1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2018 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/dmu.h>
28 #include <sys/avl.h>
29 #include <sys/zap.h>
30 #include <sys/refcount.h>
31 #include <sys/nvpair.h>
32 #ifdef _KERNEL
33 #include <sys/kidmap.h>
34 #include <sys/sid.h>
35 #include <sys/zfs_vfsops.h>
36 #include <sys/zfs_znode.h>
37 #endif
38 #include <sys/zfs_fuid.h>
39
40 /*
41 * FUID Domain table(s).
42 *
43 * The FUID table is stored as a packed nvlist of an array
44 * of nvlists which contain an index, domain string and offset
45 *
46 * During file system initialization the nvlist(s) are read and
47 * two AVL trees are created. One tree is keyed by the index number
48 * and the other by the domain string. Nodes are never removed from
49 * trees, but new entries may be added. If a new entry is added then
50 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
51 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
52 *
53 */
54
55 #define FUID_IDX "fuid_idx"
56 #define FUID_DOMAIN "fuid_domain"
57 #define FUID_OFFSET "fuid_offset"
58 #define FUID_NVP_ARRAY "fuid_nvlist"
59
60 typedef struct fuid_domain {
61 avl_node_t f_domnode;
62 avl_node_t f_idxnode;
63 ksiddomain_t *f_ksid;
64 uint64_t f_idx;
65 } fuid_domain_t;
66
67 static char *nulldomain = "";
68
69 /*
70 * Compare two indexes.
71 */
72 static int
73 idx_compare(const void *arg1, const void *arg2)
74 {
75 const fuid_domain_t *node1 = arg1;
76 const fuid_domain_t *node2 = arg2;
77
78 if (node1->f_idx < node2->f_idx)
79 return (-1);
80 else if (node1->f_idx > node2->f_idx)
81 return (1);
82 return (0);
83 }
84
85 /*
86 * Compare two domain strings.
87 */
88 static int
89 domain_compare(const void *arg1, const void *arg2)
90 {
91 const fuid_domain_t *node1 = arg1;
92 const fuid_domain_t *node2 = arg2;
93 int val;
94
95 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
96 if (val == 0)
97 return (0);
98 return (val > 0 ? 1 : -1);
99 }
100
101 void
102 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
103 {
104 avl_create(idx_tree, idx_compare,
105 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
106 avl_create(domain_tree, domain_compare,
107 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
108 }
109
110 /*
111 * load initial fuid domain and idx trees. This function is used by
112 * both the kernel and zdb.
113 */
114 uint64_t
115 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
116 avl_tree_t *domain_tree)
117 {
118 dmu_buf_t *db;
119 uint64_t fuid_size;
120
121 ASSERT(fuid_obj != 0);
122 VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
123 FTAG, &db));
124 fuid_size = *(uint64_t *)db->db_data;
125 dmu_buf_rele(db, FTAG);
126
127 if (fuid_size) {
128 nvlist_t **fuidnvp;
129 nvlist_t *nvp = NULL;
130 uint_t count;
131 char *packed;
132 int i;
133
134 packed = kmem_alloc(fuid_size, KM_SLEEP);
135 VERIFY(dmu_read(os, fuid_obj, 0,
136 fuid_size, packed, DMU_READ_PREFETCH) == 0);
137 VERIFY(nvlist_unpack(packed, fuid_size,
138 &nvp, 0) == 0);
139 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
140 &fuidnvp, &count) == 0);
141
142 for (i = 0; i != count; i++) {
143 fuid_domain_t *domnode;
144 char *domain;
145 uint64_t idx;
146
147 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
148 &domain) == 0);
149 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
150 &idx) == 0);
151
152 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
153
154 domnode->f_idx = idx;
155 domnode->f_ksid = ksid_lookupdomain(domain);
156 avl_add(idx_tree, domnode);
157 avl_add(domain_tree, domnode);
158 }
159 nvlist_free(nvp);
160 kmem_free(packed, fuid_size);
161 }
162 return (fuid_size);
163 }
164
165 void
166 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
167 {
168 fuid_domain_t *domnode;
169 void *cookie;
170
171 cookie = NULL;
172 while (domnode = avl_destroy_nodes(domain_tree, &cookie))
173 ksiddomain_rele(domnode->f_ksid);
174
175 avl_destroy(domain_tree);
176 cookie = NULL;
177 while (domnode = avl_destroy_nodes(idx_tree, &cookie))
178 kmem_free(domnode, sizeof (fuid_domain_t));
179 avl_destroy(idx_tree);
180 }
181
182 char *
183 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
184 {
185 fuid_domain_t searchnode, *findnode;
186 avl_index_t loc;
187
188 searchnode.f_idx = idx;
189
190 findnode = avl_find(idx_tree, &searchnode, &loc);
191
192 return (findnode ? findnode->f_ksid->kd_name : nulldomain);
193 }
194
195 #ifdef _KERNEL
196 /*
197 * Load the fuid table(s) into memory.
