          * after sending the probe request.
5711          */
5712         hdr->quiet_time = htole16(20);               /* timeout in milliseconds */
5713         hdr->quiet_threshold = htole16(1);   /* min # of packets */
5714 
5715         /* Select antennas for scanning. */
5716         rxchain =
5717             IWN_RXCHAIN_VALID(sc->rxchainmask) |
5718             IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5719             IWN_RXCHAIN_DRIVER_FORCE;
5720         if ((flags & IEEE80211_CHAN_5GHZ) &&
5721             sc->hw_type == IWN_HW_REV_TYPE_4965) {
5722                 /* Ant A must be avoided in 5GHz because of an HW bug. */
5723                 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
5724         } else  /* Use all available RX antennas. */
5725                 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5726         hdr->rxchain = htole16(rxchain);
5727         hdr->filter = htole32(IWN_FILTER_MULTICAST |  IWN_FILTER_BEACON);
5728 
5729         tx = (struct iwn_cmd_data *)(hdr + 1);
5730         tx->flags = htole32(IWN_TX_AUTO_SEQ);
5731         tx->id = sc->broadcast_id;
5732         tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5733 
5734         if (flags & IEEE80211_CHAN_5GHZ) {
5735                 /* Send probe requests at 6Mbps. */
5736                 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
5737                 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5738         } else {
5739                 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5740                 /* Send probe requests at 1Mbps. */
5741                 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
5742                 tx->rflags = IWN_RFLAG_CCK;
5743                 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5744         }
5745 
5746         hdr->crc_threshold = 0xffff;
5747 
5748         /* Use the first valid TX antenna. */
5749         txant = IWN_LSB(sc->txchainmask);
5750         tx->rflags |= IWN_RFLAG_ANT(txant);
5751 
5752         /*
5753          * Only do active scanning if we're announcing a probe request
5754          * for a given SSID (or more, if we ever add it to the driver.)
5755          */
5756         is_active = 0;
5757 
5758         essid = (struct iwn_scan_essid *)(tx + 1);
5759         if (ic->ic_des_esslen != 0) {
5760                 char essidstr[IEEE80211_NWID_LEN+1];
5761                 memcpy(essidstr, ic->ic_des_essid, ic->ic_des_esslen);
5762                 essidstr[ic->ic_des_esslen] = '\0';
5763 
5764                 DTRACE_PROBE1(scan__direct, char *, essidstr);
5765 
5766                 essid[0].id = IEEE80211_ELEMID_SSID;
5767                 essid[0].len = ic->ic_des_esslen;
5768                 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
5769 
5770                 is_active = 1;
5771                 /* hdr->crc_threshold = 0x1; */
5772                 hdr->scan_flags = htole32(IWN_SCAN_PASSIVE2ACTIVE);
5773         }
5774         /*
5775          * Build a probe request frame.  Most of the following code is a
5776          * copy & paste of what is done in net80211.
5777          */
5778         wh = (struct ieee80211_frame *)(essid + 20);
5779         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5780             IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5781         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5782         IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
5783         IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
5784         IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
5785         wh->i_dur[0] = wh->i_dur[1] = 0; /* filled by HW */
5786         wh->i_seq[0] = wh->i_seq[1] = 0; /* filled by HW */
5787 
5788         frm = (uint8_t *)(wh + 1);
5789         frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen);
5790         frm = ieee80211_add_rates(frm, rs);
5791 #ifndef IEEE80211_NO_HT
5792         if (ic->ic_flags & IEEE80211_F_HTON)
5793                 frm = ieee80211_add_htcaps(frm, ic);
5794 #endif
5795         if (rs->ir_nrates > IEEE80211_RATE_SIZE)
5796                 frm = ieee80211_add_xrates(frm, rs);
5797 
5798         /* Set length of probe request. */
5799         /*LINTED: E_PTRDIFF_OVERFLOW*/
5800         tx->len = htole16(frm - (uint8_t *)wh);
5801 
5802 
5803         /*
5804          * If active scanning is requested but a certain channel is
5805          * marked passive, we can do active scanning if we detect
5806          * transmissions.
5807          *
5808          * There is an issue with some firmware versions that triggers
5809          * a sysassert on a "good CRC threshold" of zero (== disabled),
5810          * on a radar channel even though this means that we should NOT
5811          * send probes.
5812          *
5813          * The "good CRC threshold" is the number of frames that we
5814          * need to receive during our dwell time on a channel before
5815          * sending out probes -- setting this to a huge value will
5816          * mean we never reach it, but at the same time work around
5817          * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
5818          * here instead of IWN_GOOD_CRC_TH_DISABLED.
5819          *
5820          * This was fixed in later versions along with some other
5821          * scan changes, and the threshold behaves as a flag in those
5822          * versions.
5823          */
5824 
5825         /*
5826          * If we're doing active scanning, set the crc_threshold
5827          * to a suitable value.  This is different to active veruss
5828          * passive scanning depending upon the channel flags; the
5829          * firmware will obey that particular check for us.
5830          */
5831         if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
5832                 hdr->crc_threshold = is_active ?
5833                     IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
5834         else
5835                 hdr->crc_threshold = is_active ?
5836                     IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
5837 
5838         chan = (struct iwn_scan_chan *)frm;
5839         for (c  = &ic->ic_sup_channels[1];
5840              c <= &ic->ic_sup_channels[IEEE80211_CHAN_MAX]; c++) {
5841                 if ((c->ich_flags & flags) != flags)
5842                         continue;
5843                 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5844                 chan->flags = 0;
5845                 if (!(c->ich_flags & IEEE80211_CHAN_PASSIVE))
5846                         chan->flags |= htole32(IWN_CHAN_ACTIVE);
5847                 if (ic->ic_des_esslen != 0)
5848                         chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5849 
5850                 /*
5851                  * Calculate the active/passive dwell times.
5852                  */
5853 
5854                 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
5855                 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
5856 
5857                 /* Make sure they're valid */
5858                 if (dwell_passive <= dwell_active)
5859                         dwell_passive = dwell_active + 1;
5860 
5861                 chan->active = htole16(dwell_active);
5862                 chan->passive = htole16(dwell_passive);
5863 
5864                 chan->dsp_gain = 0x6e;
5865                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
5866                         chan->rf_gain = 0x3b;
5867                 } else {
5868                         chan->rf_gain = 0x28;
5869                 }
5870                 DTRACE_PROBE5(add__channel, uint8_t, chan->chan,
5871                     uint32_t, chan->flags, uint8_t, chan->rf_gain,
5872                     uint16_t, chan->active, uint16_t, chan->passive);
5873                 hdr->nchan++;
5874                 chan++;
5875         }
5876 
5877         /*LINTED: E_PTRDIFF_OVERFLOW*/
5878         buflen = (uint8_t *)chan - buf;
5879         hdr->len = htole16(buflen);
5880 
5881         error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5882         kmem_free(buf, IWN_SCAN_MAXSZ);
5883         return error;
5884 }
5885 
5886 static int
5887 iwn_auth(struct iwn_softc *sc)
5888 {
5889         struct iwn_ops *ops = &sc->ops;
5890         struct ieee80211com *ic = &sc->sc_ic;
5891         struct ieee80211_node *ni = ic->ic_bss;
5892         int error;
5893 
5894         ASSERT(ni->in_chan != NULL);
5895 
5896         /* Update adapter configuration. */
5897         IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->in_bssid);
5898         sc->rxon.chan = ieee80211_chan2ieee(ic, ni->in_chan);
5899         sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5900         if ((ni->in_chan != IEEE80211_CHAN_ANYC) &&
5901             IEEE80211_IS_CHAN_2GHZ(ni->in_chan))
5902                 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5903         if (ic->ic_flags & IEEE80211_F_SHSLOT)
5904                 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5905         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5906                 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5907         switch (ic->ic_curmode) {
5908         case IEEE80211_MODE_11A:
5909                 sc->rxon.cck_mask  = 0;
5910                 sc->rxon.ofdm_mask = 0x15;
5911                 break;
5912         case IEEE80211_MODE_11B:
5913                 sc->rxon.cck_mask  = 0x03;
5914                 sc->rxon.ofdm_mask = 0;
5915                 break;
5916         default:        /* Assume 802.11b/g. */
5917                 sc->rxon.cck_mask  = 0x0f;
5918                 sc->rxon.ofdm_mask = 0x15;
5919         }
5920         DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz);
5921         error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5922         if (error != 0) {
5923                 dev_err(sc->sc_dip, CE_WARN,
5924                     "!RXON command failed");
5925                 return error;
5926         }
5927 
5928         /* Configuration has changed, set TX power accordingly. */
5929         if ((error = ops->set_txpower(sc, 1)) != 0) {
5930                 dev_err(sc->sc_dip, CE_WARN,
5931                     "!could not set TX power");
5932                 return error;
5933         }
5934         /*
5935          * Reconfiguring RXON clears the firmware nodes table so we must
5936          * add the broadcast node again.
