1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24  * Copyright (c) 2014 Integros [integros.com]
  25  */
  26 
  27 /* Portions Copyright 2007 Jeremy Teo */
  28 
  29 #ifdef _KERNEL
  30 #include <sys/types.h>
  31 #include <sys/param.h>
  32 #include <sys/time.h>
  33 #include <sys/systm.h>
  34 #include <sys/sysmacros.h>
  35 #include <sys/resource.h>
  36 #include <sys/mntent.h>
  37 #include <sys/mkdev.h>
  38 #include <sys/u8_textprep.h>
  39 #include <sys/dsl_dataset.h>
  40 #include <sys/vfs.h>
  41 #include <sys/vfs_opreg.h>
  42 #include <sys/vnode.h>
  43 #include <sys/file.h>
  44 #include <sys/kmem.h>
  45 #include <sys/errno.h>
  46 #include <sys/unistd.h>
  47 #include <sys/mode.h>
  48 #include <sys/atomic.h>
  49 #include <vm/pvn.h>
  50 #include "fs/fs_subr.h"
  51 #include <sys/zfs_dir.h>
  52 #include <sys/zfs_acl.h>
  53 #include <sys/zfs_ioctl.h>
  54 #include <sys/zfs_rlock.h>
  55 #include <sys/zfs_fuid.h>
  56 #include <sys/dnode.h>
  57 #include <sys/fs/zfs.h>
  58 #include <sys/kidmap.h>
  59 #endif /* _KERNEL */
  60 
  61 #include <sys/dmu.h>
  62 #include <sys/dmu_objset.h>
  63 #include <sys/refcount.h>
  64 #include <sys/stat.h>
  65 #include <sys/zap.h>
  66 #include <sys/zfs_znode.h>
  67 #include <sys/sa.h>
  68 #include <sys/zfs_sa.h>
  69 #include <sys/zfs_stat.h>
  70 
  71 #include "zfs_prop.h"
  72 #include "zfs_comutil.h"
  73 
  74 /*
  75  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
  76  * turned on when DEBUG is also defined.
  77  */
  78 #ifdef  DEBUG
  79 #define ZNODE_STATS
  80 #endif  /* DEBUG */
  81 
  82 #ifdef  ZNODE_STATS
  83 #define ZNODE_STAT_ADD(stat)                    ((stat)++)
  84 #else
  85 #define ZNODE_STAT_ADD(stat)                    /* nothing */
  86 #endif  /* ZNODE_STATS */
  87 
  88 /*
  89  * Functions needed for userland (ie: libzpool) are not put under
  90  * #ifdef_KERNEL; the rest of the functions have dependencies
  91  * (such as VFS logic) that will not compile easily in userland.
  92  */
  93 #ifdef _KERNEL
  94 /*
  95  * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
  96  * be freed before it can be safely accessed.
  97  */
  98 krwlock_t zfsvfs_lock;
  99 
 100 static kmem_cache_t *znode_cache = NULL;
 101 
 102 /*ARGSUSED*/
 103 static void
 104 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
 105 {
 106         /*
 107          * We should never drop all dbuf refs without first clearing
 108          * the eviction callback.
 109          */
 110         panic("evicting znode %p\n", user_ptr);
 111 }
 112 
 113 /*ARGSUSED*/
 114 static int
 115 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
 116 {
 117         znode_t *zp = buf;
 118 
 119         ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
 120 
 121         zp->z_vnode = vn_alloc(kmflags);
 122         if (zp->z_vnode == NULL) {
 123                 return (-1);
 124         }
 125         ZTOV(zp)->v_data = zp;
 126 
 127         list_link_init(&zp->z_link_node);
 128 
 129         mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
 130         rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
 131         rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
 132         mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
 133 
 134         mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
 135         avl_create(&zp->z_range_avl, zfs_range_compare,
 136             sizeof (rl_t), offsetof(rl_t, r_node));
 137 
 138         zp->z_dirlocks = NULL;
 139         zp->z_acl_cached = NULL;
 140         zp->z_moved = 0;
 141         return (0);
 142 }
 143 
 144 /*ARGSUSED*/
 145 static void
 146 zfs_znode_cache_destructor(void *buf, void *arg)
 147 {
 148         znode_t *zp = buf;
 149 
 150         ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
 151         ASSERT(ZTOV(zp)->v_data == zp);
 152         vn_free(ZTOV(zp));
 153         ASSERT(!list_link_active(&zp->z_link_node));
 154         mutex_destroy(&zp->z_lock);
 155         rw_destroy(&zp->z_parent_lock);
 156         rw_destroy(&zp->z_name_lock);
 157         mutex_destroy(&zp->z_acl_lock);
 158         avl_destroy(&zp->z_range_avl);
 159         mutex_destroy(&zp->z_range_lock);
 160 
 161         ASSERT(zp->z_dirlocks == NULL);
 162         ASSERT(zp->z_acl_cached == NULL);
 163 }
 164 
 165 #ifdef  ZNODE_STATS
 166 static struct {
 167         uint64_t zms_zfsvfs_invalid;
 168         uint64_t zms_zfsvfs_recheck1;
 169         uint64_t zms_zfsvfs_unmounted;
 170         uint64_t zms_zfsvfs_recheck2;
 171         uint64_t zms_obj_held;
 172         uint64_t zms_vnode_locked;
 173         uint64_t zms_not_only_dnlc;
 174 } znode_move_stats;
 175 #endif  /* ZNODE_STATS */
 176 
 177 static void
 178 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
 179 {
 180         vnode_t *vp;
 181 
 182         /* Copy fields. */
 183         nzp->z_zfsvfs = ozp->z_zfsvfs;
 184 
 185         /* Swap vnodes. */
 186         vp = nzp->z_vnode;
 187         nzp->z_vnode = ozp->z_vnode;
 188         ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
 189         ZTOV(ozp)->v_data = ozp;
 190         ZTOV(nzp)->v_data = nzp;
 191 
 192         nzp->z_id = ozp->z_id;
 193         ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
 194         ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
 195         nzp->z_unlinked = ozp->z_unlinked;
 196         nzp->z_atime_dirty = ozp->z_atime_dirty;
 197         nzp->z_zn_prefetch = ozp->z_zn_prefetch;
 198         nzp->z_blksz = ozp->z_blksz;
 199         nzp->z_seq = ozp->z_seq;
 200         nzp->z_mapcnt = ozp->z_mapcnt;
 201         nzp->z_gen = ozp->z_gen;
 202         nzp->z_sync_cnt = ozp->z_sync_cnt;
 203         nzp->z_is_sa = ozp->z_is_sa;
 204         nzp->z_sa_hdl = ozp->z_sa_hdl;
 205         bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
 206         nzp->z_links = ozp->z_links;
 207         nzp->z_size = ozp->z_size;
 208         nzp->z_pflags = ozp->z_pflags;
 209         nzp->z_uid = ozp->z_uid;
 210         nzp->z_gid = ozp->z_gid;
 211         nzp->z_mode = ozp->z_mode;
 212 
 213         /*
 214          * Since this is just an idle znode and kmem is already dealing with
 215          * memory pressure, release any cached ACL.
 216          */
 217         if (ozp->z_acl_cached) {
 218                 zfs_acl_free(ozp->z_acl_cached);
 219                 ozp->z_acl_cached = NULL;
 220         }
 221 
 222         sa_set_userp(nzp->z_sa_hdl, nzp);
 223 
 224         /*
 225          * Invalidate the original znode by clearing fields that provide a
 226          * pointer back to the znode. Set the low bit of the vfs pointer to
 227          * ensure that zfs_znode_move() recognizes the znode as invalid in any
 228          * subsequent callback.
 229          */
 230         ozp->z_sa_hdl = NULL;
 231         POINTER_INVALIDATE(&ozp->z_zfsvfs);
 232 
 233         /*
 234          * Mark the znode.
 235          */
 236         nzp->z_moved = 1;
 237         ozp->z_moved = (uint8_t)-1;
 238 }
 239 
 240 /*ARGSUSED*/
 241 static kmem_cbrc_t
 242 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
 243 {
 244         znode_t *ozp = buf, *nzp = newbuf;
 245         zfsvfs_t *zfsvfs;
 246         vnode_t *vp;
 247 
 248         /*
 249          * The znode is on the file system's list of known znodes if the vfs
 250          * pointer is valid. We set the low bit of the vfs pointer when freeing
 251          * the znode to invalidate it, and the memory patterns written by kmem
 252          * (baddcafe and deadbeef) set at least one of the two low bits. A newly
 253          * created znode sets the vfs pointer last of all to indicate that the
 254          * znode is known and in a valid state to be moved by this function.
