1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
  24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  */
  27 
  28 /* Portions Copyright 2010 Robert Milkowski */
  29 
  30 #include <sys/zfs_context.h>
  31 #include <sys/spa.h>
  32 #include <sys/dmu.h>
  33 #include <sys/zap.h>
  34 #include <sys/arc.h>
  35 #include <sys/stat.h>
  36 #include <sys/resource.h>
  37 #include <sys/zil.h>
  38 #include <sys/zil_impl.h>
  39 #include <sys/dsl_dataset.h>
  40 #include <sys/vdev_impl.h>
  41 #include <sys/dmu_tx.h>
  42 #include <sys/dsl_pool.h>
  43 #include <sys/abd.h>
  44 
  45 /*
  46  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
  47  * calls that change the file system. Each itx has enough information to
  48  * be able to replay them after a system crash, power loss, or
  49  * equivalent failure mode. These are stored in memory until either:
  50  *
  51  *   1. they are committed to the pool by the DMU transaction group
  52  *      (txg), at which point they can be discarded; or
  53  *   2. they are committed to the on-disk ZIL for the dataset being
  54  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
  55  *      requirement).
  56  *
  57  * In the event of a crash or power loss, the itxs contained by each
  58  * dataset's on-disk ZIL will be replayed when that dataset is first
  59  * instantianted (e.g. if the dataset is a normal fileystem, when it is
  60  * first mounted).
  61  *
  62  * As hinted at above, there is one ZIL per dataset (both the in-memory
  63  * representation, and the on-disk representation). The on-disk format
  64  * consists of 3 parts:
  65  *
  66  *      - a single, per-dataset, ZIL header; which points to a chain of
  67  *      - zero or more ZIL blocks; each of which contains
  68  *      - zero or more ZIL records
  69  *
  70  * A ZIL record holds the information necessary to replay a single
  71  * system call transaction. A ZIL block can hold many ZIL records, and
  72  * the blocks are chained together, similarly to a singly linked list.
  73  *
  74  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
  75  * block in the chain, and the ZIL header points to the first block in
  76  * the chain.
  77  *
  78  * Note, there is not a fixed place in the pool to hold these ZIL
  79  * blocks; they are dynamically allocated and freed as needed from the
  80  * blocks available on the pool, though they can be preferentially
  81  * allocated from a dedicated "log" vdev.
  82  */
  83 
  84 /*
  85  * This controls the amount of time that a ZIL block (lwb) will remain
  86  * "open" when it isn't "full", and it has a thread waiting for it to be
  87  * committed to stable storage. Please refer to the zil_commit_waiter()
  88  * function (and the comments within it) for more details.
  89  */
  90 int zfs_commit_timeout_pct = 5;
  91 
  92 /*
  93  * Disable intent logging replay.  This global ZIL switch affects all pools.
  94  */
  95 int zil_replay_disable = 0;    /* disable intent logging replay */
  96 
  97 /*
  98  * Tunable parameter for debugging or performance analysis.  Setting
  99  * zfs_nocacheflush will cause corruption on power loss if a volatile
 100  * out-of-order write cache is enabled.
 101  */
 102 boolean_t zfs_nocacheflush = B_FALSE;
 103 
 104 /*
 105  * Limit SLOG write size per commit executed with synchronous priority.
 106  * Any writes above that will be executed with lower (asynchronous) priority
 107  * to limit potential SLOG device abuse by single active ZIL writer.
 108  */
 109 uint64_t zil_slog_bulk = 768 * 1024;
 110 
 111 static kmem_cache_t *zil_lwb_cache;
 112 static kmem_cache_t *zil_zcw_cache;
 113 
 114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
 115 
 116 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
 117     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
 118 
 119 static int
 120 zil_bp_compare(const void *x1, const void *x2)
 121 {
 122         const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
 123         const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
 124 
 125         if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
 126                 return (-1);
 127         if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
 128                 return (1);
 129 
 130         if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
 131                 return (-1);
 132         if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
 133                 return (1);
 134 
 135         return (0);
 136 }
 137 
 138 static void
 139 zil_bp_tree_init(zilog_t *zilog)
 140 {
 141         avl_create(&zilog->zl_bp_tree, zil_bp_compare,
 142             sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
 143 }
 144 
 145 static void
 146 zil_bp_tree_fini(zilog_t *zilog)
 147 {
 148         avl_tree_t *t = &zilog->zl_bp_tree;
 149         zil_bp_node_t *zn;
 150         void *cookie = NULL;
 151 
 152         while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
 153                 kmem_free(zn, sizeof (zil_bp_node_t));
 154 
 155         avl_destroy(t);
 156 }
 157 
 158 int
 159 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
 160 {
 161         avl_tree_t *t = &zilog->zl_bp_tree;
 162         const dva_t *dva;
 163         zil_bp_node_t *zn;
 164         avl_index_t where;
 165 
 166         if (BP_IS_EMBEDDED(bp))
 167                 return (0);
 168 
 169         dva = BP_IDENTITY(bp);
 170 
 171         if (avl_find(t, dva, &where) != NULL)
 172                 return (SET_ERROR(EEXIST));
 173 
 174         zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
 175         zn->zn_dva = *dva;
 176         avl_insert(t, zn, where);
 177 
 178         return (0);
 179 }
 180 
 181 static zil_header_t *
 182 zil_header_in_syncing_context(zilog_t *zilog)
 183 {
 184         return ((zil_header_t *)zilog->zl_header);
 185 }
 186 
 187 static void
 188 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
 189 {
 190         zio_cksum_t *zc = &bp->blk_cksum;
 191 
 192         zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
 193         zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
 194         zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
 195         zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
 196 }
 197 
 198 /*
 199  * Read a log block and make sure it's valid.
 200  */
 201 static int
 202 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
 203     char **end)
 204 {
 205         enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
 206         arc_flags_t aflags = ARC_FLAG_WAIT;
 207         arc_buf_t *abuf = NULL;
 208         zbookmark_phys_t zb;
 209         int error;
 210 
 211         if (zilog->zl_header->zh_claim_txg == 0)
 212                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
 213 
 214         if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
 215                 zio_flags |= ZIO_FLAG_SPECULATIVE;
 216 
 217         SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
 218             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
 219 
 220         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
 221             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
 222 
 223         if (error == 0) {
 224                 zio_cksum_t cksum = bp->blk_cksum;
 225 
 226                 /*
 227                  * Validate the checksummed log block.
 228                  *
 229                  * Sequence numbers should be... sequential.  The checksum
 230                  * verifier for the next block should be bp's checksum plus 1.
 231                  *
 232                  * Also check the log chain linkage and size used.
 233                  */
 234                 cksum.zc_word[ZIL_ZC_SEQ]++;
 235 
 236                 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
 237                         zil_chain_t *zilc = abuf->b_data;
 238                         char *lr = (char *)(zilc + 1);
 239                         uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
 240 
 241                         if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
 242                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
 243                                 error = SET_ERROR(ECKSUM);
 244                         } else {
 245                                 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
 246                                 bcopy(lr, dst, len);
 247                                 *end = (char *)dst + len;
 248                                 *nbp = zilc->zc_next_blk;
 249                         }
 250                 } else {
 251                         char *lr = abuf->b_data;
 252                         uint64_t size = BP_GET_LSIZE(bp);
 253                         zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
 254 
 255                         if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
 256                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
 257                             (zilc->zc_nused > (size - sizeof (*zilc)))) {
 258                                 error = SET_ERROR(ECKSUM);
 259                         } else {
 260                                 ASSERT3U(zilc->zc_nused, <=,
 261                                     SPA_OLD_MAXBLOCKSIZE);
 262                                 bcopy(lr, dst, zilc->zc_nused);
 263                                 *end = (char *)dst + zilc->zc_nused;
 264                                 *nbp = zilc->zc_next_blk;
 265                         }
 266                 }
 267 
 268                 arc_buf_destroy(abuf, &abuf);
 269         }
 270 
 271         return (error);
 272 }
 273 
 274 /*
 275  * Read a TX_WRITE log data block.
 276  */
 277 static int
 278 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
 279 {
 280         enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
 281         const blkptr_t *bp = &lr->lr_blkptr;
 282         arc_flags_t aflags = ARC_FLAG_WAIT;
 283         arc_buf_t *abuf = NULL;
 284         zbookmark_phys_t zb;
 285         int error;
 286 
 287         if (BP_IS_HOLE(bp)) {
 288                 if (wbuf != NULL)
 289                         bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
 290                 return (0);
 291         }
 292 
 293         if (zilog->zl_header->zh_claim_txg == 0)
 294                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
 295 
 296         SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
 297             ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
 298 
 299         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
 300             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
 301 
 302         if (error == 0) {
 303                 if (wbuf != NULL)
 304                         bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
 305                 arc_buf_destroy(abuf, &abuf);
 306         }
 307 
 308         return (error);
 309 }
 310 
 311 /*
 312  * Parse the intent log, and call parse_func for each valid record within.
 313  */
 314 int
 315 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
 316     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
 317 {
 318         const zil_header_t *zh = zilog->zl_header;
 319         boolean_t claimed = !!zh->zh_claim_txg;
 320         uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
 321         uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
 322         uint64_t max_blk_seq = 0;
 323         uint64_t max_lr_seq = 0;
 324         uint64_t blk_count = 0;
 325         uint64_t lr_count = 0;
 326         blkptr_t blk, next_blk;
 327         char *lrbuf, *lrp;
 328         int error = 0;
 329 
 330         /*
 331          * Old logs didn't record the maximum zh_claim_lr_seq.
 332          */
 333         if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
 334                 claim_lr_seq = UINT64_MAX;
 335 
 336         /*
 337          * Starting at the block pointed to by zh_log we read the log chain.
 338          * For each block in the chain we strongly check that block to
 339          * ensure its validity.  We stop when an invalid block is found.
 340          * For each block pointer in the chain we call parse_blk_func().
 341          * For each record in each valid block we call parse_lr_func().
 342          * If the log has been claimed, stop if we encounter a sequence
 343          * number greater than the highest claimed sequence number.
 344          */
 345         lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
 346         zil_bp_tree_init(zilog);
 347 
 348         for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
 349                 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
 350                 int reclen;
 351                 char *end;
 352 
 353                 if (blk_seq > claim_blk_seq)
 354                         break;
 355                 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
 356                         break;
 357                 ASSERT3U(max_blk_seq, <, blk_seq);
 358                 max_blk_seq = blk_seq;
 359                 blk_count++;
 360 
 361                 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
 362                         break;
 363 
 364                 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
 365                 if (error != 0)
 366                         break;
 367 
 368                 for (lrp = lrbuf; lrp < end; lrp += reclen) {
 369                         lr_t *lr = (lr_t *)lrp;
 370                         reclen = lr->lrc_reclen;
 371                         ASSERT3U(reclen, >=, sizeof (lr_t));
 372                         if (lr->lrc_seq > claim_lr_seq)
 373                                 goto done;
 374                         if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
 375                                 goto done;
 376                         ASSERT3U(max_lr_seq, <, lr->lrc_seq);
 377                         max_lr_seq = lr->lrc_seq;
 378                         lr_count++;
 379                 }
 380         }
 381 done:
 382         zilog->zl_parse_error = error;
 383         zilog->zl_parse_blk_seq = max_blk_seq;
 384         zilog->zl_parse_lr_seq = max_lr_seq;
 385         zilog->zl_parse_blk_count = blk_count;
 386         zilog->zl_parse_lr_count = lr_count;
 387 
 388         ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
 389             (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
 390 
 391         zil_bp_tree_fini(zilog);
 392         zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
 393 
 394         return (error);
 395 }
 396 
 397 static int
 398 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
 399 {
 400         /*
 401          * Claim log block if not already committed and not already claimed.
 402          * If tx == NULL, just verify that the block is claimable.
 403          */
 404         if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
 405             zil_bp_tree_add(zilog, bp) != 0)
 406                 return (0);
 407 
 408         return (zio_wait(zio_claim(NULL, zilog->zl_spa,
 409             tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
 410             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
 411 }
 412 
 413 static int
 414 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
 415 {
 416         lr_write_t *lr = (lr_write_t *)lrc;
 417         int error;
 418 
 419         if (lrc->lrc_txtype != TX_WRITE)
 420                 return (0);
 421 
 422         /*
 423          * If the block is not readable, don't claim it.  This can happen
 424          * in normal operation when a log block is written to disk before
 425          * some of the dmu_sync() blocks it points to.  In this case, the
 426          * transaction cannot have been committed to anyone (we would have
 427          * waited for all writes to be stable first), so it is semantically
 428          * correct to declare this the end of the log.
 429          */
 430         if (lr->lr_blkptr.blk_birth >= first_txg &&
 431             (error = zil_read_log_data(zilog, lr, NULL)) != 0)
 432                 return (error);
 433         return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
 434 }
 435 
 436 /* ARGSUSED */
 437 static int
 438 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
 439 {
 440         zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
 441 
 442         return (0);
 443 }
 444 
 445 static int
 446 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
 447 {
 448         lr_write_t *lr = (lr_write_t *)lrc;
 449         blkptr_t *bp = &lr->lr_blkptr;
 450 
 451         /*
 452          * If we previously claimed it, we need to free it.
