1 /******************************************************************************
   2 
   3   Copyright (c) 2001-2015, Intel Corporation 
   4   All rights reserved.
   5   
   6   Redistribution and use in source and binary forms, with or without 
   7   modification, are permitted provided that the following conditions are met:
   8   
   9    1. Redistributions of source code must retain the above copyright notice, 
  10       this list of conditions and the following disclaimer.
  11   
  12    2. Redistributions in binary form must reproduce the above copyright 
  13       notice, this list of conditions and the following disclaimer in the 
  14       documentation and/or other materials provided with the distribution.
  15   
  16    3. Neither the name of the Intel Corporation nor the names of its 
  17       contributors may be used to endorse or promote products derived from 
  18       this software without specific prior written permission.
  19   
  20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  30   POSSIBILITY OF SUCH DAMAGE.
  31 
  32 ******************************************************************************/
  33 /*$FreeBSD$*/
  34 
  35 #include "e1000_api.h"
  36 
  37 /**
  38  *  e1000_init_mac_params - Initialize MAC function pointers
  39  *  @hw: pointer to the HW structure
  40  *
  41  *  This function initializes the function pointers for the MAC
  42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  43  **/
  44 s32 e1000_init_mac_params(struct e1000_hw *hw)
  45 {
  46         s32 ret_val = E1000_SUCCESS;
  47 
  48         if (hw->mac.ops.init_params) {
  49                 ret_val = hw->mac.ops.init_params(hw);
  50                 if (ret_val) {
  51                         DEBUGOUT("MAC Initialization Error\n");
  52                         goto out;
  53                 }
  54         } else {
  55                 DEBUGOUT("mac.init_mac_params was NULL\n");
  56                 ret_val = -E1000_ERR_CONFIG;
  57         }
  58 
  59 out:
  60         return ret_val;
  61 }
  62 
  63 /**
  64  *  e1000_init_nvm_params - Initialize NVM function pointers
  65  *  @hw: pointer to the HW structure
  66  *
  67  *  This function initializes the function pointers for the NVM
  68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  69  **/
  70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
  71 {
  72         s32 ret_val = E1000_SUCCESS;
  73 
  74         if (hw->nvm.ops.init_params) {
  75                 ret_val = hw->nvm.ops.init_params(hw);
  76                 if (ret_val) {
  77                         DEBUGOUT("NVM Initialization Error\n");
  78                         goto out;
  79                 }
  80         } else {
  81                 DEBUGOUT("nvm.init_nvm_params was NULL\n");
  82                 ret_val = -E1000_ERR_CONFIG;
  83         }
  84 
  85 out:
  86         return ret_val;
  87 }
  88 
  89 /**
  90  *  e1000_init_phy_params - Initialize PHY function pointers
  91  *  @hw: pointer to the HW structure
  92  *
  93  *  This function initializes the function pointers for the PHY
  94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  95  **/
  96 s32 e1000_init_phy_params(struct e1000_hw *hw)
  97 {
  98         s32 ret_val = E1000_SUCCESS;
  99 
 100         if (hw->phy.ops.init_params) {
 101                 ret_val = hw->phy.ops.init_params(hw);
 102                 if (ret_val) {
 103                         DEBUGOUT("PHY Initialization Error\n");
 104                         goto out;
 105                 }
 106         } else {
 107                 DEBUGOUT("phy.init_phy_params was NULL\n");
 108                 ret_val =  -E1000_ERR_CONFIG;
 109         }
 110 
 111 out:
 112         return ret_val;
 113 }
 114 
 115 /**
 116  *  e1000_init_mbx_params - Initialize mailbox function pointers
 117  *  @hw: pointer to the HW structure
 118  *
 119  *  This function initializes the function pointers for the PHY
 120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
 121  **/
 122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
 123 {
 124         s32 ret_val = E1000_SUCCESS;
 125 
 126         if (hw->mbx.ops.init_params) {
 127                 ret_val = hw->mbx.ops.init_params(hw);
 128                 if (ret_val) {
 129                         DEBUGOUT("Mailbox Initialization Error\n");
 130                         goto out;
 131                 }
 132         } else {
 133                 DEBUGOUT("mbx.init_mbx_params was NULL\n");
 134                 ret_val =  -E1000_ERR_CONFIG;
 135         }
 136 
 137 out:
 138         return ret_val;
 139 }
 140 
 141 /**
 142  *  e1000_set_mac_type - Sets MAC type
 143  *  @hw: pointer to the HW structure
 144  *
 145  *  This function sets the mac type of the adapter based on the
 146  *  device ID stored in the hw structure.
 147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
 148  *  e1000_setup_init_funcs()).