5937          */
5938         if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5939                 dev_err(sc->sc_dip, CE_WARN,
5940                     "!could not add broadcast node");
5941                 return error;
5942         }
5943         return 0;
5944 }
5945 
5946 static int
5947 iwn_fast_recover(struct iwn_softc *sc)
5948 {
5949         int err = IWN_FAIL;
5950 
5951         mutex_enter(&sc->sc_mtx);
5952 
5953         /* restore runtime configuration */
5954         bcopy(&sc->rxon_save, &sc->rxon,
5955             sizeof (sc->rxon));
5956 
5957         sc->rxon.associd = 0;
5958         sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
5959 
5960         if ((err = iwn_auth(sc)) != IWN_SUCCESS) {
5961                 dev_err(sc->sc_dip, CE_WARN, "!iwn_fast_recover(): "
5962                     "could not setup authentication");
5963                 mutex_exit(&sc->sc_mtx);
5964                 return (err);
5965         }
5966 
5967         bcopy(&sc->rxon_save, &sc->rxon, sizeof (sc->rxon));
5968 
5969         /* update adapter's configuration */
5970         err = iwn_run(sc);
5971         if (err != IWN_SUCCESS) {
5972                 dev_err(sc->sc_dip, CE_WARN, "!iwn_fast_recover(): "
5973                     "failed to setup association");
5974                 mutex_exit(&sc->sc_mtx);
5975                 return (err);
5976         }
5977         /* set LED on */
5978         iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5979 
5980         sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER;
5981         mutex_exit(&sc->sc_mtx);
5982 
5983         /* start queue */
5984         DTRACE_PROBE(resume__xmit);
5985 
5986         return (IWN_SUCCESS);
5987 }
5988 
5989 static int
5990 iwn_run(struct iwn_softc *sc)
5991 {
5992         struct iwn_ops *ops = &sc->ops;
5993         struct ieee80211com *ic = &sc->sc_ic;
5994         struct ieee80211_node *ni = ic->ic_bss;
5995         struct iwn_node_info node;
5996         int error;
5997 
5998         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5999                 /* Link LED blinks while monitoring. */
6000                 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
6001                 return 0;
6002         }
6003         if ((error = iwn_set_timing(sc, ni)) != 0) {
6004                 dev_err(sc->sc_dip, CE_WARN,
6005                     "!could not set timing");
6006                 return error;
6007         }
6008 
6009         /* Update adapter configuration. */
6010         IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->in_bssid);
6011         sc->rxon.associd = htole16(IEEE80211_AID(ni->in_associd));
6012         /* Short preamble and slot time are negotiated when associating. */
6013         sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
6014         if (ic->ic_flags & IEEE80211_F_SHSLOT)
6015                 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
6016         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6017                 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
6018         sc->rxon.filter |= htole32(IWN_FILTER_BSS);
6019         if (ic->ic_opmode != IEEE80211_M_STA &&
6020             ic->ic_opmode != IEEE80211_M_IBSS)
6021                 sc->rxon.filter |= htole32(IWN_FILTER_BEACON);
6022         DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz);
6023         error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
6024         if (error != 0) {
6025                 dev_err(sc->sc_dip, CE_WARN,
6026                     "!could not update configuration");
6027                 return error;
6028         }
6029 
6030         /* Configuration has changed, set TX power accordingly. */
6031         if ((error = ops->set_txpower(sc, 1)) != 0) {
6032                 dev_err(sc->sc_dip, CE_WARN,
6033                     "!could not set TX power");
6034                 return error;
6035         }
6036 
6037         /* Fake a join to initialize the TX rate. */
6038         ((struct iwn_node *)ni)->id = IWN_ID_BSS;
6039         iwn_newassoc(ni, 1);
6040 
6041         /* Add BSS node. */
6042         memset(&node, 0, sizeof node);
6043         IEEE80211_ADDR_COPY(node.macaddr, ni->in_macaddr);
6044         node.id = IWN_ID_BSS;
6045 #ifdef notyet
6046         node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
6047             IWN_AMDPU_DENSITY(5));      /* 2us */
6048 #endif
6049         error = ops->add_node(sc, &node, 1);
6050         if (error != 0) {
6051                 dev_err(sc->sc_dip, CE_WARN,
6052                     "!could not add BSS node");
6053                 return error;
6054         }
6055         if ((error = iwn_set_link_quality(sc, ni)) != 0) {
6056                 dev_err(sc->sc_dip, CE_WARN,
6057                     "!could not setup link quality for node %d", node.id);
6058                 return error;
6059         }
6060 
6061         if ((error = iwn_init_sensitivity(sc)) != 0) {
6062                 dev_err(sc->sc_dip, CE_WARN,
6063                     "!could not set sensitivity");
6064                 return error;
6065         }
6066 
6067         if ((error = iwn_qosparam_to_hw(sc, 1)) != 0) {
6068                 dev_err(sc->sc_dip, CE_WARN,
6069                     "!could not set QoS params");
6070                 return (error);
6071         }
6072 
6073         /* Start periodic calibration timer. */
6074         sc->sc_flags &= ~IWN_FLAG_STOP_CALIB_TO;
6075         sc->calib.state = IWN_CALIB_STATE_ASSOC;
6076         sc->calib_cnt = 0;
6077         sc->calib_to = timeout(iwn_calib_timeout, sc, drv_usectohz(500000));
6078 
6079         /* Link LED always on while associated. */
6080         iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6081         return 0;
6082 }
6083 
6084 #ifdef IWN_HWCRYPTO
6085 /*
6086  * We support CCMP hardware encryption/decryption of unicast frames only.
6087  * HW support for TKIP really sucks.  We should let TKIP die anyway.
6088  */
6089 static int
6090 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
6091     struct ieee80211_key *k)
6092 {
6093         struct iwn_softc *sc = ic->ic_softc;
6094         struct iwn_ops *ops = &sc->ops;
6095         struct iwn_node *wn = (void *)ni;
6096         struct iwn_node_info node;
6097         uint16_t kflags;
6098 
6099         if ((k->k_flags & IEEE80211_KEY_GROUP) ||
6100             k->k_cipher != IEEE80211_CIPHER_CCMP)
6101                 return ieee80211_set_key(ic, ni, k);
6102 
6103         kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
6104         if (k->k_flags & IEEE80211_KEY_GROUP)
6105                 kflags |= IWN_KFLAG_GROUP;
6106 
6107         memset(&node, 0, sizeof node);
6108         node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
6109             sc->broadcast_id : wn->id;
6110         node.control = IWN_NODE_UPDATE;
6111         node.flags = IWN_FLAG_SET_KEY;
6112         node.kflags = htole16(kflags);
6113         node.kid = k->k_id;
6114         memcpy(node.key, k->k_key, k->k_len);
6115         DTRACE_PROBE2(set__key, int, k->k_id, int, node.id);
6116         return ops->add_node(sc, &node, 1);
6117 }
6118 
6119 static void
6120 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
6121     struct ieee80211_key *k)
6122 {
6123         struct iwn_softc *sc = ic->ic_softc;
6124         struct iwn_ops *ops = &sc->ops;
6125         struct iwn_node *wn = (void *)ni;
6126         struct iwn_node_info node;
6127 
6128         if ((k->k_flags & IEEE80211_KEY_GROUP) ||
6129             k->k_cipher != IEEE80211_CIPHER_CCMP) {
6130                 /* See comment about other ciphers above. */
6131                 ieee80211_delete_key(ic, ni, k);
6132                 return;
6133         }
6134         if (ic->ic_state != IEEE80211_S_RUN)
6135                 return; /* Nothing to do. */
6136         memset(&node, 0, sizeof node);
6137         node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
6138             sc->broadcast_id : wn->id;
6139         node.control = IWN_NODE_UPDATE;
6140         node.flags = IWN_FLAG_SET_KEY;
6141         node.kflags = htole16(IWN_KFLAG_INVALID);
6142         node.kid = 0xff;
6143         DTRACE_PROBE1(del__key, int, node.id);
6144         (void)ops->add_node(sc, &node, 1);
6145 }
6146 #endif
6147 
6148 #ifndef IEEE80211_NO_HT
6149 /*
6150  * This function is called by upper layer when an ADDBA request is received
6151  * from another STA and before the ADDBA response is sent.
