1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27 /* Portions Copyright 2007 Jeremy Teo */
28
29 #ifdef _KERNEL
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/mntent.h>
37 #include <sys/mkdev.h>
38 #include <sys/u8_textprep.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vfs.h>
41 #include <sys/vfs_opreg.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/kmem.h>
45 #include <sys/errno.h>
46 #include <sys/unistd.h>
47 #include <sys/mode.h>
48 #include <sys/atomic.h>
49 #include <vm/pvn.h>
50 #include "fs/fs_subr.h"
51 #include <sys/zfs_dir.h>
52 #include <sys/zfs_acl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_rlock.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/dnode.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/kidmap.h>
59 #endif /* _KERNEL */
60
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/refcount.h>
64 #include <sys/stat.h>
65 #include <sys/zap.h>
66 #include <sys/zfs_znode.h>
67 #include <sys/sa.h>
68 #include <sys/zfs_sa.h>
69 #include <sys/zfs_stat.h>
70
71 #include "zfs_prop.h"
72 #include "zfs_comutil.h"
73
74 /*
75 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
76 * turned on when DEBUG is also defined.
77 */
78 #ifdef DEBUG
79 #define ZNODE_STATS
80 #endif /* DEBUG */
81
82 #ifdef ZNODE_STATS
83 #define ZNODE_STAT_ADD(stat) ((stat)++)
84 #else
85 #define ZNODE_STAT_ADD(stat) /* nothing */
86 #endif /* ZNODE_STATS */
87
88 /*
89 * Functions needed for userland (ie: libzpool) are not put under
90 * #ifdef_KERNEL; the rest of the functions have dependencies
91 * (such as VFS logic) that will not compile easily in userland.
92 */
93 #ifdef _KERNEL
94 /*
95 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
96 * be freed before it can be safely accessed.
97 */
98 krwlock_t zfsvfs_lock;
99
100 static kmem_cache_t *znode_cache = NULL;
101
102 /*ARGSUSED*/
103 static void
104 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
105 {
106 /*
107 * We should never drop all dbuf refs without first clearing
108 * the eviction callback.
109 */
110 panic("evicting znode %p\n", user_ptr);
111 }
112
113 /*ARGSUSED*/
114 static int
115 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
116 {
117 znode_t *zp = buf;
118
119 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
120
121 zp->z_vnode = vn_alloc(kmflags);
122 if (zp->z_vnode == NULL) {
123 return (-1);
124 }
125 ZTOV(zp)->v_data = zp;
126
127 list_link_init(&zp->z_link_node);
128
129 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
130 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
131 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
132 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
133
134 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
135 avl_create(&zp->z_range_avl, zfs_range_compare,
136 sizeof (rl_t), offsetof(rl_t, r_node));
137
138 zp->z_dirlocks = NULL;
139 zp->z_acl_cached = NULL;
140 zp->z_moved = 0;
141 return (0);
142 }
143
144 /*ARGSUSED*/
145 static void
146 zfs_znode_cache_destructor(void *buf, void *arg)
147 {
148 znode_t *zp = buf;
149
150 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
151 ASSERT(ZTOV(zp)->v_data == zp);
152 vn_free(ZTOV(zp));
153 ASSERT(!list_link_active(&zp->z_link_node));
154 mutex_destroy(&zp->z_lock);
155 rw_destroy(&zp->z_parent_lock);
156 rw_destroy(&zp->z_name_lock);
157 mutex_destroy(&zp->z_acl_lock);
158 avl_destroy(&zp->z_range_avl);
159 mutex_destroy(&zp->z_range_lock);
160
161 ASSERT(zp->z_dirlocks == NULL);
162 ASSERT(zp->z_acl_cached == NULL);
163 }
164
165 #ifdef ZNODE_STATS
166 static struct {
167 uint64_t zms_zfsvfs_invalid;
168 uint64_t zms_zfsvfs_recheck1;
169 uint64_t zms_zfsvfs_unmounted;
170 uint64_t zms_zfsvfs_recheck2;
171 uint64_t zms_obj_held;
172 uint64_t zms_vnode_locked;
173 uint64_t zms_not_only_dnlc;
174 } znode_move_stats;
175 #endif /* ZNODE_STATS */
176
177 static void
178 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
179 {
180 vnode_t *vp;
181
182 /* Copy fields. */
183 nzp->z_zfsvfs = ozp->z_zfsvfs;
184
185 /* Swap vnodes. */
186 vp = nzp->z_vnode;
187 nzp->z_vnode = ozp->z_vnode;
188 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
189 ZTOV(ozp)->v_data = ozp;
190 ZTOV(nzp)->v_data = nzp;
191
192 nzp->z_id = ozp->z_id;
193 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
194 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
195 nzp->z_unlinked = ozp->z_unlinked;
196 nzp->z_atime_dirty = ozp->z_atime_dirty;
197 nzp->z_zn_prefetch = ozp->z_zn_prefetch;
198 nzp->z_blksz = ozp->z_blksz;
199 nzp->z_seq = ozp->z_seq;
200 nzp->z_mapcnt = ozp->z_mapcnt;
201 nzp->z_gen = ozp->z_gen;
202 nzp->z_sync_cnt = ozp->z_sync_cnt;
203 nzp->z_is_sa = ozp->z_is_sa;
204 nzp->z_sa_hdl = ozp->z_sa_hdl;
205 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
206 nzp->z_links = ozp->z_links;
207 nzp->z_size = ozp->z_size;
208 nzp->z_pflags = ozp->z_pflags;
209 nzp->z_uid = ozp->z_uid;
210 nzp->z_gid = ozp->z_gid;
211 nzp->z_mode = ozp->z_mode;
212
213 /*
214 * Since this is just an idle znode and kmem is already dealing with
215 * memory pressure, release any cached ACL.
216 */
217 if (ozp->z_acl_cached) {
218 zfs_acl_free(ozp->z_acl_cached);
219 ozp->z_acl_cached = NULL;
220 }
221
222 sa_set_userp(nzp->z_sa_hdl, nzp);
223
224 /*
225 * Invalidate the original znode by clearing fields that provide a
226 * pointer back to the znode. Set the low bit of the vfs pointer to
227 * ensure that zfs_znode_move() recognizes the znode as invalid in any
228 * subsequent callback.
229 */
230 ozp->z_sa_hdl = NULL;
231 POINTER_INVALIDATE(&ozp->z_zfsvfs);
232
233 /*
234 * Mark the znode.
235 */
236 nzp->z_moved = 1;
237 ozp->z_moved = (uint8_t)-1;
238 }
239
240 /*ARGSUSED*/
241 static kmem_cbrc_t
242 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
243 {
244 znode_t *ozp = buf, *nzp = newbuf;
245 zfsvfs_t *zfsvfs;
246 vnode_t *vp;
247
248 /*
249 * The znode is on the file system's list of known znodes if the vfs
250 * pointer is valid. We set the low bit of the vfs pointer when freeing
251 * the znode to invalidate it, and the memory patterns written by kmem
252 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
253 * created znode sets the vfs pointer last of all to indicate that the
254 * znode is known and in a valid state to be moved by this function.
255 */
256 zfsvfs = ozp->z_zfsvfs;
257 if (!POINTER_IS_VALID(zfsvfs)) {
258 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
259 return (KMEM_CBRC_DONT_KNOW);
260 }
261
262 /*
263 * Close a small window in which it's possible that the filesystem could
264 * be unmounted and freed, and zfsvfs, though valid in the previous
265 * statement, could point to unrelated memory by the time we try to
266 * prevent the filesystem from being unmounted.
