1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
  14  * Copyright (c) 2017, Joyent, Inc.
  15  * Copyright 2017 Tegile Systems, Inc.  All rights reserved.
  16  */
  17 
  18 /*
  19  * i40e - Intel 10/40 Gb Ethernet driver
  20  *
  21  * The i40e driver is the main software device driver for the Intel 40 Gb family
  22  * of devices. Note that these devices come in many flavors with both 40 GbE
  23  * ports and 10 GbE ports. This device is the successor to the 82599 family of
  24  * devices (ixgbe).
  25  *
  26  * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
  27  * devices defined in the XL710 controller (previously known as Fortville) are a
  28  * rather different beast and have a small switch embedded inside of them. In
  29  * addition, the way that most of the programming is done has been overhauled.
  30  * As opposed to just using PCIe memory mapped registers, it also has an
  31  * administrative queue which is used to communicate with firmware running on
  32  * the chip.
  33  *
  34  * Each physical function in the hardware shows up as a device that this driver
  35  * will bind to. The hardware splits many resources evenly across all of the
  36  * physical functions present on the device, while other resources are instead
  37  * shared across the entire card and its up to the device driver to
  38  * intelligently partition them.
  39  *
  40  * ------------
  41  * Organization
  42  * ------------
  43  *
  44  * This driver is made up of several files which have their own theory
  45  * statements spread across them. We'll touch on the high level purpose of each
  46  * file here, and then we'll get into more discussion on how the device is
  47  * generally modelled with respect to the interfaces in illumos.
  48  *
  49  * i40e_gld.c: This file contains all of the bindings to MAC and the networking
  50  *             stack.
  51  *
  52  * i40e_intr.c: This file contains all of the interrupt service routines and
  53  *              contains logic to enable and disable interrupts on the hardware.
  54  *              It also contains the logic to map hardware resources such as the
  55  *              rings to and from interrupts and controls their ability to fire.
  56  *
  57  *              There is a big theory statement on interrupts present there.
  58  *
  59  * i40e_main.c: The file that you're currently in. It interfaces with the
  60  *              traditional OS DDI interfaces and is in charge of configuring
  61  *              the device.
  62  *
  63  * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
  64  *                  work with Intel's common code for the device.
  65  *
  66  * i40e_stats.c: This file contains the general work and logic around our
  67  *               kstats. A theory statement on their organization and use of the
  68  *               hardware exists there.
  69  *
  70  * i40e_sw.h: This header file contains all of the primary structure definitions
  71  *            and constants that are used across the entire driver.
  72  *
  73  * i40e_transceiver.c: This file contains all of the logic for sending and
  74  *                     receiving data. It contains all of the ring and DMA
  75  *                     allocation logic, as well as, the actual interfaces to
  76  *                     send and receive data.
  77  *
  78  *                     A big theory statement on ring management, descriptors,
  79  *                     and how it ties into the OS is present there.
  80  *
  81  * --------------
  82  * General Design
  83  * --------------
  84  *
  85  * Before we go too far into the general way we've laid out data structures and
  86  * the like, it's worth taking some time to explain how the hardware is
  87  * organized. This organization informs a lot of how we do things at this time
  88  * in the driver.
  89  *
  90  * Each physical device consists of a number of one or more ports, which are
  91  * considered physical functions in the PCI sense and thus each get enumerated
  92  * by the system, resulting in an instance being created and attached to. While
  93  * there are many resources that are unique to each physical function eg.
  94  * instance of the device, there are many that are shared across all of them.
  95  * Several resources have an amount reserved for each Virtual Station Interface
  96  * (VSI) and then a static pool of resources, available for all functions on the
  97  * card.
  98  *
  99  * The most important resource in hardware are its transmit and receive queue
 100  * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
 101  * parlance. There are a set number of these on each device; however, they are
 102  * statically partitioned among all of the different physical functions.
 103  *
 104  * 'Fortville' (the code name for this device family) is basically a switch. To
 105  * map MAC addresses and other things to queues, we end up having to create
 106  * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
 107  * traffic to a queue. A VSI owns a collection of queues and has a series of
 108  * forwarding rules that point to it. One way to think of this is to treat it
 109  * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
 110  * classification resources, that is a VSI in i40e.
 111  *
 112  * The sets of VSIs is shared across the entire device, though there may be some
 113  * amount that are reserved to each PF. Because the GLDv3 does not let us change
 114  * the number of groups dynamically, we instead statically divide this amount
 115  * evenly between all the functions that exist. In addition, we have the same
 116  * problem with the mac address forwarding rules. There are a static number that
 117  * exist shared across all the functions.
 118  *
 119  * To handle both of these resources, what we end up doing is going through and
 120  * determining which functions belong to the same device. Nominally one might do
 121  * this by having a nexus driver; however, a prime requirement for a nexus
 122  * driver is identifying the various children and activating them. While it is
 123  * possible to get this information from NVRAM, we would end up duplicating a
 124  * lot of the PCI enumeration logic. Really, at the end of the day, the device
 125  * doesn't give us the traditional identification properties we want from a
 126  * nexus driver.
 127  *
 128  * Instead, we rely on some properties that are guaranteed to be unique. While
 129  * it might be tempting to leverage the PBA or serial number of the device from
 130  * NVRAM, there is nothing that says that two devices can't be mis-programmed to
 131  * have the same values in NVRAM. Instead, we uniquely identify a group of
 132  * functions based on their parent in the /devices tree, their PCI bus and PCI
 133  * function identifiers. Using either on their own may not be sufficient.
 134  *
 135  * For each unique PCI device that we encounter, we'll create a i40e_device_t.
 136  * From there, because we don't have a good way to tell the GLDv3 about sharing
 137  * resources between everything, we'll end up just dividing the resources
 138  * evenly between all of the functions. Longer term, if we don't have to declare
 139  * to the GLDv3 that these resources are shared, then we'll maintain a pool and
 140  * hae each PF allocate from the pool in the device, thus if only two of four
 141  * ports are being used, for example, then all of the resources can still be
 142  * used.
 143  *
 144  * -------------------------------------------
 145  * Transmit and Receive Queue Pair Allocations
 146  * -------------------------------------------
 147  *
 148  * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
 149  * queue pairs, we have no way of modifying it, only observing it. From there,
 150  * it's up to us to map these queues to VSIs and VFs. Since we don't support any
 151  * VFs at this time, we only focus on assignments to VSIs.
 152  *
 153  * At the moment, we used a static mapping of transmit/receive queue pairs to a
 154  * given VSI (eg. rings to a group). Though in the fullness of time, we want to
 155  * make this something which is fully dynamic and take advantage of documented,
 156  * but not yet available functionality for adding filters based on VXLAN and
 157  * other encapsulation technologies.
 158  *
 159  * -------------------------------------
 160  * Broadcast, Multicast, and Promiscuous
 161  * -------------------------------------
 162  *
 163  * As part of the GLDv3, we need to make sure that we can handle receiving
 164  * broadcast and multicast traffic. As well as enabling promiscuous mode when
 165  * requested. GLDv3 requires that all broadcast and multicast traffic be
 166  * retrieved by the default group, eg. the first one. This is the same thing as
 167  * the default VSI.
 168  *
 169  * To receieve broadcast traffic, we enable it through the admin queue, rather
 170  * than use one of our filters for it. For multicast traffic, we reserve a
 171  * certain number of the hash filters and assign them to a given PF. When we
 172  * exceed those, we then switch to using promicuous mode for multicast traffic.
 173  *
 174  * More specifically, once we exceed the number of filters (indicated because
 175  * the i40e_t`i40e_resources.ifr_nmcastfilt ==
 176  * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
 177  * promiscuous mode. If promiscuous mode is toggled then we keep track of the
 178  * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
 179  * That will stay enabled until that count reaches zero indicating that we have
 180  * only added multicast addresses that we have a corresponding entry for.
 181  *
 182  * Because MAC itself wants to toggle promiscuous mode, which includes both
 183  * unicast and multicast traffic, we go through and keep track of that
 184  * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
 185  * member.
 186  *
 187  * --------------
 188  * VSI Management
 189  * --------------
 190  *
 191  * At this time, we currently only support a single MAC group, and thus a single
 192  * VSI. This VSI is considered the default VSI and should be the only one that
 193  * exists after a reset. Currently it is stored as the member
 194  * i40e_t`i40e_vsi_id. While this works for the moment and for an initial
 195  * driver, it's not sufficient for the longer-term path of the driver. Instead,
 196  * we'll want to actually have a unique i40e_vsi_t structure which is used
 197  * everywhere. Note that this means that every place that uses the
 198  * i40e_t`i40e_vsi_id will need to be refactored.
 199  *
 200  * ----------------
 201  * Structure Layout
 202  * ----------------
 203  *
 204  * The following images relates the core data structures together. The primary
 205  * structure in the system is the i40e_t. It itself contains multiple rings,
 206  * i40e_trqpair_t's which contain the various transmit and receive data. The
 207  * receive data is stored outside of the i40e_trqpair_t and instead in the
 208  * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
 209  * track of per-physical device state. Finally, for every active descriptor,
 210  * there is a corresponding control block, which is where the
 211  * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
 212  *
 213  *   +-----------------------+       +-----------------------+
 214  *   | Global i40e_t list    |       | Global Device list    |
 215  *   |                       |    +--|                       |
 216  *   | i40e_glist            |    |  | i40e_dlist            |
 217  *   +-----------------------+    |  +-----------------------+
 218  *       |                        v
 219  *       |      +------------------------+      +-----------------------+
 220  *       |      | Device-wide Structure  |----->| Device-wide Structure |--> ...
 221  *       |      | i40e_device_t          |      | i40e_device_t         |
 222  *       |      |                        |      +-----------------------+
 223  *       |      | dev_info_t *     ------+--> Parent in devices tree.
 224  *       |      | uint_t           ------+--> PCI bus number
 225  *       |      | uint_t           ------+--> PCI device number
 226  *       |      | uint_t           ------+--> Number of functions
 227  *       |      | i40e_switch_rsrcs_t ---+--> Captured total switch resources
 228  *       |      | list_t           ------+-------------+
 229  *       |      +------------------------+             |
 230  *       |                           ^                 |
 231  *       |                           +--------+        |
 232  *       |                                    |        v
 233  *       |  +---------------------------+     |   +-------------------+
 234  *       +->| GLDv3 Device, per PF      |-----|-->| GLDv3 Device (PF) |--> ...
 235  *          | i40e_t                    |     |   | i40e_t            |
 236  *          | **Primary Structure**     |     |   +-------------------+
 237  *          |                           |     |
 238  *          | i40e_device_t *         --+-----+
 239  *          | i40e_state_t            --+---> Device State
 240  *          | i40e_hw_t               --+---> Intel common code structure
 241  *          | mac_handle_t            --+---> GLDv3 handle to MAC
 242  *          | ddi_periodic_t          --+---> Link activity timer
 243  *          | int (vsi_id)            --+---> VSI ID, main identifier
 244  *          | i40e_func_rsrc_t        --+---> Available hardware resources
 245  *          | i40e_switch_rsrc_t *    --+---> Switch resource snapshot
 246  *          | i40e_sdu                --+---> Current MTU
 247  *          | i40e_frame_max          --+---> Current HW frame size
 248  *          | i40e_uaddr_t *          --+---> Array of assigned unicast MACs
 249  *          | i40e_maddr_t *          --+---> Array of assigned multicast MACs
 250  *          | i40e_mcast_promisccount --+---> Active multicast state
 251  *          | i40e_promisc_on         --+---> Current promiscuous mode state
 252  *          | int                     --+---> Number of transmit/receive pairs
 253  *          | kstat_t *               --+---> PF kstats
 254  *          | kstat_t *               --+---> VSI kstats
 255  *          | i40e_pf_stats_t         --+---> PF kstat backing data
 256  *          | i40e_vsi_stats_t        --+---> VSI kstat backing data
 257  *          | i40e_trqpair_t *        --+---------+
 258  *          +---------------------------+         |
 259  *                                                |
 260  *                                                v
 261  *  +-------------------------------+       +-----------------------------+
 262  *  | Transmit/Receive Queue Pair   |-------| Transmit/Receive Queue Pair |->...