 453          */
 454         if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
 455             bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
 456             !BP_IS_HOLE(bp))
 457                 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
 458 
 459         return (0);
 460 }
 461 
 462 static int
 463 zil_lwb_vdev_compare(const void *x1, const void *x2)
 464 {
 465         const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
 466         const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
 467 
 468         if (v1 < v2)
 469                 return (-1);
 470         if (v1 > v2)
 471                 return (1);
 472 
 473         return (0);
 474 }
 475 
 476 static lwb_t *
 477 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
 478 {
 479         lwb_t *lwb;
 480 
 481         lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
 482         lwb->lwb_zilog = zilog;
 483         lwb->lwb_blk = *bp;
 484         lwb->lwb_slog = slog;
 485         lwb->lwb_state = LWB_STATE_CLOSED;
 486         lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
 487         lwb->lwb_max_txg = txg;
 488         lwb->lwb_write_zio = NULL;
 489         lwb->lwb_root_zio = NULL;
 490         lwb->lwb_tx = NULL;
 491         lwb->lwb_issued_timestamp = 0;
 492         if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
 493                 lwb->lwb_nused = sizeof (zil_chain_t);
 494                 lwb->lwb_sz = BP_GET_LSIZE(bp);
 495         } else {
 496                 lwb->lwb_nused = 0;
 497                 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
 498         }
 499 
 500         mutex_enter(&zilog->zl_lock);
 501         list_insert_tail(&zilog->zl_lwb_list, lwb);
 502         mutex_exit(&zilog->zl_lock);
 503 
 504         ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
 505         ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
 506         VERIFY(list_is_empty(&lwb->lwb_waiters));
 507 
 508         return (lwb);
 509 }
 510 
 511 static void
 512 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
 513 {
 514         ASSERT(MUTEX_HELD(&zilog->zl_lock));
 515         ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
 516         VERIFY(list_is_empty(&lwb->lwb_waiters));
 517         ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
 518         ASSERT3P(lwb->lwb_write_zio, ==, NULL);
 519         ASSERT3P(lwb->lwb_root_zio, ==, NULL);
 520         ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
 521         ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
 522             lwb->lwb_state == LWB_STATE_FLUSH_DONE);
 523 
 524         /*
 525          * Clear the zilog's field to indicate this lwb is no longer
 526          * valid, and prevent use-after-free errors.
 527          */
 528         if (zilog->zl_last_lwb_opened == lwb)
 529                 zilog->zl_last_lwb_opened = NULL;
 530 
 531         kmem_cache_free(zil_lwb_cache, lwb);
 532 }
 533 
 534 /*
 535  * Called when we create in-memory log transactions so that we know
 536  * to cleanup the itxs at the end of spa_sync().
 537  */
 538 void
 539 zilog_dirty(zilog_t *zilog, uint64_t txg)
 540 {
 541         dsl_pool_t *dp = zilog->zl_dmu_pool;
 542         dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
 543 
 544         ASSERT(spa_writeable(zilog->zl_spa));
 545 
 546         if (ds->ds_is_snapshot)
 547                 panic("dirtying snapshot!");
 548 
 549         if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
 550                 /* up the hold count until we can be written out */
 551                 dmu_buf_add_ref(ds->ds_dbuf, zilog);
 552 
 553                 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
 554         }
 555 }
 556 
 557 /*
 558  * Determine if the zil is dirty in the specified txg. Callers wanting to
 559  * ensure that the dirty state does not change must hold the itxg_lock for
 560  * the specified txg. Holding the lock will ensure that the zil cannot be
 561  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
 562  * state.
 563  */
 564 boolean_t
 565 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
 566 {
 567         dsl_pool_t *dp = zilog->zl_dmu_pool;
 568 
 569         if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
 570                 return (B_TRUE);
 571         return (B_FALSE);
 572 }
 573 
 574 /*
 575  * Determine if the zil is dirty. The zil is considered dirty if it has
 576  * any pending itx records that have not been cleaned by zil_clean().
 577  */
 578 boolean_t
 579 zilog_is_dirty(zilog_t *zilog)
 580 {
 581         dsl_pool_t *dp = zilog->zl_dmu_pool;
 582 
 583         for (int t = 0; t < TXG_SIZE; t++) {
 584                 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
 585                         return (B_TRUE);
 586         }
 587         return (B_FALSE);
 588 }
 589 
 590 /*
 591  * Create an on-disk intent log.
 592  */
 593 static lwb_t *
 594 zil_create(zilog_t *zilog)
 595 {
 596         const zil_header_t *zh = zilog->zl_header;
 597         lwb_t *lwb = NULL;
 598         uint64_t txg = 0;
 599         dmu_tx_t *tx = NULL;
 600         blkptr_t blk;
 601         int error = 0;
 602         boolean_t slog = FALSE;
 603 
 604         /*
 605          * Wait for any previous destroy to complete.
 606          */
 607         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 608 
 609         ASSERT(zh->zh_claim_txg == 0);
 610         ASSERT(zh->zh_replay_seq == 0);
 611 
 612         blk = zh->zh_log;
 613 
 614         /*
 615          * Allocate an initial log block if:
 616          *    - there isn't one already
 617          *    - the existing block is the wrong endianess
 618          */
 619         if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
 620                 tx = dmu_tx_create(zilog->zl_os);
 621                 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 622                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 623                 txg = dmu_tx_get_txg(tx);
 624 
 625                 if (!BP_IS_HOLE(&blk)) {
 626                         zio_free_zil(zilog->zl_spa, txg, &blk);
 627                         BP_ZERO(&blk);
 628                 }
 629 
 630                 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
 631                     ZIL_MIN_BLKSZ, &slog);
 632 
 633                 if (error == 0)
 634                         zil_init_log_chain(zilog, &blk);
 635         }
 636 
 637         /*
 638          * Allocate a log write block (lwb) for the first log block.
 639          */
 640         if (error == 0)
 641                 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
 642 
 643         /*
 644          * If we just allocated the first log block, commit our transaction
 645          * and wait for zil_sync() to stuff the block poiner into zh_log.
 646          * (zh is part of the MOS, so we cannot modify it in open context.)
 647          */
 648         if (tx != NULL) {
 649                 dmu_tx_commit(tx);
 650                 txg_wait_synced(zilog->zl_dmu_pool, txg);
 651         }
 652 
 653         ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
 654 
 655         return (lwb);
 656 }
 657 
 658 /*
 659  * In one tx, free all log blocks and clear the log header. If keep_first
 660  * is set, then we're replaying a log with no content. We want to keep the
 661  * first block, however, so that the first synchronous transaction doesn't
 662  * require a txg_wait_synced() in zil_create(). We don't need to
 663  * txg_wait_synced() here either when keep_first is set, because both
 664  * zil_create() and zil_destroy() will wait for any in-progress destroys
 665  * to complete.
 666  */
 667 void
 668 zil_destroy(zilog_t *zilog, boolean_t keep_first)
 669 {
 670         const zil_header_t *zh = zilog->zl_header;
 671         lwb_t *lwb;
 672         dmu_tx_t *tx;
 673         uint64_t txg;
 674 
 675         /*
 676          * Wait for any previous destroy to complete.
 677          */
 678         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 679 
 680         zilog->zl_old_header = *zh;          /* debugging aid */
 681 
 682         if (BP_IS_HOLE(&zh->zh_log))
 683                 return;
 684 
 685         tx = dmu_tx_create(zilog->zl_os);
 686         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 687         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 688         txg = dmu_tx_get_txg(tx);
 689 
 690         mutex_enter(&zilog->zl_lock);
 691 
 692         ASSERT3U(zilog->zl_destroy_txg, <, txg);
 693         zilog->zl_destroy_txg = txg;
 694         zilog->zl_keep_first = keep_first;
 695 
 696         if (!list_is_empty(&zilog->zl_lwb_list)) {
 697                 ASSERT(zh->zh_claim_txg == 0);
 698                 VERIFY(!keep_first);
 699                 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
 700                         list_remove(&zilog->zl_lwb_list, lwb);
 701                         if (lwb->lwb_buf != NULL)
 702                                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 703                         zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
 704                         zil_free_lwb(zilog, lwb);
 705                 }
 706         } else if (!keep_first) {
 707                 zil_destroy_sync(zilog, tx);
 708         }
 709         mutex_exit(&zilog->zl_lock);
 710 
 711         dmu_tx_commit(tx);
 712 }
 713 
 714 void
 715 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
 716 {
 717         ASSERT(list_is_empty(&zilog->zl_lwb_list));
 718         (void) zil_parse(zilog, zil_free_log_block,
 719             zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
 720 }
 721 
 722 int
 723 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
 724 {
 725         dmu_tx_t *tx = txarg;
 726         uint64_t first_txg = dmu_tx_get_txg(tx);
 727         zilog_t *zilog;
 728         zil_header_t *zh;
 729         objset_t *os;
 730         int error;
 731 
 732         error = dmu_objset_own_obj(dp, ds->ds_object,
 733             DMU_OST_ANY, B_FALSE, FTAG, &os);
 734         if (error != 0) {
 735                 /*
 736                  * EBUSY indicates that the objset is inconsistent, in which
 737                  * case it can not have a ZIL.
 738                  */
 739                 if (error != EBUSY) {
 740                         cmn_err(CE_WARN, "can't open objset for %llu, error %u",
 741                             (unsigned long long)ds->ds_object, error);
 742                 }
 743                 return (0);
 744         }
 745 
 746         zilog = dmu_objset_zil(os);
 747         zh = zil_header_in_syncing_context(zilog);
 748 
 749         if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
 750                 if (!BP_IS_HOLE(&zh->zh_log))
 751                         zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
 752                 BP_ZERO(&zh->zh_log);
 753                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 754                 dmu_objset_disown(os, FTAG);
 755                 return (0);
 756         }
 757 
 758         /*
 759          * Claim all log blocks if we haven't already done so, and remember
 760          * the highest claimed sequence number.  This ensures that if we can
 761          * read only part of the log now (e.g. due to a missing device),
 762          * but we can read the entire log later, we will not try to replay
 763          * or destroy beyond the last block we successfully claimed.
 764          */
 765         ASSERT3U(zh->zh_claim_txg, <=, first_txg);
 766         if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
 767                 (void) zil_parse(zilog, zil_claim_log_block,
 768                     zil_claim_log_record, tx, first_txg);
 769                 zh->zh_claim_txg = first_txg;
 770                 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
 771                 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
 772                 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
 773                         zh->zh_flags |= ZIL_REPLAY_NEEDED;
 774                 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
 775                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 776         }
 777 
 778         ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
 779         dmu_objset_disown(os, FTAG);
 780         return (0);
 781 }
 782 
 783 /*
 784  * Check the log by walking the log chain.
 785  * Checksum errors are ok as they indicate the end of the chain.
 786  * Any other error (no device or read failure) returns an error.
 787  */
 788 /* ARGSUSED */
 789 int
 790 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
 791 {
 792         zilog_t *zilog;
 793         objset_t *os;
 794         blkptr_t *bp;
 795         int error;
 796 
 797         ASSERT(tx == NULL);
 798 
 799         error = dmu_objset_from_ds(ds, &os);
 800         if (error != 0) {
 801                 cmn_err(CE_WARN, "can't open objset %llu, error %d",
 802                     (unsigned long long)ds->ds_object, error);
 803                 return (0);
 804         }
 805 
 806         zilog = dmu_objset_zil(os);
 807         bp = (blkptr_t *)&zilog->zl_header->zh_log;
 808 
 809         /*
 810          * Check the first block and determine if it's on a log device
 811          * which may have been removed or faulted prior to loading this
 812          * pool.  If so, there's no point in checking the rest of the log
 813          * as its content should have already been synced to the pool.
 814          */
 815         if (!BP_IS_HOLE(bp)) {
 816                 vdev_t *vd;
 817                 boolean_t valid = B_TRUE;
 818 
 819                 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
 820                 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
 821                 if (vd->vdev_islog && vdev_is_dead(vd))
 822                         valid = vdev_log_state_valid(vd);
 823                 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
 824 
 825                 if (!valid)
 826                         return (0);
 827         }
 828 
 829         /*
 830          * Because tx == NULL, zil_claim_log_block() will not actually claim
 831          * any blocks, but just determine whether it is possible to do so.
 832          * In addition to checking the log chain, zil_claim_log_block()
 833          * will invoke zio_claim() with a done func of spa_claim_notify(),
 834          * which will update spa_max_claim_txg.  See spa_load() for details.
 835          */
 836         error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
 837             zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
 838 
 839         return ((error == ECKSUM || error == ENOENT) ? 0 : error);
 840 }
 841 
 842 /*
 843  * When an itx is "skipped", this function is used to properly mark the
 844  * waiter as "done, and signal any thread(s) waiting on it. An itx can
 845  * be skipped (and not committed to an lwb) for a variety of reasons,
 846  * one of them being that the itx was committed via spa_sync(), prior to
 847  * it being committed to an lwb; this can happen if a thread calling
 848  * zil_commit() is racing with spa_sync().
 849  */
 850 static void
 851 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
 852 {
 853         mutex_enter(&zcw->zcw_lock);
 854         ASSERT3B(zcw->zcw_done, ==, B_FALSE);
 855         zcw->zcw_done = B_TRUE;
 856         cv_broadcast(&zcw->zcw_cv);
 857         mutex_exit(&zcw->zcw_lock);
 858 }
 859 
 860 /*
 861  * This function is used when the given waiter is to be linked into an
 862  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
 863  * At this point, the waiter will no longer be referenced by the itx,
 864  * and instead, will be referenced by the lwb.
 865  */
 866 static void
 867 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
 868 {
 869         /*
 870          * The lwb_waiters field of the lwb is protected by the zilog's
 871          * zl_lock, thus it must be held when calling this function.
 872          */
 873         ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
 874 
 875         mutex_enter(&zcw->zcw_lock);
 876         ASSERT(!list_link_active(&zcw->zcw_node));
 877         ASSERT3P(zcw->zcw_lwb, ==, NULL);
 878         ASSERT3P(lwb, !=, NULL);
 879         ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
 880             lwb->lwb_state == LWB_STATE_ISSUED ||
 881             lwb->lwb_state == LWB_STATE_WRITE_DONE);
 882 
 883         list_insert_tail(&lwb->lwb_waiters, zcw);
 884         zcw->zcw_lwb = lwb;
 885         mutex_exit(&zcw->zcw_lock);
 886 }
 887 
 888 /*
 889  * This function is used when zio_alloc_zil() fails to allocate a ZIL
 890  * block, and the given waiter must be linked to the "nolwb waiters"
 891  * list inside of zil_process_commit_list().