267 */
268 rw_enter(&zfsvfs_lock, RW_WRITER);
269 if (zfsvfs != ozp->z_zfsvfs) {
270 rw_exit(&zfsvfs_lock);
271 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
272 return (KMEM_CBRC_DONT_KNOW);
273 }
274
275 /*
276 * If the znode is still valid, then so is the file system. We know that
277 * no valid file system can be freed while we hold zfsvfs_lock, so we
278 * can safely ensure that the filesystem is not and will not be
279 * unmounted. The next statement is equivalent to ZFS_ENTER().
280 */
281 rrm_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
282 if (zfsvfs->z_unmounted) {
283 ZFS_EXIT(zfsvfs);
284 rw_exit(&zfsvfs_lock);
285 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
286 return (KMEM_CBRC_DONT_KNOW);
287 }
288 rw_exit(&zfsvfs_lock);
289
290 mutex_enter(&zfsvfs->z_znodes_lock);
291 /*
292 * Recheck the vfs pointer in case the znode was removed just before
293 * acquiring the lock.
294 */
295 if (zfsvfs != ozp->z_zfsvfs) {
296 mutex_exit(&zfsvfs->z_znodes_lock);
297 ZFS_EXIT(zfsvfs);
298 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
299 return (KMEM_CBRC_DONT_KNOW);
300 }
301
302 /*
303 * At this point we know that as long as we hold z_znodes_lock, the
304 * znode cannot be freed and fields within the znode can be safely
305 * accessed. Now, prevent a race with zfs_zget().
306 */
307 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
308 mutex_exit(&zfsvfs->z_znodes_lock);
309 ZFS_EXIT(zfsvfs);
310 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
311 return (KMEM_CBRC_LATER);
312 }
313
314 vp = ZTOV(ozp);
315 if (mutex_tryenter(&vp->v_lock) == 0) {
316 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
317 mutex_exit(&zfsvfs->z_znodes_lock);
318 ZFS_EXIT(zfsvfs);
319 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
320 return (KMEM_CBRC_LATER);
321 }
322
323 /* Only move znodes that are referenced _only_ by the DNLC. */
324 if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
325 mutex_exit(&vp->v_lock);
326 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
327 mutex_exit(&zfsvfs->z_znodes_lock);
328 ZFS_EXIT(zfsvfs);
329 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
330 return (KMEM_CBRC_LATER);
331 }
332
333 /*
334 * The znode is known and in a valid state to move. We're holding the
335 * locks needed to execute the critical section.
336 */
337 zfs_znode_move_impl(ozp, nzp);
338 mutex_exit(&vp->v_lock);
339 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
340
341 list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
342 mutex_exit(&zfsvfs->z_znodes_lock);
343 ZFS_EXIT(zfsvfs);
344
345 return (KMEM_CBRC_YES);
346 }
347
348 void
349 zfs_znode_init(void)
350 {
351 /*
352 * Initialize zcache
353 */
354 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
355 ASSERT(znode_cache == NULL);
356 znode_cache = kmem_cache_create("zfs_znode_cache",
357 sizeof (znode_t), 0, zfs_znode_cache_constructor,
358 zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
359 kmem_cache_set_move(znode_cache, zfs_znode_move);
360 }
361
362 void
363 zfs_znode_fini(void)
364 {
365 /*
366 * Cleanup vfs & vnode ops
367 */
368 zfs_remove_op_tables();
369
370 /*
371 * Cleanup zcache
372 */
373 if (znode_cache)
374 kmem_cache_destroy(znode_cache);
375 znode_cache = NULL;
376 rw_destroy(&zfsvfs_lock);
377 }
378
379 struct vnodeops *zfs_dvnodeops;
380 struct vnodeops *zfs_fvnodeops;
381 struct vnodeops *zfs_symvnodeops;
382 struct vnodeops *zfs_xdvnodeops;
383 struct vnodeops *zfs_evnodeops;
384 struct vnodeops *zfs_sharevnodeops;
385
386 void
387 zfs_remove_op_tables()
388 {
389 /*
390 * Remove vfs ops
391 */
392 ASSERT(zfsfstype);
393 (void) vfs_freevfsops_by_type(zfsfstype);
394 zfsfstype = 0;
395
396 /*
397 * Remove vnode ops
398 */
399 if (zfs_dvnodeops)
400 vn_freevnodeops(zfs_dvnodeops);
401 if (zfs_fvnodeops)
402 vn_freevnodeops(zfs_fvnodeops);
403 if (zfs_symvnodeops)
404 vn_freevnodeops(zfs_symvnodeops);
405 if (zfs_xdvnodeops)
406 vn_freevnodeops(zfs_xdvnodeops);
407 if (zfs_evnodeops)
408 vn_freevnodeops(zfs_evnodeops);
409 if (zfs_sharevnodeops)
410 vn_freevnodeops(zfs_sharevnodeops);
411
412 zfs_dvnodeops = NULL;
413 zfs_fvnodeops = NULL;
414 zfs_symvnodeops = NULL;
415 zfs_xdvnodeops = NULL;
416 zfs_evnodeops = NULL;
417 zfs_sharevnodeops = NULL;
418 }
419
420 extern const fs_operation_def_t zfs_dvnodeops_template[];
421 extern const fs_operation_def_t zfs_fvnodeops_template[];
422 extern const fs_operation_def_t zfs_xdvnodeops_template[];
423 extern const fs_operation_def_t zfs_symvnodeops_template[];
424 extern const fs_operation_def_t zfs_evnodeops_template[];
425 extern const fs_operation_def_t zfs_sharevnodeops_template[];
426
427 int
428 zfs_create_op_tables()
429 {
430 int error;
431
432 /*
433 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
434 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
435 * In this case we just return as the ops vectors are already set up.
436 */
437 if (zfs_dvnodeops)
438 return (0);
439
440 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
441 &zfs_dvnodeops);
442 if (error)
443 return (error);
444
445 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
446 &zfs_fvnodeops);
447 if (error)
448 return (error);
449
450 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
451 &zfs_symvnodeops);
452 if (error)
453 return (error);
454
455 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
456 &zfs_xdvnodeops);
457 if (error)
458 return (error);
459
460 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
461 &zfs_evnodeops);
462 if (error)
463 return (error);
464
465 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
466 &zfs_sharevnodeops);
467
468 return (error);
469 }
470
471 int
472 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
473 {
474 zfs_acl_ids_t acl_ids;
475 vattr_t vattr;
476 znode_t *sharezp;
477 vnode_t *vp;
478 znode_t *zp;
479 int error;
480
481 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
482 vattr.va_type = VDIR;
483 vattr.va_mode = S_IFDIR|0555;
484 vattr.va_uid = crgetuid(kcred);
485 vattr.va_gid = crgetgid(kcred);
486
487 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
488 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
489 sharezp->z_moved = 0;
490 sharezp->z_unlinked = 0;
491 sharezp->z_atime_dirty = 0;
492 sharezp->z_zfsvfs = zfsvfs;
493 sharezp->z_is_sa = zfsvfs->z_use_sa;
494
495 vp = ZTOV(sharezp);
496 vn_reinit(vp);
497 vp->v_type = VDIR;
498
499 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
500 kcred, NULL, &acl_ids));
501 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
502 ASSERT3P(zp, ==, sharezp);
503 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
504 POINTER_INVALIDATE(&sharezp->z_zfsvfs);
505 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
506 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
507 zfsvfs->z_shares_dir = sharezp->z_id;
508
509 zfs_acl_ids_free(&acl_ids);
510 ZTOV(sharezp)->v_count = 0;
511 sa_handle_destroy(sharezp->z_sa_hdl);
512 kmem_cache_free(znode_cache, sharezp);
513
514 return (error);
515 }
516
517 /*
518 * define a couple of values we need available
519 * for both 64 and 32 bit environments.