 255          */
 256         zfsvfs = ozp->z_zfsvfs;
 257         if (!POINTER_IS_VALID(zfsvfs)) {
 258                 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
 259                 return (KMEM_CBRC_DONT_KNOW);
 260         }
 261 
 262         /*
 263          * Close a small window in which it's possible that the filesystem could
 264          * be unmounted and freed, and zfsvfs, though valid in the previous
 265          * statement, could point to unrelated memory by the time we try to
 266          * prevent the filesystem from being unmounted.
 267          */
 268         rw_enter(&zfsvfs_lock, RW_WRITER);
 269         if (zfsvfs != ozp->z_zfsvfs) {
 270                 rw_exit(&zfsvfs_lock);
 271                 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
 272                 return (KMEM_CBRC_DONT_KNOW);
 273         }
 274 
 275         /*
 276          * If the znode is still valid, then so is the file system. We know that
 277          * no valid file system can be freed while we hold zfsvfs_lock, so we
 278          * can safely ensure that the filesystem is not and will not be
 279          * unmounted. The next statement is equivalent to ZFS_ENTER().
 280          */
 281         rrm_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
 282         if (zfsvfs->z_unmounted) {
 283                 ZFS_EXIT(zfsvfs);
 284                 rw_exit(&zfsvfs_lock);
 285                 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
 286                 return (KMEM_CBRC_DONT_KNOW);
 287         }
 288         rw_exit(&zfsvfs_lock);
 289 
 290         mutex_enter(&zfsvfs->z_znodes_lock);
 291         /*
 292          * Recheck the vfs pointer in case the znode was removed just before
 293          * acquiring the lock.
 294          */
 295         if (zfsvfs != ozp->z_zfsvfs) {
 296                 mutex_exit(&zfsvfs->z_znodes_lock);
 297                 ZFS_EXIT(zfsvfs);
 298                 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
 299                 return (KMEM_CBRC_DONT_KNOW);
 300         }
 301 
 302         /*
 303          * At this point we know that as long as we hold z_znodes_lock, the
 304          * znode cannot be freed and fields within the znode can be safely
 305          * accessed. Now, prevent a race with zfs_zget().
 306          */
 307         if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
 308                 mutex_exit(&zfsvfs->z_znodes_lock);
 309                 ZFS_EXIT(zfsvfs);
 310                 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
 311                 return (KMEM_CBRC_LATER);
 312         }
 313 
 314         vp = ZTOV(ozp);
 315         if (mutex_tryenter(&vp->v_lock) == 0) {
 316                 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
 317                 mutex_exit(&zfsvfs->z_znodes_lock);
 318                 ZFS_EXIT(zfsvfs);
 319                 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
 320                 return (KMEM_CBRC_LATER);
 321         }
 322 
 323         /* Only move znodes that are referenced _only_ by the DNLC. */
 324         if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
 325                 mutex_exit(&vp->v_lock);
 326                 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
 327                 mutex_exit(&zfsvfs->z_znodes_lock);
 328                 ZFS_EXIT(zfsvfs);
 329                 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
 330                 return (KMEM_CBRC_LATER);
 331         }
 332 
 333         /*
 334          * The znode is known and in a valid state to move. We're holding the
 335          * locks needed to execute the critical section.
 336          */
 337         zfs_znode_move_impl(ozp, nzp);
 338         mutex_exit(&vp->v_lock);
 339         ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
 340 
 341         list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
 342         mutex_exit(&zfsvfs->z_znodes_lock);
 343         ZFS_EXIT(zfsvfs);
 344 
 345         return (KMEM_CBRC_YES);
 346 }
 347 
 348 void
 349 zfs_znode_init(void)
 350 {
 351         /*
 352          * Initialize zcache
 353          */
 354         rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
 355         ASSERT(znode_cache == NULL);
 356         znode_cache = kmem_cache_create("zfs_znode_cache",
 357             sizeof (znode_t), 0, zfs_znode_cache_constructor,
 358             zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
 359         kmem_cache_set_move(znode_cache, zfs_znode_move);
 360 }
 361 
 362 void
 363 zfs_znode_fini(void)
 364 {
 365         /*
 366          * Cleanup vfs & vnode ops
 367          */
 368         zfs_remove_op_tables();
 369 
 370         /*
 371          * Cleanup zcache
 372          */
 373         if (znode_cache)
 374                 kmem_cache_destroy(znode_cache);
 375         znode_cache = NULL;
 376         rw_destroy(&zfsvfs_lock);
 377 }
 378 
 379 struct vnodeops *zfs_dvnodeops;
 380 struct vnodeops *zfs_fvnodeops;
 381 struct vnodeops *zfs_symvnodeops;
 382 struct vnodeops *zfs_xdvnodeops;
 383 struct vnodeops *zfs_evnodeops;
 384 struct vnodeops *zfs_sharevnodeops;
 385 
 386 void
 387 zfs_remove_op_tables()
 388 {
 389         /*
 390          * Remove vfs ops
 391          */
 392         ASSERT(zfsfstype);
 393         (void) vfs_freevfsops_by_type(zfsfstype);
 394         zfsfstype = 0;
 395 
 396         /*
 397          * Remove vnode ops
 398          */
 399         if (zfs_dvnodeops)
 400                 vn_freevnodeops(zfs_dvnodeops);
 401         if (zfs_fvnodeops)
 402                 vn_freevnodeops(zfs_fvnodeops);
 403         if (zfs_symvnodeops)
 404                 vn_freevnodeops(zfs_symvnodeops);
 405         if (zfs_xdvnodeops)
 406                 vn_freevnodeops(zfs_xdvnodeops);
 407         if (zfs_evnodeops)
 408                 vn_freevnodeops(zfs_evnodeops);
 409         if (zfs_sharevnodeops)
 410                 vn_freevnodeops(zfs_sharevnodeops);
 411 
 412         zfs_dvnodeops = NULL;
 413         zfs_fvnodeops = NULL;
 414         zfs_symvnodeops = NULL;
 415         zfs_xdvnodeops = NULL;
 416         zfs_evnodeops = NULL;
 417         zfs_sharevnodeops = NULL;
 418 }
 419 
 420 extern const fs_operation_def_t zfs_dvnodeops_template[];
 421 extern const fs_operation_def_t zfs_fvnodeops_template[];
 422 extern const fs_operation_def_t zfs_xdvnodeops_template[];
 423 extern const fs_operation_def_t zfs_symvnodeops_template[];
 424 extern const fs_operation_def_t zfs_evnodeops_template[];
 425 extern const fs_operation_def_t zfs_sharevnodeops_template[];
 426 
 427 int
 428 zfs_create_op_tables()
 429 {
 430         int error;
 431 
 432         /*
 433          * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
 434          * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
 435          * In this case we just return as the ops vectors are already set up.
 436          */
 437         if (zfs_dvnodeops)
 438                 return (0);
 439 
 440         error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
 441             &zfs_dvnodeops);
 442         if (error)
 443                 return (error);
 444 
 445         error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
 446             &zfs_fvnodeops);
 447         if (error)
 448                 return (error);
 449 
 450         error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
 451             &zfs_symvnodeops);
 452         if (error)
 453                 return (error);
 454 
 455         error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
 456             &zfs_xdvnodeops);
 457         if (error)
 458                 return (error);
 459 
 460         error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
 461             &zfs_evnodeops);
 462         if (error)
 463                 return (error);
 464 
 465         error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
 466             &zfs_sharevnodeops);
 467 
 468         return (error);
 469 }
 470 
 471 int
 472 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
 473 {
 474         zfs_acl_ids_t acl_ids;
 475         vattr_t vattr;
 476         znode_t *sharezp;
 477         vnode_t *vp;
 478         znode_t *zp;
 479         int error;
 480 
 481         vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
 482         vattr.va_type = VDIR;
 483         vattr.va_mode = S_IFDIR|0555;
 484         vattr.va_uid = crgetuid(kcred);
 485         vattr.va_gid = crgetgid(kcred);
 486 
 487         sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
 488         ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
 489         sharezp->z_moved = 0;
 490         sharezp->z_unlinked = 0;
 491         sharezp->z_atime_dirty = 0;
 492         sharezp->z_zfsvfs = zfsvfs;
 493         sharezp->z_is_sa = zfsvfs->z_use_sa;
 494 
 495         vp = ZTOV(sharezp);
 496         vn_reinit(vp);
 497         vp->v_type = VDIR;
 498 
 499         VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
 500             kcred, NULL, &acl_ids));
 501         zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
 502         ASSERT3P(zp, ==, sharezp);
 503         ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
 504         POINTER_INVALIDATE(&sharezp->z_zfsvfs);
 505         error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
 506             ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
 507         zfsvfs->z_shares_dir = sharezp->z_id;
 508 
 509         zfs_acl_ids_free(&acl_ids);
 510         ZTOV(sharezp)->v_count = 0;
 511         sa_handle_destroy(sharezp->z_sa_hdl);
 512         kmem_cache_free(znode_cache, sharezp);
 513 
 514         return (error);
 515 }
 516 
 517 /*
 518  * define a couple of values we need available
 519  * for both 64 and 32 bit environments.
