1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * This file is part of the Chelsio T4 support code.
14 *
15 * Copyright (C) 2010-2013 Chelsio Communications. All rights reserved.
16 *
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
20 * release for licensing terms and conditions.
21 */
22
23 #include <sys/ddi.h>
24 #include <sys/sunddi.h>
25 #include <sys/sunndi.h>
26 #include <sys/atomic.h>
27 #include <sys/dlpi.h>
28 #include <sys/pattr.h>
29 #include <sys/strsubr.h>
30 #include <sys/stream.h>
31 #include <sys/strsun.h>
32 #include <inet/ip.h>
33 #include <inet/tcp.h>
34
35 #include "version.h"
36 #include "common/common.h"
37 #include "common/t4_msg.h"
38 #include "common/t4_regs.h"
39 #include "common/t4_regs_values.h"
40
41 /* TODO: Tune. */
42 int rx_buf_size = 8192;
43 int tx_copy_threshold = 256;
44 uint16_t rx_copy_threshold = 256;
45
46 /* Used to track coalesced tx work request */
47 struct txpkts {
48 mblk_t *tail; /* head is in the software descriptor */
49 uint64_t *flitp; /* ptr to flit where next pkt should start */
50 uint8_t npkt; /* # of packets in this work request */
51 uint8_t nflits; /* # of flits used by this work request */
52 uint16_t plen; /* total payload (sum of all packets) */
53 };
54
55 /* All information needed to tx a frame */
56 struct txinfo {
57 uint32_t len; /* Total length of frame */
58 uint32_t flags; /* Checksum and LSO flags */
59 uint32_t mss; /* MSS for LSO */
60 uint8_t nsegs; /* # of segments in the SGL, 0 means imm. tx */
61 uint8_t nflits; /* # of flits needed for the SGL */
62 uint8_t hdls_used; /* # of DMA handles used */
63 uint32_t txb_used; /* txb_space used */
64 struct ulptx_sgl sgl __attribute__((aligned(8)));
65 struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2];
66 };
67
68 static int service_iq(struct sge_iq *iq, int budget);
69 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx,
70 int8_t pktc_idx, int qsize, uint8_t esize);
71 static inline void init_fl(struct sge_fl *fl, uint16_t qsize);
72 static inline void init_eq(struct adapter *sc, struct sge_eq *eq,
73 uint16_t eqtype, uint16_t qsize,uint8_t tx_chan, uint16_t iqid);
74 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq,
75 struct sge_fl *fl, int intr_idx, int cong);
76 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq,
77 struct sge_fl *fl);
78 static int alloc_fwq(struct adapter *sc);
79 static int free_fwq(struct adapter *sc);
80 #ifdef TCP_OFFLOAD_ENABLE
81 static int alloc_mgmtq(struct adapter *sc);
82 #endif
83 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx,
84 int i);
85 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq);
86 #ifdef TCP_OFFLOAD_ENABLE
87 static int alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
88 int intr_idx);
89 static int free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq);
90 #endif
91 static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq);
92 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi,
93 struct sge_eq *eq);
94 #ifdef TCP_OFFLOAD_ENABLE
95 static int ofld_eq_alloc(struct adapter *sc, struct port_info *pi,
96 struct sge_eq *eq);
97 #endif
98 static int alloc_eq(struct adapter *sc, struct port_info *pi,
99 struct sge_eq *eq);
100 static int free_eq(struct adapter *sc, struct sge_eq *eq);
101 #ifdef TCP_OFFLOAD_ENABLE
102 static int alloc_wrq(struct adapter *sc, struct port_info *pi,
103 struct sge_wrq *wrq, int idx);
104 static int free_wrq(struct adapter *sc, struct sge_wrq *wrq);
105 #endif
106 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx);
107 static int free_txq(struct port_info *pi, struct sge_txq *txq);
108 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags,
109 ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
110 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
111 caddr_t *pva);
112 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
113 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw,
114 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
115 caddr_t *pva);
116 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
117 static int alloc_tx_copybuffer(struct adapter *sc, size_t len,
118 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
119 caddr_t *pva);
120 static inline bool is_new_response(const struct sge_iq *iq,
121 struct rsp_ctrl **ctrl);
122 static inline void iq_next(struct sge_iq *iq);
123 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs);
124 static void refill_sfl(void *arg);
125 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl);
126 static void free_fl_bufs(struct sge_fl *fl);
127 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl,
128 uint32_t len_newbuf, int *fl_bufs_used);
129 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp,
130 struct txinfo *txinfo, int sgl_only);
131 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste);
132 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len,
133 struct txinfo *txinfo);
134 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len);
135 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo,
136 mblk_t *m, int len);
137 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo);
138 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
139 struct txinfo *txinfo);
140 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts);
141 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
142 struct txinfo *txinfo);
143 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
144 struct txpkts *txpkts, struct txinfo *txinfo);
145 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to,
146 int len);
147 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq);
148 static int reclaim_tx_descs(struct sge_txq *txq, int howmany);
149 static void write_txqflush_wr(struct sge_txq *txq);
150 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss,
151 mblk_t *m);
152 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl);
153 static kstat_t *setup_port_config_kstats(struct port_info *pi);
154 static kstat_t *setup_port_info_kstats(struct port_info *pi);
155 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq,
156 int idx);
157 static int update_rxq_kstats(kstat_t *ksp, int rw);
158 static int update_port_info_kstats(kstat_t *ksp, int rw);
159 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq,
160 int idx);
161 static int update_txq_kstats(kstat_t *ksp, int rw);
162 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
163 mblk_t *);
164 static int handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss,
165 mblk_t *m);
166
167 static inline int
168 reclaimable(struct sge_eq *eq)
169 {
170 unsigned int cidx;
171
172 cidx = eq->spg->cidx; /* stable snapshot */
173 cidx = be16_to_cpu(cidx);
174
175 if (cidx >= eq->cidx)
176 return (cidx - eq->cidx);
177 else
178 return (cidx + eq->cap - eq->cidx);
179 }
180
181 void
182 t4_sge_init(struct adapter *sc)
183 {
184 struct driver_properties *p = &sc->props;
185 ddi_dma_attr_t *dma_attr;
186 ddi_device_acc_attr_t *acc_attr;
187 uint32_t sge_control, sge_conm_ctrl;
188 int egress_threshold;
189
190 /*
191 * Device access and DMA attributes for descriptor rings
192 */
193 acc_attr = &sc->sge.acc_attr_desc;
194 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
195 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
196 acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
197
198 dma_attr = &sc->sge.dma_attr_desc;
199 dma_attr->dma_attr_version = DMA_ATTR_V0;
200 dma_attr->dma_attr_addr_lo = 0;
201 dma_attr->dma_attr_addr_hi = UINT64_MAX;
202 dma_attr->dma_attr_count_max = UINT64_MAX;
203 dma_attr->dma_attr_align = 512;
204 dma_attr->dma_attr_burstsizes = 0xfff;
205 dma_attr->dma_attr_minxfer = 1;
206 dma_attr->dma_attr_maxxfer = UINT64_MAX;
207 dma_attr->dma_attr_seg = UINT64_MAX;
208 dma_attr->dma_attr_sgllen = 1;
209 dma_attr->dma_attr_granular = 1;
210 dma_attr->dma_attr_flags = 0;
211
212 /*
213 * Device access and DMA attributes for tx buffers
214 */
215 acc_attr = &sc->sge.acc_attr_tx;
216 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
217 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
218
219 dma_attr = &sc->sge.dma_attr_tx;
220 dma_attr->dma_attr_version = DMA_ATTR_V0;
221 dma_attr->dma_attr_addr_lo = 0;
222 dma_attr->dma_attr_addr_hi = UINT64_MAX;
223 dma_attr->dma_attr_count_max = UINT64_MAX;
224 dma_attr->dma_attr_align = 1;
225 dma_attr->dma_attr_burstsizes = 0xfff;
226 dma_attr->dma_attr_minxfer = 1;
227 dma_attr->dma_attr_maxxfer = UINT64_MAX;
228 dma_attr->dma_attr_seg = UINT64_MAX;
229 dma_attr->dma_attr_sgllen = TX_SGL_SEGS;
230 dma_attr->dma_attr_granular = 1;
231 dma_attr->dma_attr_flags = 0;
232
233 /*
234 * Ingress Padding Boundary and Egress Status Page Size are set up by
235 * t4_fixup_host_params().
236 */
237 sge_control = t4_read_reg(sc, A_SGE_CONTROL);
238 sc->sge.pktshift = G_PKTSHIFT(sge_control);
239 sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
240
241 /* t4_nex uses FLM packed mode */
242 sc->sge.fl_align = t4_fl_pkt_align(sc, true);
243
244 /*
245 * Device access and DMA attributes for rx buffers
246 */
247 sc->sge.rxb_params.dip = sc->dip;
248 sc->sge.rxb_params.buf_size = rx_buf_size;
249
250 acc_attr = &sc->sge.rxb_params.acc_attr_rx;
251 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
252 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
253
254 dma_attr = &sc->sge.rxb_params.dma_attr_rx;
255 dma_attr->dma_attr_version = DMA_ATTR_V0;
256 dma_attr->dma_attr_addr_lo = 0;
257 dma_attr->dma_attr_addr_hi = UINT64_MAX;
258 dma_attr->dma_attr_count_max = UINT64_MAX;
259 /*
260 * Low 4 bits of an rx buffer address have a special meaning to the SGE
261 * and an rx buf cannot have an address with any of these bits set.
262 * FL_ALIGN is >= 32 so we're sure things are ok.
263 */
264 dma_attr->dma_attr_align = sc->sge.fl_align;
265 dma_attr->dma_attr_burstsizes = 0xfff;
266 dma_attr->dma_attr_minxfer = 1;
267 dma_attr->dma_attr_maxxfer = UINT64_MAX;
268 dma_attr->dma_attr_seg = UINT64_MAX;
269 dma_attr->dma_attr_sgllen = 1;
270 dma_attr->dma_attr_granular = 1;
271 dma_attr->dma_attr_flags = 0;
272
273 sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params);
274
275 /*
276 * A FL with <= fl_starve_thres buffers is starving and a periodic
277 * timer will attempt to refill it. This needs to be larger than the
278 * SGE's Egress Congestion Threshold. If it isn't, then we can get
279 * stuck waiting for new packets while the SGE is waiting for us to
280 * give it more Free List entries. (Note that the SGE's Egress
281 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
282 * there was only a single field to control this. For T5 there's the
283 * original field which now only applies to Unpacked Mode Free List
284 * buffers and a new field which only applies to Packed Mode Free List
285 * buffers.
286 */
287
288 sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL);
289 switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
290 case CHELSIO_T4:
291 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
292 break;
293 case CHELSIO_T5:
294 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
295 break;
296 case CHELSIO_T6:
297 default:
298 egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl);
299 }
300 sc->sge.fl_starve_threshold = 2*egress_threshold + 1;
301
302 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size);
303
304 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
305 V_THRESHOLD_0(p->counter_val[0]) |
306 V_THRESHOLD_1(p->counter_val[1]) |
307 V_THRESHOLD_2(p->counter_val[2]) |
308 V_THRESHOLD_3(p->counter_val[3]));
309
310 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
311 V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) |
312 V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1])));
313 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
314 V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) |
315 V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3])));
316 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
317 V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) |
318 V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5])));
319
320 (void) t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl);
321 (void) t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl);
322 (void) t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
323 (void) t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
324 (void) t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL,
325 t4_handle_fw_rpl);
326 }
327
328 /*
329 * Allocate and initialize the firmware event queue and the forwarded interrupt
330 * queues, if any. The adapter owns all these queues as they are not associated
331 * with any particular port.
332 *
333 * Returns errno on failure. Resources allocated up to that point may still be
334 * allocated. Caller is responsible for cleanup in case this function fails.
335 */
336 int
337 t4_setup_adapter_queues(struct adapter *sc)
338 {
339 int rc;
340
341 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
342
343 /*
344 * Firmware event queue
345 */
346 rc = alloc_fwq(sc);
347 if (rc != 0)
348 return (rc);
349
350 #ifdef TCP_OFFLOAD_ENABLE
351 /*
352 * Management queue. This is just a control queue that uses the fwq as
353 * its associated iq.
354 */
355 rc = alloc_mgmtq(sc);
356 #endif
357
358 return (rc);
359 }
360
361 /*
362 * Idempotent
363 */
364 int
365 t4_teardown_adapter_queues(struct adapter *sc)
366 {
367
368 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
369
370 (void) free_fwq(sc);
371
372 return (0);
373 }
374
375 static inline int
376 first_vector(struct port_info *pi)
377 {
378 struct adapter *sc = pi->adapter;
379 int rc = T4_EXTRA_INTR, i;
380
381 if (sc->intr_count == 1)
382 return (0);
383
384 for_each_port(sc, i) {
385 struct port_info *p = sc->port[i];
386
387 if (i == pi->port_id)
388 break;
389
390 #ifdef TCP_OFFLOAD_ENABLE
391 if (!(sc->flags & INTR_FWD))
392 rc += p->nrxq + p->nofldrxq;
393 else
394 rc += max(p->nrxq, p->nofldrxq);
395 #else
396 /*
397 * Not compiled with offload support and intr_count > 1. Only
398 * NIC queues exist and they'd better be taking direct
399 * interrupts.
400 */
401 ASSERT(!(sc->flags & INTR_FWD));
402 rc += p->nrxq;
403 #endif
404 }
405 return (rc);
406 }
407
408 /*
409 * Given an arbitrary "index," come up with an iq that can be used by other
410 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
411 * The iq returned is guaranteed to be something that takes direct interrupts.
412 */
413 static struct sge_iq *
414 port_intr_iq(struct port_info *pi, int idx)
415 {
416 struct adapter *sc = pi->adapter;
417 struct sge *s = &sc->sge;
418 struct sge_iq *iq = NULL;
419
420 if (sc->intr_count == 1)
421 return (&sc->sge.fwq);
422
423 #ifdef TCP_OFFLOAD_ENABLE
424 if (!(sc->flags & INTR_FWD)) {
425 idx %= pi->nrxq + pi->nofldrxq;
426
427 if (idx >= pi->nrxq) {
428 idx -= pi->nrxq;
429 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
430 } else
431 iq = &s->rxq[pi->first_rxq + idx].iq;
432
433 } else {
434 idx %= max(pi->nrxq, pi->nofldrxq);
435
436 if (pi->nrxq >= pi->nofldrxq)
437 iq = &s->rxq[pi->first_rxq + idx].iq;
438 else
439 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
440 }
441 #else
442 /*
443 * Not compiled with offload support and intr_count > 1. Only NIC
444 * queues exist and they'd better be taking direct interrupts.
