1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
  25  */
  26 
  27 /*
  28  * Virtual Device Labels
  29  * ---------------------
  30  *
  31  * The vdev label serves several distinct purposes:
  32  *
  33  *      1. Uniquely identify this device as part of a ZFS pool and confirm its
  34  *         identity within the pool.
  35  *
  36  *      2. Verify that all the devices given in a configuration are present
  37  *         within the pool.
  38  *
  39  *      3. Determine the uberblock for the pool.
  40  *
  41  *      4. In case of an import operation, determine the configuration of the
  42  *         toplevel vdev of which it is a part.
  43  *
  44  *      5. If an import operation cannot find all the devices in the pool,
  45  *         provide enough information to the administrator to determine which
  46  *         devices are missing.
  47  *
  48  * It is important to note that while the kernel is responsible for writing the
  49  * label, it only consumes the information in the first three cases.  The
  50  * latter information is only consumed in userland when determining the
  51  * configuration to import a pool.
  52  *
  53  *
  54  * Label Organization
  55  * ------------------
  56  *
  57  * Before describing the contents of the label, it's important to understand how
  58  * the labels are written and updated with respect to the uberblock.
  59  *
  60  * When the pool configuration is altered, either because it was newly created
  61  * or a device was added, we want to update all the labels such that we can deal
  62  * with fatal failure at any point.  To this end, each disk has two labels which
  63  * are updated before and after the uberblock is synced.  Assuming we have
  64  * labels and an uberblock with the following transaction groups:
  65  *
  66  *              L1          UB          L2
  67  *           +------+    +------+    +------+
  68  *           |      |    |      |    |      |
  69  *           | t10  |    | t10  |    | t10  |
  70  *           |      |    |      |    |      |
  71  *           +------+    +------+    +------+
  72  *
  73  * In this stable state, the labels and the uberblock were all updated within
  74  * the same transaction group (10).  Each label is mirrored and checksummed, so
  75  * that we can detect when we fail partway through writing the label.
  76  *
  77  * In order to identify which labels are valid, the labels are written in the
  78  * following manner:
  79  *
  80  *      1. For each vdev, update 'L1' to the new label
  81  *      2. Update the uberblock
  82  *      3. For each vdev, update 'L2' to the new label
  83  *
  84  * Given arbitrary failure, we can determine the correct label to use based on
  85  * the transaction group.  If we fail after updating L1 but before updating the
  86  * UB, we will notice that L1's transaction group is greater than the uberblock,
  87  * so L2 must be valid.  If we fail after writing the uberblock but before
  88  * writing L2, we will notice that L2's transaction group is less than L1, and
  89  * therefore L1 is valid.
  90  *
  91  * Another added complexity is that not every label is updated when the config
  92  * is synced.  If we add a single device, we do not want to have to re-write
  93  * every label for every device in the pool.  This means that both L1 and L2 may
  94  * be older than the pool uberblock, because the necessary information is stored
  95  * on another vdev.
  96  *
  97  *
  98  * On-disk Format
  99  * --------------
 100  *
 101  * The vdev label consists of two distinct parts, and is wrapped within the
 102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
 103  * VTOC disk labels, but is otherwise ignored.
 104  *
 105  * The first half of the label is a packed nvlist which contains pool wide
 106  * properties, per-vdev properties, and configuration information.  It is
 107  * described in more detail below.
 108  *
 109  * The latter half of the label consists of a redundant array of uberblocks.
 110  * These uberblocks are updated whenever a transaction group is committed,
 111  * or when the configuration is updated.  When a pool is loaded, we scan each
 112  * vdev for the 'best' uberblock.
 113  *
 114  *
 115  * Configuration Information
 116  * -------------------------
 117  *
 118  * The nvlist describing the pool and vdev contains the following elements:
 119  *
 120  *      version         ZFS on-disk version
 121  *      name            Pool name
 122  *      state           Pool state
 123  *      txg             Transaction group in which this label was written
 124  *      pool_guid       Unique identifier for this pool
 125  *      vdev_tree       An nvlist describing vdev tree.
 126  *      features_for_read
 127  *                      An nvlist of the features necessary for reading the MOS.
 128  *
 129  * Each leaf device label also contains the following:
 130  *
 131  *      top_guid        Unique ID for top-level vdev in which this is contained
 132  *      guid            Unique ID for the leaf vdev
 133  *
 134  * The 'vs' configuration follows the format described in 'spa_config.c'.
 135  */
 136 
 137 #include <sys/zfs_context.h>
 138 #include <sys/spa.h>
 139 #include <sys/spa_impl.h>
 140 #include <sys/dmu.h>
 141 #include <sys/zap.h>
 142 #include <sys/vdev.h>
 143 #include <sys/vdev_impl.h>
 144 #include <sys/uberblock_impl.h>
 145 #include <sys/metaslab.h>
 146 #include <sys/metaslab_impl.h>
 147 #include <sys/zio.h>
 148 #include <sys/dsl_scan.h>
 149 #include <sys/abd.h>
 150 #include <sys/fs/zfs.h>
 151 
 152 /*
 153  * Basic routines to read and write from a vdev label.
 154  * Used throughout the rest of this file.
 155  */
 156 uint64_t
 157 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
 158 {
 159         ASSERT(offset < sizeof (vdev_label_t));
 160         ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
 161 
 162         return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
 163             0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
 164 }
 165 
 166 /*
 167  * Returns back the vdev label associated with the passed in offset.
