1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source. A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * This file is part of the Chelsio T4 support code.
  14  *
  15  * Copyright (C) 2010-2013 Chelsio Communications.  All rights reserved.
  16  *
  17  * This program is distributed in the hope that it will be useful, but WITHOUT
  18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  19  * FITNESS FOR A PARTICULAR PURPOSE.  See the LICENSE file included in this
  20  * release for licensing terms and conditions.
  21  */
  22 
  23 #include <sys/ddi.h>
  24 #include <sys/sunddi.h>
  25 #include <sys/sunndi.h>
  26 #include <sys/atomic.h>
  27 #include <sys/dlpi.h>
  28 #include <sys/pattr.h>
  29 #include <sys/strsubr.h>
  30 #include <sys/stream.h>
  31 #include <sys/strsun.h>
  32 #include <inet/ip.h>
  33 #include <inet/tcp.h>
  34 
  35 #include "version.h"
  36 #include "common/common.h"
  37 #include "common/t4_msg.h"
  38 #include "common/t4_regs.h"
  39 #include "common/t4_regs_values.h"
  40 
  41 /* TODO: Tune. */
  42 int rx_buf_size = 8192;
  43 int tx_copy_threshold = 256;
  44 uint16_t rx_copy_threshold = 256;
  45 
  46 /* Used to track coalesced tx work request */
  47 struct txpkts {
  48         mblk_t *tail;           /* head is in the software descriptor */
  49         uint64_t *flitp;        /* ptr to flit where next pkt should start */
  50         uint8_t npkt;           /* # of packets in this work request */
  51         uint8_t nflits;         /* # of flits used by this work request */
  52         uint16_t plen;          /* total payload (sum of all packets) */
  53 };
  54 
  55 /* All information needed to tx a frame */
  56 struct txinfo {
  57         uint32_t len;           /* Total length of frame */
  58         uint32_t flags;         /* Checksum and LSO flags */
  59         uint32_t mss;           /* MSS for LSO */
  60         uint8_t nsegs;          /* # of segments in the SGL, 0 means imm. tx */
  61         uint8_t nflits;         /* # of flits needed for the SGL */
  62         uint8_t hdls_used;      /* # of DMA handles used */
  63         uint32_t txb_used;      /* txb_space used */
  64         struct ulptx_sgl sgl __attribute__((aligned(8)));
  65         struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2];
  66 };
  67 
  68 static int service_iq(struct sge_iq *iq, int budget);
  69 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx,
  70     int8_t pktc_idx, int qsize, uint8_t esize);
  71 static inline void init_fl(struct sge_fl *fl, uint16_t qsize);
  72 static inline void init_eq(struct adapter *sc, struct sge_eq *eq,
  73     uint16_t eqtype, uint16_t qsize,uint8_t tx_chan, uint16_t iqid);
  74 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq,
  75     struct sge_fl *fl, int intr_idx, int cong);
  76 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq,
  77     struct sge_fl *fl);
  78 static int alloc_fwq(struct adapter *sc);
  79 static int free_fwq(struct adapter *sc);
  80 #ifdef TCP_OFFLOAD_ENABLE
  81 static int alloc_mgmtq(struct adapter *sc);
  82 #endif
  83 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx,
  84     int i);
  85 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq);
  86 #ifdef TCP_OFFLOAD_ENABLE
  87 static int alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
  88         int intr_idx);
  89 static int free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq);
  90 #endif
  91 static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq);
  92 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi,
  93     struct sge_eq *eq);
  94 #ifdef TCP_OFFLOAD_ENABLE
  95 static int ofld_eq_alloc(struct adapter *sc, struct port_info *pi,
  96     struct sge_eq *eq);
  97 #endif
  98 static int alloc_eq(struct adapter *sc, struct port_info *pi,
  99     struct sge_eq *eq);
 100 static int free_eq(struct adapter *sc, struct sge_eq *eq);
 101 #ifdef TCP_OFFLOAD_ENABLE
 102 static int alloc_wrq(struct adapter *sc, struct port_info *pi,
 103     struct sge_wrq *wrq, int idx);
 104 static int free_wrq(struct adapter *sc, struct sge_wrq *wrq);
 105 #endif
 106 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx);
 107 static int free_txq(struct port_info *pi, struct sge_txq *txq);
 108 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags,
 109     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
 110     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
 111     caddr_t *pva);
 112 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
 113 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw,
 114     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
 115     caddr_t *pva);
 116 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
 117 static int alloc_tx_copybuffer(struct adapter *sc, size_t len,
 118     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
 119     caddr_t *pva);
 120 static inline bool is_new_response(const struct sge_iq *iq,
 121     struct rsp_ctrl **ctrl);
 122 static inline void iq_next(struct sge_iq *iq);
 123 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs);
 124 static void refill_sfl(void *arg);
 125 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl);
 126 static void free_fl_bufs(struct sge_fl *fl);
 127 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl,
 128     uint32_t len_newbuf, int *fl_bufs_used);
 129 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp,
 130     struct txinfo *txinfo, int sgl_only);
 131 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste);
 132 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len,
 133     struct txinfo *txinfo);
 134 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len);
 135 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo,
 136     mblk_t *m, int len);
 137 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo);
 138 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
 139     struct txinfo *txinfo);
 140 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts);
 141 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
 142     struct txinfo *txinfo);
 143 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
 144     struct txpkts *txpkts, struct txinfo *txinfo);
 145 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to,
 146     int len);
 147 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq);
 148 static int reclaim_tx_descs(struct sge_txq *txq, int howmany);
 149 static void write_txqflush_wr(struct sge_txq *txq);
 150 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss,
 151     mblk_t *m);
 152 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl);
 153 static kstat_t *setup_port_config_kstats(struct port_info *pi);
 154 static kstat_t *setup_port_info_kstats(struct port_info *pi);
 155 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq,
 156     int idx);
 157 static int update_rxq_kstats(kstat_t *ksp, int rw);
 158 static int update_port_info_kstats(kstat_t *ksp, int rw);
 159 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq,
 160     int idx);
 161 static int update_txq_kstats(kstat_t *ksp, int rw);
 162 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
 163     mblk_t *);
 164 static int handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss,
 165     mblk_t *m);
 166 
 167 static inline int
 168 reclaimable(struct sge_eq *eq)
 169 {
 170         unsigned int cidx;
 171 
 172         cidx = eq->spg->cidx;   /* stable snapshot */
 173         cidx = be16_to_cpu(cidx);
 174 
 175         if (cidx >= eq->cidx)
 176                 return (cidx - eq->cidx);
 177         else
 178                 return (cidx + eq->cap - eq->cidx);
 179 }
 180 
 181 void
 182 t4_sge_init(struct adapter *sc)
 183 {
 184         struct driver_properties *p = &sc->props;
 185         ddi_dma_attr_t *dma_attr;
 186         ddi_device_acc_attr_t *acc_attr;
 187         uint32_t sge_control, sge_conm_ctrl;
 188         int egress_threshold;
 189 
 190         /*
 191          * Device access and DMA attributes for descriptor rings
 192          */
 193         acc_attr = &sc->sge.acc_attr_desc;
 194         acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
 195         acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
 196         acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
 197 
 198         dma_attr = &sc->sge.dma_attr_desc;
 199         dma_attr->dma_attr_version = DMA_ATTR_V0;
 200         dma_attr->dma_attr_addr_lo = 0;
 201         dma_attr->dma_attr_addr_hi = UINT64_MAX;
 202         dma_attr->dma_attr_count_max = UINT64_MAX;
 203         dma_attr->dma_attr_align = 512;
 204         dma_attr->dma_attr_burstsizes = 0xfff;
 205         dma_attr->dma_attr_minxfer = 1;
 206         dma_attr->dma_attr_maxxfer = UINT64_MAX;
 207         dma_attr->dma_attr_seg = UINT64_MAX;
 208         dma_attr->dma_attr_sgllen = 1;
 209         dma_attr->dma_attr_granular = 1;
 210         dma_attr->dma_attr_flags = 0;
 211 
 212         /*
 213          * Device access and DMA attributes for tx buffers
 214          */
 215         acc_attr = &sc->sge.acc_attr_tx;
 216         acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
 217         acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
 218 
 219         dma_attr = &sc->sge.dma_attr_tx;
 220         dma_attr->dma_attr_version = DMA_ATTR_V0;
 221         dma_attr->dma_attr_addr_lo = 0;
 222         dma_attr->dma_attr_addr_hi = UINT64_MAX;
 223         dma_attr->dma_attr_count_max = UINT64_MAX;
 224         dma_attr->dma_attr_align = 1;
 225         dma_attr->dma_attr_burstsizes = 0xfff;
 226         dma_attr->dma_attr_minxfer = 1;
 227         dma_attr->dma_attr_maxxfer = UINT64_MAX;
 228         dma_attr->dma_attr_seg = UINT64_MAX;
 229         dma_attr->dma_attr_sgllen = TX_SGL_SEGS;
 230         dma_attr->dma_attr_granular = 1;
 231         dma_attr->dma_attr_flags = 0;
 232 
 233         /*
 234          * Ingress Padding Boundary and Egress Status Page Size are set up by
 235          * t4_fixup_host_params().
 236          */
 237         sge_control = t4_read_reg(sc, A_SGE_CONTROL);
 238         sc->sge.pktshift = G_PKTSHIFT(sge_control);
 239         sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
 240 
 241         /* t4_nex uses FLM packed mode */
 242         sc->sge.fl_align = t4_fl_pkt_align(sc, true);
 243 
 244         /*
 245          * Device access and DMA attributes for rx buffers
 246          */
 247         sc->sge.rxb_params.dip = sc->dip;
 248         sc->sge.rxb_params.buf_size = rx_buf_size;
 249 
 250         acc_attr = &sc->sge.rxb_params.acc_attr_rx;
 251         acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
 252         acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
 253 
 254         dma_attr = &sc->sge.rxb_params.dma_attr_rx;
 255         dma_attr->dma_attr_version = DMA_ATTR_V0;
 256         dma_attr->dma_attr_addr_lo = 0;
 257         dma_attr->dma_attr_addr_hi = UINT64_MAX;
 258         dma_attr->dma_attr_count_max = UINT64_MAX;
 259         /*
 260          * Low 4 bits of an rx buffer address have a special meaning to the SGE
 261          * and an rx buf cannot have an address with any of these bits set.
 262          * FL_ALIGN is >= 32 so we're sure things are ok.
 263          */
 264         dma_attr->dma_attr_align = sc->sge.fl_align;
 265         dma_attr->dma_attr_burstsizes = 0xfff;
 266         dma_attr->dma_attr_minxfer = 1;
 267         dma_attr->dma_attr_maxxfer = UINT64_MAX;
 268         dma_attr->dma_attr_seg = UINT64_MAX;
 269         dma_attr->dma_attr_sgllen = 1;
 270         dma_attr->dma_attr_granular = 1;
 271         dma_attr->dma_attr_flags = 0;
 272 
 273         sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params);
 274 
 275         /*
 276          * A FL with <= fl_starve_thres buffers is starving and a periodic
 277          * timer will attempt to refill it.  This needs to be larger than the
 278          * SGE's Egress Congestion Threshold.  If it isn't, then we can get
 279          * stuck waiting for new packets while the SGE is waiting for us to
 280          * give it more Free List entries.  (Note that the SGE's Egress
 281          * Congestion Threshold is in units of 2 Free List pointers.) For T4,
 282          * there was only a single field to control this.  For T5 there's the
 283          * original field which now only applies to Unpacked Mode Free List
 284          * buffers and a new field which only applies to Packed Mode Free List
 285          * buffers.
 286          */
 287 
 288         sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL);
 289         switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
 290         case CHELSIO_T4:
 291                 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
 292                 break;
 293         case CHELSIO_T5:
 294                 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
 295                 break;
 296         case CHELSIO_T6:
 297         default:
 298                 egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl);
 299         }
 300         sc->sge.fl_starve_threshold = 2*egress_threshold + 1;
 301 
 302         t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size);
 303 
 304         t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
 305             V_THRESHOLD_0(p->counter_val[0]) |
 306             V_THRESHOLD_1(p->counter_val[1]) |
 307             V_THRESHOLD_2(p->counter_val[2]) |
 308             V_THRESHOLD_3(p->counter_val[3]));
 309 
 310         t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
 311             V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) |
 312             V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1])));
 313         t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
 314             V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) |
 315             V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3])));
 316         t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
 317             V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) |
 318             V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5])));
 319 
 320         (void) t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl);
 321         (void) t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl);
 322         (void) t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
 323         (void) t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
 324         (void) t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL,
 325                     t4_handle_fw_rpl);
 326 }
 327 
 328 /*
 329  * Allocate and initialize the firmware event queue and the forwarded interrupt
 330  * queues, if any.  The adapter owns all these queues as they are not associated
 331  * with any particular port.
 332  *
 333  * Returns errno on failure.  Resources allocated up to that point may still be
 334  * allocated.  Caller is responsible for cleanup in case this function fails.
 335  */
 336 int
 337 t4_setup_adapter_queues(struct adapter *sc)
 338 {
 339         int rc;
 340 
 341         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
 342 
 343         /*
 344          * Firmware event queue
 345          */
 346         rc = alloc_fwq(sc);
 347         if (rc != 0)
 348                 return (rc);
 349 
 350 #ifdef TCP_OFFLOAD_ENABLE
 351         /*
 352          * Management queue.  This is just a control queue that uses the fwq as
 353          * its associated iq.
 354          */
 355         rc = alloc_mgmtq(sc);
 356 #endif
 357 
 358         return (rc);
 359 }
 360 
 361 /*
 362  * Idempotent
 363  */
 364 int
 365 t4_teardown_adapter_queues(struct adapter *sc)
 366 {
 367 
 368         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
 369 
 370         (void) free_fwq(sc);
 371 
 372         return (0);
 373 }
 374 
 375 static inline int
 376 first_vector(struct port_info *pi)
 377 {
 378         struct adapter *sc = pi->adapter;
 379         int rc = T4_EXTRA_INTR, i;
 380 
 381         if (sc->intr_count == 1)
 382                 return (0);
 383 
 384         for_each_port(sc, i) {
 385                 struct port_info *p = sc->port[i];
 386 
 387                 if (i == pi->port_id)
 388                         break;
 389 
 390 #ifdef TCP_OFFLOAD_ENABLE
 391                 if (!(sc->flags & INTR_FWD))
 392                         rc += p->nrxq + p->nofldrxq;
 393                 else
 394                         rc += max(p->nrxq, p->nofldrxq);
 395 #else
 396                 /*
 397                  * Not compiled with offload support and intr_count > 1.  Only
 398                  * NIC queues exist and they'd better be taking direct
 399                  * interrupts.
 400                  */
 401                 ASSERT(!(sc->flags & INTR_FWD));
 402                 rc += p->nrxq;
 403 #endif
 404         }
 405         return (rc);
 406 }
 407 
 408 /*
 409  * Given an arbitrary "index," come up with an iq that can be used by other
 410  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
 411  * The iq returned is guaranteed to be something that takes direct interrupts.
 412  */
 413 static struct sge_iq *
 414 port_intr_iq(struct port_info *pi, int idx)
 415 {
 416         struct adapter *sc = pi->adapter;
 417         struct sge *s = &sc->sge;
 418         struct sge_iq *iq = NULL;
 419 
 420         if (sc->intr_count == 1)
 421                 return (&sc->sge.fwq);
 422 
 423 #ifdef TCP_OFFLOAD_ENABLE
 424         if (!(sc->flags & INTR_FWD)) {
 425                 idx %= pi->nrxq + pi->nofldrxq;
 426 
 427                 if (idx >= pi->nrxq) {
 428                         idx -= pi->nrxq;
 429                         iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
 430                 } else
 431                         iq = &s->rxq[pi->first_rxq + idx].iq;
 432 
 433         } else {
 434                 idx %= max(pi->nrxq, pi->nofldrxq);
 435 
 436                 if (pi->nrxq >= pi->nofldrxq)
 437                         iq = &s->rxq[pi->first_rxq + idx].iq;
 438                 else
 439                         iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
 440         }
 441 #else
 442         /*
 443          * Not compiled with offload support and intr_count > 1.  Only NIC
 444          * queues exist and they'd better be taking direct interrupts.