 520  */
 521 #ifndef NBITSMINOR64
 522 #define NBITSMINOR64    32
 523 #endif
 524 #ifndef MAXMAJ64
 525 #define MAXMAJ64        0xffffffffUL
 526 #endif
 527 #ifndef MAXMIN64
 528 #define MAXMIN64        0xffffffffUL
 529 #endif
 530 
 531 /*
 532  * Create special expldev for ZFS private use.
 533  * Can't use standard expldev since it doesn't do
 534  * what we want.  The standard expldev() takes a
 535  * dev32_t in LP64 and expands it to a long dev_t.
 536  * We need an interface that takes a dev32_t in ILP32
 537  * and expands it to a long dev_t.
 538  */
 539 static uint64_t
 540 zfs_expldev(dev_t dev)
 541 {
 542 #ifndef _LP64
 543         major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
 544         return (((uint64_t)major << NBITSMINOR64) |
 545             ((minor_t)dev & MAXMIN32));
 546 #else
 547         return (dev);
 548 #endif
 549 }
 550 
 551 /*
 552  * Special cmpldev for ZFS private use.
 553  * Can't use standard cmpldev since it takes
 554  * a long dev_t and compresses it to dev32_t in
 555  * LP64.  We need to do a compaction of a long dev_t
 556  * to a dev32_t in ILP32.
 557  */
 558 dev_t
 559 zfs_cmpldev(uint64_t dev)
 560 {
 561 #ifndef _LP64
 562         minor_t minor = (minor_t)dev & MAXMIN64;
 563         major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
 564 
 565         if (major > MAXMAJ32 || minor > MAXMIN32)
 566                 return (NODEV32);
 567 
 568         return (((dev32_t)major << NBITSMINOR32) | minor);
 569 #else
 570         return (dev);
 571 #endif
 572 }
 573 
 574 static void
 575 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
 576     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
 577 {
 578         ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
 579         ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
 580 
 581         mutex_enter(&zp->z_lock);
 582 
 583         ASSERT(zp->z_sa_hdl == NULL);
 584         ASSERT(zp->z_acl_cached == NULL);
 585         if (sa_hdl == NULL) {
 586                 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
 587                     SA_HDL_SHARED, &zp->z_sa_hdl));
 588         } else {
 589                 zp->z_sa_hdl = sa_hdl;
 590                 sa_set_userp(sa_hdl, zp);
 591         }
 592 
 593         zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
 594 
 595         /*
 596          * Slap on VROOT if we are the root znode
 597          */
 598         if (zp->z_id == zfsvfs->z_root)
 599                 ZTOV(zp)->v_flag |= VROOT;
 600 
 601         mutex_exit(&zp->z_lock);
 602         vn_exists(ZTOV(zp));
 603 }
 604 
 605 void
 606 zfs_znode_dmu_fini(znode_t *zp)
 607 {
 608         ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
 609             zp->z_unlinked ||
 610             RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
 611 
 612         sa_handle_destroy(zp->z_sa_hdl);
 613         zp->z_sa_hdl = NULL;
 614 }
 615 
 616 /*
 617  * Construct a new znode/vnode and intialize.
 618  *
 619  * This does not do a call to dmu_set_user() that is
 620  * up to the caller to do, in case you don't want to
 621  * return the znode
 622  */
 623 static znode_t *
 624 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
 625     dmu_object_type_t obj_type, sa_handle_t *hdl)
 626 {
 627         znode_t *zp;
 628         vnode_t *vp;
 629         uint64_t mode;
 630         uint64_t parent;
 631         sa_bulk_attr_t bulk[9];
 632         int count = 0;
 633 
 634         zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
 635 
 636         ASSERT(zp->z_dirlocks == NULL);
 637         ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
 638         zp->z_moved = 0;
 639 
 640         /*
 641          * Defer setting z_zfsvfs until the znode is ready to be a candidate for
 642          * the zfs_znode_move() callback.
 643          */
 644         zp->z_sa_hdl = NULL;
 645         zp->z_unlinked = 0;
 646         zp->z_atime_dirty = 0;
 647         zp->z_mapcnt = 0;
 648         zp->z_id = db->db_object;
 649         zp->z_blksz = blksz;
 650         zp->z_seq = 0x7A4653;
 651         zp->z_sync_cnt = 0;
 652 
 653         vp = ZTOV(zp);
 654         vn_reinit(vp);
 655 
 656         zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
 657 
 658         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
 659         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
 660         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 661             &zp->z_size, 8);
 662         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
 663             &zp->z_links, 8);
 664         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 665             &zp->z_pflags, 8);
 666         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
 667         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
 668             &zp->z_atime, 16);
 669         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
 670             &zp->z_uid, 8);
 671         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
 672             &zp->z_gid, 8);
 673 
 674         if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
 675                 if (hdl == NULL)
 676                         sa_handle_destroy(zp->z_sa_hdl);
 677                 kmem_cache_free(znode_cache, zp);
 678                 return (NULL);
 679         }
 680 
 681         zp->z_mode = mode;
 682         vp->v_vfsp = zfsvfs->z_parent->z_vfs;
 683 
 684         vp->v_type = IFTOVT((mode_t)mode);
 685 
 686         switch (vp->v_type) {
 687         case VDIR:
 688                 if (zp->z_pflags & ZFS_XATTR) {
 689                         vn_setops(vp, zfs_xdvnodeops);
 690                         vp->v_flag |= V_XATTRDIR;
 691                 } else {
 692                         vn_setops(vp, zfs_dvnodeops);
 693                 }
 694                 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
 695                 break;
 696         case VBLK:
 697         case VCHR:
 698                 {
 699                         uint64_t rdev;
 700                         VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
 701                             &rdev, sizeof (rdev)) == 0);
 702 
 703                         vp->v_rdev = zfs_cmpldev(rdev);
 704                 }
 705                 /*FALLTHROUGH*/
 706         case VFIFO:
 707         case VSOCK:
 708         case VDOOR:
 709                 vn_setops(vp, zfs_fvnodeops);
 710                 break;
 711         case VREG:
 712                 vp->v_flag |= VMODSORT;
 713                 if (parent == zfsvfs->z_shares_dir) {
 714                         ASSERT(zp->z_uid == 0 && zp->z_gid == 0);
 715                         vn_setops(vp, zfs_sharevnodeops);
 716                 } else {
 717                         vn_setops(vp, zfs_fvnodeops);
 718                 }
 719                 break;
 720         case VLNK:
 721                 vn_setops(vp, zfs_symvnodeops);
 722                 break;
 723         default:
 724                 vn_setops(vp, zfs_evnodeops);
 725                 break;
 726         }
 727 
 728         mutex_enter(&zfsvfs->z_znodes_lock);
 729         list_insert_tail(&zfsvfs->z_all_znodes, zp);
 730         membar_producer();
 731         /*
 732          * Everything else must be valid before assigning z_zfsvfs makes the
 733          * znode eligible for zfs_znode_move().
 734          */
 735         zp->z_zfsvfs = zfsvfs;
 736         mutex_exit(&zfsvfs->z_znodes_lock);
 737 
 738         VFS_HOLD(zfsvfs->z_vfs);
 739         return (zp);
 740 }
 741 
 742 static uint64_t empty_xattr;
 743 static uint64_t pad[4];
 744 static zfs_acl_phys_t acl_phys;
 745 /*
 746  * Create a new DMU object to hold a zfs znode.