 149  **/
 150 s32 e1000_set_mac_type(struct e1000_hw *hw)
 151 {
 152         struct e1000_mac_info *mac = &hw->mac;
 153         s32 ret_val = E1000_SUCCESS;
 154 
 155         DEBUGFUNC("e1000_set_mac_type");
 156 
 157         switch (hw->device_id) {
 158         case E1000_DEV_ID_82542:
 159                 mac->type = e1000_82542;
 160                 break;
 161         case E1000_DEV_ID_82543GC_FIBER:
 162         case E1000_DEV_ID_82543GC_COPPER:
 163                 mac->type = e1000_82543;
 164                 break;
 165         case E1000_DEV_ID_82544EI_COPPER:
 166         case E1000_DEV_ID_82544EI_FIBER:
 167         case E1000_DEV_ID_82544GC_COPPER:
 168         case E1000_DEV_ID_82544GC_LOM:
 169                 mac->type = e1000_82544;
 170                 break;
 171         case E1000_DEV_ID_82540EM:
 172         case E1000_DEV_ID_82540EM_LOM:
 173         case E1000_DEV_ID_82540EP:
 174         case E1000_DEV_ID_82540EP_LOM:
 175         case E1000_DEV_ID_82540EP_LP:
 176                 mac->type = e1000_82540;
 177                 break;
 178         case E1000_DEV_ID_82545EM_COPPER:
 179         case E1000_DEV_ID_82545EM_FIBER:
 180                 mac->type = e1000_82545;
 181                 break;
 182         case E1000_DEV_ID_82545GM_COPPER:
 183         case E1000_DEV_ID_82545GM_FIBER:
 184         case E1000_DEV_ID_82545GM_SERDES:
 185                 mac->type = e1000_82545_rev_3;
 186                 break;
 187         case E1000_DEV_ID_82546EB_COPPER:
 188         case E1000_DEV_ID_82546EB_FIBER:
 189         case E1000_DEV_ID_82546EB_QUAD_COPPER:
 190                 mac->type = e1000_82546;
 191                 break;
 192         case E1000_DEV_ID_82546GB_COPPER:
 193         case E1000_DEV_ID_82546GB_FIBER:
 194         case E1000_DEV_ID_82546GB_SERDES:
 195         case E1000_DEV_ID_82546GB_PCIE:
 196         case E1000_DEV_ID_82546GB_QUAD_COPPER:
 197         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 198                 mac->type = e1000_82546_rev_3;
 199                 break;
 200         case E1000_DEV_ID_82541EI:
 201         case E1000_DEV_ID_82541EI_MOBILE:
 202         case E1000_DEV_ID_82541ER_LOM:
 203                 mac->type = e1000_82541;
 204                 break;
 205         case E1000_DEV_ID_82541ER:
 206         case E1000_DEV_ID_82541GI:
 207         case E1000_DEV_ID_82541GI_LF:
 208         case E1000_DEV_ID_82541GI_MOBILE:
 209                 mac->type = e1000_82541_rev_2;
 210                 break;
 211         case E1000_DEV_ID_82547EI:
 212         case E1000_DEV_ID_82547EI_MOBILE:
 213                 mac->type = e1000_82547;
 214                 break;
 215         case E1000_DEV_ID_82547GI:
 216                 mac->type = e1000_82547_rev_2;
 217                 break;
 218         case E1000_DEV_ID_82571EB_COPPER:
 219         case E1000_DEV_ID_82571EB_FIBER:
 220         case E1000_DEV_ID_82571EB_SERDES:
 221         case E1000_DEV_ID_82571EB_SERDES_DUAL:
 222         case E1000_DEV_ID_82571EB_SERDES_QUAD:
 223         case E1000_DEV_ID_82571EB_QUAD_COPPER:
 224         case E1000_DEV_ID_82571PT_QUAD_COPPER:
 225         case E1000_DEV_ID_82571EB_QUAD_FIBER:
 226         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
 227                 mac->type = e1000_82571;
 228                 break;
 229         case E1000_DEV_ID_82572EI:
 230         case E1000_DEV_ID_82572EI_COPPER:
 231         case E1000_DEV_ID_82572EI_FIBER:
 232         case E1000_DEV_ID_82572EI_SERDES:
 233                 mac->type = e1000_82572;
 234                 break;
 235         case E1000_DEV_ID_82573E:
 236         case E1000_DEV_ID_82573E_IAMT:
 237         case E1000_DEV_ID_82573L:
 238                 mac->type = e1000_82573;
 239                 break;
 240         case E1000_DEV_ID_82574L:
 241         case E1000_DEV_ID_82574LA:
 242                 mac->type = e1000_82574;
 243                 break;
 244         case E1000_DEV_ID_82583V:
 245                 mac->type = e1000_82583;
 246                 break;
 247         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
 248         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 249         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
 250         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
 251                 mac->type = e1000_80003es2lan;
 252                 break;
 253         case E1000_DEV_ID_ICH8_IFE:
 254         case E1000_DEV_ID_ICH8_IFE_GT:
 255         case E1000_DEV_ID_ICH8_IFE_G:
 256         case E1000_DEV_ID_ICH8_IGP_M:
 257         case E1000_DEV_ID_ICH8_IGP_M_AMT:
 258         case E1000_DEV_ID_ICH8_IGP_AMT:
 259         case E1000_DEV_ID_ICH8_IGP_C:
 260         case E1000_DEV_ID_ICH8_82567V_3:
 261                 mac->type = e1000_ich8lan;
 262                 break;
 263         case E1000_DEV_ID_ICH9_IFE:
 264         case E1000_DEV_ID_ICH9_IFE_GT:
 265         case E1000_DEV_ID_ICH9_IFE_G:
 266         case E1000_DEV_ID_ICH9_IGP_M:
 267         case E1000_DEV_ID_ICH9_IGP_M_AMT:
 268         case E1000_DEV_ID_ICH9_IGP_M_V:
 269         case E1000_DEV_ID_ICH9_IGP_AMT:
 270         case E1000_DEV_ID_ICH9_BM:
 271         case E1000_DEV_ID_ICH9_IGP_C:
 272         case E1000_DEV_ID_ICH10_R_BM_LM:
 273         case E1000_DEV_ID_ICH10_R_BM_LF:
 274         case E1000_DEV_ID_ICH10_R_BM_V:
 275                 mac->type = e1000_ich9lan;
 276                 break;
 277         case E1000_DEV_ID_ICH10_D_BM_LM:
 278         case E1000_DEV_ID_ICH10_D_BM_LF:
 279         case E1000_DEV_ID_ICH10_D_BM_V:
 280                 mac->type = e1000_ich10lan;
 281                 break;
 282         case E1000_DEV_ID_PCH_D_HV_DM:
 283         case E1000_DEV_ID_PCH_D_HV_DC:
 284         case E1000_DEV_ID_PCH_M_HV_LM:
 285         case E1000_DEV_ID_PCH_M_HV_LC:
 286                 mac->type = e1000_pchlan;
