1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include <sys/zfs_context.h>
  26 #include <sys/dmu.h>
  27 #include <sys/avl.h>
  28 #include <sys/zap.h>
  29 #include <sys/refcount.h>
  30 #include <sys/nvpair.h>
  31 #ifdef _KERNEL
  32 #include <sys/kidmap.h>
  33 #include <sys/sid.h>
  34 #include <sys/zfs_vfsops.h>
  35 #include <sys/zfs_znode.h>
  36 #endif
  37 #include <sys/zfs_fuid.h>
  38 
  39 /*
  40  * FUID Domain table(s).
  41  *
  42  * The FUID table is stored as a packed nvlist of an array
  43  * of nvlists which contain an index, domain string and offset
  44  *
  45  * During file system initialization the nvlist(s) are read and
  46  * two AVL trees are created.  One tree is keyed by the index number
  47  * and the other by the domain string.  Nodes are never removed from
  48  * trees, but new entries may be added.  If a new entry is added then
  49  * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
  50  * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
  51  *
  52  */
  53 
  54 #define FUID_IDX        "fuid_idx"
  55 #define FUID_DOMAIN     "fuid_domain"
  56 #define FUID_OFFSET     "fuid_offset"
  57 #define FUID_NVP_ARRAY  "fuid_nvlist"
  58 
  59 typedef struct fuid_domain {
  60         avl_node_t      f_domnode;
  61         avl_node_t      f_idxnode;
  62         ksiddomain_t    *f_ksid;
  63         uint64_t        f_idx;
  64 } fuid_domain_t;
  65 
  66 static char *nulldomain = "";
  67 
  68 /*
  69  * Compare two indexes.
  70  */
  71 static int
  72 idx_compare(const void *arg1, const void *arg2)
  73 {
  74         const fuid_domain_t *node1 = arg1;
  75         const fuid_domain_t *node2 = arg2;
  76 
  77         if (node1->f_idx < node2->f_idx)
  78                 return (-1);
  79         else if (node1->f_idx > node2->f_idx)
  80                 return (1);
  81         return (0);
  82 }
  83 
  84 /*
  85  * Compare two domain strings.
  86  */
  87 static int
  88 domain_compare(const void *arg1, const void *arg2)
  89 {
  90         const fuid_domain_t *node1 = arg1;
  91         const fuid_domain_t *node2 = arg2;
  92         int val;
  93 
  94         val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
  95         if (val == 0)
  96                 return (0);
  97         return (val > 0 ? 1 : -1);
  98 }
  99 
 100 void
 101 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
 102 {
 103         avl_create(idx_tree, idx_compare,
 104             sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
 105         avl_create(domain_tree, domain_compare,
 106             sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
 107 }
 108 
 109 /*
 110  * load initial fuid domain and idx trees.  This function is used by
 111  * both the kernel and zdb.
