1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  24  * Copyright (c) 2014 Integros [integros.com]
  25  */
  26 
  27 /* Portions Copyright 2010 Robert Milkowski */
  28 
  29 #include <sys/zfs_context.h>
  30 #include <sys/spa.h>
  31 #include <sys/dmu.h>
  32 #include <sys/zap.h>
  33 #include <sys/arc.h>
  34 #include <sys/stat.h>
  35 #include <sys/resource.h>
  36 #include <sys/zil.h>
  37 #include <sys/zil_impl.h>
  38 #include <sys/dsl_dataset.h>
  39 #include <sys/vdev_impl.h>
  40 #include <sys/dmu_tx.h>
  41 #include <sys/dsl_pool.h>
  42 #include <sys/abd.h>
  43 
  44 /*
  45  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
  46  * calls that change the file system. Each itx has enough information to
  47  * be able to replay them after a system crash, power loss, or
  48  * equivalent failure mode. These are stored in memory until either:
  49  *
  50  *   1. they are committed to the pool by the DMU transaction group
  51  *      (txg), at which point they can be discarded; or
  52  *   2. they are committed to the on-disk ZIL for the dataset being
  53  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
  54  *      requirement).
  55  *
  56  * In the event of a crash or power loss, the itxs contained by each
  57  * dataset's on-disk ZIL will be replayed when that dataset is first
  58  * instantianted (e.g. if the dataset is a normal fileystem, when it is
  59  * first mounted).
  60  *
  61  * As hinted at above, there is one ZIL per dataset (both the in-memory
  62  * representation, and the on-disk representation). The on-disk format
  63  * consists of 3 parts:
  64  *
  65  *      - a single, per-dataset, ZIL header; which points to a chain of
  66  *      - zero or more ZIL blocks; each of which contains
  67  *      - zero or more ZIL records
  68  *
  69  * A ZIL record holds the information necessary to replay a single
  70  * system call transaction. A ZIL block can hold many ZIL records, and
  71  * the blocks are chained together, similarly to a singly linked list.
  72  *
  73  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
  74  * block in the chain, and the ZIL header points to the first block in
  75  * the chain.
  76  *
  77  * Note, there is not a fixed place in the pool to hold these ZIL
  78  * blocks; they are dynamically allocated and freed as needed from the
  79  * blocks available on the pool, though they can be preferentially
  80  * allocated from a dedicated "log" vdev.
  81  */
  82 
  83 /*
  84  * This controls the amount of time that a ZIL block (lwb) will remain
  85  * "open" when it isn't "full", and it has a thread waiting for it to be
  86  * committed to stable storage. Please refer to the zil_commit_waiter()
  87  * function (and the comments within it) for more details.
  88  */
  89 int zfs_commit_timeout_pct = 5;
  90 
  91 /*
  92  * Disable intent logging replay.  This global ZIL switch affects all pools.
  93  */
  94 int zil_replay_disable = 0;
  95 
  96 /*
  97  * Tunable parameter for debugging or performance analysis.  Setting
  98  * zfs_nocacheflush will cause corruption on power loss if a volatile
  99  * out-of-order write cache is enabled.
 100  */
 101 boolean_t zfs_nocacheflush = B_FALSE;
 102 
 103 /*
 104  * Limit SLOG write size per commit executed with synchronous priority.
 105  * Any writes above that will be executed with lower (asynchronous) priority
 106  * to limit potential SLOG device abuse by single active ZIL writer.
 107  */
 108 uint64_t zil_slog_bulk = 768 * 1024;
 109 
 110 static kmem_cache_t *zil_lwb_cache;
 111 static kmem_cache_t *zil_zcw_cache;
 112 
 113 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
 114 
 115 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
 116     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
 117 
 118 static int
 119 zil_bp_compare(const void *x1, const void *x2)
 120 {
 121         const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
 122         const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
 123 
 124         if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
 125                 return (-1);
 126         if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
 127                 return (1);
 128 
 129         if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
 130                 return (-1);
 131         if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
 132                 return (1);
 133 
 134         return (0);
 135 }
 136 
 137 static void
 138 zil_bp_tree_init(zilog_t *zilog)
 139 {
 140         avl_create(&zilog->zl_bp_tree, zil_bp_compare,
 141             sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
 142 }
 143 
 144 static void
 145 zil_bp_tree_fini(zilog_t *zilog)
 146 {
 147         avl_tree_t *t = &zilog->zl_bp_tree;
 148         zil_bp_node_t *zn;
 149         void *cookie = NULL;
 150 
 151         while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
 152                 kmem_free(zn, sizeof (zil_bp_node_t));
 153 
 154         avl_destroy(t);
 155 }
 156 
 157 int
 158 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
 159 {
 160         avl_tree_t *t = &zilog->zl_bp_tree;
 161         const dva_t *dva;
 162         zil_bp_node_t *zn;
 163         avl_index_t where;
 164 
 165         if (BP_IS_EMBEDDED(bp))
 166                 return (0);
 167 
 168         dva = BP_IDENTITY(bp);
 169 
 170         if (avl_find(t, dva, &where) != NULL)
 171                 return (SET_ERROR(EEXIST));
 172 
 173         zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
 174         zn->zn_dva = *dva;
 175         avl_insert(t, zn, where);
 176 
 177         return (0);
 178 }
 179 
 180 static zil_header_t *
 181 zil_header_in_syncing_context(zilog_t *zilog)
 182 {
 183         return ((zil_header_t *)zilog->zl_header);
 184 }
 185 
 186 static void
 187 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
 188 {
 189         zio_cksum_t *zc = &bp->blk_cksum;
 190 
 191         zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
 192         zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
 193         zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
 194         zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
 195 }
 196 
 197 /*
 198  * Read a log block and make sure it's valid.
 199  */
 200 static int
 201 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
 202     char **end)
 203 {
 204         enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
 205         arc_flags_t aflags = ARC_FLAG_WAIT;
 206         arc_buf_t *abuf = NULL;
 207         zbookmark_phys_t zb;
 208         int error;
 209 
 210         if (zilog->zl_header->zh_claim_txg == 0)
 211                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
 212 
 213         if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
 214                 zio_flags |= ZIO_FLAG_SPECULATIVE;
 215 
 216         SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
 217             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
 218 
 219         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
 220             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
 221 
 222         if (error == 0) {
 223                 zio_cksum_t cksum = bp->blk_cksum;
 224 
 225                 /*
 226                  * Validate the checksummed log block.
 227                  *
 228                  * Sequence numbers should be... sequential.  The checksum
 229                  * verifier for the next block should be bp's checksum plus 1.
 230                  *
 231                  * Also check the log chain linkage and size used.
 232                  */
 233                 cksum.zc_word[ZIL_ZC_SEQ]++;
 234 
 235                 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
 236                         zil_chain_t *zilc = abuf->b_data;
 237                         char *lr = (char *)(zilc + 1);
 238                         uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
 239 
 240                         if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
 241                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
 242                                 error = SET_ERROR(ECKSUM);
 243                         } else {
 244                                 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
 245                                 bcopy(lr, dst, len);
 246                                 *end = (char *)dst + len;
 247                                 *nbp = zilc->zc_next_blk;
 248                         }
 249                 } else {
 250                         char *lr = abuf->b_data;
 251                         uint64_t size = BP_GET_LSIZE(bp);
 252                         zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
 253 
 254                         if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
 255                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
 256                             (zilc->zc_nused > (size - sizeof (*zilc)))) {
 257                                 error = SET_ERROR(ECKSUM);
 258                         } else {
 259                                 ASSERT3U(zilc->zc_nused, <=,
 260                                     SPA_OLD_MAXBLOCKSIZE);
 261                                 bcopy(lr, dst, zilc->zc_nused);
 262                                 *end = (char *)dst + zilc->zc_nused;
 263                                 *nbp = zilc->zc_next_blk;
 264                         }
 265                 }
 266 
 267                 arc_buf_destroy(abuf, &abuf);
 268         }
 269 
 270         return (error);
 271 }
 272 
 273 /*
 274  * Read a TX_WRITE log data block.
 275  */
 276 static int
 277 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
 278 {
 279         enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
 280         const blkptr_t *bp = &lr->lr_blkptr;
 281         arc_flags_t aflags = ARC_FLAG_WAIT;
 282         arc_buf_t *abuf = NULL;
 283         zbookmark_phys_t zb;
 284         int error;
 285 
 286         if (BP_IS_HOLE(bp)) {
 287                 if (wbuf != NULL)
 288                         bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
 289                 return (0);
 290         }
 291 
 292         if (zilog->zl_header->zh_claim_txg == 0)
 293                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
 294 
 295         SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
 296             ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
 297 
 298         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
 299             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
 300 
 301         if (error == 0) {
 302                 if (wbuf != NULL)
 303                         bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
 304                 arc_buf_destroy(abuf, &abuf);
 305         }
 306 
 307         return (error);
 308 }
 309 
 310 /*
 311  * Parse the intent log, and call parse_func for each valid record within.
 312  */
 313 int
 314 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
 315     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
 316 {
 317         const zil_header_t *zh = zilog->zl_header;
 318         boolean_t claimed = !!zh->zh_claim_txg;
 319         uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
 320         uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
 321         uint64_t max_blk_seq = 0;
 322         uint64_t max_lr_seq = 0;
 323         uint64_t blk_count = 0;
 324         uint64_t lr_count = 0;
 325         blkptr_t blk, next_blk;
 326         char *lrbuf, *lrp;
 327         int error = 0;
 328 
 329         /*
 330          * Old logs didn't record the maximum zh_claim_lr_seq.
 331          */
 332         if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
 333                 claim_lr_seq = UINT64_MAX;
 334 
 335         /*
 336          * Starting at the block pointed to by zh_log we read the log chain.
 337          * For each block in the chain we strongly check that block to
 338          * ensure its validity.  We stop when an invalid block is found.
 339          * For each block pointer in the chain we call parse_blk_func().
 340          * For each record in each valid block we call parse_lr_func().
 341          * If the log has been claimed, stop if we encounter a sequence
 342          * number greater than the highest claimed sequence number.
 343          */
 344         lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
 345         zil_bp_tree_init(zilog);
 346 
 347         for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
 348                 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
 349                 int reclen;
 350                 char *end;
 351 
 352                 if (blk_seq > claim_blk_seq)
 353                         break;
 354                 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
 355                         break;
 356                 ASSERT3U(max_blk_seq, <, blk_seq);
 357                 max_blk_seq = blk_seq;
 358                 blk_count++;
 359 
 360                 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
 361                         break;
 362 
 363                 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
 364                 if (error != 0)
 365                         break;
 366 
 367                 for (lrp = lrbuf; lrp < end; lrp += reclen) {
 368                         lr_t *lr = (lr_t *)lrp;
 369                         reclen = lr->lrc_reclen;
 370                         ASSERT3U(reclen, >=, sizeof (lr_t));
 371                         if (lr->lrc_seq > claim_lr_seq)
 372                                 goto done;
 373                         if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
 374                                 goto done;
 375                         ASSERT3U(max_lr_seq, <, lr->lrc_seq);
 376                         max_lr_seq = lr->lrc_seq;
 377                         lr_count++;
 378                 }
 379         }
 380 done:
 381         zilog->zl_parse_error = error;
 382         zilog->zl_parse_blk_seq = max_blk_seq;
 383         zilog->zl_parse_lr_seq = max_lr_seq;
 384         zilog->zl_parse_blk_count = blk_count;
 385         zilog->zl_parse_lr_count = lr_count;
 386 
 387         ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
 388             (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
 389 
 390         zil_bp_tree_fini(zilog);
 391         zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
 392 
 393         return (error);
 394 }
 395 
 396 static int
 397 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
 398 {
 399         /*
 400          * Claim log block if not already committed and not already claimed.
 401          * If tx == NULL, just verify that the block is claimable.
 402          */
 403         if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
 404             zil_bp_tree_add(zilog, bp) != 0)
 405                 return (0);
 406 
 407         return (zio_wait(zio_claim(NULL, zilog->zl_spa,
 408             tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
 409             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
 410 }
 411 
 412 static int
 413 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
 414 {
 415         lr_write_t *lr = (lr_write_t *)lrc;
 416         int error;
 417 
 418         if (lrc->lrc_txtype != TX_WRITE)
 419                 return (0);
 420 
 421         /*
 422          * If the block is not readable, don't claim it.  This can happen
 423          * in normal operation when a log block is written to disk before
 424          * some of the dmu_sync() blocks it points to.  In this case, the
 425          * transaction cannot have been committed to anyone (we would have
 426          * waited for all writes to be stable first), so it is semantically
 427          * correct to declare this the end of the log.
 428          */
 429         if (lr->lr_blkptr.blk_birth >= first_txg &&
 430             (error = zil_read_log_data(zilog, lr, NULL)) != 0)
 431                 return (error);
 432         return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
 433 }
 434 
 435 /* ARGSUSED */
 436 static int
 437 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
 438 {
 439         zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
 440 
 441         return (0);
 442 }
 443 
 444 static int
 445 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
 446 {
 447         lr_write_t *lr = (lr_write_t *)lrc;
 448         blkptr_t *bp = &lr->lr_blkptr;
 449 
 450         /*
 451          * If we previously claimed it, we need to free it.