 445          */
 446         ASSERT(!(sc->flags & INTR_FWD));
 447 
 448         idx %= pi->nrxq;
 449         iq = &s->rxq[pi->first_rxq + idx].iq;
 450 #endif
 451 
 452         return (iq);
 453 }
 454 
 455 int
 456 t4_setup_port_queues(struct port_info *pi)
 457 {
 458         int rc = 0, i, intr_idx, j;
 459         struct sge_rxq *rxq;
 460         struct sge_txq *txq;
 461 #ifdef TCP_OFFLOAD_ENABLE
 462         int iqid;
 463         struct sge_wrq *ctrlq;
 464         struct sge_ofld_rxq *ofld_rxq;
 465         struct sge_wrq *ofld_txq;
 466 #endif
 467         struct adapter *sc = pi->adapter;
 468         struct driver_properties *p = &sc->props;
 469 
 470         pi->ksp_config = setup_port_config_kstats(pi);
 471         pi->ksp_info   = setup_port_info_kstats(pi);
 472 
 473         /* Interrupt vector to start from (when using multiple vectors) */
 474         intr_idx = first_vector(pi);
 475 
 476         /*
 477          * First pass over all rx queues (NIC and TOE):
 478          * a) initialize iq and fl
 479          * b) allocate queue iff it will take direct interrupts.
 480          */
 481 
 482         for_each_rxq(pi, i, rxq) {
 483 
 484                 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq,
 485                     RX_IQ_ESIZE);
 486 
 487                 init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */
 488 
 489                 if ((!(sc->flags & INTR_FWD))
 490 #ifdef TCP_OFFLOAD_ENABLE
 491                     || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
 492 #else
 493                     || (sc->intr_count > 1 && pi->nrxq)
 494 #endif
 495                    ) {
 496                         rxq->iq.flags |= IQ_INTR;
 497                         rc = alloc_rxq(pi, rxq, intr_idx, i);
 498                         if (rc != 0)
 499                                 goto done;
 500                         intr_idx++;
 501                 }
 502 
 503         }
 504 
 505 #ifdef TCP_OFFLOAD_ENABLE
 506         for_each_ofld_rxq(pi, i, ofld_rxq) {
 507 
 508                 init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
 509                     p->qsize_rxq, RX_IQ_ESIZE);
 510 
 511                 init_fl(&ofld_rxq->fl, p->qsize_rxq / 8);
 512 
 513                 if (!(sc->flags & INTR_FWD) ||
 514                     (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
 515                         ofld_rxq->iq.flags = IQ_INTR;
 516                         rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx);
 517                         if (rc != 0)
 518                                 goto done;
 519 
 520                         intr_idx++;
 521                 }
 522         }
 523 #endif
 524 
 525         /*
 526          * Second pass over all rx queues (NIC and TOE).  The queues forwarding
 527          * their interrupts are allocated now.
 528          */
 529         j = 0;
 530         for_each_rxq(pi, i, rxq) {
 531                 if (rxq->iq.flags & IQ_INTR)
 532                         continue;
 533 
 534                 intr_idx = port_intr_iq(pi, j)->abs_id;
 535 
 536                 rc = alloc_rxq(pi, rxq, intr_idx, i);
 537                 if (rc != 0)
 538                         goto done;
 539                 j++;
 540         }
 541 
 542 #ifdef TCP_OFFLOAD_ENABLE
 543         for_each_ofld_rxq(pi, i, ofld_rxq) {
 544                 if (ofld_rxq->iq.flags & IQ_INTR)
 545                         continue;
 546 
 547                 intr_idx = port_intr_iq(pi, j)->abs_id;
 548                 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx);
 549                 if (rc != 0)
 550                         goto done;
 551                 j++;
 552         }
 553 #endif
 554         /*
 555          * Now the tx queues.  Only one pass needed.
 556          */
 557         j = 0;
 558         for_each_txq(pi, i, txq) {
 559                 uint16_t iqid;
 560 
 561                 iqid = port_intr_iq(pi, j)->cntxt_id;
 562                 init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid);
 563                 rc = alloc_txq(pi, txq, i);
 564                 if (rc != 0)
 565                         goto done;
 566         }
 567 
 568 #ifdef TCP_OFFLOAD_ENABLE
 569         for_each_ofld_txq(pi, i, ofld_txq) {
 570                 uint16_t iqid;
 571 
 572                 iqid = port_intr_iq(pi, j)->cntxt_id;
 573                 init_eq(sc, &ofld_txq->eq, EQ_OFLD, p->qsize_txq, pi->tx_chan,
 574                     iqid);
 575                 rc = alloc_wrq(sc, pi, ofld_txq, i);
 576                 if (rc != 0)
 577                         goto done;
 578         }
 579 
 580         /*
 581          * Finally, the control queue.
 582          */
 583         ctrlq = &sc->sge.ctrlq[pi->port_id];
 584         iqid = port_intr_iq(pi, 0)->cntxt_id;
 585         init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid);
 586         rc = alloc_wrq(sc, pi, ctrlq, 0);
 587 #endif
 588 
 589 done:
 590         if (rc != 0)
 591                 (void) t4_teardown_port_queues(pi);
 592 
 593         return (rc);
 594 }
 595 
 596 /*
 597  * Idempotent
 598  */
 599 int
 600 t4_teardown_port_queues(struct port_info *pi)
 601 {
 602         int i;
 603         struct sge_rxq *rxq;
 604         struct sge_txq *txq;
 605 #ifdef TCP_OFFLOAD_ENABLE
 606         struct adapter *sc = pi->adapter;
 607         struct sge_ofld_rxq *ofld_rxq;
 608         struct sge_wrq *ofld_txq;
 609 #endif
 610 
 611         if (pi->ksp_config != NULL) {
 612                 kstat_delete(pi->ksp_config);
 613                 pi->ksp_config = NULL;
 614         }
 615         if (pi->ksp_info != NULL) {
 616                 kstat_delete(pi->ksp_info);
 617                 pi->ksp_info = NULL;
 618         }
 619 
 620 #ifdef TCP_OFFLOAD_ENABLE
 621         (void) free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
 622 #endif
 623 
 624         for_each_txq(pi, i, txq) {
 625                 (void) free_txq(pi, txq);
 626         }
 627 
 628 #ifdef TCP_OFFLOAD_ENABLE
 629         for_each_ofld_txq(pi, i, ofld_txq) {
 630                 (void) free_wrq(sc, ofld_txq);
 631         }
 632 
 633         for_each_ofld_rxq(pi, i, ofld_rxq) {
 634                 if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
 635                         (void) free_ofld_rxq(pi, ofld_rxq);
 636         }
 637 #endif
 638 
 639         for_each_rxq(pi, i, rxq) {
 640                 if ((rxq->iq.flags & IQ_INTR) == 0)
 641                         (void) free_rxq(pi, rxq);
 642         }
 643 
 644         /*
 645          * Then take down the rx queues that take direct interrupts.
 646          */
 647 
 648         for_each_rxq(pi, i, rxq) {
 649                 if (rxq->iq.flags & IQ_INTR)
 650                         (void) free_rxq(pi, rxq);
 651         }
 652 
 653 #ifdef TCP_OFFLOAD_ENABLE
 654         for_each_ofld_rxq(pi, i, ofld_rxq) {
 655                 if (ofld_rxq->iq.flags & IQ_INTR)
 656                         (void) free_ofld_rxq(pi, ofld_rxq);
 657         }
 658 #endif
 659 
 660         return (0);
 661 }
 662 
 663 /* Deals with errors and forwarded interrupts */
 664 uint_t
 665 t4_intr_all(caddr_t arg1, caddr_t arg2)
 666 {
 667 
 668         (void) t4_intr_err(arg1, arg2);
 669         (void) t4_intr(arg1, arg2);
 670 
 671         return (DDI_INTR_CLAIMED);
 672 }
 673 
 674 static void
 675 t4_intr_rx_work(struct sge_iq *iq)
 676 {
 677         mblk_t *mp = NULL;
 678         struct sge_rxq *rxq = iq_to_rxq(iq);    /* Use iff iq is part of rxq */
 679         RXQ_LOCK(rxq);
 680         if (!iq->polling) {
 681                 mp = t4_ring_rx(rxq, iq->qsize/8);
 682                 t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS),
 683                      V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
 684         }
 685         RXQ_UNLOCK(rxq);
 686         if (mp != NULL)
 687                 mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp,
 688                             rxq->ring_gen_num);
 689 }
 690 
 691 /* Deals with interrupts on the given ingress queue */
 692 /* ARGSUSED */
 693 uint_t
 694 t4_intr(caddr_t arg1, caddr_t arg2)
 695 {
 696         /* LINTED: E_BAD_PTR_CAST_ALIGN */
 697         struct sge_iq *iq = (struct sge_iq *)arg2;
 698         int state;
 699 
 700         /* Right now receive polling is only enabled for MSI-X and
 701          * when we have enough msi-x vectors i.e no interrupt forwarding.
 702          */
 703         if (iq->adapter->props.multi_rings) {
 704                 t4_intr_rx_work(iq);
 705         } else {
 706                 state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY);
 707                 if (state == IQS_IDLE) {
 708                         (void) service_iq(iq, 0);
 709                         (void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE);
 710                 }
 711         }
 712         return (DDI_INTR_CLAIMED);
 713 }
 714 
 715 /* Deals with error interrupts */
 716 /* ARGSUSED */
 717 uint_t
 718 t4_intr_err(caddr_t arg1, caddr_t arg2)
 719 {
 720         /* LINTED: E_BAD_PTR_CAST_ALIGN */
 721         struct adapter *sc = (struct adapter *)arg1;
 722 
 723         t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
 724         (void) t4_slow_intr_handler(sc);
 725 
 726         return (DDI_INTR_CLAIMED);
 727 }
 728 
 729 /*
 730  * t4_ring_rx - Process responses from an SGE response queue.
 731  *
 732  * This function processes responses from an SGE response queue up to the supplied budget.
 733  * Responses include received packets as well as control messages from FW
 734  * or HW.
 735  * It returns a chain of mblks containing the received data, to be
 736  * passed up to mac_ring_rx().
 737  */
 738 mblk_t *
 739 t4_ring_rx(struct sge_rxq *rxq, int budget)
 740 {
 741         struct sge_iq *iq = &rxq->iq;
 742         struct sge_fl *fl = &rxq->fl;           /* Use iff IQ_HAS_FL */
 743         struct adapter *sc = iq->adapter;
 744         struct rsp_ctrl *ctrl;
 745         const struct rss_header *rss;
 746         int ndescs = 0, fl_bufs_used = 0;
 747         int rsp_type;
 748         uint32_t lq;
 749         mblk_t *mblk_head = NULL, **mblk_tail, *m;
 750         struct cpl_rx_pkt *cpl;
 751         uint32_t received_bytes = 0, pkt_len = 0;
 752         bool csum_ok;
 753         uint16_t err_vec;
 754 
 755         mblk_tail = &mblk_head;
 756 
 757         while (is_new_response(iq, &ctrl)) {
 758 
 759                 membar_consumer();
 760 
 761                 m = NULL;
 762                 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
 763                 lq = be32_to_cpu(ctrl->pldbuflen_qid);
 764                 rss = (const void *)iq->cdesc;
 765 
 766                 switch (rsp_type) {
 767                 case X_RSPD_TYPE_FLBUF:
 768 
 769                         ASSERT(iq->flags & IQ_HAS_FL);
 770 
 771                         if (CPL_RX_PKT == rss->opcode) {
 772                                 cpl = (void *)(rss + 1);
 773                                 pkt_len = be16_to_cpu(cpl->len);
 774 
 775                                 if (iq->polling && ((received_bytes + pkt_len) > budget))
 776                                         goto done;
 777 
 778                                 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
 779                                 if (m == NULL) {
 780                                         panic("%s: line %d.", __func__,
 781                                             __LINE__);
 782                                 }
 783 
 784                                 iq->intr_next = iq->intr_params;
 785                                 m->b_rptr += sc->sge.pktshift;
 786                                 if (sc->params.tp.rx_pkt_encap)
 787                                 /* It is enabled only in T6 config file */
 788                                         err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
 789                                 else
 790                                         err_vec = ntohs(cpl->err_vec);
 791 
 792                                 csum_ok = cpl->csum_calc && !err_vec;
 793 
 794                                 /* TODO: what about cpl->ip_frag? */
 795                                 if (csum_ok && !cpl->ip_frag) {
 796                                         mac_hcksum_set(m, 0, 0, 0, 0xffff,
 797                                             HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
 798                                             HCK_IPV4_HDRCKSUM_OK);
 799                                         rxq->rxcsum++;
 800                                 }
 801                                 rxq->rxpkts++;
 802                                 rxq->rxbytes += pkt_len;
 803                                 received_bytes += pkt_len;
 804 
 805                                 *mblk_tail = m;
 806                                 mblk_tail = &m->b_next;
 807 
 808                                 break;
 809                         }
 810 
 811                         m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
 812                         if (m == NULL) {
 813                                 panic("%s: line %d.", __func__,
 814                                     __LINE__);
 815                         }
 816 
 817                 case X_RSPD_TYPE_CPL:
 818                         ASSERT(rss->opcode < NUM_CPL_CMDS);
 819                         sc->cpl_handler[rss->opcode](iq, rss, m);
 820                         break;
 821 
 822                 default:
 823                         break;
 824                 }
 825                 iq_next(iq);
 826                 ++ndescs;
 827                 if (!iq->polling && (ndescs == budget))
 828                         break;
 829         }
 830 
 831 done:
 832 
 833         t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
 834                      V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) |
 835                      V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
 836 
 837         if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) {
 838                 int starved;
 839                 FL_LOCK(fl);
 840                 fl->needed += fl_bufs_used;
 841                 starved = refill_fl(sc, fl, fl->cap / 8);
 842                 FL_UNLOCK(fl);
 843                 if (starved)
 844                         add_fl_to_sfl(sc, fl);
 845         }
 846         return (mblk_head);
 847 }
 848 
 849 /*
 850  * Deals with anything and everything on the given ingress queue.
 851  */
 852 static int
 853 service_iq(struct sge_iq *iq, int budget)
 854 {
 855         struct sge_iq *q;
 856         struct sge_rxq *rxq = iq_to_rxq(iq);    /* Use iff iq is part of rxq */
 857         struct sge_fl *fl = &rxq->fl;            /* Use iff IQ_HAS_FL */
 858         struct adapter *sc = iq->adapter;
 859         struct rsp_ctrl *ctrl;
 860         const struct rss_header *rss;
 861         int ndescs = 0, limit, fl_bufs_used = 0;
 862         int rsp_type;
 863         uint32_t lq;
 864         mblk_t *m;
 865         STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
 866 
 867         limit = budget ? budget : iq->qsize / 8;
 868 
 869         /*
 870          * We always come back and check the descriptor ring for new indirect
 871          * interrupts and other responses after running a single handler.
 872          */
 873         for (;;) {
 874                 while (is_new_response(iq, &ctrl)) {
 875 
 876                         membar_consumer();
 877 
 878                         m = NULL;
 879                         rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
 880                         lq = be32_to_cpu(ctrl->pldbuflen_qid);
 881                         rss = (const void *)iq->cdesc;
 882 
 883                         switch (rsp_type) {
 884                         case X_RSPD_TYPE_FLBUF:
 885 
 886                                 ASSERT(iq->flags & IQ_HAS_FL);
 887 
 888                                 m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
 889                                 if (m == NULL) {
 890                                         panic("%s: line %d.", __func__,
 891                                             __LINE__);
 892                                 }
 893 
 894                         /* FALLTHRU */
 895                         case X_RSPD_TYPE_CPL:
 896 
 897                                 ASSERT(rss->opcode < NUM_CPL_CMDS);
 898                                 sc->cpl_handler[rss->opcode](iq, rss, m);
 899                                 break;
 900 
 901                         case X_RSPD_TYPE_INTR:
 902 
 903                                 /*
 904                                  * Interrupts should be forwarded only to queues
 905                                  * that are not forwarding their interrupts.