 287                 break;
 288         case E1000_DEV_ID_PCH2_LV_LM:
 289         case E1000_DEV_ID_PCH2_LV_V:
 290                 mac->type = e1000_pch2lan;
 291                 break;
 292         case E1000_DEV_ID_PCH_LPT_I217_LM:
 293         case E1000_DEV_ID_PCH_LPT_I217_V:
 294         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
 295         case E1000_DEV_ID_PCH_LPTLP_I218_V:
 296         case E1000_DEV_ID_PCH_I218_LM2:
 297         case E1000_DEV_ID_PCH_I218_V2:
 298         case E1000_DEV_ID_PCH_I218_LM3:
 299         case E1000_DEV_ID_PCH_I218_V3:
 300                 mac->type = e1000_pch_lpt;
 301                 break;
 302         case E1000_DEV_ID_PCH_SPT_I219_LM:
 303         case E1000_DEV_ID_PCH_SPT_I219_V:
 304         case E1000_DEV_ID_PCH_SPT_I219_LM2:
 305         case E1000_DEV_ID_PCH_SPT_I219_V2:
 306         case E1000_DEV_ID_PCH_LBG_I219_LM3:
 307         case E1000_DEV_ID_PCH_SPT_I219_LM4:
 308         case E1000_DEV_ID_PCH_SPT_I219_V4:
 309         case E1000_DEV_ID_PCH_SPT_I219_LM5:
 310         case E1000_DEV_ID_PCH_SPT_I219_V5:
 311                 mac->type = e1000_pch_spt;
 312                 break;
 313         case E1000_DEV_ID_82575EB_COPPER:
 314         case E1000_DEV_ID_82575EB_FIBER_SERDES:
 315         case E1000_DEV_ID_82575GB_QUAD_COPPER:
 316                 mac->type = e1000_82575;
 317                 break;
 318         case E1000_DEV_ID_82576:
 319         case E1000_DEV_ID_82576_FIBER:
 320         case E1000_DEV_ID_82576_SERDES:
 321         case E1000_DEV_ID_82576_QUAD_COPPER:
 322         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 323         case E1000_DEV_ID_82576_NS:
 324         case E1000_DEV_ID_82576_NS_SERDES:
 325         case E1000_DEV_ID_82576_SERDES_QUAD:
 326                 mac->type = e1000_82576;
 327                 break;
 328         case E1000_DEV_ID_82580_COPPER:
 329         case E1000_DEV_ID_82580_FIBER:
 330         case E1000_DEV_ID_82580_SERDES:
 331         case E1000_DEV_ID_82580_SGMII:
 332         case E1000_DEV_ID_82580_COPPER_DUAL:
 333         case E1000_DEV_ID_82580_QUAD_FIBER:
 334         case E1000_DEV_ID_DH89XXCC_SGMII:
 335         case E1000_DEV_ID_DH89XXCC_SERDES:
 336         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 337         case E1000_DEV_ID_DH89XXCC_SFP:
 338                 mac->type = e1000_82580;
 339                 break;
 340         case E1000_DEV_ID_I350_COPPER:
 341         case E1000_DEV_ID_I350_FIBER:
 342         case E1000_DEV_ID_I350_SERDES:
 343         case E1000_DEV_ID_I350_SGMII:
 344         case E1000_DEV_ID_I350_DA4:
 345                 mac->type = e1000_i350;
 346                 break;
 347         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 348         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 349         case E1000_DEV_ID_I210_COPPER:
 350         case E1000_DEV_ID_I210_COPPER_OEM1:
 351         case E1000_DEV_ID_I210_COPPER_IT:
 352         case E1000_DEV_ID_I210_FIBER:
 353         case E1000_DEV_ID_I210_SERDES:
 354         case E1000_DEV_ID_I210_SGMII:
 355                 mac->type = e1000_i210;
 356                 break;
 357         case E1000_DEV_ID_I211_COPPER:
 358                 mac->type = e1000_i211;
 359                 break;
 360         case E1000_DEV_ID_82576_VF:
 361         case E1000_DEV_ID_82576_VF_HV:
 362                 mac->type = e1000_vfadapt;
 363                 break;
 364         case E1000_DEV_ID_I350_VF:
 365         case E1000_DEV_ID_I350_VF_HV:
 366                 mac->type = e1000_vfadapt_i350;
 367                 break;
 368 
 369         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 370         case E1000_DEV_ID_I354_SGMII:
 371         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 372                 mac->type = e1000_i354;
 373                 break;
 374         default:
 375                 /* Should never have loaded on this device */
 376                 ret_val = -E1000_ERR_MAC_INIT;
 377                 break;
 378         }
 379 
 380         return ret_val;
 381 }
 382 
 383 /**
 384  *  e1000_setup_init_funcs - Initializes function pointers
 385  *  @hw: pointer to the HW structure
 386  *  @init_device: TRUE will initialize the rest of the function pointers
 387  *                getting the device ready for use.  FALSE will only set
 388  *                MAC type and the function pointers for the other init
 389  *                functions.  Passing FALSE will not generate any hardware
 390  *                reads or writes.
 391  *
 392  *  This function must be called by a driver in order to use the rest
 393  *  of the 'shared' code files. Called by drivers only.
 394  **/
 395 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
 396 {
 397         s32 ret_val;
 398 
 399         /* Can't do much good without knowing the MAC type. */
 400         ret_val = e1000_set_mac_type(hw);
 401         if (ret_val) {
 402                 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
 403                 goto out;
 404         }
 405 
 406         if (!hw->hw_addr) {
 407                 DEBUGOUT("ERROR: Registers not mapped\n");
 408                 ret_val = -E1000_ERR_CONFIG;
 409                 goto out;
 410         }
 411 
 412         /*
 413          * Init function pointers to generic implementations. We do this first
 414          * allowing a driver module to override it afterward.
 415          */
 416         e1000_init_mac_ops_generic(hw);
 417         e1000_init_phy_ops_generic(hw);
 418         e1000_init_nvm_ops_generic(hw);
 419         e1000_init_mbx_ops_generic(hw);
 420 
 421         /*
 422          * Set up the init function pointers. These are functions within the
 423          * adapter family file that sets up function pointers for the rest of
 424          * the functions in that family.