 892  */
 893 static void
 894 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
 895 {
 896         mutex_enter(&zcw->zcw_lock);
 897         ASSERT(!list_link_active(&zcw->zcw_node));
 898         ASSERT3P(zcw->zcw_lwb, ==, NULL);
 899         list_insert_tail(nolwb, zcw);
 900         mutex_exit(&zcw->zcw_lock);
 901 }
 902 
 903 void
 904 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
 905 {
 906         avl_tree_t *t = &lwb->lwb_vdev_tree;
 907         avl_index_t where;
 908         zil_vdev_node_t *zv, zvsearch;
 909         int ndvas = BP_GET_NDVAS(bp);
 910         int i;
 911 
 912         if (zfs_nocacheflush)
 913                 return;
 914 
 915         mutex_enter(&lwb->lwb_vdev_lock);
 916         for (i = 0; i < ndvas; i++) {
 917                 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
 918                 if (avl_find(t, &zvsearch, &where) == NULL) {
 919                         zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
 920                         zv->zv_vdev = zvsearch.zv_vdev;
 921                         avl_insert(t, zv, where);
 922                 }
 923         }
 924         mutex_exit(&lwb->lwb_vdev_lock);
 925 }
 926 
 927 static void
 928 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
 929 {
 930         avl_tree_t *src = &lwb->lwb_vdev_tree;
 931         avl_tree_t *dst = &nlwb->lwb_vdev_tree;
 932         void *cookie = NULL;
 933         zil_vdev_node_t *zv;
 934 
 935         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
 936         ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
 937         ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
 938 
 939         /*
 940          * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
 941          * not need the protection of lwb_vdev_lock (it will only be modified
 942          * while holding zilog->zl_lock) as its writes and those of its
 943          * children have all completed.  The younger 'nlwb' may be waiting on
 944          * future writes to additional vdevs.
 945          */
 946         mutex_enter(&nlwb->lwb_vdev_lock);
 947         /*
 948          * Tear down the 'lwb' vdev tree, ensuring that entries which do not
 949          * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
 950          */
 951         while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
 952                 avl_index_t where;
 953 
 954                 if (avl_find(dst, zv, &where) == NULL) {
 955                         avl_insert(dst, zv, where);
 956                 } else {
 957                         kmem_free(zv, sizeof (*zv));
 958                 }
 959         }
 960         mutex_exit(&nlwb->lwb_vdev_lock);
 961 }
 962 
 963 void
 964 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
 965 {
 966         lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
 967 }
 968 
 969 /*
 970  * This function is a called after all vdevs associated with a given lwb
 971  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
 972  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
 973  * all "previous" lwb's will have completed before this function is
 974  * called; i.e. this function is called for all previous lwbs before
 975  * it's called for "this" lwb (enforced via zio the dependencies
 976  * configured in zil_lwb_set_zio_dependency()).
 977  *
 978  * The intention is for this function to be called as soon as the
 979  * contents of an lwb are considered "stable" on disk, and will survive
 980  * any sudden loss of power. At this point, any threads waiting for the
 981  * lwb to reach this state are signalled, and the "waiter" structures
 982  * are marked "done".
 983  */
 984 static void
 985 zil_lwb_flush_vdevs_done(zio_t *zio)
 986 {
 987         lwb_t *lwb = zio->io_private;
 988         zilog_t *zilog = lwb->lwb_zilog;
 989         dmu_tx_t *tx = lwb->lwb_tx;
 990         zil_commit_waiter_t *zcw;
 991 
 992         spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
 993 
 994         zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 995 
 996         mutex_enter(&zilog->zl_lock);
 997 
 998         /*
 999          * Ensure the lwb buffer pointer is cleared before releasing the
1000          * txg. If we have had an allocation failure and the txg is
1001          * waiting to sync then we want zil_sync() to remove the lwb so
1002          * that it's not picked up as the next new one in
1003          * zil_process_commit_list(). zil_sync() will only remove the
1004          * lwb if lwb_buf is null.
1005          */
1006         lwb->lwb_buf = NULL;
1007         lwb->lwb_tx = NULL;
1008 
1009         ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1010         zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1011 
1012         lwb->lwb_root_zio = NULL;
1013 
1014         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1015         lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1016 
1017         if (zilog->zl_last_lwb_opened == lwb) {
1018                 /*
1019                  * Remember the highest committed log sequence number
1020                  * for ztest. We only update this value when all the log
1021                  * writes succeeded, because ztest wants to ASSERT that
1022                  * it got the whole log chain.
1023                  */
1024                 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1025         }
1026 
1027         while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1028                 mutex_enter(&zcw->zcw_lock);
1029 
1030                 ASSERT(list_link_active(&zcw->zcw_node));
1031                 list_remove(&lwb->lwb_waiters, zcw);
1032 
1033                 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1034                 zcw->zcw_lwb = NULL;
1035 
1036                 zcw->zcw_zio_error = zio->io_error;
1037 
1038                 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1039                 zcw->zcw_done = B_TRUE;
1040                 cv_broadcast(&zcw->zcw_cv);
1041 
1042                 mutex_exit(&zcw->zcw_lock);
1043         }
1044 
1045         mutex_exit(&zilog->zl_lock);
1046 
1047         /*
1048          * Now that we've written this log block, we have a stable pointer
1049          * to the next block in the chain, so it's OK to let the txg in
1050          * which we allocated the next block sync.
1051          */
1052         dmu_tx_commit(tx);
1053 }
1054 
1055 /*
1056  * This is called when an lwb's write zio completes. The callback's
1057  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1058  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1059  * in writing out this specific lwb's data, and in the case that cache
1060  * flushes have been deferred, vdevs involved in writing the data for
1061  * previous lwbs. The writes corresponding to all the vdevs in the
1062  * lwb_vdev_tree will have completed by the time this is called, due to
1063  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1064  * which takes deferred flushes into account. The lwb will be "done"
1065  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1066  * completion callback for the lwb's root zio.
1067  */
1068 static void
1069 zil_lwb_write_done(zio_t *zio)
1070 {
1071         lwb_t *lwb = zio->io_private;
1072         spa_t *spa = zio->io_spa;
1073         zilog_t *zilog = lwb->lwb_zilog;
1074         avl_tree_t *t = &lwb->lwb_vdev_tree;
1075         void *cookie = NULL;
1076         zil_vdev_node_t *zv;
1077         lwb_t *nlwb;
1078 
1079         ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1080 
1081         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1082         ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1083         ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1084         ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1085         ASSERT(!BP_IS_GANG(zio->io_bp));
1086         ASSERT(!BP_IS_HOLE(zio->io_bp));
1087         ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1088 
1089         abd_put(zio->io_abd);
1090 
1091         mutex_enter(&zilog->zl_lock);
1092         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1093         lwb->lwb_state = LWB_STATE_WRITE_DONE;
1094         lwb->lwb_write_zio = NULL;
1095         nlwb = list_next(&zilog->zl_lwb_list, lwb);
1096         mutex_exit(&zilog->zl_lock);
1097 
1098         if (avl_numnodes(t) == 0)
1099                 return;
1100 
1101         /*
1102          * If there was an IO error, we're not going to call zio_flush()
1103          * on these vdevs, so we simply empty the tree and free the
1104          * nodes. We avoid calling zio_flush() since there isn't any
1105          * good reason for doing so, after the lwb block failed to be
1106          * written out.
1107          */
1108         if (zio->io_error != 0) {
1109                 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1110                         kmem_free(zv, sizeof (*zv));
1111                 return;
1112         }
1113 
1114         /*
1115          * If this lwb does not have any threads waiting for it to
1116          * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1117          * command to the vdevs written to by "this" lwb, and instead
1118          * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1119          * command for those vdevs. Thus, we merge the vdev tree of
1120          * "this" lwb with the vdev tree of the "next" lwb in the list,
1121          * and assume the "next" lwb will handle flushing the vdevs (or
1122          * deferring the flush(s) again).
1123          *
1124          * This is a useful performance optimization, especially for
1125          * workloads with lots of async write activity and few sync
1126          * write and/or fsync activity, as it has the potential to
1127          * coalesce multiple flush commands to a vdev into one.
1128          */
1129         if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1130                 zil_lwb_flush_defer(lwb, nlwb);
1131                 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1132                 return;
1133         }
1134 
1135         while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1136                 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1137                 if (vd != NULL)
1138                         zio_flush(lwb->lwb_root_zio, vd);
1139                 kmem_free(zv, sizeof (*zv));
1140         }
1141 }
1142 
1143 static void
1144 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1145 {
1146         lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1147 
1148         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1149         ASSERT(MUTEX_HELD(&zilog->zl_lock));
1150 
1151         /*
1152          * The zilog's "zl_last_lwb_opened" field is used to build the
1153          * lwb/zio dependency chain, which is used to preserve the
1154          * ordering of lwb completions that is required by the semantics
1155          * of the ZIL. Each new lwb zio becomes a parent of the
1156          * "previous" lwb zio, such that the new lwb's zio cannot
1157          * complete until the "previous" lwb's zio completes.
1158          *
1159          * This is required by the semantics of zil_commit(); the commit
1160          * waiters attached to the lwbs will be woken in the lwb zio's
1161          * completion callback, so this zio dependency graph ensures the
1162          * waiters are woken in the correct order (the same order the
1163          * lwbs were created).
1164          */
1165         if (last_lwb_opened != NULL &&
1166             last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1167                 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1168                     last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1169                     last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1170 
1171                 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1172                 zio_add_child(lwb->lwb_root_zio,
1173                     last_lwb_opened->lwb_root_zio);
1174 
1175                 /*
1176                  * If the previous lwb's write hasn't already completed,
1177                  * we also want to order the completion of the lwb write
1178                  * zios (above, we only order the completion of the lwb
1179                  * root zios). This is required because of how we can
1180                  * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1181                  *
1182                  * When the DKIOCFLUSHWRITECACHE commands are defered,
1183                  * the previous lwb will rely on this lwb to flush the
1184                  * vdevs written to by that previous lwb. Thus, we need
1185                  * to ensure this lwb doesn't issue the flush until
1186                  * after the previous lwb's write completes. We ensure
1187                  * this ordering by setting the zio parent/child
1188                  * relationship here.
1189                  *
1190                  * Without this relationship on the lwb's write zio,
1191                  * it's possible for this lwb's write to complete prior
1192                  * to the previous lwb's write completing; and thus, the
1193                  * vdevs for the previous lwb would be flushed prior to
1194                  * that lwb's data being written to those vdevs (the
1195                  * vdevs are flushed in the lwb write zio's completion
1196                  * handler, zil_lwb_write_done()).
1197                  */
1198                 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1199                         ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1200                             last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1201 
1202                         ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1203                         zio_add_child(lwb->lwb_write_zio,
1204                             last_lwb_opened->lwb_write_zio);
1205                 }
1206         }
1207 }
1208 
1209 
1210 /*
1211  * This function's purpose is to "open" an lwb such that it is ready to
1212  * accept new itxs being committed to it. To do this, the lwb's zio
1213  * structures are created, and linked to the lwb. This function is
1214  * idempotent; if the passed in lwb has already been opened, this
1215  * function is essentially a no-op.
1216  */
1217 static void
1218 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1219 {
1220         zbookmark_phys_t zb;
1221         zio_priority_t prio;
1222 
1223         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1224         ASSERT3P(lwb, !=, NULL);
1225         EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1226         EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1227 
1228         SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1229             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1230             lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1231 
1232         if (lwb->lwb_root_zio == NULL) {
1233                 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1234                     BP_GET_LSIZE(&lwb->lwb_blk));
1235 
1236                 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1237                         prio = ZIO_PRIORITY_SYNC_WRITE;
1238                 else
1239                         prio = ZIO_PRIORITY_ASYNC_WRITE;
1240 
1241                 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1242                     zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1243                 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1244 
1245                 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1246                     zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1247                     BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1248                     prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1249                 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1250 
1251                 lwb->lwb_state = LWB_STATE_OPENED;
1252 
1253                 mutex_enter(&zilog->zl_lock);
1254                 zil_lwb_set_zio_dependency(zilog, lwb);
1255                 zilog->zl_last_lwb_opened = lwb;
1256                 mutex_exit(&zilog->zl_lock);
1257         }
1258 
1259         ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1260         ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1261         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1262 }
1263 
1264 /*
1265  * Define a limited set of intent log block sizes.
1266  *
1267  * These must be a multiple of 4KB. Note only the amount used (again
1268  * aligned to 4KB) actually gets written. However, we can't always just
1269  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1270  */
1271 uint64_t zil_block_buckets[] = {
1272     4096,               /* non TX_WRITE */
1273     8192+4096,          /* data base */
1274     32*1024 + 4096,     /* NFS writes */
1275     UINT64_MAX
1276 };
1277 
1278 /*
1279  * Start a log block write and advance to the next log block.
1280  * Calls are serialized.
1281  */
1282 static lwb_t *
1283 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1284 {
1285         lwb_t *nlwb = NULL;
1286         zil_chain_t *zilc;
1287         spa_t *spa = zilog->zl_spa;
1288         blkptr_t *bp;
1289         dmu_tx_t *tx;
1290         uint64_t txg;
1291         uint64_t zil_blksz, wsz;
1292         int i, error;
1293         boolean_t slog;
1294 
1295         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1296         ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1297         ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1298         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1299 
1300         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1301                 zilc = (zil_chain_t *)lwb->lwb_buf;
1302                 bp = &zilc->zc_next_blk;
1303         } else {
1304                 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1305                 bp = &zilc->zc_next_blk;
1306         }
1307 
1308         ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1309 
1310         /*
1311          * Allocate the next block and save its address in this block
1312          * before writing it in order to establish the log chain.
1313          * Note that if the allocation of nlwb synced before we wrote
1314          * the block that points at it (lwb), we'd leak it if we crashed.
1315          * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1316          * We dirty the dataset to ensure that zil_sync() will be called
1317          * to clean up in the event of allocation failure or I/O failure.
1318          */
1319 
1320         tx = dmu_tx_create(zilog->zl_os);
1321 
1322         /*
1323          * Since we are not going to create any new dirty data and we can even
1324          * help with clearing the existing dirty data, we should not be subject
1325          * to the dirty data based delays.
1326          * We (ab)use TXG_WAITED to bypass the delay mechanism.
1327          * One side effect from using TXG_WAITED is that dmu_tx_assign() can
1328          * fail if the pool is suspended.  Those are dramatic circumstances,
1329          * so we return NULL to signal that the normal ZIL processing is not
1330          * possible and txg_wait_synced() should be used to ensure that the data
1331          * is on disk.