 168  */
 169 int
 170 vdev_label_number(uint64_t psize, uint64_t offset)
 171 {
 172         int l;
 173 
 174         if (offset >= psize - VDEV_LABEL_END_SIZE) {
 175                 offset -= psize - VDEV_LABEL_END_SIZE;
 176                 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
 177         }
 178         l = offset / sizeof (vdev_label_t);
 179         return (l < VDEV_LABELS ? l : -1);
 180 }
 181 
 182 static void
 183 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
 184     uint64_t size, zio_done_func_t *done, void *private, int flags)
 185 {
 186         ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
 187             SCL_STATE_ALL);
 188         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 189 
 190         zio_nowait(zio_read_phys(zio, vd,
 191             vdev_label_offset(vd->vdev_psize, l, offset),
 192             size, buf, ZIO_CHECKSUM_LABEL, done, private,
 193             ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
 194 }
 195 
 196 static void
 197 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
 198     uint64_t size, zio_done_func_t *done, void *private, int flags)
 199 {
 200         ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
 201             (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
 202             (SCL_CONFIG | SCL_STATE) &&
 203             dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
 204         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 205 
 206         zio_nowait(zio_write_phys(zio, vd,
 207             vdev_label_offset(vd->vdev_psize, l, offset),
 208             size, buf, ZIO_CHECKSUM_LABEL, done, private,
 209             ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
 210 }
 211 
 212 /*
 213  * Generate the nvlist representing this vdev's config.
 214  */
 215 nvlist_t *
 216 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
 217     vdev_config_flag_t flags)
 218 {
 219         nvlist_t *nv = NULL;
 220         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 221 
 222         nv = fnvlist_alloc();
 223 
 224         fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
 225         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
 226                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
 227         fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
 228 
 229         if (vd->vdev_path != NULL)
 230                 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
 231 
 232         if (vd->vdev_devid != NULL)
 233                 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
 234 
 235         if (vd->vdev_physpath != NULL)
 236                 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 237                     vd->vdev_physpath);
 238 
 239         if (vd->vdev_fru != NULL)
 240                 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
 241 
 242         if (vd->vdev_nparity != 0) {
 243                 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
 244                     VDEV_TYPE_RAIDZ) == 0);
 245 
 246                 /*
 247                  * Make sure someone hasn't managed to sneak a fancy new vdev
 248                  * into a crufty old storage pool.
 249                  */
 250                 ASSERT(vd->vdev_nparity == 1 ||
 251                     (vd->vdev_nparity <= 2 &&
 252                     spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
 253                     (vd->vdev_nparity <= 3 &&
 254                     spa_version(spa) >= SPA_VERSION_RAIDZ3));
 255 
 256                 /*
 257                  * Note that we'll add the nparity tag even on storage pools
 258                  * that only support a single parity device -- older software
 259                  * will just ignore it.
 260                  */
 261                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
 262         }
 263 
 264         if (vd->vdev_wholedisk != -1ULL)
 265                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 266                     vd->vdev_wholedisk);
 267 
 268         if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
 269                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
 270 
 271         if (vd->vdev_isspare)
 272                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
 273 
 274         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
 275             vd == vd->vdev_top) {
 276                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 277                     vd->vdev_ms_array);
 278                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 279                     vd->vdev_ms_shift);
 280                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
 281                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
 282                     vd->vdev_asize);
 283                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
 284                 if (vd->vdev_removing) {
 285                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
 286                             vd->vdev_removing);
 287                 }
 288         }
 289 
 290         if (vd->vdev_dtl_sm != NULL) {
 291                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
 292                     space_map_object(vd->vdev_dtl_sm));
 293         }
 294 
 295         if (vic->vic_mapping_object != 0) {
 296                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
 297                     vic->vic_mapping_object);
 298         }
 299 
 300         if (vic->vic_births_object != 0) {
 301                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
 302                     vic->vic_births_object);
 303         }
 304 
 305         if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
 306                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
 307                     vic->vic_prev_indirect_vdev);
 308         }
 309 
 310         if (vd->vdev_crtxg)
 311                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
 312 
 313         if (flags & VDEV_CONFIG_MOS) {
 314                 if (vd->vdev_leaf_zap != 0) {
 315                         ASSERT(vd->vdev_ops->vdev_op_leaf);
 316                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
 317                             vd->vdev_leaf_zap);
 318                 }
 319 
 320                 if (vd->vdev_top_zap != 0) {
 321                         ASSERT(vd == vd->vdev_top);
 322                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
 323                             vd->vdev_top_zap);
 324                 }
 325         }
 326 
 327         if (getstats) {
 328                 vdev_stat_t vs;
 329 
 330                 vdev_get_stats(vd, &vs);
 331                 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
 332                     (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
 333 
 334                 /* provide either current or previous scan information */
 335                 pool_scan_stat_t ps;
 336                 if (spa_scan_get_stats(spa, &ps) == 0) {
 337                         fnvlist_add_uint64_array(nv,
 338                             ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
 339                             sizeof (pool_scan_stat_t) / sizeof (uint64_t));
 340                 }
 341 
 342                 pool_removal_stat_t prs;
 343                 if (spa_removal_get_stats(spa, &prs) == 0) {
 344                         fnvlist_add_uint64_array(nv,
 345                             ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
 346                             sizeof (prs) / sizeof (uint64_t));
 347                 }
 348 
 349                 /*
 350                  * Note: this can be called from open context
 351                  * (spa_get_stats()), so we need the rwlock to prevent
 352                  * the mapping from being changed by condensing.
