4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25  * Copyright 2017 Nexenta Systems, Inc.
  26  * Copyright (c) 2014 Integros [integros.com]
  27  * Copyright 2016 Toomas Soome <tsoome@me.com>
  28  * Copyright 2017 Joyent, Inc.
  29  */
  30 
  31 #include <sys/zfs_context.h>
  32 #include <sys/fm/fs/zfs.h>
  33 #include <sys/spa.h>
  34 #include <sys/spa_impl.h>
  35 #include <sys/bpobj.h>
  36 #include <sys/dmu.h>
  37 #include <sys/dmu_tx.h>
  38 #include <sys/dsl_dir.h>
  39 #include <sys/vdev_impl.h>
  40 #include <sys/uberblock_impl.h>
  41 #include <sys/metaslab.h>
  42 #include <sys/metaslab_impl.h>
  43 #include <sys/space_map.h>
  44 #include <sys/space_reftree.h>
  45 #include <sys/zio.h>
  46 #include <sys/zap.h>
  47 #include <sys/fs/zfs.h>
  48 #include <sys/arc.h>
  49 #include <sys/zil.h>
  50 #include <sys/dsl_scan.h>
  51 #include <sys/abd.h>
  52 
  53 /*
  54  * Virtual device management.
  55  */
  56 
  57 static vdev_ops_t *vdev_ops_table[] = {
  58         &vdev_root_ops,
  59         &vdev_raidz_ops,
  60         &vdev_mirror_ops,
  61         &vdev_replacing_ops,
  62         &vdev_spare_ops,
  63         &vdev_disk_ops,
  64         &vdev_file_ops,
  65         &vdev_missing_ops,
  66         &vdev_hole_ops,
  67         &vdev_indirect_ops,
  68         NULL
  69 };
  70 
  71 /* maximum scrub/resilver I/O queue per leaf vdev */
  72 int zfs_scrub_limit = 10;
  73 
  74 /*
  75  * When a vdev is added, it will be divided into approximately (but no
  76  * more than) this number of metaslabs.
  77  */
  78 int metaslabs_per_vdev = 200;
  79 
  80 boolean_t vdev_validate_skip = B_FALSE;
  81 
  82 /*PRINTFLIKE2*/
  83 void
  84 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
  85 {
  86         va_list adx;
  87         char buf[256];
  88 
  89         va_start(adx, fmt);
  90         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
  91         va_end(adx);
  92 
  93         if (vd->vdev_path != NULL) {
  94                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
  95                     vd->vdev_path, buf);
  96         } else {
  97                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
  98                     vd->vdev_ops->vdev_op_type,
  99                     (u_longlong_t)vd->vdev_id,
 100                     (u_longlong_t)vd->vdev_guid, buf);
 101         }
 102 }
 103 
 104 void
 105 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
 106 {
 107         char state[20];
 108 
 109         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
 110                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
 111                     vd->vdev_ops->vdev_op_type);
 112                 return;
 113         }
 114 
 115         switch (vd->vdev_state) {
 116         case VDEV_STATE_UNKNOWN:
 117                 (void) snprintf(state, sizeof (state), "unknown");
 118                 break;
 119         case VDEV_STATE_CLOSED:
 120                 (void) snprintf(state, sizeof (state), "closed");
 121                 break;
 122         case VDEV_STATE_OFFLINE:
 123                 (void) snprintf(state, sizeof (state), "offline");
 124                 break;
 125         case VDEV_STATE_REMOVED:
 126                 (void) snprintf(state, sizeof (state), "removed");
 127                 break;
 128         case VDEV_STATE_CANT_OPEN:
 129                 (void) snprintf(state, sizeof (state), "can't open");
 130                 break;
 131         case VDEV_STATE_FAULTED:
 132                 (void) snprintf(state, sizeof (state), "faulted");
 133                 break;
 134         case VDEV_STATE_DEGRADED:
 135                 (void) snprintf(state, sizeof (state), "degraded");
 136                 break;
 137         case VDEV_STATE_HEALTHY:
 138                 (void) snprintf(state, sizeof (state), "healthy");
 139                 break;
 140         default:
 141                 (void) snprintf(state, sizeof (state), "<state %u>",
 142                     (uint_t)vd->vdev_state);
 143         }
 144 
 145         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
 146             "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
 147             vd->vdev_islog ? " (log)" : "",
 148             (u_longlong_t)vd->vdev_guid,
 149             vd->vdev_path ? vd->vdev_path : "N/A", state);
 150 
 151         for (uint64_t i = 0; i < vd->vdev_children; i++)
 152                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
 153 }
 154 
 155 /*
 156  * Given a vdev type, return the appropriate ops vector.
 157  */
 158 static vdev_ops_t *
 159 vdev_getops(const char *type)
 160 {
 161         vdev_ops_t *ops, **opspp;
 162 
 163         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
 164                 if (strcmp(ops->vdev_op_type, type) == 0)
 165                         break;
 166 
 167         return (ops);
 168 }
 169 
 170 /*
 171  * Default asize function: return the MAX of psize with the asize of
 172  * all children.  This is what's used by anything other than RAID-Z.
 173  */
 174 uint64_t
 175 vdev_default_asize(vdev_t *vd, uint64_t psize)
 176 {
 177         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
 178         uint64_t csize;
 179 
 180         for (int c = 0; c < vd->vdev_children; c++) {
 181                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
 182                 asize = MAX(asize, csize);
 183         }
 184 
 185         return (asize);
 186 }
 187 
 188 /*
 189  * Get the minimum allocatable size. We define the allocatable size as
 
 295         cvd->vdev_parent = pvd;
 296 
 297         if (pvd == NULL)
 298                 return;
 299 
 300         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
 301 
 302         oldsize = pvd->vdev_children * sizeof (vdev_t *);
 303         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
 304         newsize = pvd->vdev_children * sizeof (vdev_t *);
 305 
 306         newchild = kmem_zalloc(newsize, KM_SLEEP);
 307         if (pvd->vdev_child != NULL) {
 308                 bcopy(pvd->vdev_child, newchild, oldsize);
 309                 kmem_free(pvd->vdev_child, oldsize);
 310         }
 311 
 312         pvd->vdev_child = newchild;
 313         pvd->vdev_child[id] = cvd;
 314 
 315         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
 316         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
 317 
 318         /*
 319          * Walk up all ancestors to update guid sum.
 320          */
 321         for (; pvd != NULL; pvd = pvd->vdev_parent)
 322                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
 323 }
 324 
 325 void
 326 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
 327 {
 328         int c;
 329         uint_t id = cvd->vdev_id;
 330 
 331         ASSERT(cvd->vdev_parent == pvd);
 332 
 333         if (pvd == NULL)
 334                 return;
 
 376 
 377         for (int c = newc = 0; c < oldc; c++) {
 378                 if ((cvd = pvd->vdev_child[c]) != NULL) {
 379                         newchild[newc] = cvd;
 380                         cvd->vdev_id = newc++;
 381                 }
 382         }
 383 
 384         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
 385         pvd->vdev_child = newchild;
 386         pvd->vdev_children = newc;
 387 }
 388 
 389 /*
 390  * Allocate and minimally initialize a vdev_t.
 391  */
 392 vdev_t *
 393 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 394 {
 395         vdev_t *vd;
 396         vdev_indirect_config_t *vic;
 397 
 398         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
 399         vic = &vd->vdev_indirect_config;
 400 
 401         if (spa->spa_root_vdev == NULL) {
 402                 ASSERT(ops == &vdev_root_ops);
 403                 spa->spa_root_vdev = vd;
 404                 spa->spa_load_guid = spa_generate_guid(NULL);
 405         }
 406 
 407         if (guid == 0 && ops != &vdev_hole_ops) {
 408                 if (spa->spa_root_vdev == vd) {
 409                         /*
 410                          * The root vdev's guid will also be the pool guid,
 411                          * which must be unique among all pools.
 412                          */
 413                         guid = spa_generate_guid(NULL);
 414                 } else {
 415                         /*
 416                          * Any other vdev's guid must be unique within the pool.
 417                          */
 418                         guid = spa_generate_guid(spa);
 419                 }
 420                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
 421         }
 422 
 423         vd->vdev_spa = spa;
 424         vd->vdev_id = id;
 425         vd->vdev_guid = guid;
 426         vd->vdev_guid_sum = guid;
 427         vd->vdev_ops = ops;
 428         vd->vdev_state = VDEV_STATE_CLOSED;
 429         vd->vdev_ishole = (ops == &vdev_hole_ops);
 430         vic->vic_prev_indirect_vdev = UINT64_MAX;
 431 
 432         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
 433         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
 434         vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
 435 
 436         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
 437         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
 438         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
 439         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
 440         for (int t = 0; t < DTL_TYPES; t++) {
 441                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
 442         }
 443         txg_list_create(&vd->vdev_ms_list, spa,
 444             offsetof(struct metaslab, ms_txg_node));
 445         txg_list_create(&vd->vdev_dtl_list, spa,
 446             offsetof(struct vdev, vdev_dtl_node));
 447         vd->vdev_stat.vs_timestamp = gethrtime();
 448         vdev_queue_init(vd);
 449         vdev_cache_init(vd);
 450 
 451         return (vd);
 452 }
 453 
 454 /*
 455  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
 456  * creating a new vdev or loading an existing one - the behavior is slightly
 457  * different for each case.
 458  */
 459 int
 460 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 461     int alloctype)
 462 {
 463         vdev_ops_t *ops;
 464         char *type;
 465         uint64_t guid = 0, islog, nparity;
 466         vdev_t *vd;
 467         vdev_indirect_config_t *vic;
 468 
 469         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 470 
 471         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
 472                 return (SET_ERROR(EINVAL));
 473 
 474         if ((ops = vdev_getops(type)) == NULL)
 475                 return (SET_ERROR(EINVAL));
 476 
 477         /*
 478          * If this is a load, get the vdev guid from the nvlist.
 479          * Otherwise, vdev_alloc_common() will generate one for us.
 480          */
 481         if (alloctype == VDEV_ALLOC_LOAD) {
 482                 uint64_t label_id;
 483 
 484                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
 485                     label_id != id)
 486                         return (SET_ERROR(EINVAL));
 487 
 
 490         } else if (alloctype == VDEV_ALLOC_SPARE) {
 491                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 492                         return (SET_ERROR(EINVAL));
 493         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
 494                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 495                         return (SET_ERROR(EINVAL));
 496         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 497                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 498                         return (SET_ERROR(EINVAL));
 499         }
 500 
 501         /*
 502          * The first allocated vdev must be of type 'root'.
 503          */
 504         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
 505                 return (SET_ERROR(EINVAL));
 506 
 507         /*
 508          * Determine whether we're a log vdev.
 509          */
 510         islog = 0;
 511         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
 512         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
 513                 return (SET_ERROR(ENOTSUP));
 514 
 515         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
 516                 return (SET_ERROR(ENOTSUP));
 517 
 518         /*
 519          * Set the nparity property for RAID-Z vdevs.
 520          */
 521         nparity = -1ULL;
 522         if (ops == &vdev_raidz_ops) {
 523                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
 524                     &nparity) == 0) {
 525                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
 526                                 return (SET_ERROR(EINVAL));
 527                         /*
 528                          * Previous versions could only support 1 or 2 parity
 529                          * device.
 530                          */
 531                         if (nparity > 1 &&
 532                             spa_version(spa) < SPA_VERSION_RAIDZ2)
 533                                 return (SET_ERROR(ENOTSUP));
 534                         if (nparity > 2 &&
 535                             spa_version(spa) < SPA_VERSION_RAIDZ3)
 536                                 return (SET_ERROR(ENOTSUP));
 537                 } else {
 538                         /*
 539                          * We require the parity to be specified for SPAs that
 540                          * support multiple parity levels.
 541                          */
 542                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
 543                                 return (SET_ERROR(EINVAL));
 544                         /*
 545                          * Otherwise, we default to 1 parity device for RAID-Z.
 546                          */
 547                         nparity = 1;
 548                 }
 549         } else {
 550                 nparity = 0;
 551         }
 552         ASSERT(nparity != -1ULL);
 553 
 554         vd = vdev_alloc_common(spa, id, guid, ops);
 555         vic = &vd->vdev_indirect_config;
 556 
 557         vd->vdev_islog = islog;
 558         vd->vdev_nparity = nparity;
 559 
 560         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
 561                 vd->vdev_path = spa_strdup(vd->vdev_path);
 562         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
 563                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
 564         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 565             &vd->vdev_physpath) == 0)
 566                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
 567         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
 568                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
 569 
 570         /*
 571          * Set the whole_disk property.  If it's not specified, leave the value
 572          * as -1.
 573          */
 574         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 575             &vd->vdev_wholedisk) != 0)
 576                 vd->vdev_wholedisk = -1ULL;
 577 
 578         ASSERT0(vic->vic_mapping_object);
 579         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
 580             &vic->vic_mapping_object);
 581         ASSERT0(vic->vic_births_object);
 582         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
 583             &vic->vic_births_object);
 584         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
 585         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
 586             &vic->vic_prev_indirect_vdev);
 587 
 588         /*
 589          * Look for the 'not present' flag.  This will only be set if the device
 590          * was not present at the time of import.
 591          */
 592         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
 593             &vd->vdev_not_present);
 594 
 595         /*
 596          * Get the alignment requirement.
 597          */
 598         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 599 
 600         /*
 601          * Retrieve the vdev creation time.
 602          */
 603         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 604             &vd->vdev_crtxg);
 605 
 606         /*
 607          * If we're a top-level vdev, try to load the allocation parameters.
 608          */
 609         if (parent && !parent->vdev_parent &&
 610             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 611                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 612                     &vd->vdev_ms_array);
 613                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 614                     &vd->vdev_ms_shift);
 615                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
 616                     &vd->vdev_asize);
 617                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
 618                     &vd->vdev_removing);
 619                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
 620                     &vd->vdev_top_zap);
 621         } else {
 622                 ASSERT0(vd->vdev_top_zap);
 623         }
 624 
 625         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
 626                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
 627                     alloctype == VDEV_ALLOC_ADD ||
 628                     alloctype == VDEV_ALLOC_SPLIT ||
 629                     alloctype == VDEV_ALLOC_ROOTPOOL);
 630                 vd->vdev_mg = metaslab_group_create(islog ?
 631                     spa_log_class(spa) : spa_normal_class(spa), vd);
 632         }
 633 
 634         if (vd->vdev_ops->vdev_op_leaf &&
 635             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 636                 (void) nvlist_lookup_uint64(nv,
 637                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
 638         } else {
 639                 ASSERT0(vd->vdev_leaf_zap);
 640         }
 641 
 642         /*
 643          * If we're a leaf vdev, try to load the DTL object and other state.
 644          */
 645 
 646         if (vd->vdev_ops->vdev_op_leaf &&
 647             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
 648             alloctype == VDEV_ALLOC_ROOTPOOL)) {
 649                 if (alloctype == VDEV_ALLOC_LOAD) {
 650                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
 651                             &vd->vdev_dtl_object);
 
 693                         }
 694                 }
 695         }
 696 
 697         /*
 698          * Add ourselves to the parent's list of children.
 699          */
 700         vdev_add_child(parent, vd);
 701 
 702         *vdp = vd;
 703 
 704         return (0);
 705 }
 706 
 707 void
 708 vdev_free(vdev_t *vd)
 709 {
 710         spa_t *spa = vd->vdev_spa;
 711 
 712         /*
 713          * vdev_free() implies closing the vdev first.  This is simpler than
 714          * trying to ensure complicated semantics for all callers.
 715          */
 716         vdev_close(vd);
 717 
 718         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 719         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 720 
 721         /*
 722          * Free all children.
 723          */
 724         for (int c = 0; c < vd->vdev_children; c++)
 725                 vdev_free(vd->vdev_child[c]);
 726 
 727         ASSERT(vd->vdev_child == NULL);
 728         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 729 
 730         /*
 731          * Discard allocation state.
 732          */
 
 760                 spa_strfree(vd->vdev_physpath);
 761         if (vd->vdev_fru)
 762                 spa_strfree(vd->vdev_fru);
 763 
 764         if (vd->vdev_isspare)
 765                 spa_spare_remove(vd);
 766         if (vd->vdev_isl2cache)
 767                 spa_l2cache_remove(vd);
 768 
 769         txg_list_destroy(&vd->vdev_ms_list);
 770         txg_list_destroy(&vd->vdev_dtl_list);
 771 
 772         mutex_enter(&vd->vdev_dtl_lock);
 773         space_map_close(vd->vdev_dtl_sm);
 774         for (int t = 0; t < DTL_TYPES; t++) {
 775                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
 776                 range_tree_destroy(vd->vdev_dtl[t]);
 777         }
 778         mutex_exit(&vd->vdev_dtl_lock);
 779 
 780         EQUIV(vd->vdev_indirect_births != NULL,
 781             vd->vdev_indirect_mapping != NULL);
 782         if (vd->vdev_indirect_births != NULL) {
 783                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
 784                 vdev_indirect_births_close(vd->vdev_indirect_births);
 785         }
 786 
 787         if (vd->vdev_obsolete_sm != NULL) {
 788                 ASSERT(vd->vdev_removing ||
 789                     vd->vdev_ops == &vdev_indirect_ops);
 790                 space_map_close(vd->vdev_obsolete_sm);
 791                 vd->vdev_obsolete_sm = NULL;
 792         }
 793         range_tree_destroy(vd->vdev_obsolete_segments);
 794         rw_destroy(&vd->vdev_indirect_rwlock);
 795         mutex_destroy(&vd->vdev_obsolete_lock);
 796 
 797         mutex_destroy(&vd->vdev_queue_lock);
 798         mutex_destroy(&vd->vdev_dtl_lock);
 799         mutex_destroy(&vd->vdev_stat_lock);
 800         mutex_destroy(&vd->vdev_probe_lock);
 801 
 802         if (vd == spa->spa_root_vdev)
 803                 spa->spa_root_vdev = NULL;
 804 
 805         kmem_free(vd, sizeof (vdev_t));
 806 }
 807 
 808 /*
 809  * Transfer top-level vdev state from svd to tvd.
 810  */
 811 static void
 812 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 813 {
 814         spa_t *spa = svd->vdev_spa;
 815         metaslab_t *msp;
 816         vdev_t *vd;
 817         int t;
 818 
 819         ASSERT(tvd == tvd->vdev_top);
 820 
 821         tvd->vdev_ms_array = svd->vdev_ms_array;
 822         tvd->vdev_ms_shift = svd->vdev_ms_shift;
 823         tvd->vdev_ms_count = svd->vdev_ms_count;
 824         tvd->vdev_top_zap = svd->vdev_top_zap;
 
 854                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 855                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 856                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 857         }
 858 
 859         if (list_link_active(&svd->vdev_config_dirty_node)) {
 860                 vdev_config_clean(svd);
 861                 vdev_config_dirty(tvd);
 862         }
 863 
 864         if (list_link_active(&svd->vdev_state_dirty_node)) {
 865                 vdev_state_clean(svd);
 866                 vdev_state_dirty(tvd);
 867         }
 868 
 869         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 870         svd->vdev_deflate_ratio = 0;
 871 
 872         tvd->vdev_islog = svd->vdev_islog;
 873         svd->vdev_islog = 0;
 874 }
 875 
 876 static void
 877 vdev_top_update(vdev_t *tvd, vdev_t *vd)
 878 {
 879         if (vd == NULL)
 880                 return;
 881 
 882         vd->vdev_top = tvd;
 883 
 884         for (int c = 0; c < vd->vdev_children; c++)
 885                 vdev_top_update(tvd, vd->vdev_child[c]);
 886 }
 887 
 888 /*
 889  * Add a mirror/replacing vdev above an existing vdev.
 890  */
 891 vdev_t *
 892 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 893 {
 894         spa_t *spa = cvd->vdev_spa;
 895         vdev_t *pvd = cvd->vdev_parent;
 896         vdev_t *mvd;
 897 
 898         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 899 
 900         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 901 
 902         mvd->vdev_asize = cvd->vdev_asize;
 903         mvd->vdev_min_asize = cvd->vdev_min_asize;
 904         mvd->vdev_max_asize = cvd->vdev_max_asize;
 905         mvd->vdev_psize = cvd->vdev_psize;
 906         mvd->vdev_ashift = cvd->vdev_ashift;
 907         mvd->vdev_state = cvd->vdev_state;
 908         mvd->vdev_crtxg = cvd->vdev_crtxg;
 909 
 910         vdev_remove_child(pvd, cvd);
 911         vdev_add_child(pvd, mvd);
 912         cvd->vdev_id = mvd->vdev_children;
 913         vdev_add_child(mvd, cvd);
 914         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 915 
 916         if (mvd == mvd->vdev_top)
 917                 vdev_top_transfer(cvd, mvd);
 918 
 919         return (mvd);
 920 }
 921 
 922 /*
 923  * Remove a 1-way mirror/replacing vdev from the tree.
 924  */
 925 void
 