 263  *  | i40e_trqpair_t                |       | i40e_trqpair_t              |
 264  *  + Ring Data Structure           |       +-----------------------------+
 265  *  |                               |
 266  *  | mac_ring_handle_t             +--> MAC RX ring handle
 267  *  | mac_ring_handle_t             +--> MAC TX ring handle
 268  *  | i40e_rxq_stat_t             --+--> RX Queue stats
 269  *  | i40e_txq_stat_t             --+--> TX Queue stats
 270  *  | uint32_t (tx ring size)       +--> TX Ring Size
 271  *  | uint32_t (tx free list size)  +--> TX Free List Size
 272  *  | i40e_dma_buffer_t     --------+--> TX Descriptor ring DMA
 273  *  | i40e_tx_desc_t *      --------+--> TX descriptor ring
 274  *  | volatile unt32_t *            +--> TX Write back head
 275  *  | uint32_t               -------+--> TX ring head
 276  *  | uint32_t               -------+--> TX ring tail
 277  *  | uint32_t               -------+--> Num TX desc free
 278  *  | i40e_tx_control_block_t *   --+--> TX control block array  ---+
 279  *  | i40e_tx_control_block_t **  --+--> TCB work list          ----+
 280  *  | i40e_tx_control_block_t **  --+--> TCB free list           ---+
 281  *  | uint32_t               -------+--> Free TCB count             |
 282  *  | i40e_rx_data_t *       -------+--+                            v
 283  *  +-------------------------------+  |          +---------------------------+
 284  *                                     |          | Per-TX Frame Metadata     |
 285  *                                     |          | i40e_tx_control_block_t   |
 286  *                +--------------------+          |                           |
 287  *                |           mblk to transmit <--+---      mblk_t *          |
 288  *                |           type of transmit <--+---      i40e_tx_type_t    |
 289  *                |              TX DMA handle <--+---      ddi_dma_handle_t  |
 290  *                v              TX DMA buffer <--+---      i40e_dma_buffer_t |
 291  *    +------------------------------+            +---------------------------+
 292  *    | Core Receive Data            |
 293  *    | i40e_rx_data_t               |
 294  *    |                              |
 295  *    | i40e_dma_buffer_t          --+--> RX descriptor DMA Data
 296  *    | i40e_rx_desc_t             --+--> RX descriptor ring
 297  *    | uint32_t                   --+--> Next free desc.
 298  *    | i40e_rx_control_block_t *  --+--> RX Control Block Array  ---+
 299  *    | i40e_rx_control_block_t ** --+--> RCB work list           ---+
 300  *    | i40e_rx_control_block_t ** --+--> RCB free list           ---+
 301  *    +------------------------------+                               |
 302  *                ^                                                  |
 303  *                |     +---------------------------+                |
 304  *                |     | Per-RX Frame Metadata     |<---------------+
 305  *                |     | i40e_rx_control_block_t   |
 306  *                |     |                           |
 307  *                |     | mblk_t *              ----+--> Received mblk_t data
 308  *                |     | uint32_t              ----+--> Reference count
 309  *                |     | i40e_dma_buffer_t     ----+--> Receive data DMA info
 310  *                |     | frtn_t                ----+--> mblk free function info
 311  *                +-----+-- i40e_rx_data_t *        |
 312  *                      +---------------------------+
 313  *
 314  * -------------
 315  * Lock Ordering
 316  * -------------
 317  *
 318  * In order to ensure that we don't deadlock, the following represents the
 319  * lock order being used. When grabbing locks, follow the following order. Lower
 320  * numbers are more important. Thus, the i40e_glock which is number 0, must be
 321  * taken before any other locks in the driver. On the other hand, the
 322  * i40e_t`i40e_stat_lock, has the highest number because it's the least
 323  * important lock. Note, that just because one lock is higher than another does
 324  * not mean that all intermediary locks are required.
 325  *
 326  * 0) i40e_glock
 327  * 1) i40e_t`i40e_general_lock
 328  *
 329  * 2) i40e_trqpair_t`itrq_rx_lock
 330  * 3) i40e_trqpair_t`itrq_tx_lock
 331  * 4) i40e_t`i40e_rx_pending_lock
 332  * 5) i40e_trqpair_t`itrq_tcb_lock
 333  *
 334  * 6) i40e_t`i40e_stat_lock
 335  *
 336  * Rules and expectations:
 337  *
 338  * 1) A thread holding locks belong to one PF should not hold locks belonging to
 339  * a second. If for some reason this becomes necessary, locks should be grabbed
 340  * based on the list order in the i40e_device_t, which implies that the
 341  * i40e_glock is held.
 342  *
 343  * 2) When grabbing locks between multiple transmit and receive queues, the
 344  * locks for the lowest number transmit/receive queue should be grabbed first.
 345  *
 346  * 3) When grabbing both the transmit and receive lock for a given queue, always
 347  * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
 348  *
 349  * 4) The following pairs of locks are not expected to be held at the same time:
 350  *
 351  * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
 352  *
 353  * -----------
 354  * Future Work
 355  * -----------
 356  *
 357  * At the moment the i40e_t driver is rather bare bones, allowing us to start
 358  * getting data flowing and folks using it while we develop additional features.
 359  * While bugs have been filed to cover this future work, the following gives an
 360  * overview of expected work:
 361  *
 362  *  o TSO support
 363  *  o Multiple group support
 364  *  o DMA binding and breaking up the locking in ring recycling.
 365  *  o Enhanced detection of device errors
 366  *  o Participation in IRM
 367  *  o FMA device reset
 368  *  o Stall detection, temperature error detection, etc.
 369  *  o More dynamic resource pools
 370  */
 371 
 372 #include "i40e_sw.h"
 373 
 374 static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.1";
 375 
 376 /*
 377  * The i40e_glock primarily protects the lists below and the i40e_device_t
 378  * structures.
 379  */
 380 static kmutex_t i40e_glock;
 381 static list_t i40e_glist;
 382 static list_t i40e_dlist;
 383 
 384 /*
 385  * Access attributes for register mapping.
 386  */
 387 static ddi_device_acc_attr_t i40e_regs_acc_attr = {
 388         DDI_DEVICE_ATTR_V1,
 389         DDI_STRUCTURE_LE_ACC,
 390         DDI_STRICTORDER_ACC,
 391         DDI_FLAGERR_ACC
 392 };
 393 
 394 /*
 395  * Logging function for this driver.
 396  */
 397 static void
 398 i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
 399     va_list ap)
 400 {
 401         char buf[1024];
 402 
 403         (void) vsnprintf(buf, sizeof (buf), fmt, ap);
 404 
 405         if (i40e == NULL) {
 406                 cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
 407                     I40E_MODULE_NAME, buf);
 408         } else {
 409                 dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
 410                     buf);
 411         }
 412 }
 413 
 414 /*
 415  * Because there's the stupid trailing-comma problem with the C preprocessor
 416  * and variable arguments, I need to instantiate these.  Pardon the redundant
 417  * code.
 418  */
 419 /*PRINTFLIKE2*/
 420 void
 421 i40e_error(i40e_t *i40e, const char *fmt, ...)
 422 {
 423         va_list ap;
 424 
 425         va_start(ap, fmt);
 426         i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
 427         va_end(ap);
 428 }
 429 
 430 /*PRINTFLIKE2*/
 431 void
 432 i40e_log(i40e_t *i40e, const char *fmt, ...)
 433 {
 434         va_list ap;
 435 
 436         va_start(ap, fmt);
 437         i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
 438         va_end(ap);
 439 }
 440 
 441 /*PRINTFLIKE2*/
 442 void
 443 i40e_notice(i40e_t *i40e, const char *fmt, ...)
 444 {
 445         va_list ap;
 446 
 447         va_start(ap, fmt);
 448         i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
 449         va_end(ap);
 450 }
 451 
 452 /*
 453  * Various parts of the driver need to know if the controller is from the X722
 454  * family, which has a few additional capabilities and different programming
 455  * means. We don't consider virtual functions as part of this as they are quite
 456  * different and will require substantially more work.
 457  */
 458 static boolean_t
 459 i40e_is_x722(i40e_t *i40e)
 460 {
 461         return (i40e->i40e_hw_space.mac.type == I40E_MAC_X722);
 462 }
 463 
 464 static void
 465 i40e_device_rele(i40e_t *i40e)
 466 {
 467         i40e_device_t *idp = i40e->i40e_device;
 468 
 469         if (idp == NULL)
 470                 return;
 471 
 472         mutex_enter(&i40e_glock);
 473         VERIFY(idp->id_nreg > 0);
 474         list_remove(&idp->id_i40e_list, i40e);
 475         idp->id_nreg--;
 476         if (idp->id_nreg == 0) {
 477                 list_remove(&i40e_dlist, idp);
 478                 list_destroy(&idp->id_i40e_list);
 479                 kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
 480                     idp->id_rsrcs_alloc);
 481                 kmem_free(idp, sizeof (i40e_device_t));
 482         }
 483         i40e->i40e_device = NULL;
 484         mutex_exit(&i40e_glock);
 485 }
 486 
 487 static i40e_device_t *
 488 i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
 489 {
 490         i40e_device_t *idp;
 491         mutex_enter(&i40e_glock);
 492         for (idp = list_head(&i40e_dlist); idp != NULL;
 493             idp = list_next(&i40e_dlist, idp)) {
 494                 if (idp->id_parent == parent && idp->id_pci_bus == bus &&
 495                     idp->id_pci_device == device) {
 496                         break;
 497                 }
 498         }
 499 
 500         if (idp != NULL) {
 501                 VERIFY(idp->id_nreg < idp->id_nfuncs);
 502                 idp->id_nreg++;
 503         } else {
 504                 i40e_hw_t *hw = &i40e->i40e_hw_space;
 505                 ASSERT(hw->num_ports > 0);
 506                 ASSERT(hw->num_partitions > 0);
 507 
 508                 /*
 509                  * The Intel common code doesn't exactly keep the number of PCI
 510                  * functions. But it calculates it during discovery of
 511                  * partitions and ports. So what we do is undo the calculation
 512                  * that it does originally, as functions are evenly spread
 513                  * across ports in the rare case of partitions.
 514                  */
 515                 idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
 516                 idp->id_parent = parent;
 517                 idp->id_pci_bus = bus;
 518                 idp->id_pci_device = device;
 519                 idp->id_nfuncs = hw->num_ports * hw->num_partitions;
 520                 idp->id_nreg = 1;
 521                 idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
 522                 idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
 523                 idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
 524                     idp->id_rsrcs_alloc, KM_SLEEP);
 525                 bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
 526                     sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
 527                 list_create(&idp->id_i40e_list, sizeof (i40e_t),
 528                     offsetof(i40e_t, i40e_dlink));
 529 
 530                 list_insert_tail(&i40e_dlist, idp);
 531         }
 532 
 533         list_insert_tail(&idp->id_i40e_list, i40e);
 534         mutex_exit(&i40e_glock);
 535 
 536         return (idp);
 537 }
 538 
 539 static void
 540 i40e_link_state_set(i40e_t *i40e, link_state_t state)
 541 {
 542         if (i40e->i40e_link_state == state)
 543                 return;
 544 
 545         i40e->i40e_link_state = state;
 546         mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
 547 }
 548 
 549 /*
 550  * This is a basic link check routine. Mostly we're using this just to see
 551  * if we can get any accurate information about the state of the link being
 552  * up or down, as well as updating the link state, speed, etc. information.
 553  */
 554 void
 555 i40e_link_check(i40e_t *i40e)
 556 {
 557         i40e_hw_t *hw = &i40e->i40e_hw_space;
 558         boolean_t ls;
 559         int ret;
 560 
 561         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
 562 
 563         hw->phy.get_link_info = B_TRUE;
 564         if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
 565                 i40e->i40e_s_link_status_errs++;
 566                 i40e->i40e_s_link_status_lasterr = ret;
 567                 return;
 568         }
 569 
 570         /*
 571          * Firmware abstracts all of the mac and phy information for us, so we
 572          * can use i40e_get_link_status to determine the current state.
 573          */
 574         if (ls == B_TRUE) {
 575                 enum i40e_aq_link_speed speed;
 576 
 577                 speed = i40e_get_link_speed(hw);
 578 
 579                 /*
 580                  * Translate from an i40e value to a value in Mbits/s.
 581                  */
 582                 switch (speed) {
 583                 case I40E_LINK_SPEED_100MB:
 584                         i40e->i40e_link_speed = 100;
 585                         break;
 586                 case I40E_LINK_SPEED_1GB:
 587                         i40e->i40e_link_speed = 1000;
 588                         break;
 589                 case I40E_LINK_SPEED_10GB:
 590                         i40e->i40e_link_speed = 10000;
 591                         break;
 592                 case I40E_LINK_SPEED_20GB:
 593                         i40e->i40e_link_speed = 20000;
 594                         break;
 595                 case I40E_LINK_SPEED_40GB:
 596                         i40e->i40e_link_speed = 40000;
 597                         break;
 598                 case I40E_LINK_SPEED_25GB:
 599                         i40e->i40e_link_speed = 25000;
 600                         break;
 601                 default:
 602                         i40e->i40e_link_speed = 0;
 603                         break;
 604                 }
 605 
 606                 /*
 607                  * At this time, hardware does not support half-duplex
 608                  * operation, hence why we don't ask the hardware about our
 609                  * current speed.