 112  */
 113 uint64_t
 114 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
 115     avl_tree_t *domain_tree)
 116 {
 117         dmu_buf_t *db;
 118         uint64_t fuid_size;
 119 
 120         ASSERT(fuid_obj != 0);
 121         VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
 122             FTAG, &db));
 123         fuid_size = *(uint64_t *)db->db_data;
 124         dmu_buf_rele(db, FTAG);
 125 
 126         if (fuid_size)  {
 127                 nvlist_t **fuidnvp;
 128                 nvlist_t *nvp = NULL;
 129                 uint_t count;
 130                 char *packed;
 131                 int i;
 132 
 133                 packed = kmem_alloc(fuid_size, KM_SLEEP);
 134                 VERIFY(dmu_read(os, fuid_obj, 0,
 135                     fuid_size, packed, DMU_READ_PREFETCH) == 0);
 136                 VERIFY(nvlist_unpack(packed, fuid_size,
 137                     &nvp, 0) == 0);
 138                 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
 139                     &fuidnvp, &count) == 0);
 140 
 141                 for (i = 0; i != count; i++) {
 142                         fuid_domain_t *domnode;
 143                         char *domain;
 144                         uint64_t idx;
 145 
 146                         VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
 147                             &domain) == 0);
 148                         VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
 149                             &idx) == 0);
 150 
 151                         domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
 152 
 153                         domnode->f_idx = idx;
 154                         domnode->f_ksid = ksid_lookupdomain(domain);
 155                         avl_add(idx_tree, domnode);
 156                         avl_add(domain_tree, domnode);
 157                 }
 158                 nvlist_free(nvp);
 159                 kmem_free(packed, fuid_size);
 160         }
 161         return (fuid_size);
 162 }
 163 
 164 void
 165 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
 166 {
 167         fuid_domain_t *domnode;
 168         void *cookie;
 169 
 170         cookie = NULL;
 171         while (domnode = avl_destroy_nodes(domain_tree, &cookie))
 172                 ksiddomain_rele(domnode->f_ksid);
 173 
 174         avl_destroy(domain_tree);
 175         cookie = NULL;
 176         while (domnode = avl_destroy_nodes(idx_tree, &cookie))
 177                 kmem_free(domnode, sizeof (fuid_domain_t));
 178         avl_destroy(idx_tree);
 179 }
 180 
 181 char *
 182 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
 183 {
 184         fuid_domain_t searchnode, *findnode;
 185         avl_index_t loc;
 186 
 187         searchnode.f_idx = idx;
 188 
 189         findnode = avl_find(idx_tree, &searchnode, &loc);
 190 
 191         return (findnode ? findnode->f_ksid->kd_name : nulldomain);
 192 }
 193 
 194 #ifdef _KERNEL
 195 /*
 196  * Load the fuid table(s) into memory.
 197  */
 198 static void
 199 zfs_fuid_init(zfsvfs_t *zfsvfs)
 200 {
 201         rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
 202 
 203         if (zfsvfs->z_fuid_loaded) {
 204                 rw_exit(&zfsvfs->z_fuid_lock);
 205                 return;
 206         }
 207 
 208         zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
 209 
 210         (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
 211             ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
 212         if (zfsvfs->z_fuid_obj != 0) {
 213                 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
 214                     zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
 215                     &zfsvfs->z_fuid_domain);
 216         }
 217 
 218         zfsvfs->z_fuid_loaded = B_TRUE;
 219         rw_exit(&zfsvfs->z_fuid_lock);
 220 }
 221 
 222 /*
 223  * sync out AVL trees to persistent storage.
 224  */
 225 void
 226 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
 227 {
 228         nvlist_t *nvp;
 229         nvlist_t **fuids;
 230         size_t nvsize = 0;
 231         char *packed;
 232         dmu_buf_t *db;
 233         fuid_domain_t *domnode;
 234         int numnodes;
 235         int i;
 236 
 237         if (!zfsvfs->z_fuid_dirty) {
 238                 return;
 239         }
 240 
 241         rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
 242 
 243         /*
 244          * First see if table needs to be created?
 245          */
 246         if (zfsvfs->z_fuid_obj == 0) {
 247                 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
 248                     DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
 249                     sizeof (uint64_t), tx);
 250                 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
 251                     ZFS_FUID_TABLES, sizeof (uint64_t), 1,
 252                     &zfsvfs->z_fuid_obj, tx) == 0);
 253         }
 254 
 255         VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 256 
 257         numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
 258         fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
 259         for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
 260             domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
 261                 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
 262                 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
 263                     domnode->f_idx) == 0);
 264                 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
 265                 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
 266                     domnode->f_ksid->kd_name) == 0);
 267         }
 268         VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
 269             fuids, numnodes) == 0);
 270         for (i = 0; i != numnodes; i++)
 271                 nvlist_free(fuids[i]);
 272         kmem_free(fuids, numnodes * sizeof (void *));
 273         VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
 274         packed = kmem_alloc(nvsize, KM_SLEEP);
 275         VERIFY(nvlist_pack(nvp, &packed, &nvsize,
 276             NV_ENCODE_XDR, KM_SLEEP) == 0);
 277         nvlist_free(nvp);
 278         zfsvfs->z_fuid_size = nvsize;
 279         dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
 280             zfsvfs->z_fuid_size, packed, tx);
 281         kmem_free(packed, zfsvfs->z_fuid_size);
 282         VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
 283             FTAG, &db));
 284         dmu_buf_will_dirty(db, tx);
 285         *(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
 286         dmu_buf_rele(db, FTAG);
 287 
 288         zfsvfs->z_fuid_dirty = B_FALSE;
 289         rw_exit(&zfsvfs->z_fuid_lock);
 290 }
 291 
 292 /*
 293  * Query domain table for a given domain.