 966 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 967 {
 968         spa_t *spa = vd->vdev_spa;
 969         objset_t *mos = spa->spa_meta_objset;
 970         uint64_t m;
 971         uint64_t oldc = vd->vdev_ms_count;
 972         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 973         metaslab_t **mspp;
 974         int error;
 975 
 976         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 977 
 978         /*
 979          * This vdev is not being allocated from yet or is a hole.
 980          */
 981         if (vd->vdev_ms_shift == 0)
 982                 return (0);
 983 
 984         ASSERT(!vd->vdev_ishole);
 985 
 986         ASSERT(oldc <= newc);
 987 
 988         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 989 
 990         if (oldc != 0) {
 991                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
 992                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 993         }
 994 
 995         vd->vdev_ms = mspp;
 996         vd->vdev_ms_count = newc;
 997 
 998         for (m = oldc; m < newc; m++) {
 999                 uint64_t object = 0;
1000 
1001                 /*
1002                  * vdev_ms_array may be 0 if we are creating the "fake"
1003                  * metaslabs for an indirect vdev for zdb's leak detection.
1004                  * See zdb_leak_init().
1005                  */
1006                 if (txg == 0 && vd->vdev_ms_array != 0) {
1007                         error = dmu_read(mos, vd->vdev_ms_array,
1008                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1009                             DMU_READ_PREFETCH);
1010                         if (error != 0) {
1011                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1012                                     "array [error=%d]", error);
1013                                 return (error);
1014                         }
1015                 }
1016 
1017                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1018                     &(vd->vdev_ms[m]));
1019                 if (error != 0) {
1020                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1021                             error);
1022                         return (error);
1023                 }
1024         }
1025 
1026         if (txg == 0)
1027                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1028 
1029         /*
1030          * If the vdev is being removed we don't activate
1031          * the metaslabs since we want to ensure that no new
1032          * allocations are performed on this device.
1033          */
1034         if (oldc == 0 && !vd->vdev_removing)
1035                 metaslab_group_activate(vd->vdev_mg);
1036 
1037         if (txg == 0)
1038                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1039 
1040         return (0);
1041 }
1042 
1043 void
1044 vdev_metaslab_fini(vdev_t *vd)
1045 {
1046         if (vd->vdev_ms != NULL) {
1047                 uint64_t count = vd->vdev_ms_count;
1048 
1049                 metaslab_group_passivate(vd->vdev_mg);
1050                 for (uint64_t m = 0; m < count; m++) {
1051                         metaslab_t *msp = vd->vdev_ms[m];
1052 
1053                         if (msp != NULL)
1054                                 metaslab_fini(msp);
1055                 }
1056                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1057                 vd->vdev_ms = NULL;
1058 
1059                 vd->vdev_ms_count = 0;
1060         }
1061         ASSERT0(vd->vdev_ms_count);
1062 }
1063 
1064 typedef struct vdev_probe_stats {
1065         boolean_t       vps_readable;
1066         boolean_t       vps_writeable;
1067         int             vps_flags;
1068 } vdev_probe_stats_t;
1069 
1070 static void
1071 vdev_probe_done(zio_t *zio)
1072 {
1073         spa_t *spa = zio->io_spa;
1074         vdev_t *vd = zio->io_vd;
1075         vdev_probe_stats_t *vps = zio->io_private;
1076 
1077         ASSERT(vd->vdev_probe_zio != NULL);
1078 
1079         if (zio->io_type == ZIO_TYPE_READ) {
1080                 if (zio->io_error == 0)
1081                         vps->vps_readable = 1;
 
1085                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1086                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1087                 } else {
1088                         abd_free(zio->io_abd);
1089                 }
1090         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1091                 if (zio->io_error == 0)
1092                         vps->vps_writeable = 1;
1093                 abd_free(zio->io_abd);
1094         } else if (zio->io_type == ZIO_TYPE_NULL) {
1095                 zio_t *pio;
1096 
1097                 vd->vdev_cant_read |= !vps->vps_readable;
1098                 vd->vdev_cant_write |= !vps->vps_writeable;
1099 
1100                 if (vdev_readable(vd) &&
1101                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1102                         zio->io_error = 0;
1103                 } else {
1104                         ASSERT(zio->io_error != 0);
1105                         vdev_dbgmsg(vd, "failed probe");
1106                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1107                             spa, vd, NULL, 0, 0);
1108                         zio->io_error = SET_ERROR(ENXIO);
1109                 }
1110 
1111                 mutex_enter(&vd->vdev_probe_lock);
1112                 ASSERT(vd->vdev_probe_zio == zio);
1113                 vd->vdev_probe_zio = NULL;
1114                 mutex_exit(&vd->vdev_probe_lock);
1115 
1116                 zio_link_t *zl = NULL;
1117                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1118                         if (!vdev_accessible(vd, pio))
1119                                 pio->io_error = SET_ERROR(ENXIO);
1120 
1121                 kmem_free(vps, sizeof (*vps));
1122         }
1123 }
1124 
1125 /*
 
1253          * in a single thread so that the same thread holds the
1254          * spa_namespace_lock
1255          */
1256         if (vdev_uses_zvols(vd)) {
1257                 for (int c = 0; c < children; c++)
1258                         vd->vdev_child[c]->vdev_open_error =
1259                             vdev_open(vd->vdev_child[c]);
1260                 return;
1261         }
1262         tq = taskq_create("vdev_open", children, minclsyspri,
1263             children, children, TASKQ_PREPOPULATE);
1264 
1265         for (int c = 0; c < children; c++)
1266                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1267                     TQ_SLEEP) != NULL);
1268 
1269         taskq_destroy(tq);
1270 }
1271 
1272 /*
1273  * Compute the raidz-deflation ratio.  Note, we hard-code
1274  * in 128k (1 << 17) because it is the "typical" blocksize.
1275  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1276  * otherwise it would inconsistently account for existing bp's.
1277  */
1278 static void
1279 vdev_set_deflate_ratio(vdev_t *vd)
1280 {
1281         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1282                 vd->vdev_deflate_ratio = (1 << 17) /
1283                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1284         }
1285 }
1286 
1287 /*
1288  * Prepare a virtual device for access.
1289  */
1290 int
1291 vdev_open(vdev_t *vd)
1292 {
1293         spa_t *spa = vd->vdev_spa;
1294         int error;
1295         uint64_t osize = 0;
1296         uint64_t max_osize = 0;
1297         uint64_t asize, max_asize, psize;
1298         uint64_t ashift = 0;
1299 
1300         ASSERT(vd->vdev_open_thread == curthread ||
1301             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1302         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1303             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1304             vd->vdev_state == VDEV_STATE_OFFLINE);
1305 
1306         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1307         vd->vdev_cant_read = B_FALSE;
1308         vd->vdev_cant_write = B_FALSE;
1309         vd->vdev_min_asize = vdev_get_min_asize(vd);
1310 
1311         /*
1312          * If this vdev is not removed, check its fault status.  If it's
1313          * faulted, bail out of the open.
1314          */
1315         if (!vd->vdev_removed && vd->vdev_faulted) {
1316                 ASSERT(vd->vdev_children == 0);
1317                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1318                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1319                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1320                     vd->vdev_label_aux);
1321                 return (SET_ERROR(ENXIO));
1322         } else if (vd->vdev_offline) {
1323                 ASSERT(vd->vdev_children == 0);
1324                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1325                 return (SET_ERROR(ENXIO));
1326         }
1327 
1328         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1329 
1330         /*
1331          * Reset the vdev_reopening flag so that we actually close
1332          * the vdev on error.
1333          */
1334         vd->vdev_reopening = B_FALSE;
1335         if (zio_injection_enabled && error == 0)
1336                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1337 
1338         if (error) {
1339                 if (vd->vdev_removed &&
1340                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1341                         vd->vdev_removed = B_FALSE;
1342 
1343                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1344                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1345                             vd->vdev_stat.vs_aux);
1346                 } else {
1347                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1348                             vd->vdev_stat.vs_aux);
1349                 }
1350                 return (error);
1351         }
1352 
1353         vd->vdev_removed = B_FALSE;
1354 
1355         /*
1356          * Recheck the faulted flag now that we have confirmed that
1357          * the vdev is accessible.  If we're faulted, bail.
1358          */
1359         if (vd->vdev_faulted) {
1360                 ASSERT(vd->vdev_children == 0);
1361                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1362                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1363                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1364                     vd->vdev_label_aux);
1365                 return (SET_ERROR(ENXIO));
1366         }
1367 
1368         if (vd->vdev_degraded) {
1369                 ASSERT(vd->vdev_children == 0);
 
1489                         spa->spa_min_ashift = vd->vdev_ashift;
1490         }
1491 
1492         /*
1493          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1494          * resilver.  But don't do this if we are doing a reopen for a scrub,
1495          * since this would just restart the scrub we are already doing.
1496          */
1497         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1498             vdev_resilver_needed(vd, NULL, NULL))
1499                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1500 
1501         return (0);
1502 }
1503 
1504 /*
1505  * Called once the vdevs are all opened, this routine validates the label
1506  * contents. This needs to be done before vdev_load() so that we don't
1507  * inadvertently do repair I/Os to the wrong device.
1508  *
1509  * This function will only return failure if one of the vdevs indicates that it
1510  * has since been destroyed or exported.  This is only possible if
1511  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1512  * will be updated but the function will return 0.
1513  */
1514 int
1515 vdev_validate(vdev_t *vd)
1516 {
1517         spa_t *spa = vd->vdev_spa;
1518         nvlist_t *label;
1519         uint64_t guid = 0, aux_guid = 0, top_guid;
1520         uint64_t state;
1521         nvlist_t *nvl;
1522         uint64_t txg;
1523 
1524         if (vdev_validate_skip)
1525                 return (0);
1526 
1527         for (uint64_t c = 0; c < vd->vdev_children; c++)
1528                 if (vdev_validate(vd->vdev_child[c]) != 0)
1529                         return (SET_ERROR(EBADF));
1530 
1531         /*
1532          * If the device has already failed, or was marked offline, don't do
1533          * any further validation.  Otherwise, label I/O will fail and we will
1534          * overwrite the previous state.
1535          */
1536         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1537                 return (0);
1538 
1539         /*
1540          * If we are performing an extreme rewind, we allow for a label that
1541          * was modified at a point after the current txg.
1542          */
1543         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0)
1544                 txg = UINT64_MAX;
1545         else
1546                 txg = spa_last_synced_txg(spa);
1547 
1548         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1549                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1550                     VDEV_AUX_BAD_LABEL);
1551                 vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1552                 return (0);
1553         }
1554 
1555         /*
1556          * Determine if this vdev has been split off into another
1557          * pool.  If so, then refuse to open it.
1558          */
1559         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1560             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1561                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1562                     VDEV_AUX_SPLIT_POOL);
1563                 nvlist_free(label);
1564                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1565                 return (0);
1566         }
1567 
1568         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1569                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1570                     VDEV_AUX_CORRUPT_DATA);
1571                 nvlist_free(label);
1572                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1573                     ZPOOL_CONFIG_POOL_GUID);
1574                 return (0);
1575         }
1576 
1577         /*
1578          * If config is not trusted then ignore the spa guid check. This is
1579          * necessary because if the machine crashed during a re-guid the new
1580          * guid might have been written to all of the vdev labels, but not the
1581          * cached config. The check will be performed again once we have the
1582          * trusted config from the MOS.
1583          */
1584         if (spa->spa_trust_config && guid != spa_guid(spa)) {
1585                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1586                     VDEV_AUX_CORRUPT_DATA);
1587                 nvlist_free(label);
1588                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1589                     "match config (%llu != %llu)", (u_longlong_t)guid,
1590                     (u_longlong_t)spa_guid(spa));
1591                 return (0);
1592         }
1593 
1594         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1595             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1596             &aux_guid) != 0)
1597                 aux_guid = 0;
1598 
1599         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1600                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1601                     VDEV_AUX_CORRUPT_DATA);
1602                 nvlist_free(label);
1603                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1604                     ZPOOL_CONFIG_GUID);
1605                 return (0);
1606         }
1607 
1608         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1609             != 0) {
1610                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1611                     VDEV_AUX_CORRUPT_DATA);
1612                 nvlist_free(label);
1613                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1614                     ZPOOL_CONFIG_TOP_GUID);
1615                 return (0);
1616         }
1617 
1618         /*
1619          * If this vdev just became a top-level vdev because its sibling was
1620          * detached, it will have adopted the parent's vdev guid -- but the
1621          * label may or may not be on disk yet. Fortunately, either version
1622          * of the label will have the same top guid, so if we're a top-level
1623          * vdev, we can safely compare to that instead.
1624          * However, if the config comes from a cachefile that failed to update
1625          * after the detach, a top-level vdev will appear as a non top-level
1626          * vdev in the config. Also relax the constraints if we perform an
1627          * extreme rewind.
1628          *
1629          * If we split this vdev off instead, then we also check the
1630          * original pool's guid. We don't want to consider the vdev
1631          * corrupt if it is partway through a split operation.
1632          */
1633         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1634                 boolean_t mismatch = B_FALSE;
1635                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1636                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1637                                 mismatch = B_TRUE;
1638                 } else {
1639                         if (vd->vdev_guid != top_guid &&
1640                             vd->vdev_top->vdev_guid != guid)
1641                                 mismatch = B_TRUE;
1642                 }
1643 
1644                 if (mismatch) {
1645                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1646                             VDEV_AUX_CORRUPT_DATA);
1647                         nvlist_free(label);
1648                         vdev_dbgmsg(vd, "vdev_validate: config guid "
1649                             "doesn't match label guid");
1650                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1651                             (u_longlong_t)vd->vdev_guid,
1652                             (u_longlong_t)vd->vdev_top->vdev_guid);
1653                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1654                             "aux_guid %llu", (u_longlong_t)guid,
1655                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1656                         return (0);
1657                 }
1658         }
1659 
1660         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1661             &state) != 0) {
1662                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1663                     VDEV_AUX_CORRUPT_DATA);
1664                 nvlist_free(label);
1665                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1666                     ZPOOL_CONFIG_POOL_STATE);
1667                 return (0);
1668         }
1669 
1670         nvlist_free(label);
1671 
1672         /*
1673          * If this is a verbatim import, no need to check the
1674          * state of the pool.
1675          */
1676         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1677             spa_load_state(spa) == SPA_LOAD_OPEN &&
1678             state != POOL_STATE_ACTIVE) {
1679                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1680                     "for spa %s", (u_longlong_t)state, spa->spa_name);
1681                 return (SET_ERROR(EBADF));
1682         }
1683 
1684         /*
1685          * If we were able to open and validate a vdev that was
1686          * previously marked permanently unavailable, clear that state
1687          * now.
1688          */
1689         if (vd->vdev_not_present)
1690                 vd->vdev_not_present = 0;
1691 
1692         return (0);
1693 }
1694 
1695 static void
1696 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1697 {
1698         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1699                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1700                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1701                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1702                             dvd->vdev_path, svd->vdev_path);
1703                         spa_strfree(dvd->vdev_path);
1704                         dvd->vdev_path = spa_strdup(svd->vdev_path);
1705                 }
1706         } else if (svd->vdev_path != NULL) {
1707                 dvd->vdev_path = spa_strdup(svd->vdev_path);
1708                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1709                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1710         }
1711 }
1712 
1713 /*
1714  * Recursively copy vdev paths from one vdev to another. Source and destination
1715  * vdev trees must have same geometry otherwise return error. Intended to copy
1716  * paths from userland config into MOS config.
1717  */
1718 int
1719 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1720 {
1721         if ((svd->vdev_ops == &vdev_missing_ops) ||
1722             (svd->vdev_ishole && dvd->vdev_ishole) ||
1723             (dvd->vdev_ops == &vdev_indirect_ops))
1724                 return (0);
1725 
1726         if (svd->vdev_ops != dvd->vdev_ops) {
1727                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1728                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1729                 return (SET_ERROR(EINVAL));
1730         }
1731 
1732         if (svd->vdev_guid != dvd->vdev_guid) {
1733                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1734                     "%llu)", (u_longlong_t)svd->vdev_guid,
1735                     (u_longlong_t)dvd->vdev_guid);
1736                 return (SET_ERROR(EINVAL));
1737         }
1738 
1739         if (svd->vdev_children != dvd->vdev_children) {
1740                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1741                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
1742                     (u_longlong_t)dvd->vdev_children);
1743                 return (SET_ERROR(EINVAL));
1744         }
1745 
1746         for (uint64_t i = 0; i < svd->vdev_children; i++) {
1747                 int error = vdev_copy_path_strict(svd->vdev_child[i],
1748                     dvd->vdev_child[i]);
1749                 if (error != 0)
1750                         return (error);
1751         }
1752 
1753         if (svd->vdev_ops->vdev_op_leaf)
1754                 vdev_copy_path_impl(svd, dvd);
1755 
1756         return (0);
1757 }
1758 
1759 static void
1760 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1761 {
1762         ASSERT(stvd->vdev_top == stvd);
1763         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1764 
1765         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1766                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1767         }
1768 
1769         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1770                 return;
1771 
1772         /*
1773          * The idea here is that while a vdev can shift positions within
1774          * a top vdev (when replacing, attaching mirror, etc.) it cannot
1775          * step outside of it.
1776          */
1777         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1778 
1779         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1780                 return;
1781 
1782         ASSERT(vd->vdev_ops->vdev_op_leaf);
1783 
1784         vdev_copy_path_impl(vd, dvd);
1785 }
1786 
1787 /*
1788  * Recursively copy vdev paths from one root vdev to another. Source and
1789  * destination vdev trees may differ in geometry. For each destination leaf
1790  * vdev, search a vdev with the same guid and top vdev id in the source.
1791  * Intended to copy paths from userland config into MOS config.
1792  */
1793 void
1794 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1795 {
1796         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1797         ASSERT(srvd->vdev_ops == &vdev_root_ops);
1798         ASSERT(drvd->vdev_ops == &vdev_root_ops);
1799 
1800         for (uint64_t i = 0; i < children; i++) {
1801                 vdev_copy_path_search(srvd->vdev_child[i],
1802                     drvd->vdev_child[i]);
1803         }
1804 }
1805 
1806 /*
1807  * Close a virtual device.
1808  */
1809 void
1810 vdev_close(vdev_t *vd)
1811 {
1812         spa_t *spa = vd->vdev_spa;
1813         vdev_t *pvd = vd->vdev_parent;
1814 
1815         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1816 
1817         /*
1818          * If our parent is reopening, then we are as well, unless we are
1819          * going offline.
1820          */
1821         if (pvd != NULL && pvd->vdev_reopening)
1822                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1823 
1824         vd->vdev_ops->vdev_op_close(vd);
1825 
1826         vdev_cache_purge(vd);
 