 610                  */
 611                 i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
 612                 i40e_link_state_set(i40e, LINK_STATE_UP);
 613         } else {
 614                 i40e->i40e_link_speed = 0;
 615                 i40e->i40e_link_duplex = 0;
 616                 i40e_link_state_set(i40e, LINK_STATE_DOWN);
 617         }
 618 }
 619 
 620 static void
 621 i40e_rem_intrs(i40e_t *i40e)
 622 {
 623         int i, rc;
 624 
 625         for (i = 0; i < i40e->i40e_intr_count; i++) {
 626                 rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
 627                 if (rc != DDI_SUCCESS) {
 628                         i40e_log(i40e, "failed to free interrupt %d: %d",
 629                             i, rc);
 630                 }
 631         }
 632 
 633         kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
 634         i40e->i40e_intr_handles = NULL;
 635 }
 636 
 637 static void
 638 i40e_rem_intr_handlers(i40e_t *i40e)
 639 {
 640         int i, rc;
 641 
 642         for (i = 0; i < i40e->i40e_intr_count; i++) {
 643                 rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
 644                 if (rc != DDI_SUCCESS) {
 645                         i40e_log(i40e, "failed to remove interrupt %d: %d",
 646                             i, rc);
 647                 }
 648         }
 649 }
 650 
 651 /*
 652  * illumos Fault Management Architecture (FMA) support.
 653  */
 654 
 655 int
 656 i40e_check_acc_handle(ddi_acc_handle_t handle)
 657 {
 658         ddi_fm_error_t de;
 659 
 660         ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
 661         ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
 662         return (de.fme_status);
 663 }
 664 
 665 int
 666 i40e_check_dma_handle(ddi_dma_handle_t handle)
 667 {
 668         ddi_fm_error_t de;
 669 
 670         ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
 671         return (de.fme_status);
 672 }
 673 
 674 /*
 675  * Fault service error handling callback function.
 676  */
 677 /* ARGSUSED */
 678 static int
 679 i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
 680 {
 681         pci_ereport_post(dip, err, NULL);
 682         return (err->fme_status);
 683 }
 684 
 685 static void
 686 i40e_fm_init(i40e_t *i40e)
 687 {
 688         ddi_iblock_cookie_t iblk;
 689 
 690         i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
 691             i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
 692             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
 693             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
 694 
 695         if (i40e->i40e_fm_capabilities < 0) {
 696                 i40e->i40e_fm_capabilities = 0;
 697         } else if (i40e->i40e_fm_capabilities > 0xf) {
 698                 i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
 699                     DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
 700                     DDI_FM_ERRCB_CAPABLE;
 701         }
 702 
 703         /*
 704          * Only register with IO Fault Services if we have some capability
 705          */
 706         if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
 707                 i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
 708         } else {
 709                 i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
 710         }
 711 
 712         if (i40e->i40e_fm_capabilities) {
 713                 ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
 714 
 715                 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
 716                     DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
 717                         pci_ereport_setup(i40e->i40e_dip);
 718                 }
 719 
 720                 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
 721                         ddi_fm_handler_register(i40e->i40e_dip,
 722                             i40e_fm_error_cb, (void*)i40e);
 723                 }
 724         }
 725 
 726         if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
 727                 i40e_init_dma_attrs(i40e, B_TRUE);
 728         } else {
 729                 i40e_init_dma_attrs(i40e, B_FALSE);
 730         }
 731 }
 732 
 733 static void
 734 i40e_fm_fini(i40e_t *i40e)
 735 {
 736         if (i40e->i40e_fm_capabilities) {
 737 
 738                 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
 739                     DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
 740                         pci_ereport_teardown(i40e->i40e_dip);
 741 
 742                 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
 743                         ddi_fm_handler_unregister(i40e->i40e_dip);
 744 
 745                 ddi_fm_fini(i40e->i40e_dip);
 746         }
 747 }
 748 
 749 void
 750 i40e_fm_ereport(i40e_t *i40e, char *detail)
 751 {
 752         uint64_t ena;
 753         char buf[FM_MAX_CLASS];
 754 
 755         (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
 756         ena = fm_ena_generate(0, FM_ENA_FMT1);
 757         if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
 758                 ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
 759                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
 760         }
 761 }
 762 
 763 /*
 764  * Here we're trying to get the ID of the default VSI. In general, when we come
 765  * through and look at this shortly after attach, we expect there to only be a
 766  * single element present, which is the default VSI. Importantly, each PF seems
 767  * to not see any other devices, in part because of the simple switch mode that
 768  * we're using. If for some reason, we see more artifact, we'll need to revisit
 769  * what we're doing here.
 770  */
 771 static int
 772 i40e_get_vsi_id(i40e_t *i40e)
 773 {
 774         i40e_hw_t *hw = &i40e->i40e_hw_space;
 775         struct i40e_aqc_get_switch_config_resp *sw_config;
 776         uint8_t aq_buf[I40E_AQ_LARGE_BUF];
 777         uint16_t next = 0;
 778         int rc;
 779 
 780         /* LINTED: E_BAD_PTR_CAST_ALIGN */
 781         sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
 782         rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
 783             NULL);
 784         if (rc != I40E_SUCCESS) {
 785                 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
 786                     rc, hw->aq.asq_last_status);
 787                 return (-1);
 788         }
 789 
 790         if (LE_16(sw_config->header.num_reported) != 1) {
 791                 i40e_error(i40e, "encountered multiple (%d) switching units "
 792                     "during attach, not proceeding",
 793                     LE_16(sw_config->header.num_reported));
 794                 return (-1);
 795         }
 796 
 797         return (sw_config->element[0].seid);
 798 }
 799 
 800 /*
 801  * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
 802  * must also provide the memory for it; however, we don't need to keep it around
 803  * to the call to the common code. It takes it and parses it into an internal
 804  * structure.
 805  */
 806 static boolean_t
 807 i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
 808 {
 809         struct i40e_aqc_list_capabilities_element_resp *buf;
 810         int rc;
 811         size_t len;
 812         uint16_t needed;
 813         int nelems = I40E_HW_CAP_DEFAULT;
 814 
 815         len = nelems * sizeof (*buf);
 816 
 817         for (;;) {
 818                 ASSERT(len > 0);
 819                 buf = kmem_alloc(len, KM_SLEEP);
 820                 rc = i40e_aq_discover_capabilities(hw, buf, len,
 821                     &needed, i40e_aqc_opc_list_func_capabilities, NULL);
 822                 kmem_free(buf, len);
 823 
 824                 if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
 825                     nelems == I40E_HW_CAP_DEFAULT) {
 826                         if (nelems == needed) {
 827                                 i40e_error(i40e, "Capability discovery failed "
 828                                     "due to byzantine common code");
 829                                 return (B_FALSE);
 830                         }
 831                         len = needed;
 832                         continue;
 833                 } else if (rc != I40E_SUCCESS ||
 834                     hw->aq.asq_last_status != I40E_AQ_RC_OK) {
 835                         i40e_error(i40e, "Capability discovery failed: %d", rc);
 836                         return (B_FALSE);
 837                 }
 838 
 839                 break;
 840         }
 841 
 842         return (B_TRUE);
 843 }
 844 
 845 /*
 846  * Obtain the switch's capabilities as seen by this PF and keep it around for
 847  * our later use.
 848  */
 849 static boolean_t
 850 i40e_get_switch_resources(i40e_t *i40e)
 851 {
 852         i40e_hw_t *hw = &i40e->i40e_hw_space;
 853         uint8_t cnt = 2;
 854         uint8_t act;
 855         size_t size;
 856         i40e_switch_rsrc_t *buf;
 857 
 858         for (;;) {
 859                 enum i40e_status_code ret;
 860                 size = cnt * sizeof (i40e_switch_rsrc_t);
 861                 ASSERT(size > 0);
 862                 if (size > UINT16_MAX)
 863                         return (B_FALSE);
 864                 buf = kmem_alloc(size, KM_SLEEP);
 865 
 866                 ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
 867                     cnt, NULL);
 868                 if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
 869                     hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
 870                         kmem_free(buf, size);
 871                         cnt += I40E_SWITCH_CAP_DEFAULT;
 872                         continue;
 873                 } else if (ret != I40E_SUCCESS) {
 874                         kmem_free(buf, size);
 875                         i40e_error(i40e,
 876                             "failed to retrieve switch statistics: %d", ret);
 877                         return (B_FALSE);
 878                 }
 879 
 880                 break;
 881         }
 882 
 883         i40e->i40e_switch_rsrc_alloc = cnt;
 884         i40e->i40e_switch_rsrc_actual = act;
 885         i40e->i40e_switch_rsrcs = buf;
 886 
 887         return (B_TRUE);
 888 }
 889 
 890 static void
 891 i40e_cleanup_resources(i40e_t *i40e)
 892 {
 893         if (i40e->i40e_uaddrs != NULL) {
 894                 kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
 895                     i40e->i40e_resources.ifr_nmacfilt);
 896                 i40e->i40e_uaddrs = NULL;
 897         }
 898 
 899         if (i40e->i40e_maddrs != NULL) {
 900                 kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
 901                     i40e->i40e_resources.ifr_nmcastfilt);
 902                 i40e->i40e_maddrs = NULL;
 903         }
 904 
 905         if (i40e->i40e_switch_rsrcs != NULL) {
 906                 size_t sz = sizeof (i40e_switch_rsrc_t) *
 907                     i40e->i40e_switch_rsrc_alloc;
 908                 ASSERT(sz > 0);
 909                 kmem_free(i40e->i40e_switch_rsrcs, sz);
 910                 i40e->i40e_switch_rsrcs = NULL;
 911         }
 912 
 913         if (i40e->i40e_device != NULL)
 914                 i40e_device_rele(i40e);
 915 }
 916 
 917 static boolean_t
 918 i40e_get_available_resources(i40e_t *i40e)
 919 {
 920         dev_info_t *parent;
 921         uint16_t bus, device, func;
 922         uint_t nregs;
 923         int *regs, i;
 924         i40e_device_t *idp;
 925         i40e_hw_t *hw = &i40e->i40e_hw_space;
 926 
 927         parent = ddi_get_parent(i40e->i40e_dip);
 928 
 929         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
 930             &regs, &nregs) != DDI_PROP_SUCCESS) {
 931                 return (B_FALSE);
 932         }
 933 
 934         if (nregs < 1) {
 935                 ddi_prop_free(regs);
 936                 return (B_FALSE);
 937         }
 938 
 939         bus = PCI_REG_BUS_G(regs[0]);
 940         device = PCI_REG_DEV_G(regs[0]);
 941         func = PCI_REG_FUNC_G(regs[0]);
 942         ddi_prop_free(regs);
 943 
 944         i40e->i40e_hw_space.bus.func = func;
 945         i40e->i40e_hw_space.bus.device = device;
 946 
 947         if (i40e_get_switch_resources(i40e) == B_FALSE) {
 948                 return (B_FALSE);
 949         }
 950 
 951         /*
 952          * To calculate the total amount of a resource we have available, we
 953          * need to add how many our i40e_t thinks it has guaranteed, if any, and
 954          * then we need to go through and divide the number of available on the
 955          * device, which was snapshotted before anyone should have allocated
 956          * anything, and use that to derive how many are available from the
 957          * pool. Longer term, we may want to turn this into something that's
 958          * more of a pool-like resource that everything can share (though that
 959          * may require some more assistance from MAC).
 960          *
 961          * Though for transmit and receive queue pairs, we just have to ask
 962          * firmware instead.
 963          */
 964         idp = i40e_device_find(i40e, parent, bus, device);
 965         i40e->i40e_device = idp;
 966         i40e->i40e_resources.ifr_nvsis = 0;
 967         i40e->i40e_resources.ifr_nvsis_used = 0;
 968         i40e->i40e_resources.ifr_nmacfilt = 0;
 969         i40e->i40e_resources.ifr_nmacfilt_used = 0;
 970         i40e->i40e_resources.ifr_nmcastfilt = 0;
 971         i40e->i40e_resources.ifr_nmcastfilt_used = 0;
 972 
 973         for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
 974                 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
 975 
 976                 switch (srp->resource_type) {
 977                 case I40E_AQ_RESOURCE_TYPE_VSI:
 978                         i40e->i40e_resources.ifr_nvsis +=
 979                             LE_16(srp->guaranteed);
 980                         i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
 981                         break;
 982                 case I40E_AQ_RESOURCE_TYPE_MACADDR:
 983                         i40e->i40e_resources.ifr_nmacfilt +=
 984                             LE_16(srp->guaranteed);
 985                         i40e->i40e_resources.ifr_nmacfilt_used =
 986                             LE_16(srp->used);
 987                         break;
 988                 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
 989                         i40e->i40e_resources.ifr_nmcastfilt +=
 990                             LE_16(srp->guaranteed);
 991                         i40e->i40e_resources.ifr_nmcastfilt_used =
 992                             LE_16(srp->used);
 993                         break;
 994                 default:
 995                         break;
 996                 }
 997         }
 998 
 999         for (i = 0; i < idp->id_rsrcs_act; i++) {
1000                 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1001                 switch (srp->resource_type) {
1002                 case I40E_AQ_RESOURCE_TYPE_VSI:
1003                         i40e->i40e_resources.ifr_nvsis +=
1004                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
1005                         break;
1006                 case I40E_AQ_RESOURCE_TYPE_MACADDR:
1007                         i40e->i40e_resources.ifr_nmacfilt +=
1008                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
1009                         break;
1010                 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1011                         i40e->i40e_resources.ifr_nmcastfilt +=
1012                             LE_16(srp->total_unalloced) / idp->id_nfuncs;
1013                 default:
1014                         break;
1015                 }
1016         }
1017 
1018         i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1019         i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1020 
1021         i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1022             i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1023         i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1024             i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1025 
1026         /*
1027          * Initialize these as multicast addresses to indicate it's invalid for
1028          * sanity purposes. Think of it like 0xdeadbeef.