198 */
199 static void
200 zfs_fuid_init(zfsvfs_t *zfsvfs)
201 {
202 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
203
204 if (zfsvfs->z_fuid_loaded) {
205 rw_exit(&zfsvfs->z_fuid_lock);
206 return;
207 }
208
209 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
210
211 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
212 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
213 if (zfsvfs->z_fuid_obj != 0) {
214 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
215 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
216 &zfsvfs->z_fuid_domain);
217 }
218
219 zfsvfs->z_fuid_loaded = B_TRUE;
220 rw_exit(&zfsvfs->z_fuid_lock);
221 }
222
223 /*
224 * sync out AVL trees to persistent storage.
225 */
226 void
227 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
228 {
229 nvlist_t *nvp;
230 nvlist_t **fuids;
231 size_t nvsize = 0;
232 char *packed;
233 dmu_buf_t *db;
234 fuid_domain_t *domnode;
235 int numnodes;
236 int i;
237
238 if (!zfsvfs->z_fuid_dirty) {
239 return;
240 }
241
242 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
243
244 /*
245 * First see if table needs to be created?
246 */
247 if (zfsvfs->z_fuid_obj == 0) {
248 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
249 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
250 sizeof (uint64_t), tx);
251 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
252 ZFS_FUID_TABLES, sizeof (uint64_t), 1,
253 &zfsvfs->z_fuid_obj, tx) == 0);
254 }
255
256 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
257
258 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
259 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
260 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
261 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
262 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
263 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
264 domnode->f_idx) == 0);
265 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
266 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
267 domnode->f_ksid->kd_name) == 0);
268 }
269 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
270 fuids, numnodes) == 0);
271 for (i = 0; i != numnodes; i++)
272 nvlist_free(fuids[i]);
273 kmem_free(fuids, numnodes * sizeof (void *));
274 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
275 packed = kmem_alloc(nvsize, KM_SLEEP);
276 VERIFY(nvlist_pack(nvp, &packed, &nvsize,
277 NV_ENCODE_XDR, KM_SLEEP) == 0);
278 nvlist_free(nvp);
279 zfsvfs->z_fuid_size = nvsize;
280 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
281 zfsvfs->z_fuid_size, packed, tx);
282 kmem_free(packed, zfsvfs->z_fuid_size);
283 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
284 FTAG, &db));
285 dmu_buf_will_dirty(db, tx);
286 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
287 dmu_buf_rele(db, FTAG);
288
289 zfsvfs->z_fuid_dirty = B_FALSE;
290 rw_exit(&zfsvfs->z_fuid_lock);
291 }
292
293 /*
294 * Query domain table for a given domain.
295 *
296 * If domain isn't found and addok is set, it is added to AVL trees and
297 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be
298 * necessary for the caller or another thread to detect the dirty table
299 * and sync out the changes.
300 */
301 int
302 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
303 char **retdomain, boolean_t addok)
304 {
305 fuid_domain_t searchnode, *findnode;
306 avl_index_t loc;
307 krw_t rw = RW_READER;
308
309 /*
310 * If the dummy "nobody" domain then return an index of 0
311 * to cause the created FUID to be a standard POSIX id
312 * for the user nobody.
313 */
314 if (domain[0] == '\0') {
315 if (retdomain)
316 *retdomain = nulldomain;
317 return (0);
318 }
319
320 searchnode.f_ksid = ksid_lookupdomain(domain);
321 if (retdomain)
322 *retdomain = searchnode.f_ksid->kd_name;
323 if (!zfsvfs->z_fuid_loaded)
324 zfs_fuid_init(zfsvfs);
325
326 retry:
327 rw_enter(&zfsvfs->z_fuid_lock, rw);
328 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
329
330 if (findnode) {
331 rw_exit(&zfsvfs->z_fuid_lock);
332 ksiddomain_rele(searchnode.f_ksid);
333 return (findnode->f_idx);
334 } else if (addok) {
335 fuid_domain_t *domnode;
336 uint64_t retidx;
337
338 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
339 rw_exit(&zfsvfs->z_fuid_lock);
340 rw = RW_WRITER;
341 goto retry;
342 }
343
344 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
345 domnode->f_ksid = searchnode.f_ksid;
346
347 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
348
349 avl_add(&zfsvfs->z_fuid_domain, domnode);
350 avl_add(&zfsvfs->z_fuid_idx, domnode);
351 zfsvfs->z_fuid_dirty = B_TRUE;
352 rw_exit(&zfsvfs->z_fuid_lock);
353 return (retidx);
354 } else {
355 rw_exit(&zfsvfs->z_fuid_lock);
356 return (-1);
357 }
358 }
359
360 /*
361 * Query domain table by index, returning domain string
362 *
363 * Returns a pointer from an avl node of the domain string.