1878 vdev_reopen(vdev_t *vd)
1879 {
1880         spa_t *spa = vd->vdev_spa;
1881 
1882         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1883 
1884         /* set the reopening flag unless we're taking the vdev offline */
1885         vd->vdev_reopening = !vd->vdev_offline;
1886         vdev_close(vd);
1887         (void) vdev_open(vd);
1888 
1889         /*
1890          * Call vdev_validate() here to make sure we have the same device.
1891          * Otherwise, a device with an invalid label could be successfully
1892          * opened in response to vdev_reopen().
1893          */
1894         if (vd->vdev_aux) {
1895                 (void) vdev_validate_aux(vd);
1896                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1897                     vd->vdev_aux == &spa->spa_l2cache &&
1898                     !l2arc_vdev_present(vd))
1899                         l2arc_add_vdev(spa, vd);
1900         } else {
1901                 (void) vdev_validate(vd);
1902         }
1903 
1904         /*
1905          * Reassess parent vdev's health.
1906          */
1907         vdev_propagate_state(vd);
1908 }
1909 
1910 int
1911 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1912 {
1913         int error;
1914 
1915         /*
1916          * Normally, partial opens (e.g. of a mirror) are allowed.
1917          * For a create, however, we want to fail the request if
1918          * there are any components we can't open.
1919          */
1920         error = vdev_open(vd);
1921 
 
1934                 return (error);
1935         }
1936 
1937         return (0);
1938 }
1939 
1940 void
1941 vdev_metaslab_set_size(vdev_t *vd)
1942 {
1943         /*
1944          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1945          */
1946         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1947         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1948 }
1949 
1950 void
1951 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1952 {
1953         ASSERT(vd == vd->vdev_top);
1954         /* indirect vdevs don't have metaslabs or dtls */
1955         ASSERT(vdev_is_concrete(vd) || flags == 0);
1956         ASSERT(ISP2(flags));
1957         ASSERT(spa_writeable(vd->vdev_spa));
1958 
1959         if (flags & VDD_METASLAB)
1960                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1961 
1962         if (flags & VDD_DTL)
1963                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1964 
1965         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1966 }
1967 
1968 void
1969 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1970 {
1971         for (int c = 0; c < vd->vdev_children; c++)
1972                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1973 
1974         if (vd->vdev_ops->vdev_op_leaf)
1975                 vdev_dirty(vd->vdev_top, flags, vd, txg);
 
2005  * comprising only those txgs which appear in 'maxfaults' or more children;
2006  * those are the txgs we don't have enough replication to read.  For example,
2007  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2008  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2009  * two child DTL_MISSING maps.
2010  *
2011  * It should be clear from the above that to compute the DTLs and outage maps
2012  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2013  * Therefore, that is all we keep on disk.  When loading the pool, or after
2014  * a configuration change, we generate all other DTLs from first principles.
2015  */
2016 void
2017 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2018 {
2019         range_tree_t *rt = vd->vdev_dtl[t];
2020 
2021         ASSERT(t < DTL_TYPES);
2022         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2023         ASSERT(spa_writeable(vd->vdev_spa));
2024 
2025         mutex_enter(&vd->vdev_dtl_lock);
2026         if (!range_tree_contains(rt, txg, size))
2027                 range_tree_add(rt, txg, size);
2028         mutex_exit(&vd->vdev_dtl_lock);
2029 }
2030 
2031 boolean_t
2032 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2033 {
2034         range_tree_t *rt = vd->vdev_dtl[t];
2035         boolean_t dirty = B_FALSE;
2036 
2037         ASSERT(t < DTL_TYPES);
2038         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2039 
2040         /*
2041          * While we are loading the pool, the DTLs have not been loaded yet.
2042          * Ignore the DTLs and try all devices.  This avoids a recursive
2043          * mutex enter on the vdev_dtl_lock, and also makes us try hard
2044          * when loading the pool (relying on the checksum to ensure that
2045          * we get the right data -- note that we while loading, we are
2046          * only reading the MOS, which is always checksummed).
2047          */
2048         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2049                 return (B_FALSE);
2050 
2051         mutex_enter(&vd->vdev_dtl_lock);
2052         if (range_tree_space(rt) != 0)
2053                 dirty = range_tree_contains(rt, txg, size);
2054         mutex_exit(&vd->vdev_dtl_lock);
2055 
2056         return (dirty);
2057 }
2058 
2059 boolean_t
2060 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2061 {
2062         range_tree_t *rt = vd->vdev_dtl[t];
2063         boolean_t empty;
2064 
2065         mutex_enter(&vd->vdev_dtl_lock);
2066         empty = (range_tree_space(rt) == 0);
2067         mutex_exit(&vd->vdev_dtl_lock);
2068 
2069         return (empty);
2070 }
2071 
2072 /*
2073  * Returns the lowest txg in the DTL range.
2074  */
2075 static uint64_t
2076 vdev_dtl_min(vdev_t *vd)
2077 {
2078         range_seg_t *rs;
2079 
2080         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2081         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2082         ASSERT0(vd->vdev_children);
2083 
2084         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2085         return (rs->rs_start - 1);
2086 }
2087 
 
2140         }
2141         return (B_FALSE);
2142 }
2143 
2144 /*
2145  * Reassess DTLs after a config change or scrub completion.
2146  */
2147 void
2148 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2149 {
2150         spa_t *spa = vd->vdev_spa;
2151         avl_tree_t reftree;
2152         int minref;
2153 
2154         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2155 
2156         for (int c = 0; c < vd->vdev_children; c++)
2157                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2158                     scrub_txg, scrub_done);
2159 
2160         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2161                 return;
2162 
2163         if (vd->vdev_ops->vdev_op_leaf) {
2164                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2165 
2166                 mutex_enter(&vd->vdev_dtl_lock);
2167 
2168                 /*
2169                  * If we've completed a scan cleanly then determine
2170                  * if this vdev should remove any DTLs. We only want to
2171                  * excise regions on vdevs that were available during
2172                  * the entire duration of this scan.
2173                  */
2174                 if (scrub_txg != 0 &&
2175                     (spa->spa_scrub_started ||
2176                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2177                     vdev_dtl_should_excise(vd)) {
2178                         /*
2179                          * We completed a scrub up to scrub_txg.  If we
2180                          * did it without rebooting, then the scrub dtl
 
2246                 for (int c = 0; c < vd->vdev_children; c++) {
2247                         vdev_t *cvd = vd->vdev_child[c];
2248                         mutex_enter(&cvd->vdev_dtl_lock);
2249                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2250                         mutex_exit(&cvd->vdev_dtl_lock);
2251                 }
2252                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2253                 space_reftree_destroy(&reftree);
2254         }
2255         mutex_exit(&vd->vdev_dtl_lock);
2256 }
2257 
2258 int
2259 vdev_dtl_load(vdev_t *vd)
2260 {
2261         spa_t *spa = vd->vdev_spa;
2262         objset_t *mos = spa->spa_meta_objset;
2263         int error = 0;
2264 
2265         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2266                 ASSERT(vdev_is_concrete(vd));
2267 
2268                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2269                     vd->vdev_dtl_object, 0, -1ULL, 0);
2270                 if (error)
2271                         return (error);
2272                 ASSERT(vd->vdev_dtl_sm != NULL);
2273 
2274                 mutex_enter(&vd->vdev_dtl_lock);
2275 
2276                 /*
2277                  * Now that we've opened the space_map we need to update
2278                  * the in-core DTL.
2279                  */
2280                 space_map_update(vd->vdev_dtl_sm);
2281 
2282                 error = space_map_load(vd->vdev_dtl_sm,
2283                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2284                 mutex_exit(&vd->vdev_dtl_lock);
2285 
2286                 return (error);
2287         }
2288 
2289         for (int c = 0; c < vd->vdev_children; c++) {
 
2328             !vd->vdev_top->vdev_removing) {
2329                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2330                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2331                 }
2332                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2333                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2334                 }
2335         }
2336         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2337                 vdev_construct_zaps(vd->vdev_child[i], tx);
2338         }
2339 }
2340 
2341 void
2342 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2343 {
2344         spa_t *spa = vd->vdev_spa;
2345         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2346         objset_t *mos = spa->spa_meta_objset;
2347         range_tree_t *rtsync;
2348         dmu_tx_t *tx;
2349         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2350 
2351         ASSERT(vdev_is_concrete(vd));
2352         ASSERT(vd->vdev_ops->vdev_op_leaf);
2353 
2354         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2355 
2356         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2357                 mutex_enter(&vd->vdev_dtl_lock);
2358                 space_map_free(vd->vdev_dtl_sm, tx);
2359                 space_map_close(vd->vdev_dtl_sm);
2360                 vd->vdev_dtl_sm = NULL;
2361                 mutex_exit(&vd->vdev_dtl_lock);
2362 
2363                 /*
2364                  * We only destroy the leaf ZAP for detached leaves or for
2365                  * removed log devices. Removed data devices handle leaf ZAP
2366                  * cleanup later, once cancellation is no longer possible.
2367                  */
2368                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2369                     vd->vdev_top->vdev_islog)) {
2370                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2371                         vd->vdev_leaf_zap = 0;
2372                 }
2373 
2374                 dmu_tx_commit(tx);
2375                 return;
2376         }
2377 
2378         if (vd->vdev_dtl_sm == NULL) {
2379                 uint64_t new_object;
2380 
2381                 new_object = space_map_alloc(mos, tx);
2382                 VERIFY3U(new_object, !=, 0);
2383 
2384                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2385                     0, -1ULL, 0));
2386                 ASSERT(vd->vdev_dtl_sm != NULL);
2387         }
2388 
2389         rtsync = range_tree_create(NULL, NULL);
2390 
2391         mutex_enter(&vd->vdev_dtl_lock);
2392         range_tree_walk(rt, range_tree_add, rtsync);
2393         mutex_exit(&vd->vdev_dtl_lock);
2394 
2395         space_map_truncate(vd->vdev_dtl_sm, tx);
2396         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2397         range_tree_vacate(rtsync, NULL, NULL);
2398 
2399         range_tree_destroy(rtsync);
2400 
2401         /*
2402          * If the object for the space map has changed then dirty
2403          * the top level so that we update the config.
2404          */
2405         if (object != space_map_object(vd->vdev_dtl_sm)) {
2406                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2407                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
2408                     (u_longlong_t)object,
2409                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2410                 vdev_config_dirty(vd->vdev_top);
2411         }
2412 
2413         dmu_tx_commit(tx);
2414 
2415         mutex_enter(&vd->vdev_dtl_lock);
2416         space_map_update(vd->vdev_dtl_sm);
2417         mutex_exit(&vd->vdev_dtl_lock);
2418 }
2419 
2420 /*
2421  * Determine whether the specified vdev can be offlined/detached/removed
2422  * without losing data.
2423  */
2424 boolean_t
2425 vdev_dtl_required(vdev_t *vd)
2426 {
2427         spa_t *spa = vd->vdev_spa;
2428         vdev_t *tvd = vd->vdev_top;
2429         uint8_t cant_read = vd->vdev_cant_read;
 
2474         } else {
2475                 for (int c = 0; c < vd->vdev_children; c++) {
2476                         vdev_t *cvd = vd->vdev_child[c];
2477                         uint64_t cmin, cmax;
2478 
2479                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2480                                 thismin = MIN(thismin, cmin);
2481                                 thismax = MAX(thismax, cmax);
2482                                 needed = B_TRUE;
2483                         }
2484                 }
2485         }
2486 
2487         if (needed && minp) {
2488                 *minp = thismin;
2489                 *maxp = thismax;
2490         }
2491         return (needed);
2492 }
2493 
2494 int
2495 vdev_load(vdev_t *vd)
2496 {
2497         int error = 0;
2498         /*
2499          * Recursively load all children.
2500          */
2501         for (int c = 0; c < vd->vdev_children; c++) {
2502                 error = vdev_load(vd->vdev_child[c]);
2503                 if (error != 0) {
2504                         return (error);
2505                 }
2506         }
2507 
2508         vdev_set_deflate_ratio(vd);
2509 
2510         /*
2511          * If this is a top-level vdev, initialize its metaslabs.
2512          */
2513         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2514                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2515                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2516                             VDEV_AUX_CORRUPT_DATA);
2517                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2518                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2519                             (u_longlong_t)vd->vdev_asize);
2520                         return (SET_ERROR(ENXIO));
2521                 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2522                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2523                             "[error=%d]", error);
2524                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2525                             VDEV_AUX_CORRUPT_DATA);
2526                         return (error);
2527                 }
2528         }
2529 
2530         /*
2531          * If this is a leaf vdev, load its DTL.
2532          */
2533         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2534                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2535                     VDEV_AUX_CORRUPT_DATA);
2536                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2537                     "[error=%d]", error);
2538                 return (error);
2539         }
2540 
2541         uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2542         if (obsolete_sm_object != 0) {
2543                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2544                 ASSERT(vd->vdev_asize != 0);
2545                 ASSERT(vd->vdev_obsolete_sm == NULL);
2546 
2547                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2548                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2549                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2550                             VDEV_AUX_CORRUPT_DATA);
2551                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2552                             "obsolete spacemap (obj %llu) [error=%d]",
2553                             (u_longlong_t)obsolete_sm_object, error);
2554                         return (error);
2555                 }
2556                 space_map_update(vd->vdev_obsolete_sm);
2557         }
2558 
2559         return (0);
2560 }
2561 
2562 /*
2563  * The special vdev case is used for hot spares and l2cache devices.  Its
2564  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2565  * we make sure that we can open the underlying device, then try to read the
2566  * label, and make sure that the label is sane and that it hasn't been
2567  * repurposed to another pool.
2568  */
2569 int
2570 vdev_validate_aux(vdev_t *vd)
2571 {
2572         nvlist_t *label;
2573         uint64_t guid, version;
2574         uint64_t state;
2575 
2576         if (!vdev_readable(vd))
2577                 return (0);
2578 
2579         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
 
2584 
2585         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2586             !SPA_VERSION_IS_SUPPORTED(version) ||
2587             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2588             guid != vd->vdev_guid ||
2589             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2590                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2591                     VDEV_AUX_CORRUPT_DATA);
2592                 nvlist_free(label);
2593                 return (-1);
2594         }
2595 
2596         /*
2597          * We don't actually check the pool state here.  If it's in fact in
2598          * use by another pool, we update this fact on the fly when requested.
2599          */
2600         nvlist_free(label);
2601         return (0);
2602 }
2603 
2604 /*
2605  * Free the objects used to store this vdev's spacemaps, and the array
2606  * that points to them.
2607  */
2608 void
2609 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2610 {
2611         if (vd->vdev_ms_array == 0)
2612                 return;
2613 
2614         objset_t *mos = vd->vdev_spa->spa_meta_objset;
2615         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2616         size_t array_bytes = array_count * sizeof (uint64_t);
2617         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2618         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2619             array_bytes, smobj_array, 0));
2620 
2621         for (uint64_t i = 0; i < array_count; i++) {
2622                 uint64_t smobj = smobj_array[i];
2623                 if (smobj == 0)
2624                         continue;
2625 
2626                 space_map_free_obj(mos, smobj, tx);
2627         }
2628 
2629         kmem_free(smobj_array, array_bytes);
2630         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2631         vd->vdev_ms_array = 0;
2632 }
2633 
2634 static void
2635 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2636 {
2637         spa_t *spa = vd->vdev_spa;
2638         dmu_tx_t *tx;
2639 
2640         ASSERT(vd == vd->vdev_top);
2641         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2642 
2643         if (vd->vdev_ms != NULL) {
2644                 metaslab_group_t *mg = vd->vdev_mg;
2645 
2646                 metaslab_group_histogram_verify(mg);
2647                 metaslab_class_histogram_verify(mg->mg_class);
2648 
2649                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2650                         metaslab_t *msp = vd->vdev_ms[m];
2651 
2652                         if (msp == NULL || msp->ms_sm == NULL)
2653                                 continue;
2654 
2655                         mutex_enter(&msp->ms_lock);
2656                         /*
2657                          * If the metaslab was not loaded when the vdev
2658                          * was removed then the histogram accounting may
2659                          * not be accurate. Update the histogram information
2660                          * here so that we ensure that the metaslab group
2661                          * and metaslab class are up-to-date.
2662                          */
2663                         metaslab_group_histogram_remove(mg, msp);
2664 
2665                         VERIFY0(space_map_allocated(msp->ms_sm));
2666                         space_map_close(msp->ms_sm);
2667                         msp->ms_sm = NULL;
2668                         mutex_exit(&msp->ms_lock);
2669                 }
2670 
2671                 metaslab_group_histogram_verify(mg);
2672                 metaslab_class_histogram_verify(mg->mg_class);
2673                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2674                         ASSERT0(mg->mg_histogram[i]);
2675         }
2676 
2677         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2678         vdev_destroy_spacemaps(vd, tx);
2679 
2680         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2681                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2682                 vd->vdev_top_zap = 0;
2683         }
2684         dmu_tx_commit(tx);
2685 }
2686 
2687 void
2688 vdev_sync_done(vdev_t *vd, uint64_t txg)
2689 {
2690         metaslab_t *msp;
2691         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2692 
2693         ASSERT(vdev_is_concrete(vd));
2694 
2695         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2696                 metaslab_sync_done(msp, txg);
2697 
2698         if (reassess)
2699                 metaslab_sync_reassess(vd->vdev_mg);
2700 }
2701 
2702 void
2703 vdev_sync(vdev_t *vd, uint64_t txg)
2704 {
2705         spa_t *spa = vd->vdev_spa;
2706         vdev_t *lvd;
2707         metaslab_t *msp;
2708         dmu_tx_t *tx;
2709 
2710         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2711                 dmu_tx_t *tx;
2712 
2713                 ASSERT(vd->vdev_removing ||
2714                     vd->vdev_ops == &vdev_indirect_ops);
2715 
2716                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2717                 vdev_indirect_sync_obsolete(vd, tx);
2718                 dmu_tx_commit(tx);
2719 
2720                 /*
2721                  * If the vdev is indirect, it can't have dirty
2722                  * metaslabs or DTLs.
2723                  */
2724                 if (vd->vdev_ops == &vdev_indirect_ops) {
2725                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2726                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2727                         return;
2728                 }
2729         }
2730 
2731         ASSERT(vdev_is_concrete(vd));
2732 
2733         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2734             !vd->vdev_removing) {
2735                 ASSERT(vd == vd->vdev_top);
2736                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2737                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2738                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2739                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2740                 ASSERT(vd->vdev_ms_array != 0);
2741                 vdev_config_dirty(vd);
2742                 dmu_tx_commit(tx);
2743         }
2744 
2745         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2746                 metaslab_sync(msp, txg);
2747                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2748         }
2749 
2750         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2751                 vdev_dtl_sync(lvd, txg);
2752 
2753         /*
2754          * Remove the metadata associated with this vdev once it's empty.
2755          * Note that this is typically used for log/cache device removal;
2756          * we don't empty toplevel vdevs when removing them.  But if
2757          * a toplevel happens to be emptied, this is not harmful.
2758          */
2759         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2760                 vdev_remove_empty(vd, txg);
2761         }
2762 
2763         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2764 }
2765 
2766 uint64_t
2767 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2768 {
2769         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2770 }
2771 
2772 /*
2773  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2774  * not be opened, and no I/O is attempted.
2775  */
2776 int
2777 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2778 {
2779         vdev_t *vd, *tvd;
2780 
2781         spa_vdev_state_enter(spa, SCL_NONE);
2782 
 
2866  */
2867 int
2868 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2869 {
2870         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2871         boolean_t wasoffline;
2872         vdev_state_t oldstate;
2873 
2874         spa_vdev_state_enter(spa, SCL_NONE);
2875 
2876         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2877                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2878 
2879         if (!vd->vdev_ops->vdev_op_leaf)
2880                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2881 
2882         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2883         oldstate = vd->vdev_state;
2884 
2885         tvd = vd->vdev_top;
2886         vd->vdev_offline = B_FALSE;
2887         vd->vdev_tmpoffline = B_FALSE;
2888         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2889         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2890 
2891         /* XXX - L2ARC 1.0 does not support expansion */
2892         if (!vd->vdev_aux) {
2893                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2894                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2895         }
2896 
2897         vdev_reopen(tvd);
2898         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2899 
2900         if (!vd->vdev_aux) {
2901                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2902                         pvd->vdev_expanding = B_FALSE;
2903         }
2904 
2905         if (newstate)
2906                 *newstate = vd->vdev_state;
2907         if ((flags & ZFS_ONLINE_UNSPARE) &&
 