 452          */
 453         if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
 454             bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
 455             !BP_IS_HOLE(bp))
 456                 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
 457 
 458         return (0);
 459 }
 460 
 461 static int
 462 zil_lwb_vdev_compare(const void *x1, const void *x2)
 463 {
 464         const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
 465         const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
 466 
 467         if (v1 < v2)
 468                 return (-1);
 469         if (v1 > v2)
 470                 return (1);
 471 
 472         return (0);
 473 }
 474 
 475 static lwb_t *
 476 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
 477 {
 478         lwb_t *lwb;
 479 
 480         lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
 481         lwb->lwb_zilog = zilog;
 482         lwb->lwb_blk = *bp;
 483         lwb->lwb_slog = slog;
 484         lwb->lwb_state = LWB_STATE_CLOSED;
 485         lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
 486         lwb->lwb_max_txg = txg;
 487         lwb->lwb_write_zio = NULL;
 488         lwb->lwb_root_zio = NULL;
 489         lwb->lwb_tx = NULL;
 490         lwb->lwb_issued_timestamp = 0;
 491         if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
 492                 lwb->lwb_nused = sizeof (zil_chain_t);
 493                 lwb->lwb_sz = BP_GET_LSIZE(bp);
 494         } else {
 495                 lwb->lwb_nused = 0;
 496                 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
 497         }
 498 
 499         mutex_enter(&zilog->zl_lock);
 500         list_insert_tail(&zilog->zl_lwb_list, lwb);
 501         mutex_exit(&zilog->zl_lock);
 502 
 503         ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
 504         ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
 505         VERIFY(list_is_empty(&lwb->lwb_waiters));
 506 
 507         return (lwb);
 508 }
 509 
 510 static void
 511 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
 512 {
 513         ASSERT(MUTEX_HELD(&zilog->zl_lock));
 514         ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
 515         VERIFY(list_is_empty(&lwb->lwb_waiters));
 516         ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
 517         ASSERT3P(lwb->lwb_write_zio, ==, NULL);
 518         ASSERT3P(lwb->lwb_root_zio, ==, NULL);
 519         ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
 520         ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
 521             lwb->lwb_state == LWB_STATE_DONE);
 522 
 523         /*
 524          * Clear the zilog's field to indicate this lwb is no longer
 525          * valid, and prevent use-after-free errors.
 526          */
 527         if (zilog->zl_last_lwb_opened == lwb)
 528                 zilog->zl_last_lwb_opened = NULL;
 529 
 530         kmem_cache_free(zil_lwb_cache, lwb);
 531 }
 532 
 533 /*
 534  * Called when we create in-memory log transactions so that we know
 535  * to cleanup the itxs at the end of spa_sync().
 536  */
 537 void
 538 zilog_dirty(zilog_t *zilog, uint64_t txg)
 539 {
 540         dsl_pool_t *dp = zilog->zl_dmu_pool;
 541         dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
 542 
 543         ASSERT(spa_writeable(zilog->zl_spa));
 544 
 545         if (ds->ds_is_snapshot)
 546                 panic("dirtying snapshot!");
 547 
 548         if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
 549                 /* up the hold count until we can be written out */
 550                 dmu_buf_add_ref(ds->ds_dbuf, zilog);
 551 
 552                 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
 553         }
 554 }
 555 
 556 /*
 557  * Determine if the zil is dirty in the specified txg. Callers wanting to
 558  * ensure that the dirty state does not change must hold the itxg_lock for
 559  * the specified txg. Holding the lock will ensure that the zil cannot be
 560  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
 561  * state.
 562  */
 563 boolean_t
 564 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
 565 {
 566         dsl_pool_t *dp = zilog->zl_dmu_pool;
 567 
 568         if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
 569                 return (B_TRUE);
 570         return (B_FALSE);
 571 }
 572 
 573 /*
 574  * Determine if the zil is dirty. The zil is considered dirty if it has
 575  * any pending itx records that have not been cleaned by zil_clean().
 576  */
 577 boolean_t
 578 zilog_is_dirty(zilog_t *zilog)
 579 {
 580         dsl_pool_t *dp = zilog->zl_dmu_pool;
 581 
 582         for (int t = 0; t < TXG_SIZE; t++) {
 583                 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
 584                         return (B_TRUE);
 585         }
 586         return (B_FALSE);
 587 }
 588 
 589 /*
 590  * Create an on-disk intent log.
 591  */
 592 static lwb_t *
 593 zil_create(zilog_t *zilog)
 594 {
 595         const zil_header_t *zh = zilog->zl_header;
 596         lwb_t *lwb = NULL;
 597         uint64_t txg = 0;
 598         dmu_tx_t *tx = NULL;
 599         blkptr_t blk;
 600         int error = 0;
 601         boolean_t slog = FALSE;
 602 
 603         /*
 604          * Wait for any previous destroy to complete.
 605          */
 606         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 607 
 608         ASSERT(zh->zh_claim_txg == 0);
 609         ASSERT(zh->zh_replay_seq == 0);
 610 
 611         blk = zh->zh_log;
 612 
 613         /*
 614          * Allocate an initial log block if:
 615          *    - there isn't one already
 616          *    - the existing block is the wrong endianess
 617          */
 618         if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
 619                 tx = dmu_tx_create(zilog->zl_os);
 620                 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 621                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 622                 txg = dmu_tx_get_txg(tx);
 623 
 624                 if (!BP_IS_HOLE(&blk)) {
 625                         zio_free_zil(zilog->zl_spa, txg, &blk);
 626                         BP_ZERO(&blk);
 627                 }
 628 
 629                 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
 630                     ZIL_MIN_BLKSZ, &slog);
 631 
 632                 if (error == 0)
 633                         zil_init_log_chain(zilog, &blk);
 634         }
 635 
 636         /*
 637          * Allocate a log write block (lwb) for the first log block.
 638          */
 639         if (error == 0)
 640                 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
 641 
 642         /*
 643          * If we just allocated the first log block, commit our transaction
 644          * and wait for zil_sync() to stuff the block poiner into zh_log.
 645          * (zh is part of the MOS, so we cannot modify it in open context.)
 646          */
 647         if (tx != NULL) {
 648                 dmu_tx_commit(tx);
 649                 txg_wait_synced(zilog->zl_dmu_pool, txg);
 650         }
 651 
 652         ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
 653 
 654         return (lwb);
 655 }
 656 
 657 /*
 658  * In one tx, free all log blocks and clear the log header. If keep_first
 659  * is set, then we're replaying a log with no content. We want to keep the
 660  * first block, however, so that the first synchronous transaction doesn't
 661  * require a txg_wait_synced() in zil_create(). We don't need to
 662  * txg_wait_synced() here either when keep_first is set, because both
 663  * zil_create() and zil_destroy() will wait for any in-progress destroys
 664  * to complete.
 665  */
 666 void
 667 zil_destroy(zilog_t *zilog, boolean_t keep_first)
 668 {
 669         const zil_header_t *zh = zilog->zl_header;
 670         lwb_t *lwb;
 671         dmu_tx_t *tx;
 672         uint64_t txg;
 673 
 674         /*
 675          * Wait for any previous destroy to complete.
 676          */
 677         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 678 
 679         zilog->zl_old_header = *zh;          /* debugging aid */
 680 
 681         if (BP_IS_HOLE(&zh->zh_log))
 682                 return;
 683 
 684         tx = dmu_tx_create(zilog->zl_os);
 685         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 686         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 687         txg = dmu_tx_get_txg(tx);
 688 
 689         mutex_enter(&zilog->zl_lock);
 690 
 691         ASSERT3U(zilog->zl_destroy_txg, <, txg);
 692         zilog->zl_destroy_txg = txg;
 693         zilog->zl_keep_first = keep_first;
 694 
 695         if (!list_is_empty(&zilog->zl_lwb_list)) {
 696                 ASSERT(zh->zh_claim_txg == 0);
 697                 VERIFY(!keep_first);
 698                 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
 699                         list_remove(&zilog->zl_lwb_list, lwb);
 700                         if (lwb->lwb_buf != NULL)
 701                                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 702                         zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
 703                         zil_free_lwb(zilog, lwb);
 704                 }
 705         } else if (!keep_first) {
 706                 zil_destroy_sync(zilog, tx);
 707         }
 708         mutex_exit(&zilog->zl_lock);
 709 
 710         dmu_tx_commit(tx);
 711 }
 712 
 713 void
 714 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
 715 {
 716         ASSERT(list_is_empty(&zilog->zl_lwb_list));
 717         (void) zil_parse(zilog, zil_free_log_block,
 718             zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
 719 }
 720 
 721 int
 722 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
 723 {
 724         dmu_tx_t *tx = txarg;
 725         uint64_t first_txg = dmu_tx_get_txg(tx);
 726         zilog_t *zilog;
 727         zil_header_t *zh;
 728         objset_t *os;
 729         int error;
 730 
 731         error = dmu_objset_own_obj(dp, ds->ds_object,
 732             DMU_OST_ANY, B_FALSE, FTAG, &os);
 733         if (error != 0) {
 734                 /*
 735                  * EBUSY indicates that the objset is inconsistent, in which
 736                  * case it can not have a ZIL.
 737                  */
 738                 if (error != EBUSY) {
 739                         cmn_err(CE_WARN, "can't open objset for %llu, error %u",
 740                             (unsigned long long)ds->ds_object, error);
 741                 }
 742                 return (0);
 743         }
 744 
 745         zilog = dmu_objset_zil(os);
 746         zh = zil_header_in_syncing_context(zilog);
 747 
 748         if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
 749                 if (!BP_IS_HOLE(&zh->zh_log))
 750                         zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
 751                 BP_ZERO(&zh->zh_log);
 752                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 753                 dmu_objset_disown(os, FTAG);
 754                 return (0);
 755         }
 756 
 757         /*
 758          * Claim all log blocks if we haven't already done so, and remember
 759          * the highest claimed sequence number.  This ensures that if we can
 760          * read only part of the log now (e.g. due to a missing device),
 761          * but we can read the entire log later, we will not try to replay
 762          * or destroy beyond the last block we successfully claimed.
 763          */
 764         ASSERT3U(zh->zh_claim_txg, <=, first_txg);
 765         if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
 766                 (void) zil_parse(zilog, zil_claim_log_block,
 767                     zil_claim_log_record, tx, first_txg);
 768                 zh->zh_claim_txg = first_txg;
 769                 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
 770                 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
 771                 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
 772                         zh->zh_flags |= ZIL_REPLAY_NEEDED;
 773                 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
 774                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 775         }
 776 
 777         ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
 778         dmu_objset_disown(os, FTAG);
 779         return (0);
 780 }
 781 
 782 /*
 783  * Check the log by walking the log chain.
 784  * Checksum errors are ok as they indicate the end of the chain.
 785  * Any other error (no device or read failure) returns an error.
 786  */
 787 /* ARGSUSED */
 788 int
 789 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
 790 {
 791         zilog_t *zilog;
 792         objset_t *os;
 793         blkptr_t *bp;
 794         int error;
 795 
 796         ASSERT(tx == NULL);
 797 
 798         error = dmu_objset_from_ds(ds, &os);
 799         if (error != 0) {
 800                 cmn_err(CE_WARN, "can't open objset %llu, error %d",
 801                     (unsigned long long)ds->ds_object, error);
 802                 return (0);
 803         }
 804 
 805         zilog = dmu_objset_zil(os);
 806         bp = (blkptr_t *)&zilog->zl_header->zh_log;
 807 
 808         /*
 809          * Check the first block and determine if it's on a log device
 810          * which may have been removed or faulted prior to loading this
 811          * pool.  If so, there's no point in checking the rest of the log
 812          * as its content should have already been synced to the pool.
 813          */
 814         if (!BP_IS_HOLE(bp)) {
 815                 vdev_t *vd;
 816                 boolean_t valid = B_TRUE;
 817 
 818                 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
 819                 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
 820                 if (vd->vdev_islog && vdev_is_dead(vd))
 821                         valid = vdev_log_state_valid(vd);
 822                 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
 823 
 824                 if (!valid)
 825                         return (0);
 826         }
 827 
 828         /*
 829          * Because tx == NULL, zil_claim_log_block() will not actually claim
 830          * any blocks, but just determine whether it is possible to do so.
 831          * In addition to checking the log chain, zil_claim_log_block()
 832          * will invoke zio_claim() with a done func of spa_claim_notify(),
 833          * which will update spa_max_claim_txg.  See spa_load() for details.
 834          */
 835         error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
 836             zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
 837 
 838         return ((error == ECKSUM || error == ENOENT) ? 0 : error);
 839 }
 840 
 841 /*
 842  * When an itx is "skipped", this function is used to properly mark the
 843  * waiter as "done, and signal any thread(s) waiting on it. An itx can
 844  * be skipped (and not committed to an lwb) for a variety of reasons,
 845  * one of them being that the itx was committed via spa_sync(), prior to
 846  * it being committed to an lwb; this can happen if a thread calling
 847  * zil_commit() is racing with spa_sync().
 848  */
 849 static void
 850 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
 851 {
 852         mutex_enter(&zcw->zcw_lock);
 853         ASSERT3B(zcw->zcw_done, ==, B_FALSE);
 854         zcw->zcw_done = B_TRUE;
 855         cv_broadcast(&zcw->zcw_cv);
 856         mutex_exit(&zcw->zcw_lock);
 857 }
 858 
 859 /*
 860  * This function is used when the given waiter is to be linked into an
 861  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
 862  * At this point, the waiter will no longer be referenced by the itx,
 863  * and instead, will be referenced by the lwb.
 864  */
 865 static void
 866 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
 867 {
 868         /*
 869          * The lwb_waiters field of the lwb is protected by the zilog's
 870          * zl_lock, thus it must be held when calling this function.
