Print this page
NEX-19083 backport OS-7314 zil_commit should omit cache thrash
9962 zil_commit should omit cache thrash
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Approved by: Joshua M. Clulow <josh@sysmgr.org>
NEX-9752 backport illumos 6950 ARC should cache compressed data
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
6950 ARC should cache compressed data
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Don Brady <don.brady@intel.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
NEX-5367 special vdev: sync-write options (NEW)
Reviewed by: Roman Strashkin <roman.strashkin@nexenta.com>
Reviewed by: Alek Pinchuk <alek.pinchuk@nexenta.com>
5269 zpool import slow
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
4370 avoid transmitting holes during zfs send
4371 DMU code clean up
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Approved by: Garrett D'Amore <garrett@damore.org>
re #12585 rb4049 ZFS++ work port - refactoring to improve separation of open/closed code, bug fixes, performance improvements - open code
Bug 11205: add missing libzfs_closed_stubs.c to fix opensource-only build.
ZFS plus work: special vdevs, cos, cos/vdev properties
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/zfs/zil.c
+++ new/usr/src/uts/common/fs/zfs/zil.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
|
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 + * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
23 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 25 * Copyright (c) 2014 Integros [integros.com]
25 26 */
26 27
27 28 /* Portions Copyright 2010 Robert Milkowski */
28 29
29 30 #include <sys/zfs_context.h>
30 31 #include <sys/spa.h>
31 32 #include <sys/dmu.h>
32 33 #include <sys/zap.h>
33 34 #include <sys/arc.h>
34 35 #include <sys/stat.h>
35 36 #include <sys/resource.h>
36 37 #include <sys/zil.h>
37 38 #include <sys/zil_impl.h>
38 39 #include <sys/dsl_dataset.h>
39 40 #include <sys/vdev_impl.h>
40 41 #include <sys/dmu_tx.h>
41 42 #include <sys/dsl_pool.h>
42 43 #include <sys/abd.h>
43 44
44 45 /*
45 46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
46 47 * calls that change the file system. Each itx has enough information to
47 48 * be able to replay them after a system crash, power loss, or
48 49 * equivalent failure mode. These are stored in memory until either:
49 50 *
50 51 * 1. they are committed to the pool by the DMU transaction group
51 52 * (txg), at which point they can be discarded; or
52 53 * 2. they are committed to the on-disk ZIL for the dataset being
53 54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
54 55 * requirement).
55 56 *
56 57 * In the event of a crash or power loss, the itxs contained by each
57 58 * dataset's on-disk ZIL will be replayed when that dataset is first
58 59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
59 60 * first mounted).
60 61 *
61 62 * As hinted at above, there is one ZIL per dataset (both the in-memory
62 63 * representation, and the on-disk representation). The on-disk format
63 64 * consists of 3 parts:
64 65 *
65 66 * - a single, per-dataset, ZIL header; which points to a chain of
66 67 * - zero or more ZIL blocks; each of which contains
67 68 * - zero or more ZIL records
68 69 *
69 70 * A ZIL record holds the information necessary to replay a single
70 71 * system call transaction. A ZIL block can hold many ZIL records, and
71 72 * the blocks are chained together, similarly to a singly linked list.
72 73 *
73 74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
74 75 * block in the chain, and the ZIL header points to the first block in
75 76 * the chain.
76 77 *
77 78 * Note, there is not a fixed place in the pool to hold these ZIL
78 79 * blocks; they are dynamically allocated and freed as needed from the
79 80 * blocks available on the pool, though they can be preferentially
80 81 * allocated from a dedicated "log" vdev.
81 82 */
82 83
83 84 /*
|
↓ open down ↓ |
51 lines elided |
↑ open up ↑ |
84 85 * This controls the amount of time that a ZIL block (lwb) will remain
85 86 * "open" when it isn't "full", and it has a thread waiting for it to be
86 87 * committed to stable storage. Please refer to the zil_commit_waiter()
87 88 * function (and the comments within it) for more details.
88 89 */
89 90 int zfs_commit_timeout_pct = 5;
90 91
91 92 /*
92 93 * Disable intent logging replay. This global ZIL switch affects all pools.
93 94 */
94 -int zil_replay_disable = 0;
95 +int zil_replay_disable = 0; /* disable intent logging replay */
95 96
96 97 /*
97 98 * Tunable parameter for debugging or performance analysis. Setting
98 99 * zfs_nocacheflush will cause corruption on power loss if a volatile
99 100 * out-of-order write cache is enabled.
100 101 */
101 102 boolean_t zfs_nocacheflush = B_FALSE;
102 103
103 104 /*
104 105 * Limit SLOG write size per commit executed with synchronous priority.
105 106 * Any writes above that will be executed with lower (asynchronous) priority
106 107 * to limit potential SLOG device abuse by single active ZIL writer.
107 108 */
108 109 uint64_t zil_slog_bulk = 768 * 1024;
109 110
110 111 static kmem_cache_t *zil_lwb_cache;
111 112 static kmem_cache_t *zil_zcw_cache;
112 113
113 114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
114 115
115 116 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
116 117 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
117 118
118 119 static int
119 120 zil_bp_compare(const void *x1, const void *x2)
120 121 {
121 122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
122 123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
123 124
124 125 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
125 126 return (-1);
126 127 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
127 128 return (1);
128 129
129 130 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
130 131 return (-1);
131 132 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
132 133 return (1);
133 134
134 135 return (0);
135 136 }
136 137
137 138 static void
138 139 zil_bp_tree_init(zilog_t *zilog)
139 140 {
140 141 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
141 142 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
142 143 }
143 144
144 145 static void
145 146 zil_bp_tree_fini(zilog_t *zilog)
146 147 {
147 148 avl_tree_t *t = &zilog->zl_bp_tree;
148 149 zil_bp_node_t *zn;
149 150 void *cookie = NULL;
150 151
151 152 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
152 153 kmem_free(zn, sizeof (zil_bp_node_t));
153 154
154 155 avl_destroy(t);
155 156 }
156 157
157 158 int
158 159 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
159 160 {
160 161 avl_tree_t *t = &zilog->zl_bp_tree;
161 162 const dva_t *dva;
162 163 zil_bp_node_t *zn;
163 164 avl_index_t where;
164 165
165 166 if (BP_IS_EMBEDDED(bp))
166 167 return (0);
167 168
168 169 dva = BP_IDENTITY(bp);
169 170
170 171 if (avl_find(t, dva, &where) != NULL)
171 172 return (SET_ERROR(EEXIST));
172 173
173 174 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
174 175 zn->zn_dva = *dva;
175 176 avl_insert(t, zn, where);
176 177
177 178 return (0);
178 179 }
179 180
180 181 static zil_header_t *
181 182 zil_header_in_syncing_context(zilog_t *zilog)
182 183 {
183 184 return ((zil_header_t *)zilog->zl_header);
184 185 }
185 186
186 187 static void
187 188 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
188 189 {
189 190 zio_cksum_t *zc = &bp->blk_cksum;
190 191
191 192 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
192 193 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
193 194 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
194 195 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
195 196 }
196 197
197 198 /*
198 199 * Read a log block and make sure it's valid.
199 200 */
200 201 static int
201 202 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
202 203 char **end)
203 204 {
204 205 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
205 206 arc_flags_t aflags = ARC_FLAG_WAIT;
206 207 arc_buf_t *abuf = NULL;
207 208 zbookmark_phys_t zb;
208 209 int error;
209 210
210 211 if (zilog->zl_header->zh_claim_txg == 0)
211 212 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
212 213
213 214 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
214 215 zio_flags |= ZIO_FLAG_SPECULATIVE;
215 216
216 217 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
217 218 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
218 219
219 220 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
220 221 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
221 222
222 223 if (error == 0) {
223 224 zio_cksum_t cksum = bp->blk_cksum;
224 225
225 226 /*
226 227 * Validate the checksummed log block.
227 228 *
228 229 * Sequence numbers should be... sequential. The checksum
229 230 * verifier for the next block should be bp's checksum plus 1.
230 231 *
231 232 * Also check the log chain linkage and size used.
232 233 */
233 234 cksum.zc_word[ZIL_ZC_SEQ]++;
234 235
235 236 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
236 237 zil_chain_t *zilc = abuf->b_data;
237 238 char *lr = (char *)(zilc + 1);
238 239 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
239 240
240 241 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
241 242 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
242 243 error = SET_ERROR(ECKSUM);
243 244 } else {
244 245 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
245 246 bcopy(lr, dst, len);
246 247 *end = (char *)dst + len;
247 248 *nbp = zilc->zc_next_blk;
248 249 }
249 250 } else {
250 251 char *lr = abuf->b_data;
251 252 uint64_t size = BP_GET_LSIZE(bp);
252 253 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
253 254
254 255 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
255 256 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
256 257 (zilc->zc_nused > (size - sizeof (*zilc)))) {
257 258 error = SET_ERROR(ECKSUM);
258 259 } else {
259 260 ASSERT3U(zilc->zc_nused, <=,
260 261 SPA_OLD_MAXBLOCKSIZE);
261 262 bcopy(lr, dst, zilc->zc_nused);
262 263 *end = (char *)dst + zilc->zc_nused;
263 264 *nbp = zilc->zc_next_blk;
264 265 }
265 266 }
266 267
267 268 arc_buf_destroy(abuf, &abuf);
268 269 }
269 270
270 271 return (error);
271 272 }
272 273
273 274 /*
274 275 * Read a TX_WRITE log data block.
275 276 */
276 277 static int
277 278 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
278 279 {
279 280 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
280 281 const blkptr_t *bp = &lr->lr_blkptr;
281 282 arc_flags_t aflags = ARC_FLAG_WAIT;
282 283 arc_buf_t *abuf = NULL;
283 284 zbookmark_phys_t zb;
284 285 int error;
285 286
286 287 if (BP_IS_HOLE(bp)) {
287 288 if (wbuf != NULL)
288 289 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
289 290 return (0);
290 291 }
291 292
292 293 if (zilog->zl_header->zh_claim_txg == 0)
293 294 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
294 295
295 296 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
296 297 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
297 298
298 299 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
299 300 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
300 301
301 302 if (error == 0) {
302 303 if (wbuf != NULL)
303 304 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
304 305 arc_buf_destroy(abuf, &abuf);
305 306 }
306 307
307 308 return (error);
308 309 }
309 310
310 311 /*
311 312 * Parse the intent log, and call parse_func for each valid record within.
312 313 */
313 314 int
314 315 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
315 316 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
316 317 {
317 318 const zil_header_t *zh = zilog->zl_header;
318 319 boolean_t claimed = !!zh->zh_claim_txg;
319 320 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
320 321 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
321 322 uint64_t max_blk_seq = 0;
322 323 uint64_t max_lr_seq = 0;
323 324 uint64_t blk_count = 0;
324 325 uint64_t lr_count = 0;
325 326 blkptr_t blk, next_blk;
326 327 char *lrbuf, *lrp;
327 328 int error = 0;
328 329
329 330 /*
330 331 * Old logs didn't record the maximum zh_claim_lr_seq.
331 332 */
332 333 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
333 334 claim_lr_seq = UINT64_MAX;
334 335
335 336 /*
336 337 * Starting at the block pointed to by zh_log we read the log chain.
337 338 * For each block in the chain we strongly check that block to
338 339 * ensure its validity. We stop when an invalid block is found.
339 340 * For each block pointer in the chain we call parse_blk_func().
340 341 * For each record in each valid block we call parse_lr_func().
341 342 * If the log has been claimed, stop if we encounter a sequence
342 343 * number greater than the highest claimed sequence number.
343 344 */
344 345 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
345 346 zil_bp_tree_init(zilog);
346 347
347 348 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
348 349 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
349 350 int reclen;
350 351 char *end;
351 352
352 353 if (blk_seq > claim_blk_seq)
353 354 break;
354 355 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
355 356 break;
356 357 ASSERT3U(max_blk_seq, <, blk_seq);
357 358 max_blk_seq = blk_seq;
358 359 blk_count++;
359 360
360 361 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
361 362 break;
362 363
363 364 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
364 365 if (error != 0)
365 366 break;
366 367
367 368 for (lrp = lrbuf; lrp < end; lrp += reclen) {
368 369 lr_t *lr = (lr_t *)lrp;
369 370 reclen = lr->lrc_reclen;
370 371 ASSERT3U(reclen, >=, sizeof (lr_t));
371 372 if (lr->lrc_seq > claim_lr_seq)
372 373 goto done;
373 374 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
374 375 goto done;
375 376 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
376 377 max_lr_seq = lr->lrc_seq;
377 378 lr_count++;
378 379 }
379 380 }
380 381 done:
381 382 zilog->zl_parse_error = error;
382 383 zilog->zl_parse_blk_seq = max_blk_seq;
383 384 zilog->zl_parse_lr_seq = max_lr_seq;
384 385 zilog->zl_parse_blk_count = blk_count;
385 386 zilog->zl_parse_lr_count = lr_count;
386 387
387 388 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
388 389 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
389 390
390 391 zil_bp_tree_fini(zilog);
391 392 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
392 393
393 394 return (error);
394 395 }
395 396
396 397 static int
397 398 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
398 399 {
399 400 /*
400 401 * Claim log block if not already committed and not already claimed.
401 402 * If tx == NULL, just verify that the block is claimable.
402 403 */
403 404 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
404 405 zil_bp_tree_add(zilog, bp) != 0)
405 406 return (0);
406 407
407 408 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
408 409 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
409 410 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
410 411 }
411 412
412 413 static int
413 414 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
414 415 {
415 416 lr_write_t *lr = (lr_write_t *)lrc;
416 417 int error;
417 418
418 419 if (lrc->lrc_txtype != TX_WRITE)
419 420 return (0);
420 421
421 422 /*
422 423 * If the block is not readable, don't claim it. This can happen
423 424 * in normal operation when a log block is written to disk before
424 425 * some of the dmu_sync() blocks it points to. In this case, the
425 426 * transaction cannot have been committed to anyone (we would have
426 427 * waited for all writes to be stable first), so it is semantically
427 428 * correct to declare this the end of the log.
428 429 */
429 430 if (lr->lr_blkptr.blk_birth >= first_txg &&
430 431 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
431 432 return (error);
432 433 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
433 434 }
434 435
435 436 /* ARGSUSED */
436 437 static int
437 438 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
438 439 {
439 440 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
440 441
441 442 return (0);
442 443 }
443 444
444 445 static int
445 446 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
446 447 {
447 448 lr_write_t *lr = (lr_write_t *)lrc;
448 449 blkptr_t *bp = &lr->lr_blkptr;
449 450
450 451 /*
451 452 * If we previously claimed it, we need to free it.
452 453 */
453 454 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
454 455 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
455 456 !BP_IS_HOLE(bp))
456 457 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
457 458
458 459 return (0);
459 460 }
460 461
461 462 static int
462 463 zil_lwb_vdev_compare(const void *x1, const void *x2)
463 464 {
464 465 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
465 466 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
466 467
467 468 if (v1 < v2)
468 469 return (-1);
469 470 if (v1 > v2)
470 471 return (1);
471 472
472 473 return (0);
473 474 }
474 475
475 476 static lwb_t *
476 477 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
477 478 {
478 479 lwb_t *lwb;
479 480
480 481 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
481 482 lwb->lwb_zilog = zilog;
482 483 lwb->lwb_blk = *bp;
483 484 lwb->lwb_slog = slog;
484 485 lwb->lwb_state = LWB_STATE_CLOSED;
485 486 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
486 487 lwb->lwb_max_txg = txg;
487 488 lwb->lwb_write_zio = NULL;
488 489 lwb->lwb_root_zio = NULL;
489 490 lwb->lwb_tx = NULL;
490 491 lwb->lwb_issued_timestamp = 0;
491 492 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
492 493 lwb->lwb_nused = sizeof (zil_chain_t);
493 494 lwb->lwb_sz = BP_GET_LSIZE(bp);
494 495 } else {
495 496 lwb->lwb_nused = 0;
496 497 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
497 498 }
498 499
499 500 mutex_enter(&zilog->zl_lock);
500 501 list_insert_tail(&zilog->zl_lwb_list, lwb);
501 502 mutex_exit(&zilog->zl_lock);
502 503
503 504 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
504 505 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
505 506 VERIFY(list_is_empty(&lwb->lwb_waiters));
506 507
507 508 return (lwb);
508 509 }
509 510
510 511 static void
|
↓ open down ↓ |
406 lines elided |
↑ open up ↑ |
511 512 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
512 513 {
513 514 ASSERT(MUTEX_HELD(&zilog->zl_lock));
514 515 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
515 516 VERIFY(list_is_empty(&lwb->lwb_waiters));
516 517 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
517 518 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
518 519 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
519 520 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
520 521 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
521 - lwb->lwb_state == LWB_STATE_DONE);
522 + lwb->lwb_state == LWB_STATE_FLUSH_DONE);
522 523
523 524 /*
524 525 * Clear the zilog's field to indicate this lwb is no longer
525 526 * valid, and prevent use-after-free errors.