 294  *
 295  * If domain isn't found and addok is set, it is added to AVL trees and
 296  * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
 297  * necessary for the caller or another thread to detect the dirty table
 298  * and sync out the changes.
 299  */
 300 int
 301 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
 302     char **retdomain, boolean_t addok)
 303 {
 304         fuid_domain_t searchnode, *findnode;
 305         avl_index_t loc;
 306         krw_t rw = RW_READER;
 307 
 308         /*
 309          * If the dummy "nobody" domain then return an index of 0
 310          * to cause the created FUID to be a standard POSIX id
 311          * for the user nobody.
 312          */
 313         if (domain[0] == '\0') {
 314                 if (retdomain)
 315                         *retdomain = nulldomain;
 316                 return (0);
 317         }
 318 
 319         searchnode.f_ksid = ksid_lookupdomain(domain);
 320         if (retdomain)
 321                 *retdomain = searchnode.f_ksid->kd_name;
 322         if (!zfsvfs->z_fuid_loaded)
 323                 zfs_fuid_init(zfsvfs);
 324 
 325 retry:
 326         rw_enter(&zfsvfs->z_fuid_lock, rw);
 327         findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
 328 
 329         if (findnode) {
 330                 rw_exit(&zfsvfs->z_fuid_lock);
 331                 ksiddomain_rele(searchnode.f_ksid);
 332                 return (findnode->f_idx);
 333         } else if (addok) {
 334                 fuid_domain_t *domnode;
 335                 uint64_t retidx;
 336 
 337                 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
 338                         rw_exit(&zfsvfs->z_fuid_lock);
 339                         rw = RW_WRITER;
 340                         goto retry;
 341                 }
 342 
 343                 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
 344                 domnode->f_ksid = searchnode.f_ksid;
 345 
 346                 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
 347 
 348                 avl_add(&zfsvfs->z_fuid_domain, domnode);
 349                 avl_add(&zfsvfs->z_fuid_idx, domnode);
 350                 zfsvfs->z_fuid_dirty = B_TRUE;
 351                 rw_exit(&zfsvfs->z_fuid_lock);
 352                 return (retidx);
 353         } else {
 354                 rw_exit(&zfsvfs->z_fuid_lock);
 355                 return (-1);
 356         }
 357 }
 358 
 359 /*
 360  * Query domain table by index, returning domain string
 361  *
 362  * Returns a pointer from an avl node of the domain string.