 871          */
 872         ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
 873 
 874         mutex_enter(&zcw->zcw_lock);
 875         ASSERT(!list_link_active(&zcw->zcw_node));
 876         ASSERT3P(zcw->zcw_lwb, ==, NULL);
 877         ASSERT3P(lwb, !=, NULL);
 878         ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
 879             lwb->lwb_state == LWB_STATE_ISSUED);
 880 
 881         list_insert_tail(&lwb->lwb_waiters, zcw);
 882         zcw->zcw_lwb = lwb;
 883         mutex_exit(&zcw->zcw_lock);
 884 }
 885 
 886 /*
 887  * This function is used when zio_alloc_zil() fails to allocate a ZIL
 888  * block, and the given waiter must be linked to the "nolwb waiters"
 889  * list inside of zil_process_commit_list().
 890  */
 891 static void
 892 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
 893 {
 894         mutex_enter(&zcw->zcw_lock);
 895         ASSERT(!list_link_active(&zcw->zcw_node));
 896         ASSERT3P(zcw->zcw_lwb, ==, NULL);
 897         list_insert_tail(nolwb, zcw);
 898         mutex_exit(&zcw->zcw_lock);
 899 }
 900 
 901 void
 902 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
 903 {
 904         avl_tree_t *t = &lwb->lwb_vdev_tree;
 905         avl_index_t where;
 906         zil_vdev_node_t *zv, zvsearch;
 907         int ndvas = BP_GET_NDVAS(bp);
 908         int i;
 909 
 910         if (zfs_nocacheflush)
 911                 return;
 912 
 913         mutex_enter(&lwb->lwb_vdev_lock);
 914         for (i = 0; i < ndvas; i++) {
 915                 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
 916                 if (avl_find(t, &zvsearch, &where) == NULL) {
 917                         zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
 918                         zv->zv_vdev = zvsearch.zv_vdev;
 919                         avl_insert(t, zv, where);
 920                 }
 921         }
 922         mutex_exit(&lwb->lwb_vdev_lock);
 923 }
 924 
 925 void
 926 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
 927 {
 928         lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
 929 }
 930 
 931 /*
 932  * This function is a called after all VDEVs associated with a given lwb
 933  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
 934  * as the lwb write completes, if "zfs_nocacheflush" is set.
 935  *
 936  * The intention is for this function to be called as soon as the
 937  * contents of an lwb are considered "stable" on disk, and will survive
 938  * any sudden loss of power. At this point, any threads waiting for the
 939  * lwb to reach this state are signalled, and the "waiter" structures
 940  * are marked "done".
 941  */
 942 static void
 943 zil_lwb_flush_vdevs_done(zio_t *zio)
 944 {
 945         lwb_t *lwb = zio->io_private;
 946         zilog_t *zilog = lwb->lwb_zilog;
 947         dmu_tx_t *tx = lwb->lwb_tx;
 948         zil_commit_waiter_t *zcw;
 949 
 950         spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
 951 
 952         zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 953 
 954         mutex_enter(&zilog->zl_lock);
 955 
 956         /*
 957          * Ensure the lwb buffer pointer is cleared before releasing the
 958          * txg. If we have had an allocation failure and the txg is
 959          * waiting to sync then we want zil_sync() to remove the lwb so
 960          * that it's not picked up as the next new one in
 961          * zil_process_commit_list(). zil_sync() will only remove the
 962          * lwb if lwb_buf is null.
 963          */
 964         lwb->lwb_buf = NULL;
 965         lwb->lwb_tx = NULL;
 966 
 967         ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
 968         zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
 969 
 970         lwb->lwb_root_zio = NULL;
 971         lwb->lwb_state = LWB_STATE_DONE;
 972 
 973         if (zilog->zl_last_lwb_opened == lwb) {
 974                 /*
 975                  * Remember the highest committed log sequence number
 976                  * for ztest. We only update this value when all the log
 977                  * writes succeeded, because ztest wants to ASSERT that
 978                  * it got the whole log chain.
 979                  */
 980                 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
 981         }
 982 
 983         while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
 984                 mutex_enter(&zcw->zcw_lock);
 985 
 986                 ASSERT(list_link_active(&zcw->zcw_node));
 987                 list_remove(&lwb->lwb_waiters, zcw);
 988 
 989                 ASSERT3P(zcw->zcw_lwb, ==, lwb);
 990                 zcw->zcw_lwb = NULL;
 991 
 992                 zcw->zcw_zio_error = zio->io_error;
 993 
 994                 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
 995                 zcw->zcw_done = B_TRUE;
 996                 cv_broadcast(&zcw->zcw_cv);
 997 
 998                 mutex_exit(&zcw->zcw_lock);
 999         }
1000 
1001         mutex_exit(&zilog->zl_lock);
1002 
1003         /*
1004          * Now that we've written this log block, we have a stable pointer
1005          * to the next block in the chain, so it's OK to let the txg in
1006          * which we allocated the next block sync.
1007          */
1008         dmu_tx_commit(tx);
1009 }
1010 
1011 /*
1012  * This is called when an lwb write completes. This means, this specific
1013  * lwb was written to disk, and all dependent lwb have also been
1014  * written to disk.
1015  *
1016  * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1017  * the VDEVs involved in writing out this specific lwb. The lwb will be
1018  * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1019  * zio completion callback for the lwb's root zio.
1020  */
1021 static void
1022 zil_lwb_write_done(zio_t *zio)
1023 {
1024         lwb_t *lwb = zio->io_private;
1025         spa_t *spa = zio->io_spa;
1026         zilog_t *zilog = lwb->lwb_zilog;
1027         avl_tree_t *t = &lwb->lwb_vdev_tree;
1028         void *cookie = NULL;
1029         zil_vdev_node_t *zv;
1030 
1031         ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1032 
1033         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1034         ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1035         ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1036         ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1037         ASSERT(!BP_IS_GANG(zio->io_bp));
1038         ASSERT(!BP_IS_HOLE(zio->io_bp));
1039         ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1040 
1041         abd_put(zio->io_abd);
1042 
1043         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1044 
1045         mutex_enter(&zilog->zl_lock);
1046         lwb->lwb_write_zio = NULL;
1047         mutex_exit(&zilog->zl_lock);
1048 
1049         if (avl_numnodes(t) == 0)
1050                 return;
1051 
1052         /*
1053          * If there was an IO error, we're not going to call zio_flush()
1054          * on these vdevs, so we simply empty the tree and free the
1055          * nodes. We avoid calling zio_flush() since there isn't any
1056          * good reason for doing so, after the lwb block failed to be
1057          * written out.
1058          */
1059         if (zio->io_error != 0) {
1060                 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1061                         kmem_free(zv, sizeof (*zv));
1062                 return;
1063         }
1064 
1065         while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1066                 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1067                 if (vd != NULL)
1068                         zio_flush(lwb->lwb_root_zio, vd);
1069                 kmem_free(zv, sizeof (*zv));
1070         }
1071 }
1072 
1073 /*
1074  * This function's purpose is to "open" an lwb such that it is ready to
1075  * accept new itxs being committed to it. To do this, the lwb's zio
1076  * structures are created, and linked to the lwb. This function is
1077  * idempotent; if the passed in lwb has already been opened, this
1078  * function is essentially a no-op.
1079  */
1080 static void
1081 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1082 {
1083         zbookmark_phys_t zb;
1084         zio_priority_t prio;
1085 
1086         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1087         ASSERT3P(lwb, !=, NULL);
1088         EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1089         EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1090 
1091         SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1092             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1093             lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1094 
1095         if (lwb->lwb_root_zio == NULL) {
1096                 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1097                     BP_GET_LSIZE(&lwb->lwb_blk));
1098 
1099                 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1100                         prio = ZIO_PRIORITY_SYNC_WRITE;
1101                 else
1102                         prio = ZIO_PRIORITY_ASYNC_WRITE;
1103 
1104                 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1105                     zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1106                 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1107 
1108                 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1109                     zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1110                     BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1111                     prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1112                 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1113 
1114                 lwb->lwb_state = LWB_STATE_OPENED;
1115 
1116                 mutex_enter(&zilog->zl_lock);
1117 
1118                 /*
1119                  * The zilog's "zl_last_lwb_opened" field is used to
1120                  * build the lwb/zio dependency chain, which is used to
1121                  * preserve the ordering of lwb completions that is
1122                  * required by the semantics of the ZIL. Each new lwb
1123                  * zio becomes a parent of the "previous" lwb zio, such
1124                  * that the new lwb's zio cannot complete until the
1125                  * "previous" lwb's zio completes.
1126                  *
1127                  * This is required by the semantics of zil_commit();
1128                  * the commit waiters attached to the lwbs will be woken
1129                  * in the lwb zio's completion callback, so this zio
1130                  * dependency graph ensures the waiters are woken in the
1131                  * correct order (the same order the lwbs were created).
1132                  */
1133                 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1134                 if (last_lwb_opened != NULL &&
1135                     last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1136                         ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1137                             last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1138                         ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1139                         zio_add_child(lwb->lwb_root_zio,
1140                             last_lwb_opened->lwb_root_zio);
1141                 }
1142                 zilog->zl_last_lwb_opened = lwb;
1143 
1144                 mutex_exit(&zilog->zl_lock);
1145         }
1146 
1147         ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1148         ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1149         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1150 }
1151 
1152 /*
1153  * Define a limited set of intent log block sizes.
1154  *
1155  * These must be a multiple of 4KB. Note only the amount used (again
1156  * aligned to 4KB) actually gets written. However, we can't always just
1157  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1158  */
1159 uint64_t zil_block_buckets[] = {
1160     4096,               /* non TX_WRITE */
1161     8192+4096,          /* data base */
1162     32*1024 + 4096,     /* NFS writes */
1163     UINT64_MAX
1164 };
1165 
1166 /*
1167  * Start a log block write and advance to the next log block.
1168  * Calls are serialized.
1169  */
1170 static lwb_t *
1171 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1172 {
1173         lwb_t *nlwb = NULL;
1174         zil_chain_t *zilc;
1175         spa_t *spa = zilog->zl_spa;
1176         blkptr_t *bp;
1177         dmu_tx_t *tx;
1178         uint64_t txg;
1179         uint64_t zil_blksz, wsz;
1180         int i, error;
1181         boolean_t slog;
1182 
1183         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1184         ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1185         ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1186         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1187 
1188         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1189                 zilc = (zil_chain_t *)lwb->lwb_buf;
1190                 bp = &zilc->zc_next_blk;
1191         } else {
1192                 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1193                 bp = &zilc->zc_next_blk;
1194         }
1195 
1196         ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1197 
1198         /*
1199          * Allocate the next block and save its address in this block
1200          * before writing it in order to establish the log chain.
1201          * Note that if the allocation of nlwb synced before we wrote
1202          * the block that points at it (lwb), we'd leak it if we crashed.
1203          * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1204          * We dirty the dataset to ensure that zil_sync() will be called
1205          * to clean up in the event of allocation failure or I/O failure.
1206          */
1207 
1208         tx = dmu_tx_create(zilog->zl_os);
1209 
1210         /*
1211          * Since we are not going to create any new dirty data, and we
1212          * can even help with clearing the existing dirty data, we
1213          * should not be subject to the dirty data based delays. We
1214          * use TXG_NOTHROTTLE to bypass the delay mechanism.
1215          */
1216         VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1217 
1218         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1219         txg = dmu_tx_get_txg(tx);
1220 
1221         lwb->lwb_tx = tx;
1222 
1223         /*
1224          * Log blocks are pre-allocated. Here we select the size of the next
1225          * block, based on size used in the last block.
1226          * - first find the smallest bucket that will fit the block from a
1227          *   limited set of block sizes. This is because it's faster to write
1228          *   blocks allocated from the same metaslab as they are adjacent or
1229          *   close.
1230          * - next find the maximum from the new suggested size and an array of
1231          *   previous sizes. This lessens a picket fence effect of wrongly
1232          *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1233          *   requests.
1234          *
1235          * Note we only write what is used, but we can't just allocate
1236          * the maximum block size because we can exhaust the available
1237          * pool log space.
1238          */
1239         zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1240         for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1241                 continue;
1242         zil_blksz = zil_block_buckets[i];
1243         if (zil_blksz == UINT64_MAX)
1244                 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1245         zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1246         for (i = 0; i < ZIL_PREV_BLKS; i++)
1247                 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1248         zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1249 
1250         BP_ZERO(bp);
1251 
1252         /* pass the old blkptr in order to spread log blocks across devs */
1253         error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1254         if (error == 0) {
1255                 ASSERT3U(bp->blk_birth, ==, txg);
1256                 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1257                 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1258 
1259                 /*
1260                  * Allocate a new log write block (lwb).
1261                  */
1262                 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1263         }
1264 
1265         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1266                 /* For Slim ZIL only write what is used. */
1267                 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1268                 ASSERT3U(wsz, <=, lwb->lwb_sz);
1269                 zio_shrink(lwb->lwb_write_zio, wsz);
1270 
1271         } else {
1272                 wsz = lwb->lwb_sz;
1273         }
1274 
1275         zilc->zc_pad = 0;
1276         zilc->zc_nused = lwb->lwb_nused;
1277         zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1278 
1279         /*
1280          * clear unused data for security
1281          */
1282         bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1283 
1284         spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1285 
1286         zil_lwb_add_block(lwb, &lwb->lwb_blk);
1287         lwb->lwb_issued_timestamp = gethrtime();
1288         lwb->lwb_state = LWB_STATE_ISSUED;
1289 
1290         zio_nowait(lwb->lwb_root_zio);
1291         zio_nowait(lwb->lwb_write_zio);
1292 
1293         /*
1294          * If there was an allocation failure then nlwb will be null which
1295          * forces a txg_wait_synced().