 353                  */
 354                 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
 355                 if (vd->vdev_indirect_mapping != NULL) {
 356                         ASSERT(vd->vdev_indirect_births != NULL);
 357                         vdev_indirect_mapping_t *vim =
 358                             vd->vdev_indirect_mapping;
 359                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
 360                             vdev_indirect_mapping_size(vim));
 361                 }
 362                 rw_exit(&vd->vdev_indirect_rwlock);
 363                 if (vd->vdev_mg != NULL &&
 364                     vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
 365                         /*
 366                          * Compute approximately how much memory would be used
 367                          * for the indirect mapping if this device were to
 368                          * be removed.
 369                          *
 370                          * Note: If the frag metric is invalid, then not
 371                          * enough metaslabs have been converted to have
 372                          * histograms.
 373                          */
 374                         uint64_t seg_count = 0;
 375 
 376                         /*
 377                          * There are the same number of allocated segments
 378                          * as free segments, so we will have at least one
 379                          * entry per free segment.
 380                          */
 381                         for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 382                                 seg_count += vd->vdev_mg->mg_histogram[i];
 383                         }
 384 
 385                         /*
 386                          * The maximum length of a mapping is SPA_MAXBLOCKSIZE,
 387                          * so we need at least one entry per SPA_MAXBLOCKSIZE
 388                          * of allocated data.
 389                          */
 390                         seg_count += vd->vdev_stat.vs_alloc / SPA_MAXBLOCKSIZE;
 391 
 392                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
 393                             seg_count *
 394                             sizeof (vdev_indirect_mapping_entry_phys_t));
 395                 }
 396         }
 397 
 398         if (!vd->vdev_ops->vdev_op_leaf) {
 399                 nvlist_t **child;
 400                 int c, idx;
 401 
 402                 ASSERT(!vd->vdev_ishole);
 403 
 404                 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
 405                     KM_SLEEP);
 406 
 407                 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
 408                         vdev_t *cvd = vd->vdev_child[c];
 409 
 410                         /*
 411                          * If we're generating an nvlist of removing
 412                          * vdevs then skip over any device which is
 413                          * not being removed.
 414                          */
 415                         if ((flags & VDEV_CONFIG_REMOVING) &&
 416                             !cvd->vdev_removing)
 417                                 continue;
 418 
 419                         child[idx++] = vdev_config_generate(spa, cvd,
 420                             getstats, flags);
 421                 }
 422 
 423                 if (idx) {
 424                         fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 425                             child, idx);
 426                 }
 427 
 428                 for (c = 0; c < idx; c++)
 429                         nvlist_free(child[c]);
 430 
 431                 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
 432 
 433         } else {
 434                 const char *aux = NULL;
 435 
 436                 if (vd->vdev_offline && !vd->vdev_tmpoffline)
 437                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
 438                 if (vd->vdev_resilver_txg != 0)
 439                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
 440                             vd->vdev_resilver_txg);
 441                 if (vd->vdev_faulted)
 442                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
 443                 if (vd->vdev_degraded)
 444                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
 445                 if (vd->vdev_removed)
 446                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
 447                 if (vd->vdev_unspare)
 448                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
 449                 if (vd->vdev_ishole)
 450                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
 451 
 452                 switch (vd->vdev_stat.vs_aux) {
 453                 case VDEV_AUX_ERR_EXCEEDED:
 454                         aux = "err_exceeded";
 455                         break;
 456 
 457                 case VDEV_AUX_EXTERNAL:
 458                         aux = "external";
 459                         break;
 460                 }
 461 
 462                 if (aux != NULL)
 463                         fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
 464 
 465                 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
 466                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
 467                             vd->vdev_orig_guid);
 468                 }
 469         }
 470 
 471         return (nv);
 472 }
 473 
 474 /*
 475  * Generate a view of the top-level vdevs.  If we currently have holes
 476  * in the namespace, then generate an array which contains a list of holey
 477  * vdevs.  Additionally, add the number of top-level children that currently
 478  * exist.
 479  */
 480 void
 481 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
 482 {
 483         vdev_t *rvd = spa->spa_root_vdev;
 484         uint64_t *array;
 485         uint_t c, idx;
 486 
 487         array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
 488 
 489         for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
 490                 vdev_t *tvd = rvd->vdev_child[c];
 491 
 492                 if (tvd->vdev_ishole) {
 493                         array[idx++] = c;
 494                 }
 495         }
 496 
 497         if (idx) {
 498                 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
 499                     array, idx) == 0);
 500         }
 501 
 502         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
 503             rvd->vdev_children) == 0);
 504 
 505         kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
 506 }
 507 
 508 /*
 509  * Returns the configuration from the label of the given vdev. For vdevs
 510  * which don't have a txg value stored on their label (i.e. spares/cache)
 511  * or have not been completely initialized (txg = 0) just return
 512  * the configuration from the first valid label we find. Otherwise,
 513  * find the most up-to-date label that does not exceed the specified
 514  * 'txg' value.
 515  */
 516 nvlist_t *
 517 vdev_label_read_config(vdev_t *vd, uint64_t txg)
 518 {
 519         spa_t *spa = vd->vdev_spa;
 520         nvlist_t *config = NULL;
 521         vdev_phys_t *vp;
 522         abd_t *vp_abd;
 523         zio_t *zio;
 524         uint64_t best_txg = 0;
 525         int error = 0;
 526         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 527             ZIO_FLAG_SPECULATIVE;
 528 
 529         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 530 
 531         if (!vdev_readable(vd))
 532                 return (NULL);
 533 
 534         vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
 535         vp = abd_to_buf(vp_abd);
 536 
 537 retry:
 538         for (int l = 0; l < VDEV_LABELS; l++) {
 539                 nvlist_t *label = NULL;
 540 
 541                 zio = zio_root(spa, NULL, NULL, flags);
 542 
 543                 vdev_label_read(zio, vd, l, vp_abd,
 544                     offsetof(vdev_label_t, vl_vdev_phys),
 545                     sizeof (vdev_phys_t), NULL, NULL, flags);
 546 
 547                 if (zio_wait(zio) == 0 &&
 548                     nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
 549                     &label, 0) == 0) {
 550                         uint64_t label_txg = 0;
 551 
 552                         /*
 553                          * Auxiliary vdevs won't have txg values in their
 554                          * labels and newly added vdevs may not have been
 555                          * completely initialized so just return the
 556                          * configuration from the first valid label we
 557                          * encounter.
