1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/time.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/resource.h>
33 #include <sys/vfs.h>
34 #include <sys/vnode.h>
35 #include <sys/sid.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/kmem.h>
39 #include <sys/cmn_err.h>
40 #include <sys/errno.h>
41 #include <sys/unistd.h>
42 #include <sys/sdt.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/mode.h>
45 #include <sys/policy.h>
46 #include <sys/zfs_znode.h>
47 #include <sys/zfs_fuid.h>
48 #include <sys/zfs_acl.h>
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_vfsops.h>
51 #include <sys/dmu.h>
52 #include <sys/dnode.h>
53 #include <sys/zap.h>
54 #include <sys/sa.h>
55 #include "fs/fs_subr.h"
56 #include <acl/acl_common.h>
57
58 #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
59 #define DENY ACE_ACCESS_DENIED_ACE_TYPE
60 #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
61 #define MIN_ACE_TYPE ALLOW
62
63 #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
64 #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
65 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
66 #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
67 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
68 #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
69 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
70
71 #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
72 ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
73 ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
74 ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
75
76 #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
77 #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
78 ACE_DELETE|ACE_DELETE_CHILD)
79 #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
80
81 #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
82 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
83
84 #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
85 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
86
87 #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
88 ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
89
90 #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
91
92 #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
93 ZFS_ACL_PROTECTED)
94
95 #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
96 ZFS_ACL_OBJ_ACE)
97
98 #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
99
100 static uint16_t
101 zfs_ace_v0_get_type(void *acep)
102 {
103 return (((zfs_oldace_t *)acep)->z_type);
104 }
105
106 static uint16_t
107 zfs_ace_v0_get_flags(void *acep)
108 {
109 return (((zfs_oldace_t *)acep)->z_flags);
110 }
111
112 static uint32_t
113 zfs_ace_v0_get_mask(void *acep)
114 {
115 return (((zfs_oldace_t *)acep)->z_access_mask);
116 }
117
118 static uint64_t
119 zfs_ace_v0_get_who(void *acep)
120 {
121 return (((zfs_oldace_t *)acep)->z_fuid);
122 }
123
124 static void
125 zfs_ace_v0_set_type(void *acep, uint16_t type)
126 {
127 ((zfs_oldace_t *)acep)->z_type = type;
128 }
129
130 static void
131 zfs_ace_v0_set_flags(void *acep, uint16_t flags)
132 {
133 ((zfs_oldace_t *)acep)->z_flags = flags;
134 }
135
136 static void
137 zfs_ace_v0_set_mask(void *acep, uint32_t mask)
138 {
139 ((zfs_oldace_t *)acep)->z_access_mask = mask;
140 }
141
142 static void
143 zfs_ace_v0_set_who(void *acep, uint64_t who)
144 {
145 ((zfs_oldace_t *)acep)->z_fuid = who;
146 }
147
148 /*ARGSUSED*/
149 static size_t
150 zfs_ace_v0_size(void *acep)
151 {
152 return (sizeof (zfs_oldace_t));
153 }
154
155 static size_t
156 zfs_ace_v0_abstract_size(void)
157 {
158 return (sizeof (zfs_oldace_t));
159 }
160
161 static int
162 zfs_ace_v0_mask_off(void)
163 {
164 return (offsetof(zfs_oldace_t, z_access_mask));
165 }
166
167 /*ARGSUSED*/
168 static int
169 zfs_ace_v0_data(void *acep, void **datap)
170 {
171 *datap = NULL;
172 return (0);
173 }
174
175 static acl_ops_t zfs_acl_v0_ops = {
176 zfs_ace_v0_get_mask,
177 zfs_ace_v0_set_mask,
178 zfs_ace_v0_get_flags,
179 zfs_ace_v0_set_flags,
180 zfs_ace_v0_get_type,
181 zfs_ace_v0_set_type,
182 zfs_ace_v0_get_who,
183 zfs_ace_v0_set_who,
184 zfs_ace_v0_size,
185 zfs_ace_v0_abstract_size,
186 zfs_ace_v0_mask_off,
187 zfs_ace_v0_data
188 };
189
190 static uint16_t
191 zfs_ace_fuid_get_type(void *acep)
192 {
193 return (((zfs_ace_hdr_t *)acep)->z_type);
194 }
195
196 static uint16_t
197 zfs_ace_fuid_get_flags(void *acep)
198 {
199 return (((zfs_ace_hdr_t *)acep)->z_flags);
200 }
201
202 static uint32_t
203 zfs_ace_fuid_get_mask(void *acep)
204 {
205 return (((zfs_ace_hdr_t *)acep)->z_access_mask);
206 }
207
208 static uint64_t
209 zfs_ace_fuid_get_who(void *args)
210 {
211 uint16_t entry_type;
212 zfs_ace_t *acep = args;
213
214 entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
215
216 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
217 entry_type == ACE_EVERYONE)
218 return (-1);
219 return (((zfs_ace_t *)acep)->z_fuid);
220 }
221
222 static void
223 zfs_ace_fuid_set_type(void *acep, uint16_t type)
224 {
225 ((zfs_ace_hdr_t *)acep)->z_type = type;
226 }
227
228 static void
229 zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
230 {
231 ((zfs_ace_hdr_t *)acep)->z_flags = flags;
232 }
233
234 static void
235 zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
236 {
237 ((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
238 }
239
240 static void
241 zfs_ace_fuid_set_who(void *arg, uint64_t who)
242 {
243 zfs_ace_t *acep = arg;
244
245 uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
246
247 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
248 entry_type == ACE_EVERYONE)
249 return;
250 acep->z_fuid = who;
251 }
252
253 static size_t
254 zfs_ace_fuid_size(void *acep)
255 {
256 zfs_ace_hdr_t *zacep = acep;
257 uint16_t entry_type;
258
259 switch (zacep->z_type) {
260 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
261 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
262 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
263 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
264 return (sizeof (zfs_object_ace_t));
265 case ALLOW:
266 case DENY:
267 entry_type =
268 (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
269 if (entry_type == ACE_OWNER ||
270 entry_type == OWNING_GROUP ||
271 entry_type == ACE_EVERYONE)
272 return (sizeof (zfs_ace_hdr_t));
273 /*FALLTHROUGH*/
274 default:
275 return (sizeof (zfs_ace_t));
276 }
277 }
278
279 static size_t
280 zfs_ace_fuid_abstract_size(void)
281 {
282 return (sizeof (zfs_ace_hdr_t));
283 }
284
285 static int
286 zfs_ace_fuid_mask_off(void)
287 {
288 return (offsetof(zfs_ace_hdr_t, z_access_mask));
289 }
290
291 static int
292 zfs_ace_fuid_data(void *acep, void **datap)
293 {
294 zfs_ace_t *zacep = acep;
295 zfs_object_ace_t *zobjp;
296
297 switch (zacep->z_hdr.z_type) {
298 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
299 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
300 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
301 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
302 zobjp = acep;
303 *datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
304 return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
305 default:
306 *datap = NULL;
307 return (0);
308 }
309 }
310
311 static acl_ops_t zfs_acl_fuid_ops = {
312 zfs_ace_fuid_get_mask,
313 zfs_ace_fuid_set_mask,
314 zfs_ace_fuid_get_flags,
315 zfs_ace_fuid_set_flags,
316 zfs_ace_fuid_get_type,
317 zfs_ace_fuid_set_type,
318 zfs_ace_fuid_get_who,
319 zfs_ace_fuid_set_who,
320 zfs_ace_fuid_size,
321 zfs_ace_fuid_abstract_size,
322 zfs_ace_fuid_mask_off,
323 zfs_ace_fuid_data
324 };
325
326 /*
327 * The following three functions are provided for compatibility with
328 * older ZPL version in order to determine if the file use to have
329 * an external ACL and what version of ACL previously existed on the
330 * file. Would really be nice to not need this, sigh.
331 */
332 uint64_t
333 zfs_external_acl(znode_t *zp)
334 {
335 zfs_acl_phys_t acl_phys;
336 int error;
337
338 if (zp->z_is_sa)
339 return (0);
340
341 /*
342 * Need to deal with a potential
343 * race where zfs_sa_upgrade could cause
344 * z_isa_sa to change.
345 *
346 * If the lookup fails then the state of z_is_sa should have
347 * changed.
348 */
349
350 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
351 &acl_phys, sizeof (acl_phys))) == 0)
352 return (acl_phys.z_acl_extern_obj);
353 else {
354 /*
355 * after upgrade the SA_ZPL_ZNODE_ACL should have been
356 * removed
357 */
358 VERIFY(zp->z_is_sa && error == ENOENT);
359 return (0);
360 }
361 }
362
363 /*
364 * Determine size of ACL in bytes
365 *
366 * This is more complicated than it should be since we have to deal
367 * with old external ACLs.
368 */
369 static int
370 zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
371 zfs_acl_phys_t *aclphys)
372 {
373 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
374 uint64_t acl_count;
375 int size;
376 int error;
377
378 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
379 if (zp->z_is_sa) {
380 if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
381 &size)) != 0)
382 return (error);
383 *aclsize = size;
384 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
385 &acl_count, sizeof (acl_count))) != 0)
386 return (error);
387 *aclcount = acl_count;
388 } else {
389 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
390 aclphys, sizeof (*aclphys))) != 0)
391 return (error);
392
393 if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
394 *aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
395 *aclcount = aclphys->z_acl_size;
396 } else {
397 *aclsize = aclphys->z_acl_size;
398 *aclcount = aclphys->z_acl_count;
399 }
400 }
401 return (0);
402 }
403
404 int
405 zfs_znode_acl_version(znode_t *zp)
406 {
407 zfs_acl_phys_t acl_phys;
408
409 if (zp->z_is_sa)
410 return (ZFS_ACL_VERSION_FUID);
411 else {
412 int error;
413
414 /*
415 * Need to deal with a potential
416 * race where zfs_sa_upgrade could cause
417 * z_isa_sa to change.
418 *
419 * If the lookup fails then the state of z_is_sa should have
420 * changed.
421 */
422 if ((error = sa_lookup(zp->z_sa_hdl,
423 SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
424 &acl_phys, sizeof (acl_phys))) == 0)
425 return (acl_phys.z_acl_version);
426 else {
427 /*
428 * After upgrade SA_ZPL_ZNODE_ACL should have
429 * been removed.