1332          */
1333         error = dmu_tx_assign(tx, TXG_WAITED);
1334         if (error != 0) {
1335                 ASSERT3S(error, ==, EIO);
1336                 dmu_tx_abort(tx);
1337                 return (NULL);
1338         }
1339         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1340         txg = dmu_tx_get_txg(tx);
1341 
1342         lwb->lwb_tx = tx;
1343 
1344         /*
1345          * Log blocks are pre-allocated. Here we select the size of the next
1346          * block, based on size used in the last block.
1347          * - first find the smallest bucket that will fit the block from a
1348          *   limited set of block sizes. This is because it's faster to write
1349          *   blocks allocated from the same metaslab as they are adjacent or
1350          *   close.
1351          * - next find the maximum from the new suggested size and an array of
1352          *   previous sizes. This lessens a picket fence effect of wrongly
1353          *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1354          *   requests.
1355          *
1356          * Note we only write what is used, but we can't just allocate
1357          * the maximum block size because we can exhaust the available
1358          * pool log space.
1359          */
1360         zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1361         for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1362                 continue;
1363         zil_blksz = zil_block_buckets[i];
1364         if (zil_blksz == UINT64_MAX)
1365                 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1366         zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1367         for (i = 0; i < ZIL_PREV_BLKS; i++)
1368                 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1369         zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1370 
1371         BP_ZERO(bp);
1372 
1373         /* pass the old blkptr in order to spread log blocks across devs */
1374         error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1375         if (error == 0) {
1376                 ASSERT3U(bp->blk_birth, ==, txg);
1377                 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1378                 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1379 
1380                 /*
1381                  * Allocate a new log write block (lwb).
1382                  */
1383                 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1384         }
1385 
1386         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1387                 /* For Slim ZIL only write what is used. */
1388                 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1389                 ASSERT3U(wsz, <=, lwb->lwb_sz);
1390                 zio_shrink(lwb->lwb_write_zio, wsz);
1391 
1392         } else {
1393                 wsz = lwb->lwb_sz;
1394         }
1395 
1396         zilc->zc_pad = 0;
1397         zilc->zc_nused = lwb->lwb_nused;
1398         zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1399 
1400         /*
1401          * clear unused data for security
1402          */
1403         bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1404 
1405         spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1406 
1407         zil_lwb_add_block(lwb, &lwb->lwb_blk);
1408         lwb->lwb_issued_timestamp = gethrtime();
1409         lwb->lwb_state = LWB_STATE_ISSUED;
1410 
1411         zio_nowait(lwb->lwb_root_zio);
1412         zio_nowait(lwb->lwb_write_zio);
1413 
1414         /*
1415          * If there was an allocation failure then nlwb will be null which
1416          * forces a txg_wait_synced().
1417          */
1418         return (nlwb);
1419 }
1420 
1421 static lwb_t *
1422 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1423 {
1424         lr_t *lrcb, *lrc;
1425         lr_write_t *lrwb, *lrw;
1426         char *lr_buf;
1427         uint64_t dlen, dnow, lwb_sp, reclen, txg;
1428 
1429         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1430         ASSERT3P(lwb, !=, NULL);
1431         ASSERT3P(lwb->lwb_buf, !=, NULL);
1432 
1433         zil_lwb_write_open(zilog, lwb);
1434 
1435         lrc = &itx->itx_lr;
1436         lrw = (lr_write_t *)lrc;
1437 
1438         /*
1439          * A commit itx doesn't represent any on-disk state; instead
1440          * it's simply used as a place holder on the commit list, and
1441          * provides a mechanism for attaching a "commit waiter" onto the
1442          * correct lwb (such that the waiter can be signalled upon
1443          * completion of that lwb). Thus, we don't process this itx's
1444          * log record if it's a commit itx (these itx's don't have log
1445          * records), and instead link the itx's waiter onto the lwb's
1446          * list of waiters.
1447          *
1448          * For more details, see the comment above zil_commit().
1449          */
1450         if (lrc->lrc_txtype == TX_COMMIT) {
1451                 mutex_enter(&zilog->zl_lock);
1452                 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1453                 itx->itx_private = NULL;
1454                 mutex_exit(&zilog->zl_lock);
1455                 return (lwb);
1456         }
1457 
1458         if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1459                 dlen = P2ROUNDUP_TYPED(
1460                     lrw->lr_length, sizeof (uint64_t), uint64_t);
1461         } else {
1462                 dlen = 0;
1463         }
1464         reclen = lrc->lrc_reclen;
1465         zilog->zl_cur_used += (reclen + dlen);
1466         txg = lrc->lrc_txg;
1467 
1468         ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1469 
1470 cont:
1471         /*
1472          * If this record won't fit in the current log block, start a new one.
1473          * For WR_NEED_COPY optimize layout for minimal number of chunks.
1474          */
1475         lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1476         if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1477             lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1478             lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1479                 lwb = zil_lwb_write_issue(zilog, lwb);
1480                 if (lwb == NULL)
1481                         return (NULL);
1482                 zil_lwb_write_open(zilog, lwb);
1483                 ASSERT(LWB_EMPTY(lwb));
1484                 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1485                 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1486         }
1487 
1488         dnow = MIN(dlen, lwb_sp - reclen);
1489         lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1490         bcopy(lrc, lr_buf, reclen);
1491         lrcb = (lr_t *)lr_buf;          /* Like lrc, but inside lwb. */
1492         lrwb = (lr_write_t *)lrcb;      /* Like lrw, but inside lwb. */
1493 
1494         /*
1495          * If it's a write, fetch the data or get its blkptr as appropriate.
1496          */
1497         if (lrc->lrc_txtype == TX_WRITE) {
1498                 if (txg > spa_freeze_txg(zilog->zl_spa))
1499                         txg_wait_synced(zilog->zl_dmu_pool, txg);
1500                 if (itx->itx_wr_state != WR_COPIED) {
1501                         char *dbuf;
1502                         int error;
1503 
1504                         if (itx->itx_wr_state == WR_NEED_COPY) {
1505                                 dbuf = lr_buf + reclen;
1506                                 lrcb->lrc_reclen += dnow;
1507                                 if (lrwb->lr_length > dnow)
1508                                         lrwb->lr_length = dnow;
1509                                 lrw->lr_offset += dnow;
1510                                 lrw->lr_length -= dnow;
1511                         } else {
1512                                 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1513                                 dbuf = NULL;
1514                         }
1515 
1516                         /*
1517                          * We pass in the "lwb_write_zio" rather than
1518                          * "lwb_root_zio" so that the "lwb_write_zio"
1519                          * becomes the parent of any zio's created by
1520                          * the "zl_get_data" callback. The vdevs are
1521                          * flushed after the "lwb_write_zio" completes,
1522                          * so we want to make sure that completion
1523                          * callback waits for these additional zio's,
1524                          * such that the vdevs used by those zio's will
1525                          * be included in the lwb's vdev tree, and those
1526                          * vdevs will be properly flushed. If we passed
1527                          * in "lwb_root_zio" here, then these additional
1528                          * vdevs may not be flushed; e.g. if these zio's
1529                          * completed after "lwb_write_zio" completed.
1530                          */
1531                         error = zilog->zl_get_data(itx->itx_private,
1532                             lrwb, dbuf, lwb, lwb->lwb_write_zio);
1533 
1534                         if (error == EIO) {
1535                                 txg_wait_synced(zilog->zl_dmu_pool, txg);
1536                                 return (lwb);
1537                         }
1538                         if (error != 0) {
1539                                 ASSERT(error == ENOENT || error == EEXIST ||
1540                                     error == EALREADY);
1541                                 return (lwb);
1542                         }
1543                 }
1544         }
1545 
1546         /*
1547          * We're actually making an entry, so update lrc_seq to be the
1548          * log record sequence number.  Note that this is generally not
1549          * equal to the itx sequence number because not all transactions
1550          * are synchronous, and sometimes spa_sync() gets there first.
1551          */
1552         lrcb->lrc_seq = ++zilog->zl_lr_seq;
1553         lwb->lwb_nused += reclen + dnow;
1554 
1555         zil_lwb_add_txg(lwb, txg);
1556 
1557         ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1558         ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1559 
1560         dlen -= dnow;
1561         if (dlen > 0) {
1562                 zilog->zl_cur_used += reclen;
1563                 goto cont;
1564         }
1565 
1566         return (lwb);
1567 }
1568 
1569 itx_t *
1570 zil_itx_create(uint64_t txtype, size_t lrsize)
1571 {
1572         itx_t *itx;
1573 
1574         lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1575 
1576         itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1577         itx->itx_lr.lrc_txtype = txtype;
1578         itx->itx_lr.lrc_reclen = lrsize;
1579         itx->itx_lr.lrc_seq = 0;     /* defensive */
1580         itx->itx_sync = B_TRUE;              /* default is synchronous */
1581 
1582         return (itx);
1583 }
1584 
1585 void
1586 zil_itx_destroy(itx_t *itx)
1587 {
1588         kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1589 }
1590 
1591 /*
1592  * Free up the sync and async itxs. The itxs_t has already been detached
1593  * so no locks are needed.
1594  */
1595 static void
1596 zil_itxg_clean(itxs_t *itxs)
1597 {
1598         itx_t *itx;
1599         list_t *list;
1600         avl_tree_t *t;
1601         void *cookie;
1602         itx_async_node_t *ian;
1603 
1604         list = &itxs->i_sync_list;
1605         while ((itx = list_head(list)) != NULL) {
1606                 /*
1607                  * In the general case, commit itxs will not be found
1608                  * here, as they'll be committed to an lwb via
1609                  * zil_lwb_commit(), and free'd in that function. Having
1610                  * said that, it is still possible for commit itxs to be
1611                  * found here, due to the following race:
1612                  *
1613                  *      - a thread calls zil_commit() which assigns the
1614                  *        commit itx to a per-txg i_sync_list
1615                  *      - zil_itxg_clean() is called (e.g. via spa_sync())
1616                  *        while the waiter is still on the i_sync_list
1617                  *
1618                  * There's nothing to prevent syncing the txg while the
1619                  * waiter is on the i_sync_list. This normally doesn't
1620                  * happen because spa_sync() is slower than zil_commit(),
1621                  * but if zil_commit() calls txg_wait_synced() (e.g.
1622                  * because zil_create() or zil_commit_writer_stall() is
1623                  * called) we will hit this case.
1624                  */
1625                 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1626                         zil_commit_waiter_skip(itx->itx_private);
1627 
1628                 list_remove(list, itx);
1629                 zil_itx_destroy(itx);
1630         }
1631 
1632         cookie = NULL;
1633         t = &itxs->i_async_tree;
1634         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1635                 list = &ian->ia_list;
1636                 while ((itx = list_head(list)) != NULL) {
1637                         list_remove(list, itx);
1638                         /* commit itxs should never be on the async lists. */
1639                         ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1640                         zil_itx_destroy(itx);
1641                 }
1642                 list_destroy(list);
1643                 kmem_free(ian, sizeof (itx_async_node_t));
1644         }
1645         avl_destroy(t);
1646 
1647         kmem_free(itxs, sizeof (itxs_t));
1648 }
1649 
1650 static int
1651 zil_aitx_compare(const void *x1, const void *x2)
1652 {
1653         const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1654         const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1655 
1656         if (o1 < o2)
1657                 return (-1);
1658         if (o1 > o2)
1659                 return (1);
1660 
1661         return (0);
1662 }
1663 
1664 /*
1665  * Remove all async itx with the given oid.
1666  */
1667 static void
1668 zil_remove_async(zilog_t *zilog, uint64_t oid)
1669 {
1670         uint64_t otxg, txg;
1671         itx_async_node_t *ian;
1672         avl_tree_t *t;
1673         avl_index_t where;
1674         list_t clean_list;
1675         itx_t *itx;
1676 
1677         ASSERT(oid != 0);
1678         list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1679 
1680         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1681                 otxg = ZILTEST_TXG;
1682         else
1683                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1684 
1685         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1686                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1687 
1688                 mutex_enter(&itxg->itxg_lock);
1689                 if (itxg->itxg_txg != txg) {
1690                         mutex_exit(&itxg->itxg_lock);
1691                         continue;
1692                 }
1693 
1694                 /*
1695                  * Locate the object node and append its list.
1696                  */
1697                 t = &itxg->itxg_itxs->i_async_tree;
1698                 ian = avl_find(t, &oid, &where);
1699                 if (ian != NULL)
1700                         list_move_tail(&clean_list, &ian->ia_list);
1701                 mutex_exit(&itxg->itxg_lock);
1702         }
1703         while ((itx = list_head(&clean_list)) != NULL) {
1704                 list_remove(&clean_list, itx);
1705                 /* commit itxs should never be on the async lists. */
1706                 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1707                 zil_itx_destroy(itx);
1708         }
1709         list_destroy(&clean_list);
1710 }
1711 
1712 void
1713 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1714 {
1715         uint64_t txg;
1716         itxg_t *itxg;
1717         itxs_t *itxs, *clean = NULL;
1718 
1719         /*
1720          * Object ids can be re-instantiated in the next txg so
1721          * remove any async transactions to avoid future leaks.
1722          * This can happen if a fsync occurs on the re-instantiated
1723          * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1724          * the new file data and flushes a write record for the old object.
1725          */
1726         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1727                 zil_remove_async(zilog, itx->itx_oid);
1728 
1729         /*
1730          * Ensure the data of a renamed file is committed before the rename.
1731          */
1732         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1733                 zil_async_to_sync(zilog, itx->itx_oid);
1734 
1735         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1736                 txg = ZILTEST_TXG;
1737         else
1738                 txg = dmu_tx_get_txg(tx);
1739 
1740         itxg = &zilog->zl_itxg[txg & TXG_MASK];
1741         mutex_enter(&itxg->itxg_lock);
1742         itxs = itxg->itxg_itxs;
1743         if (itxg->itxg_txg != txg) {
1744                 if (itxs != NULL) {
1745                         /*
1746                          * The zil_clean callback hasn't got around to cleaning
1747                          * this itxg. Save the itxs for release below.
1748                          * This should be rare.