1029          */
1030         for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1031                 i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1032 
1033         return (B_TRUE);
1034 }
1035 
1036 static boolean_t
1037 i40e_enable_interrupts(i40e_t *i40e)
1038 {
1039         int i, rc;
1040 
1041         if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1042                 rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1043                     i40e->i40e_intr_count);
1044                 if (rc != DDI_SUCCESS) {
1045                         i40e_error(i40e, "Interrupt block-enable failed: %d",
1046                             rc);
1047                         return (B_FALSE);
1048                 }
1049         } else {
1050                 for (i = 0; i < i40e->i40e_intr_count; i++) {
1051                         rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1052                         if (rc != DDI_SUCCESS) {
1053                                 i40e_error(i40e,
1054                                     "Failed to enable interrupt %d: %d", i, rc);
1055                                 while (--i >= 0) {
1056                                         (void) ddi_intr_disable(
1057                                             i40e->i40e_intr_handles[i]);
1058                                 }
1059                                 return (B_FALSE);
1060                         }
1061                 }
1062         }
1063 
1064         return (B_TRUE);
1065 }
1066 
1067 static boolean_t
1068 i40e_disable_interrupts(i40e_t *i40e)
1069 {
1070         int i, rc;
1071 
1072         if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1073                 rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1074                     i40e->i40e_intr_count);
1075                 if (rc != DDI_SUCCESS) {
1076                         i40e_error(i40e,
1077                             "Interrupt block-disabled failed: %d", rc);
1078                         return (B_FALSE);
1079                 }
1080         } else {
1081                 for (i = 0; i < i40e->i40e_intr_count; i++) {
1082                         rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1083                         if (rc != DDI_SUCCESS) {
1084                                 i40e_error(i40e,
1085                                     "Failed to disable interrupt %d: %d",
1086                                     i, rc);
1087                                 return (B_FALSE);
1088                         }
1089                 }
1090         }
1091 
1092         return (B_TRUE);
1093 }
1094 
1095 /*
1096  * Free receive & transmit rings.
1097  */
1098 static void
1099 i40e_free_trqpairs(i40e_t *i40e)
1100 {
1101         int i;
1102         i40e_trqpair_t *itrq;
1103 
1104         if (i40e->i40e_trqpairs != NULL) {
1105                 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1106                         itrq = &i40e->i40e_trqpairs[i];
1107                         mutex_destroy(&itrq->itrq_rx_lock);
1108                         mutex_destroy(&itrq->itrq_tx_lock);
1109                         mutex_destroy(&itrq->itrq_tcb_lock);
1110 
1111                         /*
1112                          * Should have already been cleaned up by start/stop,
1113                          * etc.
1114                          */
1115                         ASSERT(itrq->itrq_txkstat == NULL);
1116                         ASSERT(itrq->itrq_rxkstat == NULL);
1117                 }
1118 
1119                 kmem_free(i40e->i40e_trqpairs,
1120                     sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1121                 i40e->i40e_trqpairs = NULL;
1122         }
1123 
1124         cv_destroy(&i40e->i40e_rx_pending_cv);
1125         mutex_destroy(&i40e->i40e_rx_pending_lock);
1126         mutex_destroy(&i40e->i40e_general_lock);
1127 }
1128 
1129 /*
1130  * Allocate transmit and receive rings, as well as other data structures that we
1131  * need.
1132  */
1133 static boolean_t
1134 i40e_alloc_trqpairs(i40e_t *i40e)
1135 {
1136         int i;
1137         void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1138 
1139         /*
1140          * Now that we have the priority for the interrupts, initialize
1141          * all relevant locks.
1142          */
1143         mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1144         mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1145         cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1146 
1147         i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1148             i40e->i40e_num_trqpairs, KM_SLEEP);
1149         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1150                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1151 
1152                 itrq->itrq_i40e = i40e;
1153                 mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1154                 mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1155                 mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1156                 itrq->itrq_index = i;
1157         }
1158 
1159         return (B_TRUE);
1160 }
1161 
1162 
1163 
1164 /*
1165  * Unless a .conf file already overrode i40e_t structure values, they will
1166  * be 0, and need to be set in conjunction with the now-available HW report.
1167  *
1168  * However, at the moment, we cap all of these resources as we only support a
1169  * single receive ring and a single group.
1170  */
1171 /* ARGSUSED */
1172 static void
1173 i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1174 {
1175         if (i40e->i40e_num_trqpairs == 0) {
1176                 i40e->i40e_num_trqpairs = I40E_TRQPAIR_MAX;
1177         }
1178 
1179         if (i40e->i40e_num_rx_groups == 0) {
1180                 i40e->i40e_num_rx_groups = I40E_GROUP_MAX;
1181         }
1182 }
1183 
1184 /*
1185  * Free any resources required by, or setup by, the Intel common code.
1186  */
1187 static void
1188 i40e_common_code_fini(i40e_t *i40e)
1189 {
1190         i40e_hw_t *hw = &i40e->i40e_hw_space;
1191         int rc;
1192 
1193         rc = i40e_shutdown_lan_hmc(hw);
1194         if (rc != I40E_SUCCESS)
1195                 i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1196 
1197         rc = i40e_shutdown_adminq(hw);
1198         if (rc != I40E_SUCCESS)
1199                 i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1200 }
1201 
1202 /*
1203  * Initialize and call Intel common-code routines, includes some setup
1204  * the common code expects from the driver.  Also prints on failure, so
1205  * the caller doesn't have to.
1206  */
1207 static boolean_t
1208 i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1209 {
1210         int rc;
1211 
1212         i40e_clear_hw(hw);
1213         rc = i40e_pf_reset(hw);
1214         if (rc != 0) {
1215                 i40e_error(i40e, "failed to reset hardware: %d", rc);
1216                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1217                 return (B_FALSE);
1218         }
1219 
1220         rc = i40e_init_shared_code(hw);
1221         if (rc != 0) {
1222                 i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1223                 return (B_FALSE);
1224         }
1225 
1226         hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1227         hw->aq.num_asq_entries =  I40E_DEF_ADMINQ_SIZE;
1228         hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1229         hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1230 
1231         rc = i40e_init_adminq(hw);
1232         if (rc != 0) {
1233                 i40e_error(i40e, "failed to initialize firmware admin queue: "
1234                     "%d, potential firmware version mismatch", rc);
1235                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1236                 return (B_FALSE);
1237         }
1238 
1239         if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1240             hw->aq.api_min_ver > I40E_FW_API_VERSION_MINOR) {
1241                 i40e_log(i40e, "The driver for the device detected a newer "
1242                     "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1243                     "Please install the most recent version of the network "
1244                     "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1245                     I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR);
1246         } else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1247             hw->aq.api_min_ver < (I40E_FW_API_VERSION_MINOR - 1)) {
1248                 i40e_log(i40e, "The driver for the device detected an older"
1249                     " version of the NVM image (%d.%d) than expected (%d.%d)."
1250                     "\nPlease update the NVM image.\n",
1251                     hw->aq.api_maj_ver, hw->aq.api_min_ver,
1252                     I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR - 1);
1253         }
1254 
1255         i40e_clear_pxe_mode(hw);
1256 
1257         /*
1258          * We need to call this so that the common code can discover
1259          * capabilities of the hardware, which it uses throughout the rest.
1260          */
1261         if (!i40e_get_hw_capabilities(i40e, hw)) {
1262                 i40e_error(i40e, "failed to obtain hardware capabilities");
1263                 return (B_FALSE);
1264         }
1265 
1266         if (i40e_get_available_resources(i40e) == B_FALSE) {
1267                 i40e_error(i40e, "failed to obtain hardware resources");
1268                 return (B_FALSE);
1269         }
1270 
1271         i40e_hw_to_instance(i40e, hw);
1272 
1273         rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1274             hw->func_caps.num_rx_qp, 0, 0);
1275         if (rc != 0) {
1276                 i40e_error(i40e, "failed to initialize hardware memory cache: "
1277                     "%d", rc);
1278                 return (B_FALSE);
1279         }
1280 
1281         rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1282         if (rc != 0) {
1283                 i40e_error(i40e, "failed to configure hardware memory cache: "
1284                     "%d", rc);
1285                 return (B_FALSE);
1286         }
1287 
1288         (void) i40e_aq_stop_lldp(hw, TRUE, NULL);
1289 
1290         rc = i40e_get_mac_addr(hw, hw->mac.addr);
1291         if (rc != I40E_SUCCESS) {
1292                 i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1293                     rc);
1294                 return (B_FALSE);
1295         }
1296 
1297         rc = i40e_validate_mac_addr(hw->mac.addr);
1298         if (rc != 0) {
1299                 i40e_error(i40e, "failed to validate internal mac address: "
1300                     "%d", rc);
1301                 return (B_FALSE);
1302         }
1303         bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1304         if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1305             I40E_SUCCESS) {
1306                 i40e_error(i40e, "failed to retrieve port mac address: %d",
1307                     rc);
1308                 return (B_FALSE);
1309         }
1310 
1311         /*
1312          * We need to obtain the Virtual Station ID (VSI) before we can
1313          * perform other operations on the device.
1314          */
1315         i40e->i40e_vsi_id = i40e_get_vsi_id(i40e);
1316         if (i40e->i40e_vsi_id == -1) {
1317                 i40e_error(i40e, "failed to obtain VSI ID");
1318                 return (B_FALSE);
1319         }
1320 
1321         return (B_TRUE);
1322 }
1323 
1324 static void
1325 i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1326 {
1327         int rc;
1328 
1329         if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1330                 (void) i40e_disable_interrupts(i40e);
1331 
1332         if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1333             i40e->i40e_periodic_id != 0) {
1334                 ddi_periodic_delete(i40e->i40e_periodic_id);
1335                 i40e->i40e_periodic_id = 0;
1336         }
1337 
1338         if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1339                 rc = mac_unregister(i40e->i40e_mac_hdl);
1340                 if (rc != 0) {
1341                         i40e_error(i40e, "failed to unregister from mac: %d",
1342                             rc);
1343                 }
1344         }
1345 
1346         if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1347                 i40e_stats_fini(i40e);
1348         }
1349 
1350         if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1351                 i40e_rem_intr_handlers(i40e);
1352 
1353         if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1354                 i40e_free_trqpairs(i40e);
1355 
1356         if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1357                 i40e_rem_intrs(i40e);
1358 
1359         if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1360                 i40e_common_code_fini(i40e);
1361 
1362         i40e_cleanup_resources(i40e);
1363 
1364         if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1365                 (void) ddi_prop_remove_all(devinfo);
1366 
1367         if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1368             i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1369                 ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1370                 i40e->i40e_osdep_space.ios_reg_handle = NULL;
1371         }
1372 
1373         if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1374             i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1375                 pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1376                 i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1377         }
1378 
1379         if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1380                 i40e_fm_fini(i40e);
1381 
1382         kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1383         kmem_free(i40e, sizeof (i40e_t));
1384 
1385         ddi_set_driver_private(devinfo, NULL);
1386 }
1387 
1388 static boolean_t
1389 i40e_final_init(i40e_t *i40e)
1390 {
1391         i40e_hw_t *hw = &i40e->i40e_hw_space;
1392         struct i40e_osdep *osdep = OS_DEP(hw);
1393         uint8_t pbanum[I40E_PBANUM_STRLEN];
1394         enum i40e_status_code irc;
1395         char buf[I40E_DDI_PROP_LEN];
1396 
1397         pbanum[0] = '\0';
1398         irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1399         if (irc != I40E_SUCCESS) {
1400                 i40e_log(i40e, "failed to read PBA string: %d", irc);
1401         } else {
1402                 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1403                     "printed-board-assembly", (char *)pbanum);
1404         }
1405 
1406 #ifdef  DEBUG
1407         ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1408             hw->aq.fw_min_ver) < sizeof (buf));
1409         ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1410         ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1411             hw->aq.api_min_ver) < sizeof (buf));
1412 #endif
1413 
1414         (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1415             hw->aq.fw_min_ver);
1416         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1417             "firmware-version", buf);
1418         (void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1419         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1420             "firmware-build", buf);
1421         (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1422             hw->aq.api_min_ver);
1423         (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1424             "api-version", buf);
1425 
1426         if (!i40e_set_hw_bus_info(hw))
1427                 return (B_FALSE);
1428 
1429         if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1430                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1431                 return (B_FALSE);
1432         }
1433 
1434         return (B_TRUE);
1435 }
1436 
1437 static void
1438 i40e_identify_hardware(i40e_t *i40e)
1439 {
1440         i40e_hw_t *hw = &i40e->i40e_hw_space;
1441         struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1442 
1443         hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1444         hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1445         hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1446             PCI_CONF_REVID);
1447         hw->subsystem_device_id =
1448             pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1449         hw->subsystem_vendor_id =
1450             pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1451 
1452         /*
1453          * Note that we set the hardware's bus information later on, in
1454          * i40e_get_available_resources(). The common code doesn't seem to
1455          * require that it be set in any ways, it seems to be mostly for
1456          * book-keeping.