 906                                  * This means service_iq can recurse but only 1
 907                                  * level deep.
 908                                  */
 909                                 ASSERT(budget == 0);
 910 
 911                                 q = sc->sge.iqmap[lq - sc->sge.iq_start];
 912                                 if (atomic_cas_uint(&q->state, IQS_IDLE,
 913                                     IQS_BUSY) == IQS_IDLE) {
 914                                         if (service_iq(q, q->qsize / 8) == 0) {
 915                                                 (void) atomic_cas_uint(
 916                                                     &q->state, IQS_BUSY,
 917                                                     IQS_IDLE);
 918                                         } else {
 919                                                 STAILQ_INSERT_TAIL(&iql, q,
 920                                                     link);
 921                                         }
 922                                 }
 923                                 break;
 924 
 925                         default:
 926                                 break;
 927                         }
 928 
 929                         iq_next(iq);
 930                         if (++ndescs == limit) {
 931                                 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
 932                                     V_CIDXINC(ndescs) |
 933                                     V_INGRESSQID(iq->cntxt_id) |
 934                                     V_SEINTARM(V_QINTR_TIMER_IDX(
 935                                     X_TIMERREG_UPDATE_CIDX)));
 936                                 ndescs = 0;
 937 
 938                                 if (fl_bufs_used > 0) {
 939                                         ASSERT(iq->flags & IQ_HAS_FL);
 940                                         FL_LOCK(fl);
 941                                         fl->needed += fl_bufs_used;
 942                                         (void) refill_fl(sc, fl, fl->cap / 8);
 943                                         FL_UNLOCK(fl);
 944                                         fl_bufs_used = 0;
 945                                 }
 946 
 947                                 if (budget != 0)
 948                                         return (EINPROGRESS);
 949                         }
 950                 }
 951 
 952                 if (STAILQ_EMPTY(&iql) != 0)
 953                         break;
 954 
 955                 /*
 956                  * Process the head only, and send it to the back of the list if
 957                  * it's still not done.
 958                  */
 959                 q = STAILQ_FIRST(&iql);
 960                 STAILQ_REMOVE_HEAD(&iql, link);
 961                 if (service_iq(q, q->qsize / 8) == 0)
 962                         (void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE);
 963                 else
 964                         STAILQ_INSERT_TAIL(&iql, q, link);
 965         }
 966 
 967         t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
 968             V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
 969 
 970         if (iq->flags & IQ_HAS_FL) {
 971                 int starved;
 972 
 973                 FL_LOCK(fl);
 974                 fl->needed += fl_bufs_used;
 975                 starved = refill_fl(sc, fl, fl->cap / 4);
 976                 FL_UNLOCK(fl);
 977                 if (starved != 0)
 978                         add_fl_to_sfl(sc, fl);
 979         }
 980 
 981         return (0);
 982 }
 983 
 984 #ifdef TCP_OFFLOAD_ENABLE
 985 int
 986 t4_mgmt_tx(struct adapter *sc, mblk_t *m)
 987 {
 988         return (t4_wrq_tx(sc, &sc->sge.mgmtq, m));
 989 }
 990 
 991 /*
 992  * Doesn't fail.  Holds on to work requests it can't send right away.
 993  */
 994 int
 995 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, mblk_t *m0)
 996 {
 997         struct sge_eq *eq = &wrq->eq;
 998         struct mblk_pair *wr_list = &wrq->wr_list;
 999         int can_reclaim;
1000         caddr_t dst;
1001         mblk_t *wr, *next;
1002 
1003         TXQ_LOCK_ASSERT_OWNED(wrq);
1004 #ifdef TCP_OFFLOAD_ENABLE
1005         ASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1006             (eq->flags & EQ_TYPEMASK) == EQ_CTRL);
1007 #else
1008         ASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL);
1009 #endif
1010 
1011         if (m0 != NULL) {
1012                 if (wr_list->head != NULL)
1013                         wr_list->tail->b_next = m0;
1014                 else
1015                         wr_list->head = m0;
1016                 while (m0->b_next)
1017                         m0 = m0->b_next;
1018                 wr_list->tail = m0;
1019         }
1020 
1021         can_reclaim = reclaimable(eq);
1022         eq->cidx += can_reclaim;
1023         eq->avail += can_reclaim;
1024         if (eq->cidx >= eq->cap)
1025                 eq->cidx -= eq->cap;
1026 
1027         for (wr = wr_list->head; wr; wr = next) {
1028                 int ndesc, len = 0;
1029                 mblk_t *m;
1030 
1031                 next = wr->b_next;
1032                 wr->b_next = NULL;
1033 
1034                 for (m = wr; m; m = m->b_cont)
1035                         len += MBLKL(m);
1036 
1037                 ASSERT(len > 0 && (len & 0x7) == 0);
1038                 ASSERT(len <= SGE_MAX_WR_LEN);
1039 
1040                 ndesc = howmany(len, EQ_ESIZE);
1041                 if (eq->avail < ndesc) {
1042                         wr->b_next = next;
1043                         wrq->no_desc++;
1044                         break;
1045                 }
1046 
1047                 dst = (void *)&eq->desc[eq->pidx];
1048                 for (m = wr; m; m = m->b_cont)
1049                         copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
1050 
1051                 eq->pidx += ndesc;
1052                 eq->avail -= ndesc;
1053                 if (eq->pidx >= eq->cap)
1054                         eq->pidx -= eq->cap;
1055 
1056                 eq->pending += ndesc;
1057                 if (eq->pending > 16)
1058                         ring_tx_db(sc, eq);
1059 
1060                 wrq->tx_wrs++;
1061                 freemsg(wr);
1062 
1063                 if (eq->avail < 8) {
1064                         can_reclaim = reclaimable(eq);
1065                         eq->cidx += can_reclaim;
1066                         eq->avail += can_reclaim;
1067                         if (eq->cidx >= eq->cap)
1068                                 eq->cidx -= eq->cap;
1069                 }
1070         }
1071 
1072         if (eq->pending != 0)
1073                 ring_tx_db(sc, eq);
1074 
1075         if (wr == NULL)
1076                 wr_list->head = wr_list->tail = NULL;
1077         else {
1078                 wr_list->head = wr;
1079 
1080                 ASSERT(wr_list->tail->b_next == NULL);
1081         }
1082 
1083         return (0);
1084 }
1085 #endif
1086 
1087 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1088 #define TXPKTS_PKT_HDR ((\
1089         sizeof (struct ulp_txpkt) + \
1090         sizeof (struct ulptx_idata) + \
1091         sizeof (struct cpl_tx_pkt_core)) / 8)
1092 
1093 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1094 #define TXPKTS_WR_HDR (\
1095         sizeof (struct fw_eth_tx_pkts_wr) / 8 + \
1096         TXPKTS_PKT_HDR)
1097 
1098 /* Header of a tx WR, before SGL of first packet (in flits) */
1099 #define TXPKT_WR_HDR ((\
1100         sizeof (struct fw_eth_tx_pkt_wr) + \
1101         sizeof (struct cpl_tx_pkt_core)) / 8)
1102 
1103 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
1104 #define TXPKT_LSO_WR_HDR ((\
1105         sizeof (struct fw_eth_tx_pkt_wr) + \
1106         sizeof(struct cpl_tx_pkt_lso_core) + \
1107         sizeof (struct cpl_tx_pkt_core)) / 8)
1108 
1109 mblk_t *
1110 t4_eth_tx(void *arg, mblk_t *frame)
1111 {
1112         struct sge_txq *txq = (struct sge_txq *) arg;
1113         struct port_info *pi = txq->port;
1114         struct adapter *sc = pi->adapter;
1115         struct sge_eq *eq = &txq->eq;
1116         mblk_t *next_frame;
1117         int rc, coalescing;
1118         struct txpkts txpkts;
1119         struct txinfo txinfo;
1120 
1121         txpkts.npkt = 0; /* indicates there's nothing in txpkts */
1122         coalescing = 0;
1123 
1124         TXQ_LOCK(txq);
1125         if (eq->avail < 8)
1126                 (void) reclaim_tx_descs(txq, 8);
1127         for (; frame; frame = next_frame) {
1128 
1129                 if (eq->avail < 8)
1130                         break;
1131 
1132                 next_frame = frame->b_next;
1133                 frame->b_next = NULL;
1134 
1135                 if (next_frame != NULL)
1136                         coalescing = 1;
1137 
1138                 rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing);
1139                 if (rc != 0) {
1140                         if (rc == ENOMEM) {
1141 
1142                                 /* Short of resources, suspend tx */
1143 
1144                                 frame->b_next = next_frame;
1145                                 break;
1146                         }
1147 
1148                         /*
1149                          * Unrecoverable error for this frame, throw it
1150                          * away and move on to the next.
1151                          */
1152 
1153                         freemsg(frame);
1154                         continue;
1155                 }
1156 
1157                 if (coalescing != 0 &&
1158                     add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) {
1159 
1160                         /* Successfully absorbed into txpkts */
1161 
1162                         write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo);
1163                         goto doorbell;
1164                 }
1165 
1166                 /*
1167                  * We weren't coalescing to begin with, or current frame could
1168                  * not be coalesced (add_to_txpkts flushes txpkts if a frame
1169                  * given to it can't be coalesced).  Either way there should be
1170                  * nothing in txpkts.
1171                  */
1172                 ASSERT(txpkts.npkt == 0);
1173 
1174                 /* We're sending out individual frames now */
1175                 coalescing = 0;
1176 
1177                 if (eq->avail < 8)
1178                         (void) reclaim_tx_descs(txq, 8);
1179                 rc = write_txpkt_wr(pi, txq, frame, &txinfo);
1180                 if (rc != 0) {
1181 
1182                         /* Short of hardware descriptors, suspend tx */
1183 
1184                         /*
1185                          * This is an unlikely but expensive failure.  We've
1186                          * done all the hard work (DMA bindings etc.) and now we
1187                          * can't send out the frame.  What's worse, we have to
1188                          * spend even more time freeing up everything in txinfo.
1189                          */
1190                         txq->qfull++;
1191                         free_txinfo_resources(txq, &txinfo);
1192 
1193                         frame->b_next = next_frame;
1194                         break;
1195                 }
1196 
1197 doorbell:
1198                 /* Fewer and fewer doorbells as the queue fills up */
1199                 if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) {
1200                         txq->txbytes += txinfo.len;
1201                         txq->txpkts++;
1202                         ring_tx_db(sc, eq);
1203                 }
1204                 (void) reclaim_tx_descs(txq, 32);
1205         }
1206 
1207         if (txpkts.npkt > 0)
1208                 write_txpkts_wr(txq, &txpkts);
1209 
1210         /*
1211          * frame not NULL means there was an error but we haven't thrown it
1212          * away.  This can happen when we're short of tx descriptors (qfull) or
1213          * maybe even DMA handles (dma_hdl_failed).  Either way, a credit flush
1214          * and reclaim will get things going again.
1215          *
1216          * If eq->avail is already 0 we know a credit flush was requested in the
1217          * WR that reduced it to 0 so we don't need another flush (we don't have
1218          * any descriptor for a flush WR anyway, duh).
1219          */
1220         if (frame && eq->avail > 0)
1221                 write_txqflush_wr(txq);
1222 
1223         if (eq->pending != 0)
1224                 ring_tx_db(sc, eq);
1225 
1226         (void) reclaim_tx_descs(txq, eq->qsize);
1227         TXQ_UNLOCK(txq);
1228 
1229         return (frame);
1230 }
1231 
1232 static inline void
1233 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx,
1234         int qsize, uint8_t esize)
1235 {
1236         ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS);
1237         ASSERT(pktc_idx < SGE_NCOUNTERS);    /* -ve is ok, means don't use */
1238 
1239         iq->flags = 0;
1240         iq->adapter = sc;
1241         iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1242         iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1243         if (pktc_idx >= 0) {
1244                 iq->intr_params |= F_QINTR_CNT_EN;
1245                 iq->intr_pktc_idx = pktc_idx;
1246         }
1247         iq->qsize = roundup(qsize, 16);              /* See FW_IQ_CMD/iqsize */
1248         iq->esize = max(esize, 16);          /* See FW_IQ_CMD/iqesize */
1249 }
1250 
1251 static inline void
1252 init_fl(struct sge_fl *fl, uint16_t qsize)
1253 {
1254 
1255         fl->qsize = qsize;
1256 }
1257 
1258 static inline void
1259 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize,
1260     uint8_t tx_chan, uint16_t iqid)
1261 {
1262         struct sge *s = &sc->sge;
1263         uint32_t r;
1264 
1265         ASSERT(tx_chan < NCHAN);
1266         ASSERT(eqtype <= EQ_TYPEMASK);
1267 
1268         if (is_t5(sc->params.chip)) {
1269                 r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
1270                 r >>= S_QUEUESPERPAGEPF0 +
1271                     (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
1272                 s->s_qpp = r & M_QUEUESPERPAGEPF0;
1273         }
1274  
1275         eq->flags = eqtype & EQ_TYPEMASK;
1276         eq->tx_chan = tx_chan;
1277         eq->iqid = iqid;
1278         eq->qsize = qsize;
1279 }
1280 
1281 /*
1282  * Allocates the ring for an ingress queue and an optional freelist.  If the
1283  * freelist is specified it will be allocated and then associated with the
1284  * ingress queue.
1285  *
1286  * Returns errno on failure.  Resources allocated up to that point may still be
1287  * allocated.  Caller is responsible for cleanup in case this function fails.
1288  *
1289  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1290  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1291  * the index of the queue to which its interrupts will be forwarded.
1292  */
1293 static int
1294 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1295     int intr_idx, int cong)
1296 {
1297         int rc, i, cntxt_id;
1298         size_t len;
1299         struct fw_iq_cmd c;
1300         struct adapter *sc = iq->adapter;
1301         uint32_t v = 0;
1302 
1303         len = iq->qsize * iq->esize;
1304         rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl,
1305             &iq->ba, (caddr_t *)&iq->desc);
1306         if (rc != 0)
1307                 return (rc);
1308 
1309         bzero(&c, sizeof (c));
1310         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1311             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1312             V_FW_IQ_CMD_VFN(0));
1313 
1314         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1315             FW_LEN16(c));
1316 
1317         /* Special handling for firmware event queue */
1318         if (iq == &sc->sge.fwq)
1319                 v |= F_FW_IQ_CMD_IQASYNCH;
1320 
1321         if (iq->flags & IQ_INTR)
1322                 ASSERT(intr_idx < sc->intr_count);
1323         else
1324                 v |= F_FW_IQ_CMD_IQANDST;
1325         v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1326 
1327         c.type_to_iqandstindex = cpu_to_be32(v |
1328             V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1329             V_FW_IQ_CMD_VIID(pi->viid) |
1330             V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1331         c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1332             F_FW_IQ_CMD_IQGTSMODE |
1333             V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1334             V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1335         c.iqsize = cpu_to_be16(iq->qsize);
1336         c.iqaddr = cpu_to_be64(iq->ba);
1337         if (cong >= 0)
1338                 c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN);
1339 
1340         if (fl != NULL) {
1341                 unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip);
1342 
1343                 mutex_init(&fl->lock, NULL, MUTEX_DRIVER,
1344                     DDI_INTR_PRI(sc->intr_pri));
1345                 fl->flags |= FL_MTX;
1346 
1347                 len = fl->qsize * RX_FL_ESIZE;
1348                 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl,
1349                     &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc);
1350                 if (rc != 0)
1351                         return (rc);
1352 
1353                 /* Allocate space for one software descriptor per buffer. */
1354                 fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8;
1355                 fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap,
1356                     KM_SLEEP);
1357                 fl->needed = fl->cap;
1358                 fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1359 
1360                 c.iqns_to_fl0congen |=
1361                     cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1362                     F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN);
1363                 if (cong >= 0) {
1364                         c.iqns_to_fl0congen |=
1365                             BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1366                             F_FW_IQ_CMD_FL0CONGCIF |
1367                             F_FW_IQ_CMD_FL0CONGEN);
1368                 }
1369 
1370                 /* In T6, for egress queue type FL there is internal overhead
1371                  * of 16B for header going into FLM module.  Hence the maximum
1372                  * allowed burst size is 448 bytes.  For T4/T5, the hardware
1373                  * doesn't coalesce fetch requests if more than 64 bytes of
1374                  * Free List pointers are provided, so we use a 128-byte Fetch
1375                  * Burst Minimum there (T6 implements coalescing so we can use
1376                  * the smaller 64-byte value there).