2956                  * don't allow it to be offlined. Log devices are always
2957                  * expendable.
2958                  */
2959                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2960                     vdev_dtl_required(vd))
2961                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2962 
2963                 /*
2964                  * If the top-level is a slog and it has had allocations
2965                  * then proceed.  We check that the vdev's metaslab group
2966                  * is not NULL since it's possible that we may have just
2967                  * added this vdev but not yet initialized its metaslabs.
2968                  */
2969                 if (tvd->vdev_islog && mg != NULL) {
2970                         /*
2971                          * Prevent any future allocations.
2972                          */
2973                         metaslab_group_passivate(mg);
2974                         (void) spa_vdev_state_exit(spa, vd, 0);
2975 
2976                         error = spa_reset_logs(spa);
2977 
2978                         spa_vdev_state_enter(spa, SCL_ALLOC);
2979 
2980                         /*
2981                          * Check to see if the config has changed.
2982                          */
2983                         if (error || generation != spa->spa_config_generation) {
2984                                 metaslab_group_activate(mg);
2985                                 if (error)
2986                                         return (spa_vdev_state_exit(spa,
2987                                             vd, error));
2988                                 (void) spa_vdev_state_exit(spa, vd, 0);
2989                                 goto top;
2990                         }
2991                         ASSERT0(tvd->vdev_stat.vs_alloc);
2992                 }
2993 
2994                 /*
2995                  * Offline this device and reopen its top-level vdev.
2996                  * If the top-level vdev is a log device then just offline
 
3023 int
3024 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3025 {
3026         int error;
3027 
3028         mutex_enter(&spa->spa_vdev_top_lock);
3029         error = vdev_offline_locked(spa, guid, flags);
3030         mutex_exit(&spa->spa_vdev_top_lock);
3031 
3032         return (error);
3033 }
3034 
3035 /*
3036  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3037  * vdev_offline(), we assume the spa config is locked.  We also clear all
3038  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3039  */
3040 void
3041 vdev_clear(spa_t *spa, vdev_t *vd)
3042 {
3043         vdev_t *rvd = spa->spa_root_vdev;
3044 
3045         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3046 
3047         if (vd == NULL)
3048                 vd = rvd;
3049 
3050         vd->vdev_stat.vs_read_errors = 0;
3051         vd->vdev_stat.vs_write_errors = 0;
3052         vd->vdev_stat.vs_checksum_errors = 0;
3053 
3054         for (int c = 0; c < vd->vdev_children; c++)
3055                 vdev_clear(spa, vd->vdev_child[c]);
3056 
3057         /*
3058          * It makes no sense to "clear" an indirect vdev.
3059          */
3060         if (!vdev_is_concrete(vd))
3061                 return;
3062 
3063         /*
3064          * If we're in the FAULTED state or have experienced failed I/O, then
3065          * clear the persistent state and attempt to reopen the device.  We
3066          * also mark the vdev config dirty, so that the new faulted state is
3067          * written out to disk.
3068          */
3069         if (vd->vdev_faulted || vd->vdev_degraded ||
3070             !vdev_readable(vd) || !vdev_writeable(vd)) {
3071 
3072                 /*
3073                  * When reopening in reponse to a clear event, it may be due to
3074                  * a fmadm repair request.  In this case, if the device is
3075                  * still broken, we want to still post the ereport again.
3076                  */
3077                 vd->vdev_forcefault = B_TRUE;
3078 
3079                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3080                 vd->vdev_cant_read = B_FALSE;
3081                 vd->vdev_cant_write = B_FALSE;
3082 
 
3097          * When clearing a FMA-diagnosed fault, we always want to
3098          * unspare the device, as we assume that the original spare was
3099          * done in response to the FMA fault.
3100          */
3101         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3102             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3103             vd->vdev_parent->vdev_child[0] == vd)
3104                 vd->vdev_unspare = B_TRUE;
3105 }
3106 
3107 boolean_t
3108 vdev_is_dead(vdev_t *vd)
3109 {
3110         /*
3111          * Holes and missing devices are always considered "dead".
3112          * This simplifies the code since we don't have to check for
3113          * these types of devices in the various code paths.
3114          * Instead we rely on the fact that we skip over dead devices
3115          * before issuing I/O to them.
3116          */
3117         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3118             vd->vdev_ops == &vdev_hole_ops ||
3119             vd->vdev_ops == &vdev_missing_ops);
3120 }
3121 
3122 boolean_t
3123 vdev_readable(vdev_t *vd)
3124 {
3125         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3126 }
3127 
3128 boolean_t
3129 vdev_writeable(vdev_t *vd)
3130 {
3131         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3132             vdev_is_concrete(vd));
3133 }
3134 
3135 boolean_t
3136 vdev_allocatable(vdev_t *vd)
3137 {
3138         uint64_t state = vd->vdev_state;
3139 
3140         /*
3141          * We currently allow allocations from vdevs which may be in the
3142          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3143          * fails to reopen then we'll catch it later when we're holding
3144          * the proper locks.  Note that we have to get the vdev state
3145          * in a local variable because although it changes atomically,
3146          * we're asking two separate questions about it.
3147          */
3148         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3149             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3150             vd->vdev_mg->mg_initialized);
3151 }
3152 
3153 boolean_t
3154 vdev_accessible(vdev_t *vd, zio_t *zio)
3155 {
3156         ASSERT(zio->io_vd == vd);
3157 
3158         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3159                 return (B_FALSE);
3160 
3161         if (zio->io_type == ZIO_TYPE_READ)
3162                 return (!vd->vdev_cant_read);
3163 
3164         if (zio->io_type == ZIO_TYPE_WRITE)
3165                 return (!vd->vdev_cant_write);
3166 
3167         return (B_TRUE);
3168 }
3169 
 
3178         vdev_t *tvd = vd->vdev_top;
3179 
3180         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3181 
3182         mutex_enter(&vd->vdev_stat_lock);
3183         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3184         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3185         vs->vs_state = vd->vdev_state;
3186         vs->vs_rsize = vdev_get_min_asize(vd);
3187         if (vd->vdev_ops->vdev_op_leaf)
3188                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3189         /*
3190          * Report expandable space on top-level, non-auxillary devices only.
3191          * The expandable space is reported in terms of metaslab sized units
3192          * since that determines how much space the pool can expand.
3193          */
3194         if (vd->vdev_aux == NULL && tvd != NULL) {
3195                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3196                     spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3197         }
3198         if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3199             vdev_is_concrete(vd)) {
3200                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3201         }
3202 
3203         /*
3204          * If we're getting stats on the root vdev, aggregate the I/O counts
3205          * over all top-level vdevs (i.e. the direct children of the root).
3206          */
3207         if (vd == rvd) {
3208                 for (int c = 0; c < rvd->vdev_children; c++) {
3209                         vdev_t *cvd = rvd->vdev_child[c];
3210                         vdev_stat_t *cvs = &cvd->vdev_stat;
3211 
3212                         for (int t = 0; t < ZIO_TYPES; t++) {
3213                                 vs->vs_ops[t] += cvs->vs_ops[t];
3214                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3215                         }
3216                         cvs->vs_scan_removing = cvd->vdev_removing;
3217                 }
3218         }
3219         mutex_exit(&vd->vdev_stat_lock);
3220 }
3221 
3222 void
3223 vdev_clear_stats(vdev_t *vd)
3224 {
3225         mutex_enter(&vd->vdev_stat_lock);
3226         vd->vdev_stat.vs_space = 0;
3227         vd->vdev_stat.vs_dspace = 0;
3228         vd->vdev_stat.vs_alloc = 0;
3229         mutex_exit(&vd->vdev_stat_lock);
3230 }
3231 
3232 void
3233 vdev_scan_stat_init(vdev_t *vd)
3234 {
 
3287 
3288                 if (flags & ZIO_FLAG_IO_REPAIR) {
3289                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3290                                 dsl_scan_phys_t *scn_phys =
3291                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3292                                 uint64_t *processed = &scn_phys->scn_processed;
3293 
3294                                 /* XXX cleanup? */
3295                                 if (vd->vdev_ops->vdev_op_leaf)
3296                                         atomic_add_64(processed, psize);
3297                                 vs->vs_scan_processed += psize;
3298                         }
3299 
3300                         if (flags & ZIO_FLAG_SELF_HEAL)
3301                                 vs->vs_self_healed += psize;
3302                 }
3303 
3304                 vs->vs_ops[type]++;
3305                 vs->vs_bytes[type] += psize;
3306 
3307                 mutex_exit(&vd->vdev_stat_lock);
3308                 return;
3309         }
3310 
3311         if (flags & ZIO_FLAG_SPECULATIVE)
3312                 return;
3313 
3314         /*
3315          * If this is an I/O error that is going to be retried, then ignore the
3316          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3317          * hard errors, when in reality they can happen for any number of
3318          * innocuous reasons (bus resets, MPxIO link failure, etc).
3319          */
3320         if (zio->io_error == EIO &&
3321             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3322                 return;
3323 
3324         /*
3325          * Intent logs writes won't propagate their error to the root
3326          * I/O so don't mark these types of failures as pool-level
3327          * errors.
3328          */
3329         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3330                 return;
3331 
3332         mutex_enter(&vd->vdev_stat_lock);
3333         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3334                 if (zio->io_error == ECKSUM)
3335                         vs->vs_checksum_errors++;
3336                 else
3337                         vs->vs_read_errors++;
3338         }
3339         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3340                 vs->vs_write_errors++;
3341         mutex_exit(&vd->vdev_stat_lock);
3342 
3343         if (spa->spa_load_state == SPA_LOAD_NONE &&
3344             type == ZIO_TYPE_WRITE && txg != 0 &&
3345             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3346             (flags & ZIO_FLAG_SCAN_THREAD) ||
3347             spa->spa_claiming)) {
3348                 /*
3349                  * This is either a normal write (not a repair), or it's
3350                  * a repair induced by the scrub thread, or it's a repair
3351                  * made by zil_claim() during spa_load() in the first txg.
3352                  * In the normal case, we commit the DTL change in the same
3353                  * txg as the block was born.  In the scrub-induced repair
3354                  * case, we know that scrubs run in first-pass syncing context,
3355                  * so we commit the DTL change in spa_syncing_txg(spa).
3356                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3357                  *
3358                  * We currently do not make DTL entries for failed spontaneous
3359                  * self-healing writes triggered by normal (non-scrubbing)
3360                  * reads, because we have no transactional context in which to
3361                  * do so -- and it's not clear that it'd be desirable anyway.
3362                  */
3363                 if (vd->vdev_ops->vdev_op_leaf) {
3364                         uint64_t commit_txg = txg;
 
3399 
3400         ASSERT(vd == vd->vdev_top);
3401 
3402         /*
3403          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3404          * factor.  We must calculate this here and not at the root vdev
3405          * because the root vdev's psize-to-asize is simply the max of its
3406          * childrens', thus not accurate enough for us.
3407          */
3408         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3409         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3410         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3411             vd->vdev_deflate_ratio;
3412 
3413         mutex_enter(&vd->vdev_stat_lock);
3414         vd->vdev_stat.vs_alloc += alloc_delta;
3415         vd->vdev_stat.vs_space += space_delta;
3416         vd->vdev_stat.vs_dspace += dspace_delta;
3417         mutex_exit(&vd->vdev_stat_lock);
3418 
3419         if (mc == spa_normal_class(spa)) {
3420                 mutex_enter(&rvd->vdev_stat_lock);
3421                 rvd->vdev_stat.vs_alloc += alloc_delta;
3422                 rvd->vdev_stat.vs_space += space_delta;
3423                 rvd->vdev_stat.vs_dspace += dspace_delta;
3424                 mutex_exit(&rvd->vdev_stat_lock);
3425         }
3426 
3427         if (mc != NULL) {
3428                 ASSERT(rvd == vd->vdev_parent);
3429                 ASSERT(vd->vdev_ms_count != 0);
3430 
3431                 metaslab_class_space_update(mc,
3432                     alloc_delta, defer_delta, space_delta, dspace_delta);
3433         }
3434 }
3435 
3436 /*
3437  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3438  * so that it will be written out next time the vdev configuration is synced.
3439  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
 
3489                 return;
3490         }
3491 
3492         /*
3493          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3494          * must either hold SCL_CONFIG as writer, or must be the sync thread
3495          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3496          * so this is sufficient to ensure mutual exclusion.
3497          */
3498         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3499             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3500             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3501 
3502         if (vd == rvd) {
3503                 for (c = 0; c < rvd->vdev_children; c++)
3504                         vdev_config_dirty(rvd->vdev_child[c]);
3505         } else {
3506                 ASSERT(vd == vd->vdev_top);
3507 
3508                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3509                     vdev_is_concrete(vd)) {
3510                         list_insert_head(&spa->spa_config_dirty_list, vd);
3511                 }
3512         }
3513 }
3514 
3515 void
3516 vdev_config_clean(vdev_t *vd)
3517 {
3518         spa_t *spa = vd->vdev_spa;
3519 
3520         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3521             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3522             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3523 
3524         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3525         list_remove(&spa->spa_config_dirty_list, vd);
3526 }
3527 
3528 /*
3529  * Mark a top-level vdev's state as dirty, so that the next pass of
3530  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3531  * the state changes from larger config changes because they require
3532  * much less locking, and are often needed for administrative actions.
3533  */
3534 void
3535 vdev_state_dirty(vdev_t *vd)
3536 {
3537         spa_t *spa = vd->vdev_spa;
3538 
3539         ASSERT(spa_writeable(spa));
3540         ASSERT(vd == vd->vdev_top);
3541 
3542         /*
3543          * The state list is protected by the SCL_STATE lock.  The caller
3544          * must either hold SCL_STATE as writer, or must be the sync thread
3545          * (which holds SCL_STATE as reader).  There's only one sync thread,
3546          * so this is sufficient to ensure mutual exclusion.
3547          */
3548         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3549             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3550             spa_config_held(spa, SCL_STATE, RW_READER)));
3551 
3552         if (!list_link_active(&vd->vdev_state_dirty_node) &&
3553             vdev_is_concrete(vd))
3554                 list_insert_head(&spa->spa_state_dirty_list, vd);
3555 }
3556 
3557 void
3558 vdev_state_clean(vdev_t *vd)
3559 {
3560         spa_t *spa = vd->vdev_spa;
3561 
3562         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3563             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3564             spa_config_held(spa, SCL_STATE, RW_READER)));
3565 
3566         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3567         list_remove(&spa->spa_state_dirty_list, vd);
3568 }
3569 
3570 /*
3571  * Propagate vdev state up from children to parent.
3572  */
3573 void
3574 vdev_propagate_state(vdev_t *vd)
3575 {
3576         spa_t *spa = vd->vdev_spa;
3577         vdev_t *rvd = spa->spa_root_vdev;
3578         int degraded = 0, faulted = 0;
3579         int corrupted = 0;
3580         vdev_t *child;
3581 
3582         if (vd->vdev_children > 0) {
3583                 for (int c = 0; c < vd->vdev_children; c++) {
3584                         child = vd->vdev_child[c];
3585 
3586                         /*
3587                          * Don't factor holes or indirect vdevs into the
3588                          * decision.
3589                          */
3590                         if (!vdev_is_concrete(child))
3591                                 continue;
3592 
3593                         if (!vdev_readable(child) ||
3594                             (!vdev_writeable(child) && spa_writeable(spa))) {
3595                                 /*
3596                                  * Root special: if there is a top-level log
3597                                  * device, treat the root vdev as if it were
3598                                  * degraded.
3599                                  */
3600                                 if (child->vdev_islog && vd == rvd)
3601                                         degraded++;
3602                                 else
3603                                         faulted++;
3604                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3605                                 degraded++;
3606                         }
3607 
3608                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3609                                 corrupted++;
3610                 }
 
3745                         case VDEV_AUX_BAD_LABEL:
3746                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3747                                 break;
3748                         default:
3749                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3750                         }
3751 
3752                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3753                 }
3754 
3755                 /* Erase any notion of persistent removed state */
3756                 vd->vdev_removed = B_FALSE;
3757         } else {
3758                 vd->vdev_removed = B_FALSE;
3759         }
3760 
3761         if (!isopen && vd->vdev_parent)
3762                 vdev_propagate_state(vd->vdev_parent);
3763 }
3764 
3765 boolean_t
3766 vdev_children_are_offline(vdev_t *vd)
3767 {
3768         ASSERT(!vd->vdev_ops->vdev_op_leaf);
3769 
3770         for (uint64_t i = 0; i < vd->vdev_children; i++) {
3771                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
3772                         return (B_FALSE);
3773         }
3774 
3775         return (B_TRUE);
3776 }
3777 
3778 /*
3779  * Check the vdev configuration to ensure that it's capable of supporting
3780  * a root pool. We do not support partial configuration.
3781  * In addition, only a single top-level vdev is allowed.
3782  */
3783 boolean_t
3784 vdev_is_bootable(vdev_t *vd)
3785 {
3786         if (!vd->vdev_ops->vdev_op_leaf) {
3787                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3788 
3789                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3790                     vd->vdev_children > 1) {
3791                         return (B_FALSE);
3792                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3793                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3794                         return (B_FALSE);
3795                 }
3796         }
3797 
3798         for (int c = 0; c < vd->vdev_children; c++) {
3799                 if (!vdev_is_bootable(vd->vdev_child[c]))
3800                         return (B_FALSE);
3801         }
3802         return (B_TRUE);
3803 }
3804 
3805 boolean_t
3806 vdev_is_concrete(vdev_t *vd)
3807 {
3808         vdev_ops_t *ops = vd->vdev_ops;
3809         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3810             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3811                 return (B_FALSE);
3812         } else {
3813                 return (B_TRUE);
3814         }
3815 }
3816 
3817 /*
3818  * Determine if a log device has valid content.  If the vdev was
3819  * removed or faulted in the MOS config then we know that
3820  * the content on the log device has already been written to the pool.
3821  */
3822 boolean_t
3823 vdev_log_state_valid(vdev_t *vd)
3824 {
3825         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3826             !vd->vdev_removed)
3827                 return (B_TRUE);
3828 
3829         for (int c = 0; c < vd->vdev_children; c++)
3830                 if (vdev_log_state_valid(vd->vdev_child[c]))
3831                         return (B_TRUE);
3832 
3833         return (B_FALSE);
3834 }
3835 
3836 /*
3837  * Expand a vdev if possible.
3838  */
3839 void
3840 vdev_expand(vdev_t *vd, uint64_t txg)
3841 {
3842         ASSERT(vd->vdev_top == vd);
3843         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3844 
3845         vdev_set_deflate_ratio(vd);
3846 
3847         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3848             vdev_is_concrete(vd)) {
3849                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3850                 vdev_config_dirty(vd);
3851         }
3852 }
3853 
3854 /*
3855  * Split a vdev.
3856  */
3857 void
3858 vdev_split(vdev_t *vd)
3859 {
3860         vdev_t *cvd, *pvd = vd->vdev_parent;
3861 
3862         vdev_remove_child(pvd, vd);
3863         vdev_compact_children(pvd);
3864 
3865         cvd = pvd->vdev_child[0];
3866         if (pvd->vdev_children == 1) {
3867                 vdev_remove_parent(cvd);
3868                 cvd->vdev_splitting = B_TRUE;
 