1296          */
1297         return (nlwb);
1298 }
1299 
1300 static lwb_t *
1301 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1302 {
1303         lr_t *lrcb, *lrc;
1304         lr_write_t *lrwb, *lrw;
1305         char *lr_buf;
1306         uint64_t dlen, dnow, lwb_sp, reclen, txg;
1307 
1308         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1309         ASSERT3P(lwb, !=, NULL);
1310         ASSERT3P(lwb->lwb_buf, !=, NULL);
1311 
1312         zil_lwb_write_open(zilog, lwb);
1313 
1314         lrc = &itx->itx_lr;
1315         lrw = (lr_write_t *)lrc;
1316 
1317         /*
1318          * A commit itx doesn't represent any on-disk state; instead
1319          * it's simply used as a place holder on the commit list, and
1320          * provides a mechanism for attaching a "commit waiter" onto the
1321          * correct lwb (such that the waiter can be signalled upon
1322          * completion of that lwb). Thus, we don't process this itx's
1323          * log record if it's a commit itx (these itx's don't have log
1324          * records), and instead link the itx's waiter onto the lwb's
1325          * list of waiters.
1326          *
1327          * For more details, see the comment above zil_commit().
1328          */
1329         if (lrc->lrc_txtype == TX_COMMIT) {
1330                 mutex_enter(&zilog->zl_lock);
1331                 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1332                 itx->itx_private = NULL;
1333                 mutex_exit(&zilog->zl_lock);
1334                 return (lwb);
1335         }
1336 
1337         if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1338                 dlen = P2ROUNDUP_TYPED(
1339                     lrw->lr_length, sizeof (uint64_t), uint64_t);
1340         } else {
1341                 dlen = 0;
1342         }
1343         reclen = lrc->lrc_reclen;
1344         zilog->zl_cur_used += (reclen + dlen);
1345         txg = lrc->lrc_txg;
1346 
1347         ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1348 
1349 cont:
1350         /*
1351          * If this record won't fit in the current log block, start a new one.
1352          * For WR_NEED_COPY optimize layout for minimal number of chunks.
1353          */
1354         lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1355         if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1356             lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1357             lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1358                 lwb = zil_lwb_write_issue(zilog, lwb);
1359                 if (lwb == NULL)
1360                         return (NULL);
1361                 zil_lwb_write_open(zilog, lwb);
1362                 ASSERT(LWB_EMPTY(lwb));
1363                 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1364                 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1365         }
1366 
1367         dnow = MIN(dlen, lwb_sp - reclen);
1368         lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1369         bcopy(lrc, lr_buf, reclen);
1370         lrcb = (lr_t *)lr_buf;          /* Like lrc, but inside lwb. */
1371         lrwb = (lr_write_t *)lrcb;      /* Like lrw, but inside lwb. */
1372 
1373         /*
1374          * If it's a write, fetch the data or get its blkptr as appropriate.
1375          */
1376         if (lrc->lrc_txtype == TX_WRITE) {
1377                 if (txg > spa_freeze_txg(zilog->zl_spa))
1378                         txg_wait_synced(zilog->zl_dmu_pool, txg);
1379                 if (itx->itx_wr_state != WR_COPIED) {
1380                         char *dbuf;
1381                         int error;
1382 
1383                         if (itx->itx_wr_state == WR_NEED_COPY) {
1384                                 dbuf = lr_buf + reclen;
1385                                 lrcb->lrc_reclen += dnow;
1386                                 if (lrwb->lr_length > dnow)
1387                                         lrwb->lr_length = dnow;
1388                                 lrw->lr_offset += dnow;
1389                                 lrw->lr_length -= dnow;
1390                         } else {
1391                                 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1392                                 dbuf = NULL;
1393                         }
1394 
1395                         /*
1396                          * We pass in the "lwb_write_zio" rather than
1397                          * "lwb_root_zio" so that the "lwb_write_zio"
1398                          * becomes the parent of any zio's created by
1399                          * the "zl_get_data" callback. The vdevs are
1400                          * flushed after the "lwb_write_zio" completes,
1401                          * so we want to make sure that completion
1402                          * callback waits for these additional zio's,
1403                          * such that the vdevs used by those zio's will
1404                          * be included in the lwb's vdev tree, and those
1405                          * vdevs will be properly flushed. If we passed
1406                          * in "lwb_root_zio" here, then these additional
1407                          * vdevs may not be flushed; e.g. if these zio's
1408                          * completed after "lwb_write_zio" completed.
1409                          */
1410                         error = zilog->zl_get_data(itx->itx_private,
1411                             lrwb, dbuf, lwb, lwb->lwb_write_zio);
1412 
1413                         if (error == EIO) {
1414                                 txg_wait_synced(zilog->zl_dmu_pool, txg);
1415                                 return (lwb);
1416                         }
1417                         if (error != 0) {
1418                                 ASSERT(error == ENOENT || error == EEXIST ||
1419                                     error == EALREADY);
1420                                 return (lwb);
1421                         }
1422                 }
1423         }
1424 
1425         /*
1426          * We're actually making an entry, so update lrc_seq to be the
1427          * log record sequence number.  Note that this is generally not
1428          * equal to the itx sequence number because not all transactions
1429          * are synchronous, and sometimes spa_sync() gets there first.
1430          */
1431         lrcb->lrc_seq = ++zilog->zl_lr_seq;
1432         lwb->lwb_nused += reclen + dnow;
1433 
1434         zil_lwb_add_txg(lwb, txg);
1435 
1436         ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1437         ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1438 
1439         dlen -= dnow;
1440         if (dlen > 0) {
1441                 zilog->zl_cur_used += reclen;
1442                 goto cont;
1443         }
1444 
1445         return (lwb);
1446 }
1447 
1448 itx_t *
1449 zil_itx_create(uint64_t txtype, size_t lrsize)
1450 {
1451         itx_t *itx;
1452 
1453         lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1454 
1455         itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1456         itx->itx_lr.lrc_txtype = txtype;
1457         itx->itx_lr.lrc_reclen = lrsize;
1458         itx->itx_lr.lrc_seq = 0;     /* defensive */
1459         itx->itx_sync = B_TRUE;              /* default is synchronous */
1460 
1461         return (itx);
1462 }
1463 
1464 void
1465 zil_itx_destroy(itx_t *itx)
1466 {
1467         kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1468 }
1469 
1470 /*
1471  * Free up the sync and async itxs. The itxs_t has already been detached
1472  * so no locks are needed.
1473  */
1474 static void
1475 zil_itxg_clean(itxs_t *itxs)
1476 {
1477         itx_t *itx;
1478         list_t *list;
1479         avl_tree_t *t;
1480         void *cookie;
1481         itx_async_node_t *ian;
1482 
1483         list = &itxs->i_sync_list;
1484         while ((itx = list_head(list)) != NULL) {
1485                 /*
1486                  * In the general case, commit itxs will not be found
1487                  * here, as they'll be committed to an lwb via
1488                  * zil_lwb_commit(), and free'd in that function. Having
1489                  * said that, it is still possible for commit itxs to be
1490                  * found here, due to the following race:
1491                  *
1492                  *      - a thread calls zil_commit() which assigns the
1493                  *        commit itx to a per-txg i_sync_list
1494                  *      - zil_itxg_clean() is called (e.g. via spa_sync())
1495                  *        while the waiter is still on the i_sync_list
1496                  *
1497                  * There's nothing to prevent syncing the txg while the
1498                  * waiter is on the i_sync_list. This normally doesn't
1499                  * happen because spa_sync() is slower than zil_commit(),
1500                  * but if zil_commit() calls txg_wait_synced() (e.g.
1501                  * because zil_create() or zil_commit_writer_stall() is
1502                  * called) we will hit this case.
1503                  */
1504                 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1505                         zil_commit_waiter_skip(itx->itx_private);
1506 
1507                 list_remove(list, itx);
1508                 zil_itx_destroy(itx);
1509         }
1510 
1511         cookie = NULL;
1512         t = &itxs->i_async_tree;
1513         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1514                 list = &ian->ia_list;
1515                 while ((itx = list_head(list)) != NULL) {
1516                         list_remove(list, itx);
1517                         /* commit itxs should never be on the async lists. */
1518                         ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1519                         zil_itx_destroy(itx);
1520                 }
1521                 list_destroy(list);
1522                 kmem_free(ian, sizeof (itx_async_node_t));
1523         }
1524         avl_destroy(t);
1525 
1526         kmem_free(itxs, sizeof (itxs_t));
1527 }
1528 
1529 static int
1530 zil_aitx_compare(const void *x1, const void *x2)
1531 {
1532         const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1533         const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1534 
1535         if (o1 < o2)
1536                 return (-1);
1537         if (o1 > o2)
1538                 return (1);
1539 
1540         return (0);
1541 }
1542 
1543 /*
1544  * Remove all async itx with the given oid.
1545  */
1546 static void
1547 zil_remove_async(zilog_t *zilog, uint64_t oid)
1548 {
1549         uint64_t otxg, txg;
1550         itx_async_node_t *ian;
1551         avl_tree_t *t;
1552         avl_index_t where;
1553         list_t clean_list;
1554         itx_t *itx;
1555 
1556         ASSERT(oid != 0);
1557         list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1558 
1559         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1560                 otxg = ZILTEST_TXG;
1561         else
1562                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1563 
1564         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1565                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1566 
1567                 mutex_enter(&itxg->itxg_lock);
1568                 if (itxg->itxg_txg != txg) {
1569                         mutex_exit(&itxg->itxg_lock);
1570                         continue;
1571                 }
1572 
1573                 /*
1574                  * Locate the object node and append its list.
1575                  */
1576                 t = &itxg->itxg_itxs->i_async_tree;
1577                 ian = avl_find(t, &oid, &where);
1578                 if (ian != NULL)
1579                         list_move_tail(&clean_list, &ian->ia_list);
1580                 mutex_exit(&itxg->itxg_lock);
1581         }
1582         while ((itx = list_head(&clean_list)) != NULL) {
1583                 list_remove(&clean_list, itx);
1584                 /* commit itxs should never be on the async lists. */
1585                 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1586                 zil_itx_destroy(itx);
1587         }
1588         list_destroy(&clean_list);
1589 }
1590 
1591 void
1592 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1593 {
1594         uint64_t txg;
1595         itxg_t *itxg;
1596         itxs_t *itxs, *clean = NULL;
1597 
1598         /*
1599          * Object ids can be re-instantiated in the next txg so
1600          * remove any async transactions to avoid future leaks.
1601          * This can happen if a fsync occurs on the re-instantiated
1602          * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1603          * the new file data and flushes a write record for the old object.
1604          */
1605         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1606                 zil_remove_async(zilog, itx->itx_oid);
1607 
1608         /*
1609          * Ensure the data of a renamed file is committed before the rename.
1610          */
1611         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1612                 zil_async_to_sync(zilog, itx->itx_oid);
1613 
1614         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1615                 txg = ZILTEST_TXG;
1616         else
1617                 txg = dmu_tx_get_txg(tx);
1618 
1619         itxg = &zilog->zl_itxg[txg & TXG_MASK];
1620         mutex_enter(&itxg->itxg_lock);
1621         itxs = itxg->itxg_itxs;
1622         if (itxg->itxg_txg != txg) {
1623                 if (itxs != NULL) {
1624                         /*
1625                          * The zil_clean callback hasn't got around to cleaning
1626                          * this itxg. Save the itxs for release below.
1627                          * This should be rare.
1628                          */
1629                         zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1630                             "txg %llu", itxg->itxg_txg);
1631                         clean = itxg->itxg_itxs;
1632                 }
1633                 itxg->itxg_txg = txg;
1634                 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1635 
1636                 list_create(&itxs->i_sync_list, sizeof (itx_t),
1637                     offsetof(itx_t, itx_node));
1638                 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1639                     sizeof (itx_async_node_t),
1640                     offsetof(itx_async_node_t, ia_node));
1641         }
1642         if (itx->itx_sync) {
1643                 list_insert_tail(&itxs->i_sync_list, itx);
1644         } else {
1645                 avl_tree_t *t = &itxs->i_async_tree;
1646                 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1647                 itx_async_node_t *ian;
1648                 avl_index_t where;
1649 
1650                 ian = avl_find(t, &foid, &where);
1651                 if (ian == NULL) {
1652                         ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1653                         list_create(&ian->ia_list, sizeof (itx_t),
1654                             offsetof(itx_t, itx_node));
1655                         ian->ia_foid = foid;
1656                         avl_insert(t, ian, where);
1657                 }
1658                 list_insert_tail(&ian->ia_list, itx);
1659         }
1660 
1661         itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1662 
1663         /*
1664          * We don't want to dirty the ZIL using ZILTEST_TXG, because
1665          * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1666          * need to be careful to always dirty the ZIL using the "real"
1667          * TXG (not itxg_txg) even when the SPA is frozen.
1668          */
1669         zilog_dirty(zilog, dmu_tx_get_txg(tx));
1670         mutex_exit(&itxg->itxg_lock);
1671 
1672         /* Release the old itxs now we've dropped the lock */
1673         if (clean != NULL)
1674                 zil_itxg_clean(clean);
1675 }
1676 
1677 /*
1678  * If there are any in-memory intent log transactions which have now been
1679  * synced then start up a taskq to free them. We should only do this after we
1680  * have written out the uberblocks (i.e. txg has been comitted) so that
1681  * don't inadvertently clean out in-memory log records that would be required
1682  * by zil_commit().
1683  */
1684 void
1685 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1686 {
1687         itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1688         itxs_t *clean_me;
1689 
1690         ASSERT3U(synced_txg, <, ZILTEST_TXG);
1691 
1692         mutex_enter(&itxg->itxg_lock);
1693         if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1694                 mutex_exit(&itxg->itxg_lock);
1695                 return;
1696         }
1697         ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1698         ASSERT3U(itxg->itxg_txg, !=, 0);
1699         clean_me = itxg->itxg_itxs;
1700         itxg->itxg_itxs = NULL;
1701         itxg->itxg_txg = 0;
1702         mutex_exit(&itxg->itxg_lock);
1703         /*
1704          * Preferably start a task queue to free up the old itxs but
1705          * if taskq_dispatch can't allocate resources to do that then
1706          * free it in-line. This should be rare. Note, using TQ_SLEEP
1707          * created a bad performance problem.