445 */
446 ASSERT(!(sc->flags & INTR_FWD));
447
448 idx %= pi->nrxq;
449 iq = &s->rxq[pi->first_rxq + idx].iq;
450 #endif
451
452 return (iq);
453 }
454
455 int
456 t4_setup_port_queues(struct port_info *pi)
457 {
458 int rc = 0, i, intr_idx, j;
459 struct sge_rxq *rxq;
460 struct sge_txq *txq;
461 #ifdef TCP_OFFLOAD_ENABLE
462 int iqid;
463 struct sge_wrq *ctrlq;
464 struct sge_ofld_rxq *ofld_rxq;
465 struct sge_wrq *ofld_txq;
466 #endif
467 struct adapter *sc = pi->adapter;
468 struct driver_properties *p = &sc->props;
469
470 pi->ksp_config = setup_port_config_kstats(pi);
471 pi->ksp_info = setup_port_info_kstats(pi);
472
473 /* Interrupt vector to start from (when using multiple vectors) */
474 intr_idx = first_vector(pi);
475
476 /*
477 * First pass over all rx queues (NIC and TOE):
478 * a) initialize iq and fl
479 * b) allocate queue iff it will take direct interrupts.
480 */
481
482 for_each_rxq(pi, i, rxq) {
483
484 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq,
485 RX_IQ_ESIZE);
486
487 init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */
488
489 if ((!(sc->flags & INTR_FWD))
490 #ifdef TCP_OFFLOAD_ENABLE
491 || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
492 #else
493 || (sc->intr_count > 1 && pi->nrxq)
494 #endif
495 ) {
496 rxq->iq.flags |= IQ_INTR;
497 rc = alloc_rxq(pi, rxq, intr_idx, i);
498 if (rc != 0)
499 goto done;
500 intr_idx++;
501 }
502
503 }
504
505 #ifdef TCP_OFFLOAD_ENABLE
506 for_each_ofld_rxq(pi, i, ofld_rxq) {
507
508 init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
509 p->qsize_rxq, RX_IQ_ESIZE);
510
511 init_fl(&ofld_rxq->fl, p->qsize_rxq / 8);
512
513 if (!(sc->flags & INTR_FWD) ||
514 (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
515 ofld_rxq->iq.flags = IQ_INTR;
516 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx);
517 if (rc != 0)
518 goto done;
519
520 intr_idx++;
521 }
522 }
523 #endif
524
525 /*
526 * Second pass over all rx queues (NIC and TOE). The queues forwarding
527 * their interrupts are allocated now.
528 */
529 j = 0;
530 for_each_rxq(pi, i, rxq) {
531 if (rxq->iq.flags & IQ_INTR)
532 continue;
533
534 intr_idx = port_intr_iq(pi, j)->abs_id;
535
536 rc = alloc_rxq(pi, rxq, intr_idx, i);
537 if (rc != 0)
538 goto done;
539 j++;
540 }
541
542 #ifdef TCP_OFFLOAD_ENABLE
543 for_each_ofld_rxq(pi, i, ofld_rxq) {
544 if (ofld_rxq->iq.flags & IQ_INTR)
545 continue;
546
547 intr_idx = port_intr_iq(pi, j)->abs_id;
548 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx);
549 if (rc != 0)
550 goto done;
551 j++;
552 }
553 #endif
554 /*
555 * Now the tx queues. Only one pass needed.
556 */
557 j = 0;
558 for_each_txq(pi, i, txq) {
559 uint16_t iqid;
560
561 iqid = port_intr_iq(pi, j)->cntxt_id;
562 init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid);
563 rc = alloc_txq(pi, txq, i);
564 if (rc != 0)
565 goto done;
566 }
567
568 #ifdef TCP_OFFLOAD_ENABLE
569 for_each_ofld_txq(pi, i, ofld_txq) {
570 uint16_t iqid;
571
572 iqid = port_intr_iq(pi, j)->cntxt_id;
573 init_eq(sc, &ofld_txq->eq, EQ_OFLD, p->qsize_txq, pi->tx_chan,
574 iqid);
575 rc = alloc_wrq(sc, pi, ofld_txq, i);
576 if (rc != 0)
577 goto done;
578 }
579
580 /*
581 * Finally, the control queue.
582 */
583 ctrlq = &sc->sge.ctrlq[pi->port_id];
584 iqid = port_intr_iq(pi, 0)->cntxt_id;
585 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid);
586 rc = alloc_wrq(sc, pi, ctrlq, 0);
587 #endif
588
589 done:
590 if (rc != 0)
591 (void) t4_teardown_port_queues(pi);
592
593 return (rc);
594 }
595
596 /*
597 * Idempotent
598 */
599 int
600 t4_teardown_port_queues(struct port_info *pi)
601 {
602 int i;
603 struct sge_rxq *rxq;
604 struct sge_txq *txq;
605 #ifdef TCP_OFFLOAD_ENABLE
606 struct adapter *sc = pi->adapter;
607 struct sge_ofld_rxq *ofld_rxq;
608 struct sge_wrq *ofld_txq;
609 #endif
610
611 if (pi->ksp_config != NULL) {
612 kstat_delete(pi->ksp_config);
613 pi->ksp_config = NULL;
614 }
615 if (pi->ksp_info != NULL) {
616 kstat_delete(pi->ksp_info);
617 pi->ksp_info = NULL;
618 }
619
620 #ifdef TCP_OFFLOAD_ENABLE
621 (void) free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
622 #endif
623
624 for_each_txq(pi, i, txq) {
625 (void) free_txq(pi, txq);
626 }
627
628 #ifdef TCP_OFFLOAD_ENABLE
629 for_each_ofld_txq(pi, i, ofld_txq) {
630 (void) free_wrq(sc, ofld_txq);
631 }
632
633 for_each_ofld_rxq(pi, i, ofld_rxq) {
634 if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
635 (void) free_ofld_rxq(pi, ofld_rxq);
636 }
637 #endif
638
639 for_each_rxq(pi, i, rxq) {
640 if ((rxq->iq.flags & IQ_INTR) == 0)
641 (void) free_rxq(pi, rxq);
642 }
643
644 /*
645 * Then take down the rx queues that take direct interrupts.
646 */
647
648 for_each_rxq(pi, i, rxq) {
649 if (rxq->iq.flags & IQ_INTR)
650 (void) free_rxq(pi, rxq);
651 }
652
653 #ifdef TCP_OFFLOAD_ENABLE
654 for_each_ofld_rxq(pi, i, ofld_rxq) {
655 if (ofld_rxq->iq.flags & IQ_INTR)
656 (void) free_ofld_rxq(pi, ofld_rxq);
657 }
658 #endif
659
660 return (0);
661 }
662
663 /* Deals with errors and forwarded interrupts */
664 uint_t
665 t4_intr_all(caddr_t arg1, caddr_t arg2)
666 {
667
668 (void) t4_intr_err(arg1, arg2);
669 (void) t4_intr(arg1, arg2);
670
671 return (DDI_INTR_CLAIMED);
672 }
673
674 static void
675 t4_intr_rx_work(struct sge_iq *iq)
676 {
677 mblk_t *mp = NULL;
678 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
679 RXQ_LOCK(rxq);
680 if (!iq->polling) {
681 mp = t4_ring_rx(rxq, iq->qsize/8);
682 t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS),
683 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
684 }
685 RXQ_UNLOCK(rxq);
686 if (mp != NULL)
687 mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp,
688 rxq->ring_gen_num);
689 }
690
691 /* Deals with interrupts on the given ingress queue */
692 /* ARGSUSED */
693 uint_t
694 t4_intr(caddr_t arg1, caddr_t arg2)
695 {
696 /* LINTED: E_BAD_PTR_CAST_ALIGN */
697 struct sge_iq *iq = (struct sge_iq *)arg2;
698 int state;
699
700 /* Right now receive polling is only enabled for MSI-X and
701 * when we have enough msi-x vectors i.e no interrupt forwarding.
702 */
703 if (iq->adapter->props.multi_rings) {
704 t4_intr_rx_work(iq);
705 } else {
706 state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY);
707 if (state == IQS_IDLE) {
708 (void) service_iq(iq, 0);
709 (void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE);
710 }
711 }
712 return (DDI_INTR_CLAIMED);
713 }
714
715 /* Deals with error interrupts */
716 /* ARGSUSED */
717 uint_t
718 t4_intr_err(caddr_t arg1, caddr_t arg2)
719 {
720 /* LINTED: E_BAD_PTR_CAST_ALIGN */
721 struct adapter *sc = (struct adapter *)arg1;
722
723 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
724 (void) t4_slow_intr_handler(sc);
725
726 return (DDI_INTR_CLAIMED);
727 }
728
729 /*
730 * t4_ring_rx - Process responses from an SGE response queue.
731 *
732 * This function processes responses from an SGE response queue up to the supplied budget.
733 * Responses include received packets as well as control messages from FW
734 * or HW.
735 * It returns a chain of mblks containing the received data, to be
736 * passed up to mac_ring_rx().
737 */
738 mblk_t *
739 t4_ring_rx(struct sge_rxq *rxq, int budget)
740 {
741 struct sge_iq *iq = &rxq->iq;
742 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */
743 struct adapter *sc = iq->adapter;
744 struct rsp_ctrl *ctrl;
745 const struct rss_header *rss;
746 int ndescs = 0, fl_bufs_used = 0;
747 int rsp_type;
748 uint32_t lq;
749 mblk_t *mblk_head = NULL, **mblk_tail, *m;
750 struct cpl_rx_pkt *cpl;
751 uint32_t received_bytes = 0, pkt_len = 0;
752 bool csum_ok;
753 uint16_t err_vec;
754
755 mblk_tail = &mblk_head;
756
757 while (is_new_response(iq, &ctrl)) {
758
759 membar_consumer();
760
761 m = NULL;
762 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
763 lq = be32_to_cpu(ctrl->pldbuflen_qid);
764 rss = (const void *)iq->cdesc;
765
766 switch (rsp_type) {
767 case X_RSPD_TYPE_FLBUF:
768
769 ASSERT(iq->flags & IQ_HAS_FL);
770
771 if (CPL_RX_PKT == rss->opcode) {
772 cpl = (void *)(rss + 1);
773 pkt_len = be16_to_cpu(cpl->len);
774
775 if (iq->polling && ((received_bytes + pkt_len) > budget))
776 goto done;
777
778 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
779 if (m == NULL) {
780 panic("%s: line %d.", __func__,
781 __LINE__);
782 }
783
784 iq->intr_next = iq->intr_params;
785 m->b_rptr += sc->sge.pktshift;
786 if (sc->params.tp.rx_pkt_encap)
787 /* It is enabled only in T6 config file */
788 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
789 else
790 err_vec = ntohs(cpl->err_vec);
791
792 csum_ok = cpl->csum_calc && !err_vec;
793
794 /* TODO: what about cpl->ip_frag? */
795 if (csum_ok && !cpl->ip_frag) {
796 mac_hcksum_set(m, 0, 0, 0, 0xffff,
797 HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
798 HCK_IPV4_HDRCKSUM_OK);
799 rxq->rxcsum++;
800 }
801 rxq->rxpkts++;
802 rxq->rxbytes += pkt_len;
803 received_bytes += pkt_len;
804
805 *mblk_tail = m;
806 mblk_tail = &m->b_next;
807
808 break;
809 }
810
811 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
812 if (m == NULL) {
813 panic("%s: line %d.", __func__,
814 __LINE__);
815 }
816
817 case X_RSPD_TYPE_CPL:
818 ASSERT(rss->opcode < NUM_CPL_CMDS);
819 sc->cpl_handler[rss->opcode](iq, rss, m);
820 break;
821
822 default:
823 break;
824 }
825 iq_next(iq);
826 ++ndescs;
827 if (!iq->polling && (ndescs == budget))
828 break;
829 }
830
831 done:
832
833 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
834 V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) |
835 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
836
837 if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) {
838 int starved;
839 FL_LOCK(fl);
840 fl->needed += fl_bufs_used;
841 starved = refill_fl(sc, fl, fl->cap / 8);
842 FL_UNLOCK(fl);
843 if (starved)
844 add_fl_to_sfl(sc, fl);
845 }
846 return (mblk_head);
847 }
848
849 /*
850 * Deals with anything and everything on the given ingress queue.
851 */
852 static int
853 service_iq(struct sge_iq *iq, int budget)
854 {
855 struct sge_iq *q;
856 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
857 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */
858 struct adapter *sc = iq->adapter;
859 struct rsp_ctrl *ctrl;
860 const struct rss_header *rss;
861 int ndescs = 0, limit, fl_bufs_used = 0;
862 int rsp_type;
863 uint32_t lq;
864 mblk_t *m;
865 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
866
867 limit = budget ? budget : iq->qsize / 8;
868
869 /*
870 * We always come back and check the descriptor ring for new indirect
871 * interrupts and other responses after running a single handler.
872 */
873 for (;;) {
874 while (is_new_response(iq, &ctrl)) {
875
876 membar_consumer();
877
878 m = NULL;
879 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
880 lq = be32_to_cpu(ctrl->pldbuflen_qid);
881 rss = (const void *)iq->cdesc;
882
883 switch (rsp_type) {
884 case X_RSPD_TYPE_FLBUF:
885
886 ASSERT(iq->flags & IQ_HAS_FL);
887
888 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
889 if (m == NULL) {
890 panic("%s: line %d.", __func__,
891 __LINE__);
892 }
893
894 /* FALLTHRU */
895 case X_RSPD_TYPE_CPL:
896
897 ASSERT(rss->opcode < NUM_CPL_CMDS);
898 sc->cpl_handler[rss->opcode](iq, rss, m);
899 break;
900
901 case X_RSPD_TYPE_INTR:
902
903 /*
904 * Interrupts should be forwarded only to queues
905 * that are not forwarding their interrupts.
906 * This means service_iq can recurse but only 1
907 * level deep.
908 */
909 ASSERT(budget == 0);
910
911 q = sc->sge.iqmap[lq - sc->sge.iq_start];
912 if (atomic_cas_uint(&q->state, IQS_IDLE,
913 IQS_BUSY) == IQS_IDLE) {
914 if (service_iq(q, q->qsize / 8) == 0) {
915 (void) atomic_cas_uint(
916 &q->state, IQS_BUSY,
917 IQS_IDLE);
918 } else {
919 STAILQ_INSERT_TAIL(&iql, q,
920 link);
921 }
922 }
923 break;
924
925 default:
926 break;
927 }
928
929 iq_next(iq);
930 if (++ndescs == limit) {
931 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
932 V_CIDXINC(ndescs) |
933 V_INGRESSQID(iq->cntxt_id) |
934 V_SEINTARM(V_QINTR_TIMER_IDX(
935 X_TIMERREG_UPDATE_CIDX)));
936 ndescs = 0;
937
938 if (fl_bufs_used > 0) {
939 ASSERT(iq->flags & IQ_HAS_FL);
940 FL_LOCK(fl);
941 fl->needed += fl_bufs_used;
942 (void) refill_fl(sc, fl, fl->cap / 8);
943 FL_UNLOCK(fl);
944 fl_bufs_used = 0;
945 }
946
947 if (budget != 0)
948 return (EINPROGRESS);
949 }
950 }
951
952 if (STAILQ_EMPTY(&iql) != 0)
953 break;
954
955 /*
956 * Process the head only, and send it to the back of the list if
957 * it's still not done.