 425          */
 426         switch (hw->mac.type) {
 427         case e1000_82542:
 428                 e1000_init_function_pointers_82542(hw);
 429                 break;
 430         case e1000_82543:
 431         case e1000_82544:
 432                 e1000_init_function_pointers_82543(hw);
 433                 break;
 434         case e1000_82540:
 435         case e1000_82545:
 436         case e1000_82545_rev_3:
 437         case e1000_82546:
 438         case e1000_82546_rev_3:
 439                 e1000_init_function_pointers_82540(hw);
 440                 break;
 441         case e1000_82541:
 442         case e1000_82541_rev_2:
 443         case e1000_82547:
 444         case e1000_82547_rev_2:
 445                 e1000_init_function_pointers_82541(hw);
 446                 break;
 447         case e1000_82571:
 448         case e1000_82572:
 449         case e1000_82573:
 450         case e1000_82574:
 451         case e1000_82583:
 452                 e1000_init_function_pointers_82571(hw);
 453                 break;
 454         case e1000_80003es2lan:
 455                 e1000_init_function_pointers_80003es2lan(hw);
 456                 break;
 457         case e1000_ich8lan:
 458         case e1000_ich9lan:
 459         case e1000_ich10lan:
 460         case e1000_pchlan:
 461         case e1000_pch2lan:
 462         case e1000_pch_lpt:
 463         case e1000_pch_spt:
 464                 e1000_init_function_pointers_ich8lan(hw);
 465                 break;
 466         case e1000_82575:
 467         case e1000_82576:
 468         case e1000_82580:
 469         case e1000_i350:
 470         case e1000_i354:
 471                 e1000_init_function_pointers_82575(hw);
 472                 break;
 473         case e1000_i210:
 474         case e1000_i211:
 475                 e1000_init_function_pointers_i210(hw);
 476                 break;
 477         case e1000_vfadapt:
 478                 e1000_init_function_pointers_vf(hw);
 479                 break;
 480         case e1000_vfadapt_i350:
 481                 e1000_init_function_pointers_vf(hw);
 482                 break;
 483         default:
 484                 DEBUGOUT("Hardware not supported\n");
 485                 ret_val = -E1000_ERR_CONFIG;
 486                 break;
 487         }
 488 
 489         /*
 490          * Initialize the rest of the function pointers. These require some
 491          * register reads/writes in some cases.
 492          */
 493         if (!(ret_val) && init_device) {
 494                 ret_val = e1000_init_mac_params(hw);
 495                 if (ret_val)
 496                         goto out;
 497 
 498                 ret_val = e1000_init_nvm_params(hw);
 499                 if (ret_val)
 500                         goto out;
 501 
 502                 ret_val = e1000_init_phy_params(hw);
 503                 if (ret_val)
 504                         goto out;
 505 
 506                 ret_val = e1000_init_mbx_params(hw);
 507                 if (ret_val)
 508                         goto out;
 509         }
 510 
 511 out:
 512         return ret_val;
 513 }
 514 
 515 /**
 516  *  e1000_get_bus_info - Obtain bus information for adapter
 517  *  @hw: pointer to the HW structure
 518  *
 519  *  This will obtain information about the HW bus for which the
 520  *  adapter is attached and stores it in the hw structure. This is a
 521  *  function pointer entry point called by drivers.
 522  **/
 523 s32 e1000_get_bus_info(struct e1000_hw *hw)
 524 {
 525         if (hw->mac.ops.get_bus_info)
 526                 return hw->mac.ops.get_bus_info(hw);
 527 
 528         return E1000_SUCCESS;
 529 }
 530 
 531 /**
 532  *  e1000_clear_vfta - Clear VLAN filter table
 533  *  @hw: pointer to the HW structure
 534  *
 535  *  This clears the VLAN filter table on the adapter. This is a function
 536  *  pointer entry point called by drivers.
 537  **/
 538 void e1000_clear_vfta(struct e1000_hw *hw)
 539 {
 540         if (hw->mac.ops.clear_vfta)
 541                 hw->mac.ops.clear_vfta(hw);
 542 }
 543 
 544 /**
 545  *  e1000_write_vfta - Write value to VLAN filter table
 546  *  @hw: pointer to the HW structure
 547  *  @offset: the 32-bit offset in which to write the value to.
 548  *  @value: the 32-bit value to write at location offset.
 549  *
 550  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
 551  *  table. This is a function pointer entry point called by drivers.
 552  **/
 553 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 554 {
 555         if (hw->mac.ops.write_vfta)
 556                 hw->mac.ops.write_vfta(hw, offset, value);
 557 }
 558 
 559 /**
 560  *  e1000_update_mc_addr_list - Update Multicast addresses
 561  *  @hw: pointer to the HW structure
 562  *  @mc_addr_list: array of multicast addresses to program
 563  *  @mc_addr_count: number of multicast addresses to program
 564  *
 565  *  Updates the Multicast Table Array.
 566  *  The caller must have a packed mc_addr_list of multicast addresses.
 567  **/
 568 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
 569                                u32 mc_addr_count)
 570 {
 571         if (hw->mac.ops.update_mc_addr_list)
 572                 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
 573                                                 mc_addr_count);
 574 }
 575 
 576 /**
 577  *  e1000_force_mac_fc - Force MAC flow control
 578  *  @hw: pointer to the HW structure
 579  *
 580  *  Force the MAC's flow control settings. Currently no func pointer exists
 581  *  and all implementations are handled in the generic version of this
 582  *  function.
 583  **/
 584 s32 e1000_force_mac_fc(struct e1000_hw *hw)
 585 {
 586         return e1000_force_mac_fc_generic(hw);
 587 }
 588 
 589 /**
 590  *  e1000_check_for_link - Check/Store link connection
 591  *  @hw: pointer to the HW structure
 592  *
 593  *  This checks the link condition of the adapter and stores the
 594  *  results in the hw->mac structure. This is a function pointer entry
 595  *  point called by drivers.
 596  **/
 597 s32 e1000_check_for_link(struct e1000_hw *hw)
 598 {
 599         if (hw->mac.ops.check_for_link)
 600                 return hw->mac.ops.check_for_link(hw);
 601 
 602         return -E1000_ERR_CONFIG;
 603 }
 604 
 605 /**
 606  *  e1000_check_mng_mode - Check management mode
 607  *  @hw: pointer to the HW structure
 608  *
 609  *  This checks if the adapter has manageability enabled.
 610  *  This is a function pointer entry point called by drivers.
 611  **/
 612 bool e1000_check_mng_mode(struct e1000_hw *hw)
 613 {
 614         if (hw->mac.ops.check_mng_mode)
 615                 return hw->mac.ops.check_mng_mode(hw);
 616 
 617         return FALSE;
 618 }
 619 
 620 /**
 621  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
 622  *  @hw: pointer to the HW structure
 623  *  @buffer: pointer to the host interface
 624  *  @length: size of the buffer
 625  *
 626  *  Writes the DHCP information to the host interface.