430 */
431 VERIFY(zp->z_is_sa && error == ENOENT);
432 return (ZFS_ACL_VERSION_FUID);
433 }
434 }
435 }
436
437 static int
438 zfs_acl_version(int version)
439 {
440 if (version < ZPL_VERSION_FUID)
441 return (ZFS_ACL_VERSION_INITIAL);
442 else
443 return (ZFS_ACL_VERSION_FUID);
444 }
445
446 static int
447 zfs_acl_version_zp(znode_t *zp)
448 {
449 return (zfs_acl_version(zp->z_zfsvfs->z_version));
450 }
451
452 zfs_acl_t *
453 zfs_acl_alloc(int vers)
454 {
455 zfs_acl_t *aclp;
456
457 aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
458 list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
459 offsetof(zfs_acl_node_t, z_next));
460 aclp->z_version = vers;
461 if (vers == ZFS_ACL_VERSION_FUID)
462 aclp->z_ops = zfs_acl_fuid_ops;
463 else
464 aclp->z_ops = zfs_acl_v0_ops;
465 return (aclp);
466 }
467
468 zfs_acl_node_t *
469 zfs_acl_node_alloc(size_t bytes)
470 {
471 zfs_acl_node_t *aclnode;
472
473 aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
474 if (bytes) {
475 aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP);
476 aclnode->z_allocdata = aclnode->z_acldata;
477 aclnode->z_allocsize = bytes;
478 aclnode->z_size = bytes;
479 }
480
481 return (aclnode);
482 }
483
484 static void
485 zfs_acl_node_free(zfs_acl_node_t *aclnode)
486 {
487 if (aclnode->z_allocsize)
488 kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
489 kmem_free(aclnode, sizeof (zfs_acl_node_t));
490 }
491
492 static void
493 zfs_acl_release_nodes(zfs_acl_t *aclp)
494 {
495 zfs_acl_node_t *aclnode;
496
497 while (aclnode = list_head(&aclp->z_acl)) {
498 list_remove(&aclp->z_acl, aclnode);
499 zfs_acl_node_free(aclnode);
500 }
501 aclp->z_acl_count = 0;
502 aclp->z_acl_bytes = 0;
503 }
504
505 void
506 zfs_acl_free(zfs_acl_t *aclp)
507 {
508 zfs_acl_release_nodes(aclp);
509 list_destroy(&aclp->z_acl);
510 kmem_free(aclp, sizeof (zfs_acl_t));
511 }
512
513 static boolean_t
514 zfs_acl_valid_ace_type(uint_t type, uint_t flags)
515 {
516 uint16_t entry_type;
517
518 switch (type) {
519 case ALLOW:
520 case DENY:
521 case ACE_SYSTEM_AUDIT_ACE_TYPE:
522 case ACE_SYSTEM_ALARM_ACE_TYPE:
523 entry_type = flags & ACE_TYPE_FLAGS;
524 return (entry_type == ACE_OWNER ||
525 entry_type == OWNING_GROUP ||
526 entry_type == ACE_EVERYONE || entry_type == 0 ||
527 entry_type == ACE_IDENTIFIER_GROUP);
528 default:
529 if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE)
530 return (B_TRUE);
531 }
532 return (B_FALSE);
533 }
534
535 static boolean_t
536 zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
537 {
538 /*
539 * first check type of entry
540 */
541
542 if (!zfs_acl_valid_ace_type(type, iflags))
543 return (B_FALSE);
544
545 switch (type) {
546 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
547 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
548 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
549 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
550 if (aclp->z_version < ZFS_ACL_VERSION_FUID)
551 return (B_FALSE);
552 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
553 }
554
555 /*
556 * next check inheritance level flags
557 */
558
559 if (obj_type == VDIR &&
560 (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
561 aclp->z_hints |= ZFS_INHERIT_ACE;
562
563 if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
564 if ((iflags & (ACE_FILE_INHERIT_ACE|
565 ACE_DIRECTORY_INHERIT_ACE)) == 0) {
566 return (B_FALSE);
567 }
568 }
569
570 return (B_TRUE);
571 }
572
573 static void *
574 zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
575 uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
576 {
577 zfs_acl_node_t *aclnode;
578
579 ASSERT(aclp);
580
581 if (start == NULL) {
582 aclnode = list_head(&aclp->z_acl);
583 if (aclnode == NULL)
584 return (NULL);
585
586 aclp->z_next_ace = aclnode->z_acldata;
587 aclp->z_curr_node = aclnode;
588 aclnode->z_ace_idx = 0;
589 }
590
591 aclnode = aclp->z_curr_node;
592
593 if (aclnode == NULL)
594 return (NULL);
595
596 if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
597 aclnode = list_next(&aclp->z_acl, aclnode);
598 if (aclnode == NULL)
599 return (NULL);
600 else {
601 aclp->z_curr_node = aclnode;
602 aclnode->z_ace_idx = 0;
603 aclp->z_next_ace = aclnode->z_acldata;
604 }
605 }
606
607 if (aclnode->z_ace_idx < aclnode->z_ace_count) {
608 void *acep = aclp->z_next_ace;
609 size_t ace_size;
610
611 /*
612 * Make sure we don't overstep our bounds
613 */
614 ace_size = aclp->z_ops.ace_size(acep);
615
616 if (((caddr_t)acep + ace_size) >
617 ((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
618 return (NULL);
619 }
620
621 *iflags = aclp->z_ops.ace_flags_get(acep);
622 *type = aclp->z_ops.ace_type_get(acep);
623 *access_mask = aclp->z_ops.ace_mask_get(acep);
624 *who = aclp->z_ops.ace_who_get(acep);
625 aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
626 aclnode->z_ace_idx++;
627
628 return ((void *)acep);
629 }
630 return (NULL);
631 }
632
633 /*ARGSUSED*/
634 static uint64_t
635 zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt,
636 uint16_t *flags, uint16_t *type, uint32_t *mask)
637 {
638 zfs_acl_t *aclp = datap;
639 zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
640 uint64_t who;
641
642 acep = zfs_acl_next_ace(aclp, acep, &who, mask,
643 flags, type);
644 return ((uint64_t)(uintptr_t)acep);
645 }
646
647 static zfs_acl_node_t *
648 zfs_acl_curr_node(zfs_acl_t *aclp)
649 {
650 ASSERT(aclp->z_curr_node);
651 return (aclp->z_curr_node);
652 }
653
654 /*
655 * Copy ACE to internal ZFS format.
656 * While processing the ACL each ACE will be validated for correctness.
657 * ACE FUIDs will be created later.
658 */
659 int
660 zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp,
661 void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
662 zfs_fuid_info_t **fuidp, cred_t *cr)
663 {
664 int i;
665 uint16_t entry_type;
666 zfs_ace_t *aceptr = z_acl;
667 ace_t *acep = datap;
668 zfs_object_ace_t *zobjacep;
669 ace_object_t *aceobjp;
670
671 for (i = 0; i != aclcnt; i++) {
672 aceptr->z_hdr.z_access_mask = acep->a_access_mask;
673 aceptr->z_hdr.z_flags = acep->a_flags;
674 aceptr->z_hdr.z_type = acep->a_type;
675 entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
676 if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
677 entry_type != ACE_EVERYONE) {
678 aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
679 cr, (entry_type == 0) ?
680 ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
681 }
682
683 /*
684 * Make sure ACE is valid
685 */
686 if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type,
687 aceptr->z_hdr.z_flags) != B_TRUE)
688 return (SET_ERROR(EINVAL));
689
690 switch (acep->a_type) {
691 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
692 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
693 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
694 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
695 zobjacep = (zfs_object_ace_t *)aceptr;
696 aceobjp = (ace_object_t *)acep;
697
698 bcopy(aceobjp->a_obj_type, zobjacep->z_object_type,
699 sizeof (aceobjp->a_obj_type));
700 bcopy(aceobjp->a_inherit_obj_type,
701 zobjacep->z_inherit_type,
702 sizeof (aceobjp->a_inherit_obj_type));
703 acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
704 break;
705 default:
706 acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
707 }
708
709 aceptr = (zfs_ace_t *)((caddr_t)aceptr +
710 aclp->z_ops.ace_size(aceptr));
711 }
712
713 *size = (caddr_t)aceptr - (caddr_t)z_acl;
714
715 return (0);
716 }
717
718 /*
719 * Copy ZFS ACEs to fixed size ace_t layout
720 */
721 static void
722 zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
723 void *datap, int filter)
724 {
725 uint64_t who;
726 uint32_t access_mask;
727 uint16_t iflags, type;
728 zfs_ace_hdr_t *zacep = NULL;
729 ace_t *acep = datap;
730 ace_object_t *objacep;
731 zfs_object_ace_t *zobjacep;
732 size_t ace_size;
733 uint16_t entry_type;
734
735 while (zacep = zfs_acl_next_ace(aclp, zacep,
736 &who, &access_mask, &iflags, &type)) {
737
738 switch (type) {
739 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
740 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
741 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
742 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
743 if (filter) {
744 continue;
745 }
746 zobjacep = (zfs_object_ace_t *)zacep;
747 objacep = (ace_object_t *)acep;
748 bcopy(zobjacep->z_object_type,
749 objacep->a_obj_type,
750 sizeof (zobjacep->z_object_type));
751 bcopy(zobjacep->z_inherit_type,
752 objacep->a_inherit_obj_type,
753 sizeof (zobjacep->z_inherit_type));
754 ace_size = sizeof (ace_object_t);
755 break;
756 default:
757 ace_size = sizeof (ace_t);
758 break;
759 }
760
761 entry_type = (iflags & ACE_TYPE_FLAGS);
762 if ((entry_type != ACE_OWNER &&
763 entry_type != OWNING_GROUP &&
764 entry_type != ACE_EVERYONE)) {
765 acep->a_who = zfs_fuid_map_id(zfsvfs, who,
766 cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
767 ZFS_ACE_GROUP : ZFS_ACE_USER);
768 } else {
769 acep->a_who = (uid_t)(int64_t)who;
770 }
771 acep->a_access_mask = access_mask;
772 acep->a_flags = iflags;
773 acep->a_type = type;
774 acep = (ace_t *)((caddr_t)acep + ace_size);
775 }
776 }
777
778 static int
779 zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep,
780 zfs_oldace_t *z_acl, int aclcnt, size_t *size)
781 {
782 int i;
783 zfs_oldace_t *aceptr = z_acl;
784
785 for (i = 0; i != aclcnt; i++, aceptr++) {
786 aceptr->z_access_mask = acep[i].a_access_mask;
787 aceptr->z_type = acep[i].a_type;
788 aceptr->z_flags = acep[i].a_flags;
789 aceptr->z_fuid = acep[i].a_who;
790 /*
791 * Make sure ACE is valid
792 */
793 if (zfs_ace_valid(obj_type, aclp, aceptr->z_type,
794 aceptr->z_flags) != B_TRUE)
795 return (SET_ERROR(EINVAL));
796 }
797 *size = (caddr_t)aceptr - (caddr_t)z_acl;
798 return (0);
799 }
800
801 /*
802 * convert old ACL format to new
803 */
804 void
805 zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
806 {
807 zfs_oldace_t *oldaclp;
808 int i;
809 uint16_t type, iflags;
810 uint32_t access_mask;
811 uint64_t who;
812 void *cookie = NULL;
813 zfs_acl_node_t *newaclnode;
814
815 ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL);
816 /*
817 * First create the ACE in a contiguous piece of memory
818 * for zfs_copy_ace_2_fuid().