526 527 */
527 528 if (zilog->zl_last_lwb_opened == lwb)
528 529 zilog->zl_last_lwb_opened = NULL;
529 530
530 531 kmem_cache_free(zil_lwb_cache, lwb);
531 532 }
532 533
533 534 /*
534 535 * Called when we create in-memory log transactions so that we know
535 536 * to cleanup the itxs at the end of spa_sync().
536 537 */
537 538 void
538 539 zilog_dirty(zilog_t *zilog, uint64_t txg)
539 540 {
540 541 dsl_pool_t *dp = zilog->zl_dmu_pool;
541 542 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
542 543
543 544 ASSERT(spa_writeable(zilog->zl_spa));
544 545
545 546 if (ds->ds_is_snapshot)
546 547 panic("dirtying snapshot!");
547 548
548 549 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
549 550 /* up the hold count until we can be written out */
550 551 dmu_buf_add_ref(ds->ds_dbuf, zilog);
551 552
552 553 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
553 554 }
554 555 }
555 556
556 557 /*
557 558 * Determine if the zil is dirty in the specified txg. Callers wanting to
558 559 * ensure that the dirty state does not change must hold the itxg_lock for
559 560 * the specified txg. Holding the lock will ensure that the zil cannot be
560 561 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
561 562 * state.
562 563 */
563 564 boolean_t
564 565 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
565 566 {
566 567 dsl_pool_t *dp = zilog->zl_dmu_pool;
567 568
568 569 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
569 570 return (B_TRUE);
570 571 return (B_FALSE);
571 572 }
572 573
573 574 /*
574 575 * Determine if the zil is dirty. The zil is considered dirty if it has
575 576 * any pending itx records that have not been cleaned by zil_clean().
576 577 */
577 578 boolean_t
578 579 zilog_is_dirty(zilog_t *zilog)
579 580 {
580 581 dsl_pool_t *dp = zilog->zl_dmu_pool;
581 582
582 583 for (int t = 0; t < TXG_SIZE; t++) {
583 584 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
584 585 return (B_TRUE);
585 586 }
586 587 return (B_FALSE);
587 588 }
588 589
589 590 /*
590 591 * Create an on-disk intent log.
591 592 */
592 593 static lwb_t *
593 594 zil_create(zilog_t *zilog)
594 595 {
595 596 const zil_header_t *zh = zilog->zl_header;
596 597 lwb_t *lwb = NULL;
597 598 uint64_t txg = 0;
598 599 dmu_tx_t *tx = NULL;
599 600 blkptr_t blk;
600 601 int error = 0;
601 602 boolean_t slog = FALSE;
602 603
603 604 /*
604 605 * Wait for any previous destroy to complete.
605 606 */
606 607 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
607 608
608 609 ASSERT(zh->zh_claim_txg == 0);
609 610 ASSERT(zh->zh_replay_seq == 0);
610 611
611 612 blk = zh->zh_log;
612 613
613 614 /*
614 615 * Allocate an initial log block if:
615 616 * - there isn't one already
616 617 * - the existing block is the wrong endianess
617 618 */
618 619 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
619 620 tx = dmu_tx_create(zilog->zl_os);
620 621 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
621 622 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
622 623 txg = dmu_tx_get_txg(tx);
623 624
624 625 if (!BP_IS_HOLE(&blk)) {
625 626 zio_free_zil(zilog->zl_spa, txg, &blk);
626 627 BP_ZERO(&blk);
627 628 }
628 629
629 630 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
630 631 ZIL_MIN_BLKSZ, &slog);
631 632
632 633 if (error == 0)
633 634 zil_init_log_chain(zilog, &blk);
634 635 }
635 636
636 637 /*
637 638 * Allocate a log write block (lwb) for the first log block.
638 639 */
639 640 if (error == 0)
640 641 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
641 642
642 643 /*
643 644 * If we just allocated the first log block, commit our transaction
644 645 * and wait for zil_sync() to stuff the block poiner into zh_log.
645 646 * (zh is part of the MOS, so we cannot modify it in open context.)
646 647 */
647 648 if (tx != NULL) {
648 649 dmu_tx_commit(tx);
649 650 txg_wait_synced(zilog->zl_dmu_pool, txg);
650 651 }
651 652
652 653 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
653 654
654 655 return (lwb);
655 656 }
656 657
657 658 /*
658 659 * In one tx, free all log blocks and clear the log header. If keep_first
659 660 * is set, then we're replaying a log with no content. We want to keep the
660 661 * first block, however, so that the first synchronous transaction doesn't
661 662 * require a txg_wait_synced() in zil_create(). We don't need to
662 663 * txg_wait_synced() here either when keep_first is set, because both
663 664 * zil_create() and zil_destroy() will wait for any in-progress destroys
664 665 * to complete.
665 666 */
666 667 void
667 668 zil_destroy(zilog_t *zilog, boolean_t keep_first)
668 669 {
669 670 const zil_header_t *zh = zilog->zl_header;
670 671 lwb_t *lwb;
671 672 dmu_tx_t *tx;
672 673 uint64_t txg;
673 674
674 675 /*
675 676 * Wait for any previous destroy to complete.
676 677 */
677 678 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
678 679
679 680 zilog->zl_old_header = *zh; /* debugging aid */
680 681
681 682 if (BP_IS_HOLE(&zh->zh_log))
682 683 return;
683 684
684 685 tx = dmu_tx_create(zilog->zl_os);
685 686 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
686 687 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
687 688 txg = dmu_tx_get_txg(tx);
688 689
689 690 mutex_enter(&zilog->zl_lock);
690 691
691 692 ASSERT3U(zilog->zl_destroy_txg, <, txg);
692 693 zilog->zl_destroy_txg = txg;
693 694 zilog->zl_keep_first = keep_first;
694 695
695 696 if (!list_is_empty(&zilog->zl_lwb_list)) {
696 697 ASSERT(zh->zh_claim_txg == 0);
697 698 VERIFY(!keep_first);
698 699 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
699 700 list_remove(&zilog->zl_lwb_list, lwb);
700 701 if (lwb->lwb_buf != NULL)
701 702 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
702 703 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
703 704 zil_free_lwb(zilog, lwb);
704 705 }
705 706 } else if (!keep_first) {
706 707 zil_destroy_sync(zilog, tx);
707 708 }
708 709 mutex_exit(&zilog->zl_lock);
709 710
710 711 dmu_tx_commit(tx);
711 712 }
712 713
713 714 void
714 715 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
715 716 {
716 717 ASSERT(list_is_empty(&zilog->zl_lwb_list));
717 718 (void) zil_parse(zilog, zil_free_log_block,
718 719 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
719 720 }
720 721
721 722 int
722 723 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
723 724 {
724 725 dmu_tx_t *tx = txarg;
725 726 uint64_t first_txg = dmu_tx_get_txg(tx);
726 727 zilog_t *zilog;
727 728 zil_header_t *zh;
728 729 objset_t *os;
729 730 int error;
730 731
731 732 error = dmu_objset_own_obj(dp, ds->ds_object,
732 733 DMU_OST_ANY, B_FALSE, FTAG, &os);
733 734 if (error != 0) {
734 735 /*
735 736 * EBUSY indicates that the objset is inconsistent, in which
736 737 * case it can not have a ZIL.
737 738 */
738 739 if (error != EBUSY) {
739 740 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
740 741 (unsigned long long)ds->ds_object, error);
741 742 }
742 743 return (0);
743 744 }
744 745
745 746 zilog = dmu_objset_zil(os);
746 747 zh = zil_header_in_syncing_context(zilog);
747 748
748 749 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
749 750 if (!BP_IS_HOLE(&zh->zh_log))
750 751 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
751 752 BP_ZERO(&zh->zh_log);
752 753 dsl_dataset_dirty(dmu_objset_ds(os), tx);
753 754 dmu_objset_disown(os, FTAG);
754 755 return (0);
755 756 }
756 757
757 758 /*
758 759 * Claim all log blocks if we haven't already done so, and remember
759 760 * the highest claimed sequence number. This ensures that if we can
760 761 * read only part of the log now (e.g. due to a missing device),
761 762 * but we can read the entire log later, we will not try to replay
762 763 * or destroy beyond the last block we successfully claimed.
763 764 */
764 765 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
765 766 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
766 767 (void) zil_parse(zilog, zil_claim_log_block,
767 768 zil_claim_log_record, tx, first_txg);
768 769 zh->zh_claim_txg = first_txg;
769 770 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
770 771 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
771 772 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
772 773 zh->zh_flags |= ZIL_REPLAY_NEEDED;
773 774 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
774 775 dsl_dataset_dirty(dmu_objset_ds(os), tx);
775 776 }
776 777
777 778 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
778 779 dmu_objset_disown(os, FTAG);
779 780 return (0);
780 781 }
781 782
782 783 /*
783 784 * Check the log by walking the log chain.
784 785 * Checksum errors are ok as they indicate the end of the chain.
785 786 * Any other error (no device or read failure) returns an error.
786 787 */
787 788 /* ARGSUSED */
788 789 int
789 790 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
790 791 {
791 792 zilog_t *zilog;
792 793 objset_t *os;
793 794 blkptr_t *bp;
794 795 int error;
795 796
796 797 ASSERT(tx == NULL);
797 798
798 799 error = dmu_objset_from_ds(ds, &os);
799 800 if (error != 0) {
800 801 cmn_err(CE_WARN, "can't open objset %llu, error %d",
801 802 (unsigned long long)ds->ds_object, error);
802 803 return (0);
803 804 }
804 805
805 806 zilog = dmu_objset_zil(os);
806 807 bp = (blkptr_t *)&zilog->zl_header->zh_log;
807 808
808 809 /*
809 810 * Check the first block and determine if it's on a log device
810 811 * which may have been removed or faulted prior to loading this
811 812 * pool. If so, there's no point in checking the rest of the log
812 813 * as its content should have already been synced to the pool.
813 814 */
814 815 if (!BP_IS_HOLE(bp)) {
815 816 vdev_t *vd;
816 817 boolean_t valid = B_TRUE;
817 818
818 819 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
819 820 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
820 821 if (vd->vdev_islog && vdev_is_dead(vd))
821 822 valid = vdev_log_state_valid(vd);
822 823 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
823 824
824 825 if (!valid)
825 826 return (0);
826 827 }
827 828
828 829 /*
829 830 * Because tx == NULL, zil_claim_log_block() will not actually claim
830 831 * any blocks, but just determine whether it is possible to do so.
831 832 * In addition to checking the log chain, zil_claim_log_block()
832 833 * will invoke zio_claim() with a done func of spa_claim_notify(),
833 834 * which will update spa_max_claim_txg. See spa_load() for details.
834 835 */
835 836 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
836 837 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
837 838
838 839 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
839 840 }
840 841
841 842 /*
842 843 * When an itx is "skipped", this function is used to properly mark the
843 844 * waiter as "done, and signal any thread(s) waiting on it. An itx can
844 845 * be skipped (and not committed to an lwb) for a variety of reasons,
845 846 * one of them being that the itx was committed via spa_sync(), prior to
846 847 * it being committed to an lwb; this can happen if a thread calling
847 848 * zil_commit() is racing with spa_sync().
848 849 */
849 850 static void
850 851 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
851 852 {
852 853 mutex_enter(&zcw->zcw_lock);
853 854 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
854 855 zcw->zcw_done = B_TRUE;
855 856 cv_broadcast(&zcw->zcw_cv);
856 857 mutex_exit(&zcw->zcw_lock);
857 858 }
858 859
859 860 /*
860 861 * This function is used when the given waiter is to be linked into an
861 862 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
862 863 * At this point, the waiter will no longer be referenced by the itx,
863 864 * and instead, will be referenced by the lwb.
864 865 */
865 866 static void
866 867 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
867 868 {
868 869 /*
|
↓ open down ↓ |
337 lines elided |
↑ open up ↑ |
869 870 * The lwb_waiters field of the lwb is protected by the zilog's
870 871 * zl_lock, thus it must be held when calling this function.
871 872 */
872 873 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
873 874
874 875 mutex_enter(&zcw->zcw_lock);
875 876 ASSERT(!list_link_active(&zcw->zcw_node));
876 877 ASSERT3P(zcw->zcw_lwb, ==, NULL);
877 878 ASSERT3P(lwb, !=, NULL);
878 879 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
879 - lwb->lwb_state == LWB_STATE_ISSUED);
880 + lwb->lwb_state == LWB_STATE_ISSUED ||
881 + lwb->lwb_state == LWB_STATE_WRITE_DONE);
880 882
881 883 list_insert_tail(&lwb->lwb_waiters, zcw);
882 884 zcw->zcw_lwb = lwb;
883 885 mutex_exit(&zcw->zcw_lock);
884 886 }
885 887
886 888 /*
887 889 * This function is used when zio_alloc_zil() fails to allocate a ZIL
888 890 * block, and the given waiter must be linked to the "nolwb waiters"
889 891 * list inside of zil_process_commit_list().
890 892 */
891 893 static void
892 894 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
893 895 {
894 896 mutex_enter(&zcw->zcw_lock);
895 897 ASSERT(!list_link_active(&zcw->zcw_node));
896 898 ASSERT3P(zcw->zcw_lwb, ==, NULL);
897 899 list_insert_tail(nolwb, zcw);
898 900 mutex_exit(&zcw->zcw_lock);
899 901 }
900 902
901 903 void
902 904 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
903 905 {
904 906 avl_tree_t *t = &lwb->lwb_vdev_tree;
905 907 avl_index_t where;
906 908 zil_vdev_node_t *zv, zvsearch;
907 909 int ndvas = BP_GET_NDVAS(bp);
908 910 int i;
909 911
910 912 if (zfs_nocacheflush)
911 913 return;
912 914
913 915 mutex_enter(&lwb->lwb_vdev_lock);
914 916 for (i = 0; i < ndvas; i++) {
|
↓ open down ↓ |
25 lines elided |
↑ open up ↑ |
915 917 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
916 918 if (avl_find(t, &zvsearch, &where) == NULL) {
917 919 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
918 920 zv->zv_vdev = zvsearch.zv_vdev;
919 921 avl_insert(t, zv, where);
920 922 }
921 923 }
922 924 mutex_exit(&lwb->lwb_vdev_lock);
923 925 }
924 926
927 +static void
928 +zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
929 +{
930 + avl_tree_t *src = &lwb->lwb_vdev_tree;
931 + avl_tree_t *dst = &nlwb->lwb_vdev_tree;
932 + void *cookie = NULL;
933 + zil_vdev_node_t *zv;
934 +
935 + ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
936 + ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
937 + ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
938 +
939 + /*
940 + * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
941 + * not need the protection of lwb_vdev_lock (it will only be modified
942 + * while holding zilog->zl_lock) as its writes and those of its
943 + * children have all completed. The younger 'nlwb' may be waiting on
944 + * future writes to additional vdevs.
945 + */
946 + mutex_enter(&nlwb->lwb_vdev_lock);
947 + /*
948 + * Tear down the 'lwb' vdev tree, ensuring that entries which do not
949 + * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
950 + */
951 + while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
952 + avl_index_t where;
953 +
954 + if (avl_find(dst, zv, &where) == NULL) {
955 + avl_insert(dst, zv, where);
956 + } else {
957 + kmem_free(zv, sizeof (*zv));
958 + }
959 + }
960 + mutex_exit(&nlwb->lwb_vdev_lock);
961 +}
962 +
925 963 void
926 964 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
927 965 {
928 966 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
929 967 }
930 968
931 969 /*
932 - * This function is a called after all VDEVs associated with a given lwb
970 + * This function is a called after all vdevs associated with a given lwb
933 971 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
934 - * as the lwb write completes, if "zfs_nocacheflush" is set.