 627  **/
 628 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
 629 {
 630         return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
 631 }
 632 
 633 /**
 634  *  e1000_reset_hw - Reset hardware
 635  *  @hw: pointer to the HW structure
 636  *
 637  *  This resets the hardware into a known state. This is a function pointer
 638  *  entry point called by drivers.
 639  **/
 640 s32 e1000_reset_hw(struct e1000_hw *hw)
 641 {
 642         if (hw->mac.ops.reset_hw)
 643                 return hw->mac.ops.reset_hw(hw);
 644 
 645         return -E1000_ERR_CONFIG;
 646 }
 647 
 648 /**
 649  *  e1000_init_hw - Initialize hardware
 650  *  @hw: pointer to the HW structure
 651  *
 652  *  This inits the hardware readying it for operation. This is a function
 653  *  pointer entry point called by drivers.
 654  **/
 655 s32 e1000_init_hw(struct e1000_hw *hw)
 656 {
 657         if (hw->mac.ops.init_hw)
 658                 return hw->mac.ops.init_hw(hw);
 659 
 660         return -E1000_ERR_CONFIG;
 661 }
 662 
 663 /**
 664  *  e1000_setup_link - Configures link and flow control
 665  *  @hw: pointer to the HW structure
 666  *
 667  *  This configures link and flow control settings for the adapter. This
 668  *  is a function pointer entry point called by drivers. While modules can
 669  *  also call this, they probably call their own version of this function.
 670  **/
 671 s32 e1000_setup_link(struct e1000_hw *hw)
 672 {
 673         if (hw->mac.ops.setup_link)
 674                 return hw->mac.ops.setup_link(hw);
 675 
 676         return -E1000_ERR_CONFIG;
 677 }
 678 
 679 /**
 680  *  e1000_get_speed_and_duplex - Returns current speed and duplex
 681  *  @hw: pointer to the HW structure
 682  *  @speed: pointer to a 16-bit value to store the speed
 683  *  @duplex: pointer to a 16-bit value to store the duplex.
 684  *
 685  *  This returns the speed and duplex of the adapter in the two 'out'
 686  *  variables passed in. This is a function pointer entry point called
 687  *  by drivers.
 688  **/
 689 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
 690 {
 691         if (hw->mac.ops.get_link_up_info)
 692                 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
 693 
 694         return -E1000_ERR_CONFIG;
 695 }
 696 
 697 /**
 698  *  e1000_setup_led - Configures SW controllable LED
 699  *  @hw: pointer to the HW structure
 700  *
 701  *  This prepares the SW controllable LED for use and saves the current state
 702  *  of the LED so it can be later restored. This is a function pointer entry
 703  *  point called by drivers.
 704  **/
 705 s32 e1000_setup_led(struct e1000_hw *hw)
 706 {
 707         if (hw->mac.ops.setup_led)
 708                 return hw->mac.ops.setup_led(hw);
 709 
 710         return E1000_SUCCESS;
 711 }
 712 
 713 /**
 714  *  e1000_cleanup_led - Restores SW controllable LED
 715  *  @hw: pointer to the HW structure
 716  *
 717  *  This restores the SW controllable LED to the value saved off by
 718  *  e1000_setup_led. This is a function pointer entry point called by drivers.
 719  **/
 720 s32 e1000_cleanup_led(struct e1000_hw *hw)
 721 {
 722         if (hw->mac.ops.cleanup_led)
 723                 return hw->mac.ops.cleanup_led(hw);
 724 
 725         return E1000_SUCCESS;
 726 }
 727 
 728 /**
 729  *  e1000_blink_led - Blink SW controllable LED
 730  *  @hw: pointer to the HW structure
 731  *
 732  *  This starts the adapter LED blinking. Request the LED to be setup first
 733  *  and cleaned up after. This is a function pointer entry point called by
 734  *  drivers.
 735  **/
 736 s32 e1000_blink_led(struct e1000_hw *hw)
 737 {
 738         if (hw->mac.ops.blink_led)
 739                 return hw->mac.ops.blink_led(hw);
 740 
 741         return E1000_SUCCESS;
 742 }
 743 
 744 /**
 745  *  e1000_id_led_init - store LED configurations in SW
 746  *  @hw: pointer to the HW structure
 747  *
 748  *  Initializes the LED config in SW. This is a function pointer entry point
 749  *  called by drivers.
 750  **/
 751 s32 e1000_id_led_init(struct e1000_hw *hw)
 752 {
 753         if (hw->mac.ops.id_led_init)
 754                 return hw->mac.ops.id_led_init(hw);
 755 
 756         return E1000_SUCCESS;
 757 }
 758 
 759 /**
 760  *  e1000_led_on - Turn on SW controllable LED
 761  *  @hw: pointer to the HW structure
 762  *
 763  *  Turns the SW defined LED on. This is a function pointer entry point
 764  *  called by drivers.
 765  **/
 766 s32 e1000_led_on(struct e1000_hw *hw)
 767 {
 768         if (hw->mac.ops.led_on)
 769                 return hw->mac.ops.led_on(hw);
 770 
 771         return E1000_SUCCESS;
 772 }
 773 
 774 /**
 775  *  e1000_led_off - Turn off SW controllable LED
 776  *  @hw: pointer to the HW structure
 777  *
 778  *  Turns the SW defined LED off. This is a function pointer entry point
 779  *  called by drivers.
 780  **/
 781 s32 e1000_led_off(struct e1000_hw *hw)
 782 {
 783         if (hw->mac.ops.led_off)
 784                 return hw->mac.ops.led_off(hw);
 785 
 786         return E1000_SUCCESS;
 787 }
 788 
 789 /**
 790  *  e1000_reset_adaptive - Reset adaptive IFS
 791  *  @hw: pointer to the HW structure
 792  *
 793  *  Resets the adaptive IFS. Currently no func pointer exists and all
 794  *  implementations are handled in the generic version of this function.