3879                 vdev_deadman(cvd);
3880         }
3881 
3882         if (vd->vdev_ops->vdev_op_leaf) {
3883                 vdev_queue_t *vq = &vd->vdev_queue;
3884 
3885                 mutex_enter(&vq->vq_lock);
3886                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3887                         spa_t *spa = vd->vdev_spa;
3888                         zio_t *fio;
3889                         uint64_t delta;
3890 
3891                         /*
3892                          * Look at the head of all the pending queues,
3893                          * if any I/O has been outstanding for longer than
3894                          * the spa_deadman_synctime we panic the system.
3895                          */
3896                         fio = avl_first(&vq->vq_active_tree);
3897                         delta = gethrtime() - fio->io_timestamp;
3898                         if (delta > spa_deadman_synctime(spa)) {
3899                                 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
3900                                     "%lluns, delta %lluns, last io %lluns",
3901                                     fio->io_timestamp, (u_longlong_t)delta,
3902                                     vq->vq_io_complete_ts);
3903                                 fm_panic("I/O to pool '%s' appears to be "
3904                                     "hung.", spa_name(spa));
3905                         }
3906                 }
3907                 mutex_exit(&vq->vq_lock);
3908         }
3909 }
 | 
 
 
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
  25  * Copyright 2018 Nexenta Systems, Inc.
  26  * Copyright (c) 2014 Integros [integros.com]
  27  * Copyright 2016 Toomas Soome <tsoome@me.com>
  28  * Copyright 2017 Joyent, Inc.
  29  */
  30 
  31 #include <sys/zfs_context.h>
  32 #include <sys/fm/fs/zfs.h>
  33 #include <sys/spa.h>
  34 #include <sys/spa_impl.h>
  35 #include <sys/dmu.h>
  36 #include <sys/dmu_tx.h>
  37 #include <sys/vdev_impl.h>
  38 #include <sys/uberblock_impl.h>
  39 #include <sys/metaslab.h>
  40 #include <sys/metaslab_impl.h>
  41 #include <sys/space_map.h>
  42 #include <sys/space_reftree.h>
  43 #include <sys/zio.h>
  44 #include <sys/zap.h>
  45 #include <sys/fs/zfs.h>
  46 #include <sys/arc.h>
  47 #include <sys/zil.h>
  48 #include <sys/dsl_scan.h>
  49 #include <sys/abd.h>
  50 
  51 /*
  52  * Virtual device management.
  53  */
  54 
  55 static vdev_ops_t *vdev_ops_table[] = {
  56         &vdev_root_ops,
  57         &vdev_raidz_ops,
  58         &vdev_mirror_ops,
  59         &vdev_replacing_ops,
  60         &vdev_spare_ops,
  61         &vdev_disk_ops,
  62         &vdev_file_ops,
  63         &vdev_missing_ops,
  64         &vdev_hole_ops,
  65         NULL
  66 };
  67 
  68 /* maximum scrub/resilver I/O queue per leaf vdev */
  69 int zfs_scrub_limit = 10;
  70 
  71 /*
  72  * alpha for exponential moving average of I/O latency (in 1/10th of a percent)
  73  */
  74 int zfs_vs_latency_alpha = 100;
  75 
  76 /*
  77  * When a vdev is added, it will be divided into approximately (but no
  78  * more than) this number of metaslabs.
  79  */
  80 int metaslabs_per_vdev = 200;
  81 
  82 /*
  83  * Given a vdev type, return the appropriate ops vector.
  84  */
  85 static vdev_ops_t *
  86 vdev_getops(const char *type)
  87 {
  88         vdev_ops_t *ops, **opspp;
  89 
  90         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
  91                 if (strcmp(ops->vdev_op_type, type) == 0)
  92                         break;
  93 
  94         return (ops);
  95 }
  96 
  97 boolean_t
  98 vdev_is_special(vdev_t *vd)
  99 {
 100         return (vd ? vd->vdev_isspecial : B_FALSE);
 101 }
 102 
 103 /*
 104  * Default asize function: return the MAX of psize with the asize of
 105  * all children.  This is what's used by anything other than RAID-Z.
 106  */
 107 uint64_t
 108 vdev_default_asize(vdev_t *vd, uint64_t psize)
 109 {
 110         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
 111         uint64_t csize;
 112 
 113         for (int c = 0; c < vd->vdev_children; c++) {
 114                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
 115                 asize = MAX(asize, csize);
 116         }
 117 
 118         return (asize);
 119 }
 120 
 121 /*
 122  * Get the minimum allocatable size. We define the allocatable size as
 
 228         cvd->vdev_parent = pvd;
 229 
 230         if (pvd == NULL)
 231                 return;
 232 
 233         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
 234 
 235         oldsize = pvd->vdev_children * sizeof (vdev_t *);
 236         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
 237         newsize = pvd->vdev_children * sizeof (vdev_t *);
 238 
 239         newchild = kmem_zalloc(newsize, KM_SLEEP);
 240         if (pvd->vdev_child != NULL) {
 241                 bcopy(pvd->vdev_child, newchild, oldsize);
 242                 kmem_free(pvd->vdev_child, oldsize);
 243         }
 244 
 245         pvd->vdev_child = newchild;
 246         pvd->vdev_child[id] = cvd;
 247 
 248         cvd->vdev_isspecial_child =
 249             (pvd->vdev_isspecial || pvd->vdev_isspecial_child);
 250 
 251         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
 252         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
 253 
 254         /*
 255          * Walk up all ancestors to update guid sum.
 256          */
 257         for (; pvd != NULL; pvd = pvd->vdev_parent)
 258                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
 259 }
 260 
 261 void
 262 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
 263 {
 264         int c;
 265         uint_t id = cvd->vdev_id;
 266 
 267         ASSERT(cvd->vdev_parent == pvd);
 268 
 269         if (pvd == NULL)
 270                 return;
 
 312 
 313         for (int c = newc = 0; c < oldc; c++) {
 314                 if ((cvd = pvd->vdev_child[c]) != NULL) {
 315                         newchild[newc] = cvd;
 316                         cvd->vdev_id = newc++;
 317                 }
 318         }
 319 
 320         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
 321         pvd->vdev_child = newchild;
 322         pvd->vdev_children = newc;
 323 }
 324 
 325 /*
 326  * Allocate and minimally initialize a vdev_t.
 327  */
 328 vdev_t *
 329 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 330 {
 331         vdev_t *vd;
 332 
 333         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
 334 
 335         if (spa->spa_root_vdev == NULL) {
 336                 ASSERT(ops == &vdev_root_ops);
 337                 spa->spa_root_vdev = vd;
 338                 spa->spa_load_guid = spa_generate_guid(NULL);
 339         }
 340 
 341         if (guid == 0 && ops != &vdev_hole_ops) {
 342                 if (spa->spa_root_vdev == vd) {
 343                         /*
 344                          * The root vdev's guid will also be the pool guid,
 345                          * which must be unique among all pools.
 346                          */
 347                         guid = spa_generate_guid(NULL);
 348                 } else {
 349                         /*
 350                          * Any other vdev's guid must be unique within the pool.
 351                          */
 352                         guid = spa_generate_guid(spa);
 353                 }
 354                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
 355         }
 356 
 357         vd->vdev_spa = spa;
 358         vd->vdev_id = id;
 359         vd->vdev_guid = guid;
 360         vd->vdev_guid_sum = guid;
 361         vd->vdev_ops = ops;
 362         vd->vdev_state = VDEV_STATE_CLOSED;
 363         vd->vdev_ishole = (ops == &vdev_hole_ops);
 364 
 365         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
 366         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
 367         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
 368         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
 369         rw_init(&vd->vdev_tsd_lock, NULL, RW_DEFAULT, NULL);
 370         for (int t = 0; t < DTL_TYPES; t++) {
 371                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
 372                     &vd->vdev_dtl_lock);
 373         }
 374         txg_list_create(&vd->vdev_ms_list, spa,
 375             offsetof(struct metaslab, ms_txg_node));
 376         txg_list_create(&vd->vdev_dtl_list, spa,
 377             offsetof(struct vdev, vdev_dtl_node));
 378         vd->vdev_stat.vs_timestamp = gethrtime();
 379         vdev_queue_init(vd);
 380         vdev_cache_init(vd);
 381 
 382         return (vd);
 383 }
 384 
 385 /*
 386  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
 387  * creating a new vdev or loading an existing one - the behavior is slightly
 388  * different for each case.
 389  */
 390 int
 391 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 392     int alloctype)
 393 {
 394         vdev_ops_t *ops;
 395         char *type;
 396         uint64_t guid = 0, nparity;
 397         uint64_t isspecial = 0, islog = 0;
 398         vdev_t *vd;
 399 
 400         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 401 
 402         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
 403                 return (SET_ERROR(EINVAL));
 404 
 405         if ((ops = vdev_getops(type)) == NULL)
 406                 return (SET_ERROR(EINVAL));
 407 
 408         /*
 409          * If this is a load, get the vdev guid from the nvlist.
 410          * Otherwise, vdev_alloc_common() will generate one for us.
 411          */
 412         if (alloctype == VDEV_ALLOC_LOAD) {
 413                 uint64_t label_id;
 414 
 415                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
 416                     label_id != id)
 417                         return (SET_ERROR(EINVAL));
 418 
 
 421         } else if (alloctype == VDEV_ALLOC_SPARE) {
 422                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 423                         return (SET_ERROR(EINVAL));
 424         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
 425                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 426                         return (SET_ERROR(EINVAL));
 427         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 428                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 429                         return (SET_ERROR(EINVAL));
 430         }
 431 
 432         /*
 433          * The first allocated vdev must be of type 'root'.
 434          */
 435         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
 436                 return (SET_ERROR(EINVAL));
 437 
 438         /*
 439          * Determine whether we're a log vdev.
 440          */
 441         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
 442         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
 443                 return (SET_ERROR(ENOTSUP));
 444 
 445         /*
 446          * Determine whether we're a special vdev.
 447          */
 448         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPECIAL, &isspecial);
 449         if (isspecial && spa_version(spa) < SPA_VERSION_FEATURES)
 450                 return (SET_ERROR(ENOTSUP));
 451 
 452         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
 453                 return (SET_ERROR(ENOTSUP));
 454 
 455         /*
 456          * Set the nparity property for RAID-Z vdevs.
 457          */
 458         nparity = -1ULL;
 459         if (ops == &vdev_raidz_ops) {
 460                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
 461                     &nparity) == 0) {
 462                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
 463                                 return (SET_ERROR(EINVAL));
 464                         /*
 465                          * Previous versions could only support 1 or 2 parity
 466                          * device.
 467                          */
 468                         if (nparity > 1 &&
 469                             spa_version(spa) < SPA_VERSION_RAIDZ2)
 470                                 return (SET_ERROR(ENOTSUP));
 471                         if (nparity > 2 &&
 472                             spa_version(spa) < SPA_VERSION_RAIDZ3)
 473                                 return (SET_ERROR(ENOTSUP));
 474                 } else {
 475                         /*
 476                          * We require the parity to be specified for SPAs that
 477                          * support multiple parity levels.
 478                          */
 479                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
 480                                 return (SET_ERROR(EINVAL));
 481                         /*
 482                          * Otherwise, we default to 1 parity device for RAID-Z.
 483                          */
 484                         nparity = 1;
 485                 }
 486         } else {
 487                 nparity = 0;
 488         }
 489         ASSERT(nparity != -1ULL);
 490 
 491         vd = vdev_alloc_common(spa, id, guid, ops);
 492 
 493         vd->vdev_islog = islog;
 494         vd->vdev_isspecial = isspecial;
 495         vd->vdev_nparity = nparity;
 496         vd->vdev_isspecial_child = (parent != NULL &&
 497             (parent->vdev_isspecial || parent->vdev_isspecial_child));
 498 
 499         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
 500                 vd->vdev_path = spa_strdup(vd->vdev_path);
 501         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
 502                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
 503         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 504             &vd->vdev_physpath) == 0)
 505                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
 506         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
 507                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
 508 
 509 #ifdef _KERNEL
 510         if (vd->vdev_path) {
 511                 char dev_path[MAXPATHLEN];
 512                 char *last_slash = NULL;
 513                 kstat_t *exist = NULL;
 514 
 515                 if (strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) == 0)
 516                         last_slash = strrchr(vd->vdev_path, '/');
 517 
 518                 (void) sprintf(dev_path, "%s:%s", spa->spa_name,
 519                     last_slash != NULL ? last_slash + 1 : vd->vdev_path);
 520 
 521                 exist = kstat_hold_byname("zfs", 0, dev_path, ALL_ZONES);
 522 
 523                 if (!exist) {
 524                         vd->vdev_iokstat = kstat_create("zfs", 0, dev_path,
 525                             "zfs", KSTAT_TYPE_IO, 1, 0);
 526 
 527                         if (vd->vdev_iokstat) {
 528                                 vd->vdev_iokstat->ks_lock =
 529                                     &spa->spa_iokstat_lock;
 530                                 kstat_install(vd->vdev_iokstat);
 531                         }
 532                 } else {
 533                         kstat_rele(exist);
 534                 }
 535         }
 536 #endif
 537 
 538         /*
 539          * Set the whole_disk property.  If it's not specified, leave the value
 540          * as -1.
 541          */
 542         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 543             &vd->vdev_wholedisk) != 0)
 544                 vd->vdev_wholedisk = -1ULL;
 545 
 546         /*
 547          * Set the is_ssd property.  If it's not specified it means the media
 548          * is not SSD or the request failed and we assume it's not.
 549          */
 550         if (nvlist_lookup_boolean(nv, ZPOOL_CONFIG_IS_SSD) == 0)
 551                 vd->vdev_is_ssd = B_TRUE;
 552         else
 553                 vd->vdev_is_ssd = B_FALSE;
 554 
 555         /*
 556          * Look for the 'not present' flag.  This will only be set if the device
 557          * was not present at the time of import.
 558          */
 559         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
 560             &vd->vdev_not_present);
 561 
 562         /*
 563          * Get the alignment requirement.
 564          */
 565         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 566 
 567         /*
 568          * Retrieve the vdev creation time.
 569          */
 570         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 571             &vd->vdev_crtxg);
 572 
 573         /*
 574          * If we're a top-level vdev, try to load the allocation parameters.
 575          */
 576         if (parent && !parent->vdev_parent &&
 577             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 578                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 579                     &vd->vdev_ms_array);
 580                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 581                     &vd->vdev_ms_shift);
 582                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
 583                     &vd->vdev_asize);
 584                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
 585                     &vd->vdev_removing);
 586                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
 587                     &vd->vdev_top_zap);
 588         } else {
 589                 ASSERT0(vd->vdev_top_zap);
 590         }
 591 
 592         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
 593                 metaslab_class_t *mc = isspecial ? spa_special_class(spa) :
 594                     (islog ? spa_log_class(spa) : spa_normal_class(spa));
 595 
 596                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
 597                     alloctype == VDEV_ALLOC_ADD ||
 598                     alloctype == VDEV_ALLOC_SPLIT ||
 599                     alloctype == VDEV_ALLOC_ROOTPOOL);
 600 
 601                 vd->vdev_mg = metaslab_group_create(mc, vd);
 602         }
 603 
 604         if (vd->vdev_ops->vdev_op_leaf &&
 605             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 606                 (void) nvlist_lookup_uint64(nv,
 607                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
 608         } else {
 609                 ASSERT0(vd->vdev_leaf_zap);
 610         }
 611 
 612         /*
 613          * If we're a leaf vdev, try to load the DTL object and other state.
 614          */
 615 
 616         if (vd->vdev_ops->vdev_op_leaf &&
 617             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
 618             alloctype == VDEV_ALLOC_ROOTPOOL)) {
 619                 if (alloctype == VDEV_ALLOC_LOAD) {
 620                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
 621                             &vd->vdev_dtl_object);
 
 663                         }
 664                 }
 665         }
 666 
 667         /*
 668          * Add ourselves to the parent's list of children.
 669          */
 670         vdev_add_child(parent, vd);
 671 
 672         *vdp = vd;
 673 
 674         return (0);
 675 }
 676 
 677 void
 678 vdev_free(vdev_t *vd)
 679 {
 680         spa_t *spa = vd->vdev_spa;
 681 
 682         /*
 683          * Scan queues are normally destroyed at the end of a scan. If the
 684          * queue exists here, that implies the vdev is being removed while
 685          * the scan is still running.
 686          */
 687         if (vd->vdev_scan_io_queue != NULL) {
 688                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
 689                 vd->vdev_scan_io_queue = NULL;
 690         }
 691 
 692         /*
 693          * vdev_free() implies closing the vdev first.  This is simpler than
 694          * trying to ensure complicated semantics for all callers.
 695          */
 696         vdev_close(vd);
 697 
 698         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 699         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 700 
 701         /*
 702          * Free all children.
 703          */
 704         for (int c = 0; c < vd->vdev_children; c++)
 705                 vdev_free(vd->vdev_child[c]);
 706 
 707         ASSERT(vd->vdev_child == NULL);
 708         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 709 
 710         /*
 711          * Discard allocation state.
 712          */
 
 740                 spa_strfree(vd->vdev_physpath);
 741         if (vd->vdev_fru)
 742                 spa_strfree(vd->vdev_fru);
 743 
 744         if (vd->vdev_isspare)
 745                 spa_spare_remove(vd);
 746         if (vd->vdev_isl2cache)
 747                 spa_l2cache_remove(vd);
 748 
 749         txg_list_destroy(&vd->vdev_ms_list);
 750         txg_list_destroy(&vd->vdev_dtl_list);
 751 
 752         mutex_enter(&vd->vdev_dtl_lock);
 753         space_map_close(vd->vdev_dtl_sm);
 754         for (int t = 0; t < DTL_TYPES; t++) {
 755                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
 756                 range_tree_destroy(vd->vdev_dtl[t]);
 757         }
 758         mutex_exit(&vd->vdev_dtl_lock);
 759 
 760         if (vd->vdev_iokstat) {
 761                 kstat_delete(vd->vdev_iokstat);
 762                 vd->vdev_iokstat = NULL;
 763         }
 764         mutex_destroy(&vd->vdev_dtl_lock);
 765         mutex_destroy(&vd->vdev_stat_lock);
 766         mutex_destroy(&vd->vdev_probe_lock);
 767         mutex_destroy(&vd->vdev_scan_io_queue_lock);
 768         rw_destroy(&vd->vdev_tsd_lock);
 769 
 770         if (vd == spa->spa_root_vdev)
 771                 spa->spa_root_vdev = NULL;
 772 
 773         ASSERT3P(vd->vdev_scan_io_queue, ==, NULL);
 774 
 775         kmem_free(vd, sizeof (vdev_t));
 776 }
 777 
 778 /*
 779  * Transfer top-level vdev state from svd to tvd.
 780  */
 781 static void
 782 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 783 {
 784         spa_t *spa = svd->vdev_spa;
 785         metaslab_t *msp;
 786         vdev_t *vd;
 787         int t;
 788 
 789         ASSERT(tvd == tvd->vdev_top);
 790 
 791         tvd->vdev_ms_array = svd->vdev_ms_array;
 792         tvd->vdev_ms_shift = svd->vdev_ms_shift;
 793         tvd->vdev_ms_count = svd->vdev_ms_count;
 794         tvd->vdev_top_zap = svd->vdev_top_zap;
 