 747  *
 748  *      IN:     dzp     - parent directory for new znode
 749  *              vap     - file attributes for new znode
 750  *              tx      - dmu transaction id for zap operations
 751  *              cr      - credentials of caller
 752  *              flag    - flags:
 753  *                        IS_ROOT_NODE  - new object will be root
 754  *                        IS_XATTR      - new object is an attribute
 755  *              bonuslen - length of bonus buffer
 756  *              setaclp  - File/Dir initial ACL
 757  *              fuidp    - Tracks fuid allocation.
 758  *
 759  *      OUT:    zpp     - allocated znode
 760  *
 761  */
 762 void
 763 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
 764     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
 765 {
 766         uint64_t        crtime[2], atime[2], mtime[2], ctime[2];
 767         uint64_t        mode, size, links, parent, pflags;
 768         uint64_t        dzp_pflags = 0;
 769         uint64_t        rdev = 0;
 770         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
 771         dmu_buf_t       *db;
 772         timestruc_t     now;
 773         uint64_t        gen, obj;
 774         int             bonuslen;
 775         sa_handle_t     *sa_hdl;
 776         dmu_object_type_t obj_type;
 777         sa_bulk_attr_t  sa_attrs[ZPL_END];
 778         int             cnt = 0;
 779         zfs_acl_locator_cb_t locate = { 0 };
 780 
 781         ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
 782 
 783         if (zfsvfs->z_replay) {
 784                 obj = vap->va_nodeid;
 785                 now = vap->va_ctime;         /* see zfs_replay_create() */
 786                 gen = vap->va_nblocks;               /* ditto */
 787         } else {
 788                 obj = 0;
 789                 gethrestime(&now);
 790                 gen = dmu_tx_get_txg(tx);
 791         }
 792 
 793         obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
 794         bonuslen = (obj_type == DMU_OT_SA) ?
 795             DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
 796 
 797         /*
 798          * Create a new DMU object.
 799          */
 800         /*
 801          * There's currently no mechanism for pre-reading the blocks that will
 802          * be needed to allocate a new object, so we accept the small chance
 803          * that there will be an i/o error and we will fail one of the
 804          * assertions below.
 805          */
 806         if (vap->va_type == VDIR) {
 807                 if (zfsvfs->z_replay) {
 808                         VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj,
 809                             zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
 810                             obj_type, bonuslen, tx));
 811                 } else {
 812                         obj = zap_create_norm(zfsvfs->z_os,
 813                             zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
 814                             obj_type, bonuslen, tx);
 815                 }
 816         } else {
 817                 if (zfsvfs->z_replay) {
 818                         VERIFY0(dmu_object_claim(zfsvfs->z_os, obj,
 819                             DMU_OT_PLAIN_FILE_CONTENTS, 0,
 820                             obj_type, bonuslen, tx));
 821                 } else {
 822                         obj = dmu_object_alloc(zfsvfs->z_os,
 823                             DMU_OT_PLAIN_FILE_CONTENTS, 0,
 824                             obj_type, bonuslen, tx);
 825                 }
 826         }
 827 
 828         ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
 829         VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
 830 
 831         /*
 832          * If this is the root, fix up the half-initialized parent pointer
 833          * to reference the just-allocated physical data area.
 834          */
 835         if (flag & IS_ROOT_NODE) {
 836                 dzp->z_id = obj;
 837         } else {
 838                 dzp_pflags = dzp->z_pflags;
 839         }
 840 
 841         /*
 842          * If parent is an xattr, so am I.
 843          */
 844         if (dzp_pflags & ZFS_XATTR) {
 845                 flag |= IS_XATTR;
 846         }
 847 
 848         if (zfsvfs->z_use_fuids)
 849                 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
 850         else
 851                 pflags = 0;
 852 
 853         if (vap->va_type == VDIR) {
 854                 size = 2;               /* contents ("." and "..") */
 855                 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
 856         } else {
 857                 size = links = 0;
 858         }
 859 
 860         if (vap->va_type == VBLK || vap->va_type == VCHR) {
 861                 rdev = zfs_expldev(vap->va_rdev);
 862         }
 863 
 864         parent = dzp->z_id;
 865         mode = acl_ids->z_mode;
 866         if (flag & IS_XATTR)
 867                 pflags |= ZFS_XATTR;
 868 
 869         /*
 870          * No execs denied will be deterimed when zfs_mode_compute() is called.
 871          */
 872         pflags |= acl_ids->z_aclp->z_hints &
 873             (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
 874             ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
 875 
 876         ZFS_TIME_ENCODE(&now, crtime);
 877         ZFS_TIME_ENCODE(&now, ctime);
 878 
 879         if (vap->va_mask & AT_ATIME) {
 880                 ZFS_TIME_ENCODE(&vap->va_atime, atime);
 881         } else {
 882                 ZFS_TIME_ENCODE(&now, atime);
 883         }
 884 
 885         if (vap->va_mask & AT_MTIME) {
 886                 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
 887         } else {
 888                 ZFS_TIME_ENCODE(&now, mtime);
 889         }
 890 
 891         /* Now add in all of the "SA" attributes */
 892         VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
 893             &sa_hdl));
 894 
 895         /*
 896          * Setup the array of attributes to be replaced/set on the new file
 897          *
 898          * order for  DMU_OT_ZNODE is critical since it needs to be constructed
 899          * in the old znode_phys_t format.  Don't change this ordering
 900          */
 901 
 902         if (obj_type == DMU_OT_ZNODE) {
 903                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
 904                     NULL, &atime, 16);
 905                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
 906                     NULL, &mtime, 16);
 907                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
 908                     NULL, &ctime, 16);
 909                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
 910                     NULL, &crtime, 16);
 911                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
 912                     NULL, &gen, 8);
 913                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
 914                     NULL, &mode, 8);
 915                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
 916                     NULL, &size, 8);
 917                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
 918                     NULL, &parent, 8);
 919         } else {
 920                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
 921                     NULL, &mode, 8);
 922                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
 923                     NULL, &size, 8);
 924                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
 925                     NULL, &gen, 8);
 926                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
 927                     &acl_ids->z_fuid, 8);
 928                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
 929                     &acl_ids->z_fgid, 8);
 930                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
 931                     NULL, &parent, 8);
 932                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
 933                     NULL, &pflags, 8);
 934                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
 935                     NULL, &atime, 16);
 936                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
 937                     NULL, &mtime, 16);
 938                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
 939                     NULL, &ctime, 16);
 940                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
 941                     NULL, &crtime, 16);
 942         }
 943 
 944         SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
 945 
 946         if (obj_type == DMU_OT_ZNODE) {
 947                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
 948                     &empty_xattr, 8);
 949         }
 950         if (obj_type == DMU_OT_ZNODE ||
 951             (vap->va_type == VBLK || vap->va_type == VCHR)) {
 952                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
 953                     NULL, &rdev, 8);
 954 
 955         }
 956         if (obj_type == DMU_OT_ZNODE) {
 957                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
 958                     NULL, &pflags, 8);
 959                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
 960                     &acl_ids->z_fuid, 8);
 961                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
 962                     &acl_ids->z_fgid, 8);
 963                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
 964                     sizeof (uint64_t) * 4);
 965                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
 966                     &acl_phys, sizeof (zfs_acl_phys_t));
 967         } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
 968                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
 969                     &acl_ids->z_aclp->z_acl_count, 8);
 970                 locate.cb_aclp = acl_ids->z_aclp;
 971                 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
 972                     zfs_acl_data_locator, &locate,
 973                     acl_ids->z_aclp->z_acl_bytes);
 974                 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
 975                     acl_ids->z_fuid, acl_ids->z_fgid);
 976         }
 977 
 978         VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
 979 
 980         if (!(flag & IS_ROOT_NODE)) {
 981                 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
 982                 ASSERT(*zpp != NULL);
 983         } else {
 984                 /*
 985                  * If we are creating the root node, the "parent" we
 986                  * passed in is the znode for the root.
 987                  */
 988                 *zpp = dzp;
 989 
 990                 (*zpp)->z_sa_hdl = sa_hdl;
 991         }
 992 
 993         (*zpp)->z_pflags = pflags;
 994         (*zpp)->z_mode = mode;
 995 
 996         if (vap->va_mask & AT_XVATTR)
 997                 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
 998 
 999         if (obj_type == DMU_OT_ZNODE ||
1000             acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
1001                 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
1002         }
1003         ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1004 }
1005 
1006 /*
1007  * Update in-core attributes.  It is assumed the caller will be doing an
1008  * sa_bulk_update to push the changes out.