6152  */
6153 static int
6154 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
6155     uint8_t tid)
6156 {
6157         struct ieee80211_rx_ba *ba = &ni->in_rx_ba[tid];
6158         struct iwn_softc *sc = ic->ic_softc;
6159         struct iwn_ops *ops = &sc->ops;
6160         struct iwn_node *wn = (void *)ni;
6161         struct iwn_node_info node;
6162 
6163         memset(&node, 0, sizeof node);
6164         node.id = wn->id;
6165         node.control = IWN_NODE_UPDATE;
6166         node.flags = IWN_FLAG_SET_ADDBA;
6167         node.addba_tid = tid;
6168         node.addba_ssn = htole16(ba->ba_winstart);
6169         DTRACE_PROBE3(addba, uint8_t, wn->id, uint8_t, tid, int, ba->ba_winstart);
6170         return ops->add_node(sc, &node, 1);
6171 }
6172 
6173 /*
6174  * This function is called by upper layer on teardown of an HT-immediate
6175  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
6176  */
6177 static void
6178 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
6179     uint8_t tid)
6180 {
6181         struct iwn_softc *sc = ic->ic_softc;
6182         struct iwn_ops *ops = &sc->ops;
6183         struct iwn_node *wn = (void *)ni;
6184         struct iwn_node_info node;
6185 
6186         memset(&node, 0, sizeof node);
6187         node.id = wn->id;
6188         node.control = IWN_NODE_UPDATE;
6189         node.flags = IWN_FLAG_SET_DELBA;
6190         node.delba_tid = tid;
6191         DTRACE_PROBE2(delba, uint8_t, wn->id, uint8_t, tid);
6192         (void)ops->add_node(sc, &node, 1);
6193 }
6194 
6195 /*
6196  * This function is called by upper layer when an ADDBA response is received
6197  * from another STA.
6198  */
6199 static int
6200 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
6201     uint8_t tid)
6202 {
6203         struct ieee80211_tx_ba *ba = &ni->in_tx_ba[tid];
6204         struct iwn_softc *sc = ic->ic_softc;
6205         struct iwn_ops *ops = &sc->ops;
6206         struct iwn_node *wn = (void *)ni;
6207         struct iwn_node_info node;
6208         int error;
6209 
6210         /* Enable TX for the specified RA/TID. */
6211         wn->disable_tid &= ~(1 << tid);
6212         memset(&node, 0, sizeof node);
6213         node.id = wn->id;
6214         node.control = IWN_NODE_UPDATE;
6215         node.flags = IWN_FLAG_SET_DISABLE_TID;
6216         node.disable_tid = htole16(wn->disable_tid);
6217         error = ops->add_node(sc, &node, 1);
6218         if (error != 0)
6219                 return error;
6220 
6221         if ((error = iwn_nic_lock(sc)) != 0)
6222                 return error;
6223         ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
6224         iwn_nic_unlock(sc);
6225         return 0;
6226 }
6227 
6228 static void
6229 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
6230     uint8_t tid)
6231 {
6232         struct ieee80211_tx_ba *ba = &ni->in_tx_ba[tid];
6233         struct iwn_softc *sc = ic->ic_softc;
6234         struct iwn_ops *ops = &sc->ops;
6235 
6236         if (iwn_nic_lock(sc) != 0)
6237                 return;
6238         ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
6239         iwn_nic_unlock(sc);
6240 }
6241 
6242 static void
6243 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6244     uint8_t tid, uint16_t ssn)
6245 {
6246         struct iwn_node *wn = (void *)ni;
6247         int qid = 7 + tid;
6248 
6249         /* Stop TX scheduler while we're changing its configuration. */
6250         iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6251             IWN4965_TXQ_STATUS_CHGACT);
6252 
6253         /* Assign RA/TID translation to the queue. */
6254         iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
6255             wn->id << 4 | tid);
6256 
6257         /* Enable chain-building mode for the queue. */
6258         iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
6259 
6260         /* Set starting sequence number from the ADDBA request. */
6261         IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6262         iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6263 
6264         /* Set scheduler window size. */
6265         iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
6266             IWN_SCHED_WINSZ);
6267         /* Set scheduler frame limit. */
6268         iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6269             IWN_SCHED_LIMIT << 16);
6270 
6271         /* Enable interrupts for the queue. */
6272         iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6273 
6274         /* Mark the queue as active. */
6275         iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6276             IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
6277             iwn_tid2fifo[tid] << 1);
6278 }
6279 
6280 static void
6281 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
6282 {
6283         int qid = 7 + tid;
6284 
6285         /* Stop TX scheduler while we're changing its configuration. */
6286         iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6287             IWN4965_TXQ_STATUS_CHGACT);
6288 
6289         /* Set starting sequence number from the ADDBA request. */
6290         IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6291         iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6292 
6293         /* Disable interrupts for the queue. */
6294         iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6295 
6296         /* Mark the queue as inactive. */
6297         iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6298             IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
6299 }
6300 
6301 static void
6302 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6303     uint8_t tid, uint16_t ssn)
6304 {
6305         struct iwn_node *wn = (void *)ni;
6306         int qid = 10 + tid;
6307 
6308         /* Stop TX scheduler while we're changing its configuration. */
6309         iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6310             IWN5000_TXQ_STATUS_CHGACT);
6311 
6312         /* Assign RA/TID translation to the queue. */
6313         iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
6314             wn->id << 4 | tid);
6315 
6316         /* Enable chain-building mode for the queue. */
6317         iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
6318 
6319         /* Enable aggregation for the queue. */
6320         iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6321 
6322         /* Set starting sequence number from the ADDBA request. */
6323         IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6324         iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6325 
6326         /* Set scheduler window size and frame limit. */
6327         iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6328             IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6329 
6330         /* Enable interrupts for the queue. */
6331         iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6332 
6333         /* Mark the queue as active. */
6334         iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6335             IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
6336 }
6337 
6338 static void
6339 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
6340 {
6341         int qid = 10 + tid;
6342 
6343         /* Stop TX scheduler while we're changing its configuration. */
6344         iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6345             IWN5000_TXQ_STATUS_CHGACT);
6346 
6347         /* Disable aggregation for the queue. */
6348         iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6349 
6350         /* Set starting sequence number from the ADDBA request. */
6351         IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6352         iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6353 
6354         /* Disable interrupts for the queue. */
6355         iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6356 
6357         /* Mark the queue as inactive. */
6358         iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6359             IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
6360 }
6361 #endif  /* !IEEE80211_NO_HT */
6362 
6363 /*
6364  * Query calibration tables from the initialization firmware.  We do this
6365  * only once at first boot.  Called from a process context.
6366  */
6367 static int
6368 iwn5000_query_calibration(struct iwn_softc *sc)
6369 {
6370         struct iwn5000_calib_config cmd;
6371         int error;
6372         clock_t clk;
6373 
6374         ASSERT(mutex_owned(&sc->sc_mtx));
6375 
6376         memset(&cmd, 0, sizeof cmd);
6377         cmd.ucode.once.enable = 0xffffffff;
6378         cmd.ucode.once.start  = 0xffffffff;
6379         cmd.ucode.once.send   = 0xffffffff;
6380         cmd.ucode.flags       = 0xffffffff;
6381         error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
6382         if (error != 0)
6383                 return error;
6384 
6385         /* Wait at most two seconds for calibration to complete. */
6386         clk = ddi_get_lbolt() + drv_usectohz(2000000);
6387         while (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
6388                 if (cv_timedwait(&sc->sc_calib_cv, &sc->sc_mtx, clk) < 0)
6389                         return (IWN_FAIL);
6390 
6391         return (IWN_SUCCESS);
6392 }
6393 
6394 /*
6395  * Send calibration results to the runtime firmware.  These results were
6396  * obtained on first boot from the initialization firmware.