364 *
365 */
366 const char *
367 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
368 {
369 char *domain;
370
371 if (idx == 0 || !zfsvfs->z_use_fuids)
372 return (NULL);
373
374 if (!zfsvfs->z_fuid_loaded)
375 zfs_fuid_init(zfsvfs);
376
377 rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
378
379 if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
380 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
381 else
382 domain = nulldomain;
383 rw_exit(&zfsvfs->z_fuid_lock);
384
385 ASSERT(domain);
386 return (domain);
387 }
388
389 void
390 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
391 {
392 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
393 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_gid, cr, ZFS_GROUP);
394 }
395
396 uid_t
397 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
398 cred_t *cr, zfs_fuid_type_t type)
399 {
400 uint32_t index = FUID_INDEX(fuid);
401 const char *domain;
402 uid_t id;
403
404 if (index == 0)
405 return (fuid);
406
407 domain = zfs_fuid_find_by_idx(zfsvfs, index);
408 ASSERT(domain != NULL);
409
410 if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
411 (void) kidmap_getuidbysid(crgetzone(cr), domain,
412 FUID_RID(fuid), &id);
413 } else {
414 (void) kidmap_getgidbysid(crgetzone(cr), domain,
415 FUID_RID(fuid), &id);
416 }
417 return (id);
418 }
419
420 /*
421 * Add a FUID node to the list of fuid's being created for this
422 * ACL
423 *
424 * If ACL has multiple domains, then keep only one copy of each unique
425 * domain.
426 */
427 void
428 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
429 uint64_t idx, uint64_t id, zfs_fuid_type_t type)
430 {
431 zfs_fuid_t *fuid;
432 zfs_fuid_domain_t *fuid_domain;
433 zfs_fuid_info_t *fuidp;
434 uint64_t fuididx;
435 boolean_t found = B_FALSE;
436
437 if (*fuidpp == NULL)
438 *fuidpp = zfs_fuid_info_alloc();
439
440 fuidp = *fuidpp;
441 /*
442 * First find fuid domain index in linked list
443 *
444 * If one isn't found then create an entry.
445 */
446
447 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
448 fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
449 fuid_domain), fuididx++) {
450 if (idx == fuid_domain->z_domidx) {
451 found = B_TRUE;
452 break;
453 }
454 }
455
456 if (!found) {
457 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
458 fuid_domain->z_domain = domain;
459 fuid_domain->z_domidx = idx;
460 list_insert_tail(&fuidp->z_domains, fuid_domain);
461 fuidp->z_domain_str_sz += strlen(domain) + 1;
462 fuidp->z_domain_cnt++;
463 }
464
465 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
466
467 /*
468 * Now allocate fuid entry and add it on the end of the list
469 */
470
471 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
472 fuid->z_id = id;
473 fuid->z_domidx = idx;
474 fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
475
476 list_insert_tail(&fuidp->z_fuids, fuid);
477 fuidp->z_fuid_cnt++;
478 } else {
479 if (type == ZFS_OWNER)
480 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
481 else
482 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
483 }
484 }
485
486 /*
487 * Create a file system FUID, based on information in the users cred
488 *
489 * If cred contains KSID_OWNER then it should be used to determine
490 * the uid otherwise cred's uid will be used. By default cred's gid
491 * is used unless it's an ephemeral ID in which case KSID_GROUP will
492 * be used if it exists.