1009  */
1010 void
1011 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1012 {
1013         xoptattr_t *xoap;
1014 
1015         xoap = xva_getxoptattr(xvap);
1016         ASSERT(xoap);
1017 
1018         if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1019                 uint64_t times[2];
1020                 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1021                 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1022                     &times, sizeof (times), tx);
1023                 XVA_SET_RTN(xvap, XAT_CREATETIME);
1024         }
1025         if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1026                 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1027                     zp->z_pflags, tx);
1028                 XVA_SET_RTN(xvap, XAT_READONLY);
1029         }
1030         if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1031                 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1032                     zp->z_pflags, tx);
1033                 XVA_SET_RTN(xvap, XAT_HIDDEN);
1034         }
1035         if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1036                 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1037                     zp->z_pflags, tx);
1038                 XVA_SET_RTN(xvap, XAT_SYSTEM);
1039         }
1040         if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1041                 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1042                     zp->z_pflags, tx);
1043                 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1044         }
1045         if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1046                 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1047                     zp->z_pflags, tx);
1048                 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1049         }
1050         if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1051                 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1052                     zp->z_pflags, tx);
1053                 XVA_SET_RTN(xvap, XAT_NOUNLINK);
1054         }
1055         if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1056                 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1057                     zp->z_pflags, tx);
1058                 XVA_SET_RTN(xvap, XAT_APPENDONLY);
1059         }
1060         if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1061                 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1062                     zp->z_pflags, tx);
1063                 XVA_SET_RTN(xvap, XAT_NODUMP);
1064         }
1065         if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1066                 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1067                     zp->z_pflags, tx);
1068                 XVA_SET_RTN(xvap, XAT_OPAQUE);
1069         }
1070         if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1071                 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1072                     xoap->xoa_av_quarantined, zp->z_pflags, tx);
1073                 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1074         }
1075         if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1076                 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1077                     zp->z_pflags, tx);
1078                 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1079         }
1080         if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1081                 zfs_sa_set_scanstamp(zp, xvap, tx);
1082                 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1083         }
1084         if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1085                 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1086                     zp->z_pflags, tx);
1087                 XVA_SET_RTN(xvap, XAT_REPARSE);
1088         }
1089         if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1090                 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1091                     zp->z_pflags, tx);
1092                 XVA_SET_RTN(xvap, XAT_OFFLINE);
1093         }
1094         if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1095                 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1096                     zp->z_pflags, tx);
1097                 XVA_SET_RTN(xvap, XAT_SPARSE);
1098         }
1099 }
1100 
1101 int
1102 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1103 {
1104         dmu_object_info_t doi;
1105         dmu_buf_t       *db;
1106         znode_t         *zp;
1107         int err;
1108         sa_handle_t     *hdl;
1109 
1110         *zpp = NULL;
1111 
1112         ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1113 
1114         err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1115         if (err) {
1116                 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1117                 return (err);
1118         }
1119 
1120         dmu_object_info_from_db(db, &doi);
1121         if (doi.doi_bonus_type != DMU_OT_SA &&
1122             (doi.doi_bonus_type != DMU_OT_ZNODE ||
1123             (doi.doi_bonus_type == DMU_OT_ZNODE &&
1124             doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1125                 sa_buf_rele(db, NULL);
1126                 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1127                 return (SET_ERROR(EINVAL));
1128         }
1129 
1130         hdl = dmu_buf_get_user(db);
1131         if (hdl != NULL) {
1132                 zp  = sa_get_userdata(hdl);
1133 
1134 
1135                 /*
1136                  * Since "SA" does immediate eviction we
1137                  * should never find a sa handle that doesn't
1138                  * know about the znode.
1139                  */
1140 
1141                 ASSERT3P(zp, !=, NULL);
1142 
1143                 mutex_enter(&zp->z_lock);
1144                 ASSERT3U(zp->z_id, ==, obj_num);
1145                 if (zp->z_unlinked) {
1146                         err = SET_ERROR(ENOENT);
1147                 } else {
1148                         VN_HOLD(ZTOV(zp));
1149                         *zpp = zp;
1150                         err = 0;
1151                 }
1152                 mutex_exit(&zp->z_lock);
1153                 sa_buf_rele(db, NULL);
1154                 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1155                 return (err);
1156         }
1157 
1158         /*
1159          * Not found create new znode/vnode
1160          * but only if file exists.
1161          *
1162          * There is a small window where zfs_vget() could
1163          * find this object while a file create is still in
1164          * progress.  This is checked for in zfs_znode_alloc()
1165          *
1166          * if zfs_znode_alloc() fails it will drop the hold on the
1167          * bonus buffer.
1168          */
1169         zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1170             doi.doi_bonus_type, NULL);
1171         if (zp == NULL) {
1172                 err = SET_ERROR(ENOENT);
1173         } else {
1174                 *zpp = zp;
1175         }
1176         ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1177         return (err);
1178 }
1179 
1180 int
1181 zfs_rezget(znode_t *zp)
1182 {
1183         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1184         dmu_object_info_t doi;
1185         dmu_buf_t *db;
1186         uint64_t obj_num = zp->z_id;
1187         uint64_t mode;
1188         sa_bulk_attr_t bulk[8];
1189         int err;
1190         int count = 0;
1191         uint64_t gen;
1192 
1193         ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1194 
1195         mutex_enter(&zp->z_acl_lock);
1196         if (zp->z_acl_cached) {
1197                 zfs_acl_free(zp->z_acl_cached);
1198                 zp->z_acl_cached = NULL;
1199         }
1200 
1201         mutex_exit(&zp->z_acl_lock);
1202         ASSERT(zp->z_sa_hdl == NULL);
1203         err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1204         if (err) {
1205                 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1206                 return (err);
1207         }
1208 
1209         dmu_object_info_from_db(db, &doi);
1210         if (doi.doi_bonus_type != DMU_OT_SA &&
1211             (doi.doi_bonus_type != DMU_OT_ZNODE ||
1212             (doi.doi_bonus_type == DMU_OT_ZNODE &&
1213             doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1214                 sa_buf_rele(db, NULL);
1215                 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1216                 return (SET_ERROR(EINVAL));
1217         }
1218 
1219         zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1220 
1221         /* reload cached values */
1222         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1223             &gen, sizeof (gen));
1224         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1225             &zp->z_size, sizeof (zp->z_size));
1226         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1227             &zp->z_links, sizeof (zp->z_links));
1228         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1229             &zp->z_pflags, sizeof (zp->z_pflags));
1230         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1231             &zp->z_atime, sizeof (zp->z_atime));
1232         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1233             &zp->z_uid, sizeof (zp->z_uid));
1234         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1235             &zp->z_gid, sizeof (zp->z_gid));
1236         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1237             &mode, sizeof (mode));
1238 
1239         if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1240                 zfs_znode_dmu_fini(zp);
1241                 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1242                 return (SET_ERROR(EIO));
1243         }
1244 
1245         zp->z_mode = mode;
1246 
1247         if (gen != zp->z_gen) {
1248                 zfs_znode_dmu_fini(zp);
1249                 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1250                 return (SET_ERROR(EIO));
1251         }
1252 
1253         zp->z_blksz = doi.doi_data_block_size;
1254 
1255         /*
1256          * If the file has zero links, then it has been unlinked on the send
1257          * side and it must be in the received unlinked set.
1258          * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1259          * stale data and to prevent automatical removal of the file in
1260          * zfs_zinactive().  The file will be removed either when it is removed
1261          * on the send side and the next incremental stream is received or
1262          * when the unlinked set gets processed.