520 */
521 #ifndef NBITSMINOR64
522 #define NBITSMINOR64 32
523 #endif
524 #ifndef MAXMAJ64
525 #define MAXMAJ64 0xffffffffUL
526 #endif
527 #ifndef MAXMIN64
528 #define MAXMIN64 0xffffffffUL
529 #endif
530
531 /*
532 * Create special expldev for ZFS private use.
533 * Can't use standard expldev since it doesn't do
534 * what we want. The standard expldev() takes a
535 * dev32_t in LP64 and expands it to a long dev_t.
536 * We need an interface that takes a dev32_t in ILP32
537 * and expands it to a long dev_t.
538 */
539 static uint64_t
540 zfs_expldev(dev_t dev)
541 {
542 #ifndef _LP64
543 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
544 return (((uint64_t)major << NBITSMINOR64) |
545 ((minor_t)dev & MAXMIN32));
546 #else
547 return (dev);
548 #endif
549 }
550
551 /*
552 * Special cmpldev for ZFS private use.
553 * Can't use standard cmpldev since it takes
554 * a long dev_t and compresses it to dev32_t in
555 * LP64. We need to do a compaction of a long dev_t
556 * to a dev32_t in ILP32.
557 */
558 dev_t
559 zfs_cmpldev(uint64_t dev)
560 {
561 #ifndef _LP64
562 minor_t minor = (minor_t)dev & MAXMIN64;
563 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
564
565 if (major > MAXMAJ32 || minor > MAXMIN32)
566 return (NODEV32);
567
568 return (((dev32_t)major << NBITSMINOR32) | minor);
569 #else
570 return (dev);
571 #endif
572 }
573
574 static void
575 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
576 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
577 {
578 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
579 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
580
581 mutex_enter(&zp->z_lock);
582
583 ASSERT(zp->z_sa_hdl == NULL);
584 ASSERT(zp->z_acl_cached == NULL);
585 if (sa_hdl == NULL) {
586 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
587 SA_HDL_SHARED, &zp->z_sa_hdl));
588 } else {
589 zp->z_sa_hdl = sa_hdl;
590 sa_set_userp(sa_hdl, zp);
591 }
592
593 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
594
595 /*
596 * Slap on VROOT if we are the root znode
597 */
598 if (zp->z_id == zfsvfs->z_root)
599 ZTOV(zp)->v_flag |= VROOT;
600
601 mutex_exit(&zp->z_lock);
602 vn_exists(ZTOV(zp));
603 }
604
605 void
606 zfs_znode_dmu_fini(znode_t *zp)
607 {
608 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
609 zp->z_unlinked ||
610 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
611
612 sa_handle_destroy(zp->z_sa_hdl);
613 zp->z_sa_hdl = NULL;
614 }
615
616 /*
617 * Construct a new znode/vnode and intialize.
618 *
619 * This does not do a call to dmu_set_user() that is
620 * up to the caller to do, in case you don't want to
621 * return the znode
622 */
623 static znode_t *
624 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
625 dmu_object_type_t obj_type, sa_handle_t *hdl)
626 {
627 znode_t *zp;
628 vnode_t *vp;
629 uint64_t mode;
630 uint64_t parent;
631 sa_bulk_attr_t bulk[9];
632 int count = 0;
633
634 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
635
636 ASSERT(zp->z_dirlocks == NULL);
637 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
638 zp->z_moved = 0;
639
640 /*
641 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
642 * the zfs_znode_move() callback.
643 */
644 zp->z_sa_hdl = NULL;
645 zp->z_unlinked = 0;
646 zp->z_atime_dirty = 0;
647 zp->z_mapcnt = 0;
648 zp->z_id = db->db_object;
649 zp->z_blksz = blksz;
650 zp->z_seq = 0x7A4653;
651 zp->z_sync_cnt = 0;
652
653 vp = ZTOV(zp);
654 vn_reinit(vp);
655
656 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
657
658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
661 &zp->z_size, 8);
662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
663 &zp->z_links, 8);
664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
665 &zp->z_pflags, 8);
666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
668 &zp->z_atime, 16);
669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
670 &zp->z_uid, 8);
671 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
672 &zp->z_gid, 8);
673
674 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
675 if (hdl == NULL)
676 sa_handle_destroy(zp->z_sa_hdl);
677 kmem_cache_free(znode_cache, zp);
678 return (NULL);
679 }
680
681 zp->z_mode = mode;
682 vp->v_vfsp = zfsvfs->z_parent->z_vfs;
683
684 vp->v_type = IFTOVT((mode_t)mode);
685
686 switch (vp->v_type) {
687 case VDIR:
688 if (zp->z_pflags & ZFS_XATTR) {
689 vn_setops(vp, zfs_xdvnodeops);
690 vp->v_flag |= V_XATTRDIR;
691 } else {
692 vn_setops(vp, zfs_dvnodeops);
693 }
694 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
695 break;
696 case VBLK:
697 case VCHR:
698 {
699 uint64_t rdev;
700 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
701 &rdev, sizeof (rdev)) == 0);
702
703 vp->v_rdev = zfs_cmpldev(rdev);
704 }
705 /*FALLTHROUGH*/
706 case VFIFO:
707 case VSOCK:
708 case VDOOR:
709 vn_setops(vp, zfs_fvnodeops);
710 break;
711 case VREG:
712 vp->v_flag |= VMODSORT;
713 if (parent == zfsvfs->z_shares_dir) {
714 ASSERT(zp->z_uid == 0 && zp->z_gid == 0);
715 vn_setops(vp, zfs_sharevnodeops);
716 } else {
717 vn_setops(vp, zfs_fvnodeops);
718 }
719 break;
720 case VLNK:
721 vn_setops(vp, zfs_symvnodeops);
722 break;
723 default:
724 vn_setops(vp, zfs_evnodeops);
725 break;
726 }
727
728 mutex_enter(&zfsvfs->z_znodes_lock);
729 list_insert_tail(&zfsvfs->z_all_znodes, zp);
730 membar_producer();
731 /*
732 * Everything else must be valid before assigning z_zfsvfs makes the
733 * znode eligible for zfs_znode_move().
734 */
735 zp->z_zfsvfs = zfsvfs;
736 mutex_exit(&zfsvfs->z_znodes_lock);
737
738 VFS_HOLD(zfsvfs->z_vfs);
739 return (zp);
740 }
741
742 static uint64_t empty_xattr;
743 static uint64_t pad[4];
744 static zfs_acl_phys_t acl_phys;
745 /*
746 * Create a new DMU object to hold a zfs znode.
747 *
748 * IN: dzp - parent directory for new znode
749 * vap - file attributes for new znode
750 * tx - dmu transaction id for zap operations
751 * cr - credentials of caller
752 * flag - flags:
753 * IS_ROOT_NODE - new object will be root
754 * IS_XATTR - new object is an attribute
755 * bonuslen - length of bonus buffer
756 * setaclp - File/Dir initial ACL
757 * fuidp - Tracks fuid allocation.