1457          */
1458 }
1459 
1460 static boolean_t
1461 i40e_regs_map(i40e_t *i40e)
1462 {
1463         dev_info_t *devinfo = i40e->i40e_dip;
1464         i40e_hw_t *hw = &i40e->i40e_hw_space;
1465         struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1466         off_t memsize;
1467         int ret;
1468 
1469         if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1470             DDI_SUCCESS) {
1471                 i40e_error(i40e, "Used invalid register set to map PCIe regs");
1472                 return (B_FALSE);
1473         }
1474 
1475         if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1476             (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1477             &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1478                 i40e_error(i40e, "failed to map device registers: %d", ret);
1479                 return (B_FALSE);
1480         }
1481 
1482         osdep->ios_reg_size = memsize;
1483         return (B_TRUE);
1484 }
1485 
1486 /*
1487  * Update parameters required when a new MTU has been configured.  Calculate the
1488  * maximum frame size, as well as, size our DMA buffers which we size in
1489  * increments of 1K.
1490  */
1491 void
1492 i40e_update_mtu(i40e_t *i40e)
1493 {
1494         uint32_t rx, tx;
1495 
1496         i40e->i40e_frame_max = i40e->i40e_sdu +
1497             sizeof (struct ether_vlan_header) + ETHERFCSL;
1498 
1499         rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1500         i40e->i40e_rx_buf_size = ((rx >> 10) +
1501             ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1502 
1503         tx = i40e->i40e_frame_max;
1504         i40e->i40e_tx_buf_size = ((tx >> 10) +
1505             ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1506 }
1507 
1508 static int
1509 i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1510 {
1511         int val;
1512 
1513         val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1514             prop, def);
1515         if (val > max)
1516                 val = max;
1517         if (val < min)
1518                 val = min;
1519         return (val);
1520 }
1521 
1522 static void
1523 i40e_init_properties(i40e_t *i40e)
1524 {
1525         i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1526             I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1527 
1528         i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1529             I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1530 
1531         i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1532             B_FALSE, B_TRUE, B_TRUE);
1533 
1534         i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1535             I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1536             I40E_DEF_TX_RING_SIZE);
1537         if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1538                 i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1539                     I40E_DESC_ALIGN);
1540         }
1541 
1542         i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1543             I40E_MIN_TX_BLOCK_THRESH,
1544             i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1545             I40E_DEF_TX_BLOCK_THRESH);
1546 
1547         i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1548             I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1549             I40E_DEF_RX_RING_SIZE);
1550         if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1551                 i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1552                     I40E_DESC_ALIGN);
1553         }
1554 
1555         i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1556             I40E_MIN_RX_LIMIT_PER_INTR, I40E_MAX_RX_LIMIT_PER_INTR,
1557             I40E_DEF_RX_LIMIT_PER_INTR);
1558 
1559         i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1560             B_FALSE, B_TRUE, B_TRUE);
1561 
1562         i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1563             B_FALSE, B_TRUE, B_TRUE);
1564 
1565         i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1566             I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1567             I40E_DEF_RX_DMA_THRESH);
1568 
1569         i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1570             I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1571             I40E_DEF_TX_DMA_THRESH);
1572 
1573         i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1574             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1575 
1576         i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1577             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1578 
1579         i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1580             I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1581 
1582         if (!i40e->i40e_mr_enable) {
1583                 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1584                 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1585         }
1586 
1587         i40e_update_mtu(i40e);
1588 }
1589 
1590 /*
1591  * There are a few constraints on interrupts that we're currently imposing, some
1592  * of which are restrictions from hardware. For a fuller treatment, see
1593  * i40e_intr.c.
1594  *
1595  * Currently, to use MSI-X we require two interrupts be available though in
1596  * theory we should participate in IRM and happily use more interrupts.
1597  *
1598  * Hardware only supports a single MSI being programmed and therefore if we
1599  * don't have MSI-X interrupts available at this time, then we ratchet down the
1600  * number of rings and groups available. Obviously, we only bother with a single
1601  * fixed interrupt.
1602  */
1603 static boolean_t
1604 i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1605 {
1606         i40e_hw_t *hw = &i40e->i40e_hw_space;
1607         ddi_acc_handle_t rh = i40e->i40e_osdep_space.ios_reg_handle;
1608         int request, count, actual, rc, min;
1609         uint32_t reg;
1610 
1611         switch (intr_type) {
1612         case DDI_INTR_TYPE_FIXED:
1613         case DDI_INTR_TYPE_MSI:
1614                 request = 1;
1615                 min = 1;
1616                 break;
1617         case DDI_INTR_TYPE_MSIX:
1618                 min = 2;
1619                 if (!i40e->i40e_mr_enable) {
1620                         request = 2;
1621                         break;
1622                 }
1623                 reg = I40E_READ_REG(hw, I40E_GLPCI_CNF2);
1624                 /*
1625                  * Should this read fail, we will drop back to using
1626                  * MSI or fixed interrupts.
1627                  */
1628                 if (i40e_check_acc_handle(rh) != DDI_FM_OK) {
1629                         ddi_fm_service_impact(i40e->i40e_dip,
1630                             DDI_SERVICE_DEGRADED);
1631                         return (B_FALSE);
1632                 }
1633                 request = (reg & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1634                     I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1635                 request++;      /* the register value is n - 1 */
1636                 break;
1637         default:
1638                 panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1639                     "%d", intr_type);
1640                 return (B_FALSE);
1641         }
1642 
1643         rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1644         if (rc != DDI_SUCCESS || count < min) {
1645                 i40e_log(i40e, "Get interrupt number failed, "
1646                     "returned %d, count %d", rc, count);
1647                 return (B_FALSE);
1648         }
1649 
1650         rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1651         if (rc != DDI_SUCCESS || count < min) {
1652                 i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1653                     "returned %d, count %d", rc, count);
1654                 return (B_FALSE);
1655         }
1656 
1657         actual = 0;
1658         i40e->i40e_intr_count = 0;
1659         i40e->i40e_intr_count_max = 0;
1660         i40e->i40e_intr_count_min = 0;
1661 
1662         i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1663         ASSERT(i40e->i40e_intr_size != 0);
1664         i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1665 
1666         rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1667             min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1668         if (rc != DDI_SUCCESS) {
1669                 i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1670                 goto alloc_handle_fail;
1671         }
1672 
1673         i40e->i40e_intr_count = actual;
1674         i40e->i40e_intr_count_max = request;
1675         i40e->i40e_intr_count_min = min;
1676 
1677         if (actual < min) {
1678                 i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1679                     actual, min);
1680                 goto alloc_handle_fail;
1681         }
1682 
1683         /*
1684          * Record the priority and capabilities for our first vector.  Once
1685          * we have it, that's our priority until detach time.  Even if we
1686          * eventually participate in IRM, our priority shouldn't change.
1687          */
1688         rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1689         if (rc != DDI_SUCCESS) {
1690                 i40e_log(i40e,
1691                     "Getting interrupt priority failed with %d.", rc);
1692                 goto alloc_handle_fail;
1693         }
1694 
1695         rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1696         if (rc != DDI_SUCCESS) {
1697                 i40e_log(i40e,
1698                     "Getting interrupt capabilities failed with %d.", rc);
1699                 goto alloc_handle_fail;
1700         }
1701 
1702         i40e->i40e_intr_type = intr_type;
1703         return (B_TRUE);
1704 
1705 alloc_handle_fail:
1706 
1707         i40e_rem_intrs(i40e);
1708         return (B_FALSE);
1709 }
1710 
1711 static boolean_t
1712 i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1713 {
1714         int intr_types, rc;
1715         uint_t max_trqpairs;
1716 
1717         if (i40e_is_x722(i40e)) {
1718                 max_trqpairs = I40E_722_MAX_TC_QUEUES;
1719         } else {
1720                 max_trqpairs = I40E_710_MAX_TC_QUEUES;
1721         }
1722 
1723         rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1724         if (rc != DDI_SUCCESS) {
1725                 i40e_error(i40e, "failed to get supported interrupt types: %d",
1726                     rc);
1727                 return (B_FALSE);
1728         }
1729 
1730         i40e->i40e_intr_type = 0;
1731 
1732         if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1733             i40e->i40e_intr_force <= I40E_INTR_MSIX) {
1734                 if (i40e_alloc_intr_handles(i40e, devinfo,
1735                     DDI_INTR_TYPE_MSIX)) {
1736                         i40e->i40e_num_trqpairs =
1737                             MIN(i40e->i40e_intr_count - 1, max_trqpairs);
1738                         return (B_TRUE);
1739                 }
1740         }
1741 
1742         /*
1743          * We only use multiple transmit/receive pairs when MSI-X interrupts are
1744          * available due to the fact that the device basically only supports a
1745          * single MSI interrupt.
1746          */
1747         i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1748         i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1749 
1750         if ((intr_types & DDI_INTR_TYPE_MSI) &&
1751             (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1752                 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1753                         return (B_TRUE);
1754         }
1755 
1756         if (intr_types & DDI_INTR_TYPE_FIXED) {
1757                 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1758                         return (B_TRUE);
1759         }
1760 
1761         return (B_FALSE);
1762 }
1763 
1764 /*
1765  * Map different interrupts to MSI-X vectors.
1766  */
1767 static boolean_t
1768 i40e_map_intrs_to_vectors(i40e_t *i40e)
1769 {
1770         int i;
1771 
1772         if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1773                 return (B_TRUE);
1774         }
1775 
1776         /*
1777          * Each queue pair is mapped to a single interrupt, so transmit
1778          * and receive interrupts for a given queue share the same vector.
1779          * The number of queue pairs is one less than the number of interrupt
1780          * vectors and is assigned the vector one higher than its index.
1781          * Vector zero is reserved for the admin queue.
1782          */
1783         ASSERT(i40e->i40e_intr_count == i40e->i40e_num_trqpairs + 1);
1784 
1785         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1786                 i40e->i40e_trqpairs[i].itrq_rx_intrvec = i + 1;
1787                 i40e->i40e_trqpairs[i].itrq_tx_intrvec = i + 1;
1788         }
1789 
1790         return (B_TRUE);
1791 }
1792 
1793 static boolean_t
1794 i40e_add_intr_handlers(i40e_t *i40e)
1795 {
1796         int rc, vector;
1797 
1798         switch (i40e->i40e_intr_type) {
1799         case DDI_INTR_TYPE_MSIX:
1800                 for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1801                         rc = ddi_intr_add_handler(
1802                             i40e->i40e_intr_handles[vector],
1803                             (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1804                             (void *)(uintptr_t)vector);
1805                         if (rc != DDI_SUCCESS) {
1806                                 i40e_log(i40e, "Add interrupt handler (MSI-X) "
1807                                     "failed: return %d, vector %d", rc, vector);
1808                                 for (vector--; vector >= 0; vector--) {
1809                                         (void) ddi_intr_remove_handler(
1810                                             i40e->i40e_intr_handles[vector]);
1811                                 }
1812                                 return (B_FALSE);
1813                         }
1814                 }
1815                 break;
1816         case DDI_INTR_TYPE_MSI:
1817                 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1818                     (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1819                 if (rc != DDI_SUCCESS) {
1820                         i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1821                             "return %d", rc);
1822                         return (B_FALSE);
1823                 }
1824                 break;
1825         case DDI_INTR_TYPE_FIXED:
1826                 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1827                     (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1828                 if (rc != DDI_SUCCESS) {
1829                         i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1830                             " return %d", rc);
1831                         return (B_FALSE);
1832                 }
1833                 break;
1834         default:
1835                 /* Cast to pacify lint */
1836                 panic("i40e_intr_type %p contains an unknown type: %d",
1837                     (void *)i40e, i40e->i40e_intr_type);
1838         }
1839 
1840         return (B_TRUE);
1841 }
1842 
1843 /*
1844  * Perform periodic checks. Longer term, we should be thinking about additional
1845  * things here:
1846  *
1847  * o Stall Detection
1848  * o Temperature sensor detection
1849  * o Device resetting
1850  * o Statistics updating to avoid wraparound
1851  */
1852 static void
1853 i40e_timer(void *arg)
1854 {
1855         i40e_t *i40e = arg;
1856 
1857         mutex_enter(&i40e->i40e_general_lock);
1858         i40e_link_check(i40e);
1859         mutex_exit(&i40e->i40e_general_lock);
1860 }
1861 
1862 /*
1863  * Get the hardware state, and scribble away anything that needs scribbling.
1864  */
1865 static void
1866 i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1867 {
1868         int rc;
1869 
1870         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
1871 
1872         (void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
1873         i40e_link_check(i40e);
1874 
1875         /*
1876          * Try and determine our PHY. Note that we may have to retry to and
1877          * delay to detect fiber correctly.