1708          */
1709         ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1710         ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1711         if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1712             (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1713                 zil_itxg_clean(clean_me);
1714 }
1715 
1716 /*
1717  * This function will traverse the queue of itxs that need to be
1718  * committed, and move them onto the ZIL's zl_itx_commit_list.
1719  */
1720 static void
1721 zil_get_commit_list(zilog_t *zilog)
1722 {
1723         uint64_t otxg, txg;
1724         list_t *commit_list = &zilog->zl_itx_commit_list;
1725 
1726         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1727 
1728         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1729                 otxg = ZILTEST_TXG;
1730         else
1731                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1732 
1733         /*
1734          * This is inherently racy, since there is nothing to prevent
1735          * the last synced txg from changing. That's okay since we'll
1736          * only commit things in the future.
1737          */
1738         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1739                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1740 
1741                 mutex_enter(&itxg->itxg_lock);
1742                 if (itxg->itxg_txg != txg) {
1743                         mutex_exit(&itxg->itxg_lock);
1744                         continue;
1745                 }
1746 
1747                 /*
1748                  * If we're adding itx records to the zl_itx_commit_list,
1749                  * then the zil better be dirty in this "txg". We can assert
1750                  * that here since we're holding the itxg_lock which will
1751                  * prevent spa_sync from cleaning it. Once we add the itxs
1752                  * to the zl_itx_commit_list we must commit it to disk even
1753                  * if it's unnecessary (i.e. the txg was synced).
1754                  */
1755                 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1756                     spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1757                 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1758 
1759                 mutex_exit(&itxg->itxg_lock);
1760         }
1761 }
1762 
1763 /*
1764  * Move the async itxs for a specified object to commit into sync lists.
1765  */
1766 static void
1767 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1768 {
1769         uint64_t otxg, txg;
1770         itx_async_node_t *ian;
1771         avl_tree_t *t;
1772         avl_index_t where;
1773 
1774         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1775                 otxg = ZILTEST_TXG;
1776         else
1777                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1778 
1779         /*
1780          * This is inherently racy, since there is nothing to prevent
1781          * the last synced txg from changing.
1782          */
1783         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1784                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1785 
1786                 mutex_enter(&itxg->itxg_lock);
1787                 if (itxg->itxg_txg != txg) {
1788                         mutex_exit(&itxg->itxg_lock);
1789                         continue;
1790                 }
1791 
1792                 /*
1793                  * If a foid is specified then find that node and append its
1794                  * list. Otherwise walk the tree appending all the lists
1795                  * to the sync list. We add to the end rather than the
1796                  * beginning to ensure the create has happened.
1797                  */
1798                 t = &itxg->itxg_itxs->i_async_tree;
1799                 if (foid != 0) {
1800                         ian = avl_find(t, &foid, &where);
1801                         if (ian != NULL) {
1802                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1803                                     &ian->ia_list);
1804                         }
1805                 } else {
1806                         void *cookie = NULL;
1807 
1808                         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1809                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1810                                     &ian->ia_list);
1811                                 list_destroy(&ian->ia_list);
1812                                 kmem_free(ian, sizeof (itx_async_node_t));
1813                         }
1814                 }
1815                 mutex_exit(&itxg->itxg_lock);
1816         }
1817 }
1818 
1819 /*
1820  * This function will prune commit itxs that are at the head of the
1821  * commit list (it won't prune past the first non-commit itx), and
1822  * either: a) attach them to the last lwb that's still pending
1823  * completion, or b) skip them altogether.
1824  *
1825  * This is used as a performance optimization to prevent commit itxs
1826  * from generating new lwbs when it's unnecessary to do so.
1827  */
1828 static void
1829 zil_prune_commit_list(zilog_t *zilog)
1830 {
1831         itx_t *itx;
1832 
1833         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1834 
1835         while (itx = list_head(&zilog->zl_itx_commit_list)) {
1836                 lr_t *lrc = &itx->itx_lr;
1837                 if (lrc->lrc_txtype != TX_COMMIT)
1838                         break;
1839 
1840                 mutex_enter(&zilog->zl_lock);
1841 
1842                 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1843                 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1844                         /*
1845                          * All of the itxs this waiter was waiting on
1846                          * must have already completed (or there were
1847                          * never any itx's for it to wait on), so it's
1848                          * safe to skip this waiter and mark it done.
1849                          */
1850                         zil_commit_waiter_skip(itx->itx_private);
1851                 } else {
1852                         zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1853                         itx->itx_private = NULL;
1854                 }
1855 
1856                 mutex_exit(&zilog->zl_lock);
1857 
1858                 list_remove(&zilog->zl_itx_commit_list, itx);
1859                 zil_itx_destroy(itx);
1860         }
1861 
1862         IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1863 }
1864 
1865 static void
1866 zil_commit_writer_stall(zilog_t *zilog)
1867 {
1868         /*
1869          * When zio_alloc_zil() fails to allocate the next lwb block on
1870          * disk, we must call txg_wait_synced() to ensure all of the
1871          * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1872          * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1873          * to zil_process_commit_list()) will have to call zil_create(),
1874          * and start a new ZIL chain.
1875          *
1876          * Since zil_alloc_zil() failed, the lwb that was previously
1877          * issued does not have a pointer to the "next" lwb on disk.
1878          * Thus, if another ZIL writer thread was to allocate the "next"
1879          * on-disk lwb, that block could be leaked in the event of a
1880          * crash (because the previous lwb on-disk would not point to
1881          * it).
1882          *
1883          * We must hold the zilog's zl_issuer_lock while we do this, to
1884          * ensure no new threads enter zil_process_commit_list() until
1885          * all lwb's in the zl_lwb_list have been synced and freed
1886          * (which is achieved via the txg_wait_synced() call).
1887          */
1888         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1889         txg_wait_synced(zilog->zl_dmu_pool, 0);
1890         ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1891 }
1892 
1893 /*
1894  * This function will traverse the commit list, creating new lwbs as
1895  * needed, and committing the itxs from the commit list to these newly
1896  * created lwbs. Additionally, as a new lwb is created, the previous
1897  * lwb will be issued to the zio layer to be written to disk.
1898  */
1899 static void
1900 zil_process_commit_list(zilog_t *zilog)
1901 {
1902         spa_t *spa = zilog->zl_spa;
1903         list_t nolwb_waiters;
1904         lwb_t *lwb;
1905         itx_t *itx;
1906 
1907         ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1908 
1909         /*
1910          * Return if there's nothing to commit before we dirty the fs by
1911          * calling zil_create().
1912          */
1913         if (list_head(&zilog->zl_itx_commit_list) == NULL)
1914                 return;
1915 
1916         list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
1917             offsetof(zil_commit_waiter_t, zcw_node));
1918 
1919         lwb = list_tail(&zilog->zl_lwb_list);
1920         if (lwb == NULL) {
1921                 lwb = zil_create(zilog);
1922         } else {
1923                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
1924                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
1925         }
1926 
1927         while (itx = list_head(&zilog->zl_itx_commit_list)) {
1928                 lr_t *lrc = &itx->itx_lr;
1929                 uint64_t txg = lrc->lrc_txg;
1930 
1931                 ASSERT3U(txg, !=, 0);
1932 
1933                 if (lrc->lrc_txtype == TX_COMMIT) {
1934                         DTRACE_PROBE2(zil__process__commit__itx,
1935                             zilog_t *, zilog, itx_t *, itx);
1936                 } else {
1937                         DTRACE_PROBE2(zil__process__normal__itx,
1938                             zilog_t *, zilog, itx_t *, itx);
1939                 }
1940 
1941                 boolean_t synced = txg <= spa_last_synced_txg(spa);
1942                 boolean_t frozen = txg > spa_freeze_txg(spa);
1943 
1944                 /*
1945                  * If the txg of this itx has already been synced out, then
1946                  * we don't need to commit this itx to an lwb. This is
1947                  * because the data of this itx will have already been
1948                  * written to the main pool. This is inherently racy, and
1949                  * it's still ok to commit an itx whose txg has already
1950                  * been synced; this will result in a write that's
1951                  * unnecessary, but will do no harm.
1952                  *
1953                  * With that said, we always want to commit TX_COMMIT itxs
1954                  * to an lwb, regardless of whether or not that itx's txg
1955                  * has been synced out. We do this to ensure any OPENED lwb
1956                  * will always have at least one zil_commit_waiter_t linked
1957                  * to the lwb.
1958                  *
1959                  * As a counter-example, if we skipped TX_COMMIT itx's
1960                  * whose txg had already been synced, the following
1961                  * situation could occur if we happened to be racing with
1962                  * spa_sync:
1963                  *
1964                  * 1. we commit a non-TX_COMMIT itx to an lwb, where the
1965                  *    itx's txg is 10 and the last synced txg is 9.
1966                  * 2. spa_sync finishes syncing out txg 10.
1967                  * 3. we move to the next itx in the list, it's a TX_COMMIT
1968                  *    whose txg is 10, so we skip it rather than committing
1969                  *    it to the lwb used in (1).
1970                  *
1971                  * If the itx that is skipped in (3) is the last TX_COMMIT
1972                  * itx in the commit list, than it's possible for the lwb
1973                  * used in (1) to remain in the OPENED state indefinitely.
1974                  *
1975                  * To prevent the above scenario from occuring, ensuring
1976                  * that once an lwb is OPENED it will transition to ISSUED
1977                  * and eventually DONE, we always commit TX_COMMIT itx's to
1978                  * an lwb here, even if that itx's txg has already been
1979                  * synced.
1980                  *
1981                  * Finally, if the pool is frozen, we _always_ commit the
1982                  * itx.  The point of freezing the pool is to prevent data
1983                  * from being written to the main pool via spa_sync, and
1984                  * instead rely solely on the ZIL to persistently store the
1985                  * data; i.e.  when the pool is frozen, the last synced txg
1986                  * value can't be trusted.
1987                  */
1988                 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
1989                         if (lwb != NULL) {
1990                                 lwb = zil_lwb_commit(zilog, itx, lwb);
1991                         } else if (lrc->lrc_txtype == TX_COMMIT) {
1992                                 ASSERT3P(lwb, ==, NULL);
1993                                 zil_commit_waiter_link_nolwb(
1994                                     itx->itx_private, &nolwb_waiters);
1995                         }
1996                 }
1997 
1998                 list_remove(&zilog->zl_itx_commit_list, itx);
1999                 zil_itx_destroy(itx);
2000         }
2001 
2002         if (lwb == NULL) {
2003                 /*
2004                  * This indicates zio_alloc_zil() failed to allocate the
2005                  * "next" lwb on-disk. When this happens, we must stall
2006                  * the ZIL write pipeline; see the comment within
2007                  * zil_commit_writer_stall() for more details.
2008                  */
2009                 zil_commit_writer_stall(zilog);
2010 
2011                 /*
2012                  * Additionally, we have to signal and mark the "nolwb"
2013                  * waiters as "done" here, since without an lwb, we
2014                  * can't do this via zil_lwb_flush_vdevs_done() like
2015                  * normal.
2016                  */
2017                 zil_commit_waiter_t *zcw;
2018                 while (zcw = list_head(&nolwb_waiters)) {
2019                         zil_commit_waiter_skip(zcw);
2020                         list_remove(&nolwb_waiters, zcw);
2021                 }
2022         } else {
2023                 ASSERT(list_is_empty(&nolwb_waiters));
2024                 ASSERT3P(lwb, !=, NULL);
2025                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2026                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2027 
2028                 /*
2029                  * At this point, the ZIL block pointed at by the "lwb"
2030                  * variable is in one of the following states: "closed"
2031                  * or "open".
2032                  *
2033                  * If its "closed", then no itxs have been committed to
2034                  * it, so there's no point in issuing its zio (i.e.
2035                  * it's "empty").
2036                  *
2037                  * If its "open" state, then it contains one or more
2038                  * itxs that eventually need to be committed to stable
2039                  * storage. In this case we intentionally do not issue
2040                  * the lwb's zio to disk yet, and instead rely on one of
2041                  * the following two mechanisms for issuing the zio:
2042                  *
2043                  * 1. Ideally, there will be more ZIL activity occuring
2044                  * on the system, such that this function will be
2045                  * immediately called again (not necessarily by the same
2046                  * thread) and this lwb's zio will be issued via
2047                  * zil_lwb_commit(). This way, the lwb is guaranteed to
2048                  * be "full" when it is issued to disk, and we'll make
2049                  * use of the lwb's size the best we can.
2050                  *
2051                  * 2. If there isn't sufficient ZIL activity occuring on
2052                  * the system, such that this lwb's zio isn't issued via
2053                  * zil_lwb_commit(), zil_commit_waiter() will issue the
2054                  * lwb's zio. If this occurs, the lwb is not guaranteed
2055                  * to be "full" by the time its zio is issued, and means
2056                  * the size of the lwb was "too large" given the amount
2057                  * of ZIL activity occuring on the system at that time.
2058                  *
2059                  * We do this for a couple of reasons:
2060                  *
2061                  * 1. To try and reduce the number of IOPs needed to
2062                  * write the same number of itxs. If an lwb has space
2063                  * available in it's buffer for more itxs, and more itxs
2064                  * will be committed relatively soon (relative to the
2065                  * latency of performing a write), then it's beneficial
2066                  * to wait for these "next" itxs. This way, more itxs
2067                  * can be committed to stable storage with fewer writes.