 795  **/
 796 void e1000_reset_adaptive(struct e1000_hw *hw)
 797 {
 798         e1000_reset_adaptive_generic(hw);
 799 }
 800 
 801 /**
 802  *  e1000_update_adaptive - Update adaptive IFS
 803  *  @hw: pointer to the HW structure
 804  *
 805  *  Updates adapter IFS. Currently no func pointer exists and all
 806  *  implementations are handled in the generic version of this function.
 807  **/
 808 void e1000_update_adaptive(struct e1000_hw *hw)
 809 {
 810         e1000_update_adaptive_generic(hw);
 811 }
 812 
 813 /**
 814  *  e1000_disable_pcie_master - Disable PCI-Express master access
 815  *  @hw: pointer to the HW structure
 816  *
 817  *  Disables PCI-Express master access and verifies there are no pending
 818  *  requests. Currently no func pointer exists and all implementations are
 819  *  handled in the generic version of this function.
 820  **/
 821 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
 822 {
 823         return e1000_disable_pcie_master_generic(hw);
 824 }
 825 
 826 /**
 827  *  e1000_config_collision_dist - Configure collision distance
 828  *  @hw: pointer to the HW structure
 829  *
 830  *  Configures the collision distance to the default value and is used
 831  *  during link setup.
 832  **/
 833 void e1000_config_collision_dist(struct e1000_hw *hw)
 834 {
 835         if (hw->mac.ops.config_collision_dist)
 836                 hw->mac.ops.config_collision_dist(hw);
 837 }
 838 
 839 /**
 840  *  e1000_rar_set - Sets a receive address register
 841  *  @hw: pointer to the HW structure
 842  *  @addr: address to set the RAR to
 843  *  @index: the RAR to set
 844  *
 845  *  Sets a Receive Address Register (RAR) to the specified address.
 846  **/
 847 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 848 {
 849         if (hw->mac.ops.rar_set)
 850                 return hw->mac.ops.rar_set(hw, addr, index);
 851 
 852         return E1000_SUCCESS;
 853 }
 854 
 855 /**
 856  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
 857  *  @hw: pointer to the HW structure
 858  *
 859  *  Ensures that the MDI/MDIX SW state is valid.
 860  **/
 861 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
 862 {
 863         if (hw->mac.ops.validate_mdi_setting)
 864                 return hw->mac.ops.validate_mdi_setting(hw);
 865 
 866         return E1000_SUCCESS;
 867 }
 868 
 869 /**
 870  *  e1000_hash_mc_addr - Determines address location in multicast table
 871  *  @hw: pointer to the HW structure
 872  *  @mc_addr: Multicast address to hash.
 873  *
 874  *  This hashes an address to determine its location in the multicast
 875  *  table. Currently no func pointer exists and all implementations
 876  *  are handled in the generic version of this function.
 877  **/
 878 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 879 {
 880         return e1000_hash_mc_addr_generic(hw, mc_addr);
 881 }
 882 
 883 /**
 884  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
 885  *  @hw: pointer to the HW structure
 886  *
 887  *  Enables packet filtering on transmit packets if manageability is enabled
 888  *  and host interface is enabled.
 889  *  Currently no func pointer exists and all implementations are handled in the
 890  *  generic version of this function.
 891  **/
 892 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
 893 {
 894         return e1000_enable_tx_pkt_filtering_generic(hw);
 895 }
 896 
 897 /**
 898  *  e1000_mng_host_if_write - Writes to the manageability host interface
 899  *  @hw: pointer to the HW structure
 900  *  @buffer: pointer to the host interface buffer
 901  *  @length: size of the buffer
 902  *  @offset: location in the buffer to write to
 903  *  @sum: sum of the data (not checksum)
 904  *
 905  *  This function writes the buffer content at the offset given on the host if.
 906  *  It also does alignment considerations to do the writes in most efficient
 907  *  way.  Also fills up the sum of the buffer in *buffer parameter.
 908  **/
 909 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
 910                             u16 offset, u8 *sum)
 911 {
 912         return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
 913 }
 914 
 915 /**
 916  *  e1000_mng_write_cmd_header - Writes manageability command header
 917  *  @hw: pointer to the HW structure
 918  *  @hdr: pointer to the host interface command header
 919  *
 920  *  Writes the command header after does the checksum calculation.
 921  **/
 922 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
 923                                struct e1000_host_mng_command_header *hdr)
 924 {
 925         return e1000_mng_write_cmd_header_generic(hw, hdr);
 926 }
 927 
 928 /**
 929  *  e1000_mng_enable_host_if - Checks host interface is enabled
 930  *  @hw: pointer to the HW structure
 931  *
 932  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
 933  *
 934  *  This function checks whether the HOST IF is enabled for command operation
 935  *  and also checks whether the previous command is completed.  It busy waits
 936  *  in case of previous command is not completed.
 937  **/
 938 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
 939 {
 940         return e1000_mng_enable_host_if_generic(hw);
 941 }
 942 
 943 /**
 944  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
 945  *  @hw: pointer to the HW structure
 946  *  @itr: u32 indicating itr value
 947  *
 948  *  Set the OBFF timer based on the given interrupt rate.
 949  **/
 950 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
 951 {
 952         if (hw->mac.ops.set_obff_timer)
 953                 return hw->mac.ops.set_obff_timer(hw, itr);
 954 
 955         return E1000_SUCCESS;
 956 }
 957 
 958 /**
 959  *  e1000_check_reset_block - Verifies PHY can be reset
 960  *  @hw: pointer to the HW structure
 961  *
 962  *  Checks if the PHY is in a state that can be reset or if manageability
 963  *  has it tied up. This is a function pointer entry point called by drivers.
 964  **/
 965 s32 e1000_check_reset_block(struct e1000_hw *hw)
 966 {
 967         if (hw->phy.ops.check_reset_block)
 968                 return hw->phy.ops.check_reset_block(hw);
 969 
 970         return E1000_SUCCESS;
 971 }
 972 
 973 /**
 974  *  e1000_read_phy_reg - Reads PHY register
 975  *  @hw: pointer to the HW structure
 976  *  @offset: the register to read
 977  *  @data: the buffer to store the 16-bit read.
 978  *
 979  *  Reads the PHY register and returns the value in data.
 980  *  This is a function pointer entry point called by drivers.