972 + * as the lwb write completes, if "zil_nocacheflush" is set. Further,
973 + * all "previous" lwb's will have completed before this function is
974 + * called; i.e. this function is called for all previous lwbs before
975 + * it's called for "this" lwb (enforced via zio the dependencies
976 + * configured in zil_lwb_set_zio_dependency()).
935 977 *
936 978 * The intention is for this function to be called as soon as the
937 979 * contents of an lwb are considered "stable" on disk, and will survive
938 980 * any sudden loss of power. At this point, any threads waiting for the
939 981 * lwb to reach this state are signalled, and the "waiter" structures
940 982 * are marked "done".
941 983 */
942 984 static void
943 985 zil_lwb_flush_vdevs_done(zio_t *zio)
944 986 {
945 987 lwb_t *lwb = zio->io_private;
946 988 zilog_t *zilog = lwb->lwb_zilog;
947 989 dmu_tx_t *tx = lwb->lwb_tx;
948 990 zil_commit_waiter_t *zcw;
949 991
950 992 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
951 993
952 994 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
953 995
954 996 mutex_enter(&zilog->zl_lock);
955 997
956 998 /*
957 999 * Ensure the lwb buffer pointer is cleared before releasing the
958 1000 * txg. If we have had an allocation failure and the txg is
959 1001 * waiting to sync then we want zil_sync() to remove the lwb so
960 1002 * that it's not picked up as the next new one in
|
↓ open down ↓ |
16 lines elided |
↑ open up ↑ |
961 1003 * zil_process_commit_list(). zil_sync() will only remove the
962 1004 * lwb if lwb_buf is null.
963 1005 */
964 1006 lwb->lwb_buf = NULL;
965 1007 lwb->lwb_tx = NULL;
966 1008
967 1009 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
968 1010 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
969 1011
970 1012 lwb->lwb_root_zio = NULL;
971 - lwb->lwb_state = LWB_STATE_DONE;
972 1013
1014 + ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1015 + lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1016 +
973 1017 if (zilog->zl_last_lwb_opened == lwb) {
974 1018 /*
975 1019 * Remember the highest committed log sequence number
976 1020 * for ztest. We only update this value when all the log
977 1021 * writes succeeded, because ztest wants to ASSERT that
978 1022 * it got the whole log chain.
979 1023 */
980 1024 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
981 1025 }
982 1026
983 1027 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
984 1028 mutex_enter(&zcw->zcw_lock);
985 1029
986 1030 ASSERT(list_link_active(&zcw->zcw_node));
987 1031 list_remove(&lwb->lwb_waiters, zcw);
988 1032
989 1033 ASSERT3P(zcw->zcw_lwb, ==, lwb);
990 1034 zcw->zcw_lwb = NULL;
991 1035
992 1036 zcw->zcw_zio_error = zio->io_error;
993 1037
994 1038 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
995 1039 zcw->zcw_done = B_TRUE;
996 1040 cv_broadcast(&zcw->zcw_cv);
997 1041
998 1042 mutex_exit(&zcw->zcw_lock);
999 1043 }
1000 1044
1001 1045 mutex_exit(&zilog->zl_lock);
|
↓ open down ↓ |
19 lines elided |
↑ open up ↑ |
1002 1046
1003 1047 /*
1004 1048 * Now that we've written this log block, we have a stable pointer
1005 1049 * to the next block in the chain, so it's OK to let the txg in
1006 1050 * which we allocated the next block sync.
1007 1051 */
1008 1052 dmu_tx_commit(tx);
1009 1053 }
1010 1054
1011 1055 /*
1012 - * This is called when an lwb write completes. This means, this specific
1013 - * lwb was written to disk, and all dependent lwb have also been
1014 - * written to disk.
1015 - *
1016 - * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1017 - * the VDEVs involved in writing out this specific lwb. The lwb will be
1018 - * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1019 - * zio completion callback for the lwb's root zio.
1056 + * This is called when an lwb's write zio completes. The callback's
1057 + * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1058 + * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1059 + * in writing out this specific lwb's data, and in the case that cache
1060 + * flushes have been deferred, vdevs involved in writing the data for
1061 + * previous lwbs. The writes corresponding to all the vdevs in the
1062 + * lwb_vdev_tree will have completed by the time this is called, due to
1063 + * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1064 + * which takes deferred flushes into account. The lwb will be "done"
1065 + * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1066 + * completion callback for the lwb's root zio.
1020 1067 */
1021 1068 static void
1022 1069 zil_lwb_write_done(zio_t *zio)
1023 1070 {
1024 1071 lwb_t *lwb = zio->io_private;
1025 1072 spa_t *spa = zio->io_spa;
1026 1073 zilog_t *zilog = lwb->lwb_zilog;
1027 1074 avl_tree_t *t = &lwb->lwb_vdev_tree;
1028 1075 void *cookie = NULL;
1029 1076 zil_vdev_node_t *zv;
1077 + lwb_t *nlwb;
1030 1078
1031 1079 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1032 1080
1033 1081 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1034 1082 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1035 1083 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1036 1084 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1037 1085 ASSERT(!BP_IS_GANG(zio->io_bp));
1038 1086 ASSERT(!BP_IS_HOLE(zio->io_bp));
1039 1087 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1040 1088
1041 1089 abd_put(zio->io_abd);
1042 1090
1043 - ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1044 -
1045 1091 mutex_enter(&zilog->zl_lock);
1092 + ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1093 + lwb->lwb_state = LWB_STATE_WRITE_DONE;
1046 1094 lwb->lwb_write_zio = NULL;
1095 + nlwb = list_next(&zilog->zl_lwb_list, lwb);
1047 1096 mutex_exit(&zilog->zl_lock);
1048 1097
1049 1098 if (avl_numnodes(t) == 0)
1050 1099 return;
1051 1100
1052 1101 /*
1053 1102 * If there was an IO error, we're not going to call zio_flush()
1054 1103 * on these vdevs, so we simply empty the tree and free the
1055 1104 * nodes. We avoid calling zio_flush() since there isn't any
1056 1105 * good reason for doing so, after the lwb block failed to be
1057 1106 * written out.
1058 1107 */
1059 1108 if (zio->io_error != 0) {
1060 1109 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1061 1110 kmem_free(zv, sizeof (*zv));
1062 1111 return;
1063 1112 }
1064 1113
1114 + /*
1115 + * If this lwb does not have any threads waiting for it to
1116 + * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1117 + * command to the vdevs written to by "this" lwb, and instead
1118 + * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1119 + * command for those vdevs. Thus, we merge the vdev tree of
1120 + * "this" lwb with the vdev tree of the "next" lwb in the list,
1121 + * and assume the "next" lwb will handle flushing the vdevs (or
1122 + * deferring the flush(s) again).
1123 + *
1124 + * This is a useful performance optimization, especially for
1125 + * workloads with lots of async write activity and few sync
1126 + * write and/or fsync activity, as it has the potential to
1127 + * coalesce multiple flush commands to a vdev into one.
1128 + */
1129 + if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1130 + zil_lwb_flush_defer(lwb, nlwb);
1131 + ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1132 + return;
1133 + }
1134 +
1065 1135 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1066 1136 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1067 1137 if (vd != NULL)
1068 1138 zio_flush(lwb->lwb_root_zio, vd);
1069 1139 kmem_free(zv, sizeof (*zv));
1070 1140 }
1071 1141 }
1072 1142
1143 +static void
1144 +zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1145 +{
1146 + lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1147 +
1148 + ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1149 + ASSERT(MUTEX_HELD(&zilog->zl_lock));
1150 +
1151 + /*
1152 + * The zilog's "zl_last_lwb_opened" field is used to build the
1153 + * lwb/zio dependency chain, which is used to preserve the
1154 + * ordering of lwb completions that is required by the semantics
1155 + * of the ZIL. Each new lwb zio becomes a parent of the
1156 + * "previous" lwb zio, such that the new lwb's zio cannot
1157 + * complete until the "previous" lwb's zio completes.
1158 + *
1159 + * This is required by the semantics of zil_commit(); the commit
1160 + * waiters attached to the lwbs will be woken in the lwb zio's
1161 + * completion callback, so this zio dependency graph ensures the
1162 + * waiters are woken in the correct order (the same order the
1163 + * lwbs were created).
1164 + */
1165 + if (last_lwb_opened != NULL &&
1166 + last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1167 + ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1168 + last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1169 + last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1170 +
1171 + ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1172 + zio_add_child(lwb->lwb_root_zio,
1173 + last_lwb_opened->lwb_root_zio);
1174 +
1175 + /*
1176 + * If the previous lwb's write hasn't already completed,
1177 + * we also want to order the completion of the lwb write
1178 + * zios (above, we only order the completion of the lwb
1179 + * root zios). This is required because of how we can
1180 + * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1181 + *
1182 + * When the DKIOCFLUSHWRITECACHE commands are defered,
1183 + * the previous lwb will rely on this lwb to flush the
1184 + * vdevs written to by that previous lwb. Thus, we need
1185 + * to ensure this lwb doesn't issue the flush until
1186 + * after the previous lwb's write completes. We ensure
1187 + * this ordering by setting the zio parent/child
1188 + * relationship here.
1189 + *
1190 + * Without this relationship on the lwb's write zio,
1191 + * it's possible for this lwb's write to complete prior
1192 + * to the previous lwb's write completing; and thus, the
1193 + * vdevs for the previous lwb would be flushed prior to
1194 + * that lwb's data being written to those vdevs (the
1195 + * vdevs are flushed in the lwb write zio's completion
1196 + * handler, zil_lwb_write_done()).
1197 + */
1198 + if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1199 + ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1200 + last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1201 +
1202 + ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1203 + zio_add_child(lwb->lwb_write_zio,
1204 + last_lwb_opened->lwb_write_zio);
1205 + }
1206 + }
1207 +}
1208 +
1209 +
1073 1210 /*
1074 1211 * This function's purpose is to "open" an lwb such that it is ready to
1075 1212 * accept new itxs being committed to it. To do this, the lwb's zio
1076 1213 * structures are created, and linked to the lwb. This function is
1077 1214 * idempotent; if the passed in lwb has already been opened, this
1078 1215 * function is essentially a no-op.
1079 1216 */
1080 1217 static void
1081 1218 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1082 1219 {
1083 1220 zbookmark_phys_t zb;
1084 1221 zio_priority_t prio;
1085 1222
1086 1223 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1087 1224 ASSERT3P(lwb, !=, NULL);
1088 1225 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1089 1226 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1090 1227
1091 1228 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1092 1229 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1093 1230 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1094 1231
1095 1232 if (lwb->lwb_root_zio == NULL) {
1096 1233 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1097 1234 BP_GET_LSIZE(&lwb->lwb_blk));
1098 1235
1099 1236 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1100 1237 prio = ZIO_PRIORITY_SYNC_WRITE;
1101 1238 else
1102 1239 prio = ZIO_PRIORITY_ASYNC_WRITE;
1103 1240
1104 1241 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1105 1242 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1106 1243 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
|
↓ open down ↓ |
24 lines elided |
↑ open up ↑ |
1107 1244
1108 1245 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1109 1246 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1110 1247 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1111 1248 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1112 1249 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1113 1250
1114 1251 lwb->lwb_state = LWB_STATE_OPENED;
1115 1252
1116 1253 mutex_enter(&zilog->zl_lock);
1117 -
1118 - /*
1119 - * The zilog's "zl_last_lwb_opened" field is used to
1120 - * build the lwb/zio dependency chain, which is used to
1121 - * preserve the ordering of lwb completions that is
1122 - * required by the semantics of the ZIL. Each new lwb
1123 - * zio becomes a parent of the "previous" lwb zio, such
1124 - * that the new lwb's zio cannot complete until the
1125 - * "previous" lwb's zio completes.
1126 - *
1127 - * This is required by the semantics of zil_commit();
1128 - * the commit waiters attached to the lwbs will be woken
1129 - * in the lwb zio's completion callback, so this zio
1130 - * dependency graph ensures the waiters are woken in the
1131 - * correct order (the same order the lwbs were created).
1132 - */
1133 - lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1134 - if (last_lwb_opened != NULL &&
1135 - last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1136 - ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1137 - last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1138 - ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1139 - zio_add_child(lwb->lwb_root_zio,
1140 - last_lwb_opened->lwb_root_zio);
1141 - }
1254 + zil_lwb_set_zio_dependency(zilog, lwb);
1142 1255 zilog->zl_last_lwb_opened = lwb;
1143 -
1144 1256 mutex_exit(&zilog->zl_lock);
1145 1257 }
1146 1258
1147 1259 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1148 1260 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1149 1261 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1150 1262 }
1151 1263
1152 1264 /*
1153 1265 * Define a limited set of intent log block sizes.
1154 1266 *
1155 1267 * These must be a multiple of 4KB. Note only the amount used (again
1156 1268 * aligned to 4KB) actually gets written. However, we can't always just
1157 1269 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1158 1270 */
1159 1271 uint64_t zil_block_buckets[] = {
1160 1272 4096, /* non TX_WRITE */
1161 1273 8192+4096, /* data base */
1162 1274 32*1024 + 4096, /* NFS writes */
1163 1275 UINT64_MAX
1164 1276 };
1165 1277
1166 1278 /*
1167 1279 * Start a log block write and advance to the next log block.
1168 1280 * Calls are serialized.
1169 1281 */
1170 1282 static lwb_t *
1171 1283 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1172 1284 {
1173 1285 lwb_t *nlwb = NULL;
1174 1286 zil_chain_t *zilc;
1175 1287 spa_t *spa = zilog->zl_spa;
1176 1288 blkptr_t *bp;
1177 1289 dmu_tx_t *tx;
1178 1290 uint64_t txg;
1179 1291 uint64_t zil_blksz, wsz;
1180 1292 int i, error;
1181 1293 boolean_t slog;
1182 1294
1183 1295 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1184 1296 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1185 1297 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1186 1298 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1187 1299
1188 1300 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1189 1301 zilc = (zil_chain_t *)lwb->lwb_buf;
1190 1302 bp = &zilc->zc_next_blk;
1191 1303 } else {
1192 1304 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1193 1305 bp = &zilc->zc_next_blk;
1194 1306 }
1195 1307
1196 1308 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1197 1309
1198 1310 /*
1199 1311 * Allocate the next block and save its address in this block
1200 1312 * before writing it in order to establish the log chain.
|
↓ open down ↓ |
47 lines elided |
↑ open up ↑ |
1201 1313 * Note that if the allocation of nlwb synced before we wrote
1202 1314 * the block that points at it (lwb), we'd leak it if we crashed.
1203 1315 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1204 1316 * We dirty the dataset to ensure that zil_sync() will be called
1205 1317 * to clean up in the event of allocation failure or I/O failure.
1206 1318 */
1207 1319
1208 1320 tx = dmu_tx_create(zilog->zl_os);
1209 1321
1210 1322 /*
1211 - * Since we are not going to create any new dirty data, and we
1212 - * can even help with clearing the existing dirty data, we
1213 - * should not be subject to the dirty data based delays. We
1214 - * use TXG_NOTHROTTLE to bypass the delay mechanism.
1323 + * Since we are not going to create any new dirty data and we can even
1324 + * help with clearing the existing dirty data, we should not be subject
1325 + * to the dirty data based delays.
1326 + * We (ab)use TXG_WAITED to bypass the delay mechanism.
1327 + * One side effect from using TXG_WAITED is that dmu_tx_assign() can
1328 + * fail if the pool is suspended. Those are dramatic circumstances,
1329 + * so we return NULL to signal that the normal ZIL processing is not
1330 + * possible and txg_wait_synced() should be used to ensure that the data
1331 + * is on disk.
1215 1332 */
1216 - VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1217 -
1333 + error = dmu_tx_assign(tx, TXG_WAITED);
1334 + if (error != 0) {
1335 + ASSERT3S(error, ==, EIO);
1336 + dmu_tx_abort(tx);
1337 + return (NULL);
1338 + }
1218 1339 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1219 1340 txg = dmu_tx_get_txg(tx);
1220 1341
1221 1342 lwb->lwb_tx = tx;
1222 1343
1223 1344 /*
1224 1345 * Log blocks are pre-allocated. Here we select the size of the next
1225 1346 * block, based on size used in the last block.