1377                  */
1378 
1379                 c.fl0dcaen_to_fl0cidxfthresh =
1380                     cpu_to_be16(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5
1381                                                      ? X_FETCHBURSTMIN_128B
1382                                                      : X_FETCHBURSTMIN_64B) |
1383                     V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5
1384                                          ? X_FETCHBURSTMAX_512B
1385                                          : X_FETCHBURSTMAX_256B));
1386                 c.fl0size = cpu_to_be16(fl->qsize);
1387                 c.fl0addr = cpu_to_be64(fl->ba);
1388         }
1389 
1390         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1391         if (rc != 0) {
1392                 cxgb_printf(sc->dip, CE_WARN,
1393                     "failed to create ingress queue: %d", rc);
1394                 return (rc);
1395         }
1396 
1397         iq->cdesc = iq->desc;
1398         iq->cidx = 0;
1399         iq->gen = 1;
1400         iq->intr_next = iq->intr_params;
1401         iq->adapter = sc;
1402         iq->cntxt_id = be16_to_cpu(c.iqid);
1403         iq->abs_id = be16_to_cpu(c.physiqid);
1404         iq->flags |= IQ_ALLOCATED;
1405         mutex_init(&iq->lock, NULL,
1406                     MUTEX_DRIVER, DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri)));
1407         iq->polling = 0;
1408 
1409         cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1410         if (cntxt_id >= sc->sge.niq) {
1411                 panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1412                     cntxt_id, sc->sge.niq - 1);
1413         }
1414         sc->sge.iqmap[cntxt_id] = iq;
1415 
1416         if (fl != NULL) {
1417                 fl->cntxt_id = be16_to_cpu(c.fl0id);
1418                 fl->pidx = fl->cidx = 0;
1419                 fl->copy_threshold = rx_copy_threshold;
1420 
1421                 cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1422                 if (cntxt_id >= sc->sge.neq) {
1423                         panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1424                             __func__, cntxt_id, sc->sge.neq - 1);
1425                 }
1426                 sc->sge.eqmap[cntxt_id] = (void *)fl;
1427 
1428                 FL_LOCK(fl);
1429                 (void) refill_fl(sc, fl, fl->lowat);
1430                 FL_UNLOCK(fl);
1431 
1432                 iq->flags |= IQ_HAS_FL;
1433         }
1434 
1435         if (is_t5(sc->params.chip) && cong >= 0) {
1436                 uint32_t param, val;
1437 
1438                 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1439                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1440                         V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
1441                 if (cong == 0)
1442                         val = 1 << 19;
1443                 else {
1444                         val = 2 << 19;
1445                         for (i = 0; i < 4; i++) {
1446                                 if (cong & (1 << i))
1447                                         val |= 1 << (i << 2);
1448                         }
1449                 }
1450 
1451                 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
1452                 if (rc != 0) {
1453                         /* report error but carry on */
1454                         cxgb_printf(sc->dip, CE_WARN,
1455                             "failed to set congestion manager context for "
1456                             "ingress queue %d: %d", iq->cntxt_id, rc);
1457                 }
1458         }
1459 
1460         /* Enable IQ interrupts */
1461         iq->state = IQS_IDLE;
1462         t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1463             V_INGRESSQID(iq->cntxt_id));
1464 
1465         return (0);
1466 }
1467 
1468 static int
1469 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1470 {
1471         int rc;
1472         struct adapter *sc = iq->adapter;
1473         dev_info_t *dip;
1474 
1475         dip = pi ? pi->dip : sc->dip;
1476 
1477         if (iq != NULL) {
1478                 if (iq->flags & IQ_ALLOCATED) {
1479                         rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1480                             FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1481                             fl ? fl->cntxt_id : 0xffff, 0xffff);
1482                         if (rc != 0) {
1483                                 cxgb_printf(dip, CE_WARN,
1484                                     "failed to free queue %p: %d", iq, rc);
1485                                 return (rc);
1486                         }
1487                         mutex_destroy(&iq->lock);
1488                         iq->flags &= ~IQ_ALLOCATED;
1489                 }
1490 
1491                 if (iq->desc != NULL) {
1492                         (void) free_desc_ring(&iq->dhdl, &iq->ahdl);
1493                         iq->desc = NULL;
1494                 }
1495 
1496                 bzero(iq, sizeof (*iq));
1497         }
1498 
1499         if (fl != NULL) {
1500                 if (fl->sdesc != NULL) {
1501                         FL_LOCK(fl);
1502                         free_fl_bufs(fl);
1503                         FL_UNLOCK(fl);
1504 
1505                         kmem_free(fl->sdesc, sizeof (struct fl_sdesc) *
1506                             fl->cap);
1507                         fl->sdesc = NULL;
1508                 }
1509 
1510                 if (fl->desc != NULL) {
1511                         (void) free_desc_ring(&fl->dhdl, &fl->ahdl);
1512                         fl->desc = NULL;
1513                 }
1514 
1515                 if (fl->flags & FL_MTX) {
1516                         mutex_destroy(&fl->lock);
1517                         fl->flags &= ~FL_MTX;
1518                 }
1519 
1520                 bzero(fl, sizeof (struct sge_fl));
1521         }
1522 
1523         return (0);
1524 }
1525 
1526 static int
1527 alloc_fwq(struct adapter *sc)
1528 {
1529         int rc, intr_idx;
1530         struct sge_iq *fwq = &sc->sge.fwq;
1531 
1532         init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1533         fwq->flags |= IQ_INTR;       /* always */
1534         intr_idx = sc->intr_count > 1 ? 1 : 0;
1535         rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1536         if (rc != 0) {
1537                 cxgb_printf(sc->dip, CE_WARN,
1538                     "failed to create firmware event queue: %d.", rc);
1539                 return (rc);
1540         }
1541 
1542         return (0);
1543 }
1544 
1545 static int
1546 free_fwq(struct adapter *sc)
1547 {
1548 
1549         return (free_iq_fl(NULL, &sc->sge.fwq, NULL));
1550 }
1551 
1552 #ifdef TCP_OFFLOAD_ENABLE
1553 static int
1554 alloc_mgmtq(struct adapter *sc)
1555 {
1556         int rc;
1557         struct sge_wrq *mgmtq = &sc->sge.mgmtq;
1558 
1559         init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
1560             sc->sge.fwq.cntxt_id);
1561         rc = alloc_wrq(sc, NULL, mgmtq, 0);
1562         if (rc != 0) {
1563                 cxgb_printf(sc->dip, CE_WARN,
1564                     "failed to create management queue: %d\n", rc);
1565                 return (rc);
1566         }
1567 
1568         return (0);
1569 }
1570 #endif
1571 
1572 static int
1573 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i)
1574 {
1575         int rc;
1576 
1577         rxq->port = pi;
1578         rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan);
1579         if (rc != 0)
1580                 return (rc);
1581 
1582         rxq->ksp = setup_rxq_kstats(pi, rxq, i);
1583 
1584         return (rc);
1585 }
1586 
1587 static int
1588 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1589 {
1590         int rc;
1591 
1592         if (rxq->ksp != NULL) {
1593                 kstat_delete(rxq->ksp);
1594                 rxq->ksp = NULL;
1595         }
1596 
1597         rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1598         if (rc == 0)
1599                 bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl));
1600 
1601         return (rc);
1602 }
1603 
1604 #ifdef TCP_OFFLOAD_ENABLE
1605 static int
1606 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
1607         int intr_idx)
1608 {
1609         int rc;
1610 
1611         rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
1612             1 << pi->tx_chan);
1613         if (rc != 0)
1614                 return (rc);
1615 
1616         return (rc);
1617 }
1618 
1619 static int
1620 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
1621 {
1622         int rc;
1623 
1624         rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
1625         if (rc == 0)
1626                 bzero(&ofld_rxq->fl, sizeof (*ofld_rxq) -
1627                     offsetof(struct sge_ofld_rxq, fl));
1628 
1629         return (rc);
1630 }
1631 #endif
1632 
1633 static int
1634 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
1635 {
1636         int rc, cntxt_id;
1637         struct fw_eq_ctrl_cmd c;
1638 
1639         bzero(&c, sizeof (c));
1640 
1641         c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
1642             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
1643             V_FW_EQ_CTRL_CMD_VFN(0));
1644         c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC |
1645             F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
1646         c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */
1647         c.physeqid_pkd = BE_32(0);
1648         c.fetchszm_to_iqid =
1649             BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1650             V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
1651             F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
1652         c.dcaen_to_eqsize =
1653             BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1654             V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1655             V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1656             V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
1657         c.eqaddr = BE_64(eq->ba);
1658 
1659         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1660         if (rc != 0) {
1661                 cxgb_printf(sc->dip, CE_WARN,
1662                     "failed to create control queue %d: %d", eq->tx_chan, rc);
1663                 return (rc);
1664         }
1665         eq->flags |= EQ_ALLOCATED;
1666 
1667         eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid));
1668         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1669         if (cntxt_id >= sc->sge.neq)
1670                 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1671                     cntxt_id, sc->sge.neq - 1);
1672         sc->sge.eqmap[cntxt_id] = eq;
1673 
1674         return (rc);
1675 }
1676 
1677 static int
1678 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1679 {
1680         int rc, cntxt_id;
1681         struct fw_eq_eth_cmd c;
1682 
1683         bzero(&c, sizeof (c));
1684 
1685         c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1686             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1687             V_FW_EQ_ETH_CMD_VFN(0));
1688         c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC |
1689             F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1690         c.autoequiqe_to_viid = BE_32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
1691         c.fetchszm_to_iqid =
1692             BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1693             V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
1694             V_FW_EQ_ETH_CMD_IQID(eq->iqid));
1695         c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1696             V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1697             V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1698             V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1699         c.eqaddr = BE_64(eq->ba);
1700 
1701         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1702         if (rc != 0) {
1703                 cxgb_printf(pi->dip, CE_WARN,
1704                     "failed to create Ethernet egress queue: %d", rc);
1705                 return (rc);
1706         }
1707         eq->flags |= EQ_ALLOCATED;
1708 
1709         eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd));
1710         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1711         if (cntxt_id >= sc->sge.neq)
1712                 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1713                     cntxt_id, sc->sge.neq - 1);
1714         sc->sge.eqmap[cntxt_id] = eq;
1715 
1716         return (rc);
1717 }
1718 
1719 #ifdef TCP_OFFLOAD_ENABLE
1720 static int
1721 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1722 {
1723         int rc, cntxt_id;
1724         struct fw_eq_ofld_cmd c;
1725 
1726         bzero(&c, sizeof (c));
1727 
1728         c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
1729             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
1730             V_FW_EQ_OFLD_CMD_VFN(0));
1731         c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
1732             F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
1733         c.fetchszm_to_iqid =
1734             htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1735             V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
1736             F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
1737         c.dcaen_to_eqsize =
1738             BE_32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1739             V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1740             V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1741             V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
1742         c.eqaddr = BE_64(eq->ba);
1743 
1744         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1745         if (rc != 0) {
1746                 cxgb_printf(pi->dip, CE_WARN,
1747                     "failed to create egress queue for TCP offload: %d", rc);
1748                 return (rc);
1749         }
1750         eq->flags |= EQ_ALLOCATED;
1751 
1752         eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(BE_32(c.eqid_pkd));
1753         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1754         if (cntxt_id >= sc->sge.neq)
1755                 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1756                     cntxt_id, sc->sge.neq - 1);
1757         sc->sge.eqmap[cntxt_id] = eq;
1758 
1759         return (rc);
1760 }
1761 #endif
1762 
1763 static int
1764 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1765 {
1766         int rc;
1767         size_t len;
1768 
1769         mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri));
1770         eq->flags |= EQ_MTX;
1771 
1772         len = eq->qsize * EQ_ESIZE;
1773         rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl,
1774             &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc);
1775         if (rc != 0)
1776                 return (rc);
1777 
1778         eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE;
1779         eq->spg = (void *)&eq->desc[eq->cap];
1780         eq->avail = eq->cap - 1;  /* one less to avoid cidx = pidx */
1781         eq->pidx = eq->cidx = 0;
1782         eq->doorbells = sc->doorbells;
1783 
1784         switch (eq->flags & EQ_TYPEMASK) {
1785         case EQ_CTRL:
1786                 rc = ctrl_eq_alloc(sc, eq);
1787                 break;
1788 
1789         case EQ_ETH:
1790                 rc = eth_eq_alloc(sc, pi, eq);
1791                 break;
1792 
1793 #ifdef TCP_OFFLOAD_ENABLE
1794         case EQ_OFLD:
1795                 rc = ofld_eq_alloc(sc, pi, eq);
1796                 break;
1797 #endif
1798 
1799         default:
1800                 panic("%s: invalid eq type %d.", __func__,
1801                     eq->flags & EQ_TYPEMASK);
1802         }
1803 
1804         if (eq->doorbells &
1805                 (DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) {
1806                 uint32_t s_qpp = sc->sge.s_qpp;
1807                 uint32_t mask = (1 << s_qpp) - 1;
1808                 volatile uint8_t *udb;
1809 
1810                 udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET;
1811                 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;   /* pg offset */
1812                 eq->udb_qid = eq->cntxt_id & mask;              /* id in page */
1813                 if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
1814                         eq->doorbells &= ~DOORBELL_WCWR;
1815                 else {
1816                         udb += eq->udb_qid << UDBS_SEG_SHIFT;   /* seg offset */
1817                         eq->udb_qid = 0;
1818                 }
1819                 eq->udb = (volatile void *)udb;
1820         }
1821 
1822         if (rc != 0) {
1823                 cxgb_printf(sc->dip, CE_WARN,
1824                     "failed to allocate egress queue(%d): %d",
1825                     eq->flags & EQ_TYPEMASK, rc);
1826         }
1827 
1828         return (rc);
1829 }
1830 
1831 static int
1832 free_eq(struct adapter *sc, struct sge_eq *eq)
1833 {
1834         int rc;
1835 
1836         if (eq->flags & EQ_ALLOCATED) {
1837                 switch (eq->flags & EQ_TYPEMASK) {
1838                 case EQ_CTRL:
1839                         rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
1840                             eq->cntxt_id);
1841                         break;
1842 
1843                 case EQ_ETH:
1844                         rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
1845                             eq->cntxt_id);
1846                         break;
1847 
1848 #ifdef TCP_OFFLOAD_ENABLE
1849                 case EQ_OFLD:
1850                         rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
1851                             eq->cntxt_id);
1852                         break;
1853 #endif
1854 
1855                 default:
1856                         panic("%s: invalid eq type %d.", __func__,
1857                             eq->flags & EQ_TYPEMASK);
1858                 }
1859                 if (rc != 0) {
1860                         cxgb_printf(sc->dip, CE_WARN,
1861                             "failed to free egress queue (%d): %d",
1862                             eq->flags & EQ_TYPEMASK, rc);
1863                         return (rc);
1864                 }
1865                 eq->flags &= ~EQ_ALLOCATED;
1866         }
1867 
1868         if (eq->desc != NULL) {
1869                 (void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl);
1870                 eq->desc = NULL;
1871         }
1872 
1873         if (eq->flags & EQ_MTX)
1874                 mutex_destroy(&eq->lock);
1875 
1876         bzero(eq, sizeof (*eq));
1877         return (0);
1878 }
1879 
1880 #ifdef TCP_OFFLOAD_ENABLE
1881 /* ARGSUSED */
1882 static int
1883 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
1884     int idx)
1885 {
1886         int rc;
1887 
1888         rc = alloc_eq(sc, pi, &wrq->eq);
1889         if (rc != 0)
1890                 return (rc);
1891 
1892         wrq->adapter = sc;
1893         wrq->wr_list.head = NULL;
1894         wrq->wr_list.tail = NULL;
1895 
1896         /*
1897          * TODO: use idx to figure out what kind of wrq this is and install
1898          * useful kstats for it.