758 *
759 * OUT: zpp - allocated znode
760 *
761 */
762 void
763 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
764 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
765 {
766 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
767 uint64_t mode, size, links, parent, pflags;
768 uint64_t dzp_pflags = 0;
769 uint64_t rdev = 0;
770 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
771 dmu_buf_t *db;
772 timestruc_t now;
773 uint64_t gen, obj;
774 int bonuslen;
775 sa_handle_t *sa_hdl;
776 dmu_object_type_t obj_type;
777 sa_bulk_attr_t sa_attrs[ZPL_END];
778 int cnt = 0;
779 zfs_acl_locator_cb_t locate = { 0 };
780
781 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
782
783 if (zfsvfs->z_replay) {
784 obj = vap->va_nodeid;
785 now = vap->va_ctime; /* see zfs_replay_create() */
786 gen = vap->va_nblocks; /* ditto */
787 } else {
788 obj = 0;
789 gethrestime(&now);
790 gen = dmu_tx_get_txg(tx);
791 }
792
793 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
794 bonuslen = (obj_type == DMU_OT_SA) ?
795 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
796
797 /*
798 * Create a new DMU object.
799 */
800 /*
801 * There's currently no mechanism for pre-reading the blocks that will
802 * be needed to allocate a new object, so we accept the small chance
803 * that there will be an i/o error and we will fail one of the
804 * assertions below.
805 */
806 if (vap->va_type == VDIR) {
807 if (zfsvfs->z_replay) {
808 VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj,
809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
810 obj_type, bonuslen, tx));
811 } else {
812 obj = zap_create_norm(zfsvfs->z_os,
813 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
814 obj_type, bonuslen, tx);
815 }
816 } else {
817 if (zfsvfs->z_replay) {
818 VERIFY0(dmu_object_claim(zfsvfs->z_os, obj,
819 DMU_OT_PLAIN_FILE_CONTENTS, 0,
820 obj_type, bonuslen, tx));
821 } else {
822 obj = dmu_object_alloc(zfsvfs->z_os,
823 DMU_OT_PLAIN_FILE_CONTENTS, 0,
824 obj_type, bonuslen, tx);
825 }
826 }
827
828 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
829 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
830
831 /*
832 * If this is the root, fix up the half-initialized parent pointer
833 * to reference the just-allocated physical data area.
834 */
835 if (flag & IS_ROOT_NODE) {
836 dzp->z_id = obj;
837 } else {
838 dzp_pflags = dzp->z_pflags;
839 }
840
841 /*
842 * If parent is an xattr, so am I.
843 */
844 if (dzp_pflags & ZFS_XATTR) {
845 flag |= IS_XATTR;
846 }
847
848 if (zfsvfs->z_use_fuids)
849 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
850 else
851 pflags = 0;
852
853 if (vap->va_type == VDIR) {
854 size = 2; /* contents ("." and "..") */
855 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
856 } else {
857 size = links = 0;
858 }
859
860 if (vap->va_type == VBLK || vap->va_type == VCHR) {
861 rdev = zfs_expldev(vap->va_rdev);
862 }
863
864 parent = dzp->z_id;
865 mode = acl_ids->z_mode;
866 if (flag & IS_XATTR)
867 pflags |= ZFS_XATTR;
868
869 /*
870 * No execs denied will be deterimed when zfs_mode_compute() is called.
871 */
872 pflags |= acl_ids->z_aclp->z_hints &
873 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
874 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
875
876 ZFS_TIME_ENCODE(&now, crtime);
877 ZFS_TIME_ENCODE(&now, ctime);
878
879 if (vap->va_mask & AT_ATIME) {
880 ZFS_TIME_ENCODE(&vap->va_atime, atime);
881 } else {
882 ZFS_TIME_ENCODE(&now, atime);
883 }
884
885 if (vap->va_mask & AT_MTIME) {
886 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
887 } else {
888 ZFS_TIME_ENCODE(&now, mtime);
889 }
890
891 /* Now add in all of the "SA" attributes */
892 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
893 &sa_hdl));
894
895 /*
896 * Setup the array of attributes to be replaced/set on the new file
897 *
898 * order for DMU_OT_ZNODE is critical since it needs to be constructed
899 * in the old znode_phys_t format. Don't change this ordering
900 */
901
902 if (obj_type == DMU_OT_ZNODE) {
903 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
904 NULL, &atime, 16);
905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
906 NULL, &mtime, 16);
907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
908 NULL, &ctime, 16);
909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
910 NULL, &crtime, 16);
911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
912 NULL, &gen, 8);
913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
914 NULL, &mode, 8);
915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
916 NULL, &size, 8);
917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
918 NULL, &parent, 8);
919 } else {
920 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
921 NULL, &mode, 8);
922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
923 NULL, &size, 8);
924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
925 NULL, &gen, 8);
926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
927 &acl_ids->z_fuid, 8);
928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
929 &acl_ids->z_fgid, 8);
930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
931 NULL, &parent, 8);
932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
933 NULL, &pflags, 8);
934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
935 NULL, &atime, 16);
936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
937 NULL, &mtime, 16);
938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
939 NULL, &ctime, 16);
940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
941 NULL, &crtime, 16);
942 }
943
944 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
945
946 if (obj_type == DMU_OT_ZNODE) {
947 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
948 &empty_xattr, 8);
949 }
950 if (obj_type == DMU_OT_ZNODE ||
951 (vap->va_type == VBLK || vap->va_type == VCHR)) {
952 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
953 NULL, &rdev, 8);
954
955 }
956 if (obj_type == DMU_OT_ZNODE) {
957 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
958 NULL, &pflags, 8);
959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
960 &acl_ids->z_fuid, 8);
961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
962 &acl_ids->z_fgid, 8);
963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
964 sizeof (uint64_t) * 4);
965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
966 &acl_phys, sizeof (zfs_acl_phys_t));
967 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
969 &acl_ids->z_aclp->z_acl_count, 8);
970 locate.cb_aclp = acl_ids->z_aclp;
971 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
972 zfs_acl_data_locator, &locate,
973 acl_ids->z_aclp->z_acl_bytes);
974 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
975 acl_ids->z_fuid, acl_ids->z_fgid);
976 }
977
978 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
979
980 if (!(flag & IS_ROOT_NODE)) {
981 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
982 ASSERT(*zpp != NULL);
983 } else {
984 /*
985 * If we are creating the root node, the "parent" we
986 * passed in is the znode for the root.
987 */
988 *zpp = dzp;
989
990 (*zpp)->z_sa_hdl = sa_hdl;
991 }
992
993 (*zpp)->z_pflags = pflags;
994 (*zpp)->z_mode = mode;
995
996 if (vap->va_mask & AT_XVATTR)
997 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
998
999 if (obj_type == DMU_OT_ZNODE ||
1000 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
1001 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
1002 }
1003 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1004 }
1005
1006 /*
1007 * Update in-core attributes. It is assumed the caller will be doing an
1008 * sa_bulk_update to push the changes out.