819 *
820 * We only convert an ACL once, so this won't happen
821 * everytime.
822 */
823 oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
824 KM_SLEEP);
825 i = 0;
826 while (cookie = zfs_acl_next_ace(aclp, cookie, &who,
827 &access_mask, &iflags, &type)) {
828 oldaclp[i].z_flags = iflags;
829 oldaclp[i].z_type = type;
830 oldaclp[i].z_fuid = who;
831 oldaclp[i++].z_access_mask = access_mask;
832 }
833
834 newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
835 sizeof (zfs_object_ace_t));
836 aclp->z_ops = zfs_acl_fuid_ops;
837 VERIFY(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp,
838 oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
839 &newaclnode->z_size, NULL, cr) == 0);
840 newaclnode->z_ace_count = aclp->z_acl_count;
841 aclp->z_version = ZFS_ACL_VERSION;
842 kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
843
844 /*
845 * Release all previous ACL nodes
846 */
847
848 zfs_acl_release_nodes(aclp);
849
850 list_insert_head(&aclp->z_acl, newaclnode);
851
852 aclp->z_acl_bytes = newaclnode->z_size;
853 aclp->z_acl_count = newaclnode->z_ace_count;
854
855 }
856
857 /*
858 * Convert unix access mask to v4 access mask
859 */
860 static uint32_t
861 zfs_unix_to_v4(uint32_t access_mask)
862 {
863 uint32_t new_mask = 0;
864
865 if (access_mask & S_IXOTH)
866 new_mask |= ACE_EXECUTE;
867 if (access_mask & S_IWOTH)
868 new_mask |= ACE_WRITE_DATA;
869 if (access_mask & S_IROTH)
870 new_mask |= ACE_READ_DATA;
871 return (new_mask);
872 }
873
874 static void
875 zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
876 uint16_t access_type, uint64_t fuid, uint16_t entry_type)
877 {
878 uint16_t type = entry_type & ACE_TYPE_FLAGS;
879
880 aclp->z_ops.ace_mask_set(acep, access_mask);
881 aclp->z_ops.ace_type_set(acep, access_type);
882 aclp->z_ops.ace_flags_set(acep, entry_type);
883 if ((type != ACE_OWNER && type != OWNING_GROUP &&
884 type != ACE_EVERYONE))
885 aclp->z_ops.ace_who_set(acep, fuid);
886 }
887
888 /*
889 * Determine mode of file based on ACL.
890 */
891 uint64_t
892 zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
893 uint64_t *pflags, uint64_t fuid, uint64_t fgid)
894 {
895 int entry_type;
896 mode_t mode;
897 mode_t seen = 0;
898 zfs_ace_hdr_t *acep = NULL;
899 uint64_t who;
900 uint16_t iflags, type;
901 uint32_t access_mask;
902 boolean_t an_exec_denied = B_FALSE;
903
904 mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
905
906 while (acep = zfs_acl_next_ace(aclp, acep, &who,
907 &access_mask, &iflags, &type)) {
908
909 if (!zfs_acl_valid_ace_type(type, iflags))
910 continue;
911
912 entry_type = (iflags & ACE_TYPE_FLAGS);
913
914 /*
915 * Skip over any inherit_only ACEs
916 */
917 if (iflags & ACE_INHERIT_ONLY_ACE)
918 continue;
919
920 if (entry_type == ACE_OWNER || (entry_type == 0 &&
921 who == fuid)) {
922 if ((access_mask & ACE_READ_DATA) &&
923 (!(seen & S_IRUSR))) {
924 seen |= S_IRUSR;
925 if (type == ALLOW) {
926 mode |= S_IRUSR;
927 }
928 }
929 if ((access_mask & ACE_WRITE_DATA) &&
930 (!(seen & S_IWUSR))) {
931 seen |= S_IWUSR;
932 if (type == ALLOW) {
933 mode |= S_IWUSR;
934 }
935 }
936 if ((access_mask & ACE_EXECUTE) &&
937 (!(seen & S_IXUSR))) {
938 seen |= S_IXUSR;
939 if (type == ALLOW) {
940 mode |= S_IXUSR;
941 }
942 }
943 } else if (entry_type == OWNING_GROUP ||
944 (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
945 if ((access_mask & ACE_READ_DATA) &&
946 (!(seen & S_IRGRP))) {
947 seen |= S_IRGRP;
948 if (type == ALLOW) {
949 mode |= S_IRGRP;
950 }
951 }
952 if ((access_mask & ACE_WRITE_DATA) &&
953 (!(seen & S_IWGRP))) {
954 seen |= S_IWGRP;
955 if (type == ALLOW) {
956 mode |= S_IWGRP;
957 }
958 }
959 if ((access_mask & ACE_EXECUTE) &&
960 (!(seen & S_IXGRP))) {
961 seen |= S_IXGRP;
962 if (type == ALLOW) {
963 mode |= S_IXGRP;
964 }
965 }
966 } else if (entry_type == ACE_EVERYONE) {
967 if ((access_mask & ACE_READ_DATA)) {
968 if (!(seen & S_IRUSR)) {
969 seen |= S_IRUSR;
970 if (type == ALLOW) {
971 mode |= S_IRUSR;
972 }
973 }
974 if (!(seen & S_IRGRP)) {
975 seen |= S_IRGRP;
976 if (type == ALLOW) {
977 mode |= S_IRGRP;
978 }
979 }
980 if (!(seen & S_IROTH)) {
981 seen |= S_IROTH;
982 if (type == ALLOW) {
983 mode |= S_IROTH;
984 }
985 }
986 }
987 if ((access_mask & ACE_WRITE_DATA)) {
988 if (!(seen & S_IWUSR)) {
989 seen |= S_IWUSR;
990 if (type == ALLOW) {
991 mode |= S_IWUSR;
992 }
993 }
994 if (!(seen & S_IWGRP)) {
995 seen |= S_IWGRP;
996 if (type == ALLOW) {
997 mode |= S_IWGRP;
998 }
999 }
1000 if (!(seen & S_IWOTH)) {
1001 seen |= S_IWOTH;
1002 if (type == ALLOW) {
1003 mode |= S_IWOTH;
1004 }
1005 }
1006 }
1007 if ((access_mask & ACE_EXECUTE)) {
1008 if (!(seen & S_IXUSR)) {
1009 seen |= S_IXUSR;
1010 if (type == ALLOW) {
1011 mode |= S_IXUSR;
1012 }
1013 }
1014 if (!(seen & S_IXGRP)) {
1015 seen |= S_IXGRP;
1016 if (type == ALLOW) {
1017 mode |= S_IXGRP;
1018 }
1019 }
1020 if (!(seen & S_IXOTH)) {
1021 seen |= S_IXOTH;
1022 if (type == ALLOW) {
1023 mode |= S_IXOTH;
1024 }
1025 }
1026 }
1027 } else {
1028 /*
1029 * Only care if this IDENTIFIER_GROUP or
1030 * USER ACE denies execute access to someone,
1031 * mode is not affected
1032 */
1033 if ((access_mask & ACE_EXECUTE) && type == DENY)
1034 an_exec_denied = B_TRUE;
1035 }
1036 }
1037
1038 /*
1039 * Failure to allow is effectively a deny, so execute permission
1040 * is denied if it was never mentioned or if we explicitly
1041 * weren't allowed it.
1042 */
1043 if (!an_exec_denied &&
1044 ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
1045 (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
1046 an_exec_denied = B_TRUE;
1047
1048 if (an_exec_denied)
1049 *pflags &= ~ZFS_NO_EXECS_DENIED;
1050 else
1051 *pflags |= ZFS_NO_EXECS_DENIED;
1052
1053 return (mode);
1054 }
1055
1056 /*
1057 * Read an external acl object. If the intent is to modify, always
1058 * create a new acl and leave any cached acl in place.
1059 */
1060 static int
1061 zfs_acl_node_read(znode_t *zp, boolean_t have_lock, zfs_acl_t **aclpp,
1062 boolean_t will_modify)
1063 {
1064 zfs_acl_t *aclp;
1065 int aclsize;
1066 int acl_count;
1067 zfs_acl_node_t *aclnode;
1068 zfs_acl_phys_t znode_acl;
1069 int version;
1070 int error;
1071 boolean_t drop_lock = B_FALSE;
1072
1073 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1074
1075 if (zp->z_acl_cached && !will_modify) {
1076 *aclpp = zp->z_acl_cached;
1077 return (0);
1078 }
1079
1080 /*
1081 * close race where znode could be upgrade while trying to
1082 * read the znode attributes.
1083 *
1084 * But this could only happen if the file isn't already an SA
1085 * znode
1086 */
1087 if (!zp->z_is_sa && !have_lock) {
1088 mutex_enter(&zp->z_lock);
1089 drop_lock = B_TRUE;
1090 }
1091 version = zfs_znode_acl_version(zp);
1092
1093 if ((error = zfs_acl_znode_info(zp, &aclsize,
1094 &acl_count, &znode_acl)) != 0) {
1095 goto done;
1096 }
1097
1098 aclp = zfs_acl_alloc(version);
1099
1100 aclp->z_acl_count = acl_count;
1101 aclp->z_acl_bytes = aclsize;
1102
1103 aclnode = zfs_acl_node_alloc(aclsize);
1104 aclnode->z_ace_count = aclp->z_acl_count;
1105 aclnode->z_size = aclsize;
1106
1107 if (!zp->z_is_sa) {
1108 if (znode_acl.z_acl_extern_obj) {
1109 error = dmu_read(zp->z_zfsvfs->z_os,
1110 znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
1111 aclnode->z_acldata, DMU_READ_PREFETCH);
1112 } else {
1113 bcopy(znode_acl.z_ace_data, aclnode->z_acldata,
1114 aclnode->z_size);
1115 }
1116 } else {
1117 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs),
1118 aclnode->z_acldata, aclnode->z_size);
1119 }
1120
1121 if (error != 0) {
1122 zfs_acl_free(aclp);
1123 zfs_acl_node_free(aclnode);
1124 /* convert checksum errors into IO errors */
1125 if (error == ECKSUM)
1126 error = SET_ERROR(EIO);
1127 goto done;
1128 }
1129
1130 list_insert_head(&aclp->z_acl, aclnode);
1131
1132 *aclpp = aclp;
1133 if (!will_modify)
1134 zp->z_acl_cached = aclp;
1135 done:
1136 if (drop_lock)
1137 mutex_exit(&zp->z_lock);
1138 return (error);
1139 }
1140
1141 /*ARGSUSED*/
1142 void
1143 zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
1144 boolean_t start, void *userdata)
1145 {
1146 zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
1147
1148 if (start) {
1149 cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
1150 } else {
1151 cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
1152 cb->cb_acl_node);
1153 }
1154 *dataptr = cb->cb_acl_node->z_acldata;
1155 *length = cb->cb_acl_node->z_size;
1156 }
1157
1158 int
1159 zfs_acl_chown_setattr(znode_t *zp)
1160 {
1161 int error;
1162 zfs_acl_t *aclp;
1163
1164 ASSERT(MUTEX_HELD(&zp->z_lock));
1165 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1166
1167 if ((error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE)) == 0)
1168 zp->z_mode = zfs_mode_compute(zp->z_mode, aclp,
1169 &zp->z_pflags, zp->z_uid, zp->z_gid);
1170 return (error);
1171 }
1172
1173 /*
1174 * common code for setting ACLs.