 558                          */
 559                         error = nvlist_lookup_uint64(label,
 560                             ZPOOL_CONFIG_POOL_TXG, &label_txg);
 561                         if ((error || label_txg == 0) && !config) {
 562                                 config = label;
 563                                 break;
 564                         } else if (label_txg <= txg && label_txg > best_txg) {
 565                                 best_txg = label_txg;
 566                                 nvlist_free(config);
 567                                 config = fnvlist_dup(label);
 568                         }
 569                 }
 570 
 571                 if (label != NULL) {
 572                         nvlist_free(label);
 573                         label = NULL;
 574                 }
 575         }
 576 
 577         if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
 578                 flags |= ZIO_FLAG_TRYHARD;
 579                 goto retry;
 580         }
 581 
 582         abd_free(vp_abd);
 583 
 584         return (config);
 585 }
 586 
 587 /*
 588  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
 589  * in with the device guid if this spare is active elsewhere on the system.
 590  */
 591 static boolean_t
 592 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
 593     uint64_t *spare_guid, uint64_t *l2cache_guid)
 594 {
 595         spa_t *spa = vd->vdev_spa;
 596         uint64_t state, pool_guid, device_guid, txg, spare_pool;
 597         uint64_t vdtxg = 0;
 598         nvlist_t *label;
 599 
 600         if (spare_guid)
 601                 *spare_guid = 0ULL;
 602         if (l2cache_guid)
 603                 *l2cache_guid = 0ULL;
 604 
 605         /*
 606          * Read the label, if any, and perform some basic sanity checks.
 607          */
 608         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
 609                 return (B_FALSE);
 610 
 611         (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 612             &vdtxg);
 613 
 614         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 615             &state) != 0 ||
 616             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
 617             &device_guid) != 0) {
 618                 nvlist_free(label);
 619                 return (B_FALSE);
 620         }
 621 
 622         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 623             (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
 624             &pool_guid) != 0 ||
 625             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
 626             &txg) != 0)) {
 627                 nvlist_free(label);
 628                 return (B_FALSE);
 629         }
 630 
 631         nvlist_free(label);
 632 
 633         /*
 634          * Check to see if this device indeed belongs to the pool it claims to
 635          * be a part of.  The only way this is allowed is if the device is a hot
 636          * spare (which we check for later on).
 637          */
 638         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 639             !spa_guid_exists(pool_guid, device_guid) &&
 640             !spa_spare_exists(device_guid, NULL, NULL) &&
 641             !spa_l2cache_exists(device_guid, NULL))
 642                 return (B_FALSE);
 643 
 644         /*
 645          * If the transaction group is zero, then this an initialized (but
 646          * unused) label.  This is only an error if the create transaction
 647          * on-disk is the same as the one we're using now, in which case the
 648          * user has attempted to add the same vdev multiple times in the same
 649          * transaction.
 650          */
 651         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 652             txg == 0 && vdtxg == crtxg)
 653                 return (B_TRUE);
 654 
 655         /*
 656          * Check to see if this is a spare device.  We do an explicit check for
 657          * spa_has_spare() here because it may be on our pending list of spares
 658          * to add.  We also check if it is an l2cache device.
 659          */
 660         if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
 661             spa_has_spare(spa, device_guid)) {
 662                 if (spare_guid)
 663                         *spare_guid = device_guid;
 664 
 665                 switch (reason) {
 666                 case VDEV_LABEL_CREATE:
 667                 case VDEV_LABEL_L2CACHE:
 668                         return (B_TRUE);
 669 
 670                 case VDEV_LABEL_REPLACE:
 671                         return (!spa_has_spare(spa, device_guid) ||
 672                             spare_pool != 0ULL);
 673 
 674                 case VDEV_LABEL_SPARE:
 675                         return (spa_has_spare(spa, device_guid));
 676                 }
 677         }
 678 
 679         /*
 680          * Check to see if this is an l2cache device.
 681          */
 682         if (spa_l2cache_exists(device_guid, NULL))
 683                 return (B_TRUE);
 684 
 685         /*
 686          * We can't rely on a pool's state if it's been imported
 687          * read-only.  Instead we look to see if the pools is marked
 688          * read-only in the namespace and set the state to active.
 689          */
 690         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 691             (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
 692             spa_mode(spa) == FREAD)
 693                 state = POOL_STATE_ACTIVE;
 694 
 695         /*
 696          * If the device is marked ACTIVE, then this device is in use by another
 697          * pool on the system.
 698          */
 699         return (state == POOL_STATE_ACTIVE);
 700 }
 701 
 702 /*
 703  * Initialize a vdev label.  We check to make sure each leaf device is not in
 704  * use, and writable.  We put down an initial label which we will later
 705  * overwrite with a complete label.  Note that it's important to do this
 706  * sequentially, not in parallel, so that we catch cases of multiple use of the
 707  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
 708  * itself.