 981  **/
 982 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 983 {
 984         if (hw->phy.ops.read_reg)
 985                 return hw->phy.ops.read_reg(hw, offset, data);
 986 
 987         return E1000_SUCCESS;
 988 }
 989 
 990 /**
 991  *  e1000_write_phy_reg - Writes PHY register
 992  *  @hw: pointer to the HW structure
 993  *  @offset: the register to write
 994  *  @data: the value to write.
 995  *
 996  *  Writes the PHY register at offset with the value in data.
 997  *  This is a function pointer entry point called by drivers.
 998  **/
 999 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1000 {
1001         if (hw->phy.ops.write_reg)
1002                 return hw->phy.ops.write_reg(hw, offset, data);
1003 
1004         return E1000_SUCCESS;
1005 }
1006 
1007 /**
1008  *  e1000_release_phy - Generic release PHY
1009  *  @hw: pointer to the HW structure
1010  *
1011  *  Return if silicon family does not require a semaphore when accessing the
1012  *  PHY.
1013  **/
1014 void e1000_release_phy(struct e1000_hw *hw)
1015 {
1016         if (hw->phy.ops.release)
1017                 hw->phy.ops.release(hw);
1018 }
1019 
1020 /**
1021  *  e1000_acquire_phy - Generic acquire PHY
1022  *  @hw: pointer to the HW structure
1023  *
1024  *  Return success if silicon family does not require a semaphore when
1025  *  accessing the PHY.
1026  **/
1027 s32 e1000_acquire_phy(struct e1000_hw *hw)
1028 {
1029         if (hw->phy.ops.acquire)
1030                 return hw->phy.ops.acquire(hw);
1031 
1032         return E1000_SUCCESS;
1033 }
1034 
1035 /**
1036  *  e1000_cfg_on_link_up - Configure PHY upon link up
1037  *  @hw: pointer to the HW structure
1038  **/
1039 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1040 {
1041         if (hw->phy.ops.cfg_on_link_up)
1042                 return hw->phy.ops.cfg_on_link_up(hw);
1043 
1044         return E1000_SUCCESS;
1045 }
1046 
1047 /**
1048  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1049  *  @hw: pointer to the HW structure
1050  *  @offset: the register to read
1051  *  @data: the location to store the 16-bit value read.
1052  *
1053  *  Reads a register out of the Kumeran interface. Currently no func pointer
1054  *  exists and all implementations are handled in the generic version of
1055  *  this function.
1056  **/
1057 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1058 {
1059         return e1000_read_kmrn_reg_generic(hw, offset, data);
1060 }
1061 
1062 /**
1063  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1064  *  @hw: pointer to the HW structure
1065  *  @offset: the register to write
1066  *  @data: the value to write.
1067  *
1068  *  Writes a register to the Kumeran interface. Currently no func pointer
1069  *  exists and all implementations are handled in the generic version of
1070  *  this function.
1071  **/
1072 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1073 {
1074         return e1000_write_kmrn_reg_generic(hw, offset, data);
1075 }
1076 
1077 /**
1078  *  e1000_get_cable_length - Retrieves cable length estimation
1079  *  @hw: pointer to the HW structure
1080  *
1081  *  This function estimates the cable length and stores them in
1082  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1083  *  entry point called by drivers.
1084  **/
1085 s32 e1000_get_cable_length(struct e1000_hw *hw)
1086 {
1087         if (hw->phy.ops.get_cable_length)
1088                 return hw->phy.ops.get_cable_length(hw);
1089 
1090         return E1000_SUCCESS;
1091 }
1092 
1093 /**
1094  *  e1000_get_phy_info - Retrieves PHY information from registers
1095  *  @hw: pointer to the HW structure
1096  *
1097  *  This function gets some information from various PHY registers and
1098  *  populates hw->phy values with it. This is a function pointer entry
1099  *  point called by drivers.
1100  **/
1101 s32 e1000_get_phy_info(struct e1000_hw *hw)
1102 {
1103         if (hw->phy.ops.get_info)
1104                 return hw->phy.ops.get_info(hw);
1105 
1106         return E1000_SUCCESS;
1107 }
1108 
1109 /**
1110  *  e1000_phy_hw_reset - Hard PHY reset
1111  *  @hw: pointer to the HW structure
1112  *
1113  *  Performs a hard PHY reset. This is a function pointer entry point called
1114  *  by drivers.
1115  **/
1116 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1117 {
1118         if (hw->phy.ops.reset)
1119                 return hw->phy.ops.reset(hw);
1120 
1121         return E1000_SUCCESS;
1122 }
1123 
1124 /**
1125  *  e1000_phy_commit - Soft PHY reset
1126  *  @hw: pointer to the HW structure
1127  *
1128  *  Performs a soft PHY reset on those that apply. This is a function pointer
1129  *  entry point called by drivers.
1130  **/
1131 s32 e1000_phy_commit(struct e1000_hw *hw)
1132 {
1133         if (hw->phy.ops.commit)
1134                 return hw->phy.ops.commit(hw);
1135 
1136         return E1000_SUCCESS;
1137 }
1138 
1139 /**
1140  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1141  *  @hw: pointer to the HW structure
1142  *  @active: boolean used to enable/disable lplu
1143  *
1144  *  Success returns 0, Failure returns 1
1145  *
1146  *  The low power link up (lplu) state is set to the power management level D0
1147  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1148  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1149  *  is used during Dx states where the power conservation is most important.
1150  *  During driver activity, SmartSpeed should be enabled so performance is
1151  *  maintained.  This is a function pointer entry point called by drivers.
1152  **/
1153 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1154 {
1155         if (hw->phy.ops.set_d0_lplu_state)
1156                 return hw->phy.ops.set_d0_lplu_state(hw, active);
1157 
1158         return E1000_SUCCESS;
1159 }
1160 
1161 /**
1162  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1163  *  @hw: pointer to the HW structure
1164  *  @active: boolean used to enable/disable lplu
1165  *
1166  *  Success returns 0, Failure returns 1
1167  *
1168  *  The low power link up (lplu) state is set to the power management level D3
1169  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1170  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1171  *  is used during Dx states where the power conservation is most important.
1172  *  During driver activity, SmartSpeed should be enabled so performance is
1173  *  maintained.  This is a function pointer entry point called by drivers.