 824                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 825                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 826                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 827         }
 828 
 829         if (list_link_active(&svd->vdev_config_dirty_node)) {
 830                 vdev_config_clean(svd);
 831                 vdev_config_dirty(tvd);
 832         }
 833 
 834         if (list_link_active(&svd->vdev_state_dirty_node)) {
 835                 vdev_state_clean(svd);
 836                 vdev_state_dirty(tvd);
 837         }
 838 
 839         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 840         svd->vdev_deflate_ratio = 0;
 841 
 842         tvd->vdev_islog = svd->vdev_islog;
 843         svd->vdev_islog = 0;
 844 
 845         tvd->vdev_isspecial = svd->vdev_isspecial;
 846         svd->vdev_isspecial = 0;
 847         svd->vdev_isspecial_child = tvd->vdev_isspecial;
 848 
 849         dsl_scan_io_queue_vdev_xfer(svd, tvd);
 850 }
 851 
 852 static void
 853 vdev_top_update(vdev_t *tvd, vdev_t *vd)
 854 {
 855         if (vd == NULL)
 856                 return;
 857 
 858         vd->vdev_top = tvd;
 859 
 860         for (int c = 0; c < vd->vdev_children; c++)
 861                 vdev_top_update(tvd, vd->vdev_child[c]);
 862 }
 863 
 864 /*
 865  * Add a mirror/replacing vdev above an existing vdev.
 866  */
 867 vdev_t *
 868 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 869 {
 870         spa_t *spa = cvd->vdev_spa;
 871         vdev_t *pvd = cvd->vdev_parent;
 872         vdev_t *mvd;
 873 
 874         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 875 
 876         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 877 
 878         mvd->vdev_asize = cvd->vdev_asize;
 879         mvd->vdev_min_asize = cvd->vdev_min_asize;
 880         mvd->vdev_max_asize = cvd->vdev_max_asize;
 881         mvd->vdev_ashift = cvd->vdev_ashift;
 882         mvd->vdev_state = cvd->vdev_state;
 883         mvd->vdev_crtxg = cvd->vdev_crtxg;
 884 
 885         vdev_remove_child(pvd, cvd);
 886         vdev_add_child(pvd, mvd);
 887         cvd->vdev_id = mvd->vdev_children;
 888         vdev_add_child(mvd, cvd);
 889         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 890 
 891         if (mvd == mvd->vdev_top)
 892                 vdev_top_transfer(cvd, mvd);
 893 
 894         return (mvd);
 895 }
 896 
 897 /*
 898  * Remove a 1-way mirror/replacing vdev from the tree.
 899  */
 900 void
 
 941 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 942 {
 943         spa_t *spa = vd->vdev_spa;
 944         objset_t *mos = spa->spa_meta_objset;
 945         uint64_t m;
 946         uint64_t oldc = vd->vdev_ms_count;
 947         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 948         metaslab_t **mspp;
 949         int error;
 950 
 951         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 952 
 953         /*
 954          * This vdev is not being allocated from yet or is a hole.
 955          */
 956         if (vd->vdev_ms_shift == 0)
 957                 return (0);
 958 
 959         ASSERT(!vd->vdev_ishole);
 960 
 961         /*
 962          * Compute the raidz-deflation ratio.  Note, we hard-code
 963          * in 128k (1 << 17) because it is the "typical" blocksize.
 964          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
 965          * otherwise it would inconsistently account for existing bp's.
 966          */
 967         vd->vdev_deflate_ratio = (1 << 17) /
 968             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
 969 
 970         ASSERT(oldc <= newc);
 971 
 972         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 973 
 974         if (oldc != 0) {
 975                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
 976                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 977         }
 978 
 979         vd->vdev_ms = mspp;
 980         vd->vdev_ms_count = newc;
 981 
 982         for (m = oldc; m < newc; m++) {
 983                 uint64_t object = 0;
 984 
 985                 if (txg == 0) {
 986                         error = dmu_read(mos, vd->vdev_ms_array,
 987                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
 988                             DMU_READ_PREFETCH);
 989                         if (error)
 990                                 return (error);
 991                 }
 992 
 993                 error = metaslab_init(vd->vdev_mg, m, object, txg,
 994                     &(vd->vdev_ms[m]));
 995                 if (error)
 996                         return (error);
 997         }
 998 
 999         if (txg == 0)
1000                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1001 
1002         /*
1003          * If the vdev is being removed we don't activate
1004          * the metaslabs since we want to ensure that no new
1005          * allocations are performed on this device.
1006          */
1007         if (oldc == 0 && !vd->vdev_removing)
1008                 metaslab_group_activate(vd->vdev_mg);
1009 
1010         if (txg == 0)
1011                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1012 
1013         return (0);
1014 }
1015 
1016 void
1017 vdev_metaslab_fini(vdev_t *vd)
1018 {
1019         uint64_t m;
1020         uint64_t count = vd->vdev_ms_count;
1021 
1022         if (vd->vdev_ms != NULL) {
1023                 metaslab_group_passivate(vd->vdev_mg);
1024                 for (m = 0; m < count; m++) {
1025                         metaslab_t *msp = vd->vdev_ms[m];
1026 
1027                         if (msp != NULL)
1028                                 metaslab_fini(msp);
1029                 }
1030                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1031                 vd->vdev_ms = NULL;
1032         }
1033 }
1034 
1035 typedef struct vdev_probe_stats {
1036         boolean_t       vps_readable;
1037         boolean_t       vps_writeable;
1038         int             vps_flags;
1039 } vdev_probe_stats_t;
1040 
1041 static void
1042 vdev_probe_done(zio_t *zio)
1043 {
1044         spa_t *spa = zio->io_spa;
1045         vdev_t *vd = zio->io_vd;
1046         vdev_probe_stats_t *vps = zio->io_private;
1047 
1048         ASSERT(vd->vdev_probe_zio != NULL);
1049 
1050         if (zio->io_type == ZIO_TYPE_READ) {
1051                 if (zio->io_error == 0)
1052                         vps->vps_readable = 1;
 
1056                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1057                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1058                 } else {
1059                         abd_free(zio->io_abd);
1060                 }
1061         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1062                 if (zio->io_error == 0)
1063                         vps->vps_writeable = 1;
1064                 abd_free(zio->io_abd);
1065         } else if (zio->io_type == ZIO_TYPE_NULL) {
1066                 zio_t *pio;
1067 
1068                 vd->vdev_cant_read |= !vps->vps_readable;
1069                 vd->vdev_cant_write |= !vps->vps_writeable;
1070 
1071                 if (vdev_readable(vd) &&
1072                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1073                         zio->io_error = 0;
1074                 } else {
1075                         ASSERT(zio->io_error != 0);
1076                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1077                             spa, vd, NULL, 0, 0);
1078                         zio->io_error = SET_ERROR(ENXIO);
1079                 }
1080 
1081                 mutex_enter(&vd->vdev_probe_lock);
1082                 ASSERT(vd->vdev_probe_zio == zio);
1083                 vd->vdev_probe_zio = NULL;
1084                 mutex_exit(&vd->vdev_probe_lock);
1085 
1086                 zio_link_t *zl = NULL;
1087                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1088                         if (!vdev_accessible(vd, pio))
1089                                 pio->io_error = SET_ERROR(ENXIO);
1090 
1091                 kmem_free(vps, sizeof (*vps));
1092         }
1093 }
1094 
1095 /*
 
1223          * in a single thread so that the same thread holds the
1224          * spa_namespace_lock
1225          */
1226         if (vdev_uses_zvols(vd)) {
1227                 for (int c = 0; c < children; c++)
1228                         vd->vdev_child[c]->vdev_open_error =
1229                             vdev_open(vd->vdev_child[c]);
1230                 return;
1231         }
1232         tq = taskq_create("vdev_open", children, minclsyspri,
1233             children, children, TASKQ_PREPOPULATE);
1234 
1235         for (int c = 0; c < children; c++)
1236                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1237                     TQ_SLEEP) != NULL);
1238 
1239         taskq_destroy(tq);
1240 }
1241 
1242 /*
1243  * Prepare a virtual device for access.
1244  */
1245 int
1246 vdev_open(vdev_t *vd)
1247 {
1248         spa_t *spa = vd->vdev_spa;
1249         int error;
1250         uint64_t osize = 0;
1251         uint64_t max_osize = 0;
1252         uint64_t asize, max_asize, psize;
1253         uint64_t ashift = 0;
1254 
1255         ASSERT(vd->vdev_open_thread == curthread ||
1256             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1257         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1258             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1259             vd->vdev_state == VDEV_STATE_OFFLINE);
1260 
1261         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1262         vd->vdev_cant_read = B_FALSE;
1263         vd->vdev_cant_write = B_FALSE;
1264         vd->vdev_min_asize = vdev_get_min_asize(vd);
1265 
1266         /*
1267          * If vdev isn't removed and is faulted for reasons other than failed
1268          * open, or if it's offline - bail out.
1269          */
1270         if (!vd->vdev_removed && vd->vdev_faulted &&
1271             vd->vdev_label_aux != VDEV_AUX_OPEN_FAILED) {
1272                 ASSERT(vd->vdev_children == 0);
1273                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1274                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1275                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1276                     vd->vdev_label_aux);
1277                 return (SET_ERROR(ENXIO));
1278         } else if (vd->vdev_offline) {
1279                 ASSERT(vd->vdev_children == 0);
1280                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1281                 return (SET_ERROR(ENXIO));
1282         }
1283 
1284         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1285 
1286         /*
1287          * Reset the vdev_reopening flag so that we actually close
1288          * the vdev on error.
1289          */
1290         vd->vdev_reopening = B_FALSE;
1291         if (zio_injection_enabled && error == 0)
1292                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1293 
1294         if (error) {
1295                 if (vd->vdev_removed &&
1296                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1297                         vd->vdev_removed = B_FALSE;
1298 
1299                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1300                     vd->vdev_stat.vs_aux);
1301                 return (error);
1302         }
1303 
1304         vd->vdev_removed = B_FALSE;
1305 
1306         /*
1307          * Recheck the faulted flag now that we have confirmed that
1308          * the vdev is accessible.  If we're faulted, bail.
1309          */
1310         if (vd->vdev_faulted) {
1311                 ASSERT(vd->vdev_children == 0);
1312                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1313                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1314                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1315                     vd->vdev_label_aux);
1316                 return (SET_ERROR(ENXIO));
1317         }
1318 
1319         if (vd->vdev_degraded) {
1320                 ASSERT(vd->vdev_children == 0);
 
1440                         spa->spa_min_ashift = vd->vdev_ashift;
1441         }
1442 
1443         /*
1444          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1445          * resilver.  But don't do this if we are doing a reopen for a scrub,
1446          * since this would just restart the scrub we are already doing.
1447          */
1448         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1449             vdev_resilver_needed(vd, NULL, NULL))
1450                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1451 
1452         return (0);
1453 }
1454 
1455 /*
1456  * Called once the vdevs are all opened, this routine validates the label
1457  * contents.  This needs to be done before vdev_load() so that we don't
1458  * inadvertently do repair I/Os to the wrong device.
1459  *
1460  * If 'strict' is false ignore the spa guid check. This is necessary because
1461  * if the machine crashed during a re-guid the new guid might have been written
1462  * to all of the vdev labels, but not the cached config. The strict check
1463  * will be performed when the pool is opened again using the mos config.
1464  *
1465  * This function will only return failure if one of the vdevs indicates that it
1466  * has since been destroyed or exported.  This is only possible if
1467  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1468  * will be updated but the function will return 0.
1469  */
1470 int
1471 vdev_validate(vdev_t *vd, boolean_t strict)
1472 {
1473         spa_t *spa = vd->vdev_spa;
1474         nvlist_t *label;
1475         uint64_t guid = 0, top_guid;
1476         uint64_t state;
1477 
1478         for (int c = 0; c < vd->vdev_children; c++)
1479                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1480                         return (SET_ERROR(EBADF));
1481 
1482         /*
1483          * If the device has already failed, or was marked offline, don't do
1484          * any further validation.  Otherwise, label I/O will fail and we will
1485          * overwrite the previous state.
1486          */
1487         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1488                 uint64_t aux_guid = 0;
1489                 nvlist_t *nvl;
1490                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1491                     spa_last_synced_txg(spa) : -1ULL;
1492 
1493                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1494                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1495                             VDEV_AUX_BAD_LABEL);
1496                         return (0);
1497                 }
1498 
1499                 /*
1500                  * Determine if this vdev has been split off into another
1501                  * pool.  If so, then refuse to open it.
1502                  */
1503                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1504                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1505                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1506                             VDEV_AUX_SPLIT_POOL);
1507                         nvlist_free(label);
1508                         return (0);
1509                 }
1510 
1511                 if (strict && (nvlist_lookup_uint64(label,
1512                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1513                     guid != spa_guid(spa))) {
1514                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1515                             VDEV_AUX_CORRUPT_DATA);
1516                         nvlist_free(label);
1517                         return (0);
1518                 }
1519 
1520                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1521                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1522                     &aux_guid) != 0)
1523                         aux_guid = 0;
1524 
1525                 /*
1526                  * If this vdev just became a top-level vdev because its
1527                  * sibling was detached, it will have adopted the parent's
1528                  * vdev guid -- but the label may or may not be on disk yet.
1529                  * Fortunately, either version of the label will have the
1530                  * same top guid, so if we're a top-level vdev, we can
1531                  * safely compare to that instead.
1532                  *
1533                  * If we split this vdev off instead, then we also check the
1534                  * original pool's guid.  We don't want to consider the vdev
1535                  * corrupt if it is partway through a split operation.
1536                  */
1537                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1538                     &guid) != 0 ||
1539                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1540                     &top_guid) != 0 ||
1541                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1542                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1543                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1544                             VDEV_AUX_CORRUPT_DATA);
1545                         nvlist_free(label);
1546                         return (0);
1547                 }
1548 
1549                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1550                     &state) != 0) {
1551                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1552                             VDEV_AUX_CORRUPT_DATA);
1553                         nvlist_free(label);
1554                         return (0);
1555                 }
1556 
1557                 nvlist_free(label);
1558 
1559                 /*
1560                  * If this is a verbatim import, no need to check the
1561                  * state of the pool.
1562                  */
1563                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1564                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1565                     state != POOL_STATE_ACTIVE)
1566                         return (SET_ERROR(EBADF));
1567 
1568                 /*
1569                  * If we were able to open and validate a vdev that was
1570                  * previously marked permanently unavailable, clear that state
1571                  * now.
1572                  */
1573                 if (vd->vdev_not_present)
1574                         vd->vdev_not_present = 0;
1575         }
1576 
1577         return (0);
1578 }
1579 
1580 /*
1581  * Close a virtual device.
1582  */
1583 void
1584 vdev_close(vdev_t *vd)
1585 {
1586         spa_t *spa = vd->vdev_spa;
1587         vdev_t *pvd = vd->vdev_parent;
1588 
1589         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1590 
1591         /*
1592          * If our parent is reopening, then we are as well, unless we are
1593          * going offline.
1594          */
1595         if (pvd != NULL && pvd->vdev_reopening)
1596                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1597 
1598         vd->vdev_ops->vdev_op_close(vd);
1599 
1600         vdev_cache_purge(vd);
 
1652 vdev_reopen(vdev_t *vd)
1653 {
1654         spa_t *spa = vd->vdev_spa;
1655 
1656         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1657 
1658         /* set the reopening flag unless we're taking the vdev offline */
1659         vd->vdev_reopening = !vd->vdev_offline;
1660         vdev_close(vd);
1661         (void) vdev_open(vd);
1662 
1663         /*
1664          * Call vdev_validate() here to make sure we have the same device.
1665          * Otherwise, a device with an invalid label could be successfully
1666          * opened in response to vdev_reopen().
1667          */
1668         if (vd->vdev_aux) {
1669                 (void) vdev_validate_aux(vd);
1670                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1671                     vd->vdev_aux == &spa->spa_l2cache &&
1672                     !l2arc_vdev_present(vd)) {
1673                         /*
1674                          * When reopening we can assume persistent L2ARC is
1675                          * supported, since we've already opened the device
1676                          * in the past and prepended an L2ARC uberblock.
1677                          */
1678                         l2arc_add_vdev(spa, vd, B_TRUE);
1679                 }
1680         } else {
1681                 (void) vdev_validate(vd, B_TRUE);
1682         }
1683 
1684         /*
1685          * Reassess parent vdev's health.
1686          */
1687         vdev_propagate_state(vd);
1688 }
1689 
1690 int
1691 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1692 {
1693         int error;
1694 
1695         /*
1696          * Normally, partial opens (e.g. of a mirror) are allowed.
1697          * For a create, however, we want to fail the request if
1698          * there are any components we can't open.
1699          */
1700         error = vdev_open(vd);
1701 
 
1714                 return (error);
1715         }
1716 
1717         return (0);
1718 }
1719 
1720 void
1721 vdev_metaslab_set_size(vdev_t *vd)
1722 {
1723         /*
1724          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1725          */
1726         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1727         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1728 }
1729 
1730 void
1731 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1732 {
1733         ASSERT(vd == vd->vdev_top);
1734         ASSERT(!vd->vdev_ishole);
1735         ASSERT(ISP2(flags));
1736         ASSERT(spa_writeable(vd->vdev_spa));
1737 
1738         if (flags & VDD_METASLAB)
1739                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1740 
1741         if (flags & VDD_DTL)
1742                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1743 
1744         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1745 }
1746 
1747 void
1748 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1749 {
1750         for (int c = 0; c < vd->vdev_children; c++)
1751                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1752 
1753         if (vd->vdev_ops->vdev_op_leaf)
1754                 vdev_dirty(vd->vdev_top, flags, vd, txg);
 
1784  * comprising only those txgs which appear in 'maxfaults' or more children;
1785  * those are the txgs we don't have enough replication to read.  For example,
1786  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1787  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1788  * two child DTL_MISSING maps.
1789  *
1790  * It should be clear from the above that to compute the DTLs and outage maps
1791  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1792  * Therefore, that is all we keep on disk.  When loading the pool, or after
1793  * a configuration change, we generate all other DTLs from first principles.
1794  */
1795 void
1796 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1797 {
1798         range_tree_t *rt = vd->vdev_dtl[t];
1799 
1800         ASSERT(t < DTL_TYPES);
1801         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1802         ASSERT(spa_writeable(vd->vdev_spa));
1803 
1804         mutex_enter(rt->rt_lock);
1805         if (!range_tree_contains(rt, txg, size))
1806                 range_tree_add(rt, txg, size);
1807         mutex_exit(rt->rt_lock);
1808 }
1809 
1810 boolean_t
1811 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1812 {
1813         range_tree_t *rt = vd->vdev_dtl[t];
1814         boolean_t dirty = B_FALSE;
1815 
1816         ASSERT(t < DTL_TYPES);
1817         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1818 
1819         mutex_enter(rt->rt_lock);
1820         if (range_tree_space(rt) != 0)
1821                 dirty = range_tree_contains(rt, txg, size);
1822         mutex_exit(rt->rt_lock);
1823 
1824         return (dirty);
1825 }
1826 
1827 boolean_t
1828 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1829 {
1830         range_tree_t *rt = vd->vdev_dtl[t];
1831         boolean_t empty;
1832 
1833         mutex_enter(rt->rt_lock);
1834         empty = (range_tree_space(rt) == 0);
1835         mutex_exit(rt->rt_lock);
1836 
1837         return (empty);
1838 }
1839 
1840 /*
1841  * Returns the lowest txg in the DTL range.
1842  */
1843 static uint64_t
1844 vdev_dtl_min(vdev_t *vd)
1845 {
1846         range_seg_t *rs;
1847 
1848         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1849         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1850         ASSERT0(vd->vdev_children);
1851 
1852         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1853         return (rs->rs_start - 1);
1854 }
1855 
 
1908         }
1909         return (B_FALSE);
1910 }
1911 
1912 /*
1913  * Reassess DTLs after a config change or scrub completion.
1914  */
1915 void
1916 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1917 {
1918         spa_t *spa = vd->vdev_spa;
1919         avl_tree_t reftree;
1920         int minref;
1921 
1922         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1923 
1924         for (int c = 0; c < vd->vdev_children; c++)
1925                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1926                     scrub_txg, scrub_done);
1927 
1928         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1929                 return;
1930 
1931         if (vd->vdev_ops->vdev_op_leaf) {
1932                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1933 
1934                 mutex_enter(&vd->vdev_dtl_lock);
1935 
1936                 /*
1937                  * If we've completed a scan cleanly then determine
1938                  * if this vdev should remove any DTLs. We only want to
1939                  * excise regions on vdevs that were available during
1940                  * the entire duration of this scan.
1941                  */
1942                 if (scrub_txg != 0 &&
1943                     (spa->spa_scrub_started ||
1944                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1945                     vdev_dtl_should_excise(vd)) {
1946                         /*
1947                          * We completed a scrub up to scrub_txg.  If we
1948                          * did it without rebooting, then the scrub dtl
 