1009 */
1010 void
1011 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1012 {
1013 xoptattr_t *xoap;
1014
1015 xoap = xva_getxoptattr(xvap);
1016 ASSERT(xoap);
1017
1018 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1019 uint64_t times[2];
1020 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1021 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1022 ×, sizeof (times), tx);
1023 XVA_SET_RTN(xvap, XAT_CREATETIME);
1024 }
1025 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1026 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1027 zp->z_pflags, tx);
1028 XVA_SET_RTN(xvap, XAT_READONLY);
1029 }
1030 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1031 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1032 zp->z_pflags, tx);
1033 XVA_SET_RTN(xvap, XAT_HIDDEN);
1034 }
1035 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1036 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1037 zp->z_pflags, tx);
1038 XVA_SET_RTN(xvap, XAT_SYSTEM);
1039 }
1040 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1041 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1042 zp->z_pflags, tx);
1043 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1044 }
1045 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1046 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1047 zp->z_pflags, tx);
1048 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1049 }
1050 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1051 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1052 zp->z_pflags, tx);
1053 XVA_SET_RTN(xvap, XAT_NOUNLINK);
1054 }
1055 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1056 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1057 zp->z_pflags, tx);
1058 XVA_SET_RTN(xvap, XAT_APPENDONLY);
1059 }
1060 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1061 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1062 zp->z_pflags, tx);
1063 XVA_SET_RTN(xvap, XAT_NODUMP);
1064 }
1065 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1066 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1067 zp->z_pflags, tx);
1068 XVA_SET_RTN(xvap, XAT_OPAQUE);
1069 }
1070 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1071 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1072 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1073 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1074 }
1075 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1076 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1077 zp->z_pflags, tx);
1078 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1079 }
1080 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1081 zfs_sa_set_scanstamp(zp, xvap, tx);
1082 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1083 }
1084 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1085 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1086 zp->z_pflags, tx);
1087 XVA_SET_RTN(xvap, XAT_REPARSE);
1088 }
1089 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1090 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1091 zp->z_pflags, tx);
1092 XVA_SET_RTN(xvap, XAT_OFFLINE);
1093 }
1094 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1095 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1096 zp->z_pflags, tx);
1097 XVA_SET_RTN(xvap, XAT_SPARSE);
1098 }
1099 }
1100
1101 int
1102 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1103 {
1104 dmu_object_info_t doi;
1105 dmu_buf_t *db;
1106 znode_t *zp;
1107 int err;
1108 sa_handle_t *hdl;
1109
1110 *zpp = NULL;
1111
1112 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1113
1114 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1115 if (err) {
1116 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1117 return (err);
1118 }
1119
1120 dmu_object_info_from_db(db, &doi);
1121 if (doi.doi_bonus_type != DMU_OT_SA &&
1122 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1123 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1124 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1125 sa_buf_rele(db, NULL);
1126 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1127 return (SET_ERROR(EINVAL));
1128 }
1129
1130 hdl = dmu_buf_get_user(db);
1131 if (hdl != NULL) {
1132 zp = sa_get_userdata(hdl);
1133
1134
1135 /*
1136 * Since "SA" does immediate eviction we
1137 * should never find a sa handle that doesn't
1138 * know about the znode.
1139 */
1140
1141 ASSERT3P(zp, !=, NULL);
1142
1143 mutex_enter(&zp->z_lock);
1144 ASSERT3U(zp->z_id, ==, obj_num);
1145 if (zp->z_unlinked) {
1146 err = SET_ERROR(ENOENT);
1147 } else {
1148 VN_HOLD(ZTOV(zp));
1149 *zpp = zp;
1150 err = 0;
1151 }
1152 mutex_exit(&zp->z_lock);
1153 sa_buf_rele(db, NULL);
1154 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1155 return (err);
1156 }
1157
1158 /*
1159 * Not found create new znode/vnode
1160 * but only if file exists.
1161 *
1162 * There is a small window where zfs_vget() could
1163 * find this object while a file create is still in
1164 * progress. This is checked for in zfs_znode_alloc()
1165 *
1166 * if zfs_znode_alloc() fails it will drop the hold on the
1167 * bonus buffer.
1168 */
1169 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1170 doi.doi_bonus_type, NULL);
1171 if (zp == NULL) {
1172 err = SET_ERROR(ENOENT);
1173 } else {
1174 *zpp = zp;
1175 }
1176 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1177 return (err);
1178 }
1179
1180 int
1181 zfs_rezget(znode_t *zp)
1182 {
1183 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1184 dmu_object_info_t doi;
1185 dmu_buf_t *db;
1186 uint64_t obj_num = zp->z_id;
1187 uint64_t mode;
1188 sa_bulk_attr_t bulk[8];
1189 int err;
1190 int count = 0;
1191 uint64_t gen;
1192
1193 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1194
1195 mutex_enter(&zp->z_acl_lock);
1196 if (zp->z_acl_cached) {
1197 zfs_acl_free(zp->z_acl_cached);
1198 zp->z_acl_cached = NULL;
1199 }
1200
1201 mutex_exit(&zp->z_acl_lock);
1202 ASSERT(zp->z_sa_hdl == NULL);
1203 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1204 if (err) {
1205 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1206 return (err);
1207 }
1208
1209 dmu_object_info_from_db(db, &doi);
1210 if (doi.doi_bonus_type != DMU_OT_SA &&
1211 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1212 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1213 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1214 sa_buf_rele(db, NULL);
1215 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1216 return (SET_ERROR(EINVAL));
1217 }
1218
1219 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1220
1221 /* reload cached values */
1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1223 &gen, sizeof (gen));
1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1225 &zp->z_size, sizeof (zp->z_size));
1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1227 &zp->z_links, sizeof (zp->z_links));
1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1229 &zp->z_pflags, sizeof (zp->z_pflags));
1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1231 &zp->z_atime, sizeof (zp->z_atime));
1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1233 &zp->z_uid, sizeof (zp->z_uid));
1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1235 &zp->z_gid, sizeof (zp->z_gid));
1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1237 &mode, sizeof (mode));
1238
1239 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1240 zfs_znode_dmu_fini(zp);
1241 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1242 return (SET_ERROR(EIO));
1243 }
1244
1245 zp->z_mode = mode;
1246
1247 if (gen != zp->z_gen) {
1248 zfs_znode_dmu_fini(zp);
1249 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1250 return (SET_ERROR(EIO));
1251 }
1252
1253 zp->z_blksz = doi.doi_data_block_size;
1254
1255 /*
1256 * If the file has zero links, then it has been unlinked on the send
1257 * side and it must be in the received unlinked set.
1258 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1259 * stale data and to prevent automatical removal of the file in
1260 * zfs_zinactive(). The file will be removed either when it is removed
1261 * on the send side and the next incremental stream is received or
1262 * when the unlinked set gets processed.
1263 */
1264 zp->z_unlinked = (zp->z_links == 0);
1265 if (zp->z_unlinked)
1266 zfs_znode_dmu_fini(zp);
1267
1268 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1269
1270 return (0);
1271 }
1272
1273 void
1274 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1275 {
1276 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1277 objset_t *os = zfsvfs->z_os;
1278 uint64_t obj = zp->z_id;
1279 uint64_t acl_obj = zfs_external_acl(zp);
1280
1281 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1282 if (acl_obj) {
1283 VERIFY(!zp->z_is_sa);
1284 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1285 }
1286 VERIFY(0 == dmu_object_free(os, obj, tx));
1287 zfs_znode_dmu_fini(zp);
1288 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1289 zfs_znode_free(zp);
1290 }
1291
1292 void
1293 zfs_zinactive(znode_t *zp)
1294 {
1295 vnode_t *vp = ZTOV(zp);
1296 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1297 uint64_t z_id = zp->z_id;
1298
1299 ASSERT(zp->z_sa_hdl);
1300
1301 /*
1302 * Don't allow a zfs_zget() while were trying to release this znode
1303 */
1304 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1305
1306 mutex_enter(&zp->z_lock);
1307 mutex_enter(&vp->v_lock);
1308 VN_RELE_LOCKED(vp);
1309 if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1310 /*
1311 * If the hold count is greater than zero, somebody has
1312 * obtained a new reference on this znode while we were
1313 * processing it here, so we are done. If we still have
1314 * mapped pages then we are also done, since we don't
1315 * want to inactivate the znode until the pages get pushed.
1316 *
1317 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1318 * this seems like it would leave the znode hanging with
1319 * no chance to go inactive...