1899          */
1900 
1901         return (rc);
1902 }
1903 
1904 static int
1905 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
1906 {
1907         int rc;
1908 
1909         rc = free_eq(sc, &wrq->eq);
1910         if (rc != 0)
1911                 return (rc);
1912 
1913         bzero(wrq, sizeof (*wrq));
1914         return (0);
1915 }
1916 #endif
1917 
1918 static int
1919 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1920 {
1921         int rc, i;
1922         struct adapter *sc = pi->adapter;
1923         struct sge_eq *eq = &txq->eq;
1924 
1925         rc = alloc_eq(sc, pi, eq);
1926         if (rc != 0)
1927                 return (rc);
1928 
1929         txq->port = pi;
1930         txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP);
1931         txq->txb_size = eq->qsize * tx_copy_threshold;
1932         rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl,
1933             &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va);
1934         if (rc == 0)
1935                 txq->txb_avail = txq->txb_size;
1936         else
1937                 txq->txb_avail = txq->txb_size = 0;
1938 
1939         /*
1940          * TODO: is this too low?  Worst case would need around 4 times qsize
1941          * (all tx descriptors filled to the brim with SGLs, with each entry in
1942          * the SGL coming from a distinct DMA handle).  Increase tx_dhdl_total
1943          * if you see too many dma_hdl_failed.
1944          */
1945         txq->tx_dhdl_total = eq->qsize * 2;
1946         txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
1947             txq->tx_dhdl_total, KM_SLEEP);
1948         for (i = 0; i < txq->tx_dhdl_total; i++) {
1949                 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
1950                     DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]);
1951                 if (rc != DDI_SUCCESS) {
1952                         cxgb_printf(sc->dip, CE_WARN,
1953                             "%s: failed to allocate DMA handle (%d)",
1954                             __func__, rc);
1955                         return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1956                 }
1957                 txq->tx_dhdl_avail++;
1958         }
1959 
1960         txq->ksp = setup_txq_kstats(pi, txq, idx);
1961 
1962         return (rc);
1963 }
1964 
1965 static int
1966 free_txq(struct port_info *pi, struct sge_txq *txq)
1967 {
1968         int i;
1969         struct adapter *sc = pi->adapter;
1970         struct sge_eq *eq = &txq->eq;
1971 
1972         if (txq->ksp != NULL) {
1973                 kstat_delete(txq->ksp);
1974                 txq->ksp = NULL;
1975         }
1976 
1977         if (txq->txb_va != NULL) {
1978                 (void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl);
1979                 txq->txb_va = NULL;
1980         }
1981 
1982         if (txq->sdesc != NULL) {
1983                 struct tx_sdesc *sd;
1984                 ddi_dma_handle_t hdl;
1985 
1986                 TXQ_LOCK(txq);
1987                 while (eq->cidx != eq->pidx) {
1988                         sd = &txq->sdesc[eq->cidx];
1989 
1990                         for (i = sd->hdls_used; i; i--) {
1991                                 hdl = txq->tx_dhdl[txq->tx_dhdl_cidx];
1992                                 (void) ddi_dma_unbind_handle(hdl);
1993                                 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
1994                                         txq->tx_dhdl_cidx = 0;
1995                         }
1996 
1997                         ASSERT(sd->m);
1998                         freemsgchain(sd->m);
1999 
2000                         eq->cidx += sd->desc_used;
2001                         if (eq->cidx >= eq->cap)
2002                                 eq->cidx -= eq->cap;
2003 
2004                         txq->txb_avail += txq->txb_used;
2005                 }
2006                 ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx);
2007                 ASSERT(txq->txb_avail == txq->txb_size);
2008                 TXQ_UNLOCK(txq);
2009 
2010                 kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap);
2011                 txq->sdesc = NULL;
2012         }
2013 
2014         if (txq->tx_dhdl != NULL) {
2015                 for (i = 0; i < txq->tx_dhdl_total; i++) {
2016                         if (txq->tx_dhdl[i] != NULL)
2017                                 ddi_dma_free_handle(&txq->tx_dhdl[i]);
2018                 }
2019         }
2020 
2021         (void) free_eq(sc, &txq->eq);
2022 
2023         bzero(txq, sizeof (*txq));
2024         return (0);
2025 }
2026 
2027 /*
2028  * Allocates a block of contiguous memory for DMA.  Can be used to allocate
2029  * memory for descriptor rings or for tx/rx copy buffers.
2030  *
2031  * Caller does not have to clean up anything if this function fails, it cleans
2032  * up after itself.
2033  *
2034  * Caller provides the following:
2035  * len          length of the block of memory to allocate.
2036  * flags        DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR)
2037  * acc_attr     device access attributes for the allocation.
2038  * dma_attr     DMA attributes for the allocation
2039  *
2040  * If the function is successful it fills up this information:
2041  * dma_hdl      DMA handle for the allocated memory
2042  * acc_hdl      access handle for the allocated memory
2043  * ba           bus address of the allocated memory
2044  * va           KVA of the allocated memory.
2045  */
2046 static int
2047 alloc_dma_memory(struct adapter *sc, size_t len, int flags,
2048     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
2049     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2050     uint64_t *pba, caddr_t *pva)
2051 {
2052         int rc;
2053         ddi_dma_handle_t dhdl;
2054         ddi_acc_handle_t ahdl;
2055         ddi_dma_cookie_t cookie;
2056         uint_t ccount;
2057         caddr_t va;
2058         size_t real_len;
2059 
2060         *pva = NULL;
2061 
2062         /*
2063          * DMA handle.
2064          */
2065         rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl);
2066         if (rc != DDI_SUCCESS) {
2067                 cxgb_printf(sc->dip, CE_WARN,
2068                     "failed to allocate DMA handle: %d", rc);
2069 
2070                 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
2071         }
2072 
2073         /*
2074          * Memory suitable for DMA.
2075          */
2076         rc = ddi_dma_mem_alloc(dhdl, len, acc_attr,
2077             flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING,
2078             DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl);
2079         if (rc != DDI_SUCCESS) {
2080                 cxgb_printf(sc->dip, CE_WARN,
2081                     "failed to allocate DMA memory: %d", rc);
2082 
2083                 ddi_dma_free_handle(&dhdl);
2084                 return (ENOMEM);
2085         }
2086 
2087         if (len != real_len) {
2088                 cxgb_printf(sc->dip, CE_WARN,
2089                     "%s: len (%u) != real_len (%u)\n", len, real_len);
2090         }
2091 
2092         /*
2093          * DMA bindings.
2094          */
2095         rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL,
2096             NULL, &cookie, &ccount);
2097         if (rc != DDI_DMA_MAPPED) {
2098                 cxgb_printf(sc->dip, CE_WARN,
2099                     "failed to map DMA memory: %d", rc);
2100 
2101                 ddi_dma_mem_free(&ahdl);
2102                 ddi_dma_free_handle(&dhdl);
2103                 return (ENOMEM);
2104         }
2105         if (ccount != 1) {
2106                 cxgb_printf(sc->dip, CE_WARN,
2107                     "unusable DMA mapping (%d segments)", ccount);
2108                 (void) free_desc_ring(&dhdl, &ahdl);
2109         }
2110 
2111         bzero(va, real_len);
2112         *dma_hdl = dhdl;
2113         *acc_hdl = ahdl;
2114         *pba = cookie.dmac_laddress;
2115         *pva = va;
2116 
2117         return (0);
2118 }
2119 
2120 static int
2121 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
2122 {
2123         (void) ddi_dma_unbind_handle(*dhdl);
2124         ddi_dma_mem_free(ahdl);
2125         ddi_dma_free_handle(dhdl);
2126 
2127         return (0);
2128 }
2129 
2130 static int
2131 alloc_desc_ring(struct adapter *sc, size_t len, int rw,
2132     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2133     uint64_t *pba, caddr_t *pva)
2134 {
2135         ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc;
2136         ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc;
2137 
2138         return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr,
2139             dma_attr, dma_hdl, acc_hdl, pba, pva));
2140 }
2141 
2142 static int
2143 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
2144 {
2145         return (free_dma_memory(dhdl, ahdl));
2146 }
2147 
2148 static int
2149 alloc_tx_copybuffer(struct adapter *sc, size_t len,
2150     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
2151     uint64_t *pba, caddr_t *pva)
2152 {
2153         ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx;
2154         ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */
2155 
2156         return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE,
2157             acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva));
2158 }
2159 
2160 static inline bool
2161 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2162 {
2163         (void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc -
2164             (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL);
2165 
2166         *ctrl = (void *)((uintptr_t)iq->cdesc +
2167             (iq->esize - sizeof (struct rsp_ctrl)));
2168 
2169         return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen));
2170 }
2171 
2172 static inline void
2173 iq_next(struct sge_iq *iq)
2174 {
2175         iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2176         if (++iq->cidx == iq->qsize - 1) {
2177                 iq->cidx = 0;
2178                 iq->gen ^= 1;
2179                 iq->cdesc = iq->desc;
2180         }
2181 }
2182 
2183 /*
2184  * Fill up the freelist by upto nbufs and maybe ring its doorbell.
2185  *
2186  * Returns non-zero to indicate that it should be added to the list of starving
2187  * freelists.
2188  */
2189 static int
2190 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
2191 {
2192         uint64_t *d = &fl->desc[fl->pidx];
2193         struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
2194 
2195         FL_LOCK_ASSERT_OWNED(fl);
2196         ASSERT(nbufs >= 0);
2197 
2198         if (nbufs > fl->needed)
2199                 nbufs = fl->needed;
2200 
2201         while (nbufs--) {
2202                 if (sd->rxb != NULL) {
2203                         if (sd->rxb->ref_cnt == 1) {
2204                                 /*
2205                                  * Buffer is available for recycling.  Two ways
2206                                  * this can happen:
2207                                  *
2208                                  * a) All the packets DMA'd into it last time
2209                                  *    around were within the rx_copy_threshold
2210                                  *    and no part of the buffer was ever passed
2211                                  *    up (ref_cnt never went over 1).
2212                                  *
2213                                  * b) Packets DMA'd into the buffer were passed
2214                                  *    up but have all been freed by the upper
2215                                  *    layers by now (ref_cnt went over 1 but is
2216                                  *    now back to 1).
2217                                  *
2218                                  * Either way the bus address in the descriptor
2219                                  * ring is already valid.
2220                                  */
2221                                 ASSERT(*d == cpu_to_be64(sd->rxb->ba));
2222                                 d++;
2223                                 goto recycled;
2224                         } else {
2225                                 /*
2226                                  * Buffer still in use and we need a
2227                                  * replacement. But first release our reference
2228                                  * on the existing buffer.
2229                                  */
2230                                 rxbuf_free(sd->rxb);
2231                         }
2232                 }
2233 
2234                 sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1);
2235                 if (sd->rxb == NULL)
2236                         break;
2237                 *d++ = cpu_to_be64(sd->rxb->ba);
2238 
2239 recycled:       fl->pending++;
2240                 sd++;
2241                 fl->needed--;
2242                 if (++fl->pidx == fl->cap) {
2243                         fl->pidx = 0;
2244                         sd = fl->sdesc;
2245                         d = fl->desc;
2246                 }
2247         }
2248 
2249         if (fl->pending >= 8)
2250                 ring_fl_db(sc, fl);
2251 
2252         return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
2253 }
2254 
2255 #ifndef TAILQ_FOREACH_SAFE
2256 #define TAILQ_FOREACH_SAFE(var, head, field, tvar)                      \
2257         for ((var) = TAILQ_FIRST((head));                               \
2258             (var) && ((tvar) = TAILQ_NEXT((var), field), 1);            \
2259             (var) = (tvar))
2260 #endif
2261 
2262 /*
2263  * Attempt to refill all starving freelists.
2264  */
2265 static void
2266 refill_sfl(void *arg)
2267 {
2268         struct adapter *sc = arg;
2269         struct sge_fl *fl, *fl_temp;
2270 
2271         mutex_enter(&sc->sfl_lock);
2272         TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
2273                 FL_LOCK(fl);
2274                 (void) refill_fl(sc, fl, 64);
2275                 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
2276                         TAILQ_REMOVE(&sc->sfl, fl, link);
2277                         fl->flags &= ~FL_STARVING;
2278                 }
2279                 FL_UNLOCK(fl);
2280         }
2281 
2282         if (!TAILQ_EMPTY(&sc->sfl) != 0)
2283                 sc->sfl_timer =  timeout(refill_sfl, sc, drv_usectohz(100000));
2284         mutex_exit(&sc->sfl_lock);
2285 }
2286 
2287 static void
2288 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
2289 {
2290         mutex_enter(&sc->sfl_lock);
2291         FL_LOCK(fl);
2292         if ((fl->flags & FL_DOOMED) == 0) {
2293                 if (TAILQ_EMPTY(&sc->sfl) != 0) {
2294                         sc->sfl_timer = timeout(refill_sfl, sc,
2295                             drv_usectohz(100000));
2296                 }
2297                 fl->flags |= FL_STARVING;
2298                 TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
2299         }
2300         FL_UNLOCK(fl);
2301         mutex_exit(&sc->sfl_lock);
2302 }
2303 
2304 static void
2305 free_fl_bufs(struct sge_fl *fl)
2306 {
2307         struct fl_sdesc *sd;
2308         unsigned int i;
2309 
2310         FL_LOCK_ASSERT_OWNED(fl);
2311 
2312         for (i = 0; i < fl->cap; i++) {
2313                 sd = &fl->sdesc[i];
2314 
2315                 if (sd->rxb != NULL) {
2316                         rxbuf_free(sd->rxb);
2317                         sd->rxb = NULL;
2318                 }
2319         }
2320 }
2321 
2322 /*
2323  * Note that fl->cidx and fl->offset are left unchanged in case of failure.
2324  */
2325 static mblk_t *
2326 get_fl_payload(struct adapter *sc, struct sge_fl *fl,
2327                uint32_t len_newbuf, int *fl_bufs_used)
2328 {
2329         struct mblk_pair frame = {0};
2330         struct rxbuf *rxb;
2331         mblk_t *m = NULL;
2332         uint_t nbuf = 0, len, copy, n;
2333         uint32_t cidx, offset;
2334 
2335         /*
2336          * The SGE won't pack a new frame into the current buffer if the entire
2337          * payload doesn't fit in the remaining space.  Move on to the next buf
2338          * in that case.