1226 1347 * - first find the smallest bucket that will fit the block from a
1227 1348 * limited set of block sizes. This is because it's faster to write
1228 1349 * blocks allocated from the same metaslab as they are adjacent or
1229 1350 * close.
1230 1351 * - next find the maximum from the new suggested size and an array of
1231 1352 * previous sizes. This lessens a picket fence effect of wrongly
1232 1353 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1233 1354 * requests.
1234 1355 *
1235 1356 * Note we only write what is used, but we can't just allocate
1236 1357 * the maximum block size because we can exhaust the available
1237 1358 * pool log space.
1238 1359 */
1239 1360 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1240 1361 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1241 1362 continue;
1242 1363 zil_blksz = zil_block_buckets[i];
1243 1364 if (zil_blksz == UINT64_MAX)
1244 1365 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1245 1366 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1246 1367 for (i = 0; i < ZIL_PREV_BLKS; i++)
1247 1368 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1248 1369 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1249 1370
1250 1371 BP_ZERO(bp);
1251 1372
1252 1373 /* pass the old blkptr in order to spread log blocks across devs */
1253 1374 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1254 1375 if (error == 0) {
1255 1376 ASSERT3U(bp->blk_birth, ==, txg);
1256 1377 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1257 1378 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1258 1379
1259 1380 /*
1260 1381 * Allocate a new log write block (lwb).
1261 1382 */
1262 1383 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1263 1384 }
1264 1385
1265 1386 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1266 1387 /* For Slim ZIL only write what is used. */
1267 1388 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1268 1389 ASSERT3U(wsz, <=, lwb->lwb_sz);
1269 1390 zio_shrink(lwb->lwb_write_zio, wsz);
1270 1391
1271 1392 } else {
1272 1393 wsz = lwb->lwb_sz;
1273 1394 }
1274 1395
1275 1396 zilc->zc_pad = 0;
1276 1397 zilc->zc_nused = lwb->lwb_nused;
1277 1398 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1278 1399
1279 1400 /*
1280 1401 * clear unused data for security
1281 1402 */
1282 1403 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1283 1404
1284 1405 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1285 1406
1286 1407 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1287 1408 lwb->lwb_issued_timestamp = gethrtime();
1288 1409 lwb->lwb_state = LWB_STATE_ISSUED;
1289 1410
1290 1411 zio_nowait(lwb->lwb_root_zio);
1291 1412 zio_nowait(lwb->lwb_write_zio);
1292 1413
1293 1414 /*
1294 1415 * If there was an allocation failure then nlwb will be null which
1295 1416 * forces a txg_wait_synced().
1296 1417 */
1297 1418 return (nlwb);
1298 1419 }
1299 1420
1300 1421 static lwb_t *
1301 1422 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1302 1423 {
1303 1424 lr_t *lrcb, *lrc;
1304 1425 lr_write_t *lrwb, *lrw;
1305 1426 char *lr_buf;
1306 1427 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1307 1428
1308 1429 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1309 1430 ASSERT3P(lwb, !=, NULL);
1310 1431 ASSERT3P(lwb->lwb_buf, !=, NULL);
1311 1432
1312 1433 zil_lwb_write_open(zilog, lwb);
1313 1434
1314 1435 lrc = &itx->itx_lr;
1315 1436 lrw = (lr_write_t *)lrc;
1316 1437
1317 1438 /*
1318 1439 * A commit itx doesn't represent any on-disk state; instead
1319 1440 * it's simply used as a place holder on the commit list, and
1320 1441 * provides a mechanism for attaching a "commit waiter" onto the
1321 1442 * correct lwb (such that the waiter can be signalled upon
1322 1443 * completion of that lwb). Thus, we don't process this itx's
1323 1444 * log record if it's a commit itx (these itx's don't have log
1324 1445 * records), and instead link the itx's waiter onto the lwb's
1325 1446 * list of waiters.
1326 1447 *
1327 1448 * For more details, see the comment above zil_commit().
1328 1449 */
1329 1450 if (lrc->lrc_txtype == TX_COMMIT) {
1330 1451 mutex_enter(&zilog->zl_lock);
1331 1452 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1332 1453 itx->itx_private = NULL;
1333 1454 mutex_exit(&zilog->zl_lock);
1334 1455 return (lwb);
1335 1456 }
1336 1457
1337 1458 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1338 1459 dlen = P2ROUNDUP_TYPED(
1339 1460 lrw->lr_length, sizeof (uint64_t), uint64_t);
1340 1461 } else {
1341 1462 dlen = 0;
1342 1463 }
1343 1464 reclen = lrc->lrc_reclen;
1344 1465 zilog->zl_cur_used += (reclen + dlen);
1345 1466 txg = lrc->lrc_txg;
1346 1467
1347 1468 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1348 1469
1349 1470 cont:
1350 1471 /*
1351 1472 * If this record won't fit in the current log block, start a new one.
1352 1473 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1353 1474 */
1354 1475 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1355 1476 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1356 1477 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1357 1478 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1358 1479 lwb = zil_lwb_write_issue(zilog, lwb);
1359 1480 if (lwb == NULL)
1360 1481 return (NULL);
1361 1482 zil_lwb_write_open(zilog, lwb);
1362 1483 ASSERT(LWB_EMPTY(lwb));
1363 1484 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1364 1485 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1365 1486 }
1366 1487
1367 1488 dnow = MIN(dlen, lwb_sp - reclen);
1368 1489 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1369 1490 bcopy(lrc, lr_buf, reclen);
1370 1491 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1371 1492 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1372 1493
1373 1494 /*
1374 1495 * If it's a write, fetch the data or get its blkptr as appropriate.
1375 1496 */
1376 1497 if (lrc->lrc_txtype == TX_WRITE) {
1377 1498 if (txg > spa_freeze_txg(zilog->zl_spa))
1378 1499 txg_wait_synced(zilog->zl_dmu_pool, txg);
1379 1500 if (itx->itx_wr_state != WR_COPIED) {
1380 1501 char *dbuf;
1381 1502 int error;
1382 1503
1383 1504 if (itx->itx_wr_state == WR_NEED_COPY) {
1384 1505 dbuf = lr_buf + reclen;
1385 1506 lrcb->lrc_reclen += dnow;
1386 1507 if (lrwb->lr_length > dnow)
1387 1508 lrwb->lr_length = dnow;
1388 1509 lrw->lr_offset += dnow;
1389 1510 lrw->lr_length -= dnow;
1390 1511 } else {
1391 1512 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1392 1513 dbuf = NULL;
1393 1514 }
1394 1515
1395 1516 /*
1396 1517 * We pass in the "lwb_write_zio" rather than
1397 1518 * "lwb_root_zio" so that the "lwb_write_zio"
1398 1519 * becomes the parent of any zio's created by
1399 1520 * the "zl_get_data" callback. The vdevs are
1400 1521 * flushed after the "lwb_write_zio" completes,
1401 1522 * so we want to make sure that completion
1402 1523 * callback waits for these additional zio's,
1403 1524 * such that the vdevs used by those zio's will
1404 1525 * be included in the lwb's vdev tree, and those
1405 1526 * vdevs will be properly flushed. If we passed
1406 1527 * in "lwb_root_zio" here, then these additional
1407 1528 * vdevs may not be flushed; e.g. if these zio's
1408 1529 * completed after "lwb_write_zio" completed.
1409 1530 */
1410 1531 error = zilog->zl_get_data(itx->itx_private,
1411 1532 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1412 1533
1413 1534 if (error == EIO) {
1414 1535 txg_wait_synced(zilog->zl_dmu_pool, txg);
1415 1536 return (lwb);
1416 1537 }
1417 1538 if (error != 0) {
1418 1539 ASSERT(error == ENOENT || error == EEXIST ||
1419 1540 error == EALREADY);
1420 1541 return (lwb);
1421 1542 }
1422 1543 }
1423 1544 }
1424 1545
1425 1546 /*
1426 1547 * We're actually making an entry, so update lrc_seq to be the
1427 1548 * log record sequence number. Note that this is generally not
1428 1549 * equal to the itx sequence number because not all transactions
1429 1550 * are synchronous, and sometimes spa_sync() gets there first.
1430 1551 */
1431 1552 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1432 1553 lwb->lwb_nused += reclen + dnow;
1433 1554
1434 1555 zil_lwb_add_txg(lwb, txg);
1435 1556
1436 1557 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1437 1558 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1438 1559
1439 1560 dlen -= dnow;
1440 1561 if (dlen > 0) {
1441 1562 zilog->zl_cur_used += reclen;
1442 1563 goto cont;
1443 1564 }
1444 1565
1445 1566 return (lwb);
1446 1567 }
1447 1568
1448 1569 itx_t *
1449 1570 zil_itx_create(uint64_t txtype, size_t lrsize)
1450 1571 {
1451 1572 itx_t *itx;
1452 1573
1453 1574 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1454 1575
1455 1576 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1456 1577 itx->itx_lr.lrc_txtype = txtype;
1457 1578 itx->itx_lr.lrc_reclen = lrsize;
1458 1579 itx->itx_lr.lrc_seq = 0; /* defensive */
1459 1580 itx->itx_sync = B_TRUE; /* default is synchronous */
1460 1581
1461 1582 return (itx);
1462 1583 }
1463 1584
1464 1585 void
1465 1586 zil_itx_destroy(itx_t *itx)
1466 1587 {
1467 1588 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1468 1589 }
1469 1590
1470 1591 /*
1471 1592 * Free up the sync and async itxs. The itxs_t has already been detached
1472 1593 * so no locks are needed.
1473 1594 */
1474 1595 static void
1475 1596 zil_itxg_clean(itxs_t *itxs)
1476 1597 {
1477 1598 itx_t *itx;
1478 1599 list_t *list;
1479 1600 avl_tree_t *t;
1480 1601 void *cookie;
1481 1602 itx_async_node_t *ian;
1482 1603
1483 1604 list = &itxs->i_sync_list;
1484 1605 while ((itx = list_head(list)) != NULL) {
1485 1606 /*
1486 1607 * In the general case, commit itxs will not be found
1487 1608 * here, as they'll be committed to an lwb via
1488 1609 * zil_lwb_commit(), and free'd in that function. Having
1489 1610 * said that, it is still possible for commit itxs to be
1490 1611 * found here, due to the following race:
1491 1612 *
1492 1613 * - a thread calls zil_commit() which assigns the
1493 1614 * commit itx to a per-txg i_sync_list
1494 1615 * - zil_itxg_clean() is called (e.g. via spa_sync())
1495 1616 * while the waiter is still on the i_sync_list
1496 1617 *
1497 1618 * There's nothing to prevent syncing the txg while the
1498 1619 * waiter is on the i_sync_list. This normally doesn't
1499 1620 * happen because spa_sync() is slower than zil_commit(),
1500 1621 * but if zil_commit() calls txg_wait_synced() (e.g.
1501 1622 * because zil_create() or zil_commit_writer_stall() is
1502 1623 * called) we will hit this case.
1503 1624 */
1504 1625 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1505 1626 zil_commit_waiter_skip(itx->itx_private);
1506 1627
1507 1628 list_remove(list, itx);
1508 1629 zil_itx_destroy(itx);
1509 1630 }
1510 1631
1511 1632 cookie = NULL;
1512 1633 t = &itxs->i_async_tree;
1513 1634 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1514 1635 list = &ian->ia_list;
1515 1636 while ((itx = list_head(list)) != NULL) {
1516 1637 list_remove(list, itx);
1517 1638 /* commit itxs should never be on the async lists. */
1518 1639 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1519 1640 zil_itx_destroy(itx);
1520 1641 }
1521 1642 list_destroy(list);
1522 1643 kmem_free(ian, sizeof (itx_async_node_t));
1523 1644 }
1524 1645 avl_destroy(t);
1525 1646
1526 1647 kmem_free(itxs, sizeof (itxs_t));
1527 1648 }
1528 1649
1529 1650 static int
1530 1651 zil_aitx_compare(const void *x1, const void *x2)
1531 1652 {
1532 1653 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1533 1654 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1534 1655
1535 1656 if (o1 < o2)
1536 1657 return (-1);
1537 1658 if (o1 > o2)
1538 1659 return (1);
1539 1660
1540 1661 return (0);
1541 1662 }
1542 1663
1543 1664 /*
1544 1665 * Remove all async itx with the given oid.
1545 1666 */
1546 1667 static void
1547 1668 zil_remove_async(zilog_t *zilog, uint64_t oid)
1548 1669 {
1549 1670 uint64_t otxg, txg;
1550 1671 itx_async_node_t *ian;
1551 1672 avl_tree_t *t;
1552 1673 avl_index_t where;
1553 1674 list_t clean_list;
1554 1675 itx_t *itx;
1555 1676
1556 1677 ASSERT(oid != 0);
1557 1678 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1558 1679
1559 1680 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1560 1681 otxg = ZILTEST_TXG;
1561 1682 else
1562 1683 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1563 1684
1564 1685 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1565 1686 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1566 1687
1567 1688 mutex_enter(&itxg->itxg_lock);
1568 1689 if (itxg->itxg_txg != txg) {
1569 1690 mutex_exit(&itxg->itxg_lock);
1570 1691 continue;
1571 1692 }
1572 1693
1573 1694 /*
1574 1695 * Locate the object node and append its list.
1575 1696 */
1576 1697 t = &itxg->itxg_itxs->i_async_tree;
1577 1698 ian = avl_find(t, &oid, &where);
1578 1699 if (ian != NULL)
1579 1700 list_move_tail(&clean_list, &ian->ia_list);
1580 1701 mutex_exit(&itxg->itxg_lock);
1581 1702 }
1582 1703 while ((itx = list_head(&clean_list)) != NULL) {
1583 1704 list_remove(&clean_list, itx);
1584 1705 /* commit itxs should never be on the async lists. */
1585 1706 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1586 1707 zil_itx_destroy(itx);
1587 1708 }
1588 1709 list_destroy(&clean_list);
1589 1710 }
1590 1711
1591 1712 void
1592 1713 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1593 1714 {
1594 1715 uint64_t txg;
1595 1716 itxg_t *itxg;
1596 1717 itxs_t *itxs, *clean = NULL;
1597 1718
1598 1719 /*
1599 1720 * Object ids can be re-instantiated in the next txg so
1600 1721 * remove any async transactions to avoid future leaks.
1601 1722 * This can happen if a fsync occurs on the re-instantiated
1602 1723 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1603 1724 * the new file data and flushes a write record for the old object.
1604 1725 */
1605 1726 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1606 1727 zil_remove_async(zilog, itx->itx_oid);
1607 1728
1608 1729 /*
1609 1730 * Ensure the data of a renamed file is committed before the rename.
1610 1731 */
1611 1732 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1612 1733 zil_async_to_sync(zilog, itx->itx_oid);
1613 1734
1614 1735 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1615 1736 txg = ZILTEST_TXG;
1616 1737 else
1617 1738 txg = dmu_tx_get_txg(tx);
1618 1739
1619 1740 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1620 1741 mutex_enter(&itxg->itxg_lock);
1621 1742 itxs = itxg->itxg_itxs;
1622 1743 if (itxg->itxg_txg != txg) {
1623 1744 if (itxs != NULL) {
1624 1745 /*
1625 1746 * The zil_clean callback hasn't got around to cleaning
1626 1747 * this itxg. Save the itxs for release below.
1627 1748 * This should be rare.
1628 1749 */
1629 1750 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1630 1751 "txg %llu", itxg->itxg_txg);
1631 1752 clean = itxg->itxg_itxs;
1632 1753 }
1633 1754 itxg->itxg_txg = txg;
1634 1755 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1635 1756
1636 1757 list_create(&itxs->i_sync_list, sizeof (itx_t),
1637 1758 offsetof(itx_t, itx_node));
1638 1759 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1639 1760 sizeof (itx_async_node_t),
1640 1761 offsetof(itx_async_node_t, ia_node));
1641 1762 }
1642 1763 if (itx->itx_sync) {
1643 1764 list_insert_tail(&itxs->i_sync_list, itx);
1644 1765 } else {
1645 1766 avl_tree_t *t = &itxs->i_async_tree;
1646 1767 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1647 1768 itx_async_node_t *ian;
1648 1769 avl_index_t where;
1649 1770
1650 1771 ian = avl_find(t, &foid, &where);
1651 1772 if (ian == NULL) {
1652 1773 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1653 1774 list_create(&ian->ia_list, sizeof (itx_t),
1654 1775 offsetof(itx_t, itx_node));
1655 1776 ian->ia_foid = foid;
1656 1777 avl_insert(t, ian, where);
1657 1778 }
1658 1779 list_insert_tail(&ian->ia_list, itx);
1659 1780 }
1660 1781
1661 1782 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1662 1783
1663 1784 /*
1664 1785 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1665 1786 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1666 1787 * need to be careful to always dirty the ZIL using the "real"
1667 1788 * TXG (not itxg_txg) even when the SPA is frozen.