1175 *
1176 * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
1177 * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
1178 * already checked the acl and knows whether to inherit.
1179 */
1180 int
1181 zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
1182 {
1183 int error;
1184 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1185 dmu_object_type_t otype;
1186 zfs_acl_locator_cb_t locate = { 0 };
1187 uint64_t mode;
1188 sa_bulk_attr_t bulk[5];
1189 uint64_t ctime[2];
1190 int count = 0;
1191 zfs_acl_phys_t acl_phys;
1192
1193 mode = zp->z_mode;
1194
1195 mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
1196 zp->z_uid, zp->z_gid);
1197
1198 zp->z_mode = mode;
1199 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1200 &mode, sizeof (mode));
1201 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1202 &zp->z_pflags, sizeof (zp->z_pflags));
1203 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1204 &ctime, sizeof (ctime));
1205
1206 if (zp->z_acl_cached) {
1207 zfs_acl_free(zp->z_acl_cached);
1208 zp->z_acl_cached = NULL;
1209 }
1210
1211 /*
1212 * Upgrade needed?
1213 */
1214 if (!zfsvfs->z_use_fuids) {
1215 otype = DMU_OT_OLDACL;
1216 } else {
1217 if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
1218 (zfsvfs->z_version >= ZPL_VERSION_FUID))
1219 zfs_acl_xform(zp, aclp, cr);
1220 ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID);
1221 otype = DMU_OT_ACL;
1222 }
1223
1224 /*
1225 * Arrgh, we have to handle old on disk format
1226 * as well as newer (preferred) SA format.
1227 */
1228
1229 if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
1230 locate.cb_aclp = aclp;
1231 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
1232 zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
1233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
1234 NULL, &aclp->z_acl_count, sizeof (uint64_t));
1235 } else { /* Painful legacy way */
1236 zfs_acl_node_t *aclnode;
1237 uint64_t off = 0;
1238 uint64_t aoid;
1239
1240 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
1241 &acl_phys, sizeof (acl_phys))) != 0)
1242 return (error);
1243
1244 aoid = acl_phys.z_acl_extern_obj;
1245
1246 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1247 /*
1248 * If ACL was previously external and we are now
1249 * converting to new ACL format then release old
1250 * ACL object and create a new one.
1251 */
1252 if (aoid &&
1253 aclp->z_version != acl_phys.z_acl_version) {
1254 error = dmu_object_free(zfsvfs->z_os, aoid, tx);
1255 if (error)
1256 return (error);
1257 aoid = 0;
1258 }
1259 if (aoid == 0) {
1260 aoid = dmu_object_alloc(zfsvfs->z_os,
1261 otype, aclp->z_acl_bytes,
1262 otype == DMU_OT_ACL ?
1263 DMU_OT_SYSACL : DMU_OT_NONE,
1264 otype == DMU_OT_ACL ?
1265 DN_MAX_BONUSLEN : 0, tx);
1266 } else {
1267 (void) dmu_object_set_blocksize(zfsvfs->z_os,
1268 aoid, aclp->z_acl_bytes, 0, tx);
1269 }
1270 acl_phys.z_acl_extern_obj = aoid;
1271 for (aclnode = list_head(&aclp->z_acl); aclnode;
1272 aclnode = list_next(&aclp->z_acl, aclnode)) {
1273 if (aclnode->z_ace_count == 0)
1274 continue;
1275 dmu_write(zfsvfs->z_os, aoid, off,
1276 aclnode->z_size, aclnode->z_acldata, tx);
1277 off += aclnode->z_size;
1278 }
1279 } else {
1280 void *start = acl_phys.z_ace_data;
1281 /*
1282 * Migrating back embedded?
1283 */
1284 if (acl_phys.z_acl_extern_obj) {
1285 error = dmu_object_free(zfsvfs->z_os,
1286 acl_phys.z_acl_extern_obj, tx);
1287 if (error)
1288 return (error);
1289 acl_phys.z_acl_extern_obj = 0;
1290 }
1291
1292 for (aclnode = list_head(&aclp->z_acl); aclnode;
1293 aclnode = list_next(&aclp->z_acl, aclnode)) {
1294 if (aclnode->z_ace_count == 0)
1295 continue;
1296 bcopy(aclnode->z_acldata, start,
1297 aclnode->z_size);
1298 start = (caddr_t)start + aclnode->z_size;
1299 }
1300 }
1301 /*
1302 * If Old version then swap count/bytes to match old
1303 * layout of znode_acl_phys_t.
1304 */
1305 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1306 acl_phys.z_acl_size = aclp->z_acl_count;
1307 acl_phys.z_acl_count = aclp->z_acl_bytes;
1308 } else {
1309 acl_phys.z_acl_size = aclp->z_acl_bytes;
1310 acl_phys.z_acl_count = aclp->z_acl_count;
1311 }
1312 acl_phys.z_acl_version = aclp->z_version;
1313
1314 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
1315 &acl_phys, sizeof (acl_phys));
1316 }
1317
1318 /*
1319 * Replace ACL wide bits, but first clear them.
1320 */
1321 zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
1322
1323 zp->z_pflags |= aclp->z_hints;
1324
1325 if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
1326 zp->z_pflags |= ZFS_ACL_TRIVIAL;
1327
1328 zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime, B_TRUE);
1329 return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1330 }
1331
1332 static void
1333 zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim,
1334 zfs_acl_t *aclp)
1335 {
1336 void *acep = NULL;
1337 uint64_t who;
1338 int new_count, new_bytes;
1339 int ace_size;
1340 int entry_type;
1341 uint16_t iflags, type;
1342 uint32_t access_mask;
1343 zfs_acl_node_t *newnode;
1344 size_t abstract_size = aclp->z_ops.ace_abstract_size();
1345 void *zacep;
1346 boolean_t isdir;
1347 trivial_acl_t masks;
1348
1349 new_count = new_bytes = 0;
1350
1351 isdir = (vtype == VDIR);
1352
1353 acl_trivial_access_masks((mode_t)mode, isdir, &masks);
1354
1355 newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
1356
1357 zacep = newnode->z_acldata;
1358 if (masks.allow0) {
1359 zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
1360 zacep = (void *)((uintptr_t)zacep + abstract_size);
1361 new_count++;
1362 new_bytes += abstract_size;
1363 }
1364 if (masks.deny1) {
1365 zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
1366 zacep = (void *)((uintptr_t)zacep + abstract_size);
1367 new_count++;
1368 new_bytes += abstract_size;
1369 }
1370 if (masks.deny2) {
1371 zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
1372 zacep = (void *)((uintptr_t)zacep + abstract_size);
1373 new_count++;
1374 new_bytes += abstract_size;
1375 }
1376
1377 while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
1378 &iflags, &type)) {
1379 entry_type = (iflags & ACE_TYPE_FLAGS);
1380 /*
1381 * ACEs used to represent the file mode may be divided
1382 * into an equivalent pair of inherit-only and regular
1383 * ACEs, if they are inheritable.
1384 * Skip regular ACEs, which are replaced by the new mode.
1385 */
1386 if (split && (entry_type == ACE_OWNER ||
1387 entry_type == OWNING_GROUP ||
1388 entry_type == ACE_EVERYONE)) {
1389 if (!isdir || !(iflags &
1390 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1391 continue;
1392 /*
1393 * We preserve owner@, group@, or @everyone
1394 * permissions, if they are inheritable, by
1395 * copying them to inherit_only ACEs. This
1396 * prevents inheritable permissions from being
1397 * altered along with the file mode.
1398 */
1399 iflags |= ACE_INHERIT_ONLY_ACE;
1400 }
1401
1402 /*
1403 * If this ACL has any inheritable ACEs, mark that in
1404 * the hints (which are later masked into the pflags)
1405 * so create knows to do inheritance.
1406 */
1407 if (isdir && (iflags &
1408 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1409 aclp->z_hints |= ZFS_INHERIT_ACE;
1410
1411 if ((type != ALLOW && type != DENY) ||
1412 (iflags & ACE_INHERIT_ONLY_ACE)) {
1413 switch (type) {
1414 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1415 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1416 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1417 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1418 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
1419 break;
1420 }
1421 } else {
1422 /*
1423 * Limit permissions granted by ACEs to be no greater
1424 * than permissions of the requested group mode.
1425 * Applies when the "aclmode" property is set to
1426 * "groupmask".
1427 */
1428 if ((type == ALLOW) && trim)
1429 access_mask &= masks.group;
1430 }
1431 zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
1432 ace_size = aclp->z_ops.ace_size(acep);
1433 zacep = (void *)((uintptr_t)zacep + ace_size);
1434 new_count++;
1435 new_bytes += ace_size;
1436 }
1437 zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
1438 zacep = (void *)((uintptr_t)zacep + abstract_size);
1439 zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
1440 zacep = (void *)((uintptr_t)zacep + abstract_size);
1441 zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
1442
1443 new_count += 3;
1444 new_bytes += abstract_size * 3;
1445 zfs_acl_release_nodes(aclp);
1446 aclp->z_acl_count = new_count;
1447 aclp->z_acl_bytes = new_bytes;
1448 newnode->z_ace_count = new_count;
1449 newnode->z_size = new_bytes;
1450 list_insert_tail(&aclp->z_acl, newnode);
1451 }
1452
1453 int
1454 zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
1455 {
1456 int error = 0;
1457
1458 mutex_enter(&zp->z_acl_lock);
1459 mutex_enter(&zp->z_lock);
1460 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD)
1461 *aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
1462 else
1463 error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE);
1464
1465 if (error == 0) {
1466 (*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
1467 zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE,
1468 (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
1469 }
1470 mutex_exit(&zp->z_lock);
1471 mutex_exit(&zp->z_acl_lock);
1472
1473 return (error);
1474 }
1475
1476 /*
1477 * Should ACE be inherited?