2339          */
2340         if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
2341                 fl->offset = 0;
2342                 if (++fl->cidx == fl->cap)
2343                         fl->cidx = 0;
2344                 nbuf++;
2345         }
2346         cidx = fl->cidx;
2347         offset = fl->offset;
2348 
2349         len = G_RSPD_LEN(len_newbuf);   /* pktshift + payload length */
2350         copy = (len <= fl->copy_threshold);
2351         if (copy != 0) {
2352                 frame.head = m = allocb(len, BPRI_HI);
2353                 if (m == NULL)
2354                         return (NULL);
2355         }
2356 
2357         while (len) {
2358                 rxb = fl->sdesc[cidx].rxb;
2359                 n = min(len, rxb->buf_size - offset);
2360 
2361                 (void) ddi_dma_sync(rxb->dhdl, offset, n,
2362                     DDI_DMA_SYNC_FORKERNEL);
2363 
2364                 if (copy != 0)
2365                         bcopy(rxb->va + offset, m->b_wptr, n);
2366                 else {
2367                         m = desballoc((unsigned char *)rxb->va + offset, n,
2368                             BPRI_HI, &rxb->freefunc);
2369                         if (m == NULL) {
2370                                 freemsg(frame.head);
2371                                 return (NULL);
2372                         }
2373                         atomic_inc_uint(&rxb->ref_cnt);
2374                         if (frame.head != NULL)
2375                                 frame.tail->b_cont = m;
2376                         else
2377                                 frame.head = m;
2378                         frame.tail = m;
2379                 }
2380                 m->b_wptr += n;
2381                 len -= n;
2382                 offset += roundup(n, sc->sge.fl_align);
2383                 ASSERT(offset <= rxb->buf_size);
2384                 if (offset == rxb->buf_size) {
2385                         offset = 0;
2386                         if (++cidx == fl->cap)
2387                                 cidx = 0;
2388                         nbuf++;
2389                 }
2390         }
2391 
2392         fl->cidx = cidx;
2393         fl->offset = offset;
2394         (*fl_bufs_used) += nbuf;
2395 
2396         ASSERT(frame.head != NULL);
2397         return (frame.head);
2398 }
2399 
2400 /*
2401  * We'll do immediate data tx for non-LSO, but only when not coalescing.  We're
2402  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2403  * of immediate data.
2404  */
2405 #define IMM_LEN ( \
2406         2 * EQ_ESIZE \
2407         - sizeof (struct fw_eth_tx_pkt_wr) \
2408         - sizeof (struct cpl_tx_pkt_core))
2409 
2410 /*
2411  * Returns non-zero on failure, no need to cleanup anything in that case.
2412  *
2413  * Note 1: We always try to pull up the mblk if required and return E2BIG only
2414  * if this fails.
2415  *
2416  * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk
2417  * does not have the TCP header in it.
2418  */
2419 static int
2420 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo,
2421     int sgl_only)
2422 {
2423         uint32_t flags = 0, len, n;
2424         mblk_t *m = *fp;
2425         int rc;
2426 
2427         TXQ_LOCK_ASSERT_OWNED(txq);     /* will manipulate txb and dma_hdls */
2428 
2429         mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags);
2430         txinfo->flags = flags;
2431 
2432         mac_lso_get(m, &txinfo->mss, &flags);
2433         txinfo->flags |= flags;
2434 
2435         if (flags & HW_LSO)
2436                 sgl_only = 1;   /* Do not allow immediate data with LSO */
2437 
2438 start:  txinfo->nsegs = 0;
2439         txinfo->hdls_used = 0;
2440         txinfo->txb_used = 0;
2441         txinfo->len = 0;
2442 
2443         /* total length and a rough estimate of # of segments */
2444         n = 0;
2445         for (; m; m = m->b_cont) {
2446                 len = MBLKL(m);
2447                 n += (len / PAGE_SIZE) + 1;
2448                 txinfo->len += len;
2449         }
2450         m = *fp;
2451 
2452         if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) {
2453                 txq->pullup_early++;
2454                 m = msgpullup(*fp, -1);
2455                 if (m == NULL) {
2456                         txq->pullup_failed++;
2457                         return (E2BIG); /* (*fp) left as it was */
2458                 }
2459                 freemsg(*fp);
2460                 *fp = m;
2461                 mac_hcksum_set(m, NULL, NULL, NULL, NULL, txinfo->flags);
2462         }
2463 
2464         if (txinfo->len <= IMM_LEN && !sgl_only)
2465                 return (0);     /* nsegs = 0 tells caller to use imm. tx */
2466 
2467         if (txinfo->len <= txq->copy_threshold &&
2468             copy_into_txb(txq, m, txinfo->len, txinfo) == 0)
2469                 goto done;
2470 
2471         for (; m; m = m->b_cont) {
2472 
2473                 len = MBLKL(m);
2474 
2475                 /* Use tx copy buffer if this mblk is small enough */
2476                 if (len <= txq->copy_threshold &&
2477                     copy_into_txb(txq, m, len, txinfo) == 0)
2478                         continue;
2479 
2480                 /* Add DMA bindings for this mblk to the SGL */
2481                 rc = add_mblk(txq, txinfo, m, len);
2482 
2483                 if (rc == E2BIG ||
2484                     (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) {
2485 
2486                         txq->pullup_late++;
2487                         m = msgpullup(*fp, -1);
2488                         if (m != NULL) {
2489                                 free_txinfo_resources(txq, txinfo);
2490                                 freemsg(*fp);
2491                                 *fp = m;
2492                                 mac_hcksum_set(m, NULL, NULL, NULL, NULL,
2493                                     txinfo->flags);
2494                                 goto start;
2495                         }
2496 
2497                         txq->pullup_failed++;
2498                         rc = E2BIG;
2499                 }
2500 
2501                 if (rc != 0) {
2502                         free_txinfo_resources(txq, txinfo);
2503                         return (rc);
2504                 }
2505         }
2506 
2507         ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS);
2508 
2509 done:
2510 
2511         /*
2512          * Store the # of flits required to hold this frame's SGL in nflits.  An
2513          * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2514          * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2515          * then len1 must be set to 0.
2516          */
2517         n = txinfo->nsegs - 1;
2518         txinfo->nflits = (3 * n) / 2 + (n & 1) + 2;
2519         if (n & 1)
2520                 txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0);
2521 
2522         txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) |
2523             V_ULPTX_NSGE(txinfo->nsegs));
2524 
2525         return (0);
2526 }
2527 
2528 static inline int
2529 fits_in_txb(struct sge_txq *txq, int len, int *waste)
2530 {
2531         if (txq->txb_avail < len)
2532                 return (0);
2533 
2534         if (txq->txb_next + len <= txq->txb_size) {
2535                 *waste = 0;
2536                 return (1);
2537         }
2538 
2539         *waste = txq->txb_size - txq->txb_next;
2540 
2541         return (txq->txb_avail - *waste < len ? 0 : 1);
2542 }
2543 
2544 #define TXB_CHUNK       64
2545 
2546 /*
2547  * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo
2548  * and txq to indicate resources used.  Caller has to make sure that those many
2549  * bytes are available in the mblk chain (b_cont linked).
2550  */
2551 static inline int
2552 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo)
2553 {
2554         int waste, n;
2555 
2556         TXQ_LOCK_ASSERT_OWNED(txq);     /* will manipulate txb */
2557 
2558         if (!fits_in_txb(txq, len, &waste)) {
2559                 txq->txb_full++;
2560                 return (ENOMEM);
2561         }
2562 
2563         if (waste != 0) {
2564                 ASSERT((waste & (TXB_CHUNK - 1)) == 0);
2565                 txinfo->txb_used += waste;
2566                 txq->txb_avail -= waste;
2567                 txq->txb_next = 0;
2568         }
2569 
2570         for (n = 0; n < len; m = m->b_cont) {
2571                 bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m));
2572                 n += MBLKL(m);
2573         }
2574 
2575         add_seg(txinfo, txq->txb_ba + txq->txb_next, len);
2576 
2577         n = roundup(len, TXB_CHUNK);
2578         txinfo->txb_used += n;
2579         txq->txb_avail -= n;
2580         txq->txb_next += n;
2581         ASSERT(txq->txb_next <= txq->txb_size);
2582         if (txq->txb_next == txq->txb_size)
2583                 txq->txb_next = 0;
2584 
2585         return (0);
2586 }
2587 
2588 static inline void
2589 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len)
2590 {
2591         ASSERT(txinfo->nsegs < TX_SGL_SEGS);      /* must have room */
2592 
2593         if (txinfo->nsegs != 0) {
2594                 int idx = txinfo->nsegs - 1;
2595                 txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len);
2596                 txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba);
2597         } else {
2598                 txinfo->sgl.len0 = cpu_to_be32(len);
2599                 txinfo->sgl.addr0 = cpu_to_be64(ba);
2600         }
2601         txinfo->nsegs++;
2602 }
2603 
2604 /*
2605  * This function cleans up any partially allocated resources when it fails so
2606  * there's nothing for the caller to clean up in that case.
2607  *
2608  * EIO indicates permanent failure.  Caller should drop the frame containing
2609  * this mblk and continue.
2610  *
2611  * E2BIG indicates that the SGL length for this mblk exceeds the hardware
2612  * limit.  Caller should pull up the frame before trying to send it out.
2613  * (This error means our pullup_early heuristic did not work for this frame)
2614  *
2615  * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA
2616  * resources, etc.).  Caller should suspend the tx queue and wait for reclaim to
2617  * free up resources.
2618  */
2619 static inline int
2620 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len)
2621 {
2622         ddi_dma_handle_t dhdl;
2623         ddi_dma_cookie_t cookie;
2624         uint_t ccount = 0;
2625         int rc;
2626 
2627         TXQ_LOCK_ASSERT_OWNED(txq);     /* will manipulate dhdls */
2628 
2629         if (txq->tx_dhdl_avail == 0) {
2630                 txq->dma_hdl_failed++;
2631                 return (ENOMEM);
2632         }
2633 
2634         dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx];
2635         rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len,
2636             DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie,
2637             &ccount);
2638         if (rc != DDI_DMA_MAPPED) {
2639                 txq->dma_map_failed++;
2640 
2641                 ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP);
2642 
2643                 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO);
2644         }
2645 
2646         if (ccount + txinfo->nsegs > TX_SGL_SEGS) {
2647                 (void) ddi_dma_unbind_handle(dhdl);
2648                 return (E2BIG);
2649         }
2650 
2651         add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2652         while (--ccount) {
2653                 ddi_dma_nextcookie(dhdl, &cookie);
2654                 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2655         }
2656 
2657         if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total)
2658                 txq->tx_dhdl_pidx = 0;
2659         txq->tx_dhdl_avail--;
2660         txinfo->hdls_used++;
2661 
2662         return (0);
2663 }
2664 
2665 /*
2666  * Releases all the txq resources used up in the specified txinfo.
2667  */
2668 static void
2669 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo)
2670 {
2671         int n;
2672 
2673         TXQ_LOCK_ASSERT_OWNED(txq);     /* dhdls, txb */
2674 
2675         n = txinfo->txb_used;
2676         if (n > 0) {
2677                 txq->txb_avail += n;
2678                 if (n <= txq->txb_next)
2679                         txq->txb_next -= n;
2680                 else {
2681                         n -= txq->txb_next;
2682                         txq->txb_next = txq->txb_size - n;
2683                 }
2684         }
2685 
2686         for (n = txinfo->hdls_used; n > 0; n--) {
2687                 if (txq->tx_dhdl_pidx > 0)
2688                         txq->tx_dhdl_pidx--;
2689                 else
2690                         txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1;
2691                 txq->tx_dhdl_avail++;
2692                 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]);
2693         }
2694 }
2695 
2696 /*
2697  * Returns 0 to indicate that m has been accepted into a coalesced tx work
2698  * request.  It has either been folded into txpkts or txpkts was flushed and m
2699  * has started a new coalesced work request (as the first frame in a fresh
2700  * txpkts).
2701  *
2702  * Returns non-zero to indicate a failure - caller is responsible for
2703  * transmitting m, if there was anything in txpkts it has been flushed.
2704  */
2705 static int
2706 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
2707     struct txinfo *txinfo)
2708 {
2709         struct sge_eq *eq = &txq->eq;
2710         int can_coalesce;
2711         struct tx_sdesc *txsd;
2712         uint8_t flits;
2713 
2714         TXQ_LOCK_ASSERT_OWNED(txq);
2715 
2716         if (txpkts->npkt > 0) {
2717                 flits = TXPKTS_PKT_HDR + txinfo->nflits;
2718                 can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2719                     txpkts->nflits + flits <= TX_WR_FLITS &&
2720                     txpkts->nflits + flits <= eq->avail * 8 &&
2721                     txpkts->plen + txinfo->len < 65536;
2722 
2723                 if (can_coalesce != 0) {
2724                         txpkts->tail->b_next = m;
2725                         txpkts->tail = m;
2726                         txpkts->npkt++;
2727                         txpkts->nflits += flits;
2728                         txpkts->plen += txinfo->len;
2729 
2730                         txsd = &txq->sdesc[eq->pidx];
2731                         txsd->txb_used += txinfo->txb_used;
2732                         txsd->hdls_used += txinfo->hdls_used;
2733 
2734                         return (0);
2735                 }
2736 
2737                 /*
2738                  * Couldn't coalesce m into txpkts.  The first order of business
2739                  * is to send txpkts on its way.  Then we'll revisit m.
2740                  */
2741                 write_txpkts_wr(txq, txpkts);
2742         }
2743 
2744         /*
2745          * Check if we can start a new coalesced tx work request with m as
2746          * the first packet in it.
2747          */
2748 
2749         ASSERT(txpkts->npkt == 0);
2750         ASSERT(txinfo->len < 65536);
2751 
2752         flits = TXPKTS_WR_HDR + txinfo->nflits;
2753         can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2754             flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2755 
2756         if (can_coalesce == 0)
2757                 return (EINVAL);
2758 
2759         /*
2760          * Start a fresh coalesced tx WR with m as the first frame in it.
2761          */
2762         txpkts->tail = m;
2763         txpkts->npkt = 1;
2764         txpkts->nflits = flits;
2765         txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2766         txpkts->plen = txinfo->len;
2767 
2768         txsd = &txq->sdesc[eq->pidx];
2769         txsd->m = m;
2770         txsd->txb_used = txinfo->txb_used;
2771         txsd->hdls_used = txinfo->hdls_used;
2772 
2773         return (0);
2774 }
2775 
2776 /*
2777  * Note that write_txpkts_wr can never run out of hardware descriptors (but
2778  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
2779  * coalescing only if sufficient hardware descriptors are available.
2780  */
2781 static void
2782 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2783 {
2784         struct sge_eq *eq = &txq->eq;
2785         struct fw_eth_tx_pkts_wr *wr;
2786         struct tx_sdesc *txsd;
2787         uint32_t ctrl;
2788         uint16_t ndesc;
2789 
2790         TXQ_LOCK_ASSERT_OWNED(txq);     /* pidx, avail */
2791 
2792         ndesc = howmany(txpkts->nflits, 8);
2793 
2794         wr = (void *)&eq->desc[eq->pidx];
2795         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2796             V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2797         ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2798         if (eq->avail == ndesc)
2799                 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2800         wr->equiq_to_len16 = cpu_to_be32(ctrl);
2801         wr->plen = cpu_to_be16(txpkts->plen);
2802         wr->npkt = txpkts->npkt;
2803         wr->r3 = wr->type = 0;
2804 
2805         /* Everything else already written */
2806 
2807         txsd = &txq->sdesc[eq->pidx];
2808         txsd->desc_used = ndesc;
2809 
2810         txq->txb_used += txsd->txb_used / TXB_CHUNK;
2811         txq->hdl_used += txsd->hdls_used;
2812 
2813         ASSERT(eq->avail >= ndesc);
2814 
2815         eq->pending += ndesc;
2816         eq->avail -= ndesc;
2817         eq->pidx += ndesc;
2818         if (eq->pidx >= eq->cap)
2819                 eq->pidx -= eq->cap;
2820 
2821         txq->txpkts_pkts += txpkts->npkt;
2822         txq->txpkts_wrs++;
2823         txpkts->npkt = 0;    /* emptied */
2824 }
2825 
2826 static int
2827 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
2828     struct txinfo *txinfo)
2829 {
2830         struct sge_eq *eq = &txq->eq;
2831         struct fw_eth_tx_pkt_wr *wr;
2832         struct cpl_tx_pkt_core *cpl;
2833         uint32_t ctrl;  /* used in many unrelated places */
2834         uint64_t ctrl1;
2835         int nflits, ndesc;
2836         struct tx_sdesc *txsd;
2837         caddr_t dst;
2838 
2839         TXQ_LOCK_ASSERT_OWNED(txq);     /* pidx, avail */
2840 
2841         /*
2842          * Do we have enough flits to send this frame out?