1668 1789 */
1669 1790 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1670 1791 mutex_exit(&itxg->itxg_lock);
1671 1792
1672 1793 /* Release the old itxs now we've dropped the lock */
1673 1794 if (clean != NULL)
1674 1795 zil_itxg_clean(clean);
1675 1796 }
1676 1797
1677 1798 /*
1678 1799 * If there are any in-memory intent log transactions which have now been
1679 1800 * synced then start up a taskq to free them. We should only do this after we
1680 1801 * have written out the uberblocks (i.e. txg has been comitted) so that
1681 1802 * don't inadvertently clean out in-memory log records that would be required
1682 1803 * by zil_commit().
1683 1804 */
1684 1805 void
1685 1806 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1686 1807 {
1687 1808 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1688 1809 itxs_t *clean_me;
1689 1810
1690 1811 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1691 1812
1692 1813 mutex_enter(&itxg->itxg_lock);
1693 1814 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1694 1815 mutex_exit(&itxg->itxg_lock);
1695 1816 return;
1696 1817 }
1697 1818 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1698 1819 ASSERT3U(itxg->itxg_txg, !=, 0);
1699 1820 clean_me = itxg->itxg_itxs;
1700 1821 itxg->itxg_itxs = NULL;
1701 1822 itxg->itxg_txg = 0;
1702 1823 mutex_exit(&itxg->itxg_lock);
1703 1824 /*
1704 1825 * Preferably start a task queue to free up the old itxs but
1705 1826 * if taskq_dispatch can't allocate resources to do that then
1706 1827 * free it in-line. This should be rare. Note, using TQ_SLEEP
1707 1828 * created a bad performance problem.
1708 1829 */
1709 1830 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1710 1831 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1711 1832 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1712 1833 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1713 1834 zil_itxg_clean(clean_me);
1714 1835 }
1715 1836
1716 1837 /*
1717 1838 * This function will traverse the queue of itxs that need to be
1718 1839 * committed, and move them onto the ZIL's zl_itx_commit_list.
1719 1840 */
1720 1841 static void
1721 1842 zil_get_commit_list(zilog_t *zilog)
1722 1843 {
1723 1844 uint64_t otxg, txg;
1724 1845 list_t *commit_list = &zilog->zl_itx_commit_list;
1725 1846
1726 1847 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1727 1848
1728 1849 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1729 1850 otxg = ZILTEST_TXG;
1730 1851 else
1731 1852 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1732 1853
1733 1854 /*
1734 1855 * This is inherently racy, since there is nothing to prevent
1735 1856 * the last synced txg from changing. That's okay since we'll
1736 1857 * only commit things in the future.
1737 1858 */
1738 1859 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1739 1860 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1740 1861
1741 1862 mutex_enter(&itxg->itxg_lock);
1742 1863 if (itxg->itxg_txg != txg) {
1743 1864 mutex_exit(&itxg->itxg_lock);
1744 1865 continue;
1745 1866 }
1746 1867
1747 1868 /*
1748 1869 * If we're adding itx records to the zl_itx_commit_list,
1749 1870 * then the zil better be dirty in this "txg". We can assert
1750 1871 * that here since we're holding the itxg_lock which will
1751 1872 * prevent spa_sync from cleaning it. Once we add the itxs
1752 1873 * to the zl_itx_commit_list we must commit it to disk even
1753 1874 * if it's unnecessary (i.e. the txg was synced).
1754 1875 */
1755 1876 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1756 1877 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1757 1878 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1758 1879
1759 1880 mutex_exit(&itxg->itxg_lock);
1760 1881 }
1761 1882 }
1762 1883
1763 1884 /*
1764 1885 * Move the async itxs for a specified object to commit into sync lists.
1765 1886 */
1766 1887 static void
1767 1888 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1768 1889 {
1769 1890 uint64_t otxg, txg;
1770 1891 itx_async_node_t *ian;
1771 1892 avl_tree_t *t;
1772 1893 avl_index_t where;
1773 1894
1774 1895 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1775 1896 otxg = ZILTEST_TXG;
1776 1897 else
1777 1898 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1778 1899
1779 1900 /*
1780 1901 * This is inherently racy, since there is nothing to prevent
1781 1902 * the last synced txg from changing.
1782 1903 */
1783 1904 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1784 1905 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1785 1906
1786 1907 mutex_enter(&itxg->itxg_lock);
1787 1908 if (itxg->itxg_txg != txg) {
1788 1909 mutex_exit(&itxg->itxg_lock);
1789 1910 continue;
1790 1911 }
1791 1912
1792 1913 /*
1793 1914 * If a foid is specified then find that node and append its
1794 1915 * list. Otherwise walk the tree appending all the lists
1795 1916 * to the sync list. We add to the end rather than the
1796 1917 * beginning to ensure the create has happened.
1797 1918 */
1798 1919 t = &itxg->itxg_itxs->i_async_tree;
1799 1920 if (foid != 0) {
1800 1921 ian = avl_find(t, &foid, &where);
1801 1922 if (ian != NULL) {
1802 1923 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1803 1924 &ian->ia_list);
1804 1925 }
1805 1926 } else {
1806 1927 void *cookie = NULL;
1807 1928
1808 1929 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1809 1930 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1810 1931 &ian->ia_list);
1811 1932 list_destroy(&ian->ia_list);
1812 1933 kmem_free(ian, sizeof (itx_async_node_t));
1813 1934 }
1814 1935 }
1815 1936 mutex_exit(&itxg->itxg_lock);
1816 1937 }
1817 1938 }
1818 1939
1819 1940 /*
1820 1941 * This function will prune commit itxs that are at the head of the
1821 1942 * commit list (it won't prune past the first non-commit itx), and
1822 1943 * either: a) attach them to the last lwb that's still pending
1823 1944 * completion, or b) skip them altogether.
1824 1945 *
1825 1946 * This is used as a performance optimization to prevent commit itxs
1826 1947 * from generating new lwbs when it's unnecessary to do so.
1827 1948 */
1828 1949 static void
1829 1950 zil_prune_commit_list(zilog_t *zilog)
1830 1951 {
1831 1952 itx_t *itx;
1832 1953
|
↓ open down ↓ |
605 lines elided |
↑ open up ↑ |
1833 1954 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1834 1955
1835 1956 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1836 1957 lr_t *lrc = &itx->itx_lr;
1837 1958 if (lrc->lrc_txtype != TX_COMMIT)
1838 1959 break;
1839 1960
1840 1961 mutex_enter(&zilog->zl_lock);
1841 1962
1842 1963 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1843 - if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1964 + if (last_lwb == NULL ||
1965 + last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
1844 1966 /*
1845 1967 * All of the itxs this waiter was waiting on
1846 1968 * must have already completed (or there were
1847 1969 * never any itx's for it to wait on), so it's
1848 1970 * safe to skip this waiter and mark it done.
1849 1971 */
1850 1972 zil_commit_waiter_skip(itx->itx_private);
1851 1973 } else {
1852 1974 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1853 1975 itx->itx_private = NULL;
1854 1976 }
1855 1977
1856 1978 mutex_exit(&zilog->zl_lock);
1857 1979
1858 1980 list_remove(&zilog->zl_itx_commit_list, itx);
1859 1981 zil_itx_destroy(itx);
1860 1982 }
1861 1983
1862 1984 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1863 1985 }
1864 1986
1865 1987 static void
1866 1988 zil_commit_writer_stall(zilog_t *zilog)
1867 1989 {
1868 1990 /*
1869 1991 * When zio_alloc_zil() fails to allocate the next lwb block on
1870 1992 * disk, we must call txg_wait_synced() to ensure all of the
1871 1993 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1872 1994 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1873 1995 * to zil_process_commit_list()) will have to call zil_create(),
1874 1996 * and start a new ZIL chain.
1875 1997 *
1876 1998 * Since zil_alloc_zil() failed, the lwb that was previously
1877 1999 * issued does not have a pointer to the "next" lwb on disk.
1878 2000 * Thus, if another ZIL writer thread was to allocate the "next"
1879 2001 * on-disk lwb, that block could be leaked in the event of a
1880 2002 * crash (because the previous lwb on-disk would not point to
1881 2003 * it).
1882 2004 *
1883 2005 * We must hold the zilog's zl_issuer_lock while we do this, to
1884 2006 * ensure no new threads enter zil_process_commit_list() until
1885 2007 * all lwb's in the zl_lwb_list have been synced and freed
1886 2008 * (which is achieved via the txg_wait_synced() call).
1887 2009 */
1888 2010 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1889 2011 txg_wait_synced(zilog->zl_dmu_pool, 0);
1890 2012 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1891 2013 }
1892 2014
1893 2015 /*
1894 2016 * This function will traverse the commit list, creating new lwbs as
1895 2017 * needed, and committing the itxs from the commit list to these newly
1896 2018 * created lwbs. Additionally, as a new lwb is created, the previous
1897 2019 * lwb will be issued to the zio layer to be written to disk.
1898 2020 */
1899 2021 static void
1900 2022 zil_process_commit_list(zilog_t *zilog)
1901 2023 {
1902 2024 spa_t *spa = zilog->zl_spa;
1903 2025 list_t nolwb_waiters;
1904 2026 lwb_t *lwb;
1905 2027 itx_t *itx;
1906 2028
1907 2029 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1908 2030
1909 2031 /*
1910 2032 * Return if there's nothing to commit before we dirty the fs by
1911 2033 * calling zil_create().
1912 2034 */
1913 2035 if (list_head(&zilog->zl_itx_commit_list) == NULL)
|
↓ open down ↓ |
60 lines elided |
↑ open up ↑ |
1914 2036 return;
1915 2037
1916 2038 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
1917 2039 offsetof(zil_commit_waiter_t, zcw_node));
1918 2040
1919 2041 lwb = list_tail(&zilog->zl_lwb_list);
1920 2042 if (lwb == NULL) {
1921 2043 lwb = zil_create(zilog);
1922 2044 } else {
1923 2045 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
1924 - ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2046 + ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2047 + ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1925 2048 }
1926 2049
1927 2050 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1928 2051 lr_t *lrc = &itx->itx_lr;
1929 2052 uint64_t txg = lrc->lrc_txg;
1930 2053
1931 2054 ASSERT3U(txg, !=, 0);
1932 2055
1933 2056 if (lrc->lrc_txtype == TX_COMMIT) {
1934 2057 DTRACE_PROBE2(zil__process__commit__itx,
1935 2058 zilog_t *, zilog, itx_t *, itx);
1936 2059 } else {
1937 2060 DTRACE_PROBE2(zil__process__normal__itx,
1938 2061 zilog_t *, zilog, itx_t *, itx);
1939 2062 }
1940 2063
1941 2064 boolean_t synced = txg <= spa_last_synced_txg(spa);
1942 2065 boolean_t frozen = txg > spa_freeze_txg(spa);
1943 2066
1944 2067 /*
1945 2068 * If the txg of this itx has already been synced out, then
1946 2069 * we don't need to commit this itx to an lwb. This is
1947 2070 * because the data of this itx will have already been
1948 2071 * written to the main pool. This is inherently racy, and
1949 2072 * it's still ok to commit an itx whose txg has already
1950 2073 * been synced; this will result in a write that's
1951 2074 * unnecessary, but will do no harm.
1952 2075 *
1953 2076 * With that said, we always want to commit TX_COMMIT itxs
1954 2077 * to an lwb, regardless of whether or not that itx's txg
1955 2078 * has been synced out. We do this to ensure any OPENED lwb
1956 2079 * will always have at least one zil_commit_waiter_t linked
1957 2080 * to the lwb.
1958 2081 *
1959 2082 * As a counter-example, if we skipped TX_COMMIT itx's
1960 2083 * whose txg had already been synced, the following
1961 2084 * situation could occur if we happened to be racing with
1962 2085 * spa_sync:
1963 2086 *
1964 2087 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
1965 2088 * itx's txg is 10 and the last synced txg is 9.
1966 2089 * 2. spa_sync finishes syncing out txg 10.
1967 2090 * 3. we move to the next itx in the list, it's a TX_COMMIT
1968 2091 * whose txg is 10, so we skip it rather than committing
1969 2092 * it to the lwb used in (1).
1970 2093 *
1971 2094 * If the itx that is skipped in (3) is the last TX_COMMIT
1972 2095 * itx in the commit list, than it's possible for the lwb
1973 2096 * used in (1) to remain in the OPENED state indefinitely.
1974 2097 *
1975 2098 * To prevent the above scenario from occuring, ensuring
1976 2099 * that once an lwb is OPENED it will transition to ISSUED
1977 2100 * and eventually DONE, we always commit TX_COMMIT itx's to
1978 2101 * an lwb here, even if that itx's txg has already been
1979 2102 * synced.
1980 2103 *
1981 2104 * Finally, if the pool is frozen, we _always_ commit the
1982 2105 * itx. The point of freezing the pool is to prevent data
1983 2106 * from being written to the main pool via spa_sync, and
1984 2107 * instead rely solely on the ZIL to persistently store the
1985 2108 * data; i.e. when the pool is frozen, the last synced txg
1986 2109 * value can't be trusted.
1987 2110 */
1988 2111 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
1989 2112 if (lwb != NULL) {
1990 2113 lwb = zil_lwb_commit(zilog, itx, lwb);
1991 2114 } else if (lrc->lrc_txtype == TX_COMMIT) {
1992 2115 ASSERT3P(lwb, ==, NULL);
1993 2116 zil_commit_waiter_link_nolwb(
1994 2117 itx->itx_private, &nolwb_waiters);
1995 2118 }
1996 2119 }
1997 2120
1998 2121 list_remove(&zilog->zl_itx_commit_list, itx);
1999 2122 zil_itx_destroy(itx);
2000 2123 }
2001 2124
2002 2125 if (lwb == NULL) {
2003 2126 /*
2004 2127 * This indicates zio_alloc_zil() failed to allocate the
2005 2128 * "next" lwb on-disk. When this happens, we must stall
2006 2129 * the ZIL write pipeline; see the comment within
2007 2130 * zil_commit_writer_stall() for more details.
2008 2131 */
2009 2132 zil_commit_writer_stall(zilog);
2010 2133
2011 2134 /*
2012 2135 * Additionally, we have to signal and mark the "nolwb"
2013 2136 * waiters as "done" here, since without an lwb, we
2014 2137 * can't do this via zil_lwb_flush_vdevs_done() like
2015 2138 * normal.
|
↓ open down ↓ |
81 lines elided |
↑ open up ↑ |
2016 2139 */
2017 2140 zil_commit_waiter_t *zcw;
2018 2141 while (zcw = list_head(&nolwb_waiters)) {
2019 2142 zil_commit_waiter_skip(zcw);
2020 2143 list_remove(&nolwb_waiters, zcw);
2021 2144 }
2022 2145 } else {
2023 2146 ASSERT(list_is_empty(&nolwb_waiters));
2024 2147 ASSERT3P(lwb, !=, NULL);
2025 2148 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2026 - ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2149 + ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2150 + ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2027 2151
2028 2152 /*
2029 2153 * At this point, the ZIL block pointed at by the "lwb"
2030 2154 * variable is in one of the following states: "closed"
2031 2155 * or "open".
2032 2156 *
2033 2157 * If its "closed", then no itxs have been committed to
2034 2158 * it, so there's no point in issuing its zio (i.e.
2035 2159 * it's "empty").
2036 2160 *
2037 2161 * If its "open" state, then it contains one or more
2038 2162 * itxs that eventually need to be committed to stable
2039 2163 * storage. In this case we intentionally do not issue
2040 2164 * the lwb's zio to disk yet, and instead rely on one of
2041 2165 * the following two mechanisms for issuing the zio:
2042 2166 *
2043 2167 * 1. Ideally, there will be more ZIL activity occuring
2044 2168 * on the system, such that this function will be
2045 2169 * immediately called again (not necessarily by the same
2046 2170 * thread) and this lwb's zio will be issued via
2047 2171 * zil_lwb_commit(). This way, the lwb is guaranteed to
2048 2172 * be "full" when it is issued to disk, and we'll make
2049 2173 * use of the lwb's size the best we can.