6397  */
6398 static int
6399 iwn5000_send_calibration(struct iwn_softc *sc)
6400 {
6401         int idx, error;
6402 
6403         for (idx = 0; idx < 5; idx++) {
6404                 if (sc->calibcmd[idx].buf == NULL)
6405                         continue;       /* No results available. */
6406                 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
6407                     sc->calibcmd[idx].len, 0);
6408                 if (error != 0) {
6409                         dev_err(sc->sc_dip, CE_WARN,
6410                             "!could not send calibration result");
6411                         return error;
6412                 }
6413         }
6414         return 0;
6415 }
6416 
6417 static int
6418 iwn5000_send_wimax_coex(struct iwn_softc *sc)
6419 {
6420         struct iwn5000_wimax_coex wimax;
6421 
6422 #ifdef notyet
6423         if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6424                 /* Enable WiMAX coexistence for combo adapters. */
6425                 wimax.flags =
6426                     IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
6427                     IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
6428                     IWN_WIMAX_COEX_STA_TABLE_VALID |
6429                     IWN_WIMAX_COEX_ENABLE;
6430                 memcpy(wimax.events, iwn6050_wimax_events,
6431                     sizeof iwn6050_wimax_events);
6432         } else
6433 #endif
6434         {
6435                 /* Disable WiMAX coexistence. */
6436                 wimax.flags = 0;
6437                 memset(wimax.events, 0, sizeof wimax.events);
6438         }
6439         return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
6440 }
6441 
6442 static int
6443 iwn6000_temp_offset_calib(struct iwn_softc *sc)
6444 {
6445         struct iwn6000_phy_calib_temp_offset cmd;
6446 
6447         memset(&cmd, 0, sizeof cmd);
6448         cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
6449         cmd.ngroups = 1;
6450         cmd.isvalid = 1;
6451         if (sc->eeprom_temp != 0)
6452                 cmd.offset = htole16(sc->eeprom_temp);
6453         else
6454                 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
6455         sc->sc_toff.t6000->toff.value.l = le16toh(cmd.offset);
6456         return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6457 }
6458 
6459 static int
6460 iwn2000_temp_offset_calib(struct iwn_softc *sc)
6461 {
6462         struct iwn2000_phy_calib_temp_offset cmd;
6463 
6464         memset(&cmd, 0, sizeof cmd);
6465         cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
6466         cmd.ngroups = 1;
6467         cmd.isvalid = 1;
6468         if (sc->eeprom_rawtemp != 0) {
6469                 cmd.offset_low = htole16(sc->eeprom_rawtemp);
6470                 cmd.offset_high = htole16(sc->eeprom_temp);
6471         } else {
6472                 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
6473                 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
6474         }
6475         cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
6476         sc->sc_toff.t2000->toff_lo.value.l = le16toh(cmd.offset_low);
6477         sc->sc_toff.t2000->toff_hi.value.l = le16toh(cmd.offset_high);
6478         sc->sc_toff.t2000->volt.value.l = le16toh(cmd.burnt_voltage_ref);
6479 
6480         return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6481 }
6482 
6483 /*
6484  * This function is called after the runtime firmware notifies us of its
6485  * readiness (called in a process context).
6486  */
6487 static int
6488 iwn4965_post_alive(struct iwn_softc *sc)
6489 {
6490         int error, qid;
6491 
6492         if ((error = iwn_nic_lock(sc)) != 0)
6493                 return error;
6494 
6495         /* Clear TX scheduler state in SRAM. */
6496         sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6497         iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
6498             IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
6499 
6500         /* Set physical address of TX scheduler rings (1KB aligned). */
6501         iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6502 
6503         IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6504 
6505         /* Disable chain mode for all our 16 queues. */
6506         iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
6507 
6508         for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
6509                 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
6510                 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6511 
6512                 /* Set scheduler window size. */
6513                 iwn_mem_write(sc, sc->sched_base +
6514                     IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
6515                 /* Set scheduler frame limit. */
6516                 iwn_mem_write(sc, sc->sched_base +
6517                     IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6518                     IWN_SCHED_LIMIT << 16);
6519         }
6520 
6521         /* Enable interrupts for all our 16 queues. */
6522         iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6523         /* Identify TX FIFO rings (0-7). */
6524         iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6525 
6526         /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6527         for (qid = 0; qid < 7; qid++) {
6528                 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6529                 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6530                     IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6531         }
6532         iwn_nic_unlock(sc);
6533         return 0;
6534 }
6535 
6536 /*
6537  * This function is called after the initialization or runtime firmware
6538  * notifies us of its readiness (called in a process context).
6539  */
6540 static int
6541 iwn5000_post_alive(struct iwn_softc *sc)
6542 {
6543         int error, qid;
6544 
6545         /* Switch to using ICT interrupt mode. */
6546         iwn5000_ict_reset(sc);
6547 
6548         if ((error = iwn_nic_lock(sc)) != 0)
6549                 return error;
6550 
6551         /* Clear TX scheduler state in SRAM. */
6552         sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6553         iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6554             IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6555 
6556         /* Set physical address of TX scheduler rings (1KB aligned). */
6557         iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6558 
6559         IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6560 
6561         /* Enable chain mode for all queues, except command queue. */
6562         iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6563         iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6564 
6565         for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6566                 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6567                 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6568 
6569                 iwn_mem_write(sc, sc->sched_base +
6570                     IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6571                 /* Set scheduler window size and frame limit. */
6572                 iwn_mem_write(sc, sc->sched_base +
6573                     IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6574                     IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6575         }
6576 
6577         /* Enable interrupts for all our 20 queues. */
6578         iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6579         /* Identify TX FIFO rings (0-7). */
6580         iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6581 
6582         /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6583         for (qid = 0; qid < 7; qid++) {
6584                 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6585                 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6586                     IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6587         }
6588         iwn_nic_unlock(sc);
6589 
6590         /* Configure WiMAX coexistence for combo adapters. */
6591         error = iwn5000_send_wimax_coex(sc);
6592         if (error != 0) {
6593                 dev_err(sc->sc_dip, CE_WARN,
6594                     "!could not configure WiMAX coexistence");
6595                 return error;
6596         }
6597         if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6598                 struct iwn5000_phy_calib_crystal cmd;
6599 
6600                 /* Perform crystal calibration. */
6601                 memset(&cmd, 0, sizeof cmd);
6602                 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
6603                 cmd.ngroups = 1;
6604                 cmd.isvalid = 1;
6605                 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
6606                 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
6607                 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6608                 if (error != 0) {
6609                         dev_err(sc->sc_dip, CE_WARN,
6610                             "!crystal calibration failed");
6611                         return error;
6612                 }
6613         }
6614         if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6615                 /* Query calibration from the initialization firmware. */
6616                 if ((error = iwn5000_query_calibration(sc)) != 0) {
6617                         dev_err(sc->sc_dip, CE_WARN,
6618                             "!could not query calibration");
6619                         return error;
6620                 }
6621                 /*
6622                  * We have the calibration results now, reboot with the
6623                  * runtime firmware (call ourselves recursively!)
6624                  */
6625                 iwn_hw_stop(sc, B_FALSE);
6626                 error = iwn_hw_init(sc);
6627         } else {
6628                 /* Send calibration results to runtime firmware. */
6629                 error = iwn5000_send_calibration(sc);
6630         }
6631         return error;
6632 }
6633 
6634 /*
6635  * The firmware boot code is small and is intended to be copied directy into
6636  * the NIC internal memory (no DMA transfer).
6637  */
6638 static int
6639 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6640 {
6641         int error, ntries;
6642 
6643         size /= sizeof (uint32_t);
6644 
6645         if ((error = iwn_nic_lock(sc)) != 0)
6646                 return error;
6647 
6648         /* Copy microcode image into NIC memory. */
6649         iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6650             /*LINTED: E_PTR_BAD_CAST_ALIGN*/
6651             (const uint32_t *)ucode, size);
6652 
6653         iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6654         iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6655         iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6656 
6657         /* Start boot load now. */
6658         iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6659 
6660         /* Wait for transfer to complete. */
6661         for (ntries = 0; ntries < 1000; ntries++) {
6662                 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6663                     IWN_BSM_WR_CTRL_START))
6664                         break;
6665                 DELAY(10);
6666         }
6667         if (ntries == 1000) {
6668                 dev_err(sc->sc_dip, CE_WARN,
6669                     "!could not load boot firmware");
6670                 iwn_nic_unlock(sc);
6671                 return ETIMEDOUT;
6672         }
6673 
6674         /* Enable boot after power up. */
6675         iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6676 
6677         iwn_nic_unlock(sc);
6678         return 0;
6679 }
6680 
6681 static int
6682 iwn4965_load_firmware(struct iwn_softc *sc)
6683 {
6684         struct iwn_fw_info *fw = &sc->fw;
6685         struct iwn_dma_info *dma = &sc->fw_dma;
6686         int error;
6687         clock_t clk;
6688 
6689         ASSERT(mutex_owned(&sc->sc_mtx));
6690 
6691         /* Copy initialization sections into pre-allocated DMA-safe memory. */
6692         memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6693         memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6694             fw->init.text, fw->init.textsz);
6695         (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
6696 
6697         /* Tell adapter where to find initialization sections. */
6698         if ((error = iwn_nic_lock(sc)) != 0)
6699                 return error;
6700         iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6701         iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6702         iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6703             (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6704         iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6705         iwn_nic_unlock(sc);