 709  */
 710 int
 711 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
 712 {
 713         spa_t *spa = vd->vdev_spa;
 714         nvlist_t *label;
 715         vdev_phys_t *vp;
 716         abd_t *vp_abd;
 717         abd_t *pad2;
 718         uberblock_t *ub;
 719         abd_t *ub_abd;
 720         zio_t *zio;
 721         char *buf;
 722         size_t buflen;
 723         int error;
 724         uint64_t spare_guid, l2cache_guid;
 725         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 726 
 727         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 728 
 729         for (int c = 0; c < vd->vdev_children; c++)
 730                 if ((error = vdev_label_init(vd->vdev_child[c],
 731                     crtxg, reason)) != 0)
 732                         return (error);
 733 
 734         /* Track the creation time for this vdev */
 735         vd->vdev_crtxg = crtxg;
 736 
 737         if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
 738                 return (0);
 739 
 740         /*
 741          * Dead vdevs cannot be initialized.
 742          */
 743         if (vdev_is_dead(vd))
 744                 return (SET_ERROR(EIO));
 745 
 746         /*
 747          * Determine if the vdev is in use.
 748          */
 749         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
 750             vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
 751                 return (SET_ERROR(EBUSY));
 752 
 753         /*
 754          * If this is a request to add or replace a spare or l2cache device
 755          * that is in use elsewhere on the system, then we must update the
 756          * guid (which was initialized to a random value) to reflect the
 757          * actual GUID (which is shared between multiple pools).
 758          */
 759         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
 760             spare_guid != 0ULL) {
 761                 uint64_t guid_delta = spare_guid - vd->vdev_guid;
 762 
 763                 vd->vdev_guid += guid_delta;
 764 
 765                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 766                         pvd->vdev_guid_sum += guid_delta;
 767 
 768                 /*
 769                  * If this is a replacement, then we want to fallthrough to the
 770                  * rest of the code.  If we're adding a spare, then it's already
 771                  * labeled appropriately and we can just return.
 772                  */
 773                 if (reason == VDEV_LABEL_SPARE)
 774                         return (0);
 775                 ASSERT(reason == VDEV_LABEL_REPLACE ||
 776                     reason == VDEV_LABEL_SPLIT);
 777         }
 778 
 779         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
 780             l2cache_guid != 0ULL) {
 781                 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
 782 
 783                 vd->vdev_guid += guid_delta;
 784 
 785                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 786                         pvd->vdev_guid_sum += guid_delta;
 787 
 788                 /*
 789                  * If this is a replacement, then we want to fallthrough to the
 790                  * rest of the code.  If we're adding an l2cache, then it's
 791                  * already labeled appropriately and we can just return.
 792                  */
 793                 if (reason == VDEV_LABEL_L2CACHE)
 794                         return (0);
 795                 ASSERT(reason == VDEV_LABEL_REPLACE);
 796         }
 797 
 798         /*
 799          * Initialize its label.
 800          */
 801         vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
 802         abd_zero(vp_abd, sizeof (vdev_phys_t));
 803         vp = abd_to_buf(vp_abd);
 804 
 805         /*
 806          * Generate a label describing the pool and our top-level vdev.
 807          * We mark it as being from txg 0 to indicate that it's not
 808          * really part of an active pool just yet.  The labels will
 809          * be written again with a meaningful txg by spa_sync().
 810          */
 811         if (reason == VDEV_LABEL_SPARE ||
 812             (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
 813                 /*
 814                  * For inactive hot spares, we generate a special label that
 815                  * identifies as a mutually shared hot spare.  We write the
 816                  * label if we are adding a hot spare, or if we are removing an
 817                  * active hot spare (in which case we want to revert the
 818                  * labels).
 819                  */
 820                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 821 
 822                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 823                     spa_version(spa)) == 0);
 824                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 825                     POOL_STATE_SPARE) == 0);
 826                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 827                     vd->vdev_guid) == 0);
 828         } else if (reason == VDEV_LABEL_L2CACHE ||
 829             (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
 830                 /*
 831                  * For level 2 ARC devices, add a special label.
 832                  */
 833                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 834 
 835                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 836                     spa_version(spa)) == 0);
 837                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 838                     POOL_STATE_L2CACHE) == 0);
 839                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 840                     vd->vdev_guid) == 0);
 841         } else {
 842                 uint64_t txg = 0ULL;
 843 
 844                 if (reason == VDEV_LABEL_SPLIT)
 845                         txg = spa->spa_uberblock.ub_txg;
 846                 label = spa_config_generate(spa, vd, txg, B_FALSE);
 847 
 848                 /*
 849                  * Add our creation time.  This allows us to detect multiple
 850                  * vdev uses as described above, and automatically expires if we
 851                  * fail.
 852                  */
 853                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 854                     crtxg) == 0);
 855         }
 856 
 857         buf = vp->vp_nvlist;
 858         buflen = sizeof (vp->vp_nvlist);
 859 
 860         error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
 861         if (error != 0) {
 862                 nvlist_free(label);
 863                 abd_free(vp_abd);
 864                 /* EFAULT means nvlist_pack ran out of room */
 865                 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
 866         }
 867 
 868         /*
 869          * Initialize uberblock template.
 870          */
 871         ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
 872         abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
 873         abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
 874         ub = abd_to_buf(ub_abd);
 875         ub->ub_txg = 0;
 876 
 877         /* Initialize the 2nd padding area. */
 878         pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
 879         abd_zero(pad2, VDEV_PAD_SIZE);
 880 
 881         /*
 882          * Write everything in parallel.