958 */
959 q = STAILQ_FIRST(&iql);
960 STAILQ_REMOVE_HEAD(&iql, link);
961 if (service_iq(q, q->qsize / 8) == 0)
962 (void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE);
963 else
964 STAILQ_INSERT_TAIL(&iql, q, link);
965 }
966
967 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
968 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
969
970 if (iq->flags & IQ_HAS_FL) {
971 int starved;
972
973 FL_LOCK(fl);
974 fl->needed += fl_bufs_used;
975 starved = refill_fl(sc, fl, fl->cap / 4);
976 FL_UNLOCK(fl);
977 if (starved != 0)
978 add_fl_to_sfl(sc, fl);
979 }
980
981 return (0);
982 }
983
984 #ifdef TCP_OFFLOAD_ENABLE
985 int
986 t4_mgmt_tx(struct adapter *sc, mblk_t *m)
987 {
988 return (t4_wrq_tx(sc, &sc->sge.mgmtq, m));
989 }
990
991 /*
992 * Doesn't fail. Holds on to work requests it can't send right away.
993 */
994 int
995 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, mblk_t *m0)
996 {
997 struct sge_eq *eq = &wrq->eq;
998 struct mblk_pair *wr_list = &wrq->wr_list;
999 int can_reclaim;
1000 caddr_t dst;
1001 mblk_t *wr, *next;
1002
1003 TXQ_LOCK_ASSERT_OWNED(wrq);
1004 #ifdef TCP_OFFLOAD_ENABLE
1005 ASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1006 (eq->flags & EQ_TYPEMASK) == EQ_CTRL);
1007 #else
1008 ASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL);
1009 #endif
1010
1011 if (m0 != NULL) {
1012 if (wr_list->head != NULL)
1013 wr_list->tail->b_next = m0;
1014 else
1015 wr_list->head = m0;
1016 while (m0->b_next)
1017 m0 = m0->b_next;
1018 wr_list->tail = m0;
1019 }
1020
1021 can_reclaim = reclaimable(eq);
1022 eq->cidx += can_reclaim;
1023 eq->avail += can_reclaim;
1024 if (eq->cidx >= eq->cap)
1025 eq->cidx -= eq->cap;
1026
1027 for (wr = wr_list->head; wr; wr = next) {
1028 int ndesc, len = 0;
1029 mblk_t *m;
1030
1031 next = wr->b_next;
1032 wr->b_next = NULL;
1033
1034 for (m = wr; m; m = m->b_cont)
1035 len += MBLKL(m);
1036
1037 ASSERT(len > 0 && (len & 0x7) == 0);
1038 ASSERT(len <= SGE_MAX_WR_LEN);
1039
1040 ndesc = howmany(len, EQ_ESIZE);
1041 if (eq->avail < ndesc) {
1042 wr->b_next = next;
1043 wrq->no_desc++;
1044 break;
1045 }
1046
1047 dst = (void *)&eq->desc[eq->pidx];
1048 for (m = wr; m; m = m->b_cont)
1049 copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
1050
1051 eq->pidx += ndesc;
1052 eq->avail -= ndesc;
1053 if (eq->pidx >= eq->cap)
1054 eq->pidx -= eq->cap;
1055
1056 eq->pending += ndesc;
1057 if (eq->pending > 16)
1058 ring_tx_db(sc, eq);
1059
1060 wrq->tx_wrs++;
1061 freemsg(wr);
1062
1063 if (eq->avail < 8) {
1064 can_reclaim = reclaimable(eq);
1065 eq->cidx += can_reclaim;
1066 eq->avail += can_reclaim;
1067 if (eq->cidx >= eq->cap)
1068 eq->cidx -= eq->cap;
1069 }
1070 }
1071
1072 if (eq->pending != 0)
1073 ring_tx_db(sc, eq);
1074
1075 if (wr == NULL)
1076 wr_list->head = wr_list->tail = NULL;
1077 else {
1078 wr_list->head = wr;
1079
1080 ASSERT(wr_list->tail->b_next == NULL);
1081 }
1082
1083 return (0);
1084 }
1085 #endif
1086
1087 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1088 #define TXPKTS_PKT_HDR ((\
1089 sizeof (struct ulp_txpkt) + \
1090 sizeof (struct ulptx_idata) + \
1091 sizeof (struct cpl_tx_pkt_core)) / 8)
1092
1093 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1094 #define TXPKTS_WR_HDR (\
1095 sizeof (struct fw_eth_tx_pkts_wr) / 8 + \
1096 TXPKTS_PKT_HDR)
1097
1098 /* Header of a tx WR, before SGL of first packet (in flits) */
1099 #define TXPKT_WR_HDR ((\
1100 sizeof (struct fw_eth_tx_pkt_wr) + \
1101 sizeof (struct cpl_tx_pkt_core)) / 8)
1102
1103 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
1104 #define TXPKT_LSO_WR_HDR ((\
1105 sizeof (struct fw_eth_tx_pkt_wr) + \
1106 sizeof(struct cpl_tx_pkt_lso_core) + \
1107 sizeof (struct cpl_tx_pkt_core)) / 8)
1108
1109 mblk_t *
1110 t4_eth_tx(void *arg, mblk_t *frame)
1111 {
1112 struct sge_txq *txq = (struct sge_txq *) arg;
1113 struct port_info *pi = txq->port;
1114 struct adapter *sc = pi->adapter;
1115 struct sge_eq *eq = &txq->eq;
1116 mblk_t *next_frame;
1117 int rc, coalescing;
1118 struct txpkts txpkts;
1119 struct txinfo txinfo;
1120
1121 txpkts.npkt = 0; /* indicates there's nothing in txpkts */
1122 coalescing = 0;
1123
1124 TXQ_LOCK(txq);
1125 if (eq->avail < 8)
1126 (void) reclaim_tx_descs(txq, 8);
1127 for (; frame; frame = next_frame) {
1128
1129 if (eq->avail < 8)
1130 break;
1131
1132 next_frame = frame->b_next;
1133 frame->b_next = NULL;
1134
1135 if (next_frame != NULL)
1136 coalescing = 1;
1137
1138 rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing);
1139 if (rc != 0) {
1140 if (rc == ENOMEM) {
1141
1142 /* Short of resources, suspend tx */
1143
1144 frame->b_next = next_frame;
1145 break;
1146 }
1147
1148 /*
1149 * Unrecoverable error for this frame, throw it
1150 * away and move on to the next.
1151 */
1152
1153 freemsg(frame);
1154 continue;
1155 }
1156
1157 if (coalescing != 0 &&
1158 add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) {
1159
1160 /* Successfully absorbed into txpkts */
1161
1162 write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo);
1163 goto doorbell;
1164 }
1165
1166 /*
1167 * We weren't coalescing to begin with, or current frame could
1168 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1169 * given to it can't be coalesced). Either way there should be
1170 * nothing in txpkts.
1171 */
1172 ASSERT(txpkts.npkt == 0);
1173
1174 /* We're sending out individual frames now */
1175 coalescing = 0;
1176
1177 if (eq->avail < 8)
1178 (void) reclaim_tx_descs(txq, 8);
1179 rc = write_txpkt_wr(pi, txq, frame, &txinfo);
1180 if (rc != 0) {
1181
1182 /* Short of hardware descriptors, suspend tx */
1183
1184 /*
1185 * This is an unlikely but expensive failure. We've
1186 * done all the hard work (DMA bindings etc.) and now we
1187 * can't send out the frame. What's worse, we have to
1188 * spend even more time freeing up everything in txinfo.
1189 */
1190 txq->qfull++;
1191 free_txinfo_resources(txq, &txinfo);
1192
1193 frame->b_next = next_frame;
1194 break;
1195 }
1196
1197 doorbell:
1198 /* Fewer and fewer doorbells as the queue fills up */
1199 if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) {
1200 txq->txbytes += txinfo.len;
1201 txq->txpkts++;
1202 ring_tx_db(sc, eq);
1203 }
1204 (void) reclaim_tx_descs(txq, 32);
1205 }
1206
1207 if (txpkts.npkt > 0)
1208 write_txpkts_wr(txq, &txpkts);
1209
1210 /*
1211 * frame not NULL means there was an error but we haven't thrown it
1212 * away. This can happen when we're short of tx descriptors (qfull) or
1213 * maybe even DMA handles (dma_hdl_failed). Either way, a credit flush
1214 * and reclaim will get things going again.
1215 *
1216 * If eq->avail is already 0 we know a credit flush was requested in the
1217 * WR that reduced it to 0 so we don't need another flush (we don't have
1218 * any descriptor for a flush WR anyway, duh).
1219 */
1220 if (frame && eq->avail > 0)
1221 write_txqflush_wr(txq);
1222
1223 if (eq->pending != 0)
1224 ring_tx_db(sc, eq);
1225
1226 (void) reclaim_tx_descs(txq, eq->qsize);
1227 TXQ_UNLOCK(txq);
1228
1229 return (frame);
1230 }
1231
1232 static inline void
1233 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx,
1234 int qsize, uint8_t esize)
1235 {
1236 ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS);
1237 ASSERT(pktc_idx < SGE_NCOUNTERS); /* -ve is ok, means don't use */
1238
1239 iq->flags = 0;
1240 iq->adapter = sc;
1241 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1242 iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1243 if (pktc_idx >= 0) {
1244 iq->intr_params |= F_QINTR_CNT_EN;
1245 iq->intr_pktc_idx = pktc_idx;
1246 }
1247 iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */
1248 iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */
1249 }
1250
1251 static inline void
1252 init_fl(struct sge_fl *fl, uint16_t qsize)
1253 {
1254
1255 fl->qsize = qsize;
1256 }
1257
1258 static inline void
1259 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize,
1260 uint8_t tx_chan, uint16_t iqid)
1261 {
1262 struct sge *s = &sc->sge;
1263 uint32_t r;
1264
1265 ASSERT(tx_chan < NCHAN);
1266 ASSERT(eqtype <= EQ_TYPEMASK);
1267
1268 if (is_t5(sc->params.chip)) {
1269 r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
1270 r >>= S_QUEUESPERPAGEPF0 +
1271 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
1272 s->s_qpp = r & M_QUEUESPERPAGEPF0;
1273 }
1274
1275 eq->flags = eqtype & EQ_TYPEMASK;
1276 eq->tx_chan = tx_chan;
1277 eq->iqid = iqid;
1278 eq->qsize = qsize;
1279 }
1280
1281 /*
1282 * Allocates the ring for an ingress queue and an optional freelist. If the
1283 * freelist is specified it will be allocated and then associated with the
1284 * ingress queue.
1285 *
1286 * Returns errno on failure. Resources allocated up to that point may still be
1287 * allocated. Caller is responsible for cleanup in case this function fails.
1288 *
1289 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1290 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies
1291 * the index of the queue to which its interrupts will be forwarded.
1292 */
1293 static int
1294 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1295 int intr_idx, int cong)
1296 {
1297 int rc, i, cntxt_id;
1298 size_t len;
1299 struct fw_iq_cmd c;
1300 struct adapter *sc = iq->adapter;
1301 uint32_t v = 0;
1302
1303 len = iq->qsize * iq->esize;
1304 rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl,
1305 &iq->ba, (caddr_t *)&iq->desc);
1306 if (rc != 0)
1307 return (rc);
1308
1309 bzero(&c, sizeof (c));
1310 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1311 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1312 V_FW_IQ_CMD_VFN(0));
1313
1314 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1315 FW_LEN16(c));
1316
1317 /* Special handling for firmware event queue */
1318 if (iq == &sc->sge.fwq)
1319 v |= F_FW_IQ_CMD_IQASYNCH;
1320
1321 if (iq->flags & IQ_INTR)
1322 ASSERT(intr_idx < sc->intr_count);
1323 else
1324 v |= F_FW_IQ_CMD_IQANDST;
1325 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1326
1327 c.type_to_iqandstindex = cpu_to_be32(v |
1328 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1329 V_FW_IQ_CMD_VIID(pi->viid) |
1330 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1331 c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1332 F_FW_IQ_CMD_IQGTSMODE |
1333 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1334 V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1335 c.iqsize = cpu_to_be16(iq->qsize);
1336 c.iqaddr = cpu_to_be64(iq->ba);
1337 if (cong >= 0)
1338 c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN);
1339
1340 if (fl != NULL) {
1341 unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip);
1342
1343 mutex_init(&fl->lock, NULL, MUTEX_DRIVER,
1344 DDI_INTR_PRI(sc->intr_pri));
1345 fl->flags |= FL_MTX;
1346
1347 len = fl->qsize * RX_FL_ESIZE;
1348 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl,
1349 &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc);
1350 if (rc != 0)
1351 return (rc);
1352
1353 /* Allocate space for one software descriptor per buffer. */
1354 fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8;
1355 fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap,
1356 KM_SLEEP);
1357 fl->needed = fl->cap;
1358 fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1359
1360 c.iqns_to_fl0congen |=
1361 cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1362 F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN);
1363 if (cong >= 0) {
1364 c.iqns_to_fl0congen |=
1365 BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1366 F_FW_IQ_CMD_FL0CONGCIF |
1367 F_FW_IQ_CMD_FL0CONGEN);
1368 }
1369
1370 /* In T6, for egress queue type FL there is internal overhead
1371 * of 16B for header going into FLM module. Hence the maximum
1372 * allowed burst size is 448 bytes. For T4/T5, the hardware
1373 * doesn't coalesce fetch requests if more than 64 bytes of
1374 * Free List pointers are provided, so we use a 128-byte Fetch
1375 * Burst Minimum there (T6 implements coalescing so we can use
1376 * the smaller 64-byte value there).