6706 
6707         /* Load firmware boot code. */
6708         error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6709         if (error != 0) {
6710                 dev_err(sc->sc_dip, CE_WARN,
6711                     "!could not load boot firmware");
6712                 return error;
6713         }
6714         /* Now press "execute". */
6715         IWN_WRITE(sc, IWN_RESET, 0);
6716 
6717         /* Wait at most one second for first alive notification. */
6718         clk = ddi_get_lbolt() + drv_usectohz(1000000);
6719         while ((sc->sc_flags & IWN_FLAG_FW_ALIVE) == 0) {
6720                 if (cv_timedwait(&sc->sc_alive_cv, &sc->sc_mtx, clk) < 0) {
6721                         dev_err(sc->sc_dip, CE_WARN,
6722                             "!timeout waiting for adapter to initialize");
6723                         return (IWN_FAIL);
6724                 }
6725         }
6726 
6727         /* Retrieve current temperature for initial TX power calibration. */
6728         sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6729         sc->temp = iwn4965_get_temperature(sc);
6730         sc->sc_misc->temp.value.ul = sc->temp;
6731 
6732         /* Copy runtime sections into pre-allocated DMA-safe memory. */
6733         memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6734         memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6735             fw->main.text, fw->main.textsz);
6736         (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
6737 
6738         /* Tell adapter where to find runtime sections. */
6739         if ((error = iwn_nic_lock(sc)) != 0)
6740                 return error;
6741         iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6742         iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6743         iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6744             (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6745         iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6746             IWN_FW_UPDATED | fw->main.textsz);
6747         iwn_nic_unlock(sc);
6748 
6749         return 0;
6750 }
6751 
6752 static int
6753 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6754     const uint8_t *section, int size)
6755 {
6756         struct iwn_dma_info *dma = &sc->fw_dma;
6757         int error;
6758         clock_t clk;
6759 
6760         ASSERT(mutex_owned(&sc->sc_mtx));
6761 
6762         /* Copy firmware section into pre-allocated DMA-safe memory. */
6763         memcpy(dma->vaddr, section, size);
6764         (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
6765 
6766         if ((error = iwn_nic_lock(sc)) != 0)
6767                 return error;
6768 
6769         IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6770             IWN_FH_TX_CONFIG_DMA_PAUSE);
6771 
6772         IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6773         IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6774             IWN_LOADDR(dma->paddr));
6775         IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6776             IWN_HIADDR(dma->paddr) << 28 | size);
6777         IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6778             IWN_FH_TXBUF_STATUS_TBNUM(1) |
6779             IWN_FH_TXBUF_STATUS_TBIDX(1) |
6780             IWN_FH_TXBUF_STATUS_TFBD_VALID);
6781 
6782         /* Kick Flow Handler to start DMA transfer. */
6783         IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6784             IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6785 
6786         iwn_nic_unlock(sc);
6787 
6788         /* Wait at most five seconds for FH DMA transfer to complete. */
6789         clk = ddi_get_lbolt() + drv_usectohz(5000000);
6790         while ((sc->sc_flags & IWN_FLAG_FW_DMA) == 0) {
6791                 if (cv_timedwait(&sc->sc_fhdma_cv, &sc->sc_mtx, clk) < 0)
6792                         return (IWN_FAIL);
6793         }
6794         sc->sc_flags &= ~IWN_FLAG_FW_DMA;
6795 
6796         return (IWN_SUCCESS);
6797 }
6798 
6799 static int
6800 iwn5000_load_firmware(struct iwn_softc *sc)
6801 {
6802         struct iwn_fw_part *fw;
6803         int error;
6804 
6805         /* Load the initialization firmware on first boot only. */
6806         fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6807             &sc->fw.main : &sc->fw.init;
6808 
6809         error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6810             fw->text, fw->textsz);
6811         if (error != 0) {
6812                 dev_err(sc->sc_dip, CE_WARN,
6813                     "!could not load firmware %s section", ".text");
6814                 return error;
6815         }
6816         error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6817             fw->data, fw->datasz);
6818         if (error != 0) {
6819                 dev_err(sc->sc_dip, CE_WARN,
6820                     "!could not load firmware %s section", ".data");
6821                 return error;
6822         }
6823 
6824         /* Now press "execute". */
6825         IWN_WRITE(sc, IWN_RESET, 0);
6826         return 0;
6827 }
6828 
6829 /*
6830  * Extract text and data sections from a legacy firmware image.
6831  */
6832 static int
6833 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6834 {
6835         _NOTE(ARGUNUSED(sc));
6836         const uint32_t *ptr;
6837         size_t hdrlen = 24;
6838         uint32_t rev;
6839 
6840         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
6841         ptr = (const uint32_t *)fw->data;
6842         rev = le32toh(*ptr++);
6843 
6844         /* Check firmware API version. */
6845         if (IWN_FW_API(rev) <= 1) {
6846                 dev_err(sc->sc_dip, CE_WARN,
6847                     "!bad firmware, need API version >=2");
6848                 return EINVAL;
6849         }
6850         if (IWN_FW_API(rev) >= 3) {
6851                 /* Skip build number (version 2 header). */
6852                 hdrlen += 4;
6853                 ptr++;
6854         }
6855         if (fw->size < hdrlen) {
6856                 dev_err(sc->sc_dip, CE_WARN,
6857                     "!firmware too short: %lld bytes", (longlong_t)fw->size);
6858                 return EINVAL;
6859         }
6860         fw->main.textsz = le32toh(*ptr++);
6861         fw->main.datasz = le32toh(*ptr++);
6862         fw->init.textsz = le32toh(*ptr++);
6863         fw->init.datasz = le32toh(*ptr++);
6864         fw->boot.textsz = le32toh(*ptr++);
6865 
6866         /* Check that all firmware sections fit. */
6867         if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6868             fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6869                 dev_err(sc->sc_dip, CE_WARN,
6870                     "!firmware too short: %lld bytes", (longlong_t)fw->size);
6871                 return EINVAL;
6872         }
6873 
6874         /* Get pointers to firmware sections. */
6875         fw->main.text = (const uint8_t *)ptr;
6876         fw->main.data = fw->main.text + fw->main.textsz;
6877         fw->init.text = fw->main.data + fw->main.datasz;
6878         fw->init.data = fw->init.text + fw->init.textsz;
6879         fw->boot.text = fw->init.data + fw->init.datasz;
6880         return 0;
6881 }
6882 
6883 /*
6884  * Extract text and data sections from a TLV firmware image.
6885  */
6886 static int
6887 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6888     uint16_t alt)
6889 {
6890         _NOTE(ARGUNUSED(sc));
6891         const struct iwn_fw_tlv_hdr *hdr;
6892         const struct iwn_fw_tlv *tlv;
6893         const uint8_t *ptr, *end;
6894         uint64_t altmask;
6895         uint32_t len;
6896 
6897         if (fw->size < sizeof (*hdr)) {
6898                 dev_err(sc->sc_dip, CE_WARN,
6899                     "!firmware too short: %lld bytes", (longlong_t)fw->size);
6900                 return EINVAL;
6901         }
6902         hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6903         if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6904                 dev_err(sc->sc_dip, CE_WARN,
6905                     "!bad firmware signature 0x%08x", le32toh(hdr->signature));
6906                 return EINVAL;
6907         }
6908 
6909         /*
6910          * Select the closest supported alternative that is less than
6911          * or equal to the specified one.
6912          */
6913         altmask = le64toh(hdr->altmask);
6914         while (alt > 0 && !(altmask & (1ULL << alt)))
6915                 alt--;  /* Downgrade. */
6916         IWN_DBG("using alternative %d", alt);
6917 
6918         ptr = (const uint8_t *)(hdr + 1);
6919         end = (const uint8_t *)(fw->data + fw->size);
6920 
6921         /* Parse type-length-value fields. */
6922         while (ptr + sizeof (*tlv) <= end) {
6923                 tlv = (const struct iwn_fw_tlv *)ptr;
6924                 len = le32toh(tlv->len);
6925 
6926                 ptr += sizeof (*tlv);
6927                 if (ptr + len > end) {
6928                         dev_err(sc->sc_dip, CE_WARN,
6929                             "!firmware too short: %lld bytes",
6930                             (longlong_t)fw->size);
6931                         return EINVAL;
6932                 }
6933                 /* Skip other alternatives. */
6934                 if (tlv->alt != 0 && le16toh(tlv->alt) != alt) {
6935                         IWN_DBG("skipping other alternative");
6936                         goto next;
6937                 }
6938 
6939                 switch (le16toh(tlv->type)) {
6940                 case IWN_FW_TLV_MAIN_TEXT:
6941                         fw->main.text = ptr;
6942                         fw->main.textsz = len;
6943                         break;
6944                 case IWN_FW_TLV_MAIN_DATA:
6945                         fw->main.data = ptr;
6946                         fw->main.datasz = len;
6947                         break;
6948                 case IWN_FW_TLV_INIT_TEXT:
6949                         fw->init.text = ptr;
6950                         fw->init.textsz = len;
6951                         break;
6952                 case IWN_FW_TLV_INIT_DATA:
6953                         fw->init.data = ptr;
6954                         fw->init.datasz = len;
6955                         break;
6956                 case IWN_FW_TLV_BOOT_TEXT:
6957                         fw->boot.text = ptr;
6958                         fw->boot.textsz = len;
6959                         break;
6960                 case IWN_FW_TLV_ENH_SENS:
6961                         if (len != 0) {
6962                                 dev_err(sc->sc_dip, CE_WARN,
6963                                     "!TLV type %d has invalid size %u",
6964                                     le16toh(tlv->type), len);
6965                                 goto next;
6966                         }
6967                         sc->sc_flags |= IWN_FLAG_ENH_SENS;
6968                         break;
6969                 case IWN_FW_TLV_PHY_CALIB:
6970                         if (len != sizeof(uint32_t)) {
6971                                 dev_err(sc->sc_dip, CE_WARN,
6972                                     "!TLV type %d has invalid size %u",
6973                                     le16toh(tlv->type), len);
6974                                 goto next;
6975                         }
6976                         if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
6977                                 sc->reset_noise_gain = le32toh(*ptr);
6978                                 sc->noise_gain = le32toh(*ptr) + 1;
6979                         }
6980                         break;
6981                 case IWN_FW_TLV_FLAGS:
6982                         if (len < sizeof(uint32_t))
6983                                 break;
6984                         if (len % sizeof(uint32_t))
6985                                 break;
6986                         sc->tlv_feature_flags = le32toh(*ptr);
6987                         IWN_DBG("feature: 0x%08x", sc->tlv_feature_flags);
6988                         break;
6989                 default:
6990                         IWN_DBG("TLV type %d not handled", le16toh(tlv->type));
6991                         break;
6992                 }
6993  next:          /* TLV fields are 32-bit aligned. */
6994                 ptr += (len + 3) & ~3;
6995         }
6996         return 0;
6997 }
6998 
6999 static int
7000 iwn_read_firmware(struct iwn_softc *sc)
7001 {
7002         struct iwn_fw_info *fw = &sc->fw;
7003         firmware_handle_t fwh;
7004         int error;
7005 
7006         /*
7007          * Some PHY calibration commands are firmware-dependent; these
7008          * are the default values that will be overridden if
7009          * necessary.