 883          */
 884 retry:
 885         zio = zio_root(spa, NULL, NULL, flags);
 886 
 887         for (int l = 0; l < VDEV_LABELS; l++) {
 888 
 889                 vdev_label_write(zio, vd, l, vp_abd,
 890                     offsetof(vdev_label_t, vl_vdev_phys),
 891                     sizeof (vdev_phys_t), NULL, NULL, flags);
 892 
 893                 /*
 894                  * Skip the 1st padding area.
 895                  * Zero out the 2nd padding area where it might have
 896                  * left over data from previous filesystem format.
 897                  */
 898                 vdev_label_write(zio, vd, l, pad2,
 899                     offsetof(vdev_label_t, vl_pad2),
 900                     VDEV_PAD_SIZE, NULL, NULL, flags);
 901 
 902                 vdev_label_write(zio, vd, l, ub_abd,
 903                     offsetof(vdev_label_t, vl_uberblock),
 904                     VDEV_UBERBLOCK_RING, NULL, NULL, flags);
 905         }
 906 
 907         error = zio_wait(zio);
 908 
 909         if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
 910                 flags |= ZIO_FLAG_TRYHARD;
 911                 goto retry;
 912         }
 913 
 914         nvlist_free(label);
 915         abd_free(pad2);
 916         abd_free(ub_abd);
 917         abd_free(vp_abd);
 918 
 919         /*
 920          * If this vdev hasn't been previously identified as a spare, then we
 921          * mark it as such only if a) we are labeling it as a spare, or b) it
 922          * exists as a spare elsewhere in the system.  Do the same for
 923          * level 2 ARC devices.
 924          */
 925         if (error == 0 && !vd->vdev_isspare &&
 926             (reason == VDEV_LABEL_SPARE ||
 927             spa_spare_exists(vd->vdev_guid, NULL, NULL)))
 928                 spa_spare_add(vd);
 929 
 930         if (error == 0 && !vd->vdev_isl2cache &&
 931             (reason == VDEV_LABEL_L2CACHE ||
 932             spa_l2cache_exists(vd->vdev_guid, NULL)))
 933                 spa_l2cache_add(vd);
 934 
 935         return (error);
 936 }
 937 
 938 /*
 939  * ==========================================================================
 940  * uberblock load/sync
 941  * ==========================================================================
 942  */
 943 
 944 /*
 945  * Consider the following situation: txg is safely synced to disk.  We've
 946  * written the first uberblock for txg + 1, and then we lose power.  When we
 947  * come back up, we fail to see the uberblock for txg + 1 because, say,
 948  * it was on a mirrored device and the replica to which we wrote txg + 1
 949  * is now offline.  If we then make some changes and sync txg + 1, and then
 950  * the missing replica comes back, then for a few seconds we'll have two
 951  * conflicting uberblocks on disk with the same txg.  The solution is simple:
 952  * among uberblocks with equal txg, choose the one with the latest timestamp.
 953  */
 954 static int
 955 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
 956 {
 957         if (ub1->ub_txg < ub2->ub_txg)
 958                 return (-1);
 959         if (ub1->ub_txg > ub2->ub_txg)
 960                 return (1);
 961 
 962         if (ub1->ub_timestamp < ub2->ub_timestamp)
 963                 return (-1);
 964         if (ub1->ub_timestamp > ub2->ub_timestamp)
 965                 return (1);
 966 
 967         return (0);
 968 }
 969 
 970 struct ubl_cbdata {
 971         uberblock_t     *ubl_ubbest;    /* Best uberblock */
 972         vdev_t          *ubl_vd;        /* vdev associated with the above */
 973 };
 974 
 975 static void
 976 vdev_uberblock_load_done(zio_t *zio)
 977 {
 978         vdev_t *vd = zio->io_vd;
 979         spa_t *spa = zio->io_spa;
 980         zio_t *rio = zio->io_private;
 981         uberblock_t *ub = abd_to_buf(zio->io_abd);
 982         struct ubl_cbdata *cbp = rio->io_private;
 983 
 984         ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
 985 
 986         if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
 987                 mutex_enter(&rio->io_lock);
 988                 if (ub->ub_txg <= spa->spa_load_max_txg &&
 989                     vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
 990                         /*
 991                          * Keep track of the vdev in which this uberblock
 992                          * was found. We will use this information later
 993                          * to obtain the config nvlist associated with
 994                          * this uberblock.
 995                          */
 996                         *cbp->ubl_ubbest = *ub;
 997                         cbp->ubl_vd = vd;
 998                 }
 999                 mutex_exit(&rio->io_lock);
1000         }
1001 
1002         abd_free(zio->io_abd);
1003 }
1004 
1005 static void
1006 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1007     struct ubl_cbdata *cbp)
1008 {
1009         for (int c = 0; c < vd->vdev_children; c++)
1010                 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1011 
1012         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1013                 for (int l = 0; l < VDEV_LABELS; l++) {
1014                         for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1015                                 vdev_label_read(zio, vd, l,
1016                                     abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1017                                     B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1018                                     VDEV_UBERBLOCK_SIZE(vd),
1019                                     vdev_uberblock_load_done, zio, flags);
1020                         }
1021                 }
1022         }
1023 }
1024 
1025 /*
1026  * Reads the 'best' uberblock from disk along with its associated
1027  * configuration. First, we read the uberblock array of each label of each
1028  * vdev, keeping track of the uberblock with the highest txg in each array.
1029  * Then, we read the configuration from the same vdev as the best uberblock.