1878          */
1879         rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
1880             NULL);
1881         if (rc == I40E_ERR_UNKNOWN_PHY) {
1882                 i40e_msec_delay(200);
1883                 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
1884                     &i40e->i40e_phy, NULL);
1885         }
1886 
1887         if (rc != I40E_SUCCESS) {
1888                 if (rc == I40E_ERR_UNKNOWN_PHY) {
1889                         i40e_error(i40e, "encountered unknown PHY type, "
1890                             "not attaching.");
1891                 } else {
1892                         i40e_error(i40e, "error getting physical capabilities: "
1893                             "%d, %d", rc, hw->aq.asq_last_status);
1894                 }
1895         }
1896 
1897         rc = i40e_update_link_info(hw);
1898         if (rc != I40E_SUCCESS) {
1899                 i40e_error(i40e, "failed to update link information: %d", rc);
1900         }
1901 
1902         /*
1903          * In general, we don't want to mask off (as in stop from being a cause)
1904          * any of the interrupts that the phy might be able to generate.
1905          */
1906         rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
1907         if (rc != I40E_SUCCESS) {
1908                 i40e_error(i40e, "failed to update phy link mask: %d", rc);
1909         }
1910 }
1911 
1912 /*
1913  * Go through and re-initialize any existing filters that we may have set up for
1914  * this device. Note that we would only expect them to exist if hardware had
1915  * already been initialized and we had just reset it. While we're not
1916  * implementing this yet, we're keeping this around for when we add reset
1917  * capabilities, so this isn't forgotten.
1918  */
1919 /* ARGSUSED */
1920 static void
1921 i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
1922 {
1923 }
1924 
1925 /*
1926  * Configure the hardware for the Virtual Station Interface (VSI).  Currently
1927  * we only support one, but in the future we could instantiate more than one
1928  * per attach-point.
1929  */
1930 static boolean_t
1931 i40e_config_vsi(i40e_t *i40e, i40e_hw_t *hw)
1932 {
1933         struct i40e_vsi_context context;
1934         int err, tc_queues;
1935 
1936         bzero(&context, sizeof (struct i40e_vsi_context));
1937         context.seid = i40e->i40e_vsi_id;
1938         context.pf_num = hw->pf_id;
1939         err = i40e_aq_get_vsi_params(hw, &context, NULL);
1940         if (err != I40E_SUCCESS) {
1941                 i40e_error(i40e, "get VSI params failed with %d", err);
1942                 return (B_FALSE);
1943         }
1944 
1945         i40e->i40e_vsi_num = context.vsi_number;
1946 
1947         /*
1948          * Set the queue and traffic class bits.  Keep it simple for now.
1949          */
1950         context.info.valid_sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1951         context.info.mapping_flags = I40E_AQ_VSI_QUE_MAP_CONTIG;
1952         context.info.queue_mapping[0] = I40E_ASSIGN_ALL_QUEUES;
1953 
1954         /*
1955          * tc_queues determines the size of the traffic class, where the size is
1956          * 2^^tc_queues to a maximum of 64 for the X710 and 128 for the X722.
1957          *
1958          * Some examples:
1959          *      i40e_num_trqpairs == 1 =>  tc_queues = 0, 2^^0 = 1.
1960          *      i40e_num_trqpairs == 7 =>  tc_queues = 3, 2^^3 = 8.
1961          *      i40e_num_trqpairs == 8 =>  tc_queues = 3, 2^^3 = 8.
1962          *      i40e_num_trqpairs == 9 =>  tc_queues = 4, 2^^4 = 16.
1963          *      i40e_num_trqpairs == 17 => tc_queues = 5, 2^^5 = 32.
1964          *      i40e_num_trqpairs == 64 => tc_queues = 6, 2^^6 = 64.
1965          */
1966         tc_queues = ddi_fls(i40e->i40e_num_trqpairs - 1);
1967 
1968         context.info.tc_mapping[0] = ((0 << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) &
1969             I40E_AQ_VSI_TC_QUE_OFFSET_MASK) |
1970             ((tc_queues << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT) &
1971             I40E_AQ_VSI_TC_QUE_NUMBER_MASK);
1972 
1973         context.info.valid_sections |= I40E_AQ_VSI_PROP_VLAN_VALID;
1974         context.info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
1975             I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
1976 
1977         context.flags = LE16_TO_CPU(I40E_AQ_VSI_TYPE_PF);
1978 
1979         i40e->i40e_vsi_stat_id = LE16_TO_CPU(context.info.stat_counter_idx);
1980         if (i40e_stat_vsi_init(i40e) == B_FALSE)
1981                 return (B_FALSE);
1982 
1983         err = i40e_aq_update_vsi_params(hw, &context, NULL);
1984         if (err != I40E_SUCCESS) {
1985                 i40e_error(i40e, "Update VSI params failed with %d", err);
1986                 return (B_FALSE);
1987         }
1988 
1989 
1990         return (B_TRUE);
1991 }
1992 
1993 /*
1994  * Configure the RSS key. For the X710 controller family, this is set on a
1995  * per-PF basis via registers. For the X722, this is done on a per-VSI basis
1996  * through the admin queue.
1997  */
1998 static boolean_t
1999 i40e_config_rss_key(i40e_t *i40e, i40e_hw_t *hw)
2000 {
2001         uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2002 
2003         (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2004 
2005         if (i40e_is_x722(i40e)) {
2006                 struct i40e_aqc_get_set_rss_key_data key;
2007                 const char *u8seed = (char *)seed;
2008                 enum i40e_status_code status;
2009 
2010                 CTASSERT(sizeof (key) >= (sizeof (key.standard_rss_key) +
2011                     sizeof (key.extended_hash_key)));
2012 
2013                 bcopy(u8seed, key.standard_rss_key,
2014                     sizeof (key.standard_rss_key));
2015                 bcopy(&u8seed[sizeof (key.standard_rss_key)],
2016                     key.extended_hash_key, sizeof (key.extended_hash_key));
2017 
2018                 status = i40e_aq_set_rss_key(hw, i40e->i40e_vsi_num, &key);
2019                 if (status != I40E_SUCCESS) {
2020                         i40e_error(i40e, "failed to set rss key: %d", status);
2021                         return (B_FALSE);
2022                 }
2023         } else {
2024                 uint_t i;
2025                 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
2026                         i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), seed[i]);
2027         }
2028 
2029         return (B_TRUE);
2030 }
2031 
2032 /*
2033  * Populate the LUT. The size of each entry in the LUT depends on the controller
2034  * family, with the X722 using a known 7-bit width. On the X710 controller, this
2035  * is programmed through its control registers where as on the X722 this is
2036  * configured through the admin queue. Also of note, the X722 allows the LUT to
2037  * be set on a per-PF or VSI basis. At this time, as we only have a single VSI,
2038  * we use the PF setting as it is the primary VSI.
2039  *
2040  * We populate the LUT in a round robin fashion with the rx queue indices from 0
2041  * to i40e_num_trqpairs - 1.
2042  */
2043 static boolean_t
2044 i40e_config_rss_hlut(i40e_t *i40e, i40e_hw_t *hw)
2045 {
2046         uint32_t *hlut;
2047         uint8_t lut_mask;
2048         uint_t i;
2049         boolean_t ret = B_FALSE;
2050 
2051         /*
2052          * We always configure the PF with a table size of 512 bytes in
2053          * i40e_chip_start().
2054          */
2055         hlut = kmem_alloc(I40E_HLUT_TABLE_SIZE, KM_NOSLEEP);
2056         if (hlut == NULL) {
2057                 i40e_error(i40e, "i40e_config_rss() buffer allocation failed");
2058                 return (B_FALSE);
2059         }
2060 
2061         /*
2062          * The width of the X722 is apparently defined to be 7 bits, regardless
2063          * of the capability.
2064          */
2065         if (i40e_is_x722(i40e)) {
2066                 lut_mask = (1 << 7) - 1;
2067         } else {
2068                 lut_mask = (1 << hw->func_caps.rss_table_entry_width) - 1;
2069         }
2070 
2071         for (i = 0; i < I40E_HLUT_TABLE_SIZE; i++)
2072                 ((uint8_t *)hlut)[i] = (i % i40e->i40e_num_trqpairs) & lut_mask;
2073 
2074         if (i40e_is_x722(i40e)) {
2075                 enum i40e_status_code status;
2076                 status = i40e_aq_set_rss_lut(hw, i40e->i40e_vsi_num, B_TRUE,
2077                     (uint8_t *)hlut, I40E_HLUT_TABLE_SIZE);
2078                 if (status != I40E_SUCCESS) {
2079                         i40e_error(i40e, "failed to set RSS LUT: %d", status);
2080                         goto out;
2081                 }
2082         } else {
2083                 for (i = 0; i < I40E_HLUT_TABLE_SIZE >> 2; i++) {
2084                         I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), hlut[i]);
2085                 }
2086         }
2087         ret = B_TRUE;
2088 out:
2089         kmem_free(hlut, I40E_HLUT_TABLE_SIZE);
2090         return (ret);
2091 }
2092 
2093 /*
2094  * Set up RSS.
2095  *      1. Seed the hash key.
2096  *      2. Enable PCTYPEs for the hash filter.
2097  *      3. Populate the LUT.
2098  */
2099 static boolean_t
2100 i40e_config_rss(i40e_t *i40e, i40e_hw_t *hw)
2101 {
2102         uint64_t hena;
2103 
2104         /*
2105          * 1. Seed the hash key
2106          */
2107         if (!i40e_config_rss_key(i40e, hw))
2108                 return (B_FALSE);
2109 
2110         /*
2111          * 2. Configure PCTYPES
2112          */
2113         hena = (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) |
2114             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
2115             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) |
2116             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
2117             (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4) |
2118             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) |
2119             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
2120             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) |
2121             (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
2122             (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6) |
2123             (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
2124 
2125         /*
2126          * Add additional types supported by the X722 controller.
2127          */
2128         if (i40e_is_x722(i40e)) {
2129                 hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
2130                     (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) |
2131                     (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) |
2132                     (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
2133                     (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) |
2134                     (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
2135         }
2136 
2137         i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
2138         i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
2139 
2140         /*
2141          * 3. Populate LUT
2142          */
2143         return (i40e_config_rss_hlut(i40e, hw));
2144 }
2145 
2146 /*
2147  * Wrapper to kick the chipset on.
2148  */
2149 static boolean_t
2150 i40e_chip_start(i40e_t *i40e)
2151 {
2152         i40e_hw_t *hw = &i40e->i40e_hw_space;
2153         struct i40e_filter_control_settings filter;
2154         int rc;
2155 
2156         if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
2157             (hw->aq.fw_maj_ver < 4)) {
2158                 i40e_msec_delay(75);
2159                 if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
2160                     I40E_SUCCESS) {
2161                         i40e_error(i40e, "failed to restart link: admin queue "
2162                             "error: %d", hw->aq.asq_last_status);
2163                         return (B_FALSE);
2164                 }
2165         }
2166 
2167         /* Determine hardware state */
2168         i40e_get_hw_state(i40e, hw);
2169 
2170         /* Initialize mac addresses. */
2171         i40e_init_macaddrs(i40e, hw);
2172 
2173         /*
2174          * Set up the filter control. If the hash lut size is changed from
2175          * I40E_HASH_LUT_SIZE_512 then I40E_HLUT_TABLE_SIZE and
2176          * i40e_config_rss_hlut() will need to be updated.
2177          */
2178         bzero(&filter, sizeof (filter));
2179         filter.enable_ethtype = TRUE;
2180         filter.enable_macvlan = TRUE;
2181         filter.hash_lut_size = I40E_HASH_LUT_SIZE_512;
2182 
2183         rc = i40e_set_filter_control(hw, &filter);
2184         if (rc != I40E_SUCCESS) {
2185                 i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
2186                 return (B_FALSE);
2187         }
2188 
2189         i40e_intr_chip_init(i40e);
2190 
2191         if (!i40e_config_vsi(i40e, hw))
2192                 return (B_FALSE);
2193 
2194         if (!i40e_config_rss(i40e, hw))
2195                 return (B_FALSE);
2196 
2197         i40e_flush(hw);
2198 
2199         return (B_TRUE);
2200 }
2201 
2202 /*
2203  * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
2204  */
2205 static void
2206 i40e_shutdown_rx_rings(i40e_t *i40e)
2207 {
2208         int i;
2209         uint32_t reg;
2210 
2211         i40e_hw_t *hw = &i40e->i40e_hw_space;
2212 
2213         /*
2214          * Step 1. The interrupt linked list (see i40e_intr.c for more
2215          * information) should have already been cleared before calling this
2216          * function.
2217          */
2218 #ifdef  DEBUG
2219         if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2220                 for (i = 1; i < i40e->i40e_intr_count; i++) {
2221                         reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2222                         VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2223                 }
2224         } else {
2225                 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2226                 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2227         }
2228 
2229 #endif  /* DEBUG */
2230 
2231         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2232                 /*
2233                  * Step 1. Request the queue by clearing QENA_REQ. It may not be
2234                  * set due to unwinding from failures and a partially enabled
2235                  * ring set.