1377 */
1378
1379 c.fl0dcaen_to_fl0cidxfthresh =
1380 cpu_to_be16(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5
1381 ? X_FETCHBURSTMIN_128B
1382 : X_FETCHBURSTMIN_64B) |
1383 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5
1384 ? X_FETCHBURSTMAX_512B
1385 : X_FETCHBURSTMAX_256B));
1386 c.fl0size = cpu_to_be16(fl->qsize);
1387 c.fl0addr = cpu_to_be64(fl->ba);
1388 }
1389
1390 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1391 if (rc != 0) {
1392 cxgb_printf(sc->dip, CE_WARN,
1393 "failed to create ingress queue: %d", rc);
1394 return (rc);
1395 }
1396
1397 iq->cdesc = iq->desc;
1398 iq->cidx = 0;
1399 iq->gen = 1;
1400 iq->intr_next = iq->intr_params;
1401 iq->adapter = sc;
1402 iq->cntxt_id = be16_to_cpu(c.iqid);
1403 iq->abs_id = be16_to_cpu(c.physiqid);
1404 iq->flags |= IQ_ALLOCATED;
1405 mutex_init(&iq->lock, NULL,
1406 MUTEX_DRIVER, DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri)));
1407 iq->polling = 0;
1408
1409 cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1410 if (cntxt_id >= sc->sge.niq) {
1411 panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1412 cntxt_id, sc->sge.niq - 1);
1413 }
1414 sc->sge.iqmap[cntxt_id] = iq;
1415
1416 if (fl != NULL) {
1417 fl->cntxt_id = be16_to_cpu(c.fl0id);
1418 fl->pidx = fl->cidx = 0;
1419 fl->copy_threshold = rx_copy_threshold;
1420
1421 cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1422 if (cntxt_id >= sc->sge.neq) {
1423 panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1424 __func__, cntxt_id, sc->sge.neq - 1);
1425 }
1426 sc->sge.eqmap[cntxt_id] = (void *)fl;
1427
1428 FL_LOCK(fl);
1429 (void) refill_fl(sc, fl, fl->lowat);
1430 FL_UNLOCK(fl);
1431
1432 iq->flags |= IQ_HAS_FL;
1433 }
1434
1435 if (is_t5(sc->params.chip) && cong >= 0) {
1436 uint32_t param, val;
1437
1438 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1439 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1440 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
1441 if (cong == 0)
1442 val = 1 << 19;
1443 else {
1444 val = 2 << 19;
1445 for (i = 0; i < 4; i++) {
1446 if (cong & (1 << i))
1447 val |= 1 << (i << 2);
1448 }
1449 }
1450
1451 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
1452 if (rc != 0) {
1453 /* report error but carry on */
1454 cxgb_printf(sc->dip, CE_WARN,
1455 "failed to set congestion manager context for "
1456 "ingress queue %d: %d", iq->cntxt_id, rc);
1457 }
1458 }
1459
1460 /* Enable IQ interrupts */
1461 iq->state = IQS_IDLE;
1462 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1463 V_INGRESSQID(iq->cntxt_id));
1464
1465 return (0);
1466 }
1467
1468 static int
1469 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1470 {
1471 int rc;
1472 struct adapter *sc = iq->adapter;
1473 dev_info_t *dip;
1474
1475 dip = pi ? pi->dip : sc->dip;
1476
1477 if (iq != NULL) {
1478 if (iq->flags & IQ_ALLOCATED) {
1479 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1480 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1481 fl ? fl->cntxt_id : 0xffff, 0xffff);
1482 if (rc != 0) {
1483 cxgb_printf(dip, CE_WARN,
1484 "failed to free queue %p: %d", iq, rc);
1485 return (rc);
1486 }
1487 mutex_destroy(&iq->lock);
1488 iq->flags &= ~IQ_ALLOCATED;
1489 }
1490
1491 if (iq->desc != NULL) {
1492 (void) free_desc_ring(&iq->dhdl, &iq->ahdl);
1493 iq->desc = NULL;
1494 }
1495
1496 bzero(iq, sizeof (*iq));
1497 }
1498
1499 if (fl != NULL) {
1500 if (fl->sdesc != NULL) {
1501 FL_LOCK(fl);
1502 free_fl_bufs(fl);
1503 FL_UNLOCK(fl);
1504
1505 kmem_free(fl->sdesc, sizeof (struct fl_sdesc) *
1506 fl->cap);
1507 fl->sdesc = NULL;
1508 }
1509
1510 if (fl->desc != NULL) {
1511 (void) free_desc_ring(&fl->dhdl, &fl->ahdl);
1512 fl->desc = NULL;
1513 }
1514
1515 if (fl->flags & FL_MTX) {
1516 mutex_destroy(&fl->lock);
1517 fl->flags &= ~FL_MTX;
1518 }
1519
1520 bzero(fl, sizeof (struct sge_fl));
1521 }
1522
1523 return (0);
1524 }
1525
1526 static int
1527 alloc_fwq(struct adapter *sc)
1528 {
1529 int rc, intr_idx;
1530 struct sge_iq *fwq = &sc->sge.fwq;
1531
1532 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1533 fwq->flags |= IQ_INTR; /* always */
1534 intr_idx = sc->intr_count > 1 ? 1 : 0;
1535 rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1536 if (rc != 0) {
1537 cxgb_printf(sc->dip, CE_WARN,
1538 "failed to create firmware event queue: %d.", rc);
1539 return (rc);
1540 }
1541
1542 return (0);
1543 }
1544
1545 static int
1546 free_fwq(struct adapter *sc)
1547 {
1548
1549 return (free_iq_fl(NULL, &sc->sge.fwq, NULL));
1550 }
1551
1552 #ifdef TCP_OFFLOAD_ENABLE
1553 static int
1554 alloc_mgmtq(struct adapter *sc)
1555 {
1556 int rc;
1557 struct sge_wrq *mgmtq = &sc->sge.mgmtq;
1558
1559 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
1560 sc->sge.fwq.cntxt_id);
1561 rc = alloc_wrq(sc, NULL, mgmtq, 0);
1562 if (rc != 0) {
1563 cxgb_printf(sc->dip, CE_WARN,
1564 "failed to create management queue: %d\n", rc);
1565 return (rc);
1566 }
1567
1568 return (0);
1569 }
1570 #endif
1571
1572 static int
1573 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i)
1574 {
1575 int rc;
1576
1577 rxq->port = pi;
1578 rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan);
1579 if (rc != 0)
1580 return (rc);
1581
1582 rxq->ksp = setup_rxq_kstats(pi, rxq, i);
1583
1584 return (rc);
1585 }
1586
1587 static int
1588 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1589 {
1590 int rc;
1591
1592 if (rxq->ksp != NULL) {
1593 kstat_delete(rxq->ksp);
1594 rxq->ksp = NULL;
1595 }
1596
1597 rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1598 if (rc == 0)
1599 bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl));
1600
1601 return (rc);
1602 }
1603
1604 #ifdef TCP_OFFLOAD_ENABLE
1605 static int
1606 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
1607 int intr_idx)
1608 {
1609 int rc;
1610
1611 rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
1612 1 << pi->tx_chan);
1613 if (rc != 0)
1614 return (rc);
1615
1616 return (rc);
1617 }
1618
1619 static int
1620 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
1621 {
1622 int rc;
1623
1624 rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
1625 if (rc == 0)
1626 bzero(&ofld_rxq->fl, sizeof (*ofld_rxq) -
1627 offsetof(struct sge_ofld_rxq, fl));
1628
1629 return (rc);
1630 }
1631 #endif
1632
1633 static int
1634 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
1635 {
1636 int rc, cntxt_id;
1637 struct fw_eq_ctrl_cmd c;
1638
1639 bzero(&c, sizeof (c));
1640
1641 c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
1642 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
1643 V_FW_EQ_CTRL_CMD_VFN(0));
1644 c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC |
1645 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
1646 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */
1647 c.physeqid_pkd = BE_32(0);
1648 c.fetchszm_to_iqid =
1649 BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1650 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
1651 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
1652 c.dcaen_to_eqsize =
1653 BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1654 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1655 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1656 V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
1657 c.eqaddr = BE_64(eq->ba);
1658
1659 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1660 if (rc != 0) {
1661 cxgb_printf(sc->dip, CE_WARN,
1662 "failed to create control queue %d: %d", eq->tx_chan, rc);
1663 return (rc);
1664 }
1665 eq->flags |= EQ_ALLOCATED;
1666
1667 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid));
1668 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1669 if (cntxt_id >= sc->sge.neq)
1670 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1671 cntxt_id, sc->sge.neq - 1);
1672 sc->sge.eqmap[cntxt_id] = eq;
1673
1674 return (rc);
1675 }
1676
1677 static int
1678 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1679 {
1680 int rc, cntxt_id;
1681 struct fw_eq_eth_cmd c;
1682
1683 bzero(&c, sizeof (c));
1684
1685 c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1686 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1687 V_FW_EQ_ETH_CMD_VFN(0));
1688 c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC |
1689 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1690 c.autoequiqe_to_viid = BE_32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
1691 c.fetchszm_to_iqid =
1692 BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1693 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
1694 V_FW_EQ_ETH_CMD_IQID(eq->iqid));
1695 c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1696 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1697 V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1698 V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1699 c.eqaddr = BE_64(eq->ba);
1700
1701 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1702 if (rc != 0) {
1703 cxgb_printf(pi->dip, CE_WARN,
1704 "failed to create Ethernet egress queue: %d", rc);
1705 return (rc);
1706 }
1707 eq->flags |= EQ_ALLOCATED;
1708
1709 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd));
1710 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1711 if (cntxt_id >= sc->sge.neq)
1712 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1713 cntxt_id, sc->sge.neq - 1);
1714 sc->sge.eqmap[cntxt_id] = eq;
1715
1716 return (rc);
1717 }
1718
1719 #ifdef TCP_OFFLOAD_ENABLE
1720 static int
1721 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1722 {
1723 int rc, cntxt_id;
1724 struct fw_eq_ofld_cmd c;
1725
1726 bzero(&c, sizeof (c));
1727
1728 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
1729 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
1730 V_FW_EQ_OFLD_CMD_VFN(0));
1731 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
1732 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
1733 c.fetchszm_to_iqid =
1734 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1735 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
1736 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
1737 c.dcaen_to_eqsize =
1738 BE_32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1739 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1740 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1741 V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
1742 c.eqaddr = BE_64(eq->ba);
1743
1744 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1745 if (rc != 0) {
1746 cxgb_printf(pi->dip, CE_WARN,
1747 "failed to create egress queue for TCP offload: %d", rc);
1748 return (rc);
1749 }
1750 eq->flags |= EQ_ALLOCATED;
1751
1752 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(BE_32(c.eqid_pkd));
1753 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1754 if (cntxt_id >= sc->sge.neq)
1755 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1756 cntxt_id, sc->sge.neq - 1);
1757 sc->sge.eqmap[cntxt_id] = eq;
1758
1759 return (rc);
1760 }
1761 #endif
1762
1763 static int
1764 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1765 {
1766 int rc;
1767 size_t len;
1768
1769 mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri));
1770 eq->flags |= EQ_MTX;
1771
1772 len = eq->qsize * EQ_ESIZE;
1773 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl,
1774 &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc);
1775 if (rc != 0)
1776 return (rc);
1777
1778 eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE;
1779 eq->spg = (void *)&eq->desc[eq->cap];
1780 eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */
1781 eq->pidx = eq->cidx = 0;
1782 eq->doorbells = sc->doorbells;
1783
1784 switch (eq->flags & EQ_TYPEMASK) {
1785 case EQ_CTRL:
1786 rc = ctrl_eq_alloc(sc, eq);
1787 break;
1788
1789 case EQ_ETH:
1790 rc = eth_eq_alloc(sc, pi, eq);
1791 break;
1792
1793 #ifdef TCP_OFFLOAD_ENABLE
1794 case EQ_OFLD:
1795 rc = ofld_eq_alloc(sc, pi, eq);
1796 break;
1797 #endif
1798
1799 default:
1800 panic("%s: invalid eq type %d.", __func__,
1801 eq->flags & EQ_TYPEMASK);
1802 }
1803
1804 if (eq->doorbells &
1805 (DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) {
1806 uint32_t s_qpp = sc->sge.s_qpp;
1807 uint32_t mask = (1 << s_qpp) - 1;
1808 volatile uint8_t *udb;
1809
1810 udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET;
1811 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */
1812 eq->udb_qid = eq->cntxt_id & mask; /* id in page */
1813 if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
1814 eq->doorbells &= ~DOORBELL_WCWR;
1815 else {
1816 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */
1817 eq->udb_qid = 0;
1818 }
1819 eq->udb = (volatile void *)udb;
1820 }
1821
1822 if (rc != 0) {
1823 cxgb_printf(sc->dip, CE_WARN,
1824 "failed to allocate egress queue(%d): %d",
1825 eq->flags & EQ_TYPEMASK, rc);
1826 }
1827
1828 return (rc);
1829 }
1830
1831 static int
1832 free_eq(struct adapter *sc, struct sge_eq *eq)
1833 {
1834 int rc;
1835
1836 if (eq->flags & EQ_ALLOCATED) {
1837 switch (eq->flags & EQ_TYPEMASK) {
1838 case EQ_CTRL:
1839 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
1840 eq->cntxt_id);
1841 break;
1842
1843 case EQ_ETH:
1844 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
1845 eq->cntxt_id);
1846 break;
1847
1848 #ifdef TCP_OFFLOAD_ENABLE
1849 case EQ_OFLD:
1850 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
1851 eq->cntxt_id);
1852 break;
1853 #endif
1854
1855 default:
1856 panic("%s: invalid eq type %d.", __func__,
1857 eq->flags & EQ_TYPEMASK);
1858 }
1859 if (rc != 0) {
1860 cxgb_printf(sc->dip, CE_WARN,
1861 "failed to free egress queue (%d): %d",
1862 eq->flags & EQ_TYPEMASK, rc);
1863 return (rc);
1864 }
1865 eq->flags &= ~EQ_ALLOCATED;
1866 }
1867
1868 if (eq->desc != NULL) {
1869 (void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl);
1870 eq->desc = NULL;
1871 }
1872
1873 if (eq->flags & EQ_MTX)
1874 mutex_destroy(&eq->lock);
1875
1876 bzero(eq, sizeof (*eq));
1877 return (0);
1878 }
1879
1880 #ifdef TCP_OFFLOAD_ENABLE
1881 /* ARGSUSED */
1882 static int
1883 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
1884 int idx)
1885 {
1886 int rc;
1887
1888 rc = alloc_eq(sc, pi, &wrq->eq);
1889 if (rc != 0)
1890 return (rc);
1891
1892 wrq->adapter = sc;
1893 wrq->wr_list.head = NULL;
1894 wrq->wr_list.tail = NULL;
1895
1896 /*
1897 * TODO: use idx to figure out what kind of wrq this is and install
1898 * useful kstats for it.
1899 */
1900
1901 return (rc);
1902 }
1903
1904 static int
1905 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
1906 {
1907 int rc;
1908
1909 rc = free_eq(sc, &wrq->eq);
1910 if (rc != 0)
1911 return (rc);
1912
1913 bzero(wrq, sizeof (*wrq));
1914 return (0);
1915 }
1916 #endif
1917
1918 static int
1919 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1920 {
1921 int rc, i;
1922 struct adapter *sc = pi->adapter;
1923 struct sge_eq *eq = &txq->eq;
1924
1925 rc = alloc_eq(sc, pi, eq);
1926 if (rc != 0)
1927 return (rc);
1928
1929 txq->port = pi;
1930 txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP);
1931 txq->txb_size = eq->qsize * tx_copy_threshold;
1932 rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl,
1933 &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va);
1934 if (rc == 0)
1935 txq->txb_avail = txq->txb_size;
1936 else
1937 txq->txb_avail = txq->txb_size = 0;
1938
1939 /*
1940 * TODO: is this too low? Worst case would need around 4 times qsize
1941 * (all tx descriptors filled to the brim with SGLs, with each entry in
1942 * the SGL coming from a distinct DMA handle). Increase tx_dhdl_total
1943 * if you see too many dma_hdl_failed.