2014                 for (int c = 0; c < vd->vdev_children; c++) {
2015                         vdev_t *cvd = vd->vdev_child[c];
2016                         mutex_enter(&cvd->vdev_dtl_lock);
2017                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2018                         mutex_exit(&cvd->vdev_dtl_lock);
2019                 }
2020                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2021                 space_reftree_destroy(&reftree);
2022         }
2023         mutex_exit(&vd->vdev_dtl_lock);
2024 }
2025 
2026 int
2027 vdev_dtl_load(vdev_t *vd)
2028 {
2029         spa_t *spa = vd->vdev_spa;
2030         objset_t *mos = spa->spa_meta_objset;
2031         int error = 0;
2032 
2033         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2034                 ASSERT(!vd->vdev_ishole);
2035 
2036                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2037                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2038                 if (error)
2039                         return (error);
2040                 ASSERT(vd->vdev_dtl_sm != NULL);
2041 
2042                 mutex_enter(&vd->vdev_dtl_lock);
2043 
2044                 /*
2045                  * Now that we've opened the space_map we need to update
2046                  * the in-core DTL.
2047                  */
2048                 space_map_update(vd->vdev_dtl_sm);
2049 
2050                 error = space_map_load(vd->vdev_dtl_sm,
2051                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2052                 mutex_exit(&vd->vdev_dtl_lock);
2053 
2054                 return (error);
2055         }
2056 
2057         for (int c = 0; c < vd->vdev_children; c++) {
 
2096             !vd->vdev_top->vdev_removing) {
2097                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2098                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2099                 }
2100                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2101                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2102                 }
2103         }
2104         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2105                 vdev_construct_zaps(vd->vdev_child[i], tx);
2106         }
2107 }
2108 
2109 void
2110 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2111 {
2112         spa_t *spa = vd->vdev_spa;
2113         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2114         objset_t *mos = spa->spa_meta_objset;
2115         range_tree_t *rtsync;
2116         kmutex_t rtlock;
2117         dmu_tx_t *tx;
2118         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2119 
2120         ASSERT(!vd->vdev_ishole);
2121         ASSERT(vd->vdev_ops->vdev_op_leaf);
2122 
2123         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2124 
2125         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2126                 mutex_enter(&vd->vdev_dtl_lock);
2127                 space_map_free(vd->vdev_dtl_sm, tx);
2128                 space_map_close(vd->vdev_dtl_sm);
2129                 vd->vdev_dtl_sm = NULL;
2130                 mutex_exit(&vd->vdev_dtl_lock);
2131 
2132                 /*
2133                  * We only destroy the leaf ZAP for detached leaves or for
2134                  * removed log devices. Removed data devices handle leaf ZAP
2135                  * cleanup later, once cancellation is no longer possible.
2136                  */
2137                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2138                     vd->vdev_top->vdev_islog || vd->vdev_top->vdev_isspecial)) {
2139                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2140                         vd->vdev_leaf_zap = 0;
2141                 }
2142 
2143                 dmu_tx_commit(tx);
2144                 return;
2145         }
2146 
2147         if (vd->vdev_dtl_sm == NULL) {
2148                 uint64_t new_object;
2149 
2150                 new_object = space_map_alloc(mos, tx);
2151                 VERIFY3U(new_object, !=, 0);
2152 
2153                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2154                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2155                 ASSERT(vd->vdev_dtl_sm != NULL);
2156         }
2157 
2158         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2159 
2160         rtsync = range_tree_create(NULL, NULL, &rtlock);
2161 
2162         mutex_enter(&rtlock);
2163 
2164         mutex_enter(&vd->vdev_dtl_lock);
2165         range_tree_walk(rt, range_tree_add, rtsync);
2166         mutex_exit(&vd->vdev_dtl_lock);
2167 
2168         space_map_truncate(vd->vdev_dtl_sm, tx);
2169         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2170         range_tree_vacate(rtsync, NULL, NULL);
2171 
2172         range_tree_destroy(rtsync);
2173 
2174         mutex_exit(&rtlock);
2175         mutex_destroy(&rtlock);
2176 
2177         /*
2178          * If the object for the space map has changed then dirty
2179          * the top level so that we update the config.
2180          */
2181         if (object != space_map_object(vd->vdev_dtl_sm)) {
2182                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2183                     "new object %llu", txg, spa_name(spa), object,
2184                     space_map_object(vd->vdev_dtl_sm));
2185                 vdev_config_dirty(vd->vdev_top);
2186         }
2187 
2188         dmu_tx_commit(tx);
2189 
2190         mutex_enter(&vd->vdev_dtl_lock);
2191         space_map_update(vd->vdev_dtl_sm);
2192         mutex_exit(&vd->vdev_dtl_lock);
2193 }
2194 
2195 /*
2196  * Determine whether the specified vdev can be offlined/detached/removed
2197  * without losing data.
2198  */
2199 boolean_t
2200 vdev_dtl_required(vdev_t *vd)
2201 {
2202         spa_t *spa = vd->vdev_spa;
2203         vdev_t *tvd = vd->vdev_top;
2204         uint8_t cant_read = vd->vdev_cant_read;
 
2249         } else {
2250                 for (int c = 0; c < vd->vdev_children; c++) {
2251                         vdev_t *cvd = vd->vdev_child[c];
2252                         uint64_t cmin, cmax;
2253 
2254                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2255                                 thismin = MIN(thismin, cmin);
2256                                 thismax = MAX(thismax, cmax);
2257                                 needed = B_TRUE;
2258                         }
2259                 }
2260         }
2261 
2262         if (needed && minp) {
2263                 *minp = thismin;
2264                 *maxp = thismax;
2265         }
2266         return (needed);
2267 }
2268 
2269 void
2270 vdev_load(vdev_t *vd)
2271 {
2272         /*
2273          * Recursively load all children.
2274          */
2275         for (int c = 0; c < vd->vdev_children; c++)
2276                 vdev_load(vd->vdev_child[c]);
2277 
2278         /*
2279          * If this is a top-level vdev, initialize its metaslabs.
2280          */
2281         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2282             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2283             vdev_metaslab_init(vd, 0) != 0))
2284                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2285                     VDEV_AUX_CORRUPT_DATA);
2286 
2287         /*
2288          * If this is a leaf vdev, load its DTL.
2289          */
2290         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2291                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2292                     VDEV_AUX_CORRUPT_DATA);
2293 }
2294 
2295 /*
2296  * The special vdev case is used for hot spares and l2cache devices.  Its
2297  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2298  * we make sure that we can open the underlying device, then try to read the
2299  * label, and make sure that the label is sane and that it hasn't been
2300  * repurposed to another pool.
2301  */
2302 int
2303 vdev_validate_aux(vdev_t *vd)
2304 {
2305         nvlist_t *label;
2306         uint64_t guid, version;
2307         uint64_t state;
2308 
2309         if (!vdev_readable(vd))
2310                 return (0);
2311 
2312         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
 
2317 
2318         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2319             !SPA_VERSION_IS_SUPPORTED(version) ||
2320             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2321             guid != vd->vdev_guid ||
2322             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2323                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2324                     VDEV_AUX_CORRUPT_DATA);
2325                 nvlist_free(label);
2326                 return (-1);
2327         }
2328 
2329         /*
2330          * We don't actually check the pool state here.  If it's in fact in
2331          * use by another pool, we update this fact on the fly when requested.
2332          */
2333         nvlist_free(label);
2334         return (0);
2335 }
2336 
2337 void
2338 vdev_remove(vdev_t *vd, uint64_t txg)
2339 {
2340         spa_t *spa = vd->vdev_spa;
2341         objset_t *mos = spa->spa_meta_objset;
2342         dmu_tx_t *tx;
2343 
2344         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2345         ASSERT(vd == vd->vdev_top);
2346         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2347 
2348         if (vd->vdev_ms != NULL) {
2349                 metaslab_group_t *mg = vd->vdev_mg;
2350 
2351                 metaslab_group_histogram_verify(mg);
2352                 metaslab_class_histogram_verify(mg->mg_class);
2353 
2354                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2355                         metaslab_t *msp = vd->vdev_ms[m];
2356 
2357                         if (msp == NULL || msp->ms_sm == NULL)
2358                                 continue;
2359 
2360                         mutex_enter(&msp->ms_lock);
2361                         /*
2362                          * If the metaslab was not loaded when the vdev
2363                          * was removed then the histogram accounting may
2364                          * not be accurate. Update the histogram information
2365                          * here so that we ensure that the metaslab group
2366                          * and metaslab class are up-to-date.
2367                          */
2368                         metaslab_group_histogram_remove(mg, msp);
2369 
2370                         VERIFY0(space_map_allocated(msp->ms_sm));
2371                         space_map_free(msp->ms_sm, tx);
2372                         space_map_close(msp->ms_sm);
2373                         msp->ms_sm = NULL;
2374                         mutex_exit(&msp->ms_lock);
2375                 }
2376 
2377                 metaslab_group_histogram_verify(mg);
2378                 metaslab_class_histogram_verify(mg->mg_class);
2379                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2380                         ASSERT0(mg->mg_histogram[i]);
2381 
2382         }
2383 
2384         if (vd->vdev_ms_array) {
2385                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2386                 vd->vdev_ms_array = 0;
2387         }
2388 
2389         if ((vd->vdev_islog || vd->vdev_isspecial) &&
2390             vd->vdev_top_zap != 0) {
2391                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2392                 vd->vdev_top_zap = 0;
2393         }
2394         dmu_tx_commit(tx);
2395 }
2396 
2397 void
2398 vdev_sync_done(vdev_t *vd, uint64_t txg)
2399 {
2400         metaslab_t *msp;
2401         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2402 
2403         ASSERT(!vd->vdev_ishole);
2404 
2405         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2406                 metaslab_sync_done(msp, txg);
2407 
2408         if (reassess)
2409                 metaslab_sync_reassess(vd->vdev_mg);
2410 }
2411 
2412 void
2413 vdev_sync(vdev_t *vd, uint64_t txg)
2414 {
2415         spa_t *spa = vd->vdev_spa;
2416         vdev_t *lvd;
2417         metaslab_t *msp;
2418         dmu_tx_t *tx;
2419 
2420         ASSERT(!vd->vdev_ishole);
2421 
2422         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2423                 ASSERT(vd == vd->vdev_top);
2424                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2425                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2426                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2427                 ASSERT(vd->vdev_ms_array != 0);
2428                 vdev_config_dirty(vd);
2429                 dmu_tx_commit(tx);
2430         }
2431 
2432         /*
2433          * Remove the metadata associated with this vdev once it's empty.
2434          */
2435         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2436                 vdev_remove(vd, txg);
2437 
2438         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2439                 metaslab_sync(msp, txg);
2440                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2441         }
2442 
2443         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2444                 vdev_dtl_sync(lvd, txg);
2445 
2446         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2447 }
2448 
2449 uint64_t
2450 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2451 {
2452         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2453 }
2454 
2455 /*
2456  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2457  * not be opened, and no I/O is attempted.
2458  */
2459 int
2460 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2461 {
2462         vdev_t *vd, *tvd;
2463 
2464         spa_vdev_state_enter(spa, SCL_NONE);
2465 
 
2549  */
2550 int
2551 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2552 {
2553         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2554         boolean_t wasoffline;
2555         vdev_state_t oldstate;
2556 
2557         spa_vdev_state_enter(spa, SCL_NONE);
2558 
2559         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2560                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2561 
2562         if (!vd->vdev_ops->vdev_op_leaf)
2563                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2564 
2565         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2566         oldstate = vd->vdev_state;
2567 
2568         tvd = vd->vdev_top;
2569         vd->vdev_offline = 0ULL;
2570         vd->vdev_tmpoffline = 0ULL;
2571         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2572         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2573 
2574         /* XXX - L2ARC 1.0 does not support expansion */
2575         if (!vd->vdev_aux) {
2576                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2577                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2578         }
2579 
2580         vdev_reopen(tvd);
2581         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2582 
2583         if (!vd->vdev_aux) {
2584                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2585                         pvd->vdev_expanding = B_FALSE;
2586         }
2587 
2588         if (newstate)
2589                 *newstate = vd->vdev_state;
2590         if ((flags & ZFS_ONLINE_UNSPARE) &&
 
2639                  * don't allow it to be offlined. Log devices are always
2640                  * expendable.
2641                  */
2642                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2643                     vdev_dtl_required(vd))
2644                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2645 
2646                 /*
2647                  * If the top-level is a slog and it has had allocations
2648                  * then proceed.  We check that the vdev's metaslab group
2649                  * is not NULL since it's possible that we may have just
2650                  * added this vdev but not yet initialized its metaslabs.
2651                  */
2652                 if (tvd->vdev_islog && mg != NULL) {
2653                         /*
2654                          * Prevent any future allocations.
2655                          */
2656                         metaslab_group_passivate(mg);
2657                         (void) spa_vdev_state_exit(spa, vd, 0);
2658 
2659                         error = spa_offline_log(spa);
2660 
2661                         spa_vdev_state_enter(spa, SCL_ALLOC);
2662 
2663                         /*
2664                          * Check to see if the config has changed.
2665                          */
2666                         if (error || generation != spa->spa_config_generation) {
2667                                 metaslab_group_activate(mg);
2668                                 if (error)
2669                                         return (spa_vdev_state_exit(spa,
2670                                             vd, error));
2671                                 (void) spa_vdev_state_exit(spa, vd, 0);
2672                                 goto top;
2673                         }
2674                         ASSERT0(tvd->vdev_stat.vs_alloc);
2675                 }
2676 
2677                 /*
2678                  * Offline this device and reopen its top-level vdev.
2679                  * If the top-level vdev is a log device then just offline
 
2706 int
2707 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2708 {
2709         int error;
2710 
2711         mutex_enter(&spa->spa_vdev_top_lock);
2712         error = vdev_offline_locked(spa, guid, flags);
2713         mutex_exit(&spa->spa_vdev_top_lock);
2714 
2715         return (error);
2716 }
2717 
2718 /*
2719  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2720  * vdev_offline(), we assume the spa config is locked.  We also clear all
2721  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2722  */
2723 void
2724 vdev_clear(spa_t *spa, vdev_t *vd)
2725 {
2726         int c;
2727         vdev_t *rvd = spa->spa_root_vdev;
2728 
2729         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2730 
2731         if (vd == NULL) {
2732                 vd = rvd;
2733 
2734                 /* Go through spare and l2cache vdevs */
2735                 for (c = 0; c < spa->spa_spares.sav_count; c++)
2736                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2737                 for (c = 0; c < spa->spa_l2cache.sav_count; c++)
2738                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2739         }
2740 
2741         vd->vdev_stat.vs_read_errors = 0;
2742         vd->vdev_stat.vs_write_errors = 0;
2743         vd->vdev_stat.vs_checksum_errors = 0;
2744 
2745         /*
2746          * If all disk vdevs failed at the same time (e.g. due to a
2747          * disconnected cable), that suspends I/O activity to the pool,
2748          * which stalls spa_sync if there happened to be any dirty data.
2749          * As a consequence, this flag might not be cleared, because it
2750          * is only lowered by spa_async_remove (which cannot run). This
2751          * then prevents zio_resume from succeeding even if vdev reopen
2752          * succeeds, leading to an indefinitely suspended pool. So we
2753          * lower the flag here to allow zio_resume to succeed, provided
2754          * reopening of the vdevs succeeds.
2755          */
2756         vd->vdev_remove_wanted = B_FALSE;
2757 
2758         for (c = 0; c < vd->vdev_children; c++)
2759                 vdev_clear(spa, vd->vdev_child[c]);
2760 
2761         /*
2762          * If we're in the FAULTED state or have experienced failed I/O, then
2763          * clear the persistent state and attempt to reopen the device.  We
2764          * also mark the vdev config dirty, so that the new faulted state is
2765          * written out to disk.
2766          */
2767         if (vd->vdev_faulted || vd->vdev_degraded ||
2768             !vdev_readable(vd) || !vdev_writeable(vd)) {
2769 
2770                 /*
2771                  * When reopening in reponse to a clear event, it may be due to
2772                  * a fmadm repair request.  In this case, if the device is
2773                  * still broken, we want to still post the ereport again.
2774                  */
2775                 vd->vdev_forcefault = B_TRUE;
2776 
2777                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2778                 vd->vdev_cant_read = B_FALSE;
2779                 vd->vdev_cant_write = B_FALSE;
2780 
 
2795          * When clearing a FMA-diagnosed fault, we always want to
2796          * unspare the device, as we assume that the original spare was
2797          * done in response to the FMA fault.
2798          */
2799         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2800             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2801             vd->vdev_parent->vdev_child[0] == vd)
2802                 vd->vdev_unspare = B_TRUE;
2803 }
2804 
2805 boolean_t
2806 vdev_is_dead(vdev_t *vd)
2807 {
2808         /*
2809          * Holes and missing devices are always considered "dead".
2810          * This simplifies the code since we don't have to check for
2811          * these types of devices in the various code paths.
2812          * Instead we rely on the fact that we skip over dead devices
2813          * before issuing I/O to them.
2814          */
2815         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2816             vd->vdev_ops == &vdev_missing_ops);
2817 }
2818 
2819 boolean_t
2820 vdev_readable(vdev_t *vd)
2821 {
2822         return (vd != NULL && !vdev_is_dead(vd) && !vd->vdev_cant_read);
2823 }
2824 
2825 boolean_t
2826 vdev_writeable(vdev_t *vd)
2827 {
2828         return (vd != NULL && !vdev_is_dead(vd) && !vd->vdev_cant_write);
2829 }
2830 
2831 boolean_t
2832 vdev_allocatable(vdev_t *vd)
2833 {
2834         uint64_t state = vd->vdev_state;
2835 
2836         /*
2837          * We currently allow allocations from vdevs which may be in the
2838          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2839          * fails to reopen then we'll catch it later when we're holding
2840          * the proper locks.  Note that we have to get the vdev state
2841          * in a local variable because although it changes atomically,
2842          * we're asking two separate questions about it.
2843          */
2844         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2845             !vd->vdev_cant_write && !vd->vdev_ishole &&
2846             vd->vdev_mg->mg_initialized);
2847 }
2848 
2849 boolean_t
2850 vdev_accessible(vdev_t *vd, zio_t *zio)
2851 {
2852         ASSERT(zio->io_vd == vd);
2853 
2854         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2855                 return (B_FALSE);
2856 
2857         if (zio->io_type == ZIO_TYPE_READ)
2858                 return (!vd->vdev_cant_read);
2859 
2860         if (zio->io_type == ZIO_TYPE_WRITE)
2861                 return (!vd->vdev_cant_write);
2862 
2863         return (B_TRUE);
2864 }
2865 
 
2874         vdev_t *tvd = vd->vdev_top;
2875 
2876         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2877 
2878         mutex_enter(&vd->vdev_stat_lock);
2879         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2880         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2881         vs->vs_state = vd->vdev_state;
2882         vs->vs_rsize = vdev_get_min_asize(vd);
2883         if (vd->vdev_ops->vdev_op_leaf)
2884                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2885         /*
2886          * Report expandable space on top-level, non-auxillary devices only.
2887          * The expandable space is reported in terms of metaslab sized units
2888          * since that determines how much space the pool can expand.
2889          */
2890         if (vd->vdev_aux == NULL && tvd != NULL) {
2891                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
2892                     spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
2893         }
2894         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2895                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2896         }
2897 
2898         /*
2899          * If we're getting stats on the root vdev, aggregate the I/O counts
2900          * over all top-level vdevs (i.e. the direct children of the root).
2901          */
2902         if (vd == rvd) {
2903                 for (int c = 0; c < rvd->vdev_children; c++) {
2904                         vdev_t *cvd = rvd->vdev_child[c];
2905                         vdev_stat_t *cvs = &cvd->vdev_stat;
2906 
2907                         for (int t = 0; t < ZIO_TYPES; t++) {
2908                                 vs->vs_ops[t] += cvs->vs_ops[t];
2909                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2910                                 vs->vs_iotime[t] += cvs->vs_iotime[t];
2911                                 vs->vs_latency[t] += cvs->vs_latency[t];
2912                         }
2913                         cvs->vs_scan_removing = cvd->vdev_removing;
2914                 }
2915         }
2916         mutex_exit(&vd->vdev_stat_lock);
2917 }
2918 
2919 void
2920 vdev_clear_stats(vdev_t *vd)
2921 {
2922         mutex_enter(&vd->vdev_stat_lock);
2923         vd->vdev_stat.vs_space = 0;
2924         vd->vdev_stat.vs_dspace = 0;
2925         vd->vdev_stat.vs_alloc = 0;
2926         mutex_exit(&vd->vdev_stat_lock);
2927 }
2928 
2929 void
2930 vdev_scan_stat_init(vdev_t *vd)
2931 {
 