493 */
494 uint64_t
495 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
496 cred_t *cr, zfs_fuid_info_t **fuidp)
497 {
498 uint64_t idx;
499 ksid_t *ksid;
500 uint32_t rid;
501 char *kdomain;
502 const char *domain;
503 uid_t id;
504
505 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
506
507 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
508
509 if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
510 id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
511
512 if (IS_EPHEMERAL(id))
513 return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
514
515 return ((uint64_t)id);
516 }
517
518 /*
519 * ksid is present and FUID is supported
520 */
521 id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
522
523 if (!IS_EPHEMERAL(id))
524 return ((uint64_t)id);
525
526 if (type == ZFS_GROUP)
527 id = ksid_getid(ksid);
528
529 rid = ksid_getrid(ksid);
530 domain = ksid_getdomain(ksid);
531
532 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
533
534 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
535
536 return (FUID_ENCODE(idx, rid));
537 }
538
539 /*
540 * Create a file system FUID for an ACL ace
541 * or a chown/chgrp of the file.
542 * This is similar to zfs_fuid_create_cred, except that
543 * we can't find the domain + rid information in the
544 * cred. Instead we have to query Winchester for the
545 * domain and rid.
546 *
547 * During replay operations the domain+rid information is
548 * found in the zfs_fuid_info_t that the replay code has
549 * attached to the zfsvfs of the file system.
550 */
551 uint64_t
552 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
553 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
554 {
555 const char *domain;
556 char *kdomain;
557 uint32_t fuid_idx = FUID_INDEX(id);
558 uint32_t rid;
559 idmap_stat status;
560 uint64_t idx = 0;
561 zfs_fuid_t *zfuid = NULL;
562 zfs_fuid_info_t *fuidp = NULL;
563
564 /*
565 * If POSIX ID, or entry is already a FUID then
566 * just return the id
567 *
568 * We may also be handed an already FUID'ized id via
569 * chmod.
570 */
571
572 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
573 return (id);
574
575 if (zfsvfs->z_replay) {
576 fuidp = zfsvfs->z_fuid_replay;
577
578 /*
579 * If we are passed an ephemeral id, but no
580 * fuid_info was logged then return NOBODY.
581 * This is most likely a result of idmap service
582 * not being available.
583 */
584 if (fuidp == NULL)
585 return (UID_NOBODY);
586
587 VERIFY3U(type, >=, ZFS_OWNER);
588 VERIFY3U(type, <=, ZFS_ACE_GROUP);
589
590 switch (type) {
591 case ZFS_ACE_USER:
592 case ZFS_ACE_GROUP:
593 zfuid = list_head(&fuidp->z_fuids);
594 rid = FUID_RID(zfuid->z_logfuid);
595 idx = FUID_INDEX(zfuid->z_logfuid);
596 break;
597 case ZFS_OWNER:
598 rid = FUID_RID(fuidp->z_fuid_owner);
599 idx = FUID_INDEX(fuidp->z_fuid_owner);
600 break;
601 case ZFS_GROUP:
602 rid = FUID_RID(fuidp->z_fuid_group);
603 idx = FUID_INDEX(fuidp->z_fuid_group);
604 break;
605 };
606 domain = fuidp->z_domain_table[idx - 1];
607 } else {
608 if (type == ZFS_OWNER || type == ZFS_ACE_USER)
609 status = kidmap_getsidbyuid(crgetzone(cr), id,
610 &domain, &rid);
611 else
612 status = kidmap_getsidbygid(crgetzone(cr), id,
613 &domain, &rid);
614
615 if (status != 0) {
616 /*
617 * When returning nobody we will need to
618 * make a dummy fuid table entry for logging
619 * purposes.
620 */
621 rid = UID_NOBODY;
622 domain = nulldomain;
623 }
624 }
625
626 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
627
628 if (!zfsvfs->z_replay)
629 zfs_fuid_node_add(fuidpp, kdomain,
630 rid, idx, id, type);
631 else if (zfuid != NULL) {
632 list_remove(&fuidp->z_fuids, zfuid);
633 kmem_free(zfuid, sizeof (zfs_fuid_t));
634 }
635 return (FUID_ENCODE(idx, rid));
636 }
637
638 void
639 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
640 {
641 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
642 if (!zfsvfs->z_fuid_loaded) {
643 rw_exit(&zfsvfs->z_fuid_lock);
644 return;
645 }
646 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
647 rw_exit(&zfsvfs->z_fuid_lock);
648 }
649
650 /*
651 * Allocate zfs_fuid_info for tracking FUIDs created during
652 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
653 */
654 zfs_fuid_info_t *
655 zfs_fuid_info_alloc(void)
656 {
657 zfs_fuid_info_t *fuidp;
658
659 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
660 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
661 offsetof(zfs_fuid_domain_t, z_next));
662 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
663 offsetof(zfs_fuid_t, z_next));
664 return (fuidp);
665 }
666
667 /*
668 * Release all memory associated with zfs_fuid_info_t
669 */
670 void
671 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
672 {
673 zfs_fuid_t *zfuid;
674 zfs_fuid_domain_t *zdomain;
675
676 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
677 list_remove(&fuidp->z_fuids, zfuid);
678 kmem_free(zfuid, sizeof (zfs_fuid_t));
679 }
680
681 if (fuidp->z_domain_table != NULL)
682 kmem_free(fuidp->z_domain_table,
683 (sizeof (char **)) * fuidp->z_domain_cnt);
684
685 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
686 list_remove(&fuidp->z_domains, zdomain);
687 kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
688 }
689
690 kmem_free(fuidp, sizeof (zfs_fuid_info_t));
691 }
692
693 /*
694 * Check to see if user ID is in the list of SIDs in CR.