1749                          */
1750                         zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1751                             "txg %llu", itxg->itxg_txg);
1752                         clean = itxg->itxg_itxs;
1753                 }
1754                 itxg->itxg_txg = txg;
1755                 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1756 
1757                 list_create(&itxs->i_sync_list, sizeof (itx_t),
1758                     offsetof(itx_t, itx_node));
1759                 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1760                     sizeof (itx_async_node_t),
1761                     offsetof(itx_async_node_t, ia_node));
1762         }
1763         if (itx->itx_sync) {
1764                 list_insert_tail(&itxs->i_sync_list, itx);
1765         } else {
1766                 avl_tree_t *t = &itxs->i_async_tree;
1767                 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1768                 itx_async_node_t *ian;
1769                 avl_index_t where;
1770 
1771                 ian = avl_find(t, &foid, &where);
1772                 if (ian == NULL) {
1773                         ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1774                         list_create(&ian->ia_list, sizeof (itx_t),
1775                             offsetof(itx_t, itx_node));
1776                         ian->ia_foid = foid;
1777                         avl_insert(t, ian, where);
1778                 }
1779                 list_insert_tail(&ian->ia_list, itx);
1780         }
1781 
1782         itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1783 
1784         /*
1785          * We don't want to dirty the ZIL using ZILTEST_TXG, because
1786          * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1787          * need to be careful to always dirty the ZIL using the "real"
1788          * TXG (not itxg_txg) even when the SPA is frozen.
1789          */
1790         zilog_dirty(zilog, dmu_tx_get_txg(tx));
1791         mutex_exit(&itxg->itxg_lock);
1792 
1793         /* Release the old itxs now we've dropped the lock */
1794         if (clean != NULL)
1795                 zil_itxg_clean(clean);
1796 }
1797 
1798 /*
1799  * If there are any in-memory intent log transactions which have now been
1800  * synced then start up a taskq to free them. We should only do this after we
1801  * have written out the uberblocks (i.e. txg has been comitted) so that
1802  * don't inadvertently clean out in-memory log records that would be required
1803  * by zil_commit().
1804  */
1805 void
1806 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1807 {
1808         itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1809         itxs_t *clean_me;
1810 
1811         ASSERT3U(synced_txg, <, ZILTEST_TXG);
1812 
1813         mutex_enter(&itxg->itxg_lock);
1814         if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1815                 mutex_exit(&itxg->itxg_lock);
1816                 return;
1817         }
1818         ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1819         ASSERT3U(itxg->itxg_txg, !=, 0);
1820         clean_me = itxg->itxg_itxs;
1821         itxg->itxg_itxs = NULL;
1822         itxg->itxg_txg = 0;
1823         mutex_exit(&itxg->itxg_lock);
1824         /*
1825          * Preferably start a task queue to free up the old itxs but
1826          * if taskq_dispatch can't allocate resources to do that then
1827          * free it in-line. This should be rare. Note, using TQ_SLEEP
1828          * created a bad performance problem.
1829          */
1830         ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1831         ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1832         if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1833             (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1834                 zil_itxg_clean(clean_me);
1835 }
1836 
1837 /*
1838  * This function will traverse the queue of itxs that need to be
1839  * committed, and move them onto the ZIL's zl_itx_commit_list.
1840  */
1841 static void
1842 zil_get_commit_list(zilog_t *zilog)
1843 {
1844         uint64_t otxg, txg;
1845         list_t *commit_list = &zilog->zl_itx_commit_list;
1846 
1847         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1848 
1849         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1850                 otxg = ZILTEST_TXG;
1851         else
1852                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1853 
1854         /*
1855          * This is inherently racy, since there is nothing to prevent
1856          * the last synced txg from changing. That's okay since we'll
1857          * only commit things in the future.
1858          */
1859         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1860                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1861 
1862                 mutex_enter(&itxg->itxg_lock);
1863                 if (itxg->itxg_txg != txg) {
1864                         mutex_exit(&itxg->itxg_lock);
1865                         continue;
1866                 }
1867 
1868                 /*
1869                  * If we're adding itx records to the zl_itx_commit_list,
1870                  * then the zil better be dirty in this "txg". We can assert
1871                  * that here since we're holding the itxg_lock which will
1872                  * prevent spa_sync from cleaning it. Once we add the itxs
1873                  * to the zl_itx_commit_list we must commit it to disk even
1874                  * if it's unnecessary (i.e. the txg was synced).
1875                  */
1876                 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1877                     spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1878                 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1879 
1880                 mutex_exit(&itxg->itxg_lock);
1881         }
1882 }
1883 
1884 /*
1885  * Move the async itxs for a specified object to commit into sync lists.
1886  */
1887 static void
1888 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1889 {
1890         uint64_t otxg, txg;
1891         itx_async_node_t *ian;
1892         avl_tree_t *t;
1893         avl_index_t where;
1894 
1895         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1896                 otxg = ZILTEST_TXG;
1897         else
1898                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1899 
1900         /*
1901          * This is inherently racy, since there is nothing to prevent
1902          * the last synced txg from changing.
1903          */
1904         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1905                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1906 
1907                 mutex_enter(&itxg->itxg_lock);
1908                 if (itxg->itxg_txg != txg) {
1909                         mutex_exit(&itxg->itxg_lock);
1910                         continue;
1911                 }
1912 
1913                 /*
1914                  * If a foid is specified then find that node and append its
1915                  * list. Otherwise walk the tree appending all the lists
1916                  * to the sync list. We add to the end rather than the
1917                  * beginning to ensure the create has happened.
1918                  */
1919                 t = &itxg->itxg_itxs->i_async_tree;
1920                 if (foid != 0) {
1921                         ian = avl_find(t, &foid, &where);
1922                         if (ian != NULL) {
1923                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1924                                     &ian->ia_list);
1925                         }
1926                 } else {
1927                         void *cookie = NULL;
1928 
1929                         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1930                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1931                                     &ian->ia_list);
1932                                 list_destroy(&ian->ia_list);
1933                                 kmem_free(ian, sizeof (itx_async_node_t));
1934                         }
1935                 }
1936                 mutex_exit(&itxg->itxg_lock);
1937         }
1938 }
1939 
1940 /*
1941  * This function will prune commit itxs that are at the head of the
1942  * commit list (it won't prune past the first non-commit itx), and
1943  * either: a) attach them to the last lwb that's still pending
1944  * completion, or b) skip them altogether.
1945  *
1946  * This is used as a performance optimization to prevent commit itxs
1947  * from generating new lwbs when it's unnecessary to do so.
1948  */
1949 static void
1950 zil_prune_commit_list(zilog_t *zilog)
1951 {
1952         itx_t *itx;
1953 
1954         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1955 
1956         while (itx = list_head(&zilog->zl_itx_commit_list)) {
1957                 lr_t *lrc = &itx->itx_lr;
1958                 if (lrc->lrc_txtype != TX_COMMIT)
1959                         break;
1960 
1961                 mutex_enter(&zilog->zl_lock);
1962 
1963                 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1964                 if (last_lwb == NULL ||
1965                     last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
1966                         /*
1967                          * All of the itxs this waiter was waiting on
1968                          * must have already completed (or there were
1969                          * never any itx's for it to wait on), so it's
1970                          * safe to skip this waiter and mark it done.
1971                          */
1972                         zil_commit_waiter_skip(itx->itx_private);
1973                 } else {
1974                         zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1975                         itx->itx_private = NULL;
1976                 }
1977 
1978                 mutex_exit(&zilog->zl_lock);
1979 
1980                 list_remove(&zilog->zl_itx_commit_list, itx);
1981                 zil_itx_destroy(itx);
1982         }
1983 
1984         IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1985 }
1986 
1987 static void
1988 zil_commit_writer_stall(zilog_t *zilog)
1989 {
1990         /*
1991          * When zio_alloc_zil() fails to allocate the next lwb block on
1992          * disk, we must call txg_wait_synced() to ensure all of the
1993          * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1994          * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1995          * to zil_process_commit_list()) will have to call zil_create(),
1996          * and start a new ZIL chain.
1997          *
1998          * Since zil_alloc_zil() failed, the lwb that was previously
1999          * issued does not have a pointer to the "next" lwb on disk.
2000          * Thus, if another ZIL writer thread was to allocate the "next"
2001          * on-disk lwb, that block could be leaked in the event of a
2002          * crash (because the previous lwb on-disk would not point to
2003          * it).
2004          *
2005          * We must hold the zilog's zl_issuer_lock while we do this, to
2006          * ensure no new threads enter zil_process_commit_list() until
2007          * all lwb's in the zl_lwb_list have been synced and freed
2008          * (which is achieved via the txg_wait_synced() call).
2009          */
2010         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2011         txg_wait_synced(zilog->zl_dmu_pool, 0);
2012         ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2013 }
2014 
2015 /*
2016  * This function will traverse the commit list, creating new lwbs as
2017  * needed, and committing the itxs from the commit list to these newly
2018  * created lwbs. Additionally, as a new lwb is created, the previous
2019  * lwb will be issued to the zio layer to be written to disk.
2020  */
2021 static void
2022 zil_process_commit_list(zilog_t *zilog)
2023 {
2024         spa_t *spa = zilog->zl_spa;
2025         list_t nolwb_waiters;
2026         lwb_t *lwb;
2027         itx_t *itx;
2028 
2029         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2030 
2031         /*
2032          * Return if there's nothing to commit before we dirty the fs by
2033          * calling zil_create().
2034          */
2035         if (list_head(&zilog->zl_itx_commit_list) == NULL)
2036                 return;
2037 
2038         list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2039             offsetof(zil_commit_waiter_t, zcw_node));
2040 
2041         lwb = list_tail(&zilog->zl_lwb_list);
2042         if (lwb == NULL) {
2043                 lwb = zil_create(zilog);
2044         } else {
2045                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2046                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2047                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2048         }
2049 
2050         while (itx = list_head(&zilog->zl_itx_commit_list)) {
2051                 lr_t *lrc = &itx->itx_lr;
2052                 uint64_t txg = lrc->lrc_txg;
2053 
2054                 ASSERT3U(txg, !=, 0);
2055 
2056                 if (lrc->lrc_txtype == TX_COMMIT) {
2057                         DTRACE_PROBE2(zil__process__commit__itx,
2058                             zilog_t *, zilog, itx_t *, itx);
2059                 } else {
2060                         DTRACE_PROBE2(zil__process__normal__itx,
2061                             zilog_t *, zilog, itx_t *, itx);
2062                 }
2063 
2064                 boolean_t synced = txg <= spa_last_synced_txg(spa);
2065                 boolean_t frozen = txg > spa_freeze_txg(spa);
2066 
2067                 /*
2068                  * If the txg of this itx has already been synced out, then
2069                  * we don't need to commit this itx to an lwb. This is
2070                  * because the data of this itx will have already been
2071                  * written to the main pool. This is inherently racy, and
2072                  * it's still ok to commit an itx whose txg has already
2073                  * been synced; this will result in a write that's
2074                  * unnecessary, but will do no harm.
2075                  *
2076                  * With that said, we always want to commit TX_COMMIT itxs
2077                  * to an lwb, regardless of whether or not that itx's txg
2078                  * has been synced out. We do this to ensure any OPENED lwb
2079                  * will always have at least one zil_commit_waiter_t linked
2080                  * to the lwb.
2081                  *
2082                  * As a counter-example, if we skipped TX_COMMIT itx's
2083                  * whose txg had already been synced, the following
2084                  * situation could occur if we happened to be racing with
2085                  * spa_sync:
2086                  *
2087                  * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2088                  *    itx's txg is 10 and the last synced txg is 9.
2089                  * 2. spa_sync finishes syncing out txg 10.
2090                  * 3. we move to the next itx in the list, it's a TX_COMMIT
2091                  *    whose txg is 10, so we skip it rather than committing
2092                  *    it to the lwb used in (1).
2093                  *
2094                  * If the itx that is skipped in (3) is the last TX_COMMIT
2095                  * itx in the commit list, than it's possible for the lwb
2096                  * used in (1) to remain in the OPENED state indefinitely.
2097                  *
2098                  * To prevent the above scenario from occuring, ensuring
2099                  * that once an lwb is OPENED it will transition to ISSUED
2100                  * and eventually DONE, we always commit TX_COMMIT itx's to
2101                  * an lwb here, even if that itx's txg has already been
2102                  * synced.
2103                  *
2104                  * Finally, if the pool is frozen, we _always_ commit the
2105                  * itx.  The point of freezing the pool is to prevent data
2106                  * from being written to the main pool via spa_sync, and
2107                  * instead rely solely on the ZIL to persistently store the
2108                  * data; i.e.  when the pool is frozen, the last synced txg
2109                  * value can't be trusted.
2110                  */
2111                 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2112                         if (lwb != NULL) {
2113                                 lwb = zil_lwb_commit(zilog, itx, lwb);
2114                         } else if (lrc->lrc_txtype == TX_COMMIT) {
2115                                 ASSERT3P(lwb, ==, NULL);
2116                                 zil_commit_waiter_link_nolwb(
2117                                     itx->itx_private, &nolwb_waiters);
2118                         }
2119                 }
2120 
2121                 list_remove(&zilog->zl_itx_commit_list, itx);
2122                 zil_itx_destroy(itx);
2123         }
2124 
2125         if (lwb == NULL) {
2126                 /*
2127                  * This indicates zio_alloc_zil() failed to allocate the
2128                  * "next" lwb on-disk. When this happens, we must stall
2129                  * the ZIL write pipeline; see the comment within
2130                  * zil_commit_writer_stall() for more details.
2131                  */
2132                 zil_commit_writer_stall(zilog);
2133 
2134                 /*
2135                  * Additionally, we have to signal and mark the "nolwb"
2136                  * waiters as "done" here, since without an lwb, we
2137                  * can't do this via zil_lwb_flush_vdevs_done() like
2138                  * normal.
2139                  */
2140                 zil_commit_waiter_t *zcw;
2141                 while (zcw = list_head(&nolwb_waiters)) {
2142                         zil_commit_waiter_skip(zcw);
2143                         list_remove(&nolwb_waiters, zcw);
2144                 }
2145         } else {
2146                 ASSERT(list_is_empty(&nolwb_waiters));
2147                 ASSERT3P(lwb, !=, NULL);
2148                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2149                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2150                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2151 
2152                 /*
2153                  * At this point, the ZIL block pointed at by the "lwb"
2154                  * variable is in one of the following states: "closed"
2155                  * or "open".