1030  */
1031 void
1032 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1033 {
1034         zio_t *zio;
1035         spa_t *spa = rvd->vdev_spa;
1036         struct ubl_cbdata cb;
1037         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1038             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1039 
1040         ASSERT(ub);
1041         ASSERT(config);
1042 
1043         bzero(ub, sizeof (uberblock_t));
1044         *config = NULL;
1045 
1046         cb.ubl_ubbest = ub;
1047         cb.ubl_vd = NULL;
1048 
1049         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1050         zio = zio_root(spa, NULL, &cb, flags);
1051         vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1052         (void) zio_wait(zio);
1053 
1054         /*
1055          * It's possible that the best uberblock was discovered on a label
1056          * that has a configuration which was written in a future txg.
1057          * Search all labels on this vdev to find the configuration that
1058          * matches the txg for our uberblock.
1059          */
1060         if (cb.ubl_vd != NULL) {
1061                 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1062                     "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1063 
1064                 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1065                 if (*config == NULL && spa->spa_extreme_rewind) {
1066                         vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1067                             "Trying again without txg restrictions.");
1068                         *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1069                 }
1070                 if (*config == NULL) {
1071                         vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1072                 }
1073         }
1074         spa_config_exit(spa, SCL_ALL, FTAG);
1075 }
1076 
1077 /*
1078  * On success, increment root zio's count of good writes.
1079  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1080  */
1081 static void
1082 vdev_uberblock_sync_done(zio_t *zio)
1083 {
1084         uint64_t *good_writes = zio->io_private;
1085 
1086         if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1087                 atomic_inc_64(good_writes);
1088 }
1089 
1090 /*
1091  * Write the uberblock to all labels of all leaves of the specified vdev.
1092  */
1093 static void
1094 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1095 {
1096         for (uint64_t c = 0; c < vd->vdev_children; c++)
1097                 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1098 
1099         if (!vd->vdev_ops->vdev_op_leaf)
1100                 return;
1101 
1102         if (!vdev_writeable(vd))
1103                 return;
1104 
1105         int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1106 
1107         /* Copy the uberblock_t into the ABD */
1108         abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1109         abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1110         abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1111 
1112         for (int l = 0; l < VDEV_LABELS; l++)
1113                 vdev_label_write(zio, vd, l, ub_abd,
1114                     VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1115                     vdev_uberblock_sync_done, zio->io_private,
1116                     flags | ZIO_FLAG_DONT_PROPAGATE);
1117 
1118         abd_free(ub_abd);
1119 }
1120 
1121 /* Sync the uberblocks to all vdevs in svd[] */
1122 int
1123 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1124 {
1125         spa_t *spa = svd[0]->vdev_spa;
1126         zio_t *zio;
1127         uint64_t good_writes = 0;
1128 
1129         zio = zio_root(spa, NULL, &good_writes, flags);
1130 
1131         for (int v = 0; v < svdcount; v++)
1132                 vdev_uberblock_sync(zio, ub, svd[v], flags);
1133 
1134         (void) zio_wait(zio);
1135 
1136         /*
1137          * Flush the uberblocks to disk.  This ensures that the odd labels
1138          * are no longer needed (because the new uberblocks and the even
1139          * labels are safely on disk), so it is safe to overwrite them.
1140          */
1141         zio = zio_root(spa, NULL, NULL, flags);
1142 
1143         for (int v = 0; v < svdcount; v++) {
1144                 if (vdev_writeable(svd[v])) {
1145                         zio_flush(zio, svd[v]);
1146                 }
1147         }
1148 
1149         (void) zio_wait(zio);
1150 
1151         return (good_writes >= 1 ? 0 : EIO);
1152 }
1153 
1154 /*
1155  * On success, increment the count of good writes for our top-level vdev.
1156  */
1157 static void
1158 vdev_label_sync_done(zio_t *zio)
1159 {
1160         uint64_t *good_writes = zio->io_private;
1161 
1162         if (zio->io_error == 0)
1163                 atomic_inc_64(good_writes);
1164 }
1165 
1166 /*
1167  * If there weren't enough good writes, indicate failure to the parent.
1168  */
1169 static void
1170 vdev_label_sync_top_done(zio_t *zio)
1171 {
1172         uint64_t *good_writes = zio->io_private;
1173 
1174         if (*good_writes == 0)
1175                 zio->io_error = SET_ERROR(EIO);
1176 
1177         kmem_free(good_writes, sizeof (uint64_t));
1178 }
1179 
1180 /*
1181  * We ignore errors for log and cache devices, simply free the private data.
1182  */
1183 static void
1184 vdev_label_sync_ignore_done(zio_t *zio)
1185 {
1186         kmem_free(zio->io_private, sizeof (uint64_t));
1187 }
1188 
1189 /*
1190  * Write all even or odd labels to all leaves of the specified vdev.
1191  */
1192 static void
1193 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1194 {
1195         nvlist_t *label;
1196         vdev_phys_t *vp;
1197         abd_t *vp_abd;
1198         char *buf;
1199         size_t buflen;
1200 
1201         for (int c = 0; c < vd->vdev_children; c++)
1202                 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1203 
1204         if (!vd->vdev_ops->vdev_op_leaf)
1205                 return;
1206 
1207         if (!vdev_writeable(vd))
1208                 return;
1209 
1210         /*
1211          * Generate a label describing the top-level config to which we belong.