1944 */
1945 txq->tx_dhdl_total = eq->qsize * 2;
1946 txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
1947 txq->tx_dhdl_total, KM_SLEEP);
1948 for (i = 0; i < txq->tx_dhdl_total; i++) {
1949 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
1950 DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]);
1951 if (rc != DDI_SUCCESS) {
1952 cxgb_printf(sc->dip, CE_WARN,
1953 "%s: failed to allocate DMA handle (%d)",
1954 __func__, rc);
1955 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1956 }
1957 txq->tx_dhdl_avail++;
1958 }
1959
1960 txq->ksp = setup_txq_kstats(pi, txq, idx);
1961
1962 return (rc);
1963 }
1964
1965 static int
1966 free_txq(struct port_info *pi, struct sge_txq *txq)
1967 {
1968 int i;
1969 struct adapter *sc = pi->adapter;
1970 struct sge_eq *eq = &txq->eq;
1971
1972 if (txq->ksp != NULL) {
1973 kstat_delete(txq->ksp);
1974 txq->ksp = NULL;
1975 }
1976
1977 if (txq->txb_va != NULL) {
1978 (void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl);
1979 txq->txb_va = NULL;
1980 }
1981
1982 if (txq->sdesc != NULL) {
1983 struct tx_sdesc *sd;
1984 ddi_dma_handle_t hdl;
1985
1986 TXQ_LOCK(txq);
1987 while (eq->cidx != eq->pidx) {
1988 sd = &txq->sdesc[eq->cidx];
1989
1990 for (i = sd->hdls_used; i; i--) {
1991 hdl = txq->tx_dhdl[txq->tx_dhdl_cidx];
1992 (void) ddi_dma_unbind_handle(hdl);
1993 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
1994 txq->tx_dhdl_cidx = 0;
1995 }
1996
1997 ASSERT(sd->m);
1998 freemsgchain(sd->m);
1999
2000 eq->cidx += sd->desc_used;
2001 if (eq->cidx >= eq->cap)
2002 eq->cidx -= eq->cap;
2003
2004 txq->txb_avail += txq->txb_used;
2005 }
2006 ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx);
2007 ASSERT(txq->txb_avail == txq->txb_size);
2008 TXQ_UNLOCK(txq);
2009
2010 kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap);
2011 txq->sdesc = NULL;
2012 }
2013
2014 if (txq->tx_dhdl != NULL) {
2015 for (i = 0; i < txq->tx_dhdl_total; i++) {
2016 if (txq->tx_dhdl[i] != NULL)
2017 ddi_dma_free_handle(&txq->tx_dhdl[i]);
2018 }
2019 }
2020
2021 (void) free_eq(sc, &txq->eq);
2022
2023 bzero(txq, sizeof (*txq));
2024 return (0);
2025 }
2026
2027 /*
2028 * Allocates a block of contiguous memory for DMA. Can be used to allocate
2029 * memory for descriptor rings or for tx/rx copy buffers.
2030 *
2031 * Caller does not have to clean up anything if this function fails, it cleans
2032 * up after itself.
2033 *
2034 * Caller provides the following:
2035 * len length of the block of memory to allocate.
2036 * flags DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR)
2037 * acc_attr device access attributes for the allocation.
2038 * dma_attr DMA attributes for the allocation
2039 *
2040 * If the function is successful it fills up this information:
2041 * dma_hdl DMA handle for the allocated memory
2042 * acc_hdl access handle for the allocated memory
2043 * ba bus address of the allocated memory
2044 * va KVA of the allocated memory.
2045 */
2046 static int
2047 alloc_dma_memory(struct adapter *sc, size_t len, int flags,
2048 ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
2049 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2050 uint64_t *pba, caddr_t *pva)
2051 {
2052 int rc;
2053 ddi_dma_handle_t dhdl;
2054 ddi_acc_handle_t ahdl;
2055 ddi_dma_cookie_t cookie;
2056 uint_t ccount;
2057 caddr_t va;
2058 size_t real_len;
2059
2060 *pva = NULL;
2061
2062 /*
2063 * DMA handle.
2064 */
2065 rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl);
2066 if (rc != DDI_SUCCESS) {
2067 cxgb_printf(sc->dip, CE_WARN,
2068 "failed to allocate DMA handle: %d", rc);
2069
2070 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
2071 }
2072
2073 /*
2074 * Memory suitable for DMA.
2075 */
2076 rc = ddi_dma_mem_alloc(dhdl, len, acc_attr,
2077 flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING,
2078 DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl);
2079 if (rc != DDI_SUCCESS) {
2080 cxgb_printf(sc->dip, CE_WARN,
2081 "failed to allocate DMA memory: %d", rc);
2082
2083 ddi_dma_free_handle(&dhdl);
2084 return (ENOMEM);
2085 }
2086
2087 if (len != real_len) {
2088 cxgb_printf(sc->dip, CE_WARN,
2089 "%s: len (%u) != real_len (%u)\n", len, real_len);
2090 }
2091
2092 /*
2093 * DMA bindings.
2094 */
2095 rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL,
2096 NULL, &cookie, &ccount);
2097 if (rc != DDI_DMA_MAPPED) {
2098 cxgb_printf(sc->dip, CE_WARN,
2099 "failed to map DMA memory: %d", rc);
2100
2101 ddi_dma_mem_free(&ahdl);
2102 ddi_dma_free_handle(&dhdl);
2103 return (ENOMEM);
2104 }
2105 if (ccount != 1) {
2106 cxgb_printf(sc->dip, CE_WARN,
2107 "unusable DMA mapping (%d segments)", ccount);
2108 (void) free_desc_ring(&dhdl, &ahdl);
2109 }
2110
2111 bzero(va, real_len);
2112 *dma_hdl = dhdl;
2113 *acc_hdl = ahdl;
2114 *pba = cookie.dmac_laddress;
2115 *pva = va;
2116
2117 return (0);
2118 }
2119
2120 static int
2121 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
2122 {
2123 (void) ddi_dma_unbind_handle(*dhdl);
2124 ddi_dma_mem_free(ahdl);
2125 ddi_dma_free_handle(dhdl);
2126
2127 return (0);
2128 }
2129
2130 static int
2131 alloc_desc_ring(struct adapter *sc, size_t len, int rw,
2132 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2133 uint64_t *pba, caddr_t *pva)
2134 {
2135 ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc;
2136 ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc;
2137
2138 return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr,
2139 dma_attr, dma_hdl, acc_hdl, pba, pva));
2140 }
2141
2142 static int
2143 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
2144 {
2145 return (free_dma_memory(dhdl, ahdl));
2146 }
2147
2148 static int
2149 alloc_tx_copybuffer(struct adapter *sc, size_t len,
2150 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2151 uint64_t *pba, caddr_t *pva)
2152 {
2153 ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx;
2154 ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */
2155
2156 return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE,
2157 acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva));
2158 }
2159
2160 static inline bool
2161 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2162 {
2163 (void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc -
2164 (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL);
2165
2166 *ctrl = (void *)((uintptr_t)iq->cdesc +
2167 (iq->esize - sizeof (struct rsp_ctrl)));
2168
2169 return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen));
2170 }
2171
2172 static inline void
2173 iq_next(struct sge_iq *iq)
2174 {
2175 iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2176 if (++iq->cidx == iq->qsize - 1) {
2177 iq->cidx = 0;
2178 iq->gen ^= 1;
2179 iq->cdesc = iq->desc;
2180 }
2181 }
2182
2183 /*
2184 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
2185 *
2186 * Returns non-zero to indicate that it should be added to the list of starving
2187 * freelists.
2188 */
2189 static int
2190 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
2191 {
2192 uint64_t *d = &fl->desc[fl->pidx];
2193 struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
2194
2195 FL_LOCK_ASSERT_OWNED(fl);
2196 ASSERT(nbufs >= 0);
2197
2198 if (nbufs > fl->needed)
2199 nbufs = fl->needed;
2200
2201 while (nbufs--) {
2202 if (sd->rxb != NULL) {
2203 if (sd->rxb->ref_cnt == 1) {
2204 /*
2205 * Buffer is available for recycling. Two ways
2206 * this can happen:
2207 *
2208 * a) All the packets DMA'd into it last time
2209 * around were within the rx_copy_threshold
2210 * and no part of the buffer was ever passed
2211 * up (ref_cnt never went over 1).
2212 *
2213 * b) Packets DMA'd into the buffer were passed
2214 * up but have all been freed by the upper
2215 * layers by now (ref_cnt went over 1 but is
2216 * now back to 1).
2217 *
2218 * Either way the bus address in the descriptor
2219 * ring is already valid.
2220 */
2221 ASSERT(*d == cpu_to_be64(sd->rxb->ba));
2222 d++;
2223 goto recycled;
2224 } else {
2225 /*
2226 * Buffer still in use and we need a
2227 * replacement. But first release our reference
2228 * on the existing buffer.
2229 */
2230 rxbuf_free(sd->rxb);
2231 }
2232 }
2233
2234 sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1);
2235 if (sd->rxb == NULL)
2236 break;
2237 *d++ = cpu_to_be64(sd->rxb->ba);
2238
2239 recycled: fl->pending++;
2240 sd++;
2241 fl->needed--;
2242 if (++fl->pidx == fl->cap) {
2243 fl->pidx = 0;
2244 sd = fl->sdesc;
2245 d = fl->desc;
2246 }
2247 }
2248
2249 if (fl->pending >= 8)
2250 ring_fl_db(sc, fl);
2251
2252 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
2253 }
2254
2255 #ifndef TAILQ_FOREACH_SAFE
2256 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
2257 for ((var) = TAILQ_FIRST((head)); \
2258 (var) && ((tvar) = TAILQ_NEXT((var), field), 1); \
2259 (var) = (tvar))
2260 #endif
2261
2262 /*
2263 * Attempt to refill all starving freelists.
2264 */
2265 static void
2266 refill_sfl(void *arg)
2267 {
2268 struct adapter *sc = arg;
2269 struct sge_fl *fl, *fl_temp;
2270
2271 mutex_enter(&sc->sfl_lock);
2272 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
2273 FL_LOCK(fl);
2274 (void) refill_fl(sc, fl, 64);
2275 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
2276 TAILQ_REMOVE(&sc->sfl, fl, link);
2277 fl->flags &= ~FL_STARVING;
2278 }
2279 FL_UNLOCK(fl);
2280 }
2281
2282 if (!TAILQ_EMPTY(&sc->sfl) != 0)
2283 sc->sfl_timer = timeout(refill_sfl, sc, drv_usectohz(100000));
2284 mutex_exit(&sc->sfl_lock);
2285 }
2286
2287 static void
2288 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
2289 {
2290 mutex_enter(&sc->sfl_lock);
2291 FL_LOCK(fl);
2292 if ((fl->flags & FL_DOOMED) == 0) {
2293 if (TAILQ_EMPTY(&sc->sfl) != 0) {
2294 sc->sfl_timer = timeout(refill_sfl, sc,
2295 drv_usectohz(100000));
2296 }
2297 fl->flags |= FL_STARVING;
2298 TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
2299 }
2300 FL_UNLOCK(fl);
2301 mutex_exit(&sc->sfl_lock);
2302 }
2303
2304 static void
2305 free_fl_bufs(struct sge_fl *fl)
2306 {
2307 struct fl_sdesc *sd;
2308 unsigned int i;
2309
2310 FL_LOCK_ASSERT_OWNED(fl);
2311
2312 for (i = 0; i < fl->cap; i++) {
2313 sd = &fl->sdesc[i];
2314
2315 if (sd->rxb != NULL) {
2316 rxbuf_free(sd->rxb);
2317 sd->rxb = NULL;
2318 }
2319 }
2320 }
2321
2322 /*
2323 * Note that fl->cidx and fl->offset are left unchanged in case of failure.
2324 */
2325 static mblk_t *
2326 get_fl_payload(struct adapter *sc, struct sge_fl *fl,
2327 uint32_t len_newbuf, int *fl_bufs_used)
2328 {
2329 struct mblk_pair frame = {0};
2330 struct rxbuf *rxb;
2331 mblk_t *m = NULL;
2332 uint_t nbuf = 0, len, copy, n;
2333 uint32_t cidx, offset;
2334
2335 /*
2336 * The SGE won't pack a new frame into the current buffer if the entire
2337 * payload doesn't fit in the remaining space. Move on to the next buf
2338 * in that case.
2339 */
2340 if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
2341 fl->offset = 0;
2342 if (++fl->cidx == fl->cap)
2343 fl->cidx = 0;
2344 nbuf++;
2345 }
2346 cidx = fl->cidx;
2347 offset = fl->offset;
2348
2349 len = G_RSPD_LEN(len_newbuf); /* pktshift + payload length */
2350 copy = (len <= fl->copy_threshold);
2351 if (copy != 0) {
2352 frame.head = m = allocb(len, BPRI_HI);
2353 if (m == NULL)
2354 return (NULL);
2355 }
2356
2357 while (len) {
2358 rxb = fl->sdesc[cidx].rxb;
2359 n = min(len, rxb->buf_size - offset);
2360
2361 (void) ddi_dma_sync(rxb->dhdl, offset, n,
2362 DDI_DMA_SYNC_FORKERNEL);
2363
2364 if (copy != 0)
2365 bcopy(rxb->va + offset, m->b_wptr, n);
2366 else {
2367 m = desballoc((unsigned char *)rxb->va + offset, n,
2368 BPRI_HI, &rxb->freefunc);
2369 if (m == NULL) {
2370 freemsg(frame.head);
2371 return (NULL);
2372 }
2373 atomic_inc_uint(&rxb->ref_cnt);
2374 if (frame.head != NULL)
2375 frame.tail->b_cont = m;
2376 else
2377 frame.head = m;
2378 frame.tail = m;
2379 }
2380 m->b_wptr += n;
2381 len -= n;
2382 offset += roundup(n, sc->sge.fl_align);
2383 ASSERT(offset <= rxb->buf_size);
2384 if (offset == rxb->buf_size) {
2385 offset = 0;
2386 if (++cidx == fl->cap)
2387 cidx = 0;
2388 nbuf++;
2389 }
2390 }
2391
2392 fl->cidx = cidx;
2393 fl->offset = offset;
2394 (*fl_bufs_used) += nbuf;
2395
2396 ASSERT(frame.head != NULL);
2397 return (frame.head);
2398 }
2399
2400 /*
2401 * We'll do immediate data tx for non-LSO, but only when not coalescing. We're
2402 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2403 * of immediate data.
2404 */
2405 #define IMM_LEN ( \
2406 2 * EQ_ESIZE \
2407 - sizeof (struct fw_eth_tx_pkt_wr) \
2408 - sizeof (struct cpl_tx_pkt_core))
2409
2410 /*
2411 * Returns non-zero on failure, no need to cleanup anything in that case.