2068                  *
2069                  * 2. To try and use the largest lwb block size that the
2070                  * incoming rate of itxs can support. Again, this is to
2071                  * try and pack as many itxs into as few lwbs as
2072                  * possible, without significantly impacting the latency
2073                  * of each individual itx.
2074                  */
2075         }
2076 }
2077 
2078 /*
2079  * This function is responsible for ensuring the passed in commit waiter
2080  * (and associated commit itx) is committed to an lwb. If the waiter is
2081  * not already committed to an lwb, all itxs in the zilog's queue of
2082  * itxs will be processed. The assumption is the passed in waiter's
2083  * commit itx will found in the queue just like the other non-commit
2084  * itxs, such that when the entire queue is processed, the waiter will
2085  * have been commited to an lwb.
2086  *
2087  * The lwb associated with the passed in waiter is not guaranteed to
2088  * have been issued by the time this function completes. If the lwb is
2089  * not issued, we rely on future calls to zil_commit_writer() to issue
2090  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2091  */
2092 static void
2093 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2094 {
2095         ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2096         ASSERT(spa_writeable(zilog->zl_spa));
2097 
2098         mutex_enter(&zilog->zl_issuer_lock);
2099 
2100         if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2101                 /*
2102                  * It's possible that, while we were waiting to acquire
2103                  * the "zl_issuer_lock", another thread committed this
2104                  * waiter to an lwb. If that occurs, we bail out early,
2105                  * without processing any of the zilog's queue of itxs.
2106                  *
2107                  * On certain workloads and system configurations, the
2108                  * "zl_issuer_lock" can become highly contended. In an
2109                  * attempt to reduce this contention, we immediately drop
2110                  * the lock if the waiter has already been processed.
2111                  *
2112                  * We've measured this optimization to reduce CPU spent
2113                  * contending on this lock by up to 5%, using a system
2114                  * with 32 CPUs, low latency storage (~50 usec writes),
2115                  * and 1024 threads performing sync writes.
2116                  */
2117                 goto out;
2118         }
2119 
2120         zil_get_commit_list(zilog);
2121         zil_prune_commit_list(zilog);
2122         zil_process_commit_list(zilog);
2123 
2124 out:
2125         mutex_exit(&zilog->zl_issuer_lock);
2126 }
2127 
2128 static void
2129 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2130 {
2131         ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2132         ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2133         ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2134 
2135         lwb_t *lwb = zcw->zcw_lwb;
2136         ASSERT3P(lwb, !=, NULL);
2137         ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2138 
2139         /*
2140          * If the lwb has already been issued by another thread, we can
2141          * immediately return since there's no work to be done (the
2142          * point of this function is to issue the lwb). Additionally, we
2143          * do this prior to acquiring the zl_issuer_lock, to avoid
2144          * acquiring it when it's not necessary to do so.
2145          */
2146         if (lwb->lwb_state == LWB_STATE_ISSUED ||
2147             lwb->lwb_state == LWB_STATE_DONE)
2148                 return;
2149 
2150         /*
2151          * In order to call zil_lwb_write_issue() we must hold the
2152          * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2153          * since we're already holding the commit waiter's "zcw_lock",
2154          * and those two locks are aquired in the opposite order
2155          * elsewhere.
2156          */
2157         mutex_exit(&zcw->zcw_lock);
2158         mutex_enter(&zilog->zl_issuer_lock);
2159         mutex_enter(&zcw->zcw_lock);
2160 
2161         /*
2162          * Since we just dropped and re-acquired the commit waiter's
2163          * lock, we have to re-check to see if the waiter was marked
2164          * "done" during that process. If the waiter was marked "done",
2165          * the "lwb" pointer is no longer valid (it can be free'd after
2166          * the waiter is marked "done"), so without this check we could
2167          * wind up with a use-after-free error below.
2168          */
2169         if (zcw->zcw_done)
2170                 goto out;
2171 
2172         ASSERT3P(lwb, ==, zcw->zcw_lwb);
2173 
2174         /*
2175          * We've already checked this above, but since we hadn't acquired
2176          * the zilog's zl_issuer_lock, we have to perform this check a
2177          * second time while holding the lock.
2178          *
2179          * We don't need to hold the zl_lock since the lwb cannot transition
2180          * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2181          * _can_ transition from ISSUED to DONE, but it's OK to race with
2182          * that transition since we treat the lwb the same, whether it's in
2183          * the ISSUED or DONE states.
2184          *
2185          * The important thing, is we treat the lwb differently depending on
2186          * if it's ISSUED or OPENED, and block any other threads that might
2187          * attempt to issue this lwb. For that reason we hold the
2188          * zl_issuer_lock when checking the lwb_state; we must not call
2189          * zil_lwb_write_issue() if the lwb had already been issued.
2190          *
2191          * See the comment above the lwb_state_t structure definition for
2192          * more details on the lwb states, and locking requirements.
2193          */
2194         if (lwb->lwb_state == LWB_STATE_ISSUED ||
2195             lwb->lwb_state == LWB_STATE_DONE)
2196                 goto out;
2197 
2198         ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2199 
2200         /*
2201          * As described in the comments above zil_commit_waiter() and
2202          * zil_process_commit_list(), we need to issue this lwb's zio
2203          * since we've reached the commit waiter's timeout and it still
2204          * hasn't been issued.
2205          */
2206         lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2207 
2208         ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2209 
2210         /*
2211          * Since the lwb's zio hadn't been issued by the time this thread
2212          * reached its timeout, we reset the zilog's "zl_cur_used" field
2213          * to influence the zil block size selection algorithm.
2214          *
2215          * By having to issue the lwb's zio here, it means the size of the
2216          * lwb was too large, given the incoming throughput of itxs.  By
2217          * setting "zl_cur_used" to zero, we communicate this fact to the
2218          * block size selection algorithm, so it can take this informaiton
2219          * into account, and potentially select a smaller size for the
2220          * next lwb block that is allocated.
2221          */
2222         zilog->zl_cur_used = 0;
2223 
2224         if (nlwb == NULL) {
2225                 /*
2226                  * When zil_lwb_write_issue() returns NULL, this
2227                  * indicates zio_alloc_zil() failed to allocate the
2228                  * "next" lwb on-disk. When this occurs, the ZIL write
2229                  * pipeline must be stalled; see the comment within the
2230                  * zil_commit_writer_stall() function for more details.
2231                  *
2232                  * We must drop the commit waiter's lock prior to
2233                  * calling zil_commit_writer_stall() or else we can wind
2234                  * up with the following deadlock:
2235                  *
2236                  * - This thread is waiting for the txg to sync while
2237                  *   holding the waiter's lock; txg_wait_synced() is
2238                  *   used within txg_commit_writer_stall().
2239                  *
2240                  * - The txg can't sync because it is waiting for this
2241                  *   lwb's zio callback to call dmu_tx_commit().
2242                  *
2243                  * - The lwb's zio callback can't call dmu_tx_commit()
2244                  *   because it's blocked trying to acquire the waiter's
2245                  *   lock, which occurs prior to calling dmu_tx_commit()
2246                  */
2247                 mutex_exit(&zcw->zcw_lock);
2248                 zil_commit_writer_stall(zilog);
2249                 mutex_enter(&zcw->zcw_lock);
2250         }
2251 
2252 out:
2253         mutex_exit(&zilog->zl_issuer_lock);
2254         ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2255 }
2256 
2257 /*
2258  * This function is responsible for performing the following two tasks:
2259  *
2260  * 1. its primary responsibility is to block until the given "commit
2261  *    waiter" is considered "done".
2262  *
2263  * 2. its secondary responsibility is to issue the zio for the lwb that
2264  *    the given "commit waiter" is waiting on, if this function has
2265  *    waited "long enough" and the lwb is still in the "open" state.
2266  *
2267  * Given a sufficient amount of itxs being generated and written using
2268  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2269  * function. If this does not occur, this secondary responsibility will
2270  * ensure the lwb is issued even if there is not other synchronous
2271  * activity on the system.
2272  *
2273  * For more details, see zil_process_commit_list(); more specifically,
2274  * the comment at the bottom of that function.
2275  */
2276 static void
2277 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2278 {
2279         ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2280         ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2281         ASSERT(spa_writeable(zilog->zl_spa));
2282 
2283         mutex_enter(&zcw->zcw_lock);
2284 
2285         /*
2286          * The timeout is scaled based on the lwb latency to avoid
2287          * significantly impacting the latency of each individual itx.
2288          * For more details, see the comment at the bottom of the
2289          * zil_process_commit_list() function.
2290          */
2291         int pct = MAX(zfs_commit_timeout_pct, 1);
2292         hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2293         hrtime_t wakeup = gethrtime() + sleep;
2294         boolean_t timedout = B_FALSE;
2295 
2296         while (!zcw->zcw_done) {
2297                 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2298 
2299                 lwb_t *lwb = zcw->zcw_lwb;
2300 
2301                 /*
2302                  * Usually, the waiter will have a non-NULL lwb field here,
2303                  * but it's possible for it to be NULL as a result of
2304                  * zil_commit() racing with spa_sync().
2305                  *
2306                  * When zil_clean() is called, it's possible for the itxg
2307                  * list (which may be cleaned via a taskq) to contain
2308                  * commit itxs. When this occurs, the commit waiters linked
2309                  * off of these commit itxs will not be committed to an
2310                  * lwb.  Additionally, these commit waiters will not be
2311                  * marked done until zil_commit_waiter_skip() is called via
2312                  * zil_itxg_clean().
2313                  *
2314                  * Thus, it's possible for this commit waiter (i.e. the
2315                  * "zcw" variable) to be found in this "in between" state;
2316                  * where it's "zcw_lwb" field is NULL, and it hasn't yet
2317                  * been skipped, so it's "zcw_done" field is still B_FALSE.
2318                  */
2319                 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2320 
2321                 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2322                         ASSERT3B(timedout, ==, B_FALSE);
2323 
2324                         /*
2325                          * If the lwb hasn't been issued yet, then we
2326                          * need to wait with a timeout, in case this
2327                          * function needs to issue the lwb after the
2328                          * timeout is reached; responsibility (2) from
2329                          * the comment above this function.
2330                          */
2331                         clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2332                             &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2333                             CALLOUT_FLAG_ABSOLUTE);
2334 
2335                         if (timeleft >= 0 || zcw->zcw_done)
2336                                 continue;
2337 
2338                         timedout = B_TRUE;
2339                         zil_commit_waiter_timeout(zilog, zcw);
2340 
2341                         if (!zcw->zcw_done) {
2342                                 /*
2343                                  * If the commit waiter has already been
2344                                  * marked "done", it's possible for the
2345                                  * waiter's lwb structure to have already
2346                                  * been freed.  Thus, we can only reliably
2347                                  * make these assertions if the waiter
2348                                  * isn't done.
2349                                  */
2350                                 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2351                                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2352                         }
2353                 } else {
2354                         /*
2355                          * If the lwb isn't open, then it must have already
2356                          * been issued. In that case, there's no need to
2357                          * use a timeout when waiting for the lwb to
2358                          * complete.
2359                          *
2360                          * Additionally, if the lwb is NULL, the waiter
2361                          * will soon be signalled and marked done via
2362                          * zil_clean() and zil_itxg_clean(), so no timeout
2363                          * is required.
2364                          */
2365 
2366                         IMPLY(lwb != NULL,
2367                             lwb->lwb_state == LWB_STATE_ISSUED ||
2368                             lwb->lwb_state == LWB_STATE_DONE);
2369                         cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2370                 }
2371         }
2372 
2373         mutex_exit(&zcw->zcw_lock);
2374 }
2375 
2376 static zil_commit_waiter_t *
2377 zil_alloc_commit_waiter()
2378 {
2379         zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2380 
2381         cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2382         mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2383         list_link_init(&zcw->zcw_node);
2384         zcw->zcw_lwb = NULL;
2385         zcw->zcw_done = B_FALSE;
2386         zcw->zcw_zio_error = 0;
2387 
2388         return (zcw);
2389 }
2390 
2391 static void
2392 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2393 {
2394         ASSERT(!list_link_active(&zcw->zcw_node));
2395         ASSERT3P(zcw->zcw_lwb, ==, NULL);
2396         ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2397         mutex_destroy(&zcw->zcw_lock);
2398         cv_destroy(&zcw->zcw_cv);
2399         kmem_cache_free(zil_zcw_cache, zcw);
2400 }
2401 
2402 /*
2403  * This function is used to create a TX_COMMIT itx and assign it. This
2404  * way, it will be linked into the ZIL's list of synchronous itxs, and
2405  * then later committed to an lwb (or skipped) when
2406  * zil_process_commit_list() is called.
2407  */
2408 static void
2409 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2410 {
2411         dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2412         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2413 
2414         itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2415         itx->itx_sync = B_TRUE;
2416         itx->itx_private = zcw;
2417 
2418         zil_itx_assign(zilog, itx, tx);
2419 
2420         dmu_tx_commit(tx);
2421 }
2422 
2423 /*
2424  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2425  *
2426  * When writing ZIL transactions to the on-disk representation of the
2427  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2428  * itxs can be committed to a single lwb. Once a lwb is written and
2429  * committed to stable storage (i.e. the lwb is written, and vdevs have
2430  * been flushed), each itx that was committed to that lwb is also
2431  * considered to be committed to stable storage.
2432  *
2433  * When an itx is committed to an lwb, the log record (lr_t) contained
2434  * by the itx is copied into the lwb's zio buffer, and once this buffer
2435  * is written to disk, it becomes an on-disk ZIL block.