 363  *
 364  */
 365 const char *
 366 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
 367 {
 368         char *domain;
 369 
 370         if (idx == 0 || !zfsvfs->z_use_fuids)
 371                 return (NULL);
 372 
 373         if (!zfsvfs->z_fuid_loaded)
 374                 zfs_fuid_init(zfsvfs);
 375 
 376         rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
 377 
 378         if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
 379                 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
 380         else
 381                 domain = nulldomain;
 382         rw_exit(&zfsvfs->z_fuid_lock);
 383 
 384         ASSERT(domain);
 385         return (domain);
 386 }
 387 
 388 void
 389 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
 390 {
 391         *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
 392         *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_gid, cr, ZFS_GROUP);
 393 }
 394 
 395 uid_t
 396 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
 397     cred_t *cr, zfs_fuid_type_t type)
 398 {
 399         uint32_t index = FUID_INDEX(fuid);
 400         const char *domain;
 401         uid_t id;
 402 
 403         if (index == 0)
 404                 return (fuid);
 405 
 406         domain = zfs_fuid_find_by_idx(zfsvfs, index);
 407         ASSERT(domain != NULL);
 408 
 409         if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
 410                 (void) kidmap_getuidbysid(crgetzone(cr), domain,
 411                     FUID_RID(fuid), &id);
 412         } else {
 413                 (void) kidmap_getgidbysid(crgetzone(cr), domain,
 414                     FUID_RID(fuid), &id);
 415         }
 416         return (id);
 417 }
 418 
 419 /*
 420  * Add a FUID node to the list of fuid's being created for this
 421  * ACL
 422  *
 423  * If ACL has multiple domains, then keep only one copy of each unique
 424  * domain.
 425  */
 426 void
 427 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
 428     uint64_t idx, uint64_t id, zfs_fuid_type_t type)
 429 {
 430         zfs_fuid_t *fuid;
 431         zfs_fuid_domain_t *fuid_domain;
 432         zfs_fuid_info_t *fuidp;
 433         uint64_t fuididx;
 434         boolean_t found = B_FALSE;
 435 
 436         if (*fuidpp == NULL)
 437                 *fuidpp = zfs_fuid_info_alloc();
 438 
 439         fuidp = *fuidpp;
 440         /*
 441          * First find fuid domain index in linked list
 442          *
 443          * If one isn't found then create an entry.
 444          */
 445 
 446         for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
 447             fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
 448             fuid_domain), fuididx++) {
 449                 if (idx == fuid_domain->z_domidx) {
 450                         found = B_TRUE;
 451                         break;
 452                 }
 453         }
 454 
 455         if (!found) {
 456                 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
 457                 fuid_domain->z_domain = domain;
 458                 fuid_domain->z_domidx = idx;
 459                 list_insert_tail(&fuidp->z_domains, fuid_domain);
 460                 fuidp->z_domain_str_sz += strlen(domain) + 1;
 461                 fuidp->z_domain_cnt++;
 462         }
 463 
 464         if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
 465 
 466                 /*
 467                  * Now allocate fuid entry and add it on the end of the list
 468                  */
 469 
 470                 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
 471                 fuid->z_id = id;
 472                 fuid->z_domidx = idx;
 473                 fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
 474 
 475                 list_insert_tail(&fuidp->z_fuids, fuid);
 476                 fuidp->z_fuid_cnt++;
 477         } else {
 478                 if (type == ZFS_OWNER)
 479                         fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
 480                 else
 481                         fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
 482         }
 483 }
 484 
 485 /*
 486  * Create a file system FUID, based on information in the users cred
 487  *
 488  * If cred contains KSID_OWNER then it should be used to determine
 489  * the uid otherwise cred's uid will be used. By default cred's gid
 490  * is used unless it's an ephemeral ID in which case KSID_GROUP will
 491  * be used if it exists.
 492  */
 493 uint64_t
 494 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
 495     cred_t *cr, zfs_fuid_info_t **fuidp)
 496 {
 497         uint64_t        idx;
 498         ksid_t          *ksid;
 499         uint32_t        rid;
 500         char            *kdomain;
 501         const char      *domain;
 502         uid_t           id;
 503 
 504         VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
 505 
 506         ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
 507 
 508         if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
 509                 id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
 510 
 511                 if (IS_EPHEMERAL(id))
 512                         return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
 513 
 514                 return ((uint64_t)id);
 515         }
 516 
 517         /*
 518          * ksid is present and FUID is supported
 519          */
 520         id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
 521 
 522         if (!IS_EPHEMERAL(id))
 523                 return ((uint64_t)id);
 524 
 525         if (type == ZFS_GROUP)
 526                 id = ksid_getid(ksid);
 527 
 528         rid = ksid_getrid(ksid);
 529         domain = ksid_getdomain(ksid);
 530 
 531         idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
 532 
 533         zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
 534 
 535         return (FUID_ENCODE(idx, rid));
 536 }
 537 
 538 /*
 539  * Create a file system FUID for an ACL ace
 540  * or a chown/chgrp of the file.