2412 *
2413 * Note 1: We always try to pull up the mblk if required and return E2BIG only
2414 * if this fails.
2415 *
2416 * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk
2417 * does not have the TCP header in it.
2418 */
2419 static int
2420 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo,
2421 int sgl_only)
2422 {
2423 uint32_t flags = 0, len, n;
2424 mblk_t *m = *fp;
2425 int rc;
2426
2427 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb and dma_hdls */
2428
2429 mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags);
2430 txinfo->flags = flags;
2431
2432 mac_lso_get(m, &txinfo->mss, &flags);
2433 txinfo->flags |= flags;
2434
2435 if (flags & HW_LSO)
2436 sgl_only = 1; /* Do not allow immediate data with LSO */
2437
2438 start: txinfo->nsegs = 0;
2439 txinfo->hdls_used = 0;
2440 txinfo->txb_used = 0;
2441 txinfo->len = 0;
2442
2443 /* total length and a rough estimate of # of segments */
2444 n = 0;
2445 for (; m; m = m->b_cont) {
2446 len = MBLKL(m);
2447 n += (len / PAGE_SIZE) + 1;
2448 txinfo->len += len;
2449 }
2450 m = *fp;
2451
2452 if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) {
2453 txq->pullup_early++;
2454 m = msgpullup(*fp, -1);
2455 if (m == NULL) {
2456 txq->pullup_failed++;
2457 return (E2BIG); /* (*fp) left as it was */
2458 }
2459 freemsg(*fp);
2460 *fp = m;
2461 mac_hcksum_set(m, NULL, NULL, NULL, NULL, txinfo->flags);
2462 }
2463
2464 if (txinfo->len <= IMM_LEN && !sgl_only)
2465 return (0); /* nsegs = 0 tells caller to use imm. tx */
2466
2467 if (txinfo->len <= txq->copy_threshold &&
2468 copy_into_txb(txq, m, txinfo->len, txinfo) == 0)
2469 goto done;
2470
2471 for (; m; m = m->b_cont) {
2472
2473 len = MBLKL(m);
2474
2475 /* Use tx copy buffer if this mblk is small enough */
2476 if (len <= txq->copy_threshold &&
2477 copy_into_txb(txq, m, len, txinfo) == 0)
2478 continue;
2479
2480 /* Add DMA bindings for this mblk to the SGL */
2481 rc = add_mblk(txq, txinfo, m, len);
2482
2483 if (rc == E2BIG ||
2484 (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) {
2485
2486 txq->pullup_late++;
2487 m = msgpullup(*fp, -1);
2488 if (m != NULL) {
2489 free_txinfo_resources(txq, txinfo);
2490 freemsg(*fp);
2491 *fp = m;
2492 mac_hcksum_set(m, NULL, NULL, NULL, NULL,
2493 txinfo->flags);
2494 goto start;
2495 }
2496
2497 txq->pullup_failed++;
2498 rc = E2BIG;
2499 }
2500
2501 if (rc != 0) {
2502 free_txinfo_resources(txq, txinfo);
2503 return (rc);
2504 }
2505 }
2506
2507 ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS);
2508
2509 done:
2510
2511 /*
2512 * Store the # of flits required to hold this frame's SGL in nflits. An
2513 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2514 * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used
2515 * then len1 must be set to 0.
2516 */
2517 n = txinfo->nsegs - 1;
2518 txinfo->nflits = (3 * n) / 2 + (n & 1) + 2;
2519 if (n & 1)
2520 txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0);
2521
2522 txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) |
2523 V_ULPTX_NSGE(txinfo->nsegs));
2524
2525 return (0);
2526 }
2527
2528 static inline int
2529 fits_in_txb(struct sge_txq *txq, int len, int *waste)
2530 {
2531 if (txq->txb_avail < len)
2532 return (0);
2533
2534 if (txq->txb_next + len <= txq->txb_size) {
2535 *waste = 0;
2536 return (1);
2537 }
2538
2539 *waste = txq->txb_size - txq->txb_next;
2540
2541 return (txq->txb_avail - *waste < len ? 0 : 1);
2542 }
2543
2544 #define TXB_CHUNK 64
2545
2546 /*
2547 * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo
2548 * and txq to indicate resources used. Caller has to make sure that those many
2549 * bytes are available in the mblk chain (b_cont linked).
2550 */
2551 static inline int
2552 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo)
2553 {
2554 int waste, n;
2555
2556 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb */
2557
2558 if (!fits_in_txb(txq, len, &waste)) {
2559 txq->txb_full++;
2560 return (ENOMEM);
2561 }
2562
2563 if (waste != 0) {
2564 ASSERT((waste & (TXB_CHUNK - 1)) == 0);
2565 txinfo->txb_used += waste;
2566 txq->txb_avail -= waste;
2567 txq->txb_next = 0;
2568 }
2569
2570 for (n = 0; n < len; m = m->b_cont) {
2571 bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m));
2572 n += MBLKL(m);
2573 }
2574
2575 add_seg(txinfo, txq->txb_ba + txq->txb_next, len);
2576
2577 n = roundup(len, TXB_CHUNK);
2578 txinfo->txb_used += n;
2579 txq->txb_avail -= n;
2580 txq->txb_next += n;
2581 ASSERT(txq->txb_next <= txq->txb_size);
2582 if (txq->txb_next == txq->txb_size)
2583 txq->txb_next = 0;
2584
2585 return (0);
2586 }
2587
2588 static inline void
2589 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len)
2590 {
2591 ASSERT(txinfo->nsegs < TX_SGL_SEGS); /* must have room */
2592
2593 if (txinfo->nsegs != 0) {
2594 int idx = txinfo->nsegs - 1;
2595 txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len);
2596 txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba);
2597 } else {
2598 txinfo->sgl.len0 = cpu_to_be32(len);
2599 txinfo->sgl.addr0 = cpu_to_be64(ba);
2600 }
2601 txinfo->nsegs++;
2602 }
2603
2604 /*
2605 * This function cleans up any partially allocated resources when it fails so
2606 * there's nothing for the caller to clean up in that case.
2607 *
2608 * EIO indicates permanent failure. Caller should drop the frame containing
2609 * this mblk and continue.
2610 *
2611 * E2BIG indicates that the SGL length for this mblk exceeds the hardware
2612 * limit. Caller should pull up the frame before trying to send it out.
2613 * (This error means our pullup_early heuristic did not work for this frame)
2614 *
2615 * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA
2616 * resources, etc.). Caller should suspend the tx queue and wait for reclaim to
2617 * free up resources.
2618 */
2619 static inline int
2620 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len)
2621 {
2622 ddi_dma_handle_t dhdl;
2623 ddi_dma_cookie_t cookie;
2624 uint_t ccount = 0;
2625 int rc;
2626
2627 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate dhdls */
2628
2629 if (txq->tx_dhdl_avail == 0) {
2630 txq->dma_hdl_failed++;
2631 return (ENOMEM);
2632 }
2633
2634 dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx];
2635 rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len,
2636 DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie,
2637 &ccount);
2638 if (rc != DDI_DMA_MAPPED) {
2639 txq->dma_map_failed++;
2640
2641 ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP);
2642
2643 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO);
2644 }
2645
2646 if (ccount + txinfo->nsegs > TX_SGL_SEGS) {
2647 (void) ddi_dma_unbind_handle(dhdl);
2648 return (E2BIG);
2649 }
2650
2651 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2652 while (--ccount) {
2653 ddi_dma_nextcookie(dhdl, &cookie);
2654 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2655 }
2656
2657 if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total)
2658 txq->tx_dhdl_pidx = 0;
2659 txq->tx_dhdl_avail--;
2660 txinfo->hdls_used++;
2661
2662 return (0);
2663 }
2664
2665 /*
2666 * Releases all the txq resources used up in the specified txinfo.
2667 */
2668 static void
2669 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo)
2670 {
2671 int n;
2672
2673 TXQ_LOCK_ASSERT_OWNED(txq); /* dhdls, txb */
2674
2675 n = txinfo->txb_used;
2676 if (n > 0) {
2677 txq->txb_avail += n;
2678 if (n <= txq->txb_next)
2679 txq->txb_next -= n;
2680 else {
2681 n -= txq->txb_next;
2682 txq->txb_next = txq->txb_size - n;
2683 }
2684 }
2685
2686 for (n = txinfo->hdls_used; n > 0; n--) {
2687 if (txq->tx_dhdl_pidx > 0)
2688 txq->tx_dhdl_pidx--;
2689 else
2690 txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1;
2691 txq->tx_dhdl_avail++;
2692 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]);
2693 }
2694 }
2695
2696 /*
2697 * Returns 0 to indicate that m has been accepted into a coalesced tx work
2698 * request. It has either been folded into txpkts or txpkts was flushed and m
2699 * has started a new coalesced work request (as the first frame in a fresh
2700 * txpkts).
2701 *
2702 * Returns non-zero to indicate a failure - caller is responsible for
2703 * transmitting m, if there was anything in txpkts it has been flushed.
2704 */
2705 static int
2706 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
2707 struct txinfo *txinfo)
2708 {
2709 struct sge_eq *eq = &txq->eq;
2710 int can_coalesce;
2711 struct tx_sdesc *txsd;
2712 uint8_t flits;
2713
2714 TXQ_LOCK_ASSERT_OWNED(txq);
2715
2716 if (txpkts->npkt > 0) {
2717 flits = TXPKTS_PKT_HDR + txinfo->nflits;
2718 can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2719 txpkts->nflits + flits <= TX_WR_FLITS &&
2720 txpkts->nflits + flits <= eq->avail * 8 &&
2721 txpkts->plen + txinfo->len < 65536;
2722
2723 if (can_coalesce != 0) {
2724 txpkts->tail->b_next = m;
2725 txpkts->tail = m;
2726 txpkts->npkt++;
2727 txpkts->nflits += flits;
2728 txpkts->plen += txinfo->len;
2729
2730 txsd = &txq->sdesc[eq->pidx];
2731 txsd->txb_used += txinfo->txb_used;
2732 txsd->hdls_used += txinfo->hdls_used;
2733
2734 return (0);
2735 }
2736
2737 /*
2738 * Couldn't coalesce m into txpkts. The first order of business
2739 * is to send txpkts on its way. Then we'll revisit m.
2740 */
2741 write_txpkts_wr(txq, txpkts);
2742 }
2743
2744 /*
2745 * Check if we can start a new coalesced tx work request with m as
2746 * the first packet in it.
2747 */
2748
2749 ASSERT(txpkts->npkt == 0);
2750 ASSERT(txinfo->len < 65536);
2751
2752 flits = TXPKTS_WR_HDR + txinfo->nflits;
2753 can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2754 flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2755
2756 if (can_coalesce == 0)
2757 return (EINVAL);
2758
2759 /*
2760 * Start a fresh coalesced tx WR with m as the first frame in it.
2761 */
2762 txpkts->tail = m;
2763 txpkts->npkt = 1;
2764 txpkts->nflits = flits;
2765 txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2766 txpkts->plen = txinfo->len;
2767
2768 txsd = &txq->sdesc[eq->pidx];
2769 txsd->m = m;
2770 txsd->txb_used = txinfo->txb_used;
2771 txsd->hdls_used = txinfo->hdls_used;
2772
2773 return (0);
2774 }
2775
2776 /*
2777 * Note that write_txpkts_wr can never run out of hardware descriptors (but
2778 * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for
2779 * coalescing only if sufficient hardware descriptors are available.
2780 */
2781 static void
2782 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2783 {
2784 struct sge_eq *eq = &txq->eq;
2785 struct fw_eth_tx_pkts_wr *wr;
2786 struct tx_sdesc *txsd;
2787 uint32_t ctrl;
2788 uint16_t ndesc;
2789
2790 TXQ_LOCK_ASSERT_OWNED(txq); /* pidx, avail */
2791
2792 ndesc = howmany(txpkts->nflits, 8);
2793
2794 wr = (void *)&eq->desc[eq->pidx];
2795 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2796 V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2797 ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2798 if (eq->avail == ndesc)
2799 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2800 wr->equiq_to_len16 = cpu_to_be32(ctrl);
2801 wr->plen = cpu_to_be16(txpkts->plen);
2802 wr->npkt = txpkts->npkt;
2803 wr->r3 = wr->type = 0;
2804
2805 /* Everything else already written */
2806
2807 txsd = &txq->sdesc[eq->pidx];
2808 txsd->desc_used = ndesc;
2809
2810 txq->txb_used += txsd->txb_used / TXB_CHUNK;
2811 txq->hdl_used += txsd->hdls_used;
2812
2813 ASSERT(eq->avail >= ndesc);
2814
2815 eq->pending += ndesc;
2816 eq->avail -= ndesc;
2817 eq->pidx += ndesc;
2818 if (eq->pidx >= eq->cap)
2819 eq->pidx -= eq->cap;
2820
2821 txq->txpkts_pkts += txpkts->npkt;
2822 txq->txpkts_wrs++;
2823 txpkts->npkt = 0; /* emptied */
2824 }
2825
2826 static int
2827 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
2828 struct txinfo *txinfo)
2829 {
2830 struct sge_eq *eq = &txq->eq;
2831 struct fw_eth_tx_pkt_wr *wr;
2832 struct cpl_tx_pkt_core *cpl;
2833 uint32_t ctrl; /* used in many unrelated places */
2834 uint64_t ctrl1;
2835 int nflits, ndesc;
2836 struct tx_sdesc *txsd;
2837 caddr_t dst;
2838
2839 TXQ_LOCK_ASSERT_OWNED(txq); /* pidx, avail */
2840
2841 /*
2842 * Do we have enough flits to send this frame out?