1263          */
1264         zp->z_unlinked = (zp->z_links == 0);
1265         if (zp->z_unlinked)
1266                 zfs_znode_dmu_fini(zp);
1267 
1268         ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1269 
1270         return (0);
1271 }
1272 
1273 void
1274 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1275 {
1276         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1277         objset_t *os = zfsvfs->z_os;
1278         uint64_t obj = zp->z_id;
1279         uint64_t acl_obj = zfs_external_acl(zp);
1280 
1281         ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1282         if (acl_obj) {
1283                 VERIFY(!zp->z_is_sa);
1284                 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1285         }
1286         VERIFY(0 == dmu_object_free(os, obj, tx));
1287         zfs_znode_dmu_fini(zp);
1288         ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1289         zfs_znode_free(zp);
1290 }
1291 
1292 void
1293 zfs_zinactive(znode_t *zp)
1294 {
1295         vnode_t *vp = ZTOV(zp);
1296         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1297         uint64_t z_id = zp->z_id;
1298 
1299         ASSERT(zp->z_sa_hdl);
1300 
1301         /*
1302          * Don't allow a zfs_zget() while were trying to release this znode
1303          */
1304         ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1305 
1306         mutex_enter(&zp->z_lock);
1307         mutex_enter(&vp->v_lock);
1308         VN_RELE_LOCKED(vp);
1309         if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1310                 /*
1311                  * If the hold count is greater than zero, somebody has
1312                  * obtained a new reference on this znode while we were
1313                  * processing it here, so we are done.  If we still have
1314                  * mapped pages then we are also done, since we don't
1315                  * want to inactivate the znode until the pages get pushed.
1316                  *
1317                  * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1318                  * this seems like it would leave the znode hanging with
1319                  * no chance to go inactive...
1320                  */
1321                 mutex_exit(&vp->v_lock);
1322                 mutex_exit(&zp->z_lock);
1323                 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1324                 return;
1325         }
1326         mutex_exit(&vp->v_lock);
1327 
1328         /*
1329          * If this was the last reference to a file with no links, remove
1330          * the file from the file system unless the file system is mounted
1331          * read-only.  That can happen, for example, if the file system was
1332          * originally read-write, the file was opened, then unlinked and
1333          * the file system was made read-only before the file was finally
1334          * closed.  The file will remain in the unlinked set.
1335          */
1336         if (zp->z_unlinked) {
1337                 ASSERT(!zfsvfs->z_issnap);
1338                 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) {
1339                         mutex_exit(&zp->z_lock);
1340                         ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1341                         zfs_rmnode(zp);
1342                         return;
1343                 }
1344         }
1345 
1346         mutex_exit(&zp->z_lock);
1347         zfs_znode_dmu_fini(zp);
1348         ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1349         zfs_znode_free(zp);
1350 }
1351 
1352 void
1353 zfs_znode_free(znode_t *zp)
1354 {
1355         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1356 
1357         vn_invalid(ZTOV(zp));
1358 
1359         ASSERT(ZTOV(zp)->v_count == 0);
1360 
1361         mutex_enter(&zfsvfs->z_znodes_lock);
1362         POINTER_INVALIDATE(&zp->z_zfsvfs);
1363         list_remove(&zfsvfs->z_all_znodes, zp);
1364         mutex_exit(&zfsvfs->z_znodes_lock);
1365 
1366         if (zp->z_acl_cached) {
1367                 zfs_acl_free(zp->z_acl_cached);
1368                 zp->z_acl_cached = NULL;
1369         }
1370 
1371         kmem_cache_free(znode_cache, zp);
1372 
1373         VFS_RELE(zfsvfs->z_vfs);
1374 }
1375 
1376 void
1377 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1378     uint64_t ctime[2], boolean_t have_tx)
1379 {
1380         timestruc_t     now;
1381 
1382         gethrestime(&now);
1383 
1384         if (have_tx) {  /* will sa_bulk_update happen really soon? */
1385                 zp->z_atime_dirty = 0;
1386                 zp->z_seq++;
1387         } else {
1388                 zp->z_atime_dirty = 1;
1389         }
1390 
1391         if (flag & AT_ATIME) {
1392                 ZFS_TIME_ENCODE(&now, zp->z_atime);
1393         }
1394 
1395         if (flag & AT_MTIME) {
1396                 ZFS_TIME_ENCODE(&now, mtime);
1397                 if (zp->z_zfsvfs->z_use_fuids) {
1398                         zp->z_pflags |= (ZFS_ARCHIVE |
1399                             ZFS_AV_MODIFIED);
1400                 }
1401         }
1402 
1403         if (flag & AT_CTIME) {
1404                 ZFS_TIME_ENCODE(&now, ctime);
1405                 if (zp->z_zfsvfs->z_use_fuids)
1406                         zp->z_pflags |= ZFS_ARCHIVE;
1407         }
1408 }
1409 
1410 /*
1411  * Grow the block size for a file.
1412  *
1413  *      IN:     zp      - znode of file to free data in.
1414  *              size    - requested block size
1415  *              tx      - open transaction.
1416  *
1417  * NOTE: this function assumes that the znode is write locked.
1418  */
1419 void
1420 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1421 {
1422         int             error;
1423         u_longlong_t    dummy;
1424 
1425         if (size <= zp->z_blksz)
1426                 return;
1427         /*
1428          * If the file size is already greater than the current blocksize,
1429          * we will not grow.  If there is more than one block in a file,
1430          * the blocksize cannot change.
1431          */
1432         if (zp->z_blksz && zp->z_size > zp->z_blksz)
1433                 return;
1434 
1435         error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1436             size, 0, tx);
1437 
1438         if (error == ENOTSUP)
1439                 return;
1440         ASSERT0(error);
1441 
1442         /* What blocksize did we actually get? */
1443         dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1444 }
1445 
1446 /*
1447  * This is a dummy interface used when pvn_vplist_dirty() should *not*
1448  * be calling back into the fs for a putpage().  E.g.: when truncating
1449  * a file, the pages being "thrown away* don't need to be written out.
1450  */
1451 /* ARGSUSED */
1452 static int
1453 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1454     int flags, cred_t *cr)
1455 {
1456         ASSERT(0);
1457         return (0);
1458 }
1459 
1460 /*
1461  * Increase the file length
1462  *
1463  *      IN:     zp      - znode of file to free data in.
1464  *              end     - new end-of-file
1465  *
1466  *      RETURN: 0 on success, error code on failure
1467  */
1468 static int
1469 zfs_extend(znode_t *zp, uint64_t end)
1470 {
1471         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1472         dmu_tx_t *tx;
1473         rl_t *rl;
1474         uint64_t newblksz;
1475         int error;
1476 
1477         /*
1478          * We will change zp_size, lock the whole file.
1479          */
1480         rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1481 
1482         /*
1483          * Nothing to do if file already at desired length.
1484          */
1485         if (end <= zp->z_size) {
1486                 zfs_range_unlock(rl);
1487                 return (0);
1488         }
1489         tx = dmu_tx_create(zfsvfs->z_os);
1490         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1491         zfs_sa_upgrade_txholds(tx, zp);
1492         if (end > zp->z_blksz &&
1493             (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1494                 /*
1495                  * We are growing the file past the current block size.
1496                  */
1497                 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1498                         /*
1499                          * File's blocksize is already larger than the
1500                          * "recordsize" property.  Only let it grow to
1501                          * the next power of 2.
1502                          */
1503                         ASSERT(!ISP2(zp->z_blksz));
1504                         newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1505                 } else {
1506                         newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1507                 }
1508                 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1509         } else {
1510                 newblksz = 0;
1511         }
1512 
1513         error = dmu_tx_assign(tx, TXG_WAIT);
1514         if (error) {
1515                 dmu_tx_abort(tx);
1516                 zfs_range_unlock(rl);
1517                 return (error);
1518         }
1519 
1520         if (newblksz)
1521                 zfs_grow_blocksize(zp, newblksz, tx);
1522 
1523         zp->z_size = end;
1524 
1525         VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1526             &zp->z_size, sizeof (zp->z_size), tx));
1527 
1528         zfs_range_unlock(rl);
1529 
1530         dmu_tx_commit(tx);
1531 
1532         return (0);
1533 }
1534 
1535 /*
1536  * Free space in a file.
1537  *
1538  *      IN:     zp      - znode of file to free data in.
1539  *              off     - start of section to free.
1540  *              len     - length of section to free.
1541  *
1542  *      RETURN: 0 on success, error code on failure
1543  */
1544 static int
1545 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1546 {
1547         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1548         rl_t *rl;
1549         int error;
1550 
1551         /*
1552          * Lock the range being freed.
1553          */
1554         rl = zfs_range_lock(zp, off, len, RL_WRITER);
1555 
1556         /*
1557          * Nothing to do if file already at desired length.