7010          */
7011         sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
7012         sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
7013 
7014         /* Initialize for error returns */
7015         fw->data = NULL;
7016         fw->size = 0;
7017 
7018         /* Open firmware image. */
7019         if ((error = firmware_open("iwn", sc->fwname, &fwh)) != 0) {
7020                 dev_err(sc->sc_dip, CE_WARN,
7021                     "!could not get firmware handle %s", sc->fwname);
7022                 return error;
7023         }
7024         fw->size = firmware_get_size(fwh);
7025         if (fw->size < sizeof (uint32_t)) {
7026                 dev_err(sc->sc_dip, CE_WARN,
7027                     "!firmware too short: %lld bytes", (longlong_t)fw->size);
7028                 (void) firmware_close(fwh);
7029                 return EINVAL;
7030         }
7031 
7032         /* Read the firmware. */
7033         fw->data = kmem_alloc(fw->size, KM_SLEEP);
7034         error = firmware_read(fwh, 0, fw->data, fw->size);
7035         (void) firmware_close(fwh);
7036         if (error != 0) {
7037                 dev_err(sc->sc_dip, CE_WARN,
7038                     "!could not read firmware %s", sc->fwname);
7039                 goto out;
7040         }
7041 
7042         /* Retrieve text and data sections. */
7043         /*LINTED: E_PTR_BAD_CAST_ALIGN*/
7044         if (*(const uint32_t *)fw->data != 0)        /* Legacy image. */
7045                 error = iwn_read_firmware_leg(sc, fw);
7046         else
7047                 error = iwn_read_firmware_tlv(sc, fw, 1);
7048         if (error != 0) {
7049                 dev_err(sc->sc_dip, CE_WARN,
7050                     "!could not read firmware sections");
7051                 goto out;
7052         }
7053 
7054         /* Make sure text and data sections fit in hardware memory. */
7055         if (fw->main.textsz > sc->fw_text_maxsz ||
7056             fw->main.datasz > sc->fw_data_maxsz ||
7057             fw->init.textsz > sc->fw_text_maxsz ||
7058             fw->init.datasz > sc->fw_data_maxsz ||
7059             fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
7060             (fw->boot.textsz & 3) != 0) {
7061                 dev_err(sc->sc_dip, CE_WARN,
7062                     "!firmware sections too large");
7063                 goto out;
7064         }
7065 
7066         /* We can proceed with loading the firmware. */
7067         return 0;
7068 out:
7069         kmem_free(fw->data, fw->size);
7070         fw->data = NULL;
7071         fw->size = 0;
7072         return error ? error : EINVAL;
7073 }
7074 
7075 static int
7076 iwn_clock_wait(struct iwn_softc *sc)
7077 {
7078         int ntries;
7079 
7080         /* Set "initialization complete" bit. */
7081         IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
7082 
7083         /* Wait for clock stabilization. */
7084         for (ntries = 0; ntries < 2500; ntries++) {
7085                 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
7086                         return 0;
7087                 DELAY(10);
7088         }
7089         dev_err(sc->sc_dip, CE_WARN,
7090             "!timeout waiting for clock stabilization");
7091         return ETIMEDOUT;
7092 }
7093 
7094 static int
7095 iwn_apm_init(struct iwn_softc *sc)
7096 {
7097         uint32_t reg;
7098         int error;
7099 
7100         /* Disable L0s exit timer (NMI bug workaround). */
7101         IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
7102         /* Don't wait for ICH L0s (ICH bug workaround). */
7103         IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
7104 
7105         /* Set FH wait threshold to max (HW bug under stress workaround). */
7106         IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
7107 
7108         /* Enable HAP INTA to move adapter from L1a to L0s. */
7109         IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
7110 
7111         /* Retrieve PCIe Active State Power Management (ASPM). */
7112         reg = pci_config_get32(sc->sc_pcih,
7113             sc->sc_cap_off + PCIE_LINKCTL);
7114         /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
7115         if (reg & PCIE_LINKCTL_ASPM_CTL_L1) /* L1 Entry enabled. */
7116                 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
7117         else
7118                 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
7119 
7120         if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
7121             sc->hw_type <= IWN_HW_REV_TYPE_1000)
7122                 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
7123 
7124         /* Wait for clock stabilization before accessing prph. */
7125         if ((error = iwn_clock_wait(sc)) != 0)
7126                 return error;
7127 
7128         if ((error = iwn_nic_lock(sc)) != 0)
7129                 return error;
7130         if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
7131                 /* Enable DMA and BSM (Bootstrap State Machine). */
7132                 iwn_prph_write(sc, IWN_APMG_CLK_EN,
7133                     IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
7134                     IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
7135         } else {
7136                 /* Enable DMA. */
7137                 iwn_prph_write(sc, IWN_APMG_CLK_EN,
7138                     IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7139         }
7140         DELAY(20);
7141         /* Disable L1-Active. */
7142         iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
7143         iwn_nic_unlock(sc);
7144 
7145         return 0;
7146 }
7147 
7148 static void
7149 iwn_apm_stop_master(struct iwn_softc *sc)
7150 {
7151         int ntries;
7152 
7153         /* Stop busmaster DMA activity. */
7154         IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
7155         for (ntries = 0; ntries < 100; ntries++) {
7156                 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
7157                         return;
7158                 DELAY(10);
7159         }
7160         dev_err(sc->sc_dip, CE_WARN,
7161             "!timeout waiting for master");
7162 }
7163 
7164 static void
7165 iwn_apm_stop(struct iwn_softc *sc)
7166 {
7167         iwn_apm_stop_master(sc);
7168 
7169         /* Reset the entire device. */
7170         IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
7171         DELAY(10);
7172         /* Clear "initialization complete" bit. */
7173         IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
7174 }
7175 
7176 static int
7177 iwn4965_nic_config(struct iwn_softc *sc)
7178 {
7179         if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
7180                 /*
7181                  * I don't believe this to be correct but this is what the
7182                  * vendor driver is doing. Probably the bits should not be
7183                  * shifted in IWN_RFCFG_*.
7184                  */
7185                 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7186                     IWN_RFCFG_TYPE(sc->rfcfg) |
7187                     IWN_RFCFG_STEP(sc->rfcfg) |
7188                     IWN_RFCFG_DASH(sc->rfcfg));
7189         }
7190         IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7191             IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
7192         return 0;
7193 }
7194 
7195 static int
7196 iwn5000_nic_config(struct iwn_softc *sc)
7197 {
7198         uint32_t tmp;
7199         int error;
7200 
7201         if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
7202                 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7203                     IWN_RFCFG_TYPE(sc->rfcfg) |
7204                     IWN_RFCFG_STEP(sc->rfcfg) |
7205                     IWN_RFCFG_DASH(sc->rfcfg));
7206         }
7207         IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7208             IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
7209 
7210         if ((error = iwn_nic_lock(sc)) != 0)
7211                 return error;
7212         iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
7213 
7214         if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
7215                 /*
7216                  * Select first Switching Voltage Regulator (1.32V) to
7217                  * solve a stability issue related to noisy DC2DC line
7218                  * in the silicon of 1000 Series.