2156                  *
2157                  * If its "closed", then no itxs have been committed to
2158                  * it, so there's no point in issuing its zio (i.e.
2159                  * it's "empty").
2160                  *
2161                  * If its "open" state, then it contains one or more
2162                  * itxs that eventually need to be committed to stable
2163                  * storage. In this case we intentionally do not issue
2164                  * the lwb's zio to disk yet, and instead rely on one of
2165                  * the following two mechanisms for issuing the zio:
2166                  *
2167                  * 1. Ideally, there will be more ZIL activity occuring
2168                  * on the system, such that this function will be
2169                  * immediately called again (not necessarily by the same
2170                  * thread) and this lwb's zio will be issued via
2171                  * zil_lwb_commit(). This way, the lwb is guaranteed to
2172                  * be "full" when it is issued to disk, and we'll make
2173                  * use of the lwb's size the best we can.
2174                  *
2175                  * 2. If there isn't sufficient ZIL activity occuring on
2176                  * the system, such that this lwb's zio isn't issued via
2177                  * zil_lwb_commit(), zil_commit_waiter() will issue the
2178                  * lwb's zio. If this occurs, the lwb is not guaranteed
2179                  * to be "full" by the time its zio is issued, and means
2180                  * the size of the lwb was "too large" given the amount
2181                  * of ZIL activity occuring on the system at that time.
2182                  *
2183                  * We do this for a couple of reasons:
2184                  *
2185                  * 1. To try and reduce the number of IOPs needed to
2186                  * write the same number of itxs. If an lwb has space
2187                  * available in it's buffer for more itxs, and more itxs
2188                  * will be committed relatively soon (relative to the
2189                  * latency of performing a write), then it's beneficial
2190                  * to wait for these "next" itxs. This way, more itxs
2191                  * can be committed to stable storage with fewer writes.
2192                  *
2193                  * 2. To try and use the largest lwb block size that the
2194                  * incoming rate of itxs can support. Again, this is to
2195                  * try and pack as many itxs into as few lwbs as
2196                  * possible, without significantly impacting the latency
2197                  * of each individual itx.
2198                  */
2199         }
2200 }
2201 
2202 /*
2203  * This function is responsible for ensuring the passed in commit waiter
2204  * (and associated commit itx) is committed to an lwb. If the waiter is
2205  * not already committed to an lwb, all itxs in the zilog's queue of
2206  * itxs will be processed. The assumption is the passed in waiter's
2207  * commit itx will found in the queue just like the other non-commit
2208  * itxs, such that when the entire queue is processed, the waiter will
2209  * have been commited to an lwb.
2210  *
2211  * The lwb associated with the passed in waiter is not guaranteed to
2212  * have been issued by the time this function completes. If the lwb is
2213  * not issued, we rely on future calls to zil_commit_writer() to issue
2214  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2215  */
2216 static void
2217 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2218 {
2219         ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2220         ASSERT(spa_writeable(zilog->zl_spa));
2221 
2222         mutex_enter(&zilog->zl_issuer_lock);
2223 
2224         if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2225                 /*
2226                  * It's possible that, while we were waiting to acquire
2227                  * the "zl_issuer_lock", another thread committed this
2228                  * waiter to an lwb. If that occurs, we bail out early,
2229                  * without processing any of the zilog's queue of itxs.
2230                  *
2231                  * On certain workloads and system configurations, the
2232                  * "zl_issuer_lock" can become highly contended. In an
2233                  * attempt to reduce this contention, we immediately drop
2234                  * the lock if the waiter has already been processed.
2235                  *
2236                  * We've measured this optimization to reduce CPU spent
2237                  * contending on this lock by up to 5%, using a system
2238                  * with 32 CPUs, low latency storage (~50 usec writes),
2239                  * and 1024 threads performing sync writes.
2240                  */
2241                 goto out;
2242         }
2243 
2244         zil_get_commit_list(zilog);
2245         zil_prune_commit_list(zilog);
2246         zil_process_commit_list(zilog);
2247 
2248 out:
2249         mutex_exit(&zilog->zl_issuer_lock);
2250 }
2251 
2252 static void
2253 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2254 {
2255         ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2256         ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2257         ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2258 
2259         lwb_t *lwb = zcw->zcw_lwb;
2260         ASSERT3P(lwb, !=, NULL);
2261         ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2262 
2263         /*
2264          * If the lwb has already been issued by another thread, we can
2265          * immediately return since there's no work to be done (the
2266          * point of this function is to issue the lwb). Additionally, we
2267          * do this prior to acquiring the zl_issuer_lock, to avoid
2268          * acquiring it when it's not necessary to do so.
2269          */
2270         if (lwb->lwb_state == LWB_STATE_ISSUED ||
2271             lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2272             lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2273                 return;
2274 
2275         /*
2276          * In order to call zil_lwb_write_issue() we must hold the
2277          * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2278          * since we're already holding the commit waiter's "zcw_lock",
2279          * and those two locks are aquired in the opposite order
2280          * elsewhere.
2281          */
2282         mutex_exit(&zcw->zcw_lock);
2283         mutex_enter(&zilog->zl_issuer_lock);
2284         mutex_enter(&zcw->zcw_lock);
2285 
2286         /*
2287          * Since we just dropped and re-acquired the commit waiter's
2288          * lock, we have to re-check to see if the waiter was marked
2289          * "done" during that process. If the waiter was marked "done",
2290          * the "lwb" pointer is no longer valid (it can be free'd after
2291          * the waiter is marked "done"), so without this check we could
2292          * wind up with a use-after-free error below.
2293          */
2294         if (zcw->zcw_done)
2295                 goto out;
2296 
2297         ASSERT3P(lwb, ==, zcw->zcw_lwb);
2298 
2299         /*
2300          * We've already checked this above, but since we hadn't acquired
2301          * the zilog's zl_issuer_lock, we have to perform this check a
2302          * second time while holding the lock.
2303          *
2304          * We don't need to hold the zl_lock since the lwb cannot transition
2305          * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2306          * _can_ transition from ISSUED to DONE, but it's OK to race with
2307          * that transition since we treat the lwb the same, whether it's in
2308          * the ISSUED or DONE states.
2309          *
2310          * The important thing, is we treat the lwb differently depending on
2311          * if it's ISSUED or OPENED, and block any other threads that might
2312          * attempt to issue this lwb. For that reason we hold the
2313          * zl_issuer_lock when checking the lwb_state; we must not call
2314          * zil_lwb_write_issue() if the lwb had already been issued.
2315          *
2316          * See the comment above the lwb_state_t structure definition for
2317          * more details on the lwb states, and locking requirements.
2318          */
2319         if (lwb->lwb_state == LWB_STATE_ISSUED ||
2320             lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2321             lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2322                 goto out;
2323 
2324         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2325 
2326         /*
2327          * As described in the comments above zil_commit_waiter() and
2328          * zil_process_commit_list(), we need to issue this lwb's zio
2329          * since we've reached the commit waiter's timeout and it still
2330          * hasn't been issued.
2331          */
2332         lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2333 
2334         ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2335 
2336         /*
2337          * Since the lwb's zio hadn't been issued by the time this thread
2338          * reached its timeout, we reset the zilog's "zl_cur_used" field
2339          * to influence the zil block size selection algorithm.
2340          *
2341          * By having to issue the lwb's zio here, it means the size of the
2342          * lwb was too large, given the incoming throughput of itxs.  By
2343          * setting "zl_cur_used" to zero, we communicate this fact to the
2344          * block size selection algorithm, so it can take this informaiton
2345          * into account, and potentially select a smaller size for the
2346          * next lwb block that is allocated.
2347          */
2348         zilog->zl_cur_used = 0;
2349 
2350         if (nlwb == NULL) {
2351                 /*
2352                  * When zil_lwb_write_issue() returns NULL, this
2353                  * indicates zio_alloc_zil() failed to allocate the
2354                  * "next" lwb on-disk. When this occurs, the ZIL write
2355                  * pipeline must be stalled; see the comment within the
2356                  * zil_commit_writer_stall() function for more details.
2357                  *
2358                  * We must drop the commit waiter's lock prior to
2359                  * calling zil_commit_writer_stall() or else we can wind
2360                  * up with the following deadlock:
2361                  *
2362                  * - This thread is waiting for the txg to sync while
2363                  *   holding the waiter's lock; txg_wait_synced() is
2364                  *   used within txg_commit_writer_stall().
2365                  *
2366                  * - The txg can't sync because it is waiting for this
2367                  *   lwb's zio callback to call dmu_tx_commit().
2368                  *
2369                  * - The lwb's zio callback can't call dmu_tx_commit()
2370                  *   because it's blocked trying to acquire the waiter's
2371                  *   lock, which occurs prior to calling dmu_tx_commit()
2372                  */
2373                 mutex_exit(&zcw->zcw_lock);
2374                 zil_commit_writer_stall(zilog);
2375                 mutex_enter(&zcw->zcw_lock);
2376         }
2377 
2378 out:
2379         mutex_exit(&zilog->zl_issuer_lock);
2380         ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2381 }
2382 
2383 /*
2384  * This function is responsible for performing the following two tasks:
2385  *
2386  * 1. its primary responsibility is to block until the given "commit
2387  *    waiter" is considered "done".
2388  *
2389  * 2. its secondary responsibility is to issue the zio for the lwb that
2390  *    the given "commit waiter" is waiting on, if this function has
2391  *    waited "long enough" and the lwb is still in the "open" state.
2392  *
2393  * Given a sufficient amount of itxs being generated and written using
2394  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2395  * function. If this does not occur, this secondary responsibility will
2396  * ensure the lwb is issued even if there is not other synchronous
2397  * activity on the system.
2398  *
2399  * For more details, see zil_process_commit_list(); more specifically,
2400  * the comment at the bottom of that function.
2401  */
2402 static void
2403 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2404 {
2405         ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2406         ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2407         ASSERT(spa_writeable(zilog->zl_spa));
2408 
2409         mutex_enter(&zcw->zcw_lock);
2410 
2411         /*
2412          * The timeout is scaled based on the lwb latency to avoid
2413          * significantly impacting the latency of each individual itx.
2414          * For more details, see the comment at the bottom of the
2415          * zil_process_commit_list() function.
2416          */
2417         int pct = MAX(zfs_commit_timeout_pct, 1);
2418         hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2419         hrtime_t wakeup = gethrtime() + sleep;
2420         boolean_t timedout = B_FALSE;
2421 
2422         while (!zcw->zcw_done) {
2423                 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2424 
2425                 lwb_t *lwb = zcw->zcw_lwb;
2426 
2427                 /*
2428                  * Usually, the waiter will have a non-NULL lwb field here,
2429                  * but it's possible for it to be NULL as a result of
2430                  * zil_commit() racing with spa_sync().
2431                  *
2432                  * When zil_clean() is called, it's possible for the itxg
2433                  * list (which may be cleaned via a taskq) to contain
2434                  * commit itxs. When this occurs, the commit waiters linked
2435                  * off of these commit itxs will not be committed to an
2436                  * lwb.  Additionally, these commit waiters will not be
2437                  * marked done until zil_commit_waiter_skip() is called via
2438                  * zil_itxg_clean().
2439                  *
2440                  * Thus, it's possible for this commit waiter (i.e. the
2441                  * "zcw" variable) to be found in this "in between" state;
2442                  * where it's "zcw_lwb" field is NULL, and it hasn't yet
2443                  * been skipped, so it's "zcw_done" field is still B_FALSE.
2444                  */
2445                 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2446 
2447                 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2448                         ASSERT3B(timedout, ==, B_FALSE);
2449 
2450                         /*
2451                          * If the lwb hasn't been issued yet, then we
2452                          * need to wait with a timeout, in case this
2453                          * function needs to issue the lwb after the
2454                          * timeout is reached; responsibility (2) from
2455                          * the comment above this function.
2456                          */
2457                         clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2458                             &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2459                             CALLOUT_FLAG_ABSOLUTE);
2460 
2461                         if (timeleft >= 0 || zcw->zcw_done)
2462                                 continue;
2463 
2464                         timedout = B_TRUE;
2465                         zil_commit_waiter_timeout(zilog, zcw);
2466 
2467                         if (!zcw->zcw_done) {
2468                                 /*
2469                                  * If the commit waiter has already been
2470                                  * marked "done", it's possible for the
2471                                  * waiter's lwb structure to have already
2472                                  * been freed.  Thus, we can only reliably
2473                                  * make these assertions if the waiter
2474                                  * isn't done.
2475                                  */
2476                                 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2477                                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2478                         }
2479                 } else {
2480                         /*
2481                          * If the lwb isn't open, then it must have already
2482                          * been issued. In that case, there's no need to
2483                          * use a timeout when waiting for the lwb to
2484                          * complete.
2485                          *
2486                          * Additionally, if the lwb is NULL, the waiter
2487                          * will soon be signalled and marked done via
2488                          * zil_clean() and zil_itxg_clean(), so no timeout
2489                          * is required.
2490                          */
2491 
2492                         IMPLY(lwb != NULL,
2493                             lwb->lwb_state == LWB_STATE_ISSUED ||
2494                             lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2495                             lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2496                         cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2497                 }
2498         }
2499 
2500         mutex_exit(&zcw->zcw_lock);
2501 }
2502 
2503 static zil_commit_waiter_t *
2504 zil_alloc_commit_waiter()
2505 {
2506         zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2507 
2508         cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2509         mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2510         list_link_init(&zcw->zcw_node);
2511         zcw->zcw_lwb = NULL;
2512         zcw->zcw_done = B_FALSE;
2513         zcw->zcw_zio_error = 0;
2514 
2515         return (zcw);
2516 }
2517 
2518 static void
2519 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2520 {
2521         ASSERT(!list_link_active(&zcw->zcw_node));
2522         ASSERT3P(zcw->zcw_lwb, ==, NULL);
2523         ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2524         mutex_destroy(&zcw->zcw_lock);
2525         cv_destroy(&zcw->zcw_cv);
2526         kmem_cache_free(zil_zcw_cache, zcw);
2527 }
2528 
2529 /*
2530  * This function is used to create a TX_COMMIT itx and assign it. This
2531  * way, it will be linked into the ZIL's list of synchronous itxs, and
2532  * then later committed to an lwb (or skipped) when
2533  * zil_process_commit_list() is called.