2843 */
2844 ctrl = sizeof (struct cpl_tx_pkt_core);
2845 if (txinfo->flags & HW_LSO) {
2846 nflits = TXPKT_LSO_WR_HDR;
2847 ctrl += sizeof(struct cpl_tx_pkt_lso_core);
2848 } else
2849 nflits = TXPKT_WR_HDR;
2850 if (txinfo->nsegs > 0)
2851 nflits += txinfo->nflits;
2852 else {
2853 nflits += howmany(txinfo->len, 8);
2854 ctrl += txinfo->len;
2855 }
2856 ndesc = howmany(nflits, 8);
2857 if (ndesc > eq->avail)
2858 return (ENOMEM);
2859
2860 /* Firmware work request header */
2861 wr = (void *)&eq->desc[eq->pidx];
2862 wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2863 V_FW_WR_IMMDLEN(ctrl));
2864 ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2865 if (eq->avail == ndesc)
2866 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2867 wr->equiq_to_len16 = cpu_to_be32(ctrl);
2868 wr->r3 = 0;
2869
2870 if (txinfo->flags & HW_LSO) {
2871 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2872 char *p = (void *)m->b_rptr;
2873 ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2874 F_LSO_LAST_SLICE;
2875
2876 /* LINTED: E_BAD_PTR_CAST_ALIGN */
2877 if (((struct ether_header *)p)->ether_type ==
2878 htons(ETHERTYPE_VLAN)) {
2879 ctrl |= V_LSO_ETHHDR_LEN(1);
2880 p += sizeof (struct ether_vlan_header);
2881 } else
2882 p += sizeof (struct ether_header);
2883
2884 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */
2885 ctrl |= V_LSO_IPHDR_LEN(IPH_HDR_LENGTH(p) / 4);
2886 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */
2887 p += IPH_HDR_LENGTH(p);
2888 ctrl |= V_LSO_TCPHDR_LEN(TCP_HDR_LENGTH((tcph_t *)p) / 4);
2889
2890 lso->lso_ctrl = cpu_to_be32(ctrl);
2891 lso->ipid_ofst = cpu_to_be16(0);
2892 lso->mss = cpu_to_be16(txinfo->mss);
2893 lso->seqno_offset = cpu_to_be32(0);
2894 if (is_t4(pi->adapter->params.chip))
2895 lso->len = cpu_to_be32(txinfo->len);
2896 else
2897 lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len));
2898
2899 cpl = (void *)(lso + 1);
2900
2901 txq->tso_wrs++;
2902 } else
2903 cpl = (void *)(wr + 1);
2904
2905 /* Checksum offload */
2906 ctrl1 = 0;
2907 if (!(txinfo->flags & HCK_IPV4_HDRCKSUM))
2908 ctrl1 |= F_TXPKT_IPCSUM_DIS;
2909 if (!(txinfo->flags & HCK_FULLCKSUM))
2910 ctrl1 |= F_TXPKT_L4CSUM_DIS;
2911 if (ctrl1 == 0)
2912 txq->txcsum++; /* some hardware assistance provided */
2913
2914 /* CPL header */
2915 cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2916 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2917 cpl->pack = 0;
2918 cpl->len = cpu_to_be16(txinfo->len);
2919 cpl->ctrl1 = cpu_to_be64(ctrl1);
2920
2921 /* Software descriptor */
2922 txsd = &txq->sdesc[eq->pidx];
2923 txsd->m = m;
2924 txsd->txb_used = txinfo->txb_used;
2925 txsd->hdls_used = txinfo->hdls_used;
2926 /* LINTED: E_ASSIGN_NARROW_CONV */
2927 txsd->desc_used = ndesc;
2928
2929 txq->txb_used += txinfo->txb_used / TXB_CHUNK;
2930 txq->hdl_used += txinfo->hdls_used;
2931
2932 eq->pending += ndesc;
2933 eq->avail -= ndesc;
2934 eq->pidx += ndesc;
2935 if (eq->pidx >= eq->cap)
2936 eq->pidx -= eq->cap;
2937
2938 /* SGL */
2939 dst = (void *)(cpl + 1);
2940 if (txinfo->nsegs > 0) {
2941 txq->sgl_wrs++;
2942 copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2943
2944 /* Need to zero-pad to a 16 byte boundary if not on one */
2945 if ((uintptr_t)dst & 0xf)
2946 /* LINTED: E_BAD_PTR_CAST_ALIGN */
2947 *(uint64_t *)dst = 0;
2948
2949 } else {
2950 txq->imm_wrs++;
2951 #ifdef DEBUG
2952 ctrl = txinfo->len;
2953 #endif
2954 for (; m; m = m->b_cont) {
2955 copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
2956 #ifdef DEBUG
2957 ctrl -= MBLKL(m);
2958 #endif
2959 }
2960 ASSERT(ctrl == 0);
2961 }
2962
2963 txq->txpkt_wrs++;
2964 return (0);
2965 }
2966
2967 static inline void
2968 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2969 struct txpkts *txpkts, struct txinfo *txinfo)
2970 {
2971 struct ulp_txpkt *ulpmc;
2972 struct ulptx_idata *ulpsc;
2973 struct cpl_tx_pkt_core *cpl;
2974 uintptr_t flitp, start, end;
2975 uint64_t ctrl;
2976 caddr_t dst;
2977
2978 ASSERT(txpkts->npkt > 0);
2979
2980 start = (uintptr_t)txq->eq.desc;
2981 end = (uintptr_t)txq->eq.spg;
2982
2983 /* Checksum offload */
2984 ctrl = 0;
2985 if (!(txinfo->flags & HCK_IPV4_HDRCKSUM))
2986 ctrl |= F_TXPKT_IPCSUM_DIS;
2987 if (!(txinfo->flags & HCK_FULLCKSUM))
2988 ctrl |= F_TXPKT_L4CSUM_DIS;
2989 if (ctrl == 0)
2990 txq->txcsum++; /* some hardware assistance provided */
2991
2992 /*
2993 * The previous packet's SGL must have ended at a 16 byte boundary (this
2994 * is required by the firmware/hardware). It follows that flitp cannot
2995 * wrap around between the ULPTX master command and ULPTX subcommand (8
2996 * bytes each), and that it can not wrap around in the middle of the
2997 * cpl_tx_pkt_core either.
2998 */
2999 flitp = (uintptr_t)txpkts->flitp;
3000 ASSERT((flitp & 0xf) == 0);
3001
3002 /* ULP master command */
3003 ulpmc = (void *)flitp;
3004 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
3005 ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) +
3006 sizeof (*cpl) + 8 * txinfo->nflits, 16));
3007
3008 /* ULP subcommand */
3009 ulpsc = (void *)(ulpmc + 1);
3010 ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3011 F_ULP_TX_SC_MORE);
3012 ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core));
3013
3014 flitp += sizeof (*ulpmc) + sizeof (*ulpsc);
3015 if (flitp == end)
3016 flitp = start;
3017
3018 /* CPL_TX_PKT */
3019 cpl = (void *)flitp;
3020 cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3021 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3022 cpl->pack = 0;
3023 cpl->len = cpu_to_be16(txinfo->len);
3024 cpl->ctrl1 = cpu_to_be64(ctrl);
3025
3026 flitp += sizeof (*cpl);
3027 if (flitp == end)
3028 flitp = start;
3029
3030 /* SGL for this frame */
3031 dst = (caddr_t)flitp;
3032 copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
3033 flitp = (uintptr_t)dst;
3034
3035 /* Zero pad and advance to a 16 byte boundary if not already at one. */
3036 if (flitp & 0xf) {
3037
3038 /* no matter what, flitp should be on an 8 byte boundary */
3039 ASSERT((flitp & 0x7) == 0);
3040
3041 *(uint64_t *)flitp = 0;
3042 flitp += sizeof (uint64_t);
3043 txpkts->nflits++;
3044 }
3045
3046 if (flitp == end)
3047 flitp = start;
3048
3049 txpkts->flitp = (void *)flitp;
3050 }
3051
3052 static inline void
3053 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3054 {
3055 if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
3056 bcopy(from, *to, len);
3057 (*to) += len;
3058 } else {
3059 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3060
3061 bcopy(from, *to, portion);
3062 from += portion;
3063 portion = len - portion; /* remaining */
3064 bcopy(from, (void *)eq->desc, portion);
3065 (*to) = (caddr_t)eq->desc + portion;
3066 }
3067 }
3068
3069 static inline void
3070 ring_tx_db(struct adapter *sc, struct sge_eq *eq)
3071 {
3072 int val, db_mode;
3073 u_int db = eq->doorbells;
3074
3075 if (eq->pending > 1)
3076 db &= ~DOORBELL_WCWR;
3077
3078 if (eq->pending > eq->pidx) {
3079 int offset = eq->cap - (eq->pending - eq->pidx);
3080
3081 /* pidx has wrapped around since last doorbell */
3082
3083 (void) ddi_dma_sync(eq->desc_dhdl,
3084 offset * sizeof (struct tx_desc), 0,
3085 DDI_DMA_SYNC_FORDEV);
3086 (void) ddi_dma_sync(eq->desc_dhdl,
3087 0, eq->pidx * sizeof (struct tx_desc),
3088 DDI_DMA_SYNC_FORDEV);
3089 } else if (eq->pending > 0) {
3090 (void) ddi_dma_sync(eq->desc_dhdl,
3091 (eq->pidx - eq->pending) * sizeof (struct tx_desc),
3092 eq->pending * sizeof (struct tx_desc),
3093 DDI_DMA_SYNC_FORDEV);
3094 }
3095
3096 membar_producer();
3097
3098 if (is_t4(sc->params.chip))
3099 val = V_PIDX(eq->pending);
3100 else
3101 val = V_PIDX_T5(eq->pending);
3102
3103 db_mode = (1 << (ffs(db) - 1));
3104 switch (db_mode) {
3105 case DOORBELL_UDB:
3106 *eq->udb = LE_32(V_QID(eq->udb_qid) | val);
3107 break;
3108
3109 case DOORBELL_WCWR:
3110 {
3111 volatile uint64_t *dst, *src;
3112 int i;
3113 /*
3114 * Queues whose 128B doorbell segment fits in
3115 * the page do not use relative qid
3116 * (udb_qid is always 0). Only queues with
3117 * doorbell segments can do WCWR.
3118 */
3119 ASSERT(eq->udb_qid == 0 && eq->pending == 1);
3120
3121 dst = (volatile void *)((uintptr_t)eq->udb +
3122 UDBS_WR_OFFSET - UDBS_DB_OFFSET);
3123 i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
3124 src = (void *)&eq->desc[i];
3125 while (src != (void *)&eq->desc[i + 1])
3126 *dst++ = *src++;
3127 membar_producer();
3128 break;
3129 }
3130
3131 case DOORBELL_UDBWC:
3132 *eq->udb = LE_32(V_QID(eq->udb_qid) | val);
3133 membar_producer();
3134 break;
3135
3136 case DOORBELL_KDB:
3137 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3138 V_QID(eq->cntxt_id) | val);
3139 break;
3140 }
3141
3142 eq->pending = 0;
3143 }
3144
3145 static int
3146 reclaim_tx_descs(struct sge_txq *txq, int howmany)
3147 {
3148 struct tx_sdesc *txsd;
3149 uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed;
3150 struct sge_eq *eq = &txq->eq;
3151
3152 EQ_LOCK_ASSERT_OWNED(eq);
3153
3154 cidx = eq->spg->cidx; /* stable snapshot */
3155 cidx = be16_to_cpu(cidx);
3156
3157 if (cidx >= eq->cidx)
3158 can_reclaim = cidx - eq->cidx;
3159 else
3160 can_reclaim = cidx + eq->cap - eq->cidx;
3161
3162 if (can_reclaim == 0)
3163 return (0);
3164
3165 txb_freed = hdls_freed = reclaimed = 0;
3166 do {
3167 int ndesc;
3168
3169 txsd = &txq->sdesc[eq->cidx];
3170 ndesc = txsd->desc_used;
3171
3172 /* Firmware doesn't return "partial" credits. */
3173 ASSERT(can_reclaim >= ndesc);
3174
3175 /*
3176 * We always keep mblk around, even for immediate data. If mblk
3177 * is NULL, this has to be the software descriptor for a credit
3178 * flush work request.
3179 */
3180 if (txsd->m != NULL)
3181 freemsgchain(txsd->m);
3182 #ifdef DEBUG
3183 else {
3184 ASSERT(txsd->txb_used == 0);
3185 ASSERT(txsd->hdls_used == 0);
3186 ASSERT(ndesc == 1);
3187 }
3188 #endif
3189
3190 txb_freed += txsd->txb_used;
3191 hdls_freed += txsd->hdls_used;
3192 reclaimed += ndesc;
3193
3194 eq->cidx += ndesc;
3195 if (eq->cidx >= eq->cap)
3196 eq->cidx -= eq->cap;
3197
3198 can_reclaim -= ndesc;
3199
3200 } while (can_reclaim && reclaimed < howmany);
3201
3202 eq->avail += reclaimed;
3203 ASSERT(eq->avail < eq->cap); /* avail tops out at (cap - 1) */
3204
3205 txq->txb_avail += txb_freed;
3206
3207 txq->tx_dhdl_avail += hdls_freed;
3208 ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total);
3209 for (; hdls_freed; hdls_freed--) {
3210 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]);
3211 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
3212 txq->tx_dhdl_cidx = 0;
3213 }
3214
3215 return (reclaimed);
3216 }
3217
3218 static void
3219 write_txqflush_wr(struct sge_txq *txq)
3220 {
3221 struct sge_eq *eq = &txq->eq;
3222 struct fw_eq_flush_wr *wr;
3223 struct tx_sdesc *txsd;
3224
3225 EQ_LOCK_ASSERT_OWNED(eq);
3226 ASSERT(eq->avail > 0);
3227
3228 wr = (void *)&eq->desc[eq->pidx];
3229 bzero(wr, sizeof (*wr));
3230 wr->opcode = FW_EQ_FLUSH_WR;
3231 wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) |
3232 F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3233
3234 txsd = &txq->sdesc[eq->pidx];
3235 txsd->m = NULL;
3236 txsd->txb_used = 0;
3237 txsd->hdls_used = 0;
3238 txsd->desc_used = 1;
3239
3240 eq->pending++;
3241 eq->avail--;
3242 if (++eq->pidx == eq->cap)
3243 eq->pidx = 0;
3244 }
3245
3246 static int
3247 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3248 {
3249 bool csum_ok;
3250 uint16_t err_vec;
3251 struct sge_rxq *rxq = (void *)iq;
3252 struct mblk_pair chain = {0};
3253 struct adapter *sc = iq->adapter;
3254 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
3255
3256 iq->intr_next = iq->intr_params;
3257
3258 m->b_rptr += sc->sge.pktshift;
3259
3260 /* Compressed error vector is enabled for T6 only */
3261 if (sc->params.tp.rx_pkt_encap)
3262 /* It is enabled only in T6 config file */
3263 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
3264 else
3265 err_vec = ntohs(cpl->err_vec);
3266
3267 csum_ok = cpl->csum_calc && !err_vec;
3268 /* TODO: what about cpl->ip_frag? */
3269 if (csum_ok && !cpl->ip_frag) {
3270 mac_hcksum_set(m, 0, 0, 0, 0xffff,
3271 HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
3272 HCK_IPV4_HDRCKSUM_OK);
3273 rxq->rxcsum++;
3274 }
3275
3276 /* Add to the chain that we'll send up */
3277 if (chain.head != NULL)
3278 chain.tail->b_next = m;
3279 else
3280 chain.head = m;
3281 chain.tail = m;
3282
3283 t4_mac_rx(rxq->port, rxq, chain.head);
3284
3285 rxq->rxpkts++;
3286 rxq->rxbytes += be16_to_cpu(cpl->len);
3287 return (0);
3288 }
3289
3290 #define FL_HW_IDX(idx) ((idx) >> 3)
3291
3292 static inline void
3293 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3294 {
3295 int desc_start, desc_last, ndesc;
3296 uint32_t v = sc->params.arch.sge_fl_db ;
3297
3298 ndesc = FL_HW_IDX(fl->pending);
3299
3300 /* Hold back one credit if pidx = cidx */
3301 if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3302 ndesc--;
3303
3304 /*
3305 * There are chances of ndesc modified above (to avoid pidx = cidx).