2236                  */
2237                 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2238                 if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2239                         continue;
2240                 VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2241                     I40E_QRX_ENA_QENA_REQ_MASK);
2242                 reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2243                 I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2244         }
2245 
2246         /*
2247          * Step 2. Wait for the disable to take, by having QENA_STAT in the FPM
2248          * be cleared. Note that we could still receive data in the queue during
2249          * this time. We don't actually wait for this now and instead defer this
2250          * to i40e_shutdown_rings_wait(), after we've interleaved disabling the
2251          * TX queues as well.
2252          */
2253 }
2254 
2255 static void
2256 i40e_shutdown_tx_rings(i40e_t *i40e)
2257 {
2258         int i;
2259         uint32_t reg;
2260 
2261         i40e_hw_t *hw = &i40e->i40e_hw_space;
2262 
2263         /*
2264          * Step 1. The interrupt linked list should already have been cleared.
2265          */
2266 #ifdef DEBUG
2267         if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2268                 for (i = 1; i < i40e->i40e_intr_count; i++) {
2269                         reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2270                         VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2271                 }
2272         } else {
2273                 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2274                 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2275 
2276         }
2277 #endif  /* DEBUG */
2278 
2279         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2280                 /*
2281                  * Step 2. Set the SET_QDIS flag for every queue.
2282                  */
2283                 i40e_pre_tx_queue_cfg(hw, i, B_FALSE);
2284         }
2285 
2286         /*
2287          * Step 3. Wait at least 400 usec (can be done once for all queues).
2288          */
2289         drv_usecwait(500);
2290 
2291         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2292                 /*
2293                  * Step 4. Clear the QENA_REQ flag which tells hardware to
2294                  * quiesce. If QENA_REQ is not already set then that means that
2295                  * we likely already tried to disable this queue.
2296                  */
2297                 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2298                 if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK))
2299                         continue;
2300                 reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2301                 I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2302         }
2303 
2304         /*
2305          * Step 5. Wait for all drains to finish. This will be done by the
2306          * hardware removing the QENA_STAT flag from the queue. Rather than
2307          * waiting here, we interleave it with all the others in
2308          * i40e_shutdown_rings_wait().
2309          */
2310 }
2311 
2312 /*
2313  * Wait for all the rings to be shut down. e.g. Steps 2 and 5 from the above
2314  * functions.
2315  */
2316 static boolean_t
2317 i40e_shutdown_rings_wait(i40e_t *i40e)
2318 {
2319         int i, try;
2320         i40e_hw_t *hw = &i40e->i40e_hw_space;
2321 
2322         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2323                 uint32_t reg;
2324 
2325                 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2326                         reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2327                         if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2328                                 break;
2329                         i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2330                 }
2331 
2332                 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2333                         i40e_error(i40e, "timed out disabling rx queue %d",
2334                             i);
2335                         return (B_FALSE);
2336                 }
2337 
2338                 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2339                         reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2340                         if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2341                                 break;
2342                         i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2343                 }
2344 
2345                 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2346                         i40e_error(i40e, "timed out disabling tx queue %d",
2347                             i);
2348                         return (B_FALSE);
2349                 }
2350         }
2351 
2352         return (B_TRUE);
2353 }
2354 
2355 static boolean_t
2356 i40e_shutdown_rings(i40e_t *i40e)
2357 {
2358         i40e_shutdown_rx_rings(i40e);
2359         i40e_shutdown_tx_rings(i40e);
2360         return (i40e_shutdown_rings_wait(i40e));
2361 }
2362 
2363 static void
2364 i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2365 {
2366         int i;
2367         i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2368 
2369         for (i = 0; i < rxd->rxd_ring_size; i++) {
2370                 i40e_rx_control_block_t *rcb;
2371                 i40e_rx_desc_t *rdesc;
2372 
2373                 rcb = rxd->rxd_work_list[i];
2374                 rdesc = &rxd->rxd_desc_ring[i];
2375 
2376                 rdesc->read.pkt_addr =
2377                     CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2378                 rdesc->read.hdr_addr = 0;
2379         }
2380 }
2381 
2382 static boolean_t
2383 i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2384 {
2385         i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2386         i40e_t *i40e = itrq->itrq_i40e;
2387         i40e_hw_t *hw = &i40e->i40e_hw_space;
2388 
2389         struct i40e_hmc_obj_rxq rctx;
2390         int err;
2391 
2392         bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2393         rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2394             I40E_HMC_RX_CTX_UNIT;
2395         rctx.qlen = rxd->rxd_ring_size;
2396         VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2397         VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2398         rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2399         rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2400         rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2401         rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2402         rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2403         rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2404         rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2405         rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2406         rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2407         rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2408         rctx.rxmax = i40e->i40e_frame_max;
2409         rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2410         rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2411         rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2412         rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2413         rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2414 
2415         /*
2416          * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2417          */
2418         rctx.prefena = I40E_HMC_RX_PREFENA;
2419 
2420         err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2421         if (err != I40E_SUCCESS) {
2422                 i40e_error(i40e, "failed to clear rx queue %d context: %d",
2423                     itrq->itrq_index, err);
2424                 return (B_FALSE);
2425         }
2426 
2427         err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2428         if (err != I40E_SUCCESS) {
2429                 i40e_error(i40e, "failed to set rx queue %d context: %d",
2430                     itrq->itrq_index, err);
2431                 return (B_FALSE);
2432         }
2433 
2434         return (B_TRUE);
2435 }
2436 
2437 /*
2438  * Take care of setting up the descriptor rings and actually programming the
2439  * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2440  * rx rings.
2441  */
2442 static boolean_t
2443 i40e_setup_rx_rings(i40e_t *i40e)
2444 {
2445         int i;
2446         i40e_hw_t *hw = &i40e->i40e_hw_space;
2447 
2448         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2449                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2450                 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2451                 uint32_t reg;
2452 
2453                 /*
2454                  * Step 1. Program all receive ring descriptors.
2455                  */
2456                 i40e_setup_rx_descs(itrq);
2457 
2458                 /*
2459                  * Step 2. Program the queue's FPM/HMC context.
2460                  */
2461                 if (i40e_setup_rx_hmc(itrq) == B_FALSE)
2462                         return (B_FALSE);
2463 
2464                 /*
2465                  * Step 3. Clear the queue's tail pointer and set it to the end
2466                  * of the space.
2467                  */
2468                 I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), 0);
2469                 I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), rxd->rxd_ring_size - 1);
2470 
2471                 /*
2472                  * Step 4. Enable the queue via the QENA_REQ.
2473                  */
2474                 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2475                 VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2476                     I40E_QRX_ENA_QENA_STAT_MASK));
2477                 reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2478                 I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2479         }
2480 
2481         /*
2482          * Note, we wait for every queue to be enabled before we start checking.
2483          * This will hopefully cause most queues to be enabled at this point.
2484          */
2485         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2486                 uint32_t j, reg;
2487 
2488                 /*
2489                  * Step 5. Verify that QENA_STAT has been set. It's promised
2490                  * that this should occur within about 10 us, but like other
2491                  * systems, we give the card a bit more time.
2492                  */
2493                 for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2494                         reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2495 
2496                         if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2497                                 break;
2498                         i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2499                 }
2500 
2501                 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2502                         i40e_error(i40e, "failed to enable rx queue %d, timed "
2503                             "out.", i);
2504                         return (B_FALSE);
2505                 }
2506         }
2507 
2508         return (B_TRUE);
2509 }
2510 
2511 static boolean_t
2512 i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2513 {
2514         i40e_t *i40e = itrq->itrq_i40e;
2515         i40e_hw_t *hw = &i40e->i40e_hw_space;
2516 
2517         struct i40e_hmc_obj_txq tctx;
2518         struct i40e_vsi_context context;
2519         int err;
2520 
2521         bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2522         tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2523         tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2524             I40E_HMC_TX_CTX_UNIT;
2525         tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2526         tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2527         tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2528         tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2529         tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2530         tctx.qlen = itrq->itrq_tx_ring_size;
2531         tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2532         tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2533         tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2534         tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2535             sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2536 
2537         /*
2538          * This field isn't actually documented, like crc, but it suggests that
2539          * it should be zeroed. We leave both of these here because of that for
2540          * now. We should check with Intel on why these are here even.
2541          */
2542         tctx.crc = 0;
2543         tctx.rdylist_act = 0;
2544 
2545         /*
2546          * We're supposed to assign the rdylist field with the value of the
2547          * traffic class index for the first device. We query the VSI parameters
2548          * again to get what the handle is. Note that every queue is always
2549          * assigned to traffic class zero, because we don't actually use them.
2550          */
2551         bzero(&context, sizeof (struct i40e_vsi_context));
2552         context.seid = i40e->i40e_vsi_id;
2553         context.pf_num = hw->pf_id;
2554         err = i40e_aq_get_vsi_params(hw, &context, NULL);
2555         if (err != I40E_SUCCESS) {
2556                 i40e_error(i40e, "get VSI params failed with %d", err);
2557                 return (B_FALSE);
2558         }
2559         tctx.rdylist = LE_16(context.info.qs_handle[0]);
2560 
2561         err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2562         if (err != I40E_SUCCESS) {
2563                 i40e_error(i40e, "failed to clear tx queue %d context: %d",
2564                     itrq->itrq_index, err);
2565                 return (B_FALSE);
2566         }
2567 
2568         err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2569         if (err != I40E_SUCCESS) {
2570                 i40e_error(i40e, "failed to set tx queue %d context: %d",
2571                     itrq->itrq_index, err);
2572                 return (B_FALSE);
2573         }
2574 
2575         return (B_TRUE);
2576 }
2577 
2578 /*
2579  * Take care of setting up the descriptor rings and actually programming the
2580  * device. See 8.4.3.1.1 for what we need to do here.
2581  */
2582 static boolean_t
2583 i40e_setup_tx_rings(i40e_t *i40e)
2584 {
2585         int i;
2586         i40e_hw_t *hw = &i40e->i40e_hw_space;
2587 
2588         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2589                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2590                 uint32_t reg;
2591 
2592                 /*
2593                  * Step 1. Clear the queue disable flag and verify that the
2594                  * index is set correctly.
2595                  */
2596                 i40e_pre_tx_queue_cfg(hw, i, B_TRUE);
2597 
2598                 /*
2599                  * Step 2. Prepare the queue's FPM/HMC context.
2600                  */
2601                 if (i40e_setup_tx_hmc(itrq) == B_FALSE)
2602                         return (B_FALSE);
2603 
2604                 /*
2605                  * Step 3. Verify that it's clear that this PF owns this queue.
2606                  */
2607                 reg = I40E_QTX_CTL_PF_QUEUE;
2608                 reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2609                     I40E_QTX_CTL_PF_INDX_MASK;
2610                 I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
2611                 i40e_flush(hw);
2612 
2613                 /*
2614                  * Step 4. Set the QENA_REQ flag.
2615                  */
2616                 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2617                 VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
2618                     I40E_QTX_ENA_QENA_STAT_MASK));
2619                 reg |= I40E_QTX_ENA_QENA_REQ_MASK;
2620                 I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2621         }
2622 
2623         /*
2624          * Note, we wait for every queue to be enabled before we start checking.
2625          * This will hopefully cause most queues to be enabled at this point.
2626          */
2627         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2628                 uint32_t j, reg;
2629 
2630                 /*
2631                  * Step 5. Verify that QENA_STAT has been set. It's promised
2632                  * that this should occur within about 10 us, but like BSD,
2633                  * we'll try for up to 100 ms for this queue.
2634                  */
2635                 for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2636                         reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2637 
2638                         if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
2639                                 break;
2640                         i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2641                 }
2642 
2643                 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
2644                         i40e_error(i40e, "failed to enable tx queue %d, timed "
2645                             "out", i);
2646                         return (B_FALSE);
2647                 }
2648         }
2649 
2650         return (B_TRUE);
2651 }
2652 
2653 void
2654 i40e_stop(i40e_t *i40e, boolean_t free_allocations)
2655 {
2656         int i;
2657 
2658         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2659 
2660         /*
2661          * Shutdown and drain the tx and rx pipeline. We do this using the
2662          * following steps.
2663          *
2664          * 1) Shutdown interrupts to all the queues (trying to keep the admin
2665          *    queue alive).
2666          *
2667          * 2) Remove all of the interrupt tx and rx causes by setting the
2668          *    interrupt linked lists to zero.
2669          *
2670          * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
2671          *    wait for all the queues to be disabled, once we reach that point
2672          *    it should be safe to free associated data.
2673          *
2674          * 4) Wait 50ms after all that is done. This ensures that the rings are
2675          *    ready for programming again and we don't have to think about this
2676          *    in other parts of the driver.
2677          *
2678          * 5) Disable remaining chip interrupts, (admin queue, etc.)
2679          *
2680          * 6) Verify that FM is happy with all the register accesses we
2681          *    performed.