2534  */
2535 static void
2536 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2537 {
2538         dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2539         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2540 
2541         itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2542         itx->itx_sync = B_TRUE;
2543         itx->itx_private = zcw;
2544 
2545         zil_itx_assign(zilog, itx, tx);
2546 
2547         dmu_tx_commit(tx);
2548 }
2549 
2550 /*
2551  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2552  *
2553  * When writing ZIL transactions to the on-disk representation of the
2554  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2555  * itxs can be committed to a single lwb. Once a lwb is written and
2556  * committed to stable storage (i.e. the lwb is written, and vdevs have
2557  * been flushed), each itx that was committed to that lwb is also
2558  * considered to be committed to stable storage.
2559  *
2560  * When an itx is committed to an lwb, the log record (lr_t) contained
2561  * by the itx is copied into the lwb's zio buffer, and once this buffer
2562  * is written to disk, it becomes an on-disk ZIL block.
2563  *
2564  * As itxs are generated, they're inserted into the ZIL's queue of
2565  * uncommitted itxs. The semantics of zil_commit() are such that it will
2566  * block until all itxs that were in the queue when it was called, are
2567  * committed to stable storage.
2568  *
2569  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2570  * itxs, for all objects in the dataset, will be committed to stable
2571  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2572  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2573  * that correspond to the foid passed in, will be committed to stable
2574  * storage prior to zil_commit() returning.
2575  *
2576  * Generally speaking, when zil_commit() is called, the consumer doesn't
2577  * actually care about _all_ of the uncommitted itxs. Instead, they're
2578  * simply trying to waiting for a specific itx to be committed to disk,
2579  * but the interface(s) for interacting with the ZIL don't allow such
2580  * fine-grained communication. A better interface would allow a consumer
2581  * to create and assign an itx, and then pass a reference to this itx to
2582  * zil_commit(); such that zil_commit() would return as soon as that
2583  * specific itx was committed to disk (instead of waiting for _all_
2584  * itxs to be committed).
2585  *
2586  * When a thread calls zil_commit() a special "commit itx" will be
2587  * generated, along with a corresponding "waiter" for this commit itx.
2588  * zil_commit() will wait on this waiter's CV, such that when the waiter
2589  * is marked done, and signalled, zil_commit() will return.
2590  *
2591  * This commit itx is inserted into the queue of uncommitted itxs. This
2592  * provides an easy mechanism for determining which itxs were in the
2593  * queue prior to zil_commit() having been called, and which itxs were
2594  * added after zil_commit() was called.
2595  *
2596  * The commit it is special; it doesn't have any on-disk representation.
2597  * When a commit itx is "committed" to an lwb, the waiter associated
2598  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2599  * completes, each waiter on the lwb's list is marked done and signalled
2600  * -- allowing the thread waiting on the waiter to return from zil_commit().
2601  *
2602  * It's important to point out a few critical factors that allow us
2603  * to make use of the commit itxs, commit waiters, per-lwb lists of
2604  * commit waiters, and zio completion callbacks like we're doing:
2605  *
2606  *   1. The list of waiters for each lwb is traversed, and each commit
2607  *      waiter is marked "done" and signalled, in the zio completion
2608  *      callback of the lwb's zio[*].
2609  *
2610  *      * Actually, the waiters are signalled in the zio completion
2611  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2612  *        that are sent to the vdevs upon completion of the lwb zio.
2613  *
2614  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2615  *      itxs, the order in which they are inserted is preserved[*]; as
2616  *      itxs are added to the queue, they are added to the tail of
2617  *      in-memory linked lists.
2618  *
2619  *      When committing the itxs to lwbs (to be written to disk), they
2620  *      are committed in the same order in which the itxs were added to
2621  *      the uncommitted queue's linked list(s); i.e. the linked list of
2622  *      itxs to commit is traversed from head to tail, and each itx is
2623  *      committed to an lwb in that order.
2624  *
2625  *      * To clarify:
2626  *
2627  *        - the order of "sync" itxs is preserved w.r.t. other
2628  *          "sync" itxs, regardless of the corresponding objects.
2629  *        - the order of "async" itxs is preserved w.r.t. other
2630  *          "async" itxs corresponding to the same object.
2631  *        - the order of "async" itxs is *not* preserved w.r.t. other
2632  *          "async" itxs corresponding to different objects.
2633  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2634  *          versa) is *not* preserved, even for itxs that correspond
2635  *          to the same object.
2636  *
2637  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2638  *      zil_get_commit_list(), and zil_process_commit_list().
2639  *
2640  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2641  *      lwb cannot be considered committed to stable storage, until its
2642  *      "previous" lwb is also committed to stable storage. This fact,
2643  *      coupled with the fact described above, means that itxs are
2644  *      committed in (roughly) the order in which they were generated.
2645  *      This is essential because itxs are dependent on prior itxs.
2646  *      Thus, we *must not* deem an itx as being committed to stable
2647  *      storage, until *all* prior itxs have also been committed to
2648  *      stable storage.
2649  *
2650  *      To enforce this ordering of lwb zio's, while still leveraging as
2651  *      much of the underlying storage performance as possible, we rely
2652  *      on two fundamental concepts:
2653  *
2654  *          1. The creation and issuance of lwb zio's is protected by
2655  *             the zilog's "zl_issuer_lock", which ensures only a single
2656  *             thread is creating and/or issuing lwb's at a time
2657  *          2. The "previous" lwb is a child of the "current" lwb
2658  *             (leveraging the zio parent-child depenency graph)
2659  *
2660  *      By relying on this parent-child zio relationship, we can have
2661  *      many lwb zio's concurrently issued to the underlying storage,
2662  *      but the order in which they complete will be the same order in
2663  *      which they were created.
2664  */
2665 void
2666 zil_commit(zilog_t *zilog, uint64_t foid)
2667 {
2668         /*
2669          * We should never attempt to call zil_commit on a snapshot for
2670          * a couple of reasons:
2671          *
2672          * 1. A snapshot may never be modified, thus it cannot have any
2673          *    in-flight itxs that would have modified the dataset.
2674          *
2675          * 2. By design, when zil_commit() is called, a commit itx will
2676          *    be assigned to this zilog; as a result, the zilog will be
2677          *    dirtied. We must not dirty the zilog of a snapshot; there's
2678          *    checks in the code that enforce this invariant, and will
2679          *    cause a panic if it's not upheld.
2680          */
2681         ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2682 
2683         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2684                 return;
2685 
2686         if (!spa_writeable(zilog->zl_spa)) {
2687                 /*
2688                  * If the SPA is not writable, there should never be any
2689                  * pending itxs waiting to be committed to disk. If that
2690                  * weren't true, we'd skip writing those itxs out, and
2691                  * would break the sematics of zil_commit(); thus, we're
2692                  * verifying that truth before we return to the caller.
2693                  */
2694                 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2695                 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2696                 for (int i = 0; i < TXG_SIZE; i++)
2697                         ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2698                 return;
2699         }
2700 
2701         /*
2702          * If the ZIL is suspended, we don't want to dirty it by calling
2703          * zil_commit_itx_assign() below, nor can we write out
2704          * lwbs like would be done in zil_commit_write(). Thus, we
2705          * simply rely on txg_wait_synced() to maintain the necessary
2706          * semantics, and avoid calling those functions altogether.
2707          */
2708         if (zilog->zl_suspend > 0) {
2709                 txg_wait_synced(zilog->zl_dmu_pool, 0);
2710                 return;
2711         }
2712 
2713         zil_commit_impl(zilog, foid);
2714 }
2715 
2716 void
2717 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2718 {
2719         /*
2720          * Move the "async" itxs for the specified foid to the "sync"
2721          * queues, such that they will be later committed (or skipped)
2722          * to an lwb when zil_process_commit_list() is called.
2723          *
2724          * Since these "async" itxs must be committed prior to this
2725          * call to zil_commit returning, we must perform this operation
2726          * before we call zil_commit_itx_assign().
2727          */
2728         zil_async_to_sync(zilog, foid);
2729 
2730         /*
2731          * We allocate a new "waiter" structure which will initially be
2732          * linked to the commit itx using the itx's "itx_private" field.
2733          * Since the commit itx doesn't represent any on-disk state,
2734          * when it's committed to an lwb, rather than copying the its
2735          * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2736          * added to the lwb's list of waiters. Then, when the lwb is
2737          * committed to stable storage, each waiter in the lwb's list of
2738          * waiters will be marked "done", and signalled.
2739          *
2740          * We must create the waiter and assign the commit itx prior to
2741          * calling zil_commit_writer(), or else our specific commit itx
2742          * is not guaranteed to be committed to an lwb prior to calling
2743          * zil_commit_waiter().
2744          */
2745         zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2746         zil_commit_itx_assign(zilog, zcw);
2747 
2748         zil_commit_writer(zilog, zcw);
2749         zil_commit_waiter(zilog, zcw);
2750 
2751         if (zcw->zcw_zio_error != 0) {
2752                 /*
2753                  * If there was an error writing out the ZIL blocks that
2754                  * this thread is waiting on, then we fallback to
2755                  * relying on spa_sync() to write out the data this
2756                  * thread is waiting on. Obviously this has performance
2757                  * implications, but the expectation is for this to be
2758                  * an exceptional case, and shouldn't occur often.
2759                  */
2760                 DTRACE_PROBE2(zil__commit__io__error,
2761                     zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2762                 txg_wait_synced(zilog->zl_dmu_pool, 0);
2763         }
2764 
2765         zil_free_commit_waiter(zcw);
2766 }
2767 
2768 /*
2769  * Called in syncing context to free committed log blocks and update log header.
2770  */
2771 void
2772 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2773 {
2774         zil_header_t *zh = zil_header_in_syncing_context(zilog);
2775         uint64_t txg = dmu_tx_get_txg(tx);
2776         spa_t *spa = zilog->zl_spa;
2777         uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2778         lwb_t *lwb;
2779 
2780         /*
2781          * We don't zero out zl_destroy_txg, so make sure we don't try
2782          * to destroy it twice.
2783          */
2784         if (spa_sync_pass(spa) != 1)
2785                 return;
2786 
2787         mutex_enter(&zilog->zl_lock);
2788 
2789         ASSERT(zilog->zl_stop_sync == 0);
2790 
2791         if (*replayed_seq != 0) {
2792                 ASSERT(zh->zh_replay_seq < *replayed_seq);
2793                 zh->zh_replay_seq = *replayed_seq;
2794                 *replayed_seq = 0;
2795         }
2796 
2797         if (zilog->zl_destroy_txg == txg) {
2798                 blkptr_t blk = zh->zh_log;
2799 
2800                 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2801 
2802                 bzero(zh, sizeof (zil_header_t));
2803                 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2804 
2805                 if (zilog->zl_keep_first) {
2806                         /*
2807                          * If this block was part of log chain that couldn't
2808                          * be claimed because a device was missing during
2809                          * zil_claim(), but that device later returns,
2810                          * then this block could erroneously appear valid.
2811                          * To guard against this, assign a new GUID to the new
2812                          * log chain so it doesn't matter what blk points to.
2813                          */
2814                         zil_init_log_chain(zilog, &blk);
2815                         zh->zh_log = blk;
2816                 }
2817         }
2818 
2819         while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2820                 zh->zh_log = lwb->lwb_blk;
2821                 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2822                         break;
2823                 list_remove(&zilog->zl_lwb_list, lwb);
2824                 zio_free(spa, txg, &lwb->lwb_blk);
2825                 zil_free_lwb(zilog, lwb);
2826 
2827                 /*
2828                  * If we don't have anything left in the lwb list then
2829                  * we've had an allocation failure and we need to zero
2830                  * out the zil_header blkptr so that we don't end
2831                  * up freeing the same block twice.
2832                  */
2833                 if (list_head(&zilog->zl_lwb_list) == NULL)
2834                         BP_ZERO(&zh->zh_log);
2835         }
2836         mutex_exit(&zilog->zl_lock);
2837 }
2838 
2839 /* ARGSUSED */
2840 static int
2841 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2842 {
2843         lwb_t *lwb = vbuf;
2844         list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2845             offsetof(zil_commit_waiter_t, zcw_node));
2846         avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2847             sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2848         mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2849         return (0);
2850 }
2851 
2852 /* ARGSUSED */
2853 static void
2854 zil_lwb_dest(void *vbuf, void *unused)
2855 {
2856         lwb_t *lwb = vbuf;
2857         mutex_destroy(&lwb->lwb_vdev_lock);
2858         avl_destroy(&lwb->lwb_vdev_tree);
2859         list_destroy(&lwb->lwb_waiters);
2860 }
2861 
2862 void
2863 zil_init(void)
2864 {
2865         zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2866             sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2867 
2868         zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2869             sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2870 }
2871 
2872 void
2873 zil_fini(void)
2874 {
2875         kmem_cache_destroy(zil_zcw_cache);
2876         kmem_cache_destroy(zil_lwb_cache);
2877 }
2878 
2879 void
2880 zil_set_sync(zilog_t *zilog, uint64_t sync)
2881 {
2882         zilog->zl_sync = sync;
2883 }
2884 
2885 void
2886 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2887 {
2888         zilog->zl_logbias = logbias;
2889 }
2890 
2891 zilog_t *
2892 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2893 {
2894         zilog_t *zilog;
2895 
2896         zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2897 
2898         zilog->zl_header = zh_phys;
2899         zilog->zl_os = os;
2900         zilog->zl_spa = dmu_objset_spa(os);
2901         zilog->zl_dmu_pool = dmu_objset_pool(os);
2902         zilog->zl_destroy_txg = TXG_INITIAL - 1;
2903         zilog->zl_logbias = dmu_objset_logbias(os);
2904         zilog->zl_sync = dmu_objset_syncprop(os);
2905         zilog->zl_dirty_max_txg = 0;
2906         zilog->zl_last_lwb_opened = NULL;
2907         zilog->zl_last_lwb_latency = 0;
2908 
2909         mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2910         mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2911 
2912         for (int i = 0; i < TXG_SIZE; i++) {
2913                 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2914                     MUTEX_DEFAULT, NULL);
2915         }
2916 
2917         list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2918             offsetof(lwb_t, lwb_node));
2919 
2920         list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2921             offsetof(itx_t, itx_node));
2922 
2923         cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2924 
2925         return (zilog);
2926 }
2927 
2928 void
2929 zil_free(zilog_t *zilog)
2930 {
2931         zilog->zl_stop_sync = 1;
2932 
2933         ASSERT0(zilog->zl_suspend);
2934         ASSERT0(zilog->zl_suspending);
2935 
2936         ASSERT(list_is_empty(&zilog->zl_lwb_list));
2937         list_destroy(&zilog->zl_lwb_list);
2938 
2939         ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2940         list_destroy(&zilog->zl_itx_commit_list);
2941 
2942         for (int i = 0; i < TXG_SIZE; i++) {
2943                 /*
2944                  * It's possible for an itx to be generated that doesn't dirty
2945                  * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2946                  * callback to remove the entry. We remove those here.