2843          */
2844         ctrl = sizeof (struct cpl_tx_pkt_core);
2845         if (txinfo->flags & HW_LSO) {
2846                 nflits = TXPKT_LSO_WR_HDR;
2847                 ctrl += sizeof(struct cpl_tx_pkt_lso_core);
2848         } else
2849                 nflits = TXPKT_WR_HDR;
2850         if (txinfo->nsegs > 0)
2851                 nflits += txinfo->nflits;
2852         else {
2853                 nflits += howmany(txinfo->len, 8);
2854                 ctrl += txinfo->len;
2855         }
2856         ndesc = howmany(nflits, 8);
2857         if (ndesc > eq->avail)
2858                 return (ENOMEM);
2859 
2860         /* Firmware work request header */
2861         wr = (void *)&eq->desc[eq->pidx];
2862         wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2863             V_FW_WR_IMMDLEN(ctrl));
2864         ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2865         if (eq->avail == ndesc)
2866                 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2867         wr->equiq_to_len16 = cpu_to_be32(ctrl);
2868         wr->r3 = 0;
2869 
2870         if (txinfo->flags & HW_LSO) {
2871                 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2872                 char *p = (void *)m->b_rptr;
2873                 ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2874                     F_LSO_LAST_SLICE;
2875 
2876                 /* LINTED: E_BAD_PTR_CAST_ALIGN */
2877                 if (((struct ether_header *)p)->ether_type ==
2878                     htons(ETHERTYPE_VLAN)) {
2879                         ctrl |= V_LSO_ETHHDR_LEN(1);
2880                         p += sizeof (struct ether_vlan_header);
2881                 } else
2882                         p += sizeof (struct ether_header);
2883 
2884                 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */
2885                 ctrl |= V_LSO_IPHDR_LEN(IPH_HDR_LENGTH(p) / 4);
2886                 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */
2887                 p += IPH_HDR_LENGTH(p);
2888                 ctrl |= V_LSO_TCPHDR_LEN(TCP_HDR_LENGTH((tcph_t *)p) / 4);
2889 
2890                 lso->lso_ctrl = cpu_to_be32(ctrl);
2891                 lso->ipid_ofst = cpu_to_be16(0);
2892                 lso->mss = cpu_to_be16(txinfo->mss);
2893                 lso->seqno_offset = cpu_to_be32(0);
2894                 if (is_t4(pi->adapter->params.chip))
2895                         lso->len = cpu_to_be32(txinfo->len);
2896                 else
2897                         lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len));
2898 
2899                 cpl = (void *)(lso + 1);
2900 
2901                 txq->tso_wrs++;
2902         } else
2903                 cpl = (void *)(wr + 1);
2904 
2905         /* Checksum offload */
2906         ctrl1 = 0;
2907         if (!(txinfo->flags & HCK_IPV4_HDRCKSUM))
2908                 ctrl1 |= F_TXPKT_IPCSUM_DIS;
2909         if (!(txinfo->flags & HCK_FULLCKSUM))
2910                 ctrl1 |= F_TXPKT_L4CSUM_DIS;
2911         if (ctrl1 == 0)
2912                 txq->txcsum++;       /* some hardware assistance provided */
2913 
2914         /* CPL header */
2915         cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2916             V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2917         cpl->pack = 0;
2918         cpl->len = cpu_to_be16(txinfo->len);
2919         cpl->ctrl1 = cpu_to_be64(ctrl1);
2920 
2921         /* Software descriptor */
2922         txsd = &txq->sdesc[eq->pidx];
2923         txsd->m = m;
2924         txsd->txb_used = txinfo->txb_used;
2925         txsd->hdls_used = txinfo->hdls_used;
2926         /* LINTED: E_ASSIGN_NARROW_CONV */
2927         txsd->desc_used = ndesc;
2928 
2929         txq->txb_used += txinfo->txb_used / TXB_CHUNK;
2930         txq->hdl_used += txinfo->hdls_used;
2931 
2932         eq->pending += ndesc;
2933         eq->avail -= ndesc;
2934         eq->pidx += ndesc;
2935         if (eq->pidx >= eq->cap)
2936                 eq->pidx -= eq->cap;
2937 
2938         /* SGL */
2939         dst = (void *)(cpl + 1);
2940         if (txinfo->nsegs > 0) {
2941                 txq->sgl_wrs++;
2942                 copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2943 
2944                 /* Need to zero-pad to a 16 byte boundary if not on one */
2945                 if ((uintptr_t)dst & 0xf)
2946                         /* LINTED: E_BAD_PTR_CAST_ALIGN */
2947                         *(uint64_t *)dst = 0;
2948 
2949         } else {
2950                 txq->imm_wrs++;
2951 #ifdef DEBUG
2952                 ctrl = txinfo->len;
2953 #endif
2954                 for (; m; m = m->b_cont) {
2955                         copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
2956 #ifdef DEBUG
2957                         ctrl -= MBLKL(m);
2958 #endif
2959                 }
2960                 ASSERT(ctrl == 0);
2961         }
2962 
2963         txq->txpkt_wrs++;
2964         return (0);
2965 }
2966 
2967 static inline void
2968 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2969     struct txpkts *txpkts, struct txinfo *txinfo)
2970 {
2971         struct ulp_txpkt *ulpmc;
2972         struct ulptx_idata *ulpsc;
2973         struct cpl_tx_pkt_core *cpl;
2974         uintptr_t flitp, start, end;
2975         uint64_t ctrl;
2976         caddr_t dst;
2977 
2978         ASSERT(txpkts->npkt > 0);
2979 
2980         start = (uintptr_t)txq->eq.desc;
2981         end = (uintptr_t)txq->eq.spg;
2982 
2983         /* Checksum offload */
2984         ctrl = 0;
2985         if (!(txinfo->flags & HCK_IPV4_HDRCKSUM))
2986                 ctrl |= F_TXPKT_IPCSUM_DIS;
2987         if (!(txinfo->flags & HCK_FULLCKSUM))
2988                 ctrl |= F_TXPKT_L4CSUM_DIS;
2989         if (ctrl == 0)
2990                 txq->txcsum++;       /* some hardware assistance provided */
2991 
2992         /*
2993          * The previous packet's SGL must have ended at a 16 byte boundary (this
2994          * is required by the firmware/hardware).  It follows that flitp cannot
2995          * wrap around between the ULPTX master command and ULPTX subcommand (8
2996          * bytes each), and that it can not wrap around in the middle of the
2997          * cpl_tx_pkt_core either.
2998          */
2999         flitp = (uintptr_t)txpkts->flitp;
3000         ASSERT((flitp & 0xf) == 0);
3001 
3002         /* ULP master command */
3003         ulpmc = (void *)flitp;
3004         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
3005         ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) +
3006             sizeof (*cpl) + 8 * txinfo->nflits, 16));
3007 
3008         /* ULP subcommand */
3009         ulpsc = (void *)(ulpmc + 1);
3010         ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3011             F_ULP_TX_SC_MORE);
3012         ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core));
3013 
3014         flitp += sizeof (*ulpmc) + sizeof (*ulpsc);
3015         if (flitp == end)
3016                 flitp = start;
3017 
3018         /* CPL_TX_PKT */
3019         cpl = (void *)flitp;
3020         cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3021             V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3022         cpl->pack = 0;
3023         cpl->len = cpu_to_be16(txinfo->len);
3024         cpl->ctrl1 = cpu_to_be64(ctrl);
3025 
3026         flitp += sizeof (*cpl);
3027         if (flitp == end)
3028                 flitp = start;
3029 
3030         /* SGL for this frame */
3031         dst = (caddr_t)flitp;
3032         copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
3033         flitp = (uintptr_t)dst;
3034 
3035         /* Zero pad and advance to a 16 byte boundary if not already at one. */
3036         if (flitp & 0xf) {
3037 
3038                 /* no matter what, flitp should be on an 8 byte boundary */
3039                 ASSERT((flitp & 0x7) == 0);
3040 
3041                 *(uint64_t *)flitp = 0;
3042                 flitp += sizeof (uint64_t);
3043                 txpkts->nflits++;
3044         }
3045 
3046         if (flitp == end)
3047                 flitp = start;
3048 
3049         txpkts->flitp = (void *)flitp;
3050 }
3051 
3052 static inline void
3053 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3054 {
3055         if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
3056                 bcopy(from, *to, len);
3057                 (*to) += len;
3058         } else {
3059                 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3060 
3061                 bcopy(from, *to, portion);
3062                 from += portion;
3063                 portion = len - portion;        /* remaining */
3064                 bcopy(from, (void *)eq->desc, portion);
3065                 (*to) = (caddr_t)eq->desc + portion;
3066         }
3067 }
3068 
3069 static inline void
3070 ring_tx_db(struct adapter *sc, struct sge_eq *eq)
3071 {
3072         int val, db_mode;
3073         u_int db = eq->doorbells;
3074 
3075         if (eq->pending > 1)
3076                 db &= ~DOORBELL_WCWR;
3077 
3078         if (eq->pending > eq->pidx) {
3079                 int offset = eq->cap - (eq->pending - eq->pidx);
3080 
3081                 /* pidx has wrapped around since last doorbell */
3082 
3083                 (void) ddi_dma_sync(eq->desc_dhdl,
3084                     offset * sizeof (struct tx_desc), 0,
3085                     DDI_DMA_SYNC_FORDEV);
3086                 (void) ddi_dma_sync(eq->desc_dhdl,
3087                     0, eq->pidx * sizeof (struct tx_desc),
3088                     DDI_DMA_SYNC_FORDEV);
3089         } else if (eq->pending > 0) {
3090                 (void) ddi_dma_sync(eq->desc_dhdl,
3091                     (eq->pidx - eq->pending) * sizeof (struct tx_desc),
3092                     eq->pending * sizeof (struct tx_desc),
3093                     DDI_DMA_SYNC_FORDEV);
3094         }
3095 
3096         membar_producer();
3097 
3098         if (is_t4(sc->params.chip))
3099                 val = V_PIDX(eq->pending);
3100         else
3101                 val = V_PIDX_T5(eq->pending);
3102 
3103         db_mode = (1 << (ffs(db) - 1));
3104         switch (db_mode) {
3105                 case DOORBELL_UDB:
3106                         *eq->udb = LE_32(V_QID(eq->udb_qid) | val);
3107                         break;
3108 
3109                 case DOORBELL_WCWR: 
3110                         {
3111                                 volatile uint64_t *dst, *src;
3112                                 int i;
3113                                 /*
3114                                  * Queues whose 128B doorbell segment fits in
3115                                  * the page do not use relative qid
3116                                  * (udb_qid is always 0).  Only queues with
3117                                  * doorbell segments can do WCWR.
3118                                  */
3119                                 ASSERT(eq->udb_qid == 0 && eq->pending == 1);
3120 
3121                                 dst = (volatile void *)((uintptr_t)eq->udb +
3122                                     UDBS_WR_OFFSET - UDBS_DB_OFFSET);
3123                                 i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
3124                                 src = (void *)&eq->desc[i];
3125                                 while (src != (void *)&eq->desc[i + 1])
3126                                         *dst++ = *src++;
3127                                 membar_producer();
3128                                 break;
3129                         }
3130 
3131                 case DOORBELL_UDBWC:
3132                         *eq->udb = LE_32(V_QID(eq->udb_qid) | val);
3133                         membar_producer();
3134                         break;
3135 
3136                 case DOORBELL_KDB:
3137                         t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3138                             V_QID(eq->cntxt_id) | val);
3139                         break;
3140         }
3141  
3142         eq->pending = 0;
3143 }
3144 
3145 static int
3146 reclaim_tx_descs(struct sge_txq *txq, int howmany)
3147 {
3148         struct tx_sdesc *txsd;
3149         uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed;
3150         struct sge_eq *eq = &txq->eq;
3151 
3152         EQ_LOCK_ASSERT_OWNED(eq);
3153 
3154         cidx = eq->spg->cidx;     /* stable snapshot */
3155         cidx = be16_to_cpu(cidx);
3156 
3157         if (cidx >= eq->cidx)
3158                 can_reclaim = cidx - eq->cidx;
3159         else
3160                 can_reclaim = cidx + eq->cap - eq->cidx;
3161 
3162         if (can_reclaim == 0)
3163                 return (0);
3164 
3165         txb_freed = hdls_freed = reclaimed = 0;
3166         do {
3167                 int ndesc;
3168 
3169                 txsd = &txq->sdesc[eq->cidx];
3170                 ndesc = txsd->desc_used;
3171 
3172                 /* Firmware doesn't return "partial" credits. */
3173                 ASSERT(can_reclaim >= ndesc);
3174 
3175                 /*
3176                  * We always keep mblk around, even for immediate data.  If mblk
3177                  * is NULL, this has to be the software descriptor for a credit
3178                  * flush work request.
3179                  */
3180                 if (txsd->m != NULL)
3181                         freemsgchain(txsd->m);
3182 #ifdef DEBUG
3183                 else {
3184                         ASSERT(txsd->txb_used == 0);
3185                         ASSERT(txsd->hdls_used == 0);
3186                         ASSERT(ndesc == 1);
3187                 }
3188 #endif
3189 
3190                 txb_freed += txsd->txb_used;
3191                 hdls_freed += txsd->hdls_used;
3192                 reclaimed += ndesc;
3193 
3194                 eq->cidx += ndesc;
3195                 if (eq->cidx >= eq->cap)
3196                         eq->cidx -= eq->cap;
3197 
3198                 can_reclaim -= ndesc;
3199 
3200         } while (can_reclaim && reclaimed < howmany);
3201 
3202         eq->avail += reclaimed;
3203         ASSERT(eq->avail < eq->cap);   /* avail tops out at (cap - 1) */
3204 
3205         txq->txb_avail += txb_freed;
3206 
3207         txq->tx_dhdl_avail += hdls_freed;
3208         ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total);
3209         for (; hdls_freed; hdls_freed--) {
3210                 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]);
3211                 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
3212                         txq->tx_dhdl_cidx = 0;
3213         }
3214 
3215         return (reclaimed);
3216 }
3217 
3218 static void
3219 write_txqflush_wr(struct sge_txq *txq)
3220 {
3221         struct sge_eq *eq = &txq->eq;
3222         struct fw_eq_flush_wr *wr;
3223         struct tx_sdesc *txsd;
3224 
3225         EQ_LOCK_ASSERT_OWNED(eq);
3226         ASSERT(eq->avail > 0);
3227 
3228         wr = (void *)&eq->desc[eq->pidx];
3229         bzero(wr, sizeof (*wr));
3230         wr->opcode = FW_EQ_FLUSH_WR;
3231         wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) |
3232             F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3233 
3234         txsd = &txq->sdesc[eq->pidx];
3235         txsd->m = NULL;
3236         txsd->txb_used = 0;
3237         txsd->hdls_used = 0;
3238         txsd->desc_used = 1;
3239 
3240         eq->pending++;
3241         eq->avail--;
3242         if (++eq->pidx == eq->cap)
3243                 eq->pidx = 0;
3244 }
3245 
3246 static int
3247 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3248 {
3249         bool csum_ok;
3250         uint16_t err_vec;
3251         struct sge_rxq *rxq = (void *)iq;
3252         struct mblk_pair chain = {0};
3253         struct adapter *sc = iq->adapter;
3254         const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
3255 
3256         iq->intr_next = iq->intr_params;
3257 
3258         m->b_rptr += sc->sge.pktshift;
3259 
3260         /* Compressed error vector is enabled for T6 only */
3261         if (sc->params.tp.rx_pkt_encap)
3262                 /* It is enabled only in T6 config file */
3263                 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
3264         else
3265                 err_vec = ntohs(cpl->err_vec);
3266 
3267         csum_ok = cpl->csum_calc && !err_vec;
3268         /* TODO: what about cpl->ip_frag? */
3269         if (csum_ok && !cpl->ip_frag) {
3270                 mac_hcksum_set(m, 0, 0, 0, 0xffff,
3271                     HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
3272                     HCK_IPV4_HDRCKSUM_OK);
3273                 rxq->rxcsum++;
3274         }
3275 
3276         /* Add to the chain that we'll send up */
3277         if (chain.head != NULL)
3278                 chain.tail->b_next = m;
3279         else
3280                 chain.head = m;
3281         chain.tail = m;
3282 
3283         t4_mac_rx(rxq->port, rxq, chain.head);
3284 
3285         rxq->rxpkts++;
3286         rxq->rxbytes  += be16_to_cpu(cpl->len);
3287         return (0);
3288 }
3289 
3290 #define FL_HW_IDX(idx)  ((idx) >> 3)
3291 
3292 static inline void
3293 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3294 {
3295         int desc_start, desc_last, ndesc;
3296         uint32_t v = sc->params.arch.sge_fl_db ;
3297 
3298         ndesc = FL_HW_IDX(fl->pending);
3299 
3300         /* Hold back one credit if pidx = cidx */
3301         if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3302                 ndesc--;
3303 
3304         /*
3305          * There are chances of ndesc modified above (to avoid pidx = cidx).