7219                  */
7220                 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
7221                 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
7222                 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
7223                 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
7224         }
7225         iwn_nic_unlock(sc);
7226 
7227         if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
7228                 /* Use internal power amplifier only. */
7229                 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
7230         }
7231         if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
7232                 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
7233                 /* Indicate that ROM calibration version is >=6. */
7234                 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
7235         }
7236         if (sc->hw_type == IWN_HW_REV_TYPE_6005)
7237                 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
7238         if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
7239             sc->hw_type == IWN_HW_REV_TYPE_2000 ||
7240             sc->hw_type == IWN_HW_REV_TYPE_135  ||
7241             sc->hw_type == IWN_HW_REV_TYPE_105)
7242                 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
7243         return 0;
7244 }
7245 
7246 /*
7247  * Take NIC ownership over Intel Active Management Technology (AMT).
7248  */
7249 static int
7250 iwn_hw_prepare(struct iwn_softc *sc)
7251 {
7252         int ntries;
7253 
7254         /* Check if hardware is ready. */
7255         IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
7256         for (ntries = 0; ntries < 5; ntries++) {
7257                 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
7258                     IWN_HW_IF_CONFIG_NIC_READY)
7259                         return 0;
7260                 DELAY(10);
7261         }
7262 
7263         /* Hardware not ready, force into ready state. */
7264         IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
7265         for (ntries = 0; ntries < 15000; ntries++) {
7266                 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
7267                     IWN_HW_IF_CONFIG_PREPARE_DONE))
7268                         break;
7269                 DELAY(10);
7270         }
7271         if (ntries == 15000)
7272                 return ETIMEDOUT;
7273 
7274         /* Hardware should be ready now. */
7275         IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
7276         for (ntries = 0; ntries < 5; ntries++) {
7277                 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
7278                     IWN_HW_IF_CONFIG_NIC_READY)
7279                         return 0;
7280                 DELAY(10);
7281         }
7282         return ETIMEDOUT;
7283 }
7284 
7285 static int
7286 iwn_hw_init(struct iwn_softc *sc)
7287 {
7288         struct iwn_ops *ops = &sc->ops;
7289         int error, chnl, qid;
7290         clock_t clk;
7291         uint32_t rx_config;
7292 
7293         ASSERT(mutex_owned(&sc->sc_mtx));
7294 
7295         /* Clear pending interrupts. */
7296         IWN_WRITE(sc, IWN_INT, 0xffffffff);
7297 
7298         if ((error = iwn_apm_init(sc)) != 0) {
7299                 dev_err(sc->sc_dip, CE_WARN,
7300                     "!could not power ON adapter");
7301                 return error;
7302         }
7303 
7304         /* Select VMAIN power source. */
7305         if ((error = iwn_nic_lock(sc)) != 0)
7306                 return error;
7307         iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
7308         iwn_nic_unlock(sc);
7309 
7310         /* Perform adapter-specific initialization. */
7311         if ((error = ops->nic_config(sc)) != 0)
7312                 return error;
7313 
7314         /* Initialize RX ring. */
7315         if ((error = iwn_nic_lock(sc)) != 0)
7316                 return error;
7317         IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
7318         IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
7319         /* Set physical address of RX ring (256-byte aligned). */
7320         IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
7321         /* Set physical address of RX status (16-byte aligned). */
7322         IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
7323         /* Enable RX. */
7324         rx_config =
7325             IWN_FH_RX_CONFIG_ENA           |
7326 #if IWN_RBUF_SIZE == 8192
7327             IWN_FH_RX_CONFIG_RB_SIZE_8K    |
7328 #endif
7329             IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |    /* HW bug workaround */
7330             IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
7331             IWN_FH_RX_CONFIG_SINGLE_FRAME  |
7332             IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
7333             IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG);
7334         IWN_WRITE(sc, IWN_FH_RX_CONFIG, rx_config);
7335         iwn_nic_unlock(sc);
7336         IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
7337 
7338         if ((error = iwn_nic_lock(sc)) != 0)
7339                 return error;
7340 
7341         /* Initialize TX scheduler. */
7342         iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7343 
7344         /* Set physical address of "keep warm" page (16-byte aligned). */
7345         IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
7346 
7347         /* Initialize TX rings. */
7348         for (qid = 0; qid < sc->ntxqs; qid++) {
7349                 struct iwn_tx_ring *txq = &sc->txq[qid];
7350 
7351                 /* Set physical address of TX ring (256-byte aligned). */
7352                 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
7353                     txq->desc_dma.paddr >> 8);
7354         }
7355         iwn_nic_unlock(sc);
7356 
7357         /* Enable DMA channels. */
7358         for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7359                 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
7360                     IWN_FH_TX_CONFIG_DMA_ENA |
7361                     IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
7362         }
7363 
7364         /* Clear "radio off" and "commands blocked" bits. */
7365         IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7366         IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
7367 
7368         /* Clear pending interrupts. */
7369         IWN_WRITE(sc, IWN_INT, 0xffffffff);
7370         /* Enable interrupt coalescing. */
7371         IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 32);
7372         /* Enable interrupts. */
7373         IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7374 
7375         /* _Really_ make sure "radio off" bit is cleared! */
7376         IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7377         IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7378 
7379         /* Enable shadow registers. */
7380         if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
7381                 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
7382 
7383         if ((error = ops->load_firmware(sc)) != 0) {
7384                 dev_err(sc->sc_dip, CE_WARN,
7385                     "!could not load firmware");
7386                 return error;
7387         }
7388         /* Wait at most one second for firmware alive notification. */
7389         clk = ddi_get_lbolt() + drv_usectohz(1000000);
7390         while ((sc->sc_flags & IWN_FLAG_FW_ALIVE) == 0) {
7391                 if (cv_timedwait(&sc->sc_alive_cv, &sc->sc_mtx, clk) < 0) {
7392                         dev_err(sc->sc_dip, CE_WARN,
7393                             "!timeout waiting for adapter to initialize");
7394                         return (IWN_FAIL);
7395                 }
7396         }
7397         /* Do post-firmware initialization. */
7398         return ops->post_alive(sc);
7399 }
7400 
7401 static void
7402 iwn_hw_stop(struct iwn_softc *sc, boolean_t lock)
7403 {
7404         int chnl, qid, ntries;
7405 
7406         if (lock) {
7407                 mutex_enter(&sc->sc_mtx);
7408         }
7409 
7410         IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
7411 
7412         /* Disable interrupts. */
7413         IWN_WRITE(sc, IWN_INT_MASK, 0);
7414         IWN_WRITE(sc, IWN_INT, 0xffffffff);
7415         IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
7416         sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7417 
7418         /* Make sure we no longer hold the NIC lock. */
7419         iwn_nic_unlock(sc);
7420 
7421         /* Stop TX scheduler. */
7422         iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7423 
7424         /* Stop all DMA channels. */
7425         if (iwn_nic_lock(sc) == 0) {
7426                 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7427                         IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
7428                         for (ntries = 0; ntries < 200; ntries++) {
7429                                 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
7430                                     IWN_FH_TX_STATUS_IDLE(chnl))
7431                                         break;
7432                                 DELAY(10);
7433                         }
7434                 }
7435                 iwn_nic_unlock(sc);
7436         }
7437 
7438         /* Stop RX ring. */
7439         iwn_reset_rx_ring(sc, &sc->rxq);
7440 
7441         /* Reset all TX rings. */
7442         for (qid = 0; qid < sc->ntxqs; qid++)
7443                 iwn_reset_tx_ring(sc, &sc->txq[qid]);
7444 
7445         if (iwn_nic_lock(sc) == 0) {
7446                 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
7447                     IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7448                 iwn_nic_unlock(sc);
7449         }
7450         DELAY(5);
7451         /* Power OFF adapter. */
7452         iwn_apm_stop(sc);
7453 
7454         sc->sc_flags &= ~(IWN_FLAG_HW_INITED | IWN_FLAG_FW_ALIVE);
7455 
7456         if (lock) {
7457                 mutex_exit(&sc->sc_mtx);
7458         }
7459 }
7460 
7461 static int
7462 iwn_init(struct iwn_softc *sc)
7463 {
7464         int error;
7465 
7466         mutex_enter(&sc->sc_mtx);
7467         if (sc->sc_flags & IWN_FLAG_HW_INITED)
7468                 goto out;
7469         if ((error = iwn_hw_prepare(sc)) != 0) {
7470                 dev_err(sc->sc_dip, CE_WARN, "!hardware not ready");
7471                 goto fail;
7472         }
7473 
7474         /* Check that the radio is not disabled by hardware switch. */
7475         if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
7476                 dev_err(sc->sc_dip, CE_WARN,
7477                     "!radio is disabled by hardware switch");
7478                 error = EPERM;  /* :-) */
7479                 goto fail;
7480         }
7481 
7482         /* Read firmware images from the filesystem. */
7483         if ((error = iwn_read_firmware(sc)) != 0) {
7484                 dev_err(sc->sc_dip, CE_WARN, "!could not read firmware");
7485                 goto fail;
7486         }
7487 
7488         /* Initialize interrupt mask to default value. */
7489         sc->int_mask = IWN_INT_MASK_DEF;
7490         sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7491 
7492         /* Initialize hardware and upload firmware. */
7493         ASSERT(sc->fw.data != NULL && sc->fw.size > 0);
7494         error = iwn_hw_init(sc);
7495         if (error != 0) {
7496                 dev_err(sc->sc_dip, CE_WARN, "!could not initialize hardware");
7497                 goto fail;
7498         }
7499 
7500         /* Configure adapter now that it is ready. */
7501         if ((error = iwn_config(sc)) != 0) {
7502                 dev_err(sc->sc_dip, CE_WARN, "!could not configure device");
7503                 goto fail;
7504         }
7505 
7506         sc->sc_flags |= IWN_FLAG_HW_INITED;
7507 out:
7508         mutex_exit(&sc->sc_mtx);
7509         return 0;
7510 
7511 fail:
7512         iwn_hw_stop(sc, B_FALSE);
7513         mutex_exit(&sc->sc_mtx);
7514         return error;
7515 }
7516 
7517 /*
7518  * XXX code from usr/src/uts/common/io/net80211/net880211_output.c
7519  * Copyright (c) 2001 Atsushi Onoe
7520  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
7521  * Copyright (c) 2007-2009 Damien Bergamini
7522  * All rights reserved.