2947                  *
2948                  * Also free up the ziltest itxs.
2949                  */
2950                 if (zilog->zl_itxg[i].itxg_itxs)
2951                         zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2952                 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2953         }
2954 
2955         mutex_destroy(&zilog->zl_issuer_lock);
2956         mutex_destroy(&zilog->zl_lock);
2957 
2958         cv_destroy(&zilog->zl_cv_suspend);
2959 
2960         kmem_free(zilog, sizeof (zilog_t));
2961 }
2962 
2963 /*
2964  * Open an intent log.
2965  */
2966 zilog_t *
2967 zil_open(objset_t *os, zil_get_data_t *get_data)
2968 {
2969         zilog_t *zilog = dmu_objset_zil(os);
2970 
2971         ASSERT3P(zilog->zl_get_data, ==, NULL);
2972         ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2973         ASSERT(list_is_empty(&zilog->zl_lwb_list));
2974 
2975         zilog->zl_get_data = get_data;
2976 
2977         return (zilog);
2978 }
2979 
2980 /*
2981  * Close an intent log.
2982  */
2983 void
2984 zil_close(zilog_t *zilog)
2985 {
2986         lwb_t *lwb;
2987         uint64_t txg;
2988 
2989         if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2990                 zil_commit(zilog, 0);
2991         } else {
2992                 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2993                 ASSERT0(zilog->zl_dirty_max_txg);
2994                 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2995         }
2996 
2997         mutex_enter(&zilog->zl_lock);
2998         lwb = list_tail(&zilog->zl_lwb_list);
2999         if (lwb == NULL)
3000                 txg = zilog->zl_dirty_max_txg;
3001         else
3002                 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3003         mutex_exit(&zilog->zl_lock);
3004 
3005         /*
3006          * We need to use txg_wait_synced() to wait long enough for the
3007          * ZIL to be clean, and to wait for all pending lwbs to be
3008          * written out.
3009          */
3010         if (txg != 0)
3011                 txg_wait_synced(zilog->zl_dmu_pool, txg);
3012 
3013         if (zilog_is_dirty(zilog))
3014                 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3015         VERIFY(!zilog_is_dirty(zilog));
3016 
3017         zilog->zl_get_data = NULL;
3018 
3019         /*
3020          * We should have only one lwb left on the list; remove it now.
3021          */
3022         mutex_enter(&zilog->zl_lock);
3023         lwb = list_head(&zilog->zl_lwb_list);
3024         if (lwb != NULL) {
3025                 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3026                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3027                 list_remove(&zilog->zl_lwb_list, lwb);
3028                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3029                 zil_free_lwb(zilog, lwb);
3030         }
3031         mutex_exit(&zilog->zl_lock);
3032 }
3033 
3034 static char *suspend_tag = "zil suspending";
3035 
3036 /*
3037  * Suspend an intent log.  While in suspended mode, we still honor
3038  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3039  * On old version pools, we suspend the log briefly when taking a
3040  * snapshot so that it will have an empty intent log.
3041  *
3042  * Long holds are not really intended to be used the way we do here --
3043  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3044  * could fail.  Therefore we take pains to only put a long hold if it is
3045  * actually necessary.  Fortunately, it will only be necessary if the
3046  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3047  * will already have a long hold, so we are not really making things any worse.
3048  *
3049  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3050  * zvol_state_t), and use their mechanism to prevent their hold from being
3051  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3052  * very little gain.
3053  *
3054  * if cookiep == NULL, this does both the suspend & resume.
3055  * Otherwise, it returns with the dataset "long held", and the cookie
3056  * should be passed into zil_resume().
3057  */
3058 int
3059 zil_suspend(const char *osname, void **cookiep)
3060 {
3061         objset_t *os;
3062         zilog_t *zilog;
3063         const zil_header_t *zh;
3064         int error;
3065 
3066         error = dmu_objset_hold(osname, suspend_tag, &os);
3067         if (error != 0)
3068                 return (error);
3069         zilog = dmu_objset_zil(os);
3070 
3071         mutex_enter(&zilog->zl_lock);
3072         zh = zilog->zl_header;
3073 
3074         if (zh->zh_flags & ZIL_REPLAY_NEEDED) {          /* unplayed log */
3075                 mutex_exit(&zilog->zl_lock);
3076                 dmu_objset_rele(os, suspend_tag);
3077                 return (SET_ERROR(EBUSY));
3078         }
3079 
3080         /*
3081          * Don't put a long hold in the cases where we can avoid it.  This
3082          * is when there is no cookie so we are doing a suspend & resume
3083          * (i.e. called from zil_vdev_offline()), and there's nothing to do
3084          * for the suspend because it's already suspended, or there's no ZIL.
3085          */
3086         if (cookiep == NULL && !zilog->zl_suspending &&
3087             (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3088                 mutex_exit(&zilog->zl_lock);
3089                 dmu_objset_rele(os, suspend_tag);
3090                 return (0);
3091         }
3092 
3093         dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3094         dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3095 
3096         zilog->zl_suspend++;
3097 
3098         if (zilog->zl_suspend > 1) {
3099                 /*
3100                  * Someone else is already suspending it.
3101                  * Just wait for them to finish.
3102                  */
3103 
3104                 while (zilog->zl_suspending)
3105                         cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3106                 mutex_exit(&zilog->zl_lock);
3107 
3108                 if (cookiep == NULL)
3109                         zil_resume(os);
3110                 else
3111                         *cookiep = os;
3112                 return (0);
3113         }
3114 
3115         /*
3116          * If there is no pointer to an on-disk block, this ZIL must not
3117          * be active (e.g. filesystem not mounted), so there's nothing
3118          * to clean up.
3119          */
3120         if (BP_IS_HOLE(&zh->zh_log)) {
3121                 ASSERT(cookiep != NULL); /* fast path already handled */
3122 
3123                 *cookiep = os;
3124                 mutex_exit(&zilog->zl_lock);
3125                 return (0);
3126         }
3127 
3128         zilog->zl_suspending = B_TRUE;
3129         mutex_exit(&zilog->zl_lock);
3130 
3131         /*
3132          * We need to use zil_commit_impl to ensure we wait for all
3133          * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3134          * to disk before proceeding. If we used zil_commit instead, it
3135          * would just call txg_wait_synced(), because zl_suspend is set.
3136          * txg_wait_synced() doesn't wait for these lwb's to be
3137          * LWB_STATE_FLUSH_DONE before returning.
3138          */
3139         zil_commit_impl(zilog, 0);
3140 
3141         /*
3142          * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3143          * use txg_wait_synced() to ensure the data from the zilog has
3144          * migrated to the main pool before calling zil_destroy().
3145          */
3146         txg_wait_synced(zilog->zl_dmu_pool, 0);
3147 
3148         zil_destroy(zilog, B_FALSE);
3149 
3150         mutex_enter(&zilog->zl_lock);
3151         zilog->zl_suspending = B_FALSE;
3152         cv_broadcast(&zilog->zl_cv_suspend);
3153         mutex_exit(&zilog->zl_lock);
3154 
3155         if (cookiep == NULL)
3156                 zil_resume(os);
3157         else
3158                 *cookiep = os;
3159         return (0);
3160 }
3161 
3162 void
3163 zil_resume(void *cookie)
3164 {
3165         objset_t *os = cookie;
3166         zilog_t *zilog = dmu_objset_zil(os);
3167 
3168         mutex_enter(&zilog->zl_lock);
3169         ASSERT(zilog->zl_suspend != 0);
3170         zilog->zl_suspend--;
3171         mutex_exit(&zilog->zl_lock);
3172         dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3173         dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3174 }
3175 
3176 typedef struct zil_replay_arg {
3177         zil_replay_func_t **zr_replay;
3178         void            *zr_arg;
3179         boolean_t       zr_byteswap;
3180         char            *zr_lr;
3181 } zil_replay_arg_t;
3182 
3183 static int
3184 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3185 {
3186         char name[ZFS_MAX_DATASET_NAME_LEN];
3187 
3188         zilog->zl_replaying_seq--;   /* didn't actually replay this one */
3189 
3190         dmu_objset_name(zilog->zl_os, name);
3191 
3192         cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3193             "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3194             (u_longlong_t)lr->lrc_seq,
3195             (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3196             (lr->lrc_txtype & TX_CI) ? "CI" : "");
3197 
3198         return (error);
3199 }
3200 
3201 static int
3202 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3203 {
3204         zil_replay_arg_t *zr = zra;
3205         const zil_header_t *zh = zilog->zl_header;
3206         uint64_t reclen = lr->lrc_reclen;
3207         uint64_t txtype = lr->lrc_txtype;
3208         int error = 0;
3209 
3210         zilog->zl_replaying_seq = lr->lrc_seq;
3211 
3212         if (lr->lrc_seq <= zh->zh_replay_seq)  /* already replayed */
3213                 return (0);
3214 
3215         if (lr->lrc_txg < claim_txg)              /* already committed */
3216                 return (0);
3217 
3218         /* Strip case-insensitive bit, still present in log record */
3219         txtype &= ~TX_CI;
3220 
3221         if (txtype == 0 || txtype >= TX_MAX_TYPE)
3222                 return (zil_replay_error(zilog, lr, EINVAL));
3223 
3224         /*
3225          * If this record type can be logged out of order, the object
3226          * (lr_foid) may no longer exist.  That's legitimate, not an error.
3227          */
3228         if (TX_OOO(txtype)) {
3229                 error = dmu_object_info(zilog->zl_os,
3230                     ((lr_ooo_t *)lr)->lr_foid, NULL);
3231                 if (error == ENOENT || error == EEXIST)
3232                         return (0);
3233         }
3234 
3235         /*
3236          * Make a copy of the data so we can revise and extend it.
3237          */
3238         bcopy(lr, zr->zr_lr, reclen);
3239 
3240         /*
3241          * If this is a TX_WRITE with a blkptr, suck in the data.
3242          */
3243         if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3244                 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3245                     zr->zr_lr + reclen);
3246                 if (error != 0)
3247                         return (zil_replay_error(zilog, lr, error));
3248         }
3249 
3250         /*
3251          * The log block containing this lr may have been byteswapped
3252          * so that we can easily examine common fields like lrc_txtype.
3253          * However, the log is a mix of different record types, and only the
3254          * replay vectors know how to byteswap their records.  Therefore, if
3255          * the lr was byteswapped, undo it before invoking the replay vector.
3256          */
3257         if (zr->zr_byteswap)
3258                 byteswap_uint64_array(zr->zr_lr, reclen);
3259 
3260         /*
3261          * We must now do two things atomically: replay this log record,
3262          * and update the log header sequence number to reflect the fact that
3263          * we did so. At the end of each replay function the sequence number
3264          * is updated if we are in replay mode.
3265          */
3266         error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3267         if (error != 0) {
3268                 /*
3269                  * The DMU's dnode layer doesn't see removes until the txg
3270                  * commits, so a subsequent claim can spuriously fail with
3271                  * EEXIST. So if we receive any error we try syncing out
3272                  * any removes then retry the transaction.  Note that we
3273                  * specify B_FALSE for byteswap now, so we don't do it twice.
3274                  */
3275                 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3276                 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3277                 if (error != 0)
3278                         return (zil_replay_error(zilog, lr, error));
3279         }
3280         return (0);
3281 }
3282 
3283 /* ARGSUSED */
3284 static int
3285 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3286 {
3287         zilog->zl_replay_blks++;
3288 
3289         return (0);
3290 }
3291 
3292 /*
3293  * If this dataset has a non-empty intent log, replay it and destroy it.
3294  */
3295 void
3296 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3297 {
3298         zilog_t *zilog = dmu_objset_zil(os);
3299         const zil_header_t *zh = zilog->zl_header;
3300         zil_replay_arg_t zr;
3301 
3302         if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3303                 zil_destroy(zilog, B_TRUE);
3304                 return;
3305         }
3306 
3307         zr.zr_replay = replay_func;
3308         zr.zr_arg = arg;
3309         zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3310         zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3311 
3312         /*
3313          * Wait for in-progress removes to sync before starting replay.
3314          */
3315         txg_wait_synced(zilog->zl_dmu_pool, 0);
3316 
3317         zilog->zl_replay = B_TRUE;
3318         zilog->zl_replay_time = ddi_get_lbolt();
3319         ASSERT(zilog->zl_replay_blks == 0);
3320         (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3321             zh->zh_claim_txg);
3322         kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3323 
3324         zil_destroy(zilog, B_FALSE);
3325         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3326         zilog->zl_replay = B_FALSE;
3327 }
3328 
3329 boolean_t
3330 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3331 {
3332         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3333                 return (B_TRUE);
3334 
3335         if (zilog->zl_replay) {
3336                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3337                 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3338                     zilog->zl_replaying_seq;
3339                 return (B_TRUE);
3340         }
3341 
3342         return (B_FALSE);
3343 }
3344 
3345 /* ARGSUSED */
3346 int
3347 zil_vdev_offline(const char *osname, void *arg)
3348 {
3349         int error;
3350 
3351         error = zil_suspend(osname, NULL);
3352         if (error != 0)
3353                 return (SET_ERROR(EEXIST));
3354         return (0);
3355 }