2984 
2985                 if (flags & ZIO_FLAG_IO_REPAIR) {
2986                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2987                                 dsl_scan_phys_t *scn_phys =
2988                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2989                                 uint64_t *processed = &scn_phys->scn_processed;
2990 
2991                                 /* XXX cleanup? */
2992                                 if (vd->vdev_ops->vdev_op_leaf)
2993                                         atomic_add_64(processed, psize);
2994                                 vs->vs_scan_processed += psize;
2995                         }
2996 
2997                         if (flags & ZIO_FLAG_SELF_HEAL)
2998                                 vs->vs_self_healed += psize;
2999                 }
3000 
3001                 vs->vs_ops[type]++;
3002                 vs->vs_bytes[type] += psize;
3003 
3004                 /*
3005                  * While measuring each delta in nanoseconds, we should keep
3006                  * cumulative iotime in microseconds so it doesn't overflow on
3007                  * a busy system.
3008                  */
3009                 vs->vs_iotime[type] += (zio->io_vd_timestamp) / 1000;
3010 
3011                 /*
3012                  * Latency is an exponential moving average of iotime deltas
3013                  * with tuneable alpha measured in 1/10th of percent.
3014                  */
3015                 vs->vs_latency[type] += ((int64_t)zio->io_vd_timestamp -
3016                     vs->vs_latency[type]) * zfs_vs_latency_alpha / 1000;
3017 
3018                 mutex_exit(&vd->vdev_stat_lock);
3019                 return;
3020         }
3021 
3022         if (flags & ZIO_FLAG_SPECULATIVE)
3023                 return;
3024 
3025         /*
3026          * If this is an I/O error that is going to be retried, then ignore the
3027          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3028          * hard errors, when in reality they can happen for any number of
3029          * innocuous reasons (bus resets, MPxIO link failure, etc).
3030          */
3031         if (zio->io_error == EIO &&
3032             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3033                 return;
3034 
3035         /*
3036          * Intent logs writes won't propagate their error to the root
3037          * I/O so don't mark these types of failures as pool-level
3038          * errors.
3039          */
3040         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3041                 return;
3042 
3043         mutex_enter(&vd->vdev_stat_lock);
3044         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3045                 if (zio->io_error == ECKSUM)
3046                         vs->vs_checksum_errors++;
3047                 else
3048                         vs->vs_read_errors++;
3049         }
3050         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3051                 vs->vs_write_errors++;
3052         mutex_exit(&vd->vdev_stat_lock);
3053 
3054         if ((vd->vdev_isspecial || vd->vdev_isspecial_child) &&
3055             (vs->vs_checksum_errors != 0 || vs->vs_read_errors != 0 ||
3056             vs->vs_write_errors != 0 || !vdev_readable(vd) ||
3057             !vdev_writeable(vd)) && !spa->spa_special_has_errors) {
3058                 /* all new writes will be placed on normal */
3059                 cmn_err(CE_WARN, "New writes to special vdev [%s] "
3060                     "will be stopped", (vd->vdev_path != NULL) ?
3061                     vd->vdev_path : "undefined");
3062                 spa->spa_special_has_errors = B_TRUE;
3063         }
3064 
3065         if (type == ZIO_TYPE_WRITE && txg != 0 &&
3066             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3067             (flags & ZIO_FLAG_SCAN_THREAD) ||
3068             spa->spa_claiming)) {
3069                 /*
3070                  * This is either a normal write (not a repair), or it's
3071                  * a repair induced by the scrub thread, or it's a repair
3072                  * made by zil_claim() during spa_load() in the first txg.
3073                  * In the normal case, we commit the DTL change in the same
3074                  * txg as the block was born.  In the scrub-induced repair
3075                  * case, we know that scrubs run in first-pass syncing context,
3076                  * so we commit the DTL change in spa_syncing_txg(spa).
3077                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3078                  *
3079                  * We currently do not make DTL entries for failed spontaneous
3080                  * self-healing writes triggered by normal (non-scrubbing)
3081                  * reads, because we have no transactional context in which to
3082                  * do so -- and it's not clear that it'd be desirable anyway.
3083                  */
3084                 if (vd->vdev_ops->vdev_op_leaf) {
3085                         uint64_t commit_txg = txg;
 
3120 
3121         ASSERT(vd == vd->vdev_top);
3122 
3123         /*
3124          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3125          * factor.  We must calculate this here and not at the root vdev
3126          * because the root vdev's psize-to-asize is simply the max of its
3127          * childrens', thus not accurate enough for us.
3128          */
3129         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3130         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3131         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3132             vd->vdev_deflate_ratio;
3133 
3134         mutex_enter(&vd->vdev_stat_lock);
3135         vd->vdev_stat.vs_alloc += alloc_delta;
3136         vd->vdev_stat.vs_space += space_delta;
3137         vd->vdev_stat.vs_dspace += dspace_delta;
3138         mutex_exit(&vd->vdev_stat_lock);
3139 
3140         if (mc == spa_normal_class(spa) || mc == spa_special_class(spa)) {
3141                 mutex_enter(&rvd->vdev_stat_lock);
3142                 rvd->vdev_stat.vs_alloc += alloc_delta;
3143                 rvd->vdev_stat.vs_space += space_delta;
3144                 rvd->vdev_stat.vs_dspace += dspace_delta;
3145                 mutex_exit(&rvd->vdev_stat_lock);
3146         }
3147 
3148         if (mc != NULL) {
3149                 ASSERT(rvd == vd->vdev_parent);
3150                 ASSERT(vd->vdev_ms_count != 0);
3151 
3152                 metaslab_class_space_update(mc,
3153                     alloc_delta, defer_delta, space_delta, dspace_delta);
3154         }
3155 }
3156 
3157 /*
3158  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3159  * so that it will be written out next time the vdev configuration is synced.
3160  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
 
3210                 return;
3211         }
3212 
3213         /*
3214          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3215          * must either hold SCL_CONFIG as writer, or must be the sync thread
3216          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3217          * so this is sufficient to ensure mutual exclusion.
3218          */
3219         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3220             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3221             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3222 
3223         if (vd == rvd) {
3224                 for (c = 0; c < rvd->vdev_children; c++)
3225                         vdev_config_dirty(rvd->vdev_child[c]);
3226         } else {
3227                 ASSERT(vd == vd->vdev_top);
3228 
3229                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3230                     !vd->vdev_ishole)
3231                         list_insert_head(&spa->spa_config_dirty_list, vd);
3232         }
3233 }
3234 
3235 void
3236 vdev_config_clean(vdev_t *vd)
3237 {
3238         spa_t *spa = vd->vdev_spa;
3239 
3240         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3241             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3242             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3243 
3244         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3245         list_remove(&spa->spa_config_dirty_list, vd);
3246 }
3247 
3248 /*
3249  * Mark a top-level vdev's state as dirty, so that the next pass of
3250  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3251  * the state changes from larger config changes because they require
3252  * much less locking, and are often needed for administrative actions.
3253  */
3254 void
3255 vdev_state_dirty(vdev_t *vd)
3256 {
3257         spa_t *spa = vd->vdev_spa;
3258 
3259         ASSERT(spa_writeable(spa));
3260         ASSERT(vd == vd->vdev_top);
3261 
3262         /*
3263          * The state list is protected by the SCL_STATE lock.  The caller
3264          * must either hold SCL_STATE as writer, or must be the sync thread
3265          * (which holds SCL_STATE as reader).  There's only one sync thread,
3266          * so this is sufficient to ensure mutual exclusion.
3267          */
3268         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3269             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3270             spa_config_held(spa, SCL_STATE, RW_READER)));
3271 
3272         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3273                 list_insert_head(&spa->spa_state_dirty_list, vd);
3274 }
3275 
3276 void
3277 vdev_state_clean(vdev_t *vd)
3278 {
3279         spa_t *spa = vd->vdev_spa;
3280 
3281         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3282             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3283             spa_config_held(spa, SCL_STATE, RW_READER)));
3284 
3285         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3286         list_remove(&spa->spa_state_dirty_list, vd);
3287 }
3288 
3289 /*
3290  * Propagate vdev state up from children to parent.
3291  */
3292 void
3293 vdev_propagate_state(vdev_t *vd)
3294 {
3295         spa_t *spa = vd->vdev_spa;
3296         vdev_t *rvd = spa->spa_root_vdev;
3297         int degraded = 0, faulted = 0;
3298         int corrupted = 0;
3299         vdev_t *child;
3300 
3301         if (vd->vdev_children > 0) {
3302                 for (int c = 0; c < vd->vdev_children; c++) {
3303                         child = vd->vdev_child[c];
3304 
3305                         /*
3306                          * Don't factor holes into the decision.
3307                          */
3308                         if (child->vdev_ishole)
3309                                 continue;
3310 
3311                         if (!vdev_readable(child) ||
3312                             (!vdev_writeable(child) && spa_writeable(spa))) {
3313                                 /*
3314                                  * Root special: if there is a top-level log
3315                                  * device, treat the root vdev as if it were
3316                                  * degraded.
3317                                  */
3318                                 if (child->vdev_islog && vd == rvd)
3319                                         degraded++;
3320                                 else
3321                                         faulted++;
3322                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3323                                 degraded++;
3324                         }
3325 
3326                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3327                                 corrupted++;
3328                 }
 
3463                         case VDEV_AUX_BAD_LABEL:
3464                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3465                                 break;
3466                         default:
3467                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3468                         }
3469 
3470                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3471                 }
3472 
3473                 /* Erase any notion of persistent removed state */
3474                 vd->vdev_removed = B_FALSE;
3475         } else {
3476                 vd->vdev_removed = B_FALSE;
3477         }
3478 
3479         if (!isopen && vd->vdev_parent)
3480                 vdev_propagate_state(vd->vdev_parent);
3481 }
3482 
3483 /*
3484  * Check the vdev configuration to ensure that it's capable of supporting
3485  * a root pool. We do not support partial configuration.
3486  * In addition, only a single top-level vdev is allowed.
3487  */
3488 boolean_t
3489 vdev_is_bootable(vdev_t *vd)
3490 {
3491         if (!vd->vdev_ops->vdev_op_leaf) {
3492                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3493 
3494                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3495                     vd->vdev_children > 1) {
3496                         return (B_FALSE);
3497                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3498                         return (B_FALSE);
3499                 }
3500         }
3501 
3502         for (int c = 0; c < vd->vdev_children; c++) {
3503                 if (!vdev_is_bootable(vd->vdev_child[c]))
3504                         return (B_FALSE);
3505         }
3506         return (B_TRUE);
3507 }
3508 
3509 /*
3510  * Load the state from the original vdev tree (ovd) which
3511  * we've retrieved from the MOS config object. If the original
3512  * vdev was offline or faulted then we transfer that state to the
3513  * device in the current vdev tree (nvd).
3514  */
3515 void
3516 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3517 {
3518         spa_t *spa = nvd->vdev_spa;
3519 
3520         ASSERT(nvd->vdev_top->vdev_islog);
3521         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3522         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3523 
3524         for (int c = 0; c < nvd->vdev_children; c++)
3525                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3526 
3527         if (nvd->vdev_ops->vdev_op_leaf) {
3528                 /*
3529                  * Restore the persistent vdev state
3530                  */
3531                 nvd->vdev_offline = ovd->vdev_offline;
3532                 nvd->vdev_faulted = ovd->vdev_faulted;
3533                 nvd->vdev_degraded = ovd->vdev_degraded;
3534                 nvd->vdev_removed = ovd->vdev_removed;
3535         }
3536 }
3537 
3538 /*
3539  * Determine if a log device has valid content.  If the vdev was
3540  * removed or faulted in the MOS config then we know that
3541  * the content on the log device has already been written to the pool.
3542  */
3543 boolean_t
3544 vdev_log_state_valid(vdev_t *vd)
3545 {
3546         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3547             !vd->vdev_removed)
3548                 return (B_TRUE);
3549 
3550         for (int c = 0; c < vd->vdev_children; c++)
3551                 if (vdev_log_state_valid(vd->vdev_child[c]))
3552                         return (B_TRUE);
3553 
3554         return (B_FALSE);
3555 }
3556 
3557 /*
3558  * Expand a vdev if possible.
3559  */
3560 void
3561 vdev_expand(vdev_t *vd, uint64_t txg)
3562 {
3563         ASSERT(vd->vdev_top == vd);
3564         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3565 
3566         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3567                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3568                 vdev_config_dirty(vd);
3569         }
3570 }
3571 
3572 /*
3573  * Split a vdev.
3574  */
3575 void
3576 vdev_split(vdev_t *vd)
3577 {
3578         vdev_t *cvd, *pvd = vd->vdev_parent;
3579 
3580         vdev_remove_child(pvd, vd);
3581         vdev_compact_children(pvd);
3582 
3583         cvd = pvd->vdev_child[0];
3584         if (pvd->vdev_children == 1) {
3585                 vdev_remove_parent(cvd);
3586                 cvd->vdev_splitting = B_TRUE;
 
3597                 vdev_deadman(cvd);
3598         }
3599 
3600         if (vd->vdev_ops->vdev_op_leaf) {
3601                 vdev_queue_t *vq = &vd->vdev_queue;
3602 
3603                 mutex_enter(&vq->vq_lock);
3604                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3605                         spa_t *spa = vd->vdev_spa;
3606                         zio_t *fio;
3607                         uint64_t delta;
3608 
3609                         /*
3610                          * Look at the head of all the pending queues,
3611                          * if any I/O has been outstanding for longer than
3612                          * the spa_deadman_synctime we panic the system.
3613                          */
3614                         fio = avl_first(&vq->vq_active_tree);
3615                         delta = gethrtime() - fio->io_timestamp;
3616                         if (delta > spa_deadman_synctime(spa)) {
3617                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3618                                     "delta %lluns, last io %lluns",
3619                                     fio->io_timestamp, delta,
3620                                     vq->vq_io_complete_ts);
3621                                 fm_panic("I/O to pool '%s' appears to be "
3622                                     "hung.", spa_name(spa));
3623                         }
3624                 }
3625                 mutex_exit(&vq->vq_lock);
3626         }
3627 }
3628 
3629 boolean_t
3630 vdev_type_is_ddt(vdev_t *vd)
3631 {
3632         uint64_t pool;
3633 
3634         if (vd->vdev_l2ad_ddt == 1 &&
3635             zfs_ddt_limit_type == DDT_LIMIT_TO_L2ARC) {
3636                 ASSERT(spa_l2cache_exists(vd->vdev_guid, &pool));
3637                 ASSERT(vd->vdev_isl2cache);
3638                 return (B_TRUE);
3639         }
3640         return (B_FALSE);
3641 }
3642 
3643 /* count leaf vdev(s) under the given vdev */
3644 uint_t
3645 vdev_count_leaf_vdevs(vdev_t *vd)
3646 {
3647         uint_t cnt = 0;
3648 
3649         if (vd->vdev_ops->vdev_op_leaf)
3650                 return (1);
3651 
3652         /* if this is not a leaf vdev - visit children */
3653         for (int c = 0; c < vd->vdev_children; c++)
3654                 cnt += vdev_count_leaf_vdevs(vd->vdev_child[c]);
3655 
3656         return (cnt);
3657 }
3658 
3659 /*
3660  * Implements the per-vdev portion of manual TRIM. The function passes over
3661  * all metaslabs on this vdev and performs a metaslab_trim_all on them. It's
3662  * also responsible for rate-control if spa_man_trim_rate is non-zero.
3663  */
3664 void
3665 vdev_man_trim(vdev_trim_info_t *vti)
3666 {
3667         clock_t t = ddi_get_lbolt();
3668         spa_t *spa = vti->vti_vdev->vdev_spa;
3669         vdev_t *vd = vti->vti_vdev;
3670 
3671         vd->vdev_man_trimming = B_TRUE;
3672         vd->vdev_trim_prog = 0;
3673 
3674         spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_READER);
3675         for (uint64_t i = 0; i < vti->vti_vdev->vdev_ms_count &&
3676             !spa->spa_man_trim_stop; i++) {
3677                 uint64_t delta;
3678                 metaslab_t *msp = vd->vdev_ms[i];
3679                 zio_t *trim_io = metaslab_trim_all(msp, &delta);
3680 
3681                 atomic_add_64(&vd->vdev_trim_prog, msp->ms_size);
3682                 spa_config_exit(spa, SCL_STATE_ALL, FTAG);
3683 
3684                 (void) zio_wait(trim_io);
3685 
3686                 /* delay loop to handle fixed-rate trimming */
3687                 for (;;) {
3688                         uint64_t rate = spa->spa_man_trim_rate;
3689                         uint64_t sleep_delay;
3690 
3691                         if (rate == 0) {
3692                                 /* No delay, just update 't' and move on. */
3693                                 t = ddi_get_lbolt();
3694                                 break;
3695                         }
3696 
3697                         sleep_delay = (delta * hz) / rate;
3698                         mutex_enter(&spa->spa_man_trim_lock);
3699                         (void) cv_timedwait(&spa->spa_man_trim_update_cv,
3700                             &spa->spa_man_trim_lock, t);
3701                         mutex_exit(&spa->spa_man_trim_lock);
3702 
3703                         /* If interrupted, don't try to relock, get out */
3704                         if (spa->spa_man_trim_stop)
3705                                 goto out;
3706 
3707                         /* Timeout passed, move on to the next metaslab. */
3708                         if (ddi_get_lbolt() >= t + sleep_delay) {
3709                                 t += sleep_delay;
3710                                 break;
3711                         }
3712                 }
3713                 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_READER);
3714         }
3715         spa_config_exit(spa, SCL_STATE_ALL, FTAG);
3716 out:
3717         vd->vdev_man_trimming = B_FALSE;
3718         /*
3719          * Ensure we're marked as "completed" even if we've had to stop
3720          * before processing all metaslabs.
3721          */
3722         vd->vdev_trim_prog = vd->vdev_asize;
3723 
3724         ASSERT(vti->vti_done_cb != NULL);
3725         vti->vti_done_cb(vti->vti_done_arg);
3726 
3727         kmem_free(vti, sizeof (*vti));
3728 }
3729 
3730 /*
3731  * Runs through all metaslabs on the vdev and does their autotrim processing.
3732  */
3733 void
3734 vdev_auto_trim(vdev_trim_info_t *vti)
3735 {
3736         vdev_t *vd = vti->vti_vdev;
3737         spa_t *spa = vd->vdev_spa;
3738         uint64_t txg = vti->vti_txg;
3739 
3740         if (vd->vdev_man_trimming)
3741                 goto out;
3742 
3743         spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_READER);
3744         for (uint64_t i = 0; i < vd->vdev_ms_count; i++)
3745                 metaslab_auto_trim(vd->vdev_ms[i], txg);
3746         spa_config_exit(spa, SCL_STATE_ALL, FTAG);
3747 out:
3748         ASSERT(vti->vti_done_cb != NULL);
3749         vti->vti_done_cb(vti->vti_done_arg);
3750 
3751         kmem_free(vti, sizeof (*vti));
3752 }
 |