1320 */
1321 mutex_exit(&vp->v_lock);
1322 mutex_exit(&zp->z_lock);
1323 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1324 return;
1325 }
1326 mutex_exit(&vp->v_lock);
1327
1328 /*
1329 * If this was the last reference to a file with no links, remove
1330 * the file from the file system unless the file system is mounted
1331 * read-only. That can happen, for example, if the file system was
1332 * originally read-write, the file was opened, then unlinked and
1333 * the file system was made read-only before the file was finally
1334 * closed. The file will remain in the unlinked set.
1335 */
1336 if (zp->z_unlinked) {
1337 ASSERT(!zfsvfs->z_issnap);
1338 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) {
1339 mutex_exit(&zp->z_lock);
1340 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1341 zfs_rmnode(zp);
1342 return;
1343 }
1344 }
1345
1346 mutex_exit(&zp->z_lock);
1347 zfs_znode_dmu_fini(zp);
1348 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1349 zfs_znode_free(zp);
1350 }
1351
1352 void
1353 zfs_znode_free(znode_t *zp)
1354 {
1355 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1356
1357 vn_invalid(ZTOV(zp));
1358
1359 ASSERT(ZTOV(zp)->v_count == 0);
1360
1361 mutex_enter(&zfsvfs->z_znodes_lock);
1362 POINTER_INVALIDATE(&zp->z_zfsvfs);
1363 list_remove(&zfsvfs->z_all_znodes, zp);
1364 mutex_exit(&zfsvfs->z_znodes_lock);
1365
1366 if (zp->z_acl_cached) {
1367 zfs_acl_free(zp->z_acl_cached);
1368 zp->z_acl_cached = NULL;
1369 }
1370
1371 kmem_cache_free(znode_cache, zp);
1372
1373 VFS_RELE(zfsvfs->z_vfs);
1374 }
1375
1376 void
1377 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1378 uint64_t ctime[2], boolean_t have_tx)
1379 {
1380 timestruc_t now;
1381
1382 gethrestime(&now);
1383
1384 if (have_tx) { /* will sa_bulk_update happen really soon? */
1385 zp->z_atime_dirty = 0;
1386 zp->z_seq++;
1387 } else {
1388 zp->z_atime_dirty = 1;
1389 }
1390
1391 if (flag & AT_ATIME) {
1392 ZFS_TIME_ENCODE(&now, zp->z_atime);
1393 }
1394
1395 if (flag & AT_MTIME) {
1396 ZFS_TIME_ENCODE(&now, mtime);
1397 if (zp->z_zfsvfs->z_use_fuids) {
1398 zp->z_pflags |= (ZFS_ARCHIVE |
1399 ZFS_AV_MODIFIED);
1400 }
1401 }
1402
1403 if (flag & AT_CTIME) {
1404 ZFS_TIME_ENCODE(&now, ctime);
1405 if (zp->z_zfsvfs->z_use_fuids)
1406 zp->z_pflags |= ZFS_ARCHIVE;
1407 }
1408 }
1409
1410 /*
1411 * Grow the block size for a file.
1412 *
1413 * IN: zp - znode of file to free data in.
1414 * size - requested block size
1415 * tx - open transaction.
1416 *
1417 * NOTE: this function assumes that the znode is write locked.
1418 */
1419 void
1420 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1421 {
1422 int error;
1423 u_longlong_t dummy;
1424
1425 if (size <= zp->z_blksz)
1426 return;
1427 /*
1428 * If the file size is already greater than the current blocksize,
1429 * we will not grow. If there is more than one block in a file,
1430 * the blocksize cannot change.
1431 */
1432 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1433 return;
1434
1435 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1436 size, 0, tx);
1437
1438 if (error == ENOTSUP)
1439 return;
1440 ASSERT0(error);
1441
1442 /* What blocksize did we actually get? */
1443 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1444 }
1445
1446 /*
1447 * This is a dummy interface used when pvn_vplist_dirty() should *not*
1448 * be calling back into the fs for a putpage(). E.g.: when truncating
1449 * a file, the pages being "thrown away* don't need to be written out.
1450 */
1451 /* ARGSUSED */
1452 static int
1453 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1454 int flags, cred_t *cr)
1455 {
1456 ASSERT(0);
1457 return (0);
1458 }
1459
1460 /*
1461 * Increase the file length
1462 *
1463 * IN: zp - znode of file to free data in.
1464 * end - new end-of-file
1465 *
1466 * RETURN: 0 on success, error code on failure
1467 */
1468 static int
1469 zfs_extend(znode_t *zp, uint64_t end)
1470 {
1471 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1472 dmu_tx_t *tx;
1473 rl_t *rl;
1474 uint64_t newblksz;
1475 int error;
1476
1477 /*
1478 * We will change zp_size, lock the whole file.
1479 */
1480 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1481
1482 /*
1483 * Nothing to do if file already at desired length.
1484 */
1485 if (end <= zp->z_size) {
1486 zfs_range_unlock(rl);
1487 return (0);
1488 }
1489 tx = dmu_tx_create(zfsvfs->z_os);
1490 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1491 zfs_sa_upgrade_txholds(tx, zp);
1492 if (end > zp->z_blksz &&
1493 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1494 /*
1495 * We are growing the file past the current block size.
1496 */
1497 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1498 /*
1499 * File's blocksize is already larger than the
1500 * "recordsize" property. Only let it grow to
1501 * the next power of 2.
1502 */
1503 ASSERT(!ISP2(zp->z_blksz));
1504 newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1505 } else {
1506 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1507 }
1508 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1509 } else {
1510 newblksz = 0;
1511 }
1512
1513 error = dmu_tx_assign(tx, TXG_WAIT);
1514 if (error) {
1515 dmu_tx_abort(tx);
1516 zfs_range_unlock(rl);
1517 return (error);
1518 }
1519
1520 if (newblksz)
1521 zfs_grow_blocksize(zp, newblksz, tx);
1522
1523 zp->z_size = end;
1524
1525 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1526 &zp->z_size, sizeof (zp->z_size), tx));
1527
1528 zfs_range_unlock(rl);
1529
1530 dmu_tx_commit(tx);
1531
1532 return (0);
1533 }
1534
1535 /*
1536 * Free space in a file.
1537 *
1538 * IN: zp - znode of file to free data in.
1539 * off - start of section to free.
1540 * len - length of section to free.
1541 *
1542 * RETURN: 0 on success, error code on failure
1543 */
1544 static int
1545 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1546 {
1547 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1548 rl_t *rl;
1549 int error;
1550
1551 /*
1552 * Lock the range being freed.
1553 */
1554 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1555
1556 /*
1557 * Nothing to do if file already at desired length.
1558 */
1559 if (off >= zp->z_size) {
1560 zfs_range_unlock(rl);
1561 return (0);
1562 }
1563
1564 if (off + len > zp->z_size)
1565 len = zp->z_size - off;
1566
1567 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1568
1569 zfs_range_unlock(rl);
1570
1571 return (error);
1572 }
1573
1574 /*
1575 * Truncate a file
1576 *
1577 * IN: zp - znode of file to free data in.
1578 * end - new end-of-file.
1579 *
1580 * RETURN: 0 on success, error code on failure
1581 */
1582 static int
1583 zfs_trunc(znode_t *zp, uint64_t end)
1584 {
1585 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1586 vnode_t *vp = ZTOV(zp);
1587 dmu_tx_t *tx;
1588 rl_t *rl;
1589 int error;
1590 sa_bulk_attr_t bulk[2];
1591 int count = 0;
1592
1593 /*
1594 * We will change zp_size, lock the whole file.