3306          * If there is nothing to post, return.
3307          */
3308         if (ndesc <= 0)
3309                 return;
3310 
3311         desc_last = FL_HW_IDX(fl->pidx);
3312 
3313         if (fl->pidx < fl->pending) {
3314                 /* There was a wrap */
3315                 desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending);
3316 
3317                 /* From desc_start to the end of list */
3318                 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0,
3319                     DDI_DMA_SYNC_FORDEV);
3320 
3321                 /* From start of list to the desc_last */
3322                 if (desc_last != 0)
3323                         (void) ddi_dma_sync(fl->dhdl, 0, desc_last *
3324                             RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3325         } else {
3326                 /* There was no wrap, sync from start_desc to last_desc */
3327                 desc_start = FL_HW_IDX(fl->pidx - fl->pending);
3328                 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE,
3329                     ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3330         }
3331 
3332         if (is_t4(sc->params.chip))
3333                 v |= V_PIDX(ndesc);
3334         else
3335                 v |= V_PIDX_T5(ndesc);
3336         v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3337 
3338         membar_producer();
3339 
3340         t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3341 
3342         /*
3343          * Update pending count:
3344          * Deduct the number of descriptors posted
3345          */
3346         fl->pending -= ndesc * 8;
3347 }
3348 
3349 /* ARGSUSED */
3350 static int
3351 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3352                 mblk_t *m)
3353 {
3354         const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3355         unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3356         struct adapter *sc = iq->adapter;
3357         struct sge *s = &sc->sge;
3358         struct sge_txq *txq;
3359 
3360         txq = (void *)s->eqmap[qid - s->eq_start];
3361         txq->qflush++;
3362         t4_mac_tx_update(txq->port, txq);
3363 
3364         return (0);
3365 }
3366 
3367 static int
3368 handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3369 {
3370         struct adapter *sc = iq->adapter;
3371         const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3372 
3373         ASSERT(m == NULL);
3374 
3375         if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
3376                 const struct rss_header *rss2;
3377 
3378                 rss2 = (const struct rss_header *)&cpl->data[0];
3379                 return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
3380         }
3381         return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
3382 }
3383 
3384 int
3385 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count,
3386     int flags)
3387 {
3388         int i, rc;
3389 
3390         txmaps->map_total =  count;
3391         txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0;
3392 
3393         txmaps->map =  kmem_zalloc(sizeof (ddi_dma_handle_t) *
3394             txmaps->map_total, flags);
3395 
3396         for (i = 0; i < count; i++) {
3397                 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
3398                     DDI_DMA_SLEEP, 0, &txmaps->map[i]);
3399                 if (rc != DDI_SUCCESS) {
3400                         cxgb_printf(sc->dip, CE_WARN,
3401                             "%s: failed to allocate DMA handle (%d)",
3402                             __func__, rc);
3403                         return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
3404                 }
3405                 txmaps->map_avail++;
3406         }
3407 
3408         return (0);
3409 }
3410 
3411 #define KS_UINIT(x)     kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG)
3412 #define KS_CINIT(x)     kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR)
3413 #define KS_U_SET(x, y)  kstatp->x.value.ul = (y)
3414 #define KS_U_FROM(x, y) kstatp->x.value.ul = (y)->x
3415 #define KS_C_SET(x, ...)        \
3416                         (void) snprintf(kstatp->x.value.c, 16,  __VA_ARGS__)
3417 
3418 /*
3419  * cxgbe:X:config
3420  */
3421 struct cxgbe_port_config_kstats {
3422         kstat_named_t idx;
3423         kstat_named_t nrxq;
3424         kstat_named_t ntxq;
3425         kstat_named_t first_rxq;
3426         kstat_named_t first_txq;
3427         kstat_named_t controller;
3428         kstat_named_t factory_mac_address;
3429 };
3430 
3431 /*
3432  * cxgbe:X:info
3433  */
3434 struct cxgbe_port_info_kstats {
3435         kstat_named_t transceiver;
3436         kstat_named_t rx_ovflow0;
3437         kstat_named_t rx_ovflow1;
3438         kstat_named_t rx_ovflow2;
3439         kstat_named_t rx_ovflow3;
3440         kstat_named_t rx_trunc0;
3441         kstat_named_t rx_trunc1;
3442         kstat_named_t rx_trunc2;
3443         kstat_named_t rx_trunc3;
3444         kstat_named_t tx_pause;
3445         kstat_named_t rx_pause;
3446 };
3447 
3448 static kstat_t *
3449 setup_port_config_kstats(struct port_info *pi)
3450 {
3451         kstat_t *ksp;
3452         struct cxgbe_port_config_kstats *kstatp;
3453         int ndata;
3454         dev_info_t *pdip = ddi_get_parent(pi->dip);
3455         uint8_t *ma = &pi->hw_addr[0];
3456 
3457         ndata = sizeof (struct cxgbe_port_config_kstats) /
3458             sizeof (kstat_named_t);
3459 
3460         ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config",
3461             "net", KSTAT_TYPE_NAMED, ndata, 0);
3462         if (ksp == NULL) {
3463                 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3464                 return (NULL);
3465         }
3466 
3467         kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data;
3468 
3469         KS_UINIT(idx);
3470         KS_UINIT(nrxq);
3471         KS_UINIT(ntxq);
3472         KS_UINIT(first_rxq);
3473         KS_UINIT(first_txq);
3474         KS_CINIT(controller);
3475         KS_CINIT(factory_mac_address);
3476 
3477         KS_U_SET(idx, pi->port_id);
3478         KS_U_SET(nrxq, pi->nrxq);
3479         KS_U_SET(ntxq, pi->ntxq);
3480         KS_U_SET(first_rxq, pi->first_rxq);
3481         KS_U_SET(first_txq, pi->first_txq);
3482         KS_C_SET(controller, "%s%d", ddi_driver_name(pdip),
3483             ddi_get_instance(pdip));
3484         KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X",
3485             ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]);
3486 
3487         /* Do NOT set ksp->ks_update.  These kstats do not change. */
3488 
3489         /* Install the kstat */
3490         ksp->ks_private = (void *)pi;
3491         kstat_install(ksp);
3492 
3493         return (ksp);
3494 }
3495 
3496 static kstat_t *
3497 setup_port_info_kstats(struct port_info *pi)
3498 {
3499         kstat_t *ksp;
3500         struct cxgbe_port_info_kstats *kstatp;
3501         int ndata;
3502 
3503         ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t);
3504 
3505         ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info",
3506             "net", KSTAT_TYPE_NAMED, ndata, 0);
3507         if (ksp == NULL) {
3508                 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3509                 return (NULL);
3510         }
3511 
3512         kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data;
3513 
3514         KS_CINIT(transceiver);
3515         KS_UINIT(rx_ovflow0);
3516         KS_UINIT(rx_ovflow1);
3517         KS_UINIT(rx_ovflow2);
3518         KS_UINIT(rx_ovflow3);
3519         KS_UINIT(rx_trunc0);
3520         KS_UINIT(rx_trunc1);
3521         KS_UINIT(rx_trunc2);
3522         KS_UINIT(rx_trunc3);
3523         KS_UINIT(tx_pause);
3524         KS_UINIT(rx_pause);
3525 
3526         /* Install the kstat */
3527         ksp->ks_update = update_port_info_kstats;
3528         ksp->ks_private = (void *)pi;
3529         kstat_install(ksp);
3530 
3531         return (ksp);
3532 }
3533 
3534 static int
3535 update_port_info_kstats(kstat_t *ksp, int rw)
3536 {
3537         struct cxgbe_port_info_kstats *kstatp =
3538             (struct cxgbe_port_info_kstats *)ksp->ks_data;
3539         struct port_info *pi = ksp->ks_private;
3540         static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX",
3541             "active TWINAX", "LRM" };
3542         uint32_t bgmap;
3543 
3544         if (rw == KSTAT_WRITE)
3545                 return (0);
3546 
3547         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
3548                 KS_C_SET(transceiver, "unplugged");
3549         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
3550                 KS_C_SET(transceiver, "unknown");
3551         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
3552                 KS_C_SET(transceiver, "unsupported");
3553         else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str))
3554                 KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]);
3555         else
3556                 KS_C_SET(transceiver, "type %d", pi->mod_type);
3557 
3558 #define GET_STAT(name) t4_read_reg64(pi->adapter, \
3559             PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L))
3560 #define GET_STAT_COM(name) t4_read_reg64(pi->adapter, \
3561             A_MPS_STAT_##name##_L)
3562 
3563         bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL));
3564         if (bgmap == 0)
3565                 bgmap = (pi->port_id == 0) ? 0xf : 0;
3566         else if (bgmap == 1)
3567                 bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0;
3568         else
3569                 bgmap = 1;
3570 
3571         KS_U_SET(rx_ovflow0, (bgmap & 1) ?
3572             GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0);
3573         KS_U_SET(rx_ovflow1, (bgmap & 2) ?
3574             GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0);
3575         KS_U_SET(rx_ovflow2, (bgmap & 4) ?
3576             GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0);
3577         KS_U_SET(rx_ovflow3, (bgmap & 8) ?
3578             GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0);
3579         KS_U_SET(rx_trunc0,  (bgmap & 1) ?
3580             GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0);
3581         KS_U_SET(rx_trunc1,  (bgmap & 2) ?
3582             GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0);
3583         KS_U_SET(rx_trunc2,  (bgmap & 4) ?
3584             GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0);
3585         KS_U_SET(rx_trunc3,  (bgmap & 8) ?
3586             GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0);
3587 
3588         KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE));
3589         KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE));
3590 
3591         return (0);
3592 
3593 }
3594 
3595 /*
3596  * cxgbe:X:rxqY
3597  */
3598 struct rxq_kstats {
3599         kstat_named_t rxcsum;
3600         kstat_named_t rxpkts;
3601         kstat_named_t rxbytes;
3602         kstat_named_t nomem;
3603 };
3604 
3605 static kstat_t *
3606 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx)
3607 {
3608         struct kstat *ksp;
3609         struct rxq_kstats *kstatp;
3610         int ndata;
3611         char str[16];
3612 
3613         ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t);
3614         (void) snprintf(str, sizeof (str), "rxq%u", idx);
3615 
3616         ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq",
3617             KSTAT_TYPE_NAMED, ndata, 0);
3618         if (ksp == NULL) {
3619                 cxgb_printf(pi->dip, CE_WARN,
3620                     "%s: failed to initialize rxq kstats for queue %d.",
3621                     __func__, idx);
3622                 return (NULL);
3623         }
3624 
3625         kstatp = (struct rxq_kstats *)ksp->ks_data;
3626 
3627         KS_UINIT(rxcsum);
3628         KS_UINIT(rxpkts);
3629         KS_UINIT(rxbytes);
3630         KS_UINIT(nomem);
3631 
3632         ksp->ks_update = update_rxq_kstats;
3633         ksp->ks_private = (void *)rxq;
3634         kstat_install(ksp);
3635 
3636         return (ksp);
3637 }
3638 
3639 static int
3640 update_rxq_kstats(kstat_t *ksp, int rw)
3641 {
3642         struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data;
3643         struct sge_rxq *rxq = ksp->ks_private;
3644 
3645         if (rw == KSTAT_WRITE)
3646                 return (0);
3647 
3648         KS_U_FROM(rxcsum, rxq);
3649         KS_U_FROM(rxpkts, rxq);
3650         KS_U_FROM(rxbytes, rxq);
3651         KS_U_FROM(nomem, rxq);
3652 
3653         return (0);
3654 }
3655 
3656 /*
3657  * cxgbe:X:txqY
3658  */
3659 struct txq_kstats {
3660         kstat_named_t txcsum;
3661         kstat_named_t tso_wrs;
3662         kstat_named_t imm_wrs;
3663         kstat_named_t sgl_wrs;
3664         kstat_named_t txpkt_wrs;
3665         kstat_named_t txpkts_wrs;
3666         kstat_named_t txpkts_pkts;
3667         kstat_named_t txb_used;
3668         kstat_named_t hdl_used;
3669         kstat_named_t txb_full;
3670         kstat_named_t dma_hdl_failed;
3671         kstat_named_t dma_map_failed;
3672         kstat_named_t qfull;
3673         kstat_named_t qflush;
3674         kstat_named_t pullup_early;
3675         kstat_named_t pullup_late;
3676         kstat_named_t pullup_failed;
3677 };
3678 
3679 static kstat_t *
3680 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx)
3681 {
3682         struct kstat *ksp;
3683         struct txq_kstats *kstatp;
3684         int ndata;
3685         char str[16];
3686 
3687         ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t);
3688         (void) snprintf(str, sizeof (str), "txq%u", idx);
3689 
3690         ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq",
3691             KSTAT_TYPE_NAMED, ndata, 0);
3692         if (ksp == NULL) {
3693                 cxgb_printf(pi->dip, CE_WARN,
3694                     "%s: failed to initialize txq kstats for queue %d.",
3695                     __func__, idx);
3696                 return (NULL);
3697         }
3698 
3699         kstatp = (struct txq_kstats *)ksp->ks_data;
3700 
3701         KS_UINIT(txcsum);
3702         KS_UINIT(tso_wrs);
3703         KS_UINIT(imm_wrs);
3704         KS_UINIT(sgl_wrs);
3705         KS_UINIT(txpkt_wrs);
3706         KS_UINIT(txpkts_wrs);
3707         KS_UINIT(txpkts_pkts);
3708         KS_UINIT(txb_used);
3709         KS_UINIT(hdl_used);
3710         KS_UINIT(txb_full);
3711         KS_UINIT(dma_hdl_failed);
3712         KS_UINIT(dma_map_failed);
3713         KS_UINIT(qfull);
3714         KS_UINIT(qflush);
3715         KS_UINIT(pullup_early);
3716         KS_UINIT(pullup_late);
3717         KS_UINIT(pullup_failed);
3718 
3719         ksp->ks_update = update_txq_kstats;
3720         ksp->ks_private = (void *)txq;
3721         kstat_install(ksp);
3722 
3723         return (ksp);
3724 }
3725 
3726 static int
3727 update_txq_kstats(kstat_t *ksp, int rw)
3728 {
3729         struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data;
3730         struct sge_txq *txq = ksp->ks_private;
3731 
3732         if (rw == KSTAT_WRITE)
3733                 return (0);
3734 
3735         KS_U_FROM(txcsum, txq);
3736         KS_U_FROM(tso_wrs, txq);
3737         KS_U_FROM(imm_wrs, txq);
3738         KS_U_FROM(sgl_wrs, txq);
3739         KS_U_FROM(txpkt_wrs, txq);
3740         KS_U_FROM(txpkts_wrs, txq);
3741         KS_U_FROM(txpkts_pkts, txq);
3742         KS_U_FROM(txb_used, txq);
3743         KS_U_FROM(hdl_used, txq);
3744         KS_U_FROM(txb_full, txq);
3745         KS_U_FROM(dma_hdl_failed, txq);
3746         KS_U_FROM(dma_map_failed, txq);
3747         KS_U_FROM(qfull, txq);
3748         KS_U_FROM(qflush, txq);
3749         KS_U_FROM(pullup_early, txq);
3750         KS_U_FROM(pullup_late, txq);
3751         KS_U_FROM(pullup_failed, txq);
3752 
3753         return (0);
3754 }