1558          */
1559         if (off >= zp->z_size) {
1560                 zfs_range_unlock(rl);
1561                 return (0);
1562         }
1563 
1564         if (off + len > zp->z_size)
1565                 len = zp->z_size - off;
1566 
1567         error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1568 
1569         zfs_range_unlock(rl);
1570 
1571         return (error);
1572 }
1573 
1574 /*
1575  * Truncate a file
1576  *
1577  *      IN:     zp      - znode of file to free data in.
1578  *              end     - new end-of-file.
1579  *
1580  *      RETURN: 0 on success, error code on failure
1581  */
1582 static int
1583 zfs_trunc(znode_t *zp, uint64_t end)
1584 {
1585         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1586         vnode_t *vp = ZTOV(zp);
1587         dmu_tx_t *tx;
1588         rl_t *rl;
1589         int error;
1590         sa_bulk_attr_t bulk[2];
1591         int count = 0;
1592 
1593         /*
1594          * We will change zp_size, lock the whole file.
1595          */
1596         rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1597 
1598         /*
1599          * Nothing to do if file already at desired length.
1600          */
1601         if (end >= zp->z_size) {
1602                 zfs_range_unlock(rl);
1603                 return (0);
1604         }
1605 
1606         error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1607         if (error) {
1608                 zfs_range_unlock(rl);
1609                 return (error);
1610         }
1611         tx = dmu_tx_create(zfsvfs->z_os);
1612         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1613         zfs_sa_upgrade_txholds(tx, zp);
1614         dmu_tx_mark_netfree(tx);
1615         error = dmu_tx_assign(tx, TXG_WAIT);
1616         if (error) {
1617                 dmu_tx_abort(tx);
1618                 zfs_range_unlock(rl);
1619                 return (error);
1620         }
1621 
1622         zp->z_size = end;
1623         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1624             NULL, &zp->z_size, sizeof (zp->z_size));
1625 
1626         if (end == 0) {
1627                 zp->z_pflags &= ~ZFS_SPARSE;
1628                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1629                     NULL, &zp->z_pflags, 8);
1630         }
1631         VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1632 
1633         dmu_tx_commit(tx);
1634 
1635         /*
1636          * Clear any mapped pages in the truncated region.  This has to
1637          * happen outside of the transaction to avoid the possibility of
1638          * a deadlock with someone trying to push a page that we are
1639          * about to invalidate.
1640          */
1641         if (vn_has_cached_data(vp)) {
1642                 page_t *pp;
1643                 uint64_t start = end & PAGEMASK;
1644                 int poff = end & PAGEOFFSET;
1645 
1646                 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1647                         /*
1648                          * We need to zero a partial page.
1649                          */
1650                         pagezero(pp, poff, PAGESIZE - poff);
1651                         start += PAGESIZE;
1652                         page_unlock(pp);
1653                 }
1654                 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1655                     B_INVAL | B_TRUNC, NULL);
1656                 ASSERT(error == 0);
1657         }
1658 
1659         zfs_range_unlock(rl);
1660 
1661         return (0);
1662 }
1663 
1664 /*
1665  * Free space in a file
1666  *
1667  *      IN:     zp      - znode of file to free data in.
1668  *              off     - start of range
1669  *              len     - end of range (0 => EOF)
1670  *              flag    - current file open mode flags.
1671  *              log     - TRUE if this action should be logged
1672  *
1673  *      RETURN: 0 on success, error code on failure
1674  */
1675 int
1676 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1677 {
1678         vnode_t *vp = ZTOV(zp);
1679         dmu_tx_t *tx;
1680         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1681         zilog_t *zilog = zfsvfs->z_log;
1682         uint64_t mode;
1683         uint64_t mtime[2], ctime[2];
1684         sa_bulk_attr_t bulk[3];
1685         int count = 0;
1686         int error;
1687 
1688         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1689             sizeof (mode))) != 0)
1690                 return (error);
1691 
1692         if (off > zp->z_size) {
1693                 error =  zfs_extend(zp, off+len);
1694                 if (error == 0 && log)
1695                         goto log;
1696                 else
1697                         return (error);
1698         }
1699 
1700         /*
1701          * Check for any locks in the region to be freed.
1702          */
1703 
1704         if (MANDLOCK(vp, (mode_t)mode)) {
1705                 uint64_t length = (len ? len : zp->z_size - off);
1706                 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1707                         return (error);
1708         }
1709 
1710         if (len == 0) {
1711                 error = zfs_trunc(zp, off);
1712         } else {
1713                 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1714                     off + len > zp->z_size)
1715                         error = zfs_extend(zp, off+len);
1716         }
1717         if (error || !log)
1718                 return (error);
1719 log:
1720         tx = dmu_tx_create(zfsvfs->z_os);
1721         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1722         zfs_sa_upgrade_txholds(tx, zp);
1723         error = dmu_tx_assign(tx, TXG_WAIT);
1724         if (error) {
1725                 dmu_tx_abort(tx);
1726                 return (error);
1727         }
1728 
1729         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1730         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1731         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1732             NULL, &zp->z_pflags, 8);
1733         zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1734         error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1735         ASSERT(error == 0);
1736 
1737         zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1738 
1739         dmu_tx_commit(tx);
1740         return (0);
1741 }
1742 
1743 void
1744 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1745 {
1746         uint64_t        moid, obj, sa_obj, version;
1747         uint64_t        sense = ZFS_CASE_SENSITIVE;
1748         uint64_t        norm = 0;
1749         nvpair_t        *elem;
1750         int             error;
1751         int             i;
1752         int size = spa_get_obj_mtx_sz(dmu_objset_spa(os));
1753         znode_t         *rootzp = NULL;
1754         zfsvfs_t        *zfsvfs;
1755         vnode_t         *vp;
1756         vattr_t         vattr;
1757         znode_t         *zp;
1758         zfs_acl_ids_t   acl_ids;
1759 
1760         /*
1761          * First attempt to create master node.
1762          */
1763         /*
1764          * In an empty objset, there are no blocks to read and thus
1765          * there can be no i/o errors (which we assert below).
1766          */
1767         moid = MASTER_NODE_OBJ;
1768         error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1769             DMU_OT_NONE, 0, tx);
1770         ASSERT(error == 0);
1771 
1772         /*
1773          * Set starting attributes.
1774          */
1775         version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1776         elem = NULL;
1777         while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1778                 /* For the moment we expect all zpl props to be uint64_ts */
1779                 uint64_t val;
1780                 char *name;
1781 
1782                 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1783                 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1784                 name = nvpair_name(elem);
1785                 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1786                         if (val < version)
1787                                 version = val;
1788                 } else {
1789                         error = zap_update(os, moid, name, 8, 1, &val, tx);
1790                 }
1791                 ASSERT(error == 0);
1792                 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1793                         norm = val;
1794                 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1795                         sense = val;
1796         }
1797         ASSERT(version != 0);
1798         error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1799 
1800         /*
1801          * Create zap object used for SA attribute registration
1802          */
1803 
1804         if (version >= ZPL_VERSION_SA) {
1805                 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1806                     DMU_OT_NONE, 0, tx);
1807                 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1808                 ASSERT(error == 0);
1809         } else {
1810                 sa_obj = 0;
1811         }
1812         /*
1813          * Create a delete queue.
1814          */
1815         obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1816 
1817         error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1818         ASSERT(error == 0);
1819 
1820         /*
1821          * Create root znode.  Create minimal znode/vnode/zfsvfs
1822          * to allow zfs_mknode to work.
1823          */
1824         vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1825         vattr.va_type = VDIR;
1826         vattr.va_mode = S_IFDIR|0755;
1827         vattr.va_uid = crgetuid(cr);
1828         vattr.va_gid = crgetgid(cr);
1829 
1830         rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1831         ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1832         rootzp->z_moved = 0;
1833         rootzp->z_unlinked = 0;
1834         rootzp->z_atime_dirty = 0;
1835         rootzp->z_is_sa = USE_SA(version, os);
1836 
1837         vp = ZTOV(rootzp);
1838         vn_reinit(vp);
1839         vp->v_type = VDIR;
1840 
1841         zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1842         zfsvfs->z_os = os;
1843         zfsvfs->z_parent = zfsvfs;
1844         zfsvfs->z_version = version;
1845         zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1846         zfsvfs->z_use_sa = USE_SA(version, os);
1847         zfsvfs->z_norm = norm;
1848 
1849         error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1850             &zfsvfs->z_attr_table);
1851 
1852         ASSERT(error == 0);
1853 
1854         /*
1855          * Fold case on file systems that are always or sometimes case
1856          * insensitive.