1595 */
1596 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1597
1598 /*
1599 * Nothing to do if file already at desired length.
1600 */
1601 if (end >= zp->z_size) {
1602 zfs_range_unlock(rl);
1603 return (0);
1604 }
1605
1606 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1607 if (error) {
1608 zfs_range_unlock(rl);
1609 return (error);
1610 }
1611 tx = dmu_tx_create(zfsvfs->z_os);
1612 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1613 zfs_sa_upgrade_txholds(tx, zp);
1614 dmu_tx_mark_netfree(tx);
1615 error = dmu_tx_assign(tx, TXG_WAIT);
1616 if (error) {
1617 dmu_tx_abort(tx);
1618 zfs_range_unlock(rl);
1619 return (error);
1620 }
1621
1622 zp->z_size = end;
1623 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1624 NULL, &zp->z_size, sizeof (zp->z_size));
1625
1626 if (end == 0) {
1627 zp->z_pflags &= ~ZFS_SPARSE;
1628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1629 NULL, &zp->z_pflags, 8);
1630 }
1631 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1632
1633 dmu_tx_commit(tx);
1634
1635 /*
1636 * Clear any mapped pages in the truncated region. This has to
1637 * happen outside of the transaction to avoid the possibility of
1638 * a deadlock with someone trying to push a page that we are
1639 * about to invalidate.
1640 */
1641 if (vn_has_cached_data(vp)) {
1642 page_t *pp;
1643 uint64_t start = end & PAGEMASK;
1644 int poff = end & PAGEOFFSET;
1645
1646 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1647 /*
1648 * We need to zero a partial page.
1649 */
1650 pagezero(pp, poff, PAGESIZE - poff);
1651 start += PAGESIZE;
1652 page_unlock(pp);
1653 }
1654 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1655 B_INVAL | B_TRUNC, NULL);
1656 ASSERT(error == 0);
1657 }
1658
1659 zfs_range_unlock(rl);
1660
1661 return (0);
1662 }
1663
1664 /*
1665 * Free space in a file
1666 *
1667 * IN: zp - znode of file to free data in.
1668 * off - start of range
1669 * len - end of range (0 => EOF)
1670 * flag - current file open mode flags.
1671 * log - TRUE if this action should be logged
1672 *
1673 * RETURN: 0 on success, error code on failure
1674 */
1675 int
1676 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1677 {
1678 vnode_t *vp = ZTOV(zp);
1679 dmu_tx_t *tx;
1680 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1681 zilog_t *zilog = zfsvfs->z_log;
1682 uint64_t mode;
1683 uint64_t mtime[2], ctime[2];
1684 sa_bulk_attr_t bulk[3];
1685 int count = 0;
1686 int error;
1687
1688 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1689 sizeof (mode))) != 0)
1690 return (error);
1691
1692 if (off > zp->z_size) {
1693 error = zfs_extend(zp, off+len);
1694 if (error == 0 && log)
1695 goto log;
1696 else
1697 return (error);
1698 }
1699
1700 /*
1701 * Check for any locks in the region to be freed.
1702 */
1703
1704 if (MANDLOCK(vp, (mode_t)mode)) {
1705 uint64_t length = (len ? len : zp->z_size - off);
1706 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1707 return (error);
1708 }
1709
1710 if (len == 0) {
1711 error = zfs_trunc(zp, off);
1712 } else {
1713 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1714 off + len > zp->z_size)
1715 error = zfs_extend(zp, off+len);
1716 }
1717 if (error || !log)
1718 return (error);
1719 log:
1720 tx = dmu_tx_create(zfsvfs->z_os);
1721 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1722 zfs_sa_upgrade_txholds(tx, zp);
1723 error = dmu_tx_assign(tx, TXG_WAIT);
1724 if (error) {
1725 dmu_tx_abort(tx);
1726 return (error);
1727 }
1728
1729 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1730 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1731 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1732 NULL, &zp->z_pflags, 8);
1733 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1734 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1735 ASSERT(error == 0);
1736
1737 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1738
1739 dmu_tx_commit(tx);
1740 return (0);
1741 }
1742
1743 void
1744 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1745 {
1746 uint64_t moid, obj, sa_obj, version;
1747 uint64_t sense = ZFS_CASE_SENSITIVE;
1748 uint64_t norm = 0;
1749 nvpair_t *elem;
1750 int error;
1751 int i;
1752 int size = spa_get_obj_mtx_sz(dmu_objset_spa(os));
1753 znode_t *rootzp = NULL;
1754 zfsvfs_t *zfsvfs;
1755 vnode_t *vp;
1756 vattr_t vattr;
1757 znode_t *zp;
1758 zfs_acl_ids_t acl_ids;
1759
1760 /*
1761 * First attempt to create master node.
1762 */
1763 /*
1764 * In an empty objset, there are no blocks to read and thus
1765 * there can be no i/o errors (which we assert below).
1766 */
1767 moid = MASTER_NODE_OBJ;
1768 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1769 DMU_OT_NONE, 0, tx);
1770 ASSERT(error == 0);
1771
1772 /*
1773 * Set starting attributes.
1774 */
1775 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1776 elem = NULL;
1777 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1778 /* For the moment we expect all zpl props to be uint64_ts */
1779 uint64_t val;
1780 char *name;
1781
1782 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1783 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1784 name = nvpair_name(elem);
1785 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1786 if (val < version)
1787 version = val;
1788 } else {
1789 error = zap_update(os, moid, name, 8, 1, &val, tx);
1790 }
1791 ASSERT(error == 0);
1792 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1793 norm = val;
1794 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1795 sense = val;
1796 }
1797 ASSERT(version != 0);
1798 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1799
1800 /*
1801 * Create zap object used for SA attribute registration
1802 */
1803
1804 if (version >= ZPL_VERSION_SA) {
1805 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1806 DMU_OT_NONE, 0, tx);
1807 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1808 ASSERT(error == 0);
1809 } else {
1810 sa_obj = 0;
1811 }
1812 /*
1813 * Create a delete queue.
1814 */
1815 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1816
1817 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1818 ASSERT(error == 0);
1819
1820 /*
1821 * Create root znode. Create minimal znode/vnode/zfsvfs
1822 * to allow zfs_mknode to work.
1823 */
1824 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1825 vattr.va_type = VDIR;
1826 vattr.va_mode = S_IFDIR|0755;
1827 vattr.va_uid = crgetuid(cr);
1828 vattr.va_gid = crgetgid(cr);
1829
1830 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1831 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1832 rootzp->z_moved = 0;
1833 rootzp->z_unlinked = 0;
1834 rootzp->z_atime_dirty = 0;
1835 rootzp->z_is_sa = USE_SA(version, os);
1836
1837 vp = ZTOV(rootzp);
1838 vn_reinit(vp);
1839 vp->v_type = VDIR;
1840
1841 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1842 zfsvfs->z_os = os;
1843 zfsvfs->z_parent = zfsvfs;
1844 zfsvfs->z_version = version;
1845 zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1846 zfsvfs->z_use_sa = USE_SA(version, os);
1847 zfsvfs->z_norm = norm;
1848
1849 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1850 &zfsvfs->z_attr_table);
1851
1852 ASSERT(error == 0);
1853
1854 /*
1855 * Fold case on file systems that are always or sometimes case
1856 * insensitive.