2436  *
2437  * As itxs are generated, they're inserted into the ZIL's queue of
2438  * uncommitted itxs. The semantics of zil_commit() are such that it will
2439  * block until all itxs that were in the queue when it was called, are
2440  * committed to stable storage.
2441  *
2442  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2443  * itxs, for all objects in the dataset, will be committed to stable
2444  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2445  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2446  * that correspond to the foid passed in, will be committed to stable
2447  * storage prior to zil_commit() returning.
2448  *
2449  * Generally speaking, when zil_commit() is called, the consumer doesn't
2450  * actually care about _all_ of the uncommitted itxs. Instead, they're
2451  * simply trying to waiting for a specific itx to be committed to disk,
2452  * but the interface(s) for interacting with the ZIL don't allow such
2453  * fine-grained communication. A better interface would allow a consumer
2454  * to create and assign an itx, and then pass a reference to this itx to
2455  * zil_commit(); such that zil_commit() would return as soon as that
2456  * specific itx was committed to disk (instead of waiting for _all_
2457  * itxs to be committed).
2458  *
2459  * When a thread calls zil_commit() a special "commit itx" will be
2460  * generated, along with a corresponding "waiter" for this commit itx.
2461  * zil_commit() will wait on this waiter's CV, such that when the waiter
2462  * is marked done, and signalled, zil_commit() will return.
2463  *
2464  * This commit itx is inserted into the queue of uncommitted itxs. This
2465  * provides an easy mechanism for determining which itxs were in the
2466  * queue prior to zil_commit() having been called, and which itxs were
2467  * added after zil_commit() was called.
2468  *
2469  * The commit it is special; it doesn't have any on-disk representation.
2470  * When a commit itx is "committed" to an lwb, the waiter associated
2471  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2472  * completes, each waiter on the lwb's list is marked done and signalled
2473  * -- allowing the thread waiting on the waiter to return from zil_commit().
2474  *
2475  * It's important to point out a few critical factors that allow us
2476  * to make use of the commit itxs, commit waiters, per-lwb lists of
2477  * commit waiters, and zio completion callbacks like we're doing:
2478  *
2479  *   1. The list of waiters for each lwb is traversed, and each commit
2480  *      waiter is marked "done" and signalled, in the zio completion
2481  *      callback of the lwb's zio[*].
2482  *
2483  *      * Actually, the waiters are signalled in the zio completion
2484  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2485  *        that are sent to the vdevs upon completion of the lwb zio.
2486  *
2487  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2488  *      itxs, the order in which they are inserted is preserved[*]; as
2489  *      itxs are added to the queue, they are added to the tail of
2490  *      in-memory linked lists.
2491  *
2492  *      When committing the itxs to lwbs (to be written to disk), they
2493  *      are committed in the same order in which the itxs were added to
2494  *      the uncommitted queue's linked list(s); i.e. the linked list of
2495  *      itxs to commit is traversed from head to tail, and each itx is
2496  *      committed to an lwb in that order.
2497  *
2498  *      * To clarify:
2499  *
2500  *        - the order of "sync" itxs is preserved w.r.t. other
2501  *          "sync" itxs, regardless of the corresponding objects.
2502  *        - the order of "async" itxs is preserved w.r.t. other
2503  *          "async" itxs corresponding to the same object.
2504  *        - the order of "async" itxs is *not* preserved w.r.t. other
2505  *          "async" itxs corresponding to different objects.
2506  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2507  *          versa) is *not* preserved, even for itxs that correspond
2508  *          to the same object.
2509  *
2510  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2511  *      zil_get_commit_list(), and zil_process_commit_list().
2512  *
2513  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2514  *      lwb cannot be considered committed to stable storage, until its
2515  *      "previous" lwb is also committed to stable storage. This fact,
2516  *      coupled with the fact described above, means that itxs are
2517  *      committed in (roughly) the order in which they were generated.
2518  *      This is essential because itxs are dependent on prior itxs.
2519  *      Thus, we *must not* deem an itx as being committed to stable
2520  *      storage, until *all* prior itxs have also been committed to
2521  *      stable storage.
2522  *
2523  *      To enforce this ordering of lwb zio's, while still leveraging as
2524  *      much of the underlying storage performance as possible, we rely
2525  *      on two fundamental concepts:
2526  *
2527  *          1. The creation and issuance of lwb zio's is protected by
2528  *             the zilog's "zl_issuer_lock", which ensures only a single
2529  *             thread is creating and/or issuing lwb's at a time
2530  *          2. The "previous" lwb is a child of the "current" lwb
2531  *             (leveraging the zio parent-child depenency graph)
2532  *
2533  *      By relying on this parent-child zio relationship, we can have
2534  *      many lwb zio's concurrently issued to the underlying storage,
2535  *      but the order in which they complete will be the same order in
2536  *      which they were created.
2537  */
2538 void
2539 zil_commit(zilog_t *zilog, uint64_t foid)
2540 {
2541         /*
2542          * We should never attempt to call zil_commit on a snapshot for
2543          * a couple of reasons:
2544          *
2545          * 1. A snapshot may never be modified, thus it cannot have any
2546          *    in-flight itxs that would have modified the dataset.
2547          *
2548          * 2. By design, when zil_commit() is called, a commit itx will
2549          *    be assigned to this zilog; as a result, the zilog will be
2550          *    dirtied. We must not dirty the zilog of a snapshot; there's
2551          *    checks in the code that enforce this invariant, and will
2552          *    cause a panic if it's not upheld.
2553          */
2554         ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2555 
2556         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2557                 return;
2558 
2559         if (!spa_writeable(zilog->zl_spa)) {
2560                 /*
2561                  * If the SPA is not writable, there should never be any
2562                  * pending itxs waiting to be committed to disk. If that
2563                  * weren't true, we'd skip writing those itxs out, and
2564                  * would break the sematics of zil_commit(); thus, we're
2565                  * verifying that truth before we return to the caller.
2566                  */
2567                 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2568                 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2569                 for (int i = 0; i < TXG_SIZE; i++)
2570                         ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2571                 return;
2572         }
2573 
2574         /*
2575          * If the ZIL is suspended, we don't want to dirty it by calling
2576          * zil_commit_itx_assign() below, nor can we write out
2577          * lwbs like would be done in zil_commit_write(). Thus, we
2578          * simply rely on txg_wait_synced() to maintain the necessary
2579          * semantics, and avoid calling those functions altogether.
2580          */
2581         if (zilog->zl_suspend > 0) {
2582                 txg_wait_synced(zilog->zl_dmu_pool, 0);
2583                 return;
2584         }
2585 
2586         zil_commit_impl(zilog, foid);
2587 }
2588 
2589 void
2590 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2591 {
2592         /*
2593          * Move the "async" itxs for the specified foid to the "sync"
2594          * queues, such that they will be later committed (or skipped)
2595          * to an lwb when zil_process_commit_list() is called.
2596          *
2597          * Since these "async" itxs must be committed prior to this
2598          * call to zil_commit returning, we must perform this operation
2599          * before we call zil_commit_itx_assign().
2600          */
2601         zil_async_to_sync(zilog, foid);
2602 
2603         /*
2604          * We allocate a new "waiter" structure which will initially be
2605          * linked to the commit itx using the itx's "itx_private" field.
2606          * Since the commit itx doesn't represent any on-disk state,
2607          * when it's committed to an lwb, rather than copying the its
2608          * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2609          * added to the lwb's list of waiters. Then, when the lwb is
2610          * committed to stable storage, each waiter in the lwb's list of
2611          * waiters will be marked "done", and signalled.
2612          *
2613          * We must create the waiter and assign the commit itx prior to
2614          * calling zil_commit_writer(), or else our specific commit itx
2615          * is not guaranteed to be committed to an lwb prior to calling
2616          * zil_commit_waiter().
2617          */
2618         zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2619         zil_commit_itx_assign(zilog, zcw);
2620 
2621         zil_commit_writer(zilog, zcw);
2622         zil_commit_waiter(zilog, zcw);
2623 
2624         if (zcw->zcw_zio_error != 0) {
2625                 /*
2626                  * If there was an error writing out the ZIL blocks that
2627                  * this thread is waiting on, then we fallback to
2628                  * relying on spa_sync() to write out the data this
2629                  * thread is waiting on. Obviously this has performance
2630                  * implications, but the expectation is for this to be
2631                  * an exceptional case, and shouldn't occur often.
2632                  */
2633                 DTRACE_PROBE2(zil__commit__io__error,
2634                     zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2635                 txg_wait_synced(zilog->zl_dmu_pool, 0);
2636         }
2637 
2638         zil_free_commit_waiter(zcw);
2639 }
2640 
2641 /*
2642  * Called in syncing context to free committed log blocks and update log header.
2643  */
2644 void
2645 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2646 {
2647         zil_header_t *zh = zil_header_in_syncing_context(zilog);
2648         uint64_t txg = dmu_tx_get_txg(tx);
2649         spa_t *spa = zilog->zl_spa;
2650         uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2651         lwb_t *lwb;
2652 
2653         /*
2654          * We don't zero out zl_destroy_txg, so make sure we don't try
2655          * to destroy it twice.
2656          */
2657         if (spa_sync_pass(spa) != 1)
2658                 return;
2659 
2660         mutex_enter(&zilog->zl_lock);
2661 
2662         ASSERT(zilog->zl_stop_sync == 0);
2663 
2664         if (*replayed_seq != 0) {
2665                 ASSERT(zh->zh_replay_seq < *replayed_seq);
2666                 zh->zh_replay_seq = *replayed_seq;
2667                 *replayed_seq = 0;
2668         }
2669 
2670         if (zilog->zl_destroy_txg == txg) {
2671                 blkptr_t blk = zh->zh_log;
2672 
2673                 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2674 
2675                 bzero(zh, sizeof (zil_header_t));
2676                 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2677 
2678                 if (zilog->zl_keep_first) {
2679                         /*
2680                          * If this block was part of log chain that couldn't
2681                          * be claimed because a device was missing during
2682                          * zil_claim(), but that device later returns,
2683                          * then this block could erroneously appear valid.
2684                          * To guard against this, assign a new GUID to the new
2685                          * log chain so it doesn't matter what blk points to.
2686                          */
2687                         zil_init_log_chain(zilog, &blk);
2688                         zh->zh_log = blk;
2689                 }
2690         }
2691 
2692         while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2693                 zh->zh_log = lwb->lwb_blk;
2694                 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2695                         break;
2696                 list_remove(&zilog->zl_lwb_list, lwb);
2697                 zio_free(spa, txg, &lwb->lwb_blk);
2698                 zil_free_lwb(zilog, lwb);
2699 
2700                 /*
2701                  * If we don't have anything left in the lwb list then
2702                  * we've had an allocation failure and we need to zero
2703                  * out the zil_header blkptr so that we don't end
2704                  * up freeing the same block twice.
2705                  */
2706                 if (list_head(&zilog->zl_lwb_list) == NULL)
2707                         BP_ZERO(&zh->zh_log);
2708         }
2709         mutex_exit(&zilog->zl_lock);
2710 }
2711 
2712 /* ARGSUSED */
2713 static int
2714 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2715 {
2716         lwb_t *lwb = vbuf;
2717         list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2718             offsetof(zil_commit_waiter_t, zcw_node));
2719         avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2720             sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2721         mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2722         return (0);
2723 }
2724 
2725 /* ARGSUSED */
2726 static void
2727 zil_lwb_dest(void *vbuf, void *unused)
2728 {
2729         lwb_t *lwb = vbuf;
2730         mutex_destroy(&lwb->lwb_vdev_lock);
2731         avl_destroy(&lwb->lwb_vdev_tree);
2732         list_destroy(&lwb->lwb_waiters);
2733 }
2734 
2735 void
2736 zil_init(void)
2737 {
2738         zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2739             sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2740 
2741         zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2742             sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2743 }
2744 
2745 void
2746 zil_fini(void)
2747 {
2748         kmem_cache_destroy(zil_zcw_cache);
2749         kmem_cache_destroy(zil_lwb_cache);
2750 }
2751 
2752 void
2753 zil_set_sync(zilog_t *zilog, uint64_t sync)
2754 {
2755         zilog->zl_sync = sync;
2756 }
2757 
2758 void
2759 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2760 {
2761         zilog->zl_logbias = logbias;
2762 }
2763 
2764 zilog_t *
2765 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2766 {
2767         zilog_t *zilog;
2768 
2769         zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2770 
2771         zilog->zl_header = zh_phys;
2772         zilog->zl_os = os;
2773         zilog->zl_spa = dmu_objset_spa(os);
2774         zilog->zl_dmu_pool = dmu_objset_pool(os);
2775         zilog->zl_destroy_txg = TXG_INITIAL - 1;
2776         zilog->zl_logbias = dmu_objset_logbias(os);
2777         zilog->zl_sync = dmu_objset_syncprop(os);
2778         zilog->zl_dirty_max_txg = 0;
2779         zilog->zl_last_lwb_opened = NULL;
2780         zilog->zl_last_lwb_latency = 0;
2781 
2782         mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2783         mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2784 
2785         for (int i = 0; i < TXG_SIZE; i++) {
2786                 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2787                     MUTEX_DEFAULT, NULL);
2788         }
2789 
2790         list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2791             offsetof(lwb_t, lwb_node));
2792 
2793         list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2794             offsetof(itx_t, itx_node));
2795 
2796         cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2797 
2798         return (zilog);
2799 }
2800 
2801 void
2802 zil_free(zilog_t *zilog)
2803 {
2804         zilog->zl_stop_sync = 1;
2805 
2806         ASSERT0(zilog->zl_suspend);
2807         ASSERT0(zilog->zl_suspending);
2808 
2809         ASSERT(list_is_empty(&zilog->zl_lwb_list));
2810         list_destroy(&zilog->zl_lwb_list);
2811 
2812         ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2813         list_destroy(&zilog->zl_itx_commit_list);
2814 
2815         for (int i = 0; i < TXG_SIZE; i++) {
2816                 /*
2817                  * It's possible for an itx to be generated that doesn't dirty
2818                  * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2819                  * callback to remove the entry. We remove those here.