2050 2174 *
2051 2175 * 2. If there isn't sufficient ZIL activity occuring on
2052 2176 * the system, such that this lwb's zio isn't issued via
2053 2177 * zil_lwb_commit(), zil_commit_waiter() will issue the
2054 2178 * lwb's zio. If this occurs, the lwb is not guaranteed
2055 2179 * to be "full" by the time its zio is issued, and means
2056 2180 * the size of the lwb was "too large" given the amount
2057 2181 * of ZIL activity occuring on the system at that time.
2058 2182 *
2059 2183 * We do this for a couple of reasons:
2060 2184 *
2061 2185 * 1. To try and reduce the number of IOPs needed to
2062 2186 * write the same number of itxs. If an lwb has space
2063 2187 * available in it's buffer for more itxs, and more itxs
2064 2188 * will be committed relatively soon (relative to the
2065 2189 * latency of performing a write), then it's beneficial
2066 2190 * to wait for these "next" itxs. This way, more itxs
2067 2191 * can be committed to stable storage with fewer writes.
2068 2192 *
2069 2193 * 2. To try and use the largest lwb block size that the
2070 2194 * incoming rate of itxs can support. Again, this is to
2071 2195 * try and pack as many itxs into as few lwbs as
2072 2196 * possible, without significantly impacting the latency
2073 2197 * of each individual itx.
2074 2198 */
2075 2199 }
2076 2200 }
2077 2201
2078 2202 /*
2079 2203 * This function is responsible for ensuring the passed in commit waiter
2080 2204 * (and associated commit itx) is committed to an lwb. If the waiter is
2081 2205 * not already committed to an lwb, all itxs in the zilog's queue of
2082 2206 * itxs will be processed. The assumption is the passed in waiter's
2083 2207 * commit itx will found in the queue just like the other non-commit
2084 2208 * itxs, such that when the entire queue is processed, the waiter will
2085 2209 * have been commited to an lwb.
2086 2210 *
2087 2211 * The lwb associated with the passed in waiter is not guaranteed to
2088 2212 * have been issued by the time this function completes. If the lwb is
2089 2213 * not issued, we rely on future calls to zil_commit_writer() to issue
2090 2214 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2091 2215 */
2092 2216 static void
2093 2217 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2094 2218 {
2095 2219 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2096 2220 ASSERT(spa_writeable(zilog->zl_spa));
2097 2221
2098 2222 mutex_enter(&zilog->zl_issuer_lock);
2099 2223
2100 2224 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2101 2225 /*
2102 2226 * It's possible that, while we were waiting to acquire
2103 2227 * the "zl_issuer_lock", another thread committed this
2104 2228 * waiter to an lwb. If that occurs, we bail out early,
2105 2229 * without processing any of the zilog's queue of itxs.
2106 2230 *
2107 2231 * On certain workloads and system configurations, the
2108 2232 * "zl_issuer_lock" can become highly contended. In an
2109 2233 * attempt to reduce this contention, we immediately drop
2110 2234 * the lock if the waiter has already been processed.
2111 2235 *
2112 2236 * We've measured this optimization to reduce CPU spent
2113 2237 * contending on this lock by up to 5%, using a system
2114 2238 * with 32 CPUs, low latency storage (~50 usec writes),
2115 2239 * and 1024 threads performing sync writes.
2116 2240 */
2117 2241 goto out;
2118 2242 }
2119 2243
2120 2244 zil_get_commit_list(zilog);
2121 2245 zil_prune_commit_list(zilog);
2122 2246 zil_process_commit_list(zilog);
2123 2247
2124 2248 out:
2125 2249 mutex_exit(&zilog->zl_issuer_lock);
2126 2250 }
2127 2251
2128 2252 static void
2129 2253 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2130 2254 {
2131 2255 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2132 2256 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2133 2257 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2134 2258
2135 2259 lwb_t *lwb = zcw->zcw_lwb;
2136 2260 ASSERT3P(lwb, !=, NULL);
|
↓ open down ↓ |
100 lines elided |
↑ open up ↑ |
2137 2261 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2138 2262
2139 2263 /*
2140 2264 * If the lwb has already been issued by another thread, we can
2141 2265 * immediately return since there's no work to be done (the
2142 2266 * point of this function is to issue the lwb). Additionally, we
2143 2267 * do this prior to acquiring the zl_issuer_lock, to avoid
2144 2268 * acquiring it when it's not necessary to do so.
2145 2269 */
2146 2270 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2147 - lwb->lwb_state == LWB_STATE_DONE)
2271 + lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2272 + lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2148 2273 return;
2149 2274
2150 2275 /*
2151 2276 * In order to call zil_lwb_write_issue() we must hold the
2152 2277 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2153 2278 * since we're already holding the commit waiter's "zcw_lock",
2154 2279 * and those two locks are aquired in the opposite order
2155 2280 * elsewhere.
2156 2281 */
2157 2282 mutex_exit(&zcw->zcw_lock);
2158 2283 mutex_enter(&zilog->zl_issuer_lock);
2159 2284 mutex_enter(&zcw->zcw_lock);
2160 2285
2161 2286 /*
2162 2287 * Since we just dropped and re-acquired the commit waiter's
2163 2288 * lock, we have to re-check to see if the waiter was marked
2164 2289 * "done" during that process. If the waiter was marked "done",
2165 2290 * the "lwb" pointer is no longer valid (it can be free'd after
2166 2291 * the waiter is marked "done"), so without this check we could
2167 2292 * wind up with a use-after-free error below.
2168 2293 */
2169 2294 if (zcw->zcw_done)
2170 2295 goto out;
2171 2296
2172 2297 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2173 2298
2174 2299 /*
2175 2300 * We've already checked this above, but since we hadn't acquired
2176 2301 * the zilog's zl_issuer_lock, we have to perform this check a
2177 2302 * second time while holding the lock.
2178 2303 *
2179 2304 * We don't need to hold the zl_lock since the lwb cannot transition
2180 2305 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2181 2306 * _can_ transition from ISSUED to DONE, but it's OK to race with
2182 2307 * that transition since we treat the lwb the same, whether it's in
2183 2308 * the ISSUED or DONE states.
2184 2309 *
|
↓ open down ↓ |
27 lines elided |
↑ open up ↑ |
2185 2310 * The important thing, is we treat the lwb differently depending on
2186 2311 * if it's ISSUED or OPENED, and block any other threads that might
2187 2312 * attempt to issue this lwb. For that reason we hold the
2188 2313 * zl_issuer_lock when checking the lwb_state; we must not call
2189 2314 * zil_lwb_write_issue() if the lwb had already been issued.
2190 2315 *
2191 2316 * See the comment above the lwb_state_t structure definition for
2192 2317 * more details on the lwb states, and locking requirements.
2193 2318 */
2194 2319 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2195 - lwb->lwb_state == LWB_STATE_DONE)
2320 + lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2321 + lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2196 2322 goto out;
2197 2323
2198 2324 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2199 2325
2200 2326 /*
2201 2327 * As described in the comments above zil_commit_waiter() and
2202 2328 * zil_process_commit_list(), we need to issue this lwb's zio
2203 2329 * since we've reached the commit waiter's timeout and it still
2204 2330 * hasn't been issued.
2205 2331 */
2206 2332 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2207 2333
2208 2334 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2209 2335
2210 2336 /*
2211 2337 * Since the lwb's zio hadn't been issued by the time this thread
2212 2338 * reached its timeout, we reset the zilog's "zl_cur_used" field
2213 2339 * to influence the zil block size selection algorithm.
2214 2340 *
2215 2341 * By having to issue the lwb's zio here, it means the size of the
2216 2342 * lwb was too large, given the incoming throughput of itxs. By
2217 2343 * setting "zl_cur_used" to zero, we communicate this fact to the
2218 2344 * block size selection algorithm, so it can take this informaiton
2219 2345 * into account, and potentially select a smaller size for the
2220 2346 * next lwb block that is allocated.
2221 2347 */
2222 2348 zilog->zl_cur_used = 0;
2223 2349
2224 2350 if (nlwb == NULL) {
2225 2351 /*
2226 2352 * When zil_lwb_write_issue() returns NULL, this
2227 2353 * indicates zio_alloc_zil() failed to allocate the
2228 2354 * "next" lwb on-disk. When this occurs, the ZIL write
2229 2355 * pipeline must be stalled; see the comment within the
2230 2356 * zil_commit_writer_stall() function for more details.
2231 2357 *
2232 2358 * We must drop the commit waiter's lock prior to
2233 2359 * calling zil_commit_writer_stall() or else we can wind
2234 2360 * up with the following deadlock:
2235 2361 *
2236 2362 * - This thread is waiting for the txg to sync while
2237 2363 * holding the waiter's lock; txg_wait_synced() is
2238 2364 * used within txg_commit_writer_stall().
2239 2365 *
2240 2366 * - The txg can't sync because it is waiting for this
2241 2367 * lwb's zio callback to call dmu_tx_commit().
2242 2368 *
2243 2369 * - The lwb's zio callback can't call dmu_tx_commit()
2244 2370 * because it's blocked trying to acquire the waiter's
2245 2371 * lock, which occurs prior to calling dmu_tx_commit()
2246 2372 */
2247 2373 mutex_exit(&zcw->zcw_lock);
2248 2374 zil_commit_writer_stall(zilog);
2249 2375 mutex_enter(&zcw->zcw_lock);
2250 2376 }
2251 2377
2252 2378 out:
2253 2379 mutex_exit(&zilog->zl_issuer_lock);
2254 2380 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2255 2381 }
2256 2382
2257 2383 /*
2258 2384 * This function is responsible for performing the following two tasks:
2259 2385 *
2260 2386 * 1. its primary responsibility is to block until the given "commit
2261 2387 * waiter" is considered "done".
2262 2388 *
2263 2389 * 2. its secondary responsibility is to issue the zio for the lwb that
2264 2390 * the given "commit waiter" is waiting on, if this function has
2265 2391 * waited "long enough" and the lwb is still in the "open" state.
2266 2392 *
2267 2393 * Given a sufficient amount of itxs being generated and written using
2268 2394 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2269 2395 * function. If this does not occur, this secondary responsibility will
2270 2396 * ensure the lwb is issued even if there is not other synchronous
2271 2397 * activity on the system.
2272 2398 *
2273 2399 * For more details, see zil_process_commit_list(); more specifically,
2274 2400 * the comment at the bottom of that function.
2275 2401 */
2276 2402 static void
2277 2403 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2278 2404 {
2279 2405 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2280 2406 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2281 2407 ASSERT(spa_writeable(zilog->zl_spa));
2282 2408
2283 2409 mutex_enter(&zcw->zcw_lock);
2284 2410
2285 2411 /*
2286 2412 * The timeout is scaled based on the lwb latency to avoid
2287 2413 * significantly impacting the latency of each individual itx.
2288 2414 * For more details, see the comment at the bottom of the
2289 2415 * zil_process_commit_list() function.
2290 2416 */
2291 2417 int pct = MAX(zfs_commit_timeout_pct, 1);
2292 2418 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2293 2419 hrtime_t wakeup = gethrtime() + sleep;
2294 2420 boolean_t timedout = B_FALSE;
2295 2421
2296 2422 while (!zcw->zcw_done) {
2297 2423 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2298 2424
2299 2425 lwb_t *lwb = zcw->zcw_lwb;
2300 2426
2301 2427 /*
2302 2428 * Usually, the waiter will have a non-NULL lwb field here,
2303 2429 * but it's possible for it to be NULL as a result of
2304 2430 * zil_commit() racing with spa_sync().
2305 2431 *
2306 2432 * When zil_clean() is called, it's possible for the itxg
2307 2433 * list (which may be cleaned via a taskq) to contain
2308 2434 * commit itxs. When this occurs, the commit waiters linked
2309 2435 * off of these commit itxs will not be committed to an
2310 2436 * lwb. Additionally, these commit waiters will not be
2311 2437 * marked done until zil_commit_waiter_skip() is called via
2312 2438 * zil_itxg_clean().
2313 2439 *
2314 2440 * Thus, it's possible for this commit waiter (i.e. the
2315 2441 * "zcw" variable) to be found in this "in between" state;
2316 2442 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2317 2443 * been skipped, so it's "zcw_done" field is still B_FALSE.
2318 2444 */
2319 2445 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2320 2446
2321 2447 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2322 2448 ASSERT3B(timedout, ==, B_FALSE);
2323 2449
2324 2450 /*
2325 2451 * If the lwb hasn't been issued yet, then we
2326 2452 * need to wait with a timeout, in case this
2327 2453 * function needs to issue the lwb after the
2328 2454 * timeout is reached; responsibility (2) from
2329 2455 * the comment above this function.
2330 2456 */
2331 2457 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2332 2458 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2333 2459 CALLOUT_FLAG_ABSOLUTE);
2334 2460
2335 2461 if (timeleft >= 0 || zcw->zcw_done)
2336 2462 continue;
2337 2463
2338 2464 timedout = B_TRUE;
2339 2465 zil_commit_waiter_timeout(zilog, zcw);
2340 2466
2341 2467 if (!zcw->zcw_done) {
2342 2468 /*
2343 2469 * If the commit waiter has already been
2344 2470 * marked "done", it's possible for the
2345 2471 * waiter's lwb structure to have already
2346 2472 * been freed. Thus, we can only reliably
2347 2473 * make these assertions if the waiter
2348 2474 * isn't done.
2349 2475 */
2350 2476 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2351 2477 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2352 2478 }
2353 2479 } else {
2354 2480 /*
2355 2481 * If the lwb isn't open, then it must have already
2356 2482 * been issued. In that case, there's no need to
2357 2483 * use a timeout when waiting for the lwb to
|
↓ open down ↓ |
152 lines elided |
↑ open up ↑ |
2358 2484 * complete.
2359 2485 *
2360 2486 * Additionally, if the lwb is NULL, the waiter
2361 2487 * will soon be signalled and marked done via
2362 2488 * zil_clean() and zil_itxg_clean(), so no timeout
2363 2489 * is required.
2364 2490 */
2365 2491
2366 2492 IMPLY(lwb != NULL,
2367 2493 lwb->lwb_state == LWB_STATE_ISSUED ||
2368 - lwb->lwb_state == LWB_STATE_DONE);
2494 + lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2495 + lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2369 2496 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2370 2497 }
2371 2498 }
2372 2499
2373 2500 mutex_exit(&zcw->zcw_lock);
2374 2501 }
2375 2502
2376 2503 static zil_commit_waiter_t *
2377 2504 zil_alloc_commit_waiter()
2378 2505 {
2379 2506 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2380 2507
2381 2508 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2382 2509 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2383 2510 list_link_init(&zcw->zcw_node);
2384 2511 zcw->zcw_lwb = NULL;
2385 2512 zcw->zcw_done = B_FALSE;
2386 2513 zcw->zcw_zio_error = 0;
2387 2514
2388 2515 return (zcw);
2389 2516 }
2390 2517
2391 2518 static void
2392 2519 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2393 2520 {
2394 2521 ASSERT(!list_link_active(&zcw->zcw_node));
2395 2522 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2396 2523 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2397 2524 mutex_destroy(&zcw->zcw_lock);
2398 2525 cv_destroy(&zcw->zcw_cv);
2399 2526 kmem_cache_free(zil_zcw_cache, zcw);
2400 2527 }
2401 2528
2402 2529 /*
2403 2530 * This function is used to create a TX_COMMIT itx and assign it. This
2404 2531 * way, it will be linked into the ZIL's list of synchronous itxs, and
2405 2532 * then later committed to an lwb (or skipped) when
2406 2533 * zil_process_commit_list() is called.
2407 2534 */
2408 2535 static void
2409 2536 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2410 2537 {
2411 2538 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2412 2539 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2413 2540
2414 2541 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2415 2542 itx->itx_sync = B_TRUE;
2416 2543 itx->itx_private = zcw;
2417 2544
2418 2545 zil_itx_assign(zilog, itx, tx);
2419 2546
2420 2547 dmu_tx_commit(tx);
2421 2548 }
2422 2549
2423 2550 /*
2424 2551 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2425 2552 *
2426 2553 * When writing ZIL transactions to the on-disk representation of the
2427 2554 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2428 2555 * itxs can be committed to a single lwb. Once a lwb is written and
2429 2556 * committed to stable storage (i.e. the lwb is written, and vdevs have
2430 2557 * been flushed), each itx that was committed to that lwb is also
2431 2558 * considered to be committed to stable storage.