1857 */
1858 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1859 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1860
1861 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1862 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1863 offsetof(znode_t, z_link_node));
1864
1865 zfsvfs->z_hold_mtx_sz = size;
1866 zfsvfs->z_hold_mtx = kmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1867 for (i = 0; i != size; i++)
1868 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1869
1870 rootzp->z_zfsvfs = zfsvfs;
1871 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1872 cr, NULL, &acl_ids));
1873 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1874 ASSERT3P(zp, ==, rootzp);
1875 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1876 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1877 ASSERT(error == 0);
1878 zfs_acl_ids_free(&acl_ids);
1879 POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1880
1881 ZTOV(rootzp)->v_count = 0;
1882 sa_handle_destroy(rootzp->z_sa_hdl);
1883 kmem_cache_free(znode_cache, rootzp);
1884
1885 /*
1886 * Create shares directory
1887 */
1888
1889 error = zfs_create_share_dir(zfsvfs, tx);
1890
1891 ASSERT(error == 0);
1892
1893 for (i = 0; i != size; i++)
1894 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1895
1896 kmem_free(zfsvfs->z_hold_mtx, sizeof (kmutex_t) * size);
1897 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1898 }
1899
1900 #endif /* _KERNEL */
1901
1902 static int
1903 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1904 {
1905 uint64_t sa_obj = 0;
1906 int error;
1907
1908 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1909 if (error != 0 && error != ENOENT)
1910 return (error);
1911
1912 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1913 return (error);
1914 }
1915
1916 static int
1917 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1918 dmu_buf_t **db, void *tag)
1919 {
1920 dmu_object_info_t doi;
1921 int error;
1922
1923 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1924 return (error);
1925
1926 dmu_object_info_from_db(*db, &doi);
1927 if ((doi.doi_bonus_type != DMU_OT_SA &&
1928 doi.doi_bonus_type != DMU_OT_ZNODE) ||
1929 doi.doi_bonus_type == DMU_OT_ZNODE &&
1930 doi.doi_bonus_size < sizeof (znode_phys_t)) {
1931 sa_buf_rele(*db, tag);
1932 return (SET_ERROR(ENOTSUP));
1933 }
1934
1935 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
1936 if (error != 0) {
1937 sa_buf_rele(*db, tag);
1938 return (error);
1939 }
1940
1941 return (0);
1942 }
1943
1944 void
1945 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
1946 {
1947 sa_handle_destroy(hdl);
1948 sa_buf_rele(db, tag);
1949 }
1950
1951 /*
1952 * Given an object number, return its parent object number and whether
1953 * or not the object is an extended attribute directory.
1954 */
1955 static int
1956 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
1957 uint64_t *pobjp, int *is_xattrdir)
1958 {
1959 uint64_t parent;
1960 uint64_t pflags;
1961 uint64_t mode;
1962 uint64_t parent_mode;
1963 sa_bulk_attr_t bulk[3];
1964 sa_handle_t *sa_hdl;
1965 dmu_buf_t *sa_db;
1966 int count = 0;
1967 int error;
1968
1969 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
1970 &parent, sizeof (parent));
1971 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1972 &pflags, sizeof (pflags));
1973 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1974 &mode, sizeof (mode));
1975
1976 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
1977 return (error);
1978
1979 /*
1980 * When a link is removed its parent pointer is not changed and will
1981 * be invalid. There are two cases where a link is removed but the
1982 * file stays around, when it goes to the delete queue and when there
1983 * are additional links.
1984 */
1985 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
1986 if (error != 0)
1987 return (error);
1988
1989 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
1990 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
1991 if (error != 0)
1992 return (error);
1993
1994 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1995
1996 /*
1997 * Extended attributes can be applied to files, directories, etc.
1998 * Otherwise the parent must be a directory.
1999 */
2000 if (!*is_xattrdir && !S_ISDIR(parent_mode))
2001 return (SET_ERROR(EINVAL));
2002
2003 *pobjp = parent;
2004
2005 return (0);
2006 }
2007
2008 /*
2009 * Given an object number, return some zpl level statistics
2010 */
2011 static int
2012 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
2013 zfs_stat_t *sb)
2014 {
2015 sa_bulk_attr_t bulk[4];
2016 int count = 0;
2017
2018 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2019 &sb->zs_mode, sizeof (sb->zs_mode));
2020 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
2021 &sb->zs_gen, sizeof (sb->zs_gen));
2022 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
2023 &sb->zs_links, sizeof (sb->zs_links));
2024 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
2025 &sb->zs_ctime, sizeof (sb->zs_ctime));
2026
2027 return (sa_bulk_lookup(hdl, bulk, count));
2028 }
2029
2030 static int
2031 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2032 sa_attr_type_t *sa_table, char *buf, int len)
2033 {
2034 sa_handle_t *sa_hdl;
2035 sa_handle_t *prevhdl = NULL;
2036 dmu_buf_t *prevdb = NULL;
2037 dmu_buf_t *sa_db = NULL;
2038 char *path = buf + len - 1;
2039 int error;
2040
2041 *path = '\0';
2042 sa_hdl = hdl;
2043
2044 for (;;) {
2045 uint64_t pobj;
2046 char component[MAXNAMELEN + 2];
2047 size_t complen;
2048 int is_xattrdir;
2049
2050 if (prevdb)
2051 zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2052
2053 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2054 &is_xattrdir)) != 0)
2055 break;
2056
2057 if (pobj == obj) {
2058 if (path[0] != '/')
2059 *--path = '/';
2060 break;
2061 }
2062
2063 component[0] = '/';
2064 if (is_xattrdir) {
2065 (void) sprintf(component + 1, "<xattrdir>");
2066 } else {
2067 error = zap_value_search(osp, pobj, obj,
2068 ZFS_DIRENT_OBJ(-1ULL), component + 1);
2069 if (error != 0)
2070 break;
2071 }
2072
2073 complen = strlen(component);
2074 path -= complen;
2075 ASSERT(path >= buf);
2076 bcopy(component, path, complen);
2077 obj = pobj;
2078
2079 if (sa_hdl != hdl) {
2080 prevhdl = sa_hdl;
2081 prevdb = sa_db;
2082 }
2083 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2084 if (error != 0) {
2085 sa_hdl = prevhdl;
2086 sa_db = prevdb;
2087 break;
2088 }
2089 }
2090
2091 if (sa_hdl != NULL && sa_hdl != hdl) {
2092 ASSERT(sa_db != NULL);
2093 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2094 }
2095
2096 if (error == 0)
2097 (void) memmove(buf, path, buf + len - path);
2098
2099 return (error);
2100 }
2101
2102 int
2103 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2104 {
2105 sa_attr_type_t *sa_table;
2106 sa_handle_t *hdl;
2107 dmu_buf_t *db;
2108 int error;
2109
2110 error = zfs_sa_setup(osp, &sa_table);
2111 if (error != 0)
2112 return (error);
2113
2114 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2115 if (error != 0)
2116 return (error);
2117
2118 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2119
2120 zfs_release_sa_handle(hdl, db, FTAG);
2121 return (error);
2122 }
2123
2124 int
2125 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2126 char *buf, int len)
2127 {
2128 char *path = buf + len - 1;
2129 sa_attr_type_t *sa_table;
2130 sa_handle_t *hdl;
2131 dmu_buf_t *db;
2132 int error;
2133
2134 *path = '\0';
2135
2136 error = zfs_sa_setup(osp, &sa_table);
2137 if (error != 0)
2138 return (error);
2139
2140 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2141 if (error != 0)
2142 return (error);
2143
2144 error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2145 if (error != 0) {
2146 zfs_release_sa_handle(hdl, db, FTAG);
2147 return (error);
2148 }
2149
2150 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2151
2152 zfs_release_sa_handle(hdl, db, FTAG);
2153 return (error);
2154 }