2682          */
2683         i40e_intr_io_disable_all(i40e);
2684         i40e_intr_io_clear_cause(i40e);
2685 
2686         if (i40e_shutdown_rings(i40e) == B_FALSE) {
2687                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2688         }
2689 
2690         delay(50 * drv_usectohz(1000));
2691 
2692         i40e_intr_chip_fini(i40e);
2693 
2694         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2695                 mutex_enter(&i40e->i40e_trqpairs[i].itrq_rx_lock);
2696                 mutex_enter(&i40e->i40e_trqpairs[i].itrq_tx_lock);
2697         }
2698 
2699         /*
2700          * We should consider refactoring this to be part of the ring start /
2701          * stop routines at some point.
2702          */
2703         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2704                 i40e_stats_trqpair_fini(&i40e->i40e_trqpairs[i]);
2705         }
2706 
2707         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
2708             DDI_FM_OK) {
2709                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2710         }
2711 
2712         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2713                 i40e_tx_cleanup_ring(&i40e->i40e_trqpairs[i]);
2714         }
2715 
2716         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2717                 mutex_exit(&i40e->i40e_trqpairs[i].itrq_rx_lock);
2718                 mutex_exit(&i40e->i40e_trqpairs[i].itrq_tx_lock);
2719         }
2720 
2721         i40e_stat_vsi_fini(i40e);
2722 
2723         i40e->i40e_link_speed = 0;
2724         i40e->i40e_link_duplex = 0;
2725         i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
2726 
2727         if (free_allocations) {
2728                 i40e_free_ring_mem(i40e, B_FALSE);
2729         }
2730 }
2731 
2732 boolean_t
2733 i40e_start(i40e_t *i40e, boolean_t alloc)
2734 {
2735         i40e_hw_t *hw = &i40e->i40e_hw_space;
2736         boolean_t rc = B_TRUE;
2737         int i, err;
2738 
2739         ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2740 
2741         if (alloc) {
2742                 if (i40e_alloc_ring_mem(i40e) == B_FALSE) {
2743                         i40e_error(i40e,
2744                             "Failed to allocate ring memory");
2745                         return (B_FALSE);
2746                 }
2747         }
2748 
2749         /*
2750          * This should get refactored to be part of ring start and stop at
2751          * some point, along with most of the logic here.
2752          */
2753         for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2754                 if (i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i]) ==
2755                     B_FALSE) {
2756                         int j;
2757 
2758                         for (j = 0; j < i; j++) {
2759                                 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[j];
2760                                 i40e_stats_trqpair_fini(itrq);
2761                         }
2762                         return (B_FALSE);
2763                 }
2764         }
2765 
2766         if (!i40e_chip_start(i40e)) {
2767                 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
2768                 rc = B_FALSE;
2769                 goto done;
2770         }
2771 
2772         if (i40e_setup_rx_rings(i40e) == B_FALSE) {
2773                 rc = B_FALSE;
2774                 goto done;
2775         }
2776 
2777         if (i40e_setup_tx_rings(i40e) == B_FALSE) {
2778                 rc = B_FALSE;
2779                 goto done;
2780         }
2781 
2782         /*
2783          * Enable broadcast traffic; however, do not enable multicast traffic.
2784          * That's handle exclusively through MAC's mc_multicst routines.
2785          */
2786         err = i40e_aq_set_vsi_broadcast(hw, i40e->i40e_vsi_id, B_TRUE, NULL);
2787         if (err != I40E_SUCCESS) {
2788                 i40e_error(i40e, "failed to set default VSI: %d", err);
2789                 rc = B_FALSE;
2790                 goto done;
2791         }
2792 
2793         err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL);
2794         if (err != I40E_SUCCESS) {
2795                 i40e_error(i40e, "failed to set MAC config: %d", err);
2796                 rc = B_FALSE;
2797                 goto done;
2798         }
2799 
2800         /*
2801          * Finally, make sure that we're happy from an FM perspective.
2802          */
2803         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
2804             DDI_FM_OK) {
2805                 rc = B_FALSE;
2806                 goto done;
2807         }
2808 
2809         /* Clear state bits prior to final interrupt enabling. */
2810         atomic_and_32(&i40e->i40e_state,
2811             ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
2812 
2813         i40e_intr_io_enable_all(i40e);
2814 
2815 done:
2816         if (rc == B_FALSE) {
2817                 i40e_stop(i40e, B_FALSE);
2818                 if (alloc == B_TRUE) {
2819                         i40e_free_ring_mem(i40e, B_TRUE);
2820                 }
2821                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2822         }
2823 
2824         return (rc);
2825 }
2826 
2827 /*
2828  * We may have loaned up descriptors to the stack. As such, if we still have
2829  * them outstanding, then we will not continue with detach.
2830  */
2831 static boolean_t
2832 i40e_drain_rx(i40e_t *i40e)
2833 {
2834         mutex_enter(&i40e->i40e_rx_pending_lock);
2835         while (i40e->i40e_rx_pending > 0) {
2836                 if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
2837                     &i40e->i40e_rx_pending_lock,
2838                     drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
2839                         mutex_exit(&i40e->i40e_rx_pending_lock);
2840                         return (B_FALSE);
2841                 }
2842         }
2843         mutex_exit(&i40e->i40e_rx_pending_lock);
2844 
2845         return (B_TRUE);
2846 }
2847 
2848 static int
2849 i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2850 {
2851         i40e_t *i40e;
2852         struct i40e_osdep *osdep;
2853         i40e_hw_t *hw;
2854         int instance;
2855 
2856         if (cmd != DDI_ATTACH)
2857                 return (DDI_FAILURE);
2858 
2859         instance = ddi_get_instance(devinfo);
2860         i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
2861 
2862         i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
2863         i40e->i40e_instance = instance;
2864         i40e->i40e_dip = devinfo;
2865 
2866         hw = &i40e->i40e_hw_space;
2867         osdep = &i40e->i40e_osdep_space;
2868         hw->back = osdep;
2869         osdep->ios_i40e = i40e;
2870 
2871         ddi_set_driver_private(devinfo, i40e);
2872 
2873         i40e_fm_init(i40e);
2874         i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
2875 
2876         if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
2877                 i40e_error(i40e, "Failed to map PCI configurations.");
2878                 goto attach_fail;
2879         }
2880         i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
2881 
2882         i40e_identify_hardware(i40e);
2883 
2884         if (!i40e_regs_map(i40e)) {
2885                 i40e_error(i40e, "Failed to map device registers.");
2886                 goto attach_fail;
2887         }
2888         i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
2889 
2890         i40e_init_properties(i40e);
2891         i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
2892 
2893         if (!i40e_common_code_init(i40e, hw))
2894                 goto attach_fail;
2895         i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
2896 
2897         /*
2898          * When we participate in IRM, we should make sure that we register
2899          * ourselves with it before callbacks.
2900          */
2901         if (!i40e_alloc_intrs(i40e, devinfo)) {
2902                 i40e_error(i40e, "Failed to allocate interrupts.");
2903                 goto attach_fail;
2904         }
2905         i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
2906 
2907         if (!i40e_alloc_trqpairs(i40e)) {
2908                 i40e_error(i40e,
2909                     "Failed to allocate receive & transmit rings.");
2910                 goto attach_fail;
2911         }
2912         i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
2913 
2914         if (!i40e_map_intrs_to_vectors(i40e)) {
2915                 i40e_error(i40e, "Failed to map interrupts to vectors.");
2916                 goto attach_fail;
2917         }
2918 
2919         if (!i40e_add_intr_handlers(i40e)) {
2920                 i40e_error(i40e, "Failed to add the interrupt handlers.");
2921                 goto attach_fail;
2922         }
2923         i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
2924 
2925         if (!i40e_final_init(i40e)) {
2926                 i40e_error(i40e, "Final initialization failed.");
2927                 goto attach_fail;
2928         }
2929         i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
2930 
2931         if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
2932             DDI_FM_OK) {
2933                 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2934                 goto attach_fail;
2935         }
2936 
2937         if (!i40e_stats_init(i40e)) {
2938                 i40e_error(i40e, "Stats initialization failed.");
2939                 goto attach_fail;
2940         }
2941         i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
2942 
2943         if (!i40e_register_mac(i40e)) {
2944                 i40e_error(i40e, "Failed to register to MAC/GLDv3");
2945                 goto attach_fail;
2946         }
2947         i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
2948 
2949         i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
2950             I40E_CYCLIC_PERIOD, DDI_IPL_0);
2951         if (i40e->i40e_periodic_id == 0) {
2952                 i40e_error(i40e, "Failed to add the link-check timer");
2953                 goto attach_fail;
2954         }
2955         i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
2956 
2957         if (!i40e_enable_interrupts(i40e)) {
2958                 i40e_error(i40e, "Failed to enable DDI interrupts");
2959                 goto attach_fail;
2960         }
2961         i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
2962 
2963         atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
2964 
2965         mutex_enter(&i40e_glock);
2966         list_insert_tail(&i40e_glist, i40e);
2967         mutex_exit(&i40e_glock);
2968 
2969         return (DDI_SUCCESS);
2970 
2971 attach_fail:
2972         i40e_unconfigure(devinfo, i40e);
2973         return (DDI_FAILURE);
2974 }
2975 
2976 static int
2977 i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2978 {
2979         i40e_t *i40e;
2980 
2981         if (cmd != DDI_DETACH)
2982                 return (DDI_FAILURE);
2983 
2984         i40e = (i40e_t *)ddi_get_driver_private(devinfo);
2985         if (i40e == NULL) {
2986                 i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
2987                 return (DDI_FAILURE);
2988         }
2989 
2990         if (i40e_drain_rx(i40e) == B_FALSE) {
2991                 i40e_log(i40e, "timed out draining DMA resources, %d buffers "
2992                     "remain", i40e->i40e_rx_pending);
2993                 return (DDI_FAILURE);
2994         }
2995 
2996         mutex_enter(&i40e_glock);
2997         list_remove(&i40e_glist, i40e);
2998         mutex_exit(&i40e_glock);
2999 
3000         i40e_unconfigure(devinfo, i40e);
3001 
3002         return (DDI_SUCCESS);
3003 }
3004 
3005 static struct cb_ops i40e_cb_ops = {
3006         nulldev,                /* cb_open */
3007         nulldev,                /* cb_close */
3008         nodev,                  /* cb_strategy */
3009         nodev,                  /* cb_print */
3010         nodev,                  /* cb_dump */
3011         nodev,                  /* cb_read */
3012         nodev,                  /* cb_write */
3013         nodev,                  /* cb_ioctl */
3014         nodev,                  /* cb_devmap */
3015         nodev,                  /* cb_mmap */
3016         nodev,                  /* cb_segmap */
3017         nochpoll,               /* cb_chpoll */
3018         ddi_prop_op,            /* cb_prop_op */
3019         NULL,                   /* cb_stream */
3020         D_MP | D_HOTPLUG,       /* cb_flag */
3021         CB_REV,                 /* cb_rev */
3022         nodev,                  /* cb_aread */
3023         nodev                   /* cb_awrite */
3024 };
3025 
3026 static struct dev_ops i40e_dev_ops = {
3027         DEVO_REV,               /* devo_rev */
3028         0,                      /* devo_refcnt */
3029         NULL,                   /* devo_getinfo */
3030         nulldev,                /* devo_identify */
3031         nulldev,                /* devo_probe */
3032         i40e_attach,            /* devo_attach */
3033         i40e_detach,            /* devo_detach */
3034         nodev,                  /* devo_reset */
3035         &i40e_cb_ops,               /* devo_cb_ops */
3036         NULL,                   /* devo_bus_ops */
3037         ddi_power,              /* devo_power */
3038         ddi_quiesce_not_supported /* devo_quiesce */
3039 };
3040 
3041 static struct modldrv i40e_modldrv = {
3042         &mod_driverops,
3043         i40e_ident,
3044         &i40e_dev_ops
3045 };
3046 
3047 static struct modlinkage i40e_modlinkage = {
3048         MODREV_1,
3049         &i40e_modldrv,
3050         NULL
3051 };
3052 
3053 /*
3054  * Module Initialization Functions.
3055  */
3056 int
3057 _init(void)
3058 {
3059         int status;
3060 
3061         list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
3062         list_create(&i40e_dlist, sizeof (i40e_device_t),
3063             offsetof(i40e_device_t, id_link));
3064         mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
3065         mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
3066 
3067         status = mod_install(&i40e_modlinkage);
3068         if (status != DDI_SUCCESS) {
3069                 mac_fini_ops(&i40e_dev_ops);
3070                 mutex_destroy(&i40e_glock);
3071                 list_destroy(&i40e_dlist);
3072                 list_destroy(&i40e_glist);
3073         }
3074 
3075         return (status);
3076 }
3077 
3078 int
3079 _info(struct modinfo *modinfop)
3080 {
3081         return (mod_info(&i40e_modlinkage, modinfop));
3082 }
3083 
3084 int
3085 _fini(void)
3086 {
3087         int status;
3088 
3089         status = mod_remove(&i40e_modlinkage);
3090         if (status == DDI_SUCCESS) {
3091                 mac_fini_ops(&i40e_dev_ops);
3092                 mutex_destroy(&i40e_glock);
3093                 list_destroy(&i40e_dlist);
3094                 list_destroy(&i40e_glist);
3095         }
3096 
3097         return (status);
3098 }