1478 */
1479 static int
1480 zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags)
1481 {
1482 int iflags = (acep_flags & 0xf);
1483
1484 if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
1485 return (1);
1486 else if (iflags & ACE_FILE_INHERIT_ACE)
1487 return (!((vtype == VDIR) &&
1488 (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
1489 return (0);
1490 }
1491
1492 /*
1493 * inherit inheritable ACEs from parent
1494 */
1495 static zfs_acl_t *
1496 zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp,
1497 uint64_t mode)
1498 {
1499 void *pacep = NULL;
1500 void *acep;
1501 zfs_acl_node_t *aclnode;
1502 zfs_acl_t *aclp = NULL;
1503 uint64_t who;
1504 uint32_t access_mask;
1505 uint16_t iflags, newflags, type;
1506 size_t ace_size;
1507 void *data1, *data2;
1508 size_t data1sz, data2sz;
1509 uint_t aclinherit;
1510 boolean_t isdir = (vtype == VDIR);
1511
1512 aclp = zfs_acl_alloc(paclp->z_version);
1513 aclinherit = zfsvfs->z_acl_inherit;
1514 if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK)
1515 return (aclp);
1516
1517 while (pacep = zfs_acl_next_ace(paclp, pacep, &who,
1518 &access_mask, &iflags, &type)) {
1519
1520 /*
1521 * don't inherit bogus ACEs
1522 */
1523 if (!zfs_acl_valid_ace_type(type, iflags))
1524 continue;
1525
1526 /*
1527 * Check if ACE is inheritable by this vnode
1528 */
1529 if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
1530 !zfs_ace_can_use(vtype, iflags))
1531 continue;
1532
1533 /*
1534 * Strip inherited execute permission from file if
1535 * not in mode
1536 */
1537 if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
1538 !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
1539 access_mask &= ~ACE_EXECUTE;
1540 }
1541
1542 /*
1543 * Strip write_acl and write_owner from permissions
1544 * when inheriting an ACE
1545 */
1546 if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
1547 access_mask &= ~RESTRICTED_CLEAR;
1548 }
1549
1550 ace_size = aclp->z_ops.ace_size(pacep);
1551 aclnode = zfs_acl_node_alloc(ace_size);
1552 list_insert_tail(&aclp->z_acl, aclnode);
1553 acep = aclnode->z_acldata;
1554
1555 zfs_set_ace(aclp, acep, access_mask, type,
1556 who, iflags|ACE_INHERITED_ACE);
1557
1558 /*
1559 * Copy special opaque data if any
1560 */
1561 if ((data1sz = paclp->z_ops.ace_data(pacep, &data1)) != 0) {
1562 VERIFY((data2sz = aclp->z_ops.ace_data(acep,
1563 &data2)) == data1sz);
1564 bcopy(data1, data2, data2sz);
1565 }
1566
1567 aclp->z_acl_count++;
1568 aclnode->z_ace_count++;
1569 aclp->z_acl_bytes += aclnode->z_size;
1570 newflags = aclp->z_ops.ace_flags_get(acep);
1571
1572 /*
1573 * If ACE is not to be inherited further, or if the vnode is
1574 * not a directory, remove all inheritance flags
1575 */
1576 if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
1577 newflags &= ~ALL_INHERIT;
1578 aclp->z_ops.ace_flags_set(acep,
1579 newflags|ACE_INHERITED_ACE);
1580 continue;
1581 }
1582
1583 /*
1584 * This directory has an inheritable ACE
1585 */
1586 aclp->z_hints |= ZFS_INHERIT_ACE;
1587
1588 /*
1589 * If only FILE_INHERIT is set then turn on
1590 * inherit_only
1591 */
1592 if ((iflags & (ACE_FILE_INHERIT_ACE |
1593 ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
1594 newflags |= ACE_INHERIT_ONLY_ACE;
1595 aclp->z_ops.ace_flags_set(acep,
1596 newflags|ACE_INHERITED_ACE);
1597 } else {
1598 newflags &= ~ACE_INHERIT_ONLY_ACE;
1599 aclp->z_ops.ace_flags_set(acep,
1600 newflags|ACE_INHERITED_ACE);
1601 }
1602 }
1603
1604 return (aclp);
1605 }
1606
1607 /*
1608 * Create file system object initial permissions
1609 * including inheritable ACEs.
1610 * Also, create FUIDs for owner and group.
1611 */
1612 int
1613 zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
1614 vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids)
1615 {
1616 int error;
1617 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1618 zfs_acl_t *paclp;
1619 gid_t gid;
1620 boolean_t trim = B_FALSE;
1621 boolean_t inherited = B_FALSE;
1622
1623 bzero(acl_ids, sizeof (zfs_acl_ids_t));
1624 acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode);
1625
1626 if (vsecp)
1627 if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr,
1628 &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
1629 return (error);
1630 /*
1631 * Determine uid and gid.
1632 */
1633 if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
1634 ((flag & IS_XATTR) && (vap->va_type == VDIR))) {
1635 acl_ids->z_fuid = zfs_fuid_create(zfsvfs,
1636 (uint64_t)vap->va_uid, cr,
1637 ZFS_OWNER, &acl_ids->z_fuidp);
1638 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1639 (uint64_t)vap->va_gid, cr,
1640 ZFS_GROUP, &acl_ids->z_fuidp);
1641 gid = vap->va_gid;
1642 } else {
1643 acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER,
1644 cr, &acl_ids->z_fuidp);
1645 acl_ids->z_fgid = 0;
1646 if (vap->va_mask & AT_GID) {
1647 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1648 (uint64_t)vap->va_gid,
1649 cr, ZFS_GROUP, &acl_ids->z_fuidp);
1650 gid = vap->va_gid;
1651 if (acl_ids->z_fgid != dzp->z_gid &&
1652 !groupmember(vap->va_gid, cr) &&
1653 secpolicy_vnode_create_gid(cr) != 0)
1654 acl_ids->z_fgid = 0;
1655 }
1656 if (acl_ids->z_fgid == 0) {
1657 if (dzp->z_mode & S_ISGID) {
1658 char *domain;
1659 uint32_t rid;
1660
1661 acl_ids->z_fgid = dzp->z_gid;
1662 gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
1663 cr, ZFS_GROUP);
1664
1665 if (zfsvfs->z_use_fuids &&
1666 IS_EPHEMERAL(acl_ids->z_fgid)) {
1667 domain = zfs_fuid_idx_domain(
1668 &zfsvfs->z_fuid_idx,
1669 FUID_INDEX(acl_ids->z_fgid));
1670 rid = FUID_RID(acl_ids->z_fgid);
1671 zfs_fuid_node_add(&acl_ids->z_fuidp,
1672 domain, rid,
1673 FUID_INDEX(acl_ids->z_fgid),
1674 acl_ids->z_fgid, ZFS_GROUP);
1675 }
1676 } else {
1677 acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs,
1678 ZFS_GROUP, cr, &acl_ids->z_fuidp);
1679 gid = crgetgid(cr);
1680 }
1681 }
1682 }
1683
1684 /*
1685 * If we're creating a directory, and the parent directory has the
1686 * set-GID bit set, set in on the new directory.
1687 * Otherwise, if the user is neither privileged nor a member of the
1688 * file's new group, clear the file's set-GID bit.