2820                  *
2821                  * Also free up the ziltest itxs.
2822                  */
2823                 if (zilog->zl_itxg[i].itxg_itxs)
2824                         zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2825                 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2826         }
2827 
2828         mutex_destroy(&zilog->zl_issuer_lock);
2829         mutex_destroy(&zilog->zl_lock);
2830 
2831         cv_destroy(&zilog->zl_cv_suspend);
2832 
2833         kmem_free(zilog, sizeof (zilog_t));
2834 }
2835 
2836 /*
2837  * Open an intent log.
2838  */
2839 zilog_t *
2840 zil_open(objset_t *os, zil_get_data_t *get_data)
2841 {
2842         zilog_t *zilog = dmu_objset_zil(os);
2843 
2844         ASSERT3P(zilog->zl_get_data, ==, NULL);
2845         ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2846         ASSERT(list_is_empty(&zilog->zl_lwb_list));
2847 
2848         zilog->zl_get_data = get_data;
2849 
2850         return (zilog);
2851 }
2852 
2853 /*
2854  * Close an intent log.
2855  */
2856 void
2857 zil_close(zilog_t *zilog)
2858 {
2859         lwb_t *lwb;
2860         uint64_t txg;
2861 
2862         if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2863                 zil_commit(zilog, 0);
2864         } else {
2865                 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2866                 ASSERT0(zilog->zl_dirty_max_txg);
2867                 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2868         }
2869 
2870         mutex_enter(&zilog->zl_lock);
2871         lwb = list_tail(&zilog->zl_lwb_list);
2872         if (lwb == NULL)
2873                 txg = zilog->zl_dirty_max_txg;
2874         else
2875                 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2876         mutex_exit(&zilog->zl_lock);
2877 
2878         /*
2879          * We need to use txg_wait_synced() to wait long enough for the
2880          * ZIL to be clean, and to wait for all pending lwbs to be
2881          * written out.
2882          */
2883         if (txg != 0)
2884                 txg_wait_synced(zilog->zl_dmu_pool, txg);
2885 
2886         if (zilog_is_dirty(zilog))
2887                 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2888         VERIFY(!zilog_is_dirty(zilog));
2889 
2890         zilog->zl_get_data = NULL;
2891 
2892         /*
2893          * We should have only one lwb left on the list; remove it now.
2894          */
2895         mutex_enter(&zilog->zl_lock);
2896         lwb = list_head(&zilog->zl_lwb_list);
2897         if (lwb != NULL) {
2898                 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2899                 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2900                 list_remove(&zilog->zl_lwb_list, lwb);
2901                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2902                 zil_free_lwb(zilog, lwb);
2903         }
2904         mutex_exit(&zilog->zl_lock);
2905 }
2906 
2907 static char *suspend_tag = "zil suspending";
2908 
2909 /*
2910  * Suspend an intent log.  While in suspended mode, we still honor
2911  * synchronous semantics, but we rely on txg_wait_synced() to do it.
2912  * On old version pools, we suspend the log briefly when taking a
2913  * snapshot so that it will have an empty intent log.
2914  *
2915  * Long holds are not really intended to be used the way we do here --
2916  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
2917  * could fail.  Therefore we take pains to only put a long hold if it is
2918  * actually necessary.  Fortunately, it will only be necessary if the
2919  * objset is currently mounted (or the ZVOL equivalent).  In that case it
2920  * will already have a long hold, so we are not really making things any worse.
2921  *
2922  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2923  * zvol_state_t), and use their mechanism to prevent their hold from being
2924  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
2925  * very little gain.
2926  *
2927  * if cookiep == NULL, this does both the suspend & resume.
2928  * Otherwise, it returns with the dataset "long held", and the cookie
2929  * should be passed into zil_resume().
2930  */
2931 int
2932 zil_suspend(const char *osname, void **cookiep)
2933 {
2934         objset_t *os;
2935         zilog_t *zilog;
2936         const zil_header_t *zh;
2937         int error;
2938 
2939         error = dmu_objset_hold(osname, suspend_tag, &os);
2940         if (error != 0)
2941                 return (error);
2942         zilog = dmu_objset_zil(os);
2943 
2944         mutex_enter(&zilog->zl_lock);
2945         zh = zilog->zl_header;
2946 
2947         if (zh->zh_flags & ZIL_REPLAY_NEEDED) {          /* unplayed log */
2948                 mutex_exit(&zilog->zl_lock);
2949                 dmu_objset_rele(os, suspend_tag);
2950                 return (SET_ERROR(EBUSY));
2951         }
2952 
2953         /*
2954          * Don't put a long hold in the cases where we can avoid it.  This
2955          * is when there is no cookie so we are doing a suspend & resume
2956          * (i.e. called from zil_vdev_offline()), and there's nothing to do
2957          * for the suspend because it's already suspended, or there's no ZIL.
2958          */
2959         if (cookiep == NULL && !zilog->zl_suspending &&
2960             (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2961                 mutex_exit(&zilog->zl_lock);
2962                 dmu_objset_rele(os, suspend_tag);
2963                 return (0);
2964         }
2965 
2966         dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2967         dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2968 
2969         zilog->zl_suspend++;
2970 
2971         if (zilog->zl_suspend > 1) {
2972                 /*
2973                  * Someone else is already suspending it.
2974                  * Just wait for them to finish.
2975                  */
2976 
2977                 while (zilog->zl_suspending)
2978                         cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2979                 mutex_exit(&zilog->zl_lock);
2980 
2981                 if (cookiep == NULL)
2982                         zil_resume(os);
2983                 else
2984                         *cookiep = os;
2985                 return (0);
2986         }
2987 
2988         /*
2989          * If there is no pointer to an on-disk block, this ZIL must not
2990          * be active (e.g. filesystem not mounted), so there's nothing
2991          * to clean up.
2992          */
2993         if (BP_IS_HOLE(&zh->zh_log)) {
2994                 ASSERT(cookiep != NULL); /* fast path already handled */
2995 
2996                 *cookiep = os;
2997                 mutex_exit(&zilog->zl_lock);
2998                 return (0);
2999         }
3000 
3001         zilog->zl_suspending = B_TRUE;
3002         mutex_exit(&zilog->zl_lock);
3003 
3004         /*
3005          * We need to use zil_commit_impl to ensure we wait for all
3006          * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3007          * to disk before proceeding. If we used zil_commit instead, it
3008          * would just call txg_wait_synced(), because zl_suspend is set.
3009          * txg_wait_synced() doesn't wait for these lwb's to be
3010          * LWB_STATE_DONE before returning.
3011          */
3012         zil_commit_impl(zilog, 0);
3013 
3014         /*
3015          * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3016          * txg_wait_synced() to ensure the data from the zilog has
3017          * migrated to the main pool before calling zil_destroy().
3018          */
3019         txg_wait_synced(zilog->zl_dmu_pool, 0);
3020 
3021         zil_destroy(zilog, B_FALSE);
3022 
3023         mutex_enter(&zilog->zl_lock);
3024         zilog->zl_suspending = B_FALSE;
3025         cv_broadcast(&zilog->zl_cv_suspend);
3026         mutex_exit(&zilog->zl_lock);
3027 
3028         if (cookiep == NULL)
3029                 zil_resume(os);
3030         else
3031                 *cookiep = os;
3032         return (0);
3033 }
3034 
3035 void
3036 zil_resume(void *cookie)
3037 {
3038         objset_t *os = cookie;
3039         zilog_t *zilog = dmu_objset_zil(os);
3040 
3041         mutex_enter(&zilog->zl_lock);
3042         ASSERT(zilog->zl_suspend != 0);
3043         zilog->zl_suspend--;
3044         mutex_exit(&zilog->zl_lock);
3045         dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3046         dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3047 }
3048 
3049 typedef struct zil_replay_arg {
3050         zil_replay_func_t **zr_replay;
3051         void            *zr_arg;
3052         boolean_t       zr_byteswap;
3053         char            *zr_lr;
3054 } zil_replay_arg_t;
3055 
3056 static int
3057 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3058 {
3059         char name[ZFS_MAX_DATASET_NAME_LEN];
3060 
3061         zilog->zl_replaying_seq--;   /* didn't actually replay this one */
3062 
3063         dmu_objset_name(zilog->zl_os, name);
3064 
3065         cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3066             "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3067             (u_longlong_t)lr->lrc_seq,
3068             (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3069             (lr->lrc_txtype & TX_CI) ? "CI" : "");
3070 
3071         return (error);
3072 }
3073 
3074 static int
3075 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3076 {
3077         zil_replay_arg_t *zr = zra;
3078         const zil_header_t *zh = zilog->zl_header;
3079         uint64_t reclen = lr->lrc_reclen;
3080         uint64_t txtype = lr->lrc_txtype;
3081         int error = 0;
3082 
3083         zilog->zl_replaying_seq = lr->lrc_seq;
3084 
3085         if (lr->lrc_seq <= zh->zh_replay_seq)  /* already replayed */
3086                 return (0);
3087 
3088         if (lr->lrc_txg < claim_txg)              /* already committed */
3089                 return (0);
3090 
3091         /* Strip case-insensitive bit, still present in log record */
3092         txtype &= ~TX_CI;
3093 
3094         if (txtype == 0 || txtype >= TX_MAX_TYPE)
3095                 return (zil_replay_error(zilog, lr, EINVAL));
3096 
3097         /*
3098          * If this record type can be logged out of order, the object
3099          * (lr_foid) may no longer exist.  That's legitimate, not an error.
3100          */
3101         if (TX_OOO(txtype)) {
3102                 error = dmu_object_info(zilog->zl_os,
3103                     ((lr_ooo_t *)lr)->lr_foid, NULL);
3104                 if (error == ENOENT || error == EEXIST)
3105                         return (0);
3106         }
3107 
3108         /*
3109          * Make a copy of the data so we can revise and extend it.
3110          */
3111         bcopy(lr, zr->zr_lr, reclen);
3112 
3113         /*
3114          * If this is a TX_WRITE with a blkptr, suck in the data.
3115          */
3116         if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3117                 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3118                     zr->zr_lr + reclen);
3119                 if (error != 0)
3120                         return (zil_replay_error(zilog, lr, error));
3121         }
3122 
3123         /*
3124          * The log block containing this lr may have been byteswapped
3125          * so that we can easily examine common fields like lrc_txtype.
3126          * However, the log is a mix of different record types, and only the
3127          * replay vectors know how to byteswap their records.  Therefore, if
3128          * the lr was byteswapped, undo it before invoking the replay vector.
3129          */
3130         if (zr->zr_byteswap)
3131                 byteswap_uint64_array(zr->zr_lr, reclen);
3132 
3133         /*
3134          * We must now do two things atomically: replay this log record,
3135          * and update the log header sequence number to reflect the fact that
3136          * we did so. At the end of each replay function the sequence number
3137          * is updated if we are in replay mode.
3138          */
3139         error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3140         if (error != 0) {
3141                 /*
3142                  * The DMU's dnode layer doesn't see removes until the txg
3143                  * commits, so a subsequent claim can spuriously fail with
3144                  * EEXIST. So if we receive any error we try syncing out
3145                  * any removes then retry the transaction.  Note that we
3146                  * specify B_FALSE for byteswap now, so we don't do it twice.
3147                  */
3148                 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3149                 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3150                 if (error != 0)
3151                         return (zil_replay_error(zilog, lr, error));
3152         }
3153         return (0);
3154 }
3155 
3156 /* ARGSUSED */
3157 static int
3158 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3159 {
3160         zilog->zl_replay_blks++;
3161 
3162         return (0);
3163 }
3164 
3165 /*
3166  * If this dataset has a non-empty intent log, replay it and destroy it.
3167  */
3168 void
3169 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3170 {
3171         zilog_t *zilog = dmu_objset_zil(os);
3172         const zil_header_t *zh = zilog->zl_header;
3173         zil_replay_arg_t zr;
3174 
3175         if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3176                 zil_destroy(zilog, B_TRUE);
3177                 return;
3178         }
3179 
3180         zr.zr_replay = replay_func;
3181         zr.zr_arg = arg;
3182         zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3183         zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3184 
3185         /*
3186          * Wait for in-progress removes to sync before starting replay.
3187          */
3188         txg_wait_synced(zilog->zl_dmu_pool, 0);
3189 
3190         zilog->zl_replay = B_TRUE;
3191         zilog->zl_replay_time = ddi_get_lbolt();
3192         ASSERT(zilog->zl_replay_blks == 0);
3193         (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3194             zh->zh_claim_txg);
3195         kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3196 
3197         zil_destroy(zilog, B_FALSE);
3198         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3199         zilog->zl_replay = B_FALSE;
3200 }
3201 
3202 boolean_t
3203 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3204 {
3205         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3206                 return (B_TRUE);
3207 
3208         if (zilog->zl_replay) {
3209                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3210                 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3211                     zilog->zl_replaying_seq;
3212                 return (B_TRUE);
3213         }
3214 
3215         return (B_FALSE);
3216 }
3217 
3218 /* ARGSUSED */
3219 int
3220 zil_reset(const char *osname, void *arg)
3221 {
3222         int error;
3223 
3224         error = zil_suspend(osname, NULL);
3225         if (error != 0)
3226                 return (SET_ERROR(EEXIST));
3227         return (0);
3228 }