695 */
696 boolean_t
697 zfs_user_in_cred(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
698 {
699 ksid_t *ksid = crgetsid(cr, KSID_USER);
700 ksidlist_t *ksidlist = crgetsidlist(cr);
701 uid_t uid;
702
703 /* Check for match with cred->cr_uid */
704 uid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_ACE_USER);
705 if (uid != IDMAP_WK_CREATOR_OWNER_UID &&
706 uid == crgetuid(cr))
707 return (B_TRUE);
708
709 /* Check for any match in the ksidlist */
710 if (ksid && ksidlist) {
711 int i;
712 ksid_t *ksid_vec;
713 uint32_t idx = FUID_INDEX(id);
714 uint32_t rid = FUID_RID(id);
715 const char *domain;
716
717 if (idx == 0) {
718 /*
719 * The ID passed in has idx zero, which means
720 * it's just a Unix UID. That can never match
721 * anything in ksid_vec[] because those all
722 * have ksid->ks_id set to a Group ID.
723 */
724 return (B_FALSE);
725 }
726
727 domain = zfs_fuid_find_by_idx(zfsvfs, idx);
728 ASSERT(domain != NULL);
729
730 if (strcmp(domain, IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
731 return (B_FALSE);
732
733 ksid_vec = ksidlist->ksl_sids;
734 for (i = 0; i != ksidlist->ksl_nsid; i++) {
735 if ((strcmp(domain,
736 ksid_vec[i].ks_domain->kd_name) == 0) &&
737 rid == ksid_vec[i].ks_rid)
738 return (B_TRUE);
739 }
740 }
741 return (B_FALSE);
742 }
743
744 /*
745 * Check to see if id is a groupmember. If cred
746 * has ksid info then sidlist is checked first
747 * and if still not found then POSIX groups are checked
748 *
749 * Will use a straight FUID compare when possible.
750 */
751 boolean_t
752 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
753 {
754 ksid_t *ksid = crgetsid(cr, KSID_GROUP);
755 ksidlist_t *ksidlist = crgetsidlist(cr);
756 uid_t gid;
757
758 if (ksid && ksidlist) {
759 int i;
760 ksid_t *ksid_groups;
761 uint32_t idx = FUID_INDEX(id);
762 uint32_t rid = FUID_RID(id);
763
764 ksid_groups = ksidlist->ksl_sids;
765
766 for (i = 0; i != ksidlist->ksl_nsid; i++) {
767 if (idx == 0) {
768 if (id != IDMAP_WK_CREATOR_GROUP_GID &&
769 id == ksid_groups[i].ks_id) {
770 return (B_TRUE);
771 }
772 } else {
773 const char *domain;
774
775 domain = zfs_fuid_find_by_idx(zfsvfs, idx);
776 ASSERT(domain != NULL);
777
778 if (strcmp(domain,
779 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
780 return (B_FALSE);
781
782 if ((strcmp(domain,
783 ksid_groups[i].ks_domain->kd_name) == 0) &&
784 rid == ksid_groups[i].ks_rid)
785 return (B_TRUE);
786 }
787 }
788 }
789
790 /*
791 * Not found in ksidlist, check posix groups
792 */
793 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
794 return (groupmember(gid, cr));
795 }
796
797 void
798 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
799 {
800 if (zfsvfs->z_fuid_obj == 0) {
801 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
802 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
803 FUID_SIZE_ESTIMATE(zfsvfs));
804 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
805 } else {
806 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
807 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
808 FUID_SIZE_ESTIMATE(zfsvfs));
809 }
810 }
811 #endif