 541  * This is similar to zfs_fuid_create_cred, except that
 542  * we can't find the domain + rid information in the
 543  * cred.  Instead we have to query Winchester for the
 544  * domain and rid.
 545  *
 546  * During replay operations the domain+rid information is
 547  * found in the zfs_fuid_info_t that the replay code has
 548  * attached to the zfsvfs of the file system.
 549  */
 550 uint64_t
 551 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
 552     zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
 553 {
 554         const char *domain;
 555         char *kdomain;
 556         uint32_t fuid_idx = FUID_INDEX(id);
 557         uint32_t rid;
 558         idmap_stat status;
 559         uint64_t idx = 0;
 560         zfs_fuid_t *zfuid = NULL;
 561         zfs_fuid_info_t *fuidp = NULL;
 562 
 563         /*
 564          * If POSIX ID, or entry is already a FUID then
 565          * just return the id
 566          *
 567          * We may also be handed an already FUID'ized id via
 568          * chmod.
 569          */
 570 
 571         if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
 572                 return (id);
 573 
 574         if (zfsvfs->z_replay) {
 575                 fuidp = zfsvfs->z_fuid_replay;
 576 
 577                 /*
 578                  * If we are passed an ephemeral id, but no
 579                  * fuid_info was logged then return NOBODY.
 580                  * This is most likely a result of idmap service
 581                  * not being available.
 582                  */
 583                 if (fuidp == NULL)
 584                         return (UID_NOBODY);
 585 
 586                 VERIFY3U(type, >=, ZFS_OWNER);
 587                 VERIFY3U(type, <=, ZFS_ACE_GROUP);
 588 
 589                 switch (type) {
 590                 case ZFS_ACE_USER:
 591                 case ZFS_ACE_GROUP:
 592                         zfuid = list_head(&fuidp->z_fuids);
 593                         rid = FUID_RID(zfuid->z_logfuid);
 594                         idx = FUID_INDEX(zfuid->z_logfuid);
 595                         break;
 596                 case ZFS_OWNER:
 597                         rid = FUID_RID(fuidp->z_fuid_owner);
 598                         idx = FUID_INDEX(fuidp->z_fuid_owner);
 599                         break;
 600                 case ZFS_GROUP:
 601                         rid = FUID_RID(fuidp->z_fuid_group);
 602                         idx = FUID_INDEX(fuidp->z_fuid_group);
 603                         break;
 604                 };
 605                 domain = fuidp->z_domain_table[idx - 1];
 606         } else {
 607                 if (type == ZFS_OWNER || type == ZFS_ACE_USER)
 608                         status = kidmap_getsidbyuid(crgetzone(cr), id,
 609                             &domain, &rid);
 610                 else
 611                         status = kidmap_getsidbygid(crgetzone(cr), id,
 612                             &domain, &rid);
 613 
 614                 if (status != 0) {
 615                         /*
 616                          * When returning nobody we will need to
 617                          * make a dummy fuid table entry for logging
 618                          * purposes.