1857          */
1858         if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1859                 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1860 
1861         mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1862         list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1863             offsetof(znode_t, z_link_node));
1864 
1865         zfsvfs->z_hold_mtx_sz = size;
1866         zfsvfs->z_hold_mtx = kmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1867         for (i = 0; i != size; i++)
1868                 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1869 
1870         rootzp->z_zfsvfs = zfsvfs;
1871         VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1872             cr, NULL, &acl_ids));
1873         zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1874         ASSERT3P(zp, ==, rootzp);
1875         ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1876         error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1877         ASSERT(error == 0);
1878         zfs_acl_ids_free(&acl_ids);
1879         POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1880 
1881         ZTOV(rootzp)->v_count = 0;
1882         sa_handle_destroy(rootzp->z_sa_hdl);
1883         kmem_cache_free(znode_cache, rootzp);
1884 
1885         /*
1886          * Create shares directory
1887          */
1888 
1889         error = zfs_create_share_dir(zfsvfs, tx);
1890 
1891         ASSERT(error == 0);
1892 
1893         for (i = 0; i != size; i++)
1894                 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1895 
1896         kmem_free(zfsvfs->z_hold_mtx, sizeof (kmutex_t) * size);
1897         kmem_free(zfsvfs, sizeof (zfsvfs_t));
1898 }
1899 
1900 #endif /* _KERNEL */
1901 
1902 static int
1903 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1904 {
1905         uint64_t sa_obj = 0;
1906         int error;
1907 
1908         error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1909         if (error != 0 && error != ENOENT)
1910                 return (error);
1911 
1912         error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1913         return (error);
1914 }
1915 
1916 static int
1917 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1918     dmu_buf_t **db, void *tag)
1919 {
1920         dmu_object_info_t doi;
1921         int error;
1922 
1923         if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1924                 return (error);
1925 
1926         dmu_object_info_from_db(*db, &doi);
1927         if ((doi.doi_bonus_type != DMU_OT_SA &&
1928             doi.doi_bonus_type != DMU_OT_ZNODE) ||
1929             doi.doi_bonus_type == DMU_OT_ZNODE &&
1930             doi.doi_bonus_size < sizeof (znode_phys_t)) {
1931                 sa_buf_rele(*db, tag);
1932                 return (SET_ERROR(ENOTSUP));
1933         }
1934 
1935         error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
1936         if (error != 0) {
1937                 sa_buf_rele(*db, tag);
1938                 return (error);
1939         }
1940 
1941         return (0);
1942 }
1943 
1944 void
1945 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
1946 {
1947         sa_handle_destroy(hdl);
1948         sa_buf_rele(db, tag);
1949 }
1950 
1951 /*
1952  * Given an object number, return its parent object number and whether
1953  * or not the object is an extended attribute directory.
1954  */
1955 static int
1956 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
1957     uint64_t *pobjp, int *is_xattrdir)
1958 {
1959         uint64_t parent;
1960         uint64_t pflags;
1961         uint64_t mode;
1962         uint64_t parent_mode;
1963         sa_bulk_attr_t bulk[3];
1964         sa_handle_t *sa_hdl;
1965         dmu_buf_t *sa_db;
1966         int count = 0;
1967         int error;
1968 
1969         SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
1970             &parent, sizeof (parent));
1971         SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1972             &pflags, sizeof (pflags));
1973         SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1974             &mode, sizeof (mode));
1975 
1976         if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
1977                 return (error);
1978 
1979         /*
1980          * When a link is removed its parent pointer is not changed and will
1981          * be invalid.  There are two cases where a link is removed but the
1982          * file stays around, when it goes to the delete queue and when there
1983          * are additional links.
1984          */
1985         error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
1986         if (error != 0)
1987                 return (error);
1988 
1989         error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
1990         zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
1991         if (error != 0)
1992                 return (error);
1993 
1994         *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1995 
1996         /*
1997          * Extended attributes can be applied to files, directories, etc.
1998          * Otherwise the parent must be a directory.
1999          */
2000         if (!*is_xattrdir && !S_ISDIR(parent_mode))
2001                 return (SET_ERROR(EINVAL));
2002 
2003         *pobjp = parent;
2004 
2005         return (0);
2006 }
2007 
2008 /*
2009  * Given an object number, return some zpl level statistics
2010  */
2011 static int
2012 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
2013     zfs_stat_t *sb)
2014 {
2015         sa_bulk_attr_t bulk[4];
2016         int count = 0;
2017 
2018         SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2019             &sb->zs_mode, sizeof (sb->zs_mode));
2020         SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
2021             &sb->zs_gen, sizeof (sb->zs_gen));
2022         SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
2023             &sb->zs_links, sizeof (sb->zs_links));
2024         SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
2025             &sb->zs_ctime, sizeof (sb->zs_ctime));
2026 
2027         return (sa_bulk_lookup(hdl, bulk, count));
2028 }
2029 
2030 static int
2031 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2032     sa_attr_type_t *sa_table, char *buf, int len)
2033 {
2034         sa_handle_t *sa_hdl;
2035         sa_handle_t *prevhdl = NULL;
2036         dmu_buf_t *prevdb = NULL;
2037         dmu_buf_t *sa_db = NULL;
2038         char *path = buf + len - 1;
2039         int error;
2040 
2041         *path = '\0';
2042         sa_hdl = hdl;
2043 
2044         for (;;) {
2045                 uint64_t pobj;
2046                 char component[MAXNAMELEN + 2];
2047                 size_t complen;
2048                 int is_xattrdir;
2049 
2050                 if (prevdb)
2051                         zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2052 
2053                 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2054                     &is_xattrdir)) != 0)
2055                         break;
2056 
2057                 if (pobj == obj) {
2058                         if (path[0] != '/')
2059                                 *--path = '/';
2060                         break;
2061                 }
2062 
2063                 component[0] = '/';
2064                 if (is_xattrdir) {
2065                         (void) sprintf(component + 1, "<xattrdir>");
2066                 } else {
2067                         error = zap_value_search(osp, pobj, obj,
2068                             ZFS_DIRENT_OBJ(-1ULL), component + 1);
2069                         if (error != 0)
2070                                 break;
2071                 }
2072 
2073                 complen = strlen(component);
2074                 path -= complen;
2075                 ASSERT(path >= buf);
2076                 bcopy(component, path, complen);
2077                 obj = pobj;
2078 
2079                 if (sa_hdl != hdl) {
2080                         prevhdl = sa_hdl;
2081                         prevdb = sa_db;
2082                 }
2083                 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2084                 if (error != 0) {
2085                         sa_hdl = prevhdl;
2086                         sa_db = prevdb;
2087                         break;
2088                 }
2089         }
2090 
2091         if (sa_hdl != NULL && sa_hdl != hdl) {
2092                 ASSERT(sa_db != NULL);
2093                 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2094         }
2095 
2096         if (error == 0)
2097                 (void) memmove(buf, path, buf + len - path);
2098 
2099         return (error);
2100 }
2101 
2102 int
2103 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2104 {
2105         sa_attr_type_t *sa_table;
2106         sa_handle_t *hdl;
2107         dmu_buf_t *db;
2108         int error;
2109 
2110         error = zfs_sa_setup(osp, &sa_table);
2111         if (error != 0)
2112                 return (error);
2113 
2114         error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2115         if (error != 0)
2116                 return (error);
2117 
2118         error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2119 
2120         zfs_release_sa_handle(hdl, db, FTAG);
2121         return (error);
2122 }
2123 
2124 int
2125 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2126     char *buf, int len)
2127 {
2128         char *path = buf + len - 1;
2129         sa_attr_type_t *sa_table;
2130         sa_handle_t *hdl;
2131         dmu_buf_t *db;
2132         int error;
2133 
2134         *path = '\0';
2135 
2136         error = zfs_sa_setup(osp, &sa_table);
2137         if (error != 0)
2138                 return (error);
2139 
2140         error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2141         if (error != 0)
2142                 return (error);
2143 
2144         error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2145         if (error != 0) {
2146                 zfs_release_sa_handle(hdl, db, FTAG);
2147                 return (error);
2148         }
2149 
2150         error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2151 
2152         zfs_release_sa_handle(hdl, db, FTAG);
2153         return (error);
2154 }