1689 */
1690
1691 if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
1692 (vap->va_type == VDIR)) {
1693 acl_ids->z_mode |= S_ISGID;
1694 } else {
1695 if ((acl_ids->z_mode & S_ISGID) &&
1696 secpolicy_vnode_setids_setgids(cr, gid) != 0)
1697 acl_ids->z_mode &= ~S_ISGID;
1698 }
1699
1700 if (acl_ids->z_aclp == NULL) {
1701 mutex_enter(&dzp->z_acl_lock);
1702 mutex_enter(&dzp->z_lock);
1703 if (!(flag & IS_ROOT_NODE) &&
1704 (dzp->z_pflags & ZFS_INHERIT_ACE) &&
1705 !(dzp->z_pflags & ZFS_XATTR)) {
1706 VERIFY(0 == zfs_acl_node_read(dzp, B_TRUE,
1707 &paclp, B_FALSE));
1708 acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
1709 vap->va_type, paclp, acl_ids->z_mode);
1710 inherited = B_TRUE;
1711 } else {
1712 acl_ids->z_aclp =
1713 zfs_acl_alloc(zfs_acl_version_zp(dzp));
1714 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1715 }
1716 mutex_exit(&dzp->z_lock);
1717 mutex_exit(&dzp->z_acl_lock);
1718
1719 if (vap->va_type == VDIR)
1720 acl_ids->z_aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
1721
1722 if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
1723 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
1724 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
1725 trim = B_TRUE;
1726 zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE, trim,
1727 acl_ids->z_aclp);
1728 }
1729
1730 if (inherited || vsecp) {
1731 acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
1732 acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
1733 acl_ids->z_fuid, acl_ids->z_fgid);
1734 if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0)
1735 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1736 }
1737
1738 return (0);
1739 }
1740
1741 /*
1742 * Free ACL and fuid_infop, but not the acl_ids structure
1743 */
1744 void
1745 zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
1746 {
1747 if (acl_ids->z_aclp)
1748 zfs_acl_free(acl_ids->z_aclp);
1749 if (acl_ids->z_fuidp)
1750 zfs_fuid_info_free(acl_ids->z_fuidp);
1751 acl_ids->z_aclp = NULL;
1752 acl_ids->z_fuidp = NULL;
1753 }
1754
1755 boolean_t
1756 zfs_acl_ids_overquota(zfsvfs_t *zfsvfs, zfs_acl_ids_t *acl_ids)
1757 {
1758 return (zfs_fuid_overquota(zfsvfs, B_FALSE, acl_ids->z_fuid) ||
1759 zfs_fuid_overquota(zfsvfs, B_TRUE, acl_ids->z_fgid));
1760 }
1761
1762 /*
1763 * Retrieve a file's ACL
1764 */
1765 int
1766 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1767 {
1768 zfs_acl_t *aclp;
1769 ulong_t mask;
1770 int error;
1771 int count = 0;
1772 int largeace = 0;
1773
1774 mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
1775 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
1776
1777 if (mask == 0)
1778 return (SET_ERROR(ENOSYS));
1779
1780 if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr))
1781 return (error);
1782
1783 mutex_enter(&zp->z_acl_lock);
1784
1785 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
1786 if (error != 0) {
1787 mutex_exit(&zp->z_acl_lock);
1788 return (error);
1789 }
1790
1791 /*
1792 * Scan ACL to determine number of ACEs
1793 */
1794 if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
1795 void *zacep = NULL;
1796 uint64_t who;
1797 uint32_t access_mask;
1798 uint16_t type, iflags;
1799
1800 while (zacep = zfs_acl_next_ace(aclp, zacep,
1801 &who, &access_mask, &iflags, &type)) {
1802 switch (type) {
1803 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1804 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1805 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1806 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1807 largeace++;
1808 continue;
1809 default:
1810 count++;
1811 }
1812 }
1813 vsecp->vsa_aclcnt = count;
1814 } else
1815 count = (int)aclp->z_acl_count;
1816
1817 if (mask & VSA_ACECNT) {
1818 vsecp->vsa_aclcnt = count;
1819 }
1820
1821 if (mask & VSA_ACE) {
1822 size_t aclsz;
1823
1824 aclsz = count * sizeof (ace_t) +
1825 sizeof (ace_object_t) * largeace;
1826
1827 vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
1828 vsecp->vsa_aclentsz = aclsz;
1829
1830 if (aclp->z_version == ZFS_ACL_VERSION_FUID)
1831 zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
1832 vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
1833 else {
1834 zfs_acl_node_t *aclnode;
1835 void *start = vsecp->vsa_aclentp;
1836
1837 for (aclnode = list_head(&aclp->z_acl); aclnode;
1838 aclnode = list_next(&aclp->z_acl, aclnode)) {
1839 bcopy(aclnode->z_acldata, start,
1840 aclnode->z_size);
1841 start = (caddr_t)start + aclnode->z_size;
1842 }
1843 ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp ==
1844 aclp->z_acl_bytes);
1845 }
1846 }
1847 if (mask & VSA_ACE_ACLFLAGS) {
1848 vsecp->vsa_aclflags = 0;
1849 if (zp->z_pflags & ZFS_ACL_DEFAULTED)
1850 vsecp->vsa_aclflags |= ACL_DEFAULTED;
1851 if (zp->z_pflags & ZFS_ACL_PROTECTED)
1852 vsecp->vsa_aclflags |= ACL_PROTECTED;
1853 if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
1854 vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
1855 }
1856
1857 mutex_exit(&zp->z_acl_lock);
1858
1859 return (0);
1860 }
1861
1862 int
1863 zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, vtype_t obj_type,
1864 vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
1865 {
1866 zfs_acl_t *aclp;
1867 zfs_acl_node_t *aclnode;
1868 int aclcnt = vsecp->vsa_aclcnt;
1869 int error;
1870
1871 if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
1872 return (SET_ERROR(EINVAL));
1873
1874 aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
1875
1876 aclp->z_hints = 0;
1877 aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
1878 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1879 if ((error = zfs_copy_ace_2_oldace(obj_type, aclp,
1880 (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
1881 aclcnt, &aclnode->z_size)) != 0) {
1882 zfs_acl_free(aclp);
1883 zfs_acl_node_free(aclnode);
1884 return (error);
1885 }
1886 } else {
1887 if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp,
1888 vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
1889 &aclnode->z_size, fuidp, cr)) != 0) {
1890 zfs_acl_free(aclp);
1891 zfs_acl_node_free(aclnode);
1892 return (error);
1893 }
1894 }
1895 aclp->z_acl_bytes = aclnode->z_size;
1896 aclnode->z_ace_count = aclcnt;
1897 aclp->z_acl_count = aclcnt;
1898 list_insert_head(&aclp->z_acl, aclnode);
1899
1900 /*
1901 * If flags are being set then add them to z_hints
1902 */
1903 if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
1904 if (vsecp->vsa_aclflags & ACL_PROTECTED)
1905 aclp->z_hints |= ZFS_ACL_PROTECTED;
1906 if (vsecp->vsa_aclflags & ACL_DEFAULTED)
1907 aclp->z_hints |= ZFS_ACL_DEFAULTED;
1908 if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
1909 aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
1910 }
1911
1912 *zaclp = aclp;
1913
1914 return (0);
1915 }
1916
1917 /*
1918 * Set a file's ACL
1919 */
1920 int
1921 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1922 {
1923 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1924 zilog_t *zilog = zfsvfs->z_log;
1925 ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
1926 dmu_tx_t *tx;
1927 int error;
1928 zfs_acl_t *aclp;
1929 zfs_fuid_info_t *fuidp = NULL;
1930 boolean_t fuid_dirtied;
1931 uint64_t acl_obj;
1932
1933 if (mask == 0)
1934 return (SET_ERROR(ENOSYS));
1935
1936 if (zp->z_pflags & ZFS_IMMUTABLE)
1937 return (SET_ERROR(EPERM));
1938
1939 if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr))
1940 return (error);
1941
1942 error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
1943 &aclp);
1944 if (error)
1945 return (error);
1946
1947 /*
1948 * If ACL wide flags aren't being set then preserve any
1949 * existing flags.
1950 */
1951 if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
1952 aclp->z_hints |=
1953 (zp->z_pflags & V4_ACL_WIDE_FLAGS);
1954 }
1955 top:
1956 mutex_enter(&zp->z_acl_lock);
1957 mutex_enter(&zp->z_lock);
1958
1959 tx = dmu_tx_create(zfsvfs->z_os);
1960
1961 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1962
1963 fuid_dirtied = zfsvfs->z_fuid_dirty;
1964 if (fuid_dirtied)
1965 zfs_fuid_txhold(zfsvfs, tx);
1966
1967 /*
1968 * If old version and ACL won't fit in bonus and we aren't
1969 * upgrading then take out necessary DMU holds
1970 */
1971
1972 if ((acl_obj = zfs_external_acl(zp)) != 0) {
1973 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
1974 zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
1975 dmu_tx_hold_free(tx, acl_obj, 0,
1976 DMU_OBJECT_END);
1977 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1978 aclp->z_acl_bytes);
1979 } else {
1980 dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
1981 }
1982 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1983 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
1984 }
1985
1986 zfs_sa_upgrade_txholds(tx, zp);
1987 error = dmu_tx_assign(tx, TXG_NOWAIT);
1988 if (error) {
1989 mutex_exit(&zp->z_acl_lock);
1990 mutex_exit(&zp->z_lock);
1991
1992 if (error == ERESTART) {
1993 dmu_tx_wait(tx);
1994 dmu_tx_abort(tx);
1995 goto top;
1996 }
1997 dmu_tx_abort(tx);
1998 zfs_acl_free(aclp);
1999 return (error);
2000 }
2001
2002 error = zfs_aclset_common(zp, aclp, cr, tx);
2003 ASSERT(error == 0);
2004 ASSERT(zp->z_acl_cached == NULL);
2005 zp->z_acl_cached = aclp;
2006
2007 if (fuid_dirtied)
2008 zfs_fuid_sync(zfsvfs, tx);
2009
2010 zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
2011
2012 if (fuidp)
2013 zfs_fuid_info_free(fuidp);
2014 dmu_tx_commit(tx);
2015 done:
2016 mutex_exit(&zp->z_lock);
2017 mutex_exit(&zp->z_acl_lock);
2018
2019 return (error);
2020 }
2021
2022 /*
2023 * Check accesses of interest (AoI) against attributes of the dataset
2024 * such as read-only. Returns zero if no AoI conflict with dataset
2025 * attributes, otherwise an appropriate errno is returned.
2026 */
2027 static int
2028 zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
2029 {
2030 if ((v4_mode & WRITE_MASK) &&
2031 (zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
2032 (!IS_DEVVP(ZTOV(zp)) ||
2033 (IS_DEVVP(ZTOV(zp)) && (v4_mode & WRITE_MASK_ATTRS)))) {
2034 return (SET_ERROR(EROFS));
2035 }
2036
2037 /*
2038 * Intentionally allow ZFS_READONLY through here.
2039 * See zfs_zaccess_common().
2040 */
2041 if ((v4_mode & WRITE_MASK_DATA) &&
2042 (zp->z_pflags & ZFS_IMMUTABLE)) {
2043 return (SET_ERROR(EPERM));
2044 }
2045
2046 if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) &&
2047 (zp->z_pflags & ZFS_NOUNLINK)) {
2048 return (SET_ERROR(EPERM));
2049 }
2050
2051 if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
2052 (zp->z_pflags & ZFS_AV_QUARANTINED))) {
2053 return (SET_ERROR(EACCES));
2054 }
2055
2056 return (0);
2057 }
2058
2059 /*
2060 * The primary usage of this function is to loop through all of the
2061 * ACEs in the znode, determining what accesses of interest (AoI) to
2062 * the caller are allowed or denied. The AoI are expressed as bits in
2063 * the working_mode parameter. As each ACE is processed, bits covered
2064 * by that ACE are removed from the working_mode. This removal
2065 * facilitates two things. The first is that when the working mode is
2066 * empty (= 0), we know we've looked at all the AoI. The second is
2067 * that the ACE interpretation rules don't allow a later ACE to undo
2068 * something granted or denied by an earlier ACE. Removing the
2069 * discovered access or denial enforces this rule. At the end of
2070 * processing the ACEs, all AoI that were found to be denied are
2071 * placed into the working_mode, giving the caller a mask of denied
2072 * accesses. Returns:
2073 * 0 if all AoI granted
2074 * EACCES if the denied mask is non-zero
2075 * other error if abnormal failure (e.g., IO error)
2076 *
2077 * A secondary usage of the function is to determine if any of the
2078 * AoI are granted. If an ACE grants any access in
2079 * the working_mode, we immediately short circuit out of the function.
2080 * This mode is chosen by setting anyaccess to B_TRUE. The
2081 * working_mode is not a denied access mask upon exit if the function
2082 * is used in this manner.