 619                          */
 620                         rid = UID_NOBODY;
 621                         domain = nulldomain;
 622                 }
 623         }
 624 
 625         idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
 626 
 627         if (!zfsvfs->z_replay)
 628                 zfs_fuid_node_add(fuidpp, kdomain,
 629                     rid, idx, id, type);
 630         else if (zfuid != NULL) {
 631                 list_remove(&fuidp->z_fuids, zfuid);
 632                 kmem_free(zfuid, sizeof (zfs_fuid_t));
 633         }
 634         return (FUID_ENCODE(idx, rid));
 635 }
 636 
 637 void
 638 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
 639 {
 640         rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
 641         if (!zfsvfs->z_fuid_loaded) {
 642                 rw_exit(&zfsvfs->z_fuid_lock);
 643                 return;
 644         }
 645         zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
 646         rw_exit(&zfsvfs->z_fuid_lock);
 647 }
 648 
 649 /*
 650  * Allocate zfs_fuid_info for tracking FUIDs created during
 651  * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
 652  */
 653 zfs_fuid_info_t *
 654 zfs_fuid_info_alloc(void)
 655 {
 656         zfs_fuid_info_t *fuidp;
 657 
 658         fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
 659         list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
 660             offsetof(zfs_fuid_domain_t, z_next));
 661         list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
 662             offsetof(zfs_fuid_t, z_next));
 663         return (fuidp);
 664 }
 665 
 666 /*
 667  * Release all memory associated with zfs_fuid_info_t
 668  */
 669 void
 670 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
 671 {
 672         zfs_fuid_t *zfuid;
 673         zfs_fuid_domain_t *zdomain;
 674 
 675         while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
 676                 list_remove(&fuidp->z_fuids, zfuid);
 677                 kmem_free(zfuid, sizeof (zfs_fuid_t));
 678         }
 679 
 680         if (fuidp->z_domain_table != NULL)
 681                 kmem_free(fuidp->z_domain_table,
 682                     (sizeof (char **)) * fuidp->z_domain_cnt);
 683 
 684         while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
 685                 list_remove(&fuidp->z_domains, zdomain);
 686                 kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
 687         }
 688 
 689         kmem_free(fuidp, sizeof (zfs_fuid_info_t));
 690 }
 691 
 692 /*
 693  * Check to see if id is a groupmember.  If cred
 694  * has ksid info then sidlist is checked first
 695  * and if still not found then POSIX groups are checked
 696  *
 697  * Will use a straight FUID compare when possible.
 698  */
 699 boolean_t
 700 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
 701 {
 702         ksid_t          *ksid = crgetsid(cr, KSID_GROUP);
 703         ksidlist_t      *ksidlist = crgetsidlist(cr);
 704         uid_t           gid;
 705 
 706         if (ksid && ksidlist) {
 707                 int             i;
 708                 ksid_t          *ksid_groups;
 709                 uint32_t        idx = FUID_INDEX(id);
 710                 uint32_t        rid = FUID_RID(id);
 711 
 712                 ksid_groups = ksidlist->ksl_sids;
 713 
 714                 for (i = 0; i != ksidlist->ksl_nsid; i++) {
 715                         if (idx == 0) {
 716                                 if (id != IDMAP_WK_CREATOR_GROUP_GID &&
 717                                     id == ksid_groups[i].ks_id) {
 718                                         return (B_TRUE);
 719                                 }
 720                         } else {
 721                                 const char *domain;
 722 
 723                                 domain = zfs_fuid_find_by_idx(zfsvfs, idx);
 724                                 ASSERT(domain != NULL);
 725 
 726                                 if (strcmp(domain,
 727                                     IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
 728                                         return (B_FALSE);
 729 
 730                                 if ((strcmp(domain,
 731                                     ksid_groups[i].ks_domain->kd_name) == 0) &&
 732                                     rid == ksid_groups[i].ks_rid)
 733                                         return (B_TRUE);
 734                         }
 735                 }
 736         }
 737 
 738         /*
 739          * Not found in ksidlist, check posix groups
 740          */
 741         gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
 742         return (groupmember(gid, cr));
 743 }
 744 
 745 void
 746 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
 747 {
 748         if (zfsvfs->z_fuid_obj == 0) {
 749                 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
 750                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
 751                     FUID_SIZE_ESTIMATE(zfsvfs));
 752                 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
 753         } else {
 754                 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
 755                 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
 756                     FUID_SIZE_ESTIMATE(zfsvfs));
 757         }
 758 }
 759 #endif