1212          */
1213         label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1214 
1215         vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1216         abd_zero(vp_abd, sizeof (vdev_phys_t));
1217         vp = abd_to_buf(vp_abd);
1218 
1219         buf = vp->vp_nvlist;
1220         buflen = sizeof (vp->vp_nvlist);
1221 
1222         if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1223                 for (; l < VDEV_LABELS; l += 2) {
1224                         vdev_label_write(zio, vd, l, vp_abd,
1225                             offsetof(vdev_label_t, vl_vdev_phys),
1226                             sizeof (vdev_phys_t),
1227                             vdev_label_sync_done, zio->io_private,
1228                             flags | ZIO_FLAG_DONT_PROPAGATE);
1229                 }
1230         }
1231 
1232         abd_free(vp_abd);
1233         nvlist_free(label);
1234 }
1235 
1236 int
1237 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1238 {
1239         list_t *dl = &spa->spa_config_dirty_list;
1240         vdev_t *vd;
1241         zio_t *zio;
1242         int error;
1243 
1244         /*
1245          * Write the new labels to disk.
1246          */
1247         zio = zio_root(spa, NULL, NULL, flags);
1248 
1249         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1250                 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1251                     KM_SLEEP);
1252 
1253                 ASSERT(!vd->vdev_ishole);
1254 
1255                 zio_t *vio = zio_null(zio, spa, NULL,
1256                     (vd->vdev_islog || vd->vdev_aux != NULL) ?
1257                     vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1258                     good_writes, flags);
1259                 vdev_label_sync(vio, vd, l, txg, flags);
1260                 zio_nowait(vio);
1261         }
1262 
1263         error = zio_wait(zio);
1264 
1265         /*
1266          * Flush the new labels to disk.
1267          */
1268         zio = zio_root(spa, NULL, NULL, flags);
1269 
1270         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1271                 zio_flush(zio, vd);
1272 
1273         (void) zio_wait(zio);
1274 
1275         return (error);
1276 }
1277 
1278 /*
1279  * Sync the uberblock and any changes to the vdev configuration.
1280  *
1281  * The order of operations is carefully crafted to ensure that
1282  * if the system panics or loses power at any time, the state on disk
1283  * is still transactionally consistent.  The in-line comments below
1284  * describe the failure semantics at each stage.
1285  *
1286  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1287  * at any time, you can just call it again, and it will resume its work.
1288  */
1289 int
1290 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1291 {
1292         spa_t *spa = svd[0]->vdev_spa;
1293         uberblock_t *ub = &spa->spa_uberblock;
1294         vdev_t *vd;
1295         zio_t *zio;
1296         int error = 0;
1297         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1298 
1299 retry:
1300         /*
1301          * Normally, we don't want to try too hard to write every label and
1302          * uberblock.  If there is a flaky disk, we don't want the rest of the
1303          * sync process to block while we retry.  But if we can't write a
1304          * single label out, we should retry with ZIO_FLAG_TRYHARD before
1305          * bailing out and declaring the pool faulted.
1306          */
1307         if (error != 0) {
1308                 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1309                         return (error);
1310                 flags |= ZIO_FLAG_TRYHARD;
1311         }
1312 
1313         ASSERT(ub->ub_txg <= txg);
1314 
1315         /*
1316          * If this isn't a resync due to I/O errors,
1317          * and nothing changed in this transaction group,
1318          * and the vdev configuration hasn't changed,
1319          * then there's nothing to do.
1320          */
1321         if (ub->ub_txg < txg &&
1322             uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1323             list_is_empty(&spa->spa_config_dirty_list))
1324                 return (0);
1325 
1326         if (txg > spa_freeze_txg(spa))
1327                 return (0);
1328 
1329         ASSERT(txg <= spa->spa_final_txg);
1330 
1331         /*
1332          * Flush the write cache of every disk that's been written to
1333          * in this transaction group.  This ensures that all blocks
1334          * written in this txg will be committed to stable storage
1335          * before any uberblock that references them.
1336          */
1337         zio = zio_root(spa, NULL, NULL, flags);
1338 
1339         for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1340             vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1341                 zio_flush(zio, vd);
1342 
1343         (void) zio_wait(zio);
1344 
1345         /*
1346          * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1347          * system dies in the middle of this process, that's OK: all of the
1348          * even labels that made it to disk will be newer than any uberblock,
1349          * and will therefore be considered invalid.  The odd labels (L1, L3),
1350          * which have not yet been touched, will still be valid.  We flush
1351          * the new labels to disk to ensure that all even-label updates
1352          * are committed to stable storage before the uberblock update.
1353          */
1354         if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1355                 goto retry;
1356 
1357         /*
1358          * Sync the uberblocks to all vdevs in svd[].
1359          * If the system dies in the middle of this step, there are two cases
1360          * to consider, and the on-disk state is consistent either way:
1361          *
1362          * (1)  If none of the new uberblocks made it to disk, then the
1363          *      previous uberblock will be the newest, and the odd labels
1364          *      (which had not yet been touched) will be valid with respect
1365          *      to that uberblock.
1366          *
1367          * (2)  If one or more new uberblocks made it to disk, then they
1368          *      will be the newest, and the even labels (which had all
1369          *      been successfully committed) will be valid with respect
1370          *      to the new uberblocks.
1371          */
1372         if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1373                 goto retry;
1374 
1375         /*
1376          * Sync out odd labels for every dirty vdev.  If the system dies
1377          * in the middle of this process, the even labels and the new
1378          * uberblocks will suffice to open the pool.  The next time
1379          * the pool is opened, the first thing we'll do -- before any
1380          * user data is modified -- is mark every vdev dirty so that
1381          * all labels will be brought up to date.  We flush the new labels
1382          * to disk to ensure that all odd-label updates are committed to
1383          * stable storage before the next transaction group begins.
1384          */
1385         if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
1386                 goto retry;
1387 
1388         return (0);
1389 }