2083 */
2084 static int
2085 zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
2086 boolean_t anyaccess, cred_t *cr)
2087 {
2088 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2089 zfs_acl_t *aclp;
2090 int error;
2091 uid_t uid = crgetuid(cr);
2092 uint64_t who;
2093 uint16_t type, iflags;
2094 uint16_t entry_type;
2095 uint32_t access_mask;
2096 uint32_t deny_mask = 0;
2097 zfs_ace_hdr_t *acep = NULL;
2098 boolean_t checkit;
2099 uid_t gowner;
2100 uid_t fowner;
2101
2102 zfs_fuid_map_ids(zp, cr, &fowner, &gowner);
2103
2104 mutex_enter(&zp->z_acl_lock);
2105
2106 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
2107 if (error != 0) {
2108 mutex_exit(&zp->z_acl_lock);
2109 return (error);
2110 }
2111
2112 ASSERT(zp->z_acl_cached);
2113
2114 while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
2115 &iflags, &type)) {
2116 uint32_t mask_matched;
2117
2118 if (!zfs_acl_valid_ace_type(type, iflags))
2119 continue;
2120
2121 if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE))
2122 continue;
2123
2124 /* Skip ACE if it does not affect any AoI */
2125 mask_matched = (access_mask & *working_mode);
2126 if (!mask_matched)
2127 continue;
2128
2129 entry_type = (iflags & ACE_TYPE_FLAGS);
2130
2131 checkit = B_FALSE;
2132
2133 switch (entry_type) {
2134 case ACE_OWNER:
2135 if (uid == fowner)
2136 checkit = B_TRUE;
2137 break;
2138 case OWNING_GROUP:
2139 who = gowner;
2140 /*FALLTHROUGH*/
2141 case ACE_IDENTIFIER_GROUP:
2142 checkit = zfs_groupmember(zfsvfs, who, cr);
2143 break;
2144 case ACE_EVERYONE:
2145 checkit = B_TRUE;
2146 break;
2147
2148 /* USER Entry */
2149 default:
2150 if (entry_type == 0) {
2151 uid_t newid;
2152
2153 newid = zfs_fuid_map_id(zfsvfs, who, cr,
2154 ZFS_ACE_USER);
2155 if (newid != IDMAP_WK_CREATOR_OWNER_UID &&
2156 uid == newid)
2157 checkit = B_TRUE;
2158 break;
2159 } else {
2160 mutex_exit(&zp->z_acl_lock);
2161 return (SET_ERROR(EIO));
2162 }
2163 }
2164
2165 if (checkit) {
2166 if (type == DENY) {
2167 DTRACE_PROBE3(zfs__ace__denies,
2168 znode_t *, zp,
2169 zfs_ace_hdr_t *, acep,
2170 uint32_t, mask_matched);
2171 deny_mask |= mask_matched;
2172 } else {
2173 DTRACE_PROBE3(zfs__ace__allows,
2174 znode_t *, zp,
2175 zfs_ace_hdr_t *, acep,
2176 uint32_t, mask_matched);
2177 if (anyaccess) {
2178 mutex_exit(&zp->z_acl_lock);
2179 return (0);
2180 }
2181 }
2182 *working_mode &= ~mask_matched;
2183 }
2184
2185 /* Are we done? */
2186 if (*working_mode == 0)
2187 break;
2188 }
2189
2190 mutex_exit(&zp->z_acl_lock);
2191
2192 /* Put the found 'denies' back on the working mode */
2193 if (deny_mask) {
2194 *working_mode |= deny_mask;
2195 return (SET_ERROR(EACCES));
2196 } else if (*working_mode) {
2197 return (-1);
2198 }
2199
2200 return (0);
2201 }
2202
2203 /*
2204 * Return true if any access whatsoever granted, we don't actually
2205 * care what access is granted.
2206 */
2207 boolean_t
2208 zfs_has_access(znode_t *zp, cred_t *cr)
2209 {
2210 uint32_t have = ACE_ALL_PERMS;
2211
2212 if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
2213 uid_t owner;
2214
2215 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2216 return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0);
2217 }
2218 return (B_TRUE);
2219 }
2220
2221 static int
2222 zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
2223 boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
2224 {
2225 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2226 int err;
2227
2228 *working_mode = v4_mode;
2229 *check_privs = B_TRUE;
2230
2231 /*
2232 * Short circuit empty requests
2233 */
2234 if (v4_mode == 0 || zfsvfs->z_replay) {
2235 *working_mode = 0;
2236 return (0);
2237 }
2238
2239 if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
2240 *check_privs = B_FALSE;
2241 return (err);
2242 }
2243
2244 /*
2245 * The caller requested that the ACL check be skipped. This
2246 * would only happen if the caller checked VOP_ACCESS() with a
2247 * 32 bit ACE mask and already had the appropriate permissions.
2248 */
2249 if (skipaclchk) {
2250 *working_mode = 0;
2251 return (0);
2252 }
2253
2254 /*
2255 * Note: ZFS_READONLY represents the "DOS R/O" attribute.
2256 * When that flag is set, we should behave as if write access
2257 * were not granted by anything in the ACL. In particular:
2258 * We _must_ allow writes after opening the file r/w, then
2259 * setting the DOS R/O attribute, and writing some more.
2260 * (Similar to how you can write after fchmod(fd, 0444).)
2261 *
2262 * Therefore ZFS_READONLY is ignored in the dataset check
2263 * above, and checked here as if part of the ACL check.
2264 * Also note: DOS R/O is ignored for directories.
2265 */
2266 if ((v4_mode & WRITE_MASK_DATA) &&
2267 (ZTOV(zp)->v_type != VDIR) &&
2268 (zp->z_pflags & ZFS_READONLY)) {
2269 return (SET_ERROR(EPERM));
2270 }
2271
2272 return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
2273 }
2274
2275 static int
2276 zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
2277 cred_t *cr)
2278 {
2279 if (*working_mode != ACE_WRITE_DATA)
2280 return (SET_ERROR(EACCES));
2281
2282 return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
2283 check_privs, B_FALSE, cr));
2284 }
2285
2286 int
2287 zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
2288 {
2289 boolean_t owner = B_FALSE;
2290 boolean_t groupmbr = B_FALSE;
2291 boolean_t is_attr;
2292 uid_t uid = crgetuid(cr);
2293 int error;
2294
2295 if (zdp->z_pflags & ZFS_AV_QUARANTINED)
2296 return (SET_ERROR(EACCES));
2297
2298 is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
2299 (ZTOV(zdp)->v_type == VDIR));
2300 if (is_attr)
2301 goto slow;
2302
2303
2304 mutex_enter(&zdp->z_acl_lock);
2305
2306 if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) {
2307 mutex_exit(&zdp->z_acl_lock);
2308 return (0);
2309 }
2310
2311 if (FUID_INDEX(zdp->z_uid) != 0 || FUID_INDEX(zdp->z_gid) != 0) {
2312 mutex_exit(&zdp->z_acl_lock);
2313 goto slow;
2314 }
2315
2316 if (uid == zdp->z_uid) {
2317 owner = B_TRUE;
2318 if (zdp->z_mode & S_IXUSR) {
2319 mutex_exit(&zdp->z_acl_lock);
2320 return (0);
2321 } else {
2322 mutex_exit(&zdp->z_acl_lock);
2323 goto slow;
2324 }
2325 }
2326 if (groupmember(zdp->z_gid, cr)) {
2327 groupmbr = B_TRUE;
2328 if (zdp->z_mode & S_IXGRP) {
2329 mutex_exit(&zdp->z_acl_lock);
2330 return (0);
2331 } else {
2332 mutex_exit(&zdp->z_acl_lock);
2333 goto slow;
2334 }
2335 }
2336 if (!owner && !groupmbr) {
2337 if (zdp->z_mode & S_IXOTH) {
2338 mutex_exit(&zdp->z_acl_lock);
2339 return (0);
2340 }
2341 }
2342
2343 mutex_exit(&zdp->z_acl_lock);
2344
2345 slow:
2346 DTRACE_PROBE(zfs__fastpath__execute__access__miss);
2347 ZFS_ENTER(zdp->z_zfsvfs);
2348 error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr);
2349 ZFS_EXIT(zdp->z_zfsvfs);
2350 return (error);
2351 }
2352
2353 /*
2354 * Determine whether Access should be granted/denied.
2355 *
2356 * The least priv subsytem is always consulted as a basic privilege
2357 * can define any form of access.
2358 */
2359 int
2360 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
2361 {
2362 uint32_t working_mode;
2363 int error;
2364 int is_attr;
2365 boolean_t check_privs;
2366 znode_t *xzp;
2367 znode_t *check_zp = zp;
2368 mode_t needed_bits;
2369 uid_t owner;
2370
2371 is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));
2372
2373 /*
2374 * If attribute then validate against base file
2375 */
2376 if (is_attr) {
2377 uint64_t parent;
2378
2379 if ((error = sa_lookup(zp->z_sa_hdl,
2380 SA_ZPL_PARENT(zp->z_zfsvfs), &parent,
2381 sizeof (parent))) != 0)
2382 return (error);
2383
2384 if ((error = zfs_zget(zp->z_zfsvfs,
2385 parent, &xzp)) != 0) {
2386 return (error);
2387 }
2388
2389 check_zp = xzp;
2390
2391 /*
2392 * fixup mode to map to xattr perms
2393 */
2394
2395 if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
2396 mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
2397 mode |= ACE_WRITE_NAMED_ATTRS;
2398 }
2399
2400 if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
2401 mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
2402 mode |= ACE_READ_NAMED_ATTRS;
2403 }
2404 }
2405
2406 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2407 /*
2408 * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC
2409 * in needed_bits. Map the bits mapped by working_mode (currently
2410 * missing) in missing_bits.
2411 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2412 * needed_bits.
2413 */
2414 needed_bits = 0;
2415
2416 working_mode = mode;
2417 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
2418 owner == crgetuid(cr))
2419 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2420
2421 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2422 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2423 needed_bits |= VREAD;
2424 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2425 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2426 needed_bits |= VWRITE;
2427 if (working_mode & ACE_EXECUTE)
2428 needed_bits |= VEXEC;
2429
2430 if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
2431 &check_privs, skipaclchk, cr)) == 0) {
2432 if (is_attr)
2433 VN_RELE(ZTOV(xzp));
2434 return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2435 needed_bits, needed_bits));
2436 }
2437
2438 if (error && !check_privs) {
2439 if (is_attr)
2440 VN_RELE(ZTOV(xzp));
2441 return (error);
2442 }
2443
2444 if (error && (flags & V_APPEND)) {
2445 error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
2446 }
2447
2448 if (error && check_privs) {
2449 mode_t checkmode = 0;
2450
2451 /*
2452 * First check for implicit owner permission on
2453 * read_acl/read_attributes
2454 */
2455
2456 error = 0;
2457 ASSERT(working_mode != 0);
2458
2459 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
2460 owner == crgetuid(cr)))
2461 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2462
2463 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2464 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2465 checkmode |= VREAD;
2466 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2467 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2468 checkmode |= VWRITE;
2469 if (working_mode & ACE_EXECUTE)
2470 checkmode |= VEXEC;
2471
2472 error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner,
2473 needed_bits & ~checkmode, needed_bits);
2474
2475 if (error == 0 && (working_mode & ACE_WRITE_OWNER))
2476 error = secpolicy_vnode_chown(cr, owner);
2477 if (error == 0 && (working_mode & ACE_WRITE_ACL))
2478 error = secpolicy_vnode_setdac(cr, owner);
2479
2480 if (error == 0 && (working_mode &
2481 (ACE_DELETE|ACE_DELETE_CHILD)))
2482 error = secpolicy_vnode_remove(cr);
2483
2484 if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
2485 error = secpolicy_vnode_chown(cr, owner);
2486 }
2487 if (error == 0) {
2488 /*
2489 * See if any bits other than those already checked
2490 * for are still present. If so then return EACCES
2491 */
2492 if (working_mode & ~(ZFS_CHECKED_MASKS)) {
2493 error = SET_ERROR(EACCES);
2494 }
2495 }
2496 } else if (error == 0) {
2497 error = secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2498 needed_bits, needed_bits);
2499 }
2500
2501
2502 if (is_attr)
2503 VN_RELE(ZTOV(xzp));
2504
2505 return (error);
2506 }
2507
2508 /*
2509 * Translate traditional unix VREAD/VWRITE/VEXEC mode into
2510 * native ACL format and call zfs_zaccess()
2511 */
2512 int
2513 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr)
2514 {
2515 return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr));
2516 }
2517
2518 /*
2519 * Access function for secpolicy_vnode_setattr
2520 */
2521 int
2522 zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
2523 {
2524 int v4_mode = zfs_unix_to_v4(mode >> 6);
2525
2526 return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr));
2527 }
2528
2529 /* See zfs_zaccess_delete() */
2530 int zfs_write_implies_delete_child = 1;
2531
2532 /*
2533 * Determine whether delete access should be granted.