3306 * If there is nothing to post, return.
3307 */
3308 if (ndesc <= 0)
3309 return;
3310
3311 desc_last = FL_HW_IDX(fl->pidx);
3312
3313 if (fl->pidx < fl->pending) {
3314 /* There was a wrap */
3315 desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending);
3316
3317 /* From desc_start to the end of list */
3318 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0,
3319 DDI_DMA_SYNC_FORDEV);
3320
3321 /* From start of list to the desc_last */
3322 if (desc_last != 0)
3323 (void) ddi_dma_sync(fl->dhdl, 0, desc_last *
3324 RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3325 } else {
3326 /* There was no wrap, sync from start_desc to last_desc */
3327 desc_start = FL_HW_IDX(fl->pidx - fl->pending);
3328 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE,
3329 ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3330 }
3331
3332 if (is_t4(sc->params.chip))
3333 v |= V_PIDX(ndesc);
3334 else
3335 v |= V_PIDX_T5(ndesc);
3336 v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3337
3338 membar_producer();
3339
3340 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3341
3342 /*
3343 * Update pending count:
3344 * Deduct the number of descriptors posted
3345 */
3346 fl->pending -= ndesc * 8;
3347 }
3348
3349 /* ARGSUSED */
3350 static int
3351 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3352 mblk_t *m)
3353 {
3354 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3355 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3356 struct adapter *sc = iq->adapter;
3357 struct sge *s = &sc->sge;
3358 struct sge_txq *txq;
3359
3360 txq = (void *)s->eqmap[qid - s->eq_start];
3361 txq->qflush++;
3362 t4_mac_tx_update(txq->port, txq);
3363
3364 return (0);
3365 }
3366
3367 static int
3368 handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3369 {
3370 struct adapter *sc = iq->adapter;
3371 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3372
3373 ASSERT(m == NULL);
3374
3375 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
3376 const struct rss_header *rss2;
3377
3378 rss2 = (const struct rss_header *)&cpl->data[0];
3379 return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
3380 }
3381 return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
3382 }
3383
3384 int
3385 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count,
3386 int flags)
3387 {
3388 int i, rc;
3389
3390 txmaps->map_total = count;
3391 txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0;
3392
3393 txmaps->map = kmem_zalloc(sizeof (ddi_dma_handle_t) *
3394 txmaps->map_total, flags);
3395
3396 for (i = 0; i < count; i++) {
3397 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
3398 DDI_DMA_SLEEP, 0, &txmaps->map[i]);
3399 if (rc != DDI_SUCCESS) {
3400 cxgb_printf(sc->dip, CE_WARN,
3401 "%s: failed to allocate DMA handle (%d)",
3402 __func__, rc);
3403 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
3404 }
3405 txmaps->map_avail++;
3406 }
3407
3408 return (0);
3409 }
3410
3411 #define KS_UINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG)
3412 #define KS_CINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR)
3413 #define KS_U_SET(x, y) kstatp->x.value.ul = (y)
3414 #define KS_U_FROM(x, y) kstatp->x.value.ul = (y)->x
3415 #define KS_C_SET(x, ...) \
3416 (void) snprintf(kstatp->x.value.c, 16, __VA_ARGS__)
3417
3418 /*
3419 * cxgbe:X:config
3420 */
3421 struct cxgbe_port_config_kstats {
3422 kstat_named_t idx;
3423 kstat_named_t nrxq;
3424 kstat_named_t ntxq;
3425 kstat_named_t first_rxq;
3426 kstat_named_t first_txq;
3427 kstat_named_t controller;
3428 kstat_named_t factory_mac_address;
3429 };
3430
3431 /*
3432 * cxgbe:X:info
3433 */
3434 struct cxgbe_port_info_kstats {
3435 kstat_named_t transceiver;
3436 kstat_named_t rx_ovflow0;
3437 kstat_named_t rx_ovflow1;
3438 kstat_named_t rx_ovflow2;
3439 kstat_named_t rx_ovflow3;
3440 kstat_named_t rx_trunc0;
3441 kstat_named_t rx_trunc1;
3442 kstat_named_t rx_trunc2;
3443 kstat_named_t rx_trunc3;
3444 kstat_named_t tx_pause;
3445 kstat_named_t rx_pause;
3446 };
3447
3448 static kstat_t *
3449 setup_port_config_kstats(struct port_info *pi)
3450 {
3451 kstat_t *ksp;
3452 struct cxgbe_port_config_kstats *kstatp;
3453 int ndata;
3454 dev_info_t *pdip = ddi_get_parent(pi->dip);
3455 uint8_t *ma = &pi->hw_addr[0];
3456
3457 ndata = sizeof (struct cxgbe_port_config_kstats) /
3458 sizeof (kstat_named_t);
3459
3460 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config",
3461 "net", KSTAT_TYPE_NAMED, ndata, 0);
3462 if (ksp == NULL) {
3463 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3464 return (NULL);
3465 }
3466
3467 kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data;
3468
3469 KS_UINIT(idx);
3470 KS_UINIT(nrxq);
3471 KS_UINIT(ntxq);
3472 KS_UINIT(first_rxq);
3473 KS_UINIT(first_txq);
3474 KS_CINIT(controller);
3475 KS_CINIT(factory_mac_address);
3476
3477 KS_U_SET(idx, pi->port_id);
3478 KS_U_SET(nrxq, pi->nrxq);
3479 KS_U_SET(ntxq, pi->ntxq);
3480 KS_U_SET(first_rxq, pi->first_rxq);
3481 KS_U_SET(first_txq, pi->first_txq);
3482 KS_C_SET(controller, "%s%d", ddi_driver_name(pdip),
3483 ddi_get_instance(pdip));
3484 KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X",
3485 ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]);
3486
3487 /* Do NOT set ksp->ks_update. These kstats do not change. */
3488
3489 /* Install the kstat */
3490 ksp->ks_private = (void *)pi;
3491 kstat_install(ksp);
3492
3493 return (ksp);
3494 }
3495
3496 static kstat_t *
3497 setup_port_info_kstats(struct port_info *pi)
3498 {
3499 kstat_t *ksp;
3500 struct cxgbe_port_info_kstats *kstatp;
3501 int ndata;
3502
3503 ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t);
3504
3505 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info",
3506 "net", KSTAT_TYPE_NAMED, ndata, 0);
3507 if (ksp == NULL) {
3508 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3509 return (NULL);
3510 }
3511
3512 kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data;
3513
3514 KS_CINIT(transceiver);
3515 KS_UINIT(rx_ovflow0);
3516 KS_UINIT(rx_ovflow1);
3517 KS_UINIT(rx_ovflow2);
3518 KS_UINIT(rx_ovflow3);
3519 KS_UINIT(rx_trunc0);
3520 KS_UINIT(rx_trunc1);
3521 KS_UINIT(rx_trunc2);
3522 KS_UINIT(rx_trunc3);
3523 KS_UINIT(tx_pause);
3524 KS_UINIT(rx_pause);
3525
3526 /* Install the kstat */
3527 ksp->ks_update = update_port_info_kstats;
3528 ksp->ks_private = (void *)pi;
3529 kstat_install(ksp);
3530
3531 return (ksp);
3532 }
3533
3534 static int
3535 update_port_info_kstats(kstat_t *ksp, int rw)
3536 {
3537 struct cxgbe_port_info_kstats *kstatp =
3538 (struct cxgbe_port_info_kstats *)ksp->ks_data;
3539 struct port_info *pi = ksp->ks_private;
3540 static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX",
3541 "active TWINAX", "LRM" };
3542 uint32_t bgmap;
3543
3544 if (rw == KSTAT_WRITE)
3545 return (0);
3546
3547 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
3548 KS_C_SET(transceiver, "unplugged");
3549 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
3550 KS_C_SET(transceiver, "unknown");
3551 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
3552 KS_C_SET(transceiver, "unsupported");
3553 else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str))
3554 KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]);
3555 else
3556 KS_C_SET(transceiver, "type %d", pi->mod_type);
3557
3558 #define GET_STAT(name) t4_read_reg64(pi->adapter, \
3559 PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L))
3560 #define GET_STAT_COM(name) t4_read_reg64(pi->adapter, \
3561 A_MPS_STAT_##name##_L)
3562
3563 bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL));
3564 if (bgmap == 0)
3565 bgmap = (pi->port_id == 0) ? 0xf : 0;
3566 else if (bgmap == 1)
3567 bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0;
3568 else
3569 bgmap = 1;
3570
3571 KS_U_SET(rx_ovflow0, (bgmap & 1) ?
3572 GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0);
3573 KS_U_SET(rx_ovflow1, (bgmap & 2) ?
3574 GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0);
3575 KS_U_SET(rx_ovflow2, (bgmap & 4) ?
3576 GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0);
3577 KS_U_SET(rx_ovflow3, (bgmap & 8) ?
3578 GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0);
3579 KS_U_SET(rx_trunc0, (bgmap & 1) ?
3580 GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0);
3581 KS_U_SET(rx_trunc1, (bgmap & 2) ?
3582 GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0);
3583 KS_U_SET(rx_trunc2, (bgmap & 4) ?
3584 GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0);
3585 KS_U_SET(rx_trunc3, (bgmap & 8) ?
3586 GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0);
3587
3588 KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE));
3589 KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE));
3590
3591 return (0);
3592
3593 }
3594
3595 /*
3596 * cxgbe:X:rxqY
3597 */
3598 struct rxq_kstats {
3599 kstat_named_t rxcsum;
3600 kstat_named_t rxpkts;
3601 kstat_named_t rxbytes;
3602 kstat_named_t nomem;
3603 };
3604
3605 static kstat_t *
3606 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx)
3607 {
3608 struct kstat *ksp;
3609 struct rxq_kstats *kstatp;
3610 int ndata;
3611 char str[16];
3612
3613 ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t);
3614 (void) snprintf(str, sizeof (str), "rxq%u", idx);
3615
3616 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq",
3617 KSTAT_TYPE_NAMED, ndata, 0);
3618 if (ksp == NULL) {
3619 cxgb_printf(pi->dip, CE_WARN,
3620 "%s: failed to initialize rxq kstats for queue %d.",
3621 __func__, idx);
3622 return (NULL);
3623 }
3624
3625 kstatp = (struct rxq_kstats *)ksp->ks_data;
3626
3627 KS_UINIT(rxcsum);
3628 KS_UINIT(rxpkts);
3629 KS_UINIT(rxbytes);
3630 KS_UINIT(nomem);
3631
3632 ksp->ks_update = update_rxq_kstats;
3633 ksp->ks_private = (void *)rxq;
3634 kstat_install(ksp);
3635
3636 return (ksp);
3637 }
3638
3639 static int
3640 update_rxq_kstats(kstat_t *ksp, int rw)
3641 {
3642 struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data;
3643 struct sge_rxq *rxq = ksp->ks_private;
3644
3645 if (rw == KSTAT_WRITE)
3646 return (0);
3647
3648 KS_U_FROM(rxcsum, rxq);
3649 KS_U_FROM(rxpkts, rxq);
3650 KS_U_FROM(rxbytes, rxq);
3651 KS_U_FROM(nomem, rxq);
3652
3653 return (0);
3654 }
3655
3656 /*
3657 * cxgbe:X:txqY
3658 */
3659 struct txq_kstats {
3660 kstat_named_t txcsum;
3661 kstat_named_t tso_wrs;
3662 kstat_named_t imm_wrs;
3663 kstat_named_t sgl_wrs;
3664 kstat_named_t txpkt_wrs;
3665 kstat_named_t txpkts_wrs;
3666 kstat_named_t txpkts_pkts;
3667 kstat_named_t txb_used;
3668 kstat_named_t hdl_used;
3669 kstat_named_t txb_full;
3670 kstat_named_t dma_hdl_failed;
3671 kstat_named_t dma_map_failed;
3672 kstat_named_t qfull;
3673 kstat_named_t qflush;
3674 kstat_named_t pullup_early;
3675 kstat_named_t pullup_late;
3676 kstat_named_t pullup_failed;
3677 };
3678
3679 static kstat_t *
3680 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx)
3681 {
3682 struct kstat *ksp;
3683 struct txq_kstats *kstatp;
3684 int ndata;
3685 char str[16];
3686
3687 ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t);
3688 (void) snprintf(str, sizeof (str), "txq%u", idx);
3689
3690 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq",
3691 KSTAT_TYPE_NAMED, ndata, 0);
3692 if (ksp == NULL) {
3693 cxgb_printf(pi->dip, CE_WARN,
3694 "%s: failed to initialize txq kstats for queue %d.",
3695 __func__, idx);
3696 return (NULL);
3697 }
3698
3699 kstatp = (struct txq_kstats *)ksp->ks_data;
3700
3701 KS_UINIT(txcsum);
3702 KS_UINIT(tso_wrs);
3703 KS_UINIT(imm_wrs);
3704 KS_UINIT(sgl_wrs);
3705 KS_UINIT(txpkt_wrs);
3706 KS_UINIT(txpkts_wrs);
3707 KS_UINIT(txpkts_pkts);
3708 KS_UINIT(txb_used);
3709 KS_UINIT(hdl_used);
3710 KS_UINIT(txb_full);
3711 KS_UINIT(dma_hdl_failed);
3712 KS_UINIT(dma_map_failed);
3713 KS_UINIT(qfull);
3714 KS_UINIT(qflush);
3715 KS_UINIT(pullup_early);
3716 KS_UINIT(pullup_late);
3717 KS_UINIT(pullup_failed);
3718
3719 ksp->ks_update = update_txq_kstats;
3720 ksp->ks_private = (void *)txq;
3721 kstat_install(ksp);
3722
3723 return (ksp);
3724 }
3725
3726 static int
3727 update_txq_kstats(kstat_t *ksp, int rw)
3728 {
3729 struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data;
3730 struct sge_txq *txq = ksp->ks_private;
3731
3732 if (rw == KSTAT_WRITE)
3733 return (0);
3734
3735 KS_U_FROM(txcsum, txq);
3736 KS_U_FROM(tso_wrs, txq);
3737 KS_U_FROM(imm_wrs, txq);
3738 KS_U_FROM(sgl_wrs, txq);
3739 KS_U_FROM(txpkt_wrs, txq);
3740 KS_U_FROM(txpkts_wrs, txq);
3741 KS_U_FROM(txpkts_pkts, txq);
3742 KS_U_FROM(txb_used, txq);
3743 KS_U_FROM(hdl_used, txq);
3744 KS_U_FROM(txb_full, txq);
3745 KS_U_FROM(dma_hdl_failed, txq);
3746 KS_U_FROM(dma_map_failed, txq);
3747 KS_U_FROM(qfull, txq);
3748 KS_U_FROM(qflush, txq);
3749 KS_U_FROM(pullup_early, txq);
3750 KS_U_FROM(pullup_late, txq);
3751 KS_U_FROM(pullup_failed, txq);
3752
3753 return (0);
3754 }