7523  */
7524 
7525 /*
7526  * Add SSID element to a frame
7527  */
7528 static uint8_t *
7529 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, uint32_t len)
7530 {
7531         *frm++ = IEEE80211_ELEMID_SSID;
7532         *frm++ = (uint8_t)len;
7533         bcopy(ssid, frm, len);
7534         return (frm + len);
7535 }
7536 
7537 /*
7538  * Add supported rates information element to a frame.
7539  */
7540 static uint8_t *
7541 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
7542 {
7543         uint8_t nrates;
7544 
7545         *frm++ = IEEE80211_ELEMID_RATES;
7546         nrates = rs->ir_nrates;
7547         if (nrates > IEEE80211_RATE_SIZE)
7548                 nrates = IEEE80211_RATE_SIZE;
7549         *frm++ = nrates;
7550         bcopy(rs->ir_rates, frm, nrates);
7551         return (frm + nrates);
7552 }
7553 
7554 /*
7555  * Add extended supported rates element to a frame, usually for 11g mode
7556  */
7557 static uint8_t *
7558 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
7559 {
7560         if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
7561                 uint8_t nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
7562 
7563                 *frm++ = IEEE80211_ELEMID_XRATES;
7564                 *frm++ = nrates;
7565                 bcopy(rs->ir_rates + IEEE80211_RATE_SIZE, frm, nrates);
7566                 frm += nrates;
7567         }
7568         return (frm);
7569 }
7570 
7571 /*
7572  * XXX: Hack to set the current channel to the value advertised in beacons or
7573  * probe responses. Only used during AP detection.
7574  * XXX: Duplicated from if_iwi.c
7575  */
7576 static void
7577 iwn_fix_channel(struct iwn_softc *sc, mblk_t *m,
7578     struct iwn_rx_stat *stat)
7579 {
7580         struct ieee80211com *ic = &sc->sc_ic;
7581         struct ieee80211_frame *wh;
7582         uint8_t subtype;
7583         uint8_t *frm, *efrm;
7584 
7585         wh = (struct ieee80211_frame *)m->b_rptr;
7586 
7587         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
7588                 return;
7589 
7590         subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
7591 
7592         if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
7593             subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
7594                 return;
7595 
7596         if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
7597                 int chan = le16toh(stat->chan);
7598                 if (chan < __arraycount(ic->ic_sup_channels))
7599                         ic->ic_curchan = &ic->ic_sup_channels[chan];
7600                 return;
7601         }
7602 
7603         frm = (uint8_t *)(wh + 1);
7604         efrm = (uint8_t *)m->b_wptr;
7605 
7606         frm += 12;      /* skip tstamp, bintval and capinfo fields */
7607         while (frm < efrm) {
7608                 if (*frm == IEEE80211_ELEMID_DSPARMS)
7609 #if IEEE80211_CHAN_MAX < 255
7610                 if (frm[2] <= IEEE80211_CHAN_MAX)
7611 #endif
7612                         ic->ic_curchan = &ic->ic_sup_channels[frm[2]];
7613 
7614                 frm += frm[1] + 2;
7615         }
7616 }
7617 
7618 /*
7619  * invoked by GLD to start or open NIC
7620  */
7621 static int
7622 iwn_m_start(void *arg)
7623 {
7624         struct iwn_softc *sc;
7625         ieee80211com_t  *ic;
7626         int err = IWN_FAIL;
7627 
7628         sc = (struct iwn_softc *)arg;
7629         ASSERT(sc != NULL);
7630         ic = &sc->sc_ic;
7631 
7632         err = iwn_init(sc);
7633         if (err != IWN_SUCCESS) {
7634                 /*
7635                  * If initialization failed because the RF switch is off,
7636                  * return success anyway to make the 'plumb' succeed.
7637                  * The iwn_thread() tries to re-init background.
7638                  */
7639                 if (err == EPERM &&
7640                     !(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
7641                         mutex_enter(&sc->sc_mtx);
7642                         sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER;
7643                         sc->sc_flags |= IWN_FLAG_RADIO_OFF;
7644                         mutex_exit(&sc->sc_mtx);
7645                         return (IWN_SUCCESS);
7646                 }
7647 
7648                 return (err);
7649         }
7650 
7651         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
7652 
7653         mutex_enter(&sc->sc_mtx);
7654         sc->sc_flags |= IWN_FLAG_RUNNING;
7655         mutex_exit(&sc->sc_mtx);
7656 
7657         return (IWN_SUCCESS);
7658 }
7659 
7660 /*
7661  * invoked by GLD to stop or down NIC
7662  */
7663 static void
7664 iwn_m_stop(void *arg)
7665 {
7666         struct iwn_softc *sc;
7667         ieee80211com_t  *ic;
7668 
7669         sc = (struct iwn_softc *)arg;
7670         ASSERT(sc != NULL);
7671         ic = &sc->sc_ic;
7672 
7673         iwn_hw_stop(sc, B_TRUE);
7674 
7675         /*
7676          * release buffer for calibration
7677          */
7678 
7679         ieee80211_stop_watchdog(ic);
7680         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
7681 
7682         mutex_enter(&sc->sc_mtx);
7683         sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER;
7684         sc->sc_flags &= ~IWN_FLAG_RATE_AUTO_CTL;
7685 
7686         sc->sc_flags &= ~IWN_FLAG_RUNNING;
7687         sc->sc_flags &= ~IWN_FLAG_SCANNING;
7688         mutex_exit(&sc->sc_mtx);
7689 }
7690 
7691 
7692 /*
7693  * Module Loading Data & Entry Points
7694  */
7695 DDI_DEFINE_STREAM_OPS(iwn_devops, nulldev, nulldev, iwn_attach,
7696     iwn_detach, nodev, NULL, D_MP, NULL, iwn_quiesce);
7697 
7698 static struct modldrv iwn_modldrv = {
7699         &mod_driverops,
7700         "Intel WiFi Link 4965 and 1000/5000/6000 series driver",
7701         &iwn_devops
7702 };
7703 
7704 static struct modlinkage iwn_modlinkage = {
7705         MODREV_1,
7706         &iwn_modldrv,
7707         NULL
7708 };
7709 
7710 int
7711 _init(void)
7712 {
7713         int     status;
7714 
7715         status = ddi_soft_state_init(&iwn_state,
7716             sizeof (struct iwn_softc), 1);
7717         if (status != DDI_SUCCESS)
7718                 return (status);
7719 
7720         mac_init_ops(&iwn_devops, "iwn");
7721         status = mod_install(&iwn_modlinkage);
7722         if (status != DDI_SUCCESS) {
7723                 mac_fini_ops(&iwn_devops);
7724                 ddi_soft_state_fini(&iwn_state);
7725         }
7726 
7727         return (status);
7728 }
7729 
7730 int
7731 _fini(void)
7732 {
7733         int status;
7734 
7735         status = mod_remove(&iwn_modlinkage);
7736         if (status == DDI_SUCCESS) {
7737                 mac_fini_ops(&iwn_devops);
7738                 ddi_soft_state_fini(&iwn_state);
7739         }
7740 
7741         return (status);
7742 }
7743 
7744 int
7745 _info(struct modinfo *mip)
7746 {
7747         return (mod_info(&iwn_modlinkage, mip));
7748 }