2534 *
2535 * The following chart outlines how we handle delete permissions which is
2536 * how recent versions of windows (Windows 2008) handles it. The efficiency
2537 * comes from not having to check the parent ACL where the object itself grants
2538 * delete:
2539 *
2540 * -------------------------------------------------------
2541 * | Parent Dir | Target Object Permissions |
2542 * | permissions | |
2543 * -------------------------------------------------------
2544 * | | ACL Allows | ACL Denies| Delete |
2545 * | | Delete | Delete | unspecified|
2546 * -------------------------------------------------------
2547 * | ACL Allows | Permit | Deny * | Permit |
2548 * | DELETE_CHILD | | | |
2549 * -------------------------------------------------------
2550 * | ACL Denies | Permit | Deny | Deny |
2551 * | DELETE_CHILD | | | |
2552 * -------------------------------------------------------
2553 * | ACL specifies | | | |
2554 * | only allow | Permit | Deny * | Permit |
2555 * | write and | | | |
2556 * | execute | | | |
2557 * -------------------------------------------------------
2558 * | ACL denies | | | |
2559 * | write and | Permit | Deny | Deny |
2560 * | execute | | | |
2561 * -------------------------------------------------------
2562 * ^
2563 * |
2564 * Re. execute permission on the directory: if that's missing,
2565 * the vnode lookup of the target will fail before we get here.
2566 *
2567 * Re [*] in the table above: NFSv4 would normally Permit delete for
2568 * these two cells of the matrix.
2569 * See acl.h for notes on which ACE_... flags should be checked for which
2570 * operations. Specifically, the NFSv4 committee recommendation is in
2571 * conflict with the Windows interpretation of DENY ACEs, where DENY ACEs
2572 * should take precedence ahead of ALLOW ACEs.
2573 *
2574 * This implementation always consults the target object's ACL first.
2575 * If a DENY ACE is present on the target object that specifies ACE_DELETE,
2576 * delete access is denied. If an ALLOW ACE with ACE_DELETE is present on
2577 * the target object, access is allowed. If and only if no entries with
2578 * ACE_DELETE are present in the object's ACL, check the container's ACL
2579 * for entries with ACE_DELETE_CHILD.
2580 *
2581 * A summary of the logic implemented from the table above is as follows:
2582 *
2583 * First check for DENY ACEs that apply.
2584 * If either target or container has a deny, EACCES.
2585 *
2586 * Delete access can then be summarized as follows:
2587 * 1: The object to be deleted grants ACE_DELETE, or
2588 * 2: The containing directory grants ACE_DELETE_CHILD.
2589 * In a Windows system, that would be the end of the story.
2590 * In this system, (2) has some complications...
2591 * 2a: "sticky" bit on a directory adds restrictions, and
2592 * 2b: existing ACEs from previous versions of ZFS may
2593 * not carry ACE_DELETE_CHILD where they should, so we
2594 * also allow delete when ACE_WRITE_DATA is granted.
2595 *
2596 * Note: 2b is technically a work-around for a prior bug,
2597 * which hopefully can go away some day. For those who
2598 * no longer need the work around, and for testing, this
2599 * work-around is made conditional via the tunable:
2600 * zfs_write_implies_delete_child
2601 */
2602 int
2603 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr)
2604 {
2605 uint32_t wanted_dirperms;
2606 uint32_t dzp_working_mode = 0;
2607 uint32_t zp_working_mode = 0;
2608 int dzp_error, zp_error;
2609 boolean_t dzpcheck_privs;
2610 boolean_t zpcheck_privs;
2611
2612 if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
2613 return (SET_ERROR(EPERM));
2614
2615 /*
2616 * Case 1:
2617 * If target object grants ACE_DELETE then we are done. This is
2618 * indicated by a return value of 0. For this case we don't worry
2619 * about the sticky bit because sticky only applies to the parent
2620 * directory and this is the child access result.
2621 *
2622 * If we encounter a DENY ACE here, we're also done (EACCES).
2623 * Note that if we hit a DENY ACE here (on the target) it should
2624 * take precedence over a DENY ACE on the container, so that when
2625 * we have more complete auditing support we will be able to
2626 * report an access failure against the specific target.
2627 * (This is part of why we're checking the target first.)
2628 */
2629 zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
2630 &zpcheck_privs, B_FALSE, cr);
2631 if (zp_error == EACCES) {
2632 /* We hit a DENY ACE. */
2633 if (!zpcheck_privs)
2634 return (SET_ERROR(zp_error));
2635 return (secpolicy_vnode_remove(cr));
2636
2637 }
2638 if (zp_error == 0)
2639 return (0);
2640
2641 /*
2642 * Case 2:
2643 * If the containing directory grants ACE_DELETE_CHILD,
2644 * or we're in backward compatibility mode and the
2645 * containing directory has ACE_WRITE_DATA, allow.
2646 * Case 2b is handled with wanted_dirperms.
2647 */
2648 wanted_dirperms = ACE_DELETE_CHILD;
2649 if (zfs_write_implies_delete_child)
2650 wanted_dirperms |= ACE_WRITE_DATA;
2651 dzp_error = zfs_zaccess_common(dzp, wanted_dirperms,
2652 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);
2653 if (dzp_error == EACCES) {
2654 /* We hit a DENY ACE. */
2655 if (!dzpcheck_privs)
2656 return (SET_ERROR(dzp_error));
2657 return (secpolicy_vnode_remove(cr));
2658 }
2659
2660 /*
2661 * Cases 2a, 2b (continued)
2662 *
2663 * Note: dzp_working_mode now contains any permissions
2664 * that were NOT granted. Therefore, if any of the
2665 * wanted_dirperms WERE granted, we will have:
2666 * dzp_working_mode != wanted_dirperms
2667 * We're really asking if ANY of those permissions
2668 * were granted, and if so, grant delete access.
2669 */
2670 if (dzp_working_mode != wanted_dirperms)
2671 dzp_error = 0;
2672
2673 /*
2674 * dzp_error is 0 if the container granted us permissions to "modify".
2675 * If we do not have permission via one or more ACEs, our current
2676 * privileges may still permit us to modify the container.
2677 *
2678 * dzpcheck_privs is false when i.e. the FS is read-only.
2679 * Otherwise, do privilege checks for the container.
2680 */
2681 if (dzp_error != 0 && dzpcheck_privs) {
2682 uid_t owner;
2683
2684 /*
2685 * The secpolicy call needs the requested access and
2686 * the current access mode of the container, but it
2687 * only knows about Unix-style modes (VEXEC, VWRITE),
2688 * so this must condense the fine-grained ACE bits into
2689 * Unix modes.
2690 *
2691 * The VEXEC flag is easy, because we know that has
2692 * always been checked before we get here (during the
2693 * lookup of the target vnode). The container has not
2694 * granted us permissions to "modify", so we do not set
2695 * the VWRITE flag in the current access mode.
2696 */
2697 owner = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr,
2698 ZFS_OWNER);
2699 dzp_error = secpolicy_vnode_access2(cr, ZTOV(dzp),
2700 owner, VEXEC, VWRITE|VEXEC);
2701 }
2702 if (dzp_error != 0) {
2703 /*
2704 * Note: We may have dzp_error = -1 here (from
2705 * zfs_zacess_common). Don't return that.
2706 */
2707 return (SET_ERROR(EACCES));
2708 }
2709
2710 /*
2711 * At this point, we know that the directory permissions allow
2712 * us to modify, but we still need to check for the additional
2713 * restrictions that apply when the "sticky bit" is set.
2714 *
2715 * Yes, zfs_sticky_remove_access() also checks this bit, but
2716 * checking it here and skipping the call below is nice when
2717 * you're watching all of this with dtrace.
2718 */
2719 if ((dzp->z_mode & S_ISVTX) == 0)
2720 return (0);
2721
2722 /*
2723 * zfs_sticky_remove_access will succeed if:
2724 * 1. The sticky bit is absent.
2725 * 2. We pass the sticky bit restrictions.
2726 * 3. We have privileges that always allow file removal.
2727 */
2728 return (zfs_sticky_remove_access(dzp, zp, cr));
2729 }
2730
2731 int
2732 zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
2733 znode_t *tzp, cred_t *cr)
2734 {
2735 int add_perm;
2736 int error;
2737
2738 if (szp->z_pflags & ZFS_AV_QUARANTINED)
2739 return (SET_ERROR(EACCES));
2740
2741 add_perm = (ZTOV(szp)->v_type == VDIR) ?
2742 ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
2743
2744 /*
2745 * Rename permissions are combination of delete permission +
2746 * add file/subdir permission.
2747 */
2748
2749 /*
2750 * first make sure we do the delete portion.
2751 *
2752 * If that succeeds then check for add_file/add_subdir permissions
2753 */
2754
2755 if (error = zfs_zaccess_delete(sdzp, szp, cr))
2756 return (error);
2757
2758 /*
2759 * If we have a tzp, see if we can delete it?
2760 */
2761 if (tzp) {
2762 if (error = zfs_zaccess_delete(tdzp, tzp, cr))
2763 return (error);
2764 }
2765
2766 /*
2767 * Now check for add permissions
2768 */
2769 error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr);
2770
2771 return (error);
2772 }