2432 2559 *
2433 2560 * When an itx is committed to an lwb, the log record (lr_t) contained
2434 2561 * by the itx is copied into the lwb's zio buffer, and once this buffer
2435 2562 * is written to disk, it becomes an on-disk ZIL block.
2436 2563 *
2437 2564 * As itxs are generated, they're inserted into the ZIL's queue of
2438 2565 * uncommitted itxs. The semantics of zil_commit() are such that it will
2439 2566 * block until all itxs that were in the queue when it was called, are
2440 2567 * committed to stable storage.
2441 2568 *
2442 2569 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2443 2570 * itxs, for all objects in the dataset, will be committed to stable
2444 2571 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2445 2572 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2446 2573 * that correspond to the foid passed in, will be committed to stable
2447 2574 * storage prior to zil_commit() returning.
2448 2575 *
2449 2576 * Generally speaking, when zil_commit() is called, the consumer doesn't
2450 2577 * actually care about _all_ of the uncommitted itxs. Instead, they're
2451 2578 * simply trying to waiting for a specific itx to be committed to disk,
2452 2579 * but the interface(s) for interacting with the ZIL don't allow such
2453 2580 * fine-grained communication. A better interface would allow a consumer
2454 2581 * to create and assign an itx, and then pass a reference to this itx to
2455 2582 * zil_commit(); such that zil_commit() would return as soon as that
2456 2583 * specific itx was committed to disk (instead of waiting for _all_
2457 2584 * itxs to be committed).
2458 2585 *
2459 2586 * When a thread calls zil_commit() a special "commit itx" will be
2460 2587 * generated, along with a corresponding "waiter" for this commit itx.
2461 2588 * zil_commit() will wait on this waiter's CV, such that when the waiter
2462 2589 * is marked done, and signalled, zil_commit() will return.
2463 2590 *
2464 2591 * This commit itx is inserted into the queue of uncommitted itxs. This
2465 2592 * provides an easy mechanism for determining which itxs were in the
2466 2593 * queue prior to zil_commit() having been called, and which itxs were
2467 2594 * added after zil_commit() was called.
2468 2595 *
2469 2596 * The commit it is special; it doesn't have any on-disk representation.
2470 2597 * When a commit itx is "committed" to an lwb, the waiter associated
2471 2598 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2472 2599 * completes, each waiter on the lwb's list is marked done and signalled
2473 2600 * -- allowing the thread waiting on the waiter to return from zil_commit().
2474 2601 *
2475 2602 * It's important to point out a few critical factors that allow us
2476 2603 * to make use of the commit itxs, commit waiters, per-lwb lists of
2477 2604 * commit waiters, and zio completion callbacks like we're doing:
2478 2605 *
2479 2606 * 1. The list of waiters for each lwb is traversed, and each commit
2480 2607 * waiter is marked "done" and signalled, in the zio completion
2481 2608 * callback of the lwb's zio[*].
2482 2609 *
2483 2610 * * Actually, the waiters are signalled in the zio completion
2484 2611 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2485 2612 * that are sent to the vdevs upon completion of the lwb zio.
2486 2613 *
2487 2614 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2488 2615 * itxs, the order in which they are inserted is preserved[*]; as
2489 2616 * itxs are added to the queue, they are added to the tail of
2490 2617 * in-memory linked lists.
2491 2618 *
2492 2619 * When committing the itxs to lwbs (to be written to disk), they
2493 2620 * are committed in the same order in which the itxs were added to
2494 2621 * the uncommitted queue's linked list(s); i.e. the linked list of
2495 2622 * itxs to commit is traversed from head to tail, and each itx is
2496 2623 * committed to an lwb in that order.
2497 2624 *
2498 2625 * * To clarify:
2499 2626 *
2500 2627 * - the order of "sync" itxs is preserved w.r.t. other
2501 2628 * "sync" itxs, regardless of the corresponding objects.
2502 2629 * - the order of "async" itxs is preserved w.r.t. other
2503 2630 * "async" itxs corresponding to the same object.
2504 2631 * - the order of "async" itxs is *not* preserved w.r.t. other
2505 2632 * "async" itxs corresponding to different objects.
2506 2633 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2507 2634 * versa) is *not* preserved, even for itxs that correspond
2508 2635 * to the same object.
2509 2636 *
2510 2637 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2511 2638 * zil_get_commit_list(), and zil_process_commit_list().
2512 2639 *
2513 2640 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2514 2641 * lwb cannot be considered committed to stable storage, until its
2515 2642 * "previous" lwb is also committed to stable storage. This fact,
2516 2643 * coupled with the fact described above, means that itxs are
2517 2644 * committed in (roughly) the order in which they were generated.
2518 2645 * This is essential because itxs are dependent on prior itxs.
2519 2646 * Thus, we *must not* deem an itx as being committed to stable
2520 2647 * storage, until *all* prior itxs have also been committed to
2521 2648 * stable storage.
2522 2649 *
2523 2650 * To enforce this ordering of lwb zio's, while still leveraging as
2524 2651 * much of the underlying storage performance as possible, we rely
2525 2652 * on two fundamental concepts:
2526 2653 *
2527 2654 * 1. The creation and issuance of lwb zio's is protected by
2528 2655 * the zilog's "zl_issuer_lock", which ensures only a single
2529 2656 * thread is creating and/or issuing lwb's at a time
2530 2657 * 2. The "previous" lwb is a child of the "current" lwb
2531 2658 * (leveraging the zio parent-child depenency graph)
2532 2659 *
2533 2660 * By relying on this parent-child zio relationship, we can have
2534 2661 * many lwb zio's concurrently issued to the underlying storage,
2535 2662 * but the order in which they complete will be the same order in
2536 2663 * which they were created.
2537 2664 */
2538 2665 void
2539 2666 zil_commit(zilog_t *zilog, uint64_t foid)
2540 2667 {
2541 2668 /*
2542 2669 * We should never attempt to call zil_commit on a snapshot for
2543 2670 * a couple of reasons:
2544 2671 *
2545 2672 * 1. A snapshot may never be modified, thus it cannot have any
2546 2673 * in-flight itxs that would have modified the dataset.
2547 2674 *
2548 2675 * 2. By design, when zil_commit() is called, a commit itx will
2549 2676 * be assigned to this zilog; as a result, the zilog will be
2550 2677 * dirtied. We must not dirty the zilog of a snapshot; there's
2551 2678 * checks in the code that enforce this invariant, and will
2552 2679 * cause a panic if it's not upheld.
2553 2680 */
2554 2681 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2555 2682
2556 2683 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2557 2684 return;
2558 2685
2559 2686 if (!spa_writeable(zilog->zl_spa)) {
2560 2687 /*
2561 2688 * If the SPA is not writable, there should never be any
2562 2689 * pending itxs waiting to be committed to disk. If that
2563 2690 * weren't true, we'd skip writing those itxs out, and
2564 2691 * would break the sematics of zil_commit(); thus, we're
2565 2692 * verifying that truth before we return to the caller.
2566 2693 */
2567 2694 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2568 2695 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2569 2696 for (int i = 0; i < TXG_SIZE; i++)
2570 2697 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2571 2698 return;
2572 2699 }
2573 2700
2574 2701 /*
2575 2702 * If the ZIL is suspended, we don't want to dirty it by calling
2576 2703 * zil_commit_itx_assign() below, nor can we write out
2577 2704 * lwbs like would be done in zil_commit_write(). Thus, we
2578 2705 * simply rely on txg_wait_synced() to maintain the necessary
2579 2706 * semantics, and avoid calling those functions altogether.
2580 2707 */
2581 2708 if (zilog->zl_suspend > 0) {
2582 2709 txg_wait_synced(zilog->zl_dmu_pool, 0);
2583 2710 return;
2584 2711 }
2585 2712
2586 2713 zil_commit_impl(zilog, foid);
2587 2714 }
2588 2715
2589 2716 void
2590 2717 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2591 2718 {
2592 2719 /*
2593 2720 * Move the "async" itxs for the specified foid to the "sync"
2594 2721 * queues, such that they will be later committed (or skipped)
2595 2722 * to an lwb when zil_process_commit_list() is called.
2596 2723 *
2597 2724 * Since these "async" itxs must be committed prior to this
2598 2725 * call to zil_commit returning, we must perform this operation
2599 2726 * before we call zil_commit_itx_assign().
2600 2727 */
2601 2728 zil_async_to_sync(zilog, foid);
2602 2729
2603 2730 /*
2604 2731 * We allocate a new "waiter" structure which will initially be
2605 2732 * linked to the commit itx using the itx's "itx_private" field.
2606 2733 * Since the commit itx doesn't represent any on-disk state,
2607 2734 * when it's committed to an lwb, rather than copying the its
2608 2735 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2609 2736 * added to the lwb's list of waiters. Then, when the lwb is
2610 2737 * committed to stable storage, each waiter in the lwb's list of
2611 2738 * waiters will be marked "done", and signalled.
2612 2739 *
2613 2740 * We must create the waiter and assign the commit itx prior to
2614 2741 * calling zil_commit_writer(), or else our specific commit itx
2615 2742 * is not guaranteed to be committed to an lwb prior to calling
2616 2743 * zil_commit_waiter().
2617 2744 */
2618 2745 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2619 2746 zil_commit_itx_assign(zilog, zcw);
2620 2747
2621 2748 zil_commit_writer(zilog, zcw);
2622 2749 zil_commit_waiter(zilog, zcw);
2623 2750
2624 2751 if (zcw->zcw_zio_error != 0) {
2625 2752 /*
2626 2753 * If there was an error writing out the ZIL blocks that
2627 2754 * this thread is waiting on, then we fallback to
2628 2755 * relying on spa_sync() to write out the data this
2629 2756 * thread is waiting on. Obviously this has performance
2630 2757 * implications, but the expectation is for this to be
2631 2758 * an exceptional case, and shouldn't occur often.
2632 2759 */
2633 2760 DTRACE_PROBE2(zil__commit__io__error,
2634 2761 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2635 2762 txg_wait_synced(zilog->zl_dmu_pool, 0);
2636 2763 }
2637 2764
2638 2765 zil_free_commit_waiter(zcw);
2639 2766 }
2640 2767
2641 2768 /*
2642 2769 * Called in syncing context to free committed log blocks and update log header.
2643 2770 */
2644 2771 void
2645 2772 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2646 2773 {
2647 2774 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2648 2775 uint64_t txg = dmu_tx_get_txg(tx);
2649 2776 spa_t *spa = zilog->zl_spa;
2650 2777 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2651 2778 lwb_t *lwb;
2652 2779
2653 2780 /*
2654 2781 * We don't zero out zl_destroy_txg, so make sure we don't try
2655 2782 * to destroy it twice.
2656 2783 */
2657 2784 if (spa_sync_pass(spa) != 1)
2658 2785 return;
2659 2786
2660 2787 mutex_enter(&zilog->zl_lock);
2661 2788
2662 2789 ASSERT(zilog->zl_stop_sync == 0);
2663 2790
2664 2791 if (*replayed_seq != 0) {
2665 2792 ASSERT(zh->zh_replay_seq < *replayed_seq);
2666 2793 zh->zh_replay_seq = *replayed_seq;
2667 2794 *replayed_seq = 0;
2668 2795 }
2669 2796
2670 2797 if (zilog->zl_destroy_txg == txg) {
2671 2798 blkptr_t blk = zh->zh_log;
2672 2799
2673 2800 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2674 2801
2675 2802 bzero(zh, sizeof (zil_header_t));
2676 2803 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2677 2804
2678 2805 if (zilog->zl_keep_first) {
2679 2806 /*
2680 2807 * If this block was part of log chain that couldn't
2681 2808 * be claimed because a device was missing during
2682 2809 * zil_claim(), but that device later returns,
2683 2810 * then this block could erroneously appear valid.
2684 2811 * To guard against this, assign a new GUID to the new
2685 2812 * log chain so it doesn't matter what blk points to.
2686 2813 */
2687 2814 zil_init_log_chain(zilog, &blk);
2688 2815 zh->zh_log = blk;
2689 2816 }
2690 2817 }
2691 2818
2692 2819 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2693 2820 zh->zh_log = lwb->lwb_blk;
2694 2821 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2695 2822 break;
2696 2823 list_remove(&zilog->zl_lwb_list, lwb);
2697 2824 zio_free(spa, txg, &lwb->lwb_blk);
2698 2825 zil_free_lwb(zilog, lwb);
2699 2826
2700 2827 /*
2701 2828 * If we don't have anything left in the lwb list then
2702 2829 * we've had an allocation failure and we need to zero
2703 2830 * out the zil_header blkptr so that we don't end
2704 2831 * up freeing the same block twice.
2705 2832 */
2706 2833 if (list_head(&zilog->zl_lwb_list) == NULL)
2707 2834 BP_ZERO(&zh->zh_log);
2708 2835 }
2709 2836 mutex_exit(&zilog->zl_lock);
2710 2837 }
2711 2838
2712 2839 /* ARGSUSED */
2713 2840 static int
2714 2841 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2715 2842 {
2716 2843 lwb_t *lwb = vbuf;
2717 2844 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2718 2845 offsetof(zil_commit_waiter_t, zcw_node));
2719 2846 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2720 2847 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2721 2848 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2722 2849 return (0);
2723 2850 }
2724 2851
2725 2852 /* ARGSUSED */
2726 2853 static void
2727 2854 zil_lwb_dest(void *vbuf, void *unused)
2728 2855 {
2729 2856 lwb_t *lwb = vbuf;
2730 2857 mutex_destroy(&lwb->lwb_vdev_lock);
2731 2858 avl_destroy(&lwb->lwb_vdev_tree);
2732 2859 list_destroy(&lwb->lwb_waiters);
2733 2860 }
2734 2861
2735 2862 void
2736 2863 zil_init(void)
2737 2864 {
2738 2865 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2739 2866 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2740 2867
2741 2868 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2742 2869 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2743 2870 }
2744 2871
2745 2872 void
2746 2873 zil_fini(void)
2747 2874 {
2748 2875 kmem_cache_destroy(zil_zcw_cache);
2749 2876 kmem_cache_destroy(zil_lwb_cache);
2750 2877 }
2751 2878
2752 2879 void
2753 2880 zil_set_sync(zilog_t *zilog, uint64_t sync)
2754 2881 {
2755 2882 zilog->zl_sync = sync;
2756 2883 }
2757 2884
2758 2885 void
2759 2886 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2760 2887 {
2761 2888 zilog->zl_logbias = logbias;
2762 2889 }
2763 2890
2764 2891 zilog_t *
2765 2892 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2766 2893 {
2767 2894 zilog_t *zilog;
2768 2895
2769 2896 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2770 2897
2771 2898 zilog->zl_header = zh_phys;
2772 2899 zilog->zl_os = os;
2773 2900 zilog->zl_spa = dmu_objset_spa(os);
2774 2901 zilog->zl_dmu_pool = dmu_objset_pool(os);
2775 2902 zilog->zl_destroy_txg = TXG_INITIAL - 1;
2776 2903 zilog->zl_logbias = dmu_objset_logbias(os);
2777 2904 zilog->zl_sync = dmu_objset_syncprop(os);
2778 2905 zilog->zl_dirty_max_txg = 0;
2779 2906 zilog->zl_last_lwb_opened = NULL;
2780 2907 zilog->zl_last_lwb_latency = 0;
2781 2908
2782 2909 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2783 2910 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2784 2911
2785 2912 for (int i = 0; i < TXG_SIZE; i++) {
2786 2913 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2787 2914 MUTEX_DEFAULT, NULL);
2788 2915 }
2789 2916
2790 2917 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2791 2918 offsetof(lwb_t, lwb_node));
2792 2919
2793 2920 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2794 2921 offsetof(itx_t, itx_node));
2795 2922
2796 2923 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2797 2924
2798 2925 return (zilog);
2799 2926 }
2800 2927
2801 2928 void
2802 2929 zil_free(zilog_t *zilog)
2803 2930 {
2804 2931 zilog->zl_stop_sync = 1;
2805 2932
2806 2933 ASSERT0(zilog->zl_suspend);
2807 2934 ASSERT0(zilog->zl_suspending);
2808 2935
2809 2936 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2810 2937 list_destroy(&zilog->zl_lwb_list);
2811 2938
2812 2939 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2813 2940 list_destroy(&zilog->zl_itx_commit_list);
2814 2941
2815 2942 for (int i = 0; i < TXG_SIZE; i++) {
2816 2943 /*
2817 2944 * It's possible for an itx to be generated that doesn't dirty
2818 2945 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2819 2946 * callback to remove the entry. We remove those here.