1174  **/
1175 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1176 {
1177         if (hw->phy.ops.set_d3_lplu_state)
1178                 return hw->phy.ops.set_d3_lplu_state(hw, active);
1179 
1180         return E1000_SUCCESS;
1181 }
1182 
1183 /**
1184  *  e1000_read_mac_addr - Reads MAC address
1185  *  @hw: pointer to the HW structure
1186  *
1187  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1188  *  Currently no func pointer exists and all implementations are handled in the
1189  *  generic version of this function.
1190  **/
1191 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1192 {
1193         if (hw->mac.ops.read_mac_addr)
1194                 return hw->mac.ops.read_mac_addr(hw);
1195 
1196         return e1000_read_mac_addr_generic(hw);
1197 }
1198 
1199 /**
1200  *  e1000_read_pba_string - Read device part number string
1201  *  @hw: pointer to the HW structure
1202  *  @pba_num: pointer to device part number
1203  *  @pba_num_size: size of part number buffer
1204  *
1205  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1206  *  the value in pba_num.
1207  *  Currently no func pointer exists and all implementations are handled in the
1208  *  generic version of this function.
1209  **/
1210 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1211 {
1212         return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1213 }
1214 
1215 /**
1216  *  e1000_read_pba_length - Read device part number string length
1217  *  @hw: pointer to the HW structure
1218  *  @pba_num_size: size of part number buffer
1219  *
1220  *  Reads the product board assembly (PBA) number length from the EEPROM and
1221  *  stores the value in pba_num.
1222  *  Currently no func pointer exists and all implementations are handled in the
1223  *  generic version of this function.
1224  **/
1225 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1226 {
1227         return e1000_read_pba_length_generic(hw, pba_num_size);
1228 }
1229 
1230 /**
1231  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1232  *  @hw: pointer to the HW structure
1233  *
1234  *  Validates the NVM checksum is correct. This is a function pointer entry
1235  *  point called by drivers.
1236  **/
1237 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1238 {
1239         if (hw->nvm.ops.validate)
1240                 return hw->nvm.ops.validate(hw);
1241 
1242         return -E1000_ERR_CONFIG;
1243 }
1244 
1245 /**
1246  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1247  *  @hw: pointer to the HW structure
1248  *
1249  *  Updates the NVM checksum. Currently no func pointer exists and all
1250  *  implementations are handled in the generic version of this function.
1251  **/
1252 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1253 {
1254         if (hw->nvm.ops.update)
1255                 return hw->nvm.ops.update(hw);
1256 
1257         return -E1000_ERR_CONFIG;
1258 }
1259 
1260 /**
1261  *  e1000_reload_nvm - Reloads EEPROM
1262  *  @hw: pointer to the HW structure
1263  *
1264  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1265  *  extended control register.
1266  **/
1267 void e1000_reload_nvm(struct e1000_hw *hw)
1268 {
1269         if (hw->nvm.ops.reload)
1270                 hw->nvm.ops.reload(hw);
1271 }
1272 
1273 /**
1274  *  e1000_read_nvm - Reads NVM (EEPROM)
1275  *  @hw: pointer to the HW structure
1276  *  @offset: the word offset to read
1277  *  @words: number of 16-bit words to read
1278  *  @data: pointer to the properly sized buffer for the data.
1279  *
1280  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1281  *  pointer entry point called by drivers.
1282  **/
1283 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1284 {
1285         if (hw->nvm.ops.read)
1286                 return hw->nvm.ops.read(hw, offset, words, data);
1287 
1288         return -E1000_ERR_CONFIG;
1289 }
1290 
1291 /**
1292  *  e1000_write_nvm - Writes to NVM (EEPROM)
1293  *  @hw: pointer to the HW structure
1294  *  @offset: the word offset to read
1295  *  @words: number of 16-bit words to write
1296  *  @data: pointer to the properly sized buffer for the data.
1297  *
1298  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1299  *  pointer entry point called by drivers.
1300  **/
1301 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1302 {
1303         if (hw->nvm.ops.write)
1304                 return hw->nvm.ops.write(hw, offset, words, data);
1305 
1306         return E1000_SUCCESS;
1307 }
1308 
1309 /**
1310  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1311  *  @hw: pointer to the HW structure
1312  *  @reg: 32bit register offset
1313  *  @offset: the register to write
1314  *  @data: the value to write.
1315  *
1316  *  Writes the PHY register at offset with the value in data.
1317  *  This is a function pointer entry point called by drivers.
1318  **/
1319 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1320                               u8 data)
1321 {
1322         return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1323 }
1324 
1325 /**
1326  * e1000_power_up_phy - Restores link in case of PHY power down
1327  * @hw: pointer to the HW structure
1328  *
1329  * The phy may be powered down to save power, to turn off link when the
1330  * driver is unloaded, or wake on lan is not enabled (among others).
1331  **/
1332 void e1000_power_up_phy(struct e1000_hw *hw)
1333 {
1334         if (hw->phy.ops.power_up)
1335                 hw->phy.ops.power_up(hw);
1336 
1337         e1000_setup_link(hw);
1338 }
1339 
1340 /**
1341  * e1000_power_down_phy - Power down PHY
1342  * @hw: pointer to the HW structure
1343  *
1344  * The phy may be powered down to save power, to turn off link when the
1345  * driver is unloaded, or wake on lan is not enabled (among others).
1346  **/
1347 void e1000_power_down_phy(struct e1000_hw *hw)
1348 {
1349         if (hw->phy.ops.power_down)
1350                 hw->phy.ops.power_down(hw);
1351 }
1352 
1353 /**
1354  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1355  *  @hw: pointer to the HW structure
1356  *
1357  *  Power on the optics and PCS.
1358  **/
1359 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1360 {
1361         if (hw->mac.ops.power_up_serdes)
1362                 hw->mac.ops.power_up_serdes(hw);
1363 }
1364 
1365 /**
1366  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1367  *  @hw: pointer to the HW structure
1368  *
1369  *  Shutdown the optics and PCS on driver unload.
1370  **/
1371 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1372 {
1373         if (hw->mac.ops.shutdown_serdes)
1374                 hw->mac.ops.shutdown_serdes(hw);
1375 }
1376