2820 2947 *
2821 2948 * Also free up the ziltest itxs.
2822 2949 */
2823 2950 if (zilog->zl_itxg[i].itxg_itxs)
2824 2951 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2825 2952 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2826 2953 }
2827 2954
2828 2955 mutex_destroy(&zilog->zl_issuer_lock);
2829 2956 mutex_destroy(&zilog->zl_lock);
2830 2957
2831 2958 cv_destroy(&zilog->zl_cv_suspend);
2832 2959
2833 2960 kmem_free(zilog, sizeof (zilog_t));
2834 2961 }
2835 2962
2836 2963 /*
2837 2964 * Open an intent log.
2838 2965 */
2839 2966 zilog_t *
2840 2967 zil_open(objset_t *os, zil_get_data_t *get_data)
2841 2968 {
2842 2969 zilog_t *zilog = dmu_objset_zil(os);
2843 2970
2844 2971 ASSERT3P(zilog->zl_get_data, ==, NULL);
2845 2972 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2846 2973 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2847 2974
2848 2975 zilog->zl_get_data = get_data;
2849 2976
2850 2977 return (zilog);
2851 2978 }
2852 2979
2853 2980 /*
2854 2981 * Close an intent log.
2855 2982 */
2856 2983 void
2857 2984 zil_close(zilog_t *zilog)
2858 2985 {
2859 2986 lwb_t *lwb;
2860 2987 uint64_t txg;
2861 2988
2862 2989 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2863 2990 zil_commit(zilog, 0);
2864 2991 } else {
2865 2992 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2866 2993 ASSERT0(zilog->zl_dirty_max_txg);
2867 2994 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2868 2995 }
2869 2996
2870 2997 mutex_enter(&zilog->zl_lock);
2871 2998 lwb = list_tail(&zilog->zl_lwb_list);
2872 2999 if (lwb == NULL)
2873 3000 txg = zilog->zl_dirty_max_txg;
2874 3001 else
2875 3002 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2876 3003 mutex_exit(&zilog->zl_lock);
2877 3004
2878 3005 /*
2879 3006 * We need to use txg_wait_synced() to wait long enough for the
2880 3007 * ZIL to be clean, and to wait for all pending lwbs to be
2881 3008 * written out.
2882 3009 */
2883 3010 if (txg != 0)
2884 3011 txg_wait_synced(zilog->zl_dmu_pool, txg);
2885 3012
2886 3013 if (zilog_is_dirty(zilog))
2887 3014 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2888 3015 VERIFY(!zilog_is_dirty(zilog));
2889 3016
2890 3017 zilog->zl_get_data = NULL;
2891 3018
2892 3019 /*
2893 3020 * We should have only one lwb left on the list; remove it now.
2894 3021 */
2895 3022 mutex_enter(&zilog->zl_lock);
2896 3023 lwb = list_head(&zilog->zl_lwb_list);
2897 3024 if (lwb != NULL) {
2898 3025 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2899 3026 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2900 3027 list_remove(&zilog->zl_lwb_list, lwb);
2901 3028 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2902 3029 zil_free_lwb(zilog, lwb);
2903 3030 }
2904 3031 mutex_exit(&zilog->zl_lock);
2905 3032 }
2906 3033
2907 3034 static char *suspend_tag = "zil suspending";
2908 3035
2909 3036 /*
2910 3037 * Suspend an intent log. While in suspended mode, we still honor
2911 3038 * synchronous semantics, but we rely on txg_wait_synced() to do it.
2912 3039 * On old version pools, we suspend the log briefly when taking a
2913 3040 * snapshot so that it will have an empty intent log.
2914 3041 *
2915 3042 * Long holds are not really intended to be used the way we do here --
2916 3043 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
2917 3044 * could fail. Therefore we take pains to only put a long hold if it is
2918 3045 * actually necessary. Fortunately, it will only be necessary if the
2919 3046 * objset is currently mounted (or the ZVOL equivalent). In that case it
2920 3047 * will already have a long hold, so we are not really making things any worse.
2921 3048 *
2922 3049 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2923 3050 * zvol_state_t), and use their mechanism to prevent their hold from being
2924 3051 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
2925 3052 * very little gain.
2926 3053 *
2927 3054 * if cookiep == NULL, this does both the suspend & resume.
2928 3055 * Otherwise, it returns with the dataset "long held", and the cookie
2929 3056 * should be passed into zil_resume().
2930 3057 */
2931 3058 int
2932 3059 zil_suspend(const char *osname, void **cookiep)
2933 3060 {
2934 3061 objset_t *os;
2935 3062 zilog_t *zilog;
2936 3063 const zil_header_t *zh;
2937 3064 int error;
2938 3065
2939 3066 error = dmu_objset_hold(osname, suspend_tag, &os);
2940 3067 if (error != 0)
2941 3068 return (error);
2942 3069 zilog = dmu_objset_zil(os);
2943 3070
2944 3071 mutex_enter(&zilog->zl_lock);
2945 3072 zh = zilog->zl_header;
2946 3073
2947 3074 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
2948 3075 mutex_exit(&zilog->zl_lock);
2949 3076 dmu_objset_rele(os, suspend_tag);
2950 3077 return (SET_ERROR(EBUSY));
2951 3078 }
2952 3079
2953 3080 /*
2954 3081 * Don't put a long hold in the cases where we can avoid it. This
2955 3082 * is when there is no cookie so we are doing a suspend & resume
2956 3083 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2957 3084 * for the suspend because it's already suspended, or there's no ZIL.
2958 3085 */
2959 3086 if (cookiep == NULL && !zilog->zl_suspending &&
2960 3087 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2961 3088 mutex_exit(&zilog->zl_lock);
2962 3089 dmu_objset_rele(os, suspend_tag);
2963 3090 return (0);
2964 3091 }
2965 3092
2966 3093 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2967 3094 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2968 3095
2969 3096 zilog->zl_suspend++;
2970 3097
2971 3098 if (zilog->zl_suspend > 1) {
2972 3099 /*
2973 3100 * Someone else is already suspending it.
2974 3101 * Just wait for them to finish.
2975 3102 */
2976 3103
2977 3104 while (zilog->zl_suspending)
2978 3105 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2979 3106 mutex_exit(&zilog->zl_lock);
2980 3107
2981 3108 if (cookiep == NULL)
2982 3109 zil_resume(os);
2983 3110 else
2984 3111 *cookiep = os;
2985 3112 return (0);
2986 3113 }
2987 3114
2988 3115 /*
2989 3116 * If there is no pointer to an on-disk block, this ZIL must not
2990 3117 * be active (e.g. filesystem not mounted), so there's nothing
2991 3118 * to clean up.
2992 3119 */
2993 3120 if (BP_IS_HOLE(&zh->zh_log)) {
2994 3121 ASSERT(cookiep != NULL); /* fast path already handled */
2995 3122
2996 3123 *cookiep = os;
2997 3124 mutex_exit(&zilog->zl_lock);
2998 3125 return (0);
2999 3126 }
|
↓ open down ↓ |
621 lines elided |
↑ open up ↑ |
3000 3127
3001 3128 zilog->zl_suspending = B_TRUE;
3002 3129 mutex_exit(&zilog->zl_lock);
3003 3130
3004 3131 /*
3005 3132 * We need to use zil_commit_impl to ensure we wait for all
3006 3133 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3007 3134 * to disk before proceeding. If we used zil_commit instead, it
3008 3135 * would just call txg_wait_synced(), because zl_suspend is set.
3009 3136 * txg_wait_synced() doesn't wait for these lwb's to be
3010 - * LWB_STATE_DONE before returning.
3137 + * LWB_STATE_FLUSH_DONE before returning.
3011 3138 */
3012 3139 zil_commit_impl(zilog, 0);
3013 3140
3014 3141 /*
3015 - * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3016 - * txg_wait_synced() to ensure the data from the zilog has
3142 + * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3143 + * use txg_wait_synced() to ensure the data from the zilog has
3017 3144 * migrated to the main pool before calling zil_destroy().
3018 3145 */
3019 3146 txg_wait_synced(zilog->zl_dmu_pool, 0);
3020 3147
3021 3148 zil_destroy(zilog, B_FALSE);
3022 3149
3023 3150 mutex_enter(&zilog->zl_lock);
3024 3151 zilog->zl_suspending = B_FALSE;
3025 3152 cv_broadcast(&zilog->zl_cv_suspend);
3026 3153 mutex_exit(&zilog->zl_lock);
3027 3154
3028 3155 if (cookiep == NULL)
3029 3156 zil_resume(os);
3030 3157 else
3031 3158 *cookiep = os;
3032 3159 return (0);
3033 3160 }
3034 3161
3035 3162 void
3036 3163 zil_resume(void *cookie)
3037 3164 {
3038 3165 objset_t *os = cookie;
3039 3166 zilog_t *zilog = dmu_objset_zil(os);
3040 3167
3041 3168 mutex_enter(&zilog->zl_lock);
3042 3169 ASSERT(zilog->zl_suspend != 0);
3043 3170 zilog->zl_suspend--;
3044 3171 mutex_exit(&zilog->zl_lock);
3045 3172 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3046 3173 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3047 3174 }
3048 3175
3049 3176 typedef struct zil_replay_arg {
3050 3177 zil_replay_func_t **zr_replay;
3051 3178 void *zr_arg;
3052 3179 boolean_t zr_byteswap;
3053 3180 char *zr_lr;
3054 3181 } zil_replay_arg_t;
3055 3182
3056 3183 static int
3057 3184 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3058 3185 {
3059 3186 char name[ZFS_MAX_DATASET_NAME_LEN];
3060 3187
3061 3188 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3062 3189
3063 3190 dmu_objset_name(zilog->zl_os, name);
3064 3191
3065 3192 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3066 3193 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3067 3194 (u_longlong_t)lr->lrc_seq,
3068 3195 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3069 3196 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3070 3197
3071 3198 return (error);
3072 3199 }
3073 3200
3074 3201 static int
3075 3202 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3076 3203 {
3077 3204 zil_replay_arg_t *zr = zra;
3078 3205 const zil_header_t *zh = zilog->zl_header;
3079 3206 uint64_t reclen = lr->lrc_reclen;
3080 3207 uint64_t txtype = lr->lrc_txtype;
3081 3208 int error = 0;
3082 3209
3083 3210 zilog->zl_replaying_seq = lr->lrc_seq;
3084 3211
3085 3212 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3086 3213 return (0);
3087 3214
3088 3215 if (lr->lrc_txg < claim_txg) /* already committed */
3089 3216 return (0);
3090 3217
3091 3218 /* Strip case-insensitive bit, still present in log record */
3092 3219 txtype &= ~TX_CI;
3093 3220
3094 3221 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3095 3222 return (zil_replay_error(zilog, lr, EINVAL));
3096 3223
3097 3224 /*
3098 3225 * If this record type can be logged out of order, the object
3099 3226 * (lr_foid) may no longer exist. That's legitimate, not an error.
3100 3227 */
3101 3228 if (TX_OOO(txtype)) {
3102 3229 error = dmu_object_info(zilog->zl_os,
3103 3230 ((lr_ooo_t *)lr)->lr_foid, NULL);
3104 3231 if (error == ENOENT || error == EEXIST)
3105 3232 return (0);
3106 3233 }
3107 3234
3108 3235 /*
3109 3236 * Make a copy of the data so we can revise and extend it.
3110 3237 */
3111 3238 bcopy(lr, zr->zr_lr, reclen);
3112 3239
3113 3240 /*
3114 3241 * If this is a TX_WRITE with a blkptr, suck in the data.
3115 3242 */
3116 3243 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3117 3244 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3118 3245 zr->zr_lr + reclen);
3119 3246 if (error != 0)
3120 3247 return (zil_replay_error(zilog, lr, error));
3121 3248 }
3122 3249
3123 3250 /*
3124 3251 * The log block containing this lr may have been byteswapped
3125 3252 * so that we can easily examine common fields like lrc_txtype.
3126 3253 * However, the log is a mix of different record types, and only the
3127 3254 * replay vectors know how to byteswap their records. Therefore, if
3128 3255 * the lr was byteswapped, undo it before invoking the replay vector.
3129 3256 */
3130 3257 if (zr->zr_byteswap)
3131 3258 byteswap_uint64_array(zr->zr_lr, reclen);
3132 3259
3133 3260 /*
3134 3261 * We must now do two things atomically: replay this log record,
3135 3262 * and update the log header sequence number to reflect the fact that
3136 3263 * we did so. At the end of each replay function the sequence number
3137 3264 * is updated if we are in replay mode.
3138 3265 */
3139 3266 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3140 3267 if (error != 0) {
3141 3268 /*
3142 3269 * The DMU's dnode layer doesn't see removes until the txg
3143 3270 * commits, so a subsequent claim can spuriously fail with
3144 3271 * EEXIST. So if we receive any error we try syncing out
3145 3272 * any removes then retry the transaction. Note that we
3146 3273 * specify B_FALSE for byteswap now, so we don't do it twice.
3147 3274 */
3148 3275 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3149 3276 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3150 3277 if (error != 0)
3151 3278 return (zil_replay_error(zilog, lr, error));
3152 3279 }
3153 3280 return (0);
3154 3281 }
3155 3282
3156 3283 /* ARGSUSED */
3157 3284 static int
3158 3285 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3159 3286 {
3160 3287 zilog->zl_replay_blks++;
3161 3288
3162 3289 return (0);
3163 3290 }
3164 3291
3165 3292 /*
3166 3293 * If this dataset has a non-empty intent log, replay it and destroy it.
3167 3294 */
3168 3295 void
3169 3296 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3170 3297 {
3171 3298 zilog_t *zilog = dmu_objset_zil(os);
3172 3299 const zil_header_t *zh = zilog->zl_header;
3173 3300 zil_replay_arg_t zr;
3174 3301
3175 3302 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3176 3303 zil_destroy(zilog, B_TRUE);
3177 3304 return;
3178 3305 }
3179 3306
3180 3307 zr.zr_replay = replay_func;
3181 3308 zr.zr_arg = arg;
3182 3309 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3183 3310 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3184 3311
3185 3312 /*
3186 3313 * Wait for in-progress removes to sync before starting replay.
3187 3314 */
3188 3315 txg_wait_synced(zilog->zl_dmu_pool, 0);
3189 3316
3190 3317 zilog->zl_replay = B_TRUE;
3191 3318 zilog->zl_replay_time = ddi_get_lbolt();
3192 3319 ASSERT(zilog->zl_replay_blks == 0);
3193 3320 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3194 3321 zh->zh_claim_txg);
3195 3322 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3196 3323
3197 3324 zil_destroy(zilog, B_FALSE);
3198 3325 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3199 3326 zilog->zl_replay = B_FALSE;
3200 3327 }
3201 3328
3202 3329 boolean_t
3203 3330 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3204 3331 {
3205 3332 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3206 3333 return (B_TRUE);
3207 3334
3208 3335 if (zilog->zl_replay) {
3209 3336 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
|
↓ open down ↓ |
183 lines elided |
↑ open up ↑ |
3210 3337 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3211 3338 zilog->zl_replaying_seq;
3212 3339 return (B_TRUE);
3213 3340 }
3214 3341
3215 3342 return (B_FALSE);
3216 3343 }
3217 3344
3218 3345 /* ARGSUSED */
3219 3346 int
3220 -zil_reset(const char *osname, void *arg)
3347 +zil_vdev_offline(const char *osname, void *arg)
3221 3348 {
3222 3349 int error;
3223 3350
3224 3351 error = zil_suspend(osname, NULL);
3225 3352 if (error != 0)
3226 3353 return (SET_ERROR(EEXIST));
3227 3354 return (0);
3228 3355 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX