1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2018 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/metaslab_impl.h>
41 #include <sys/space_map.h>
42 #include <sys/space_reftree.h>
43 #include <sys/zio.h>
44 #include <sys/zap.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/arc.h>
47 #include <sys/zil.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/abd.h>
50
51 /*
52 * Virtual device management.
53 */
54
55 static vdev_ops_t *vdev_ops_table[] = {
56 &vdev_root_ops,
57 &vdev_raidz_ops,
58 &vdev_mirror_ops,
59 &vdev_replacing_ops,
60 &vdev_spare_ops,
61 &vdev_disk_ops,
62 &vdev_file_ops,
63 &vdev_missing_ops,
64 &vdev_hole_ops,
65 NULL
66 };
67
68 /* maximum scrub/resilver I/O queue per leaf vdev */
69 int zfs_scrub_limit = 10;
70
71 /*
72 * alpha for exponential moving average of I/O latency (in 1/10th of a percent)
73 */
74 int zfs_vs_latency_alpha = 100;
75
76 /*
77 * When a vdev is added, it will be divided into approximately (but no
78 * more than) this number of metaslabs.
79 */
80 int metaslabs_per_vdev = 200;
81
82 /*
83 * Given a vdev type, return the appropriate ops vector.
84 */
85 static vdev_ops_t *
86 vdev_getops(const char *type)
87 {
88 vdev_ops_t *ops, **opspp;
89
90 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
91 if (strcmp(ops->vdev_op_type, type) == 0)
92 break;
93
94 return (ops);
95 }
96
97 boolean_t
98 vdev_is_special(vdev_t *vd)
99 {
100 return (vd ? vd->vdev_isspecial : B_FALSE);
101 }
102
103 /*
104 * Default asize function: return the MAX of psize with the asize of
105 * all children. This is what's used by anything other than RAID-Z.
106 */
107 uint64_t
108 vdev_default_asize(vdev_t *vd, uint64_t psize)
109 {
110 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
111 uint64_t csize;
112
113 for (int c = 0; c < vd->vdev_children; c++) {
114 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
115 asize = MAX(asize, csize);
116 }
117
118 return (asize);
119 }
120
121 /*
122 * Get the minimum allocatable size. We define the allocatable size as
123 * the vdev's asize rounded to the nearest metaslab. This allows us to
124 * replace or attach devices which don't have the same physical size but
125 * can still satisfy the same number of allocations.
126 */
127 uint64_t
128 vdev_get_min_asize(vdev_t *vd)
129 {
130 vdev_t *pvd = vd->vdev_parent;
131
132 /*
133 * If our parent is NULL (inactive spare or cache) or is the root,
134 * just return our own asize.
135 */
136 if (pvd == NULL)
137 return (vd->vdev_asize);
138
139 /*
140 * The top-level vdev just returns the allocatable size rounded
141 * to the nearest metaslab.
142 */
143 if (vd == vd->vdev_top)
144 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
145
146 /*
147 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
148 * so each child must provide at least 1/Nth of its asize.
149 */
150 if (pvd->vdev_ops == &vdev_raidz_ops)
151 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
152 pvd->vdev_children);
153
154 return (pvd->vdev_min_asize);
155 }
156
157 void
158 vdev_set_min_asize(vdev_t *vd)
159 {
160 vd->vdev_min_asize = vdev_get_min_asize(vd);
161
162 for (int c = 0; c < vd->vdev_children; c++)
163 vdev_set_min_asize(vd->vdev_child[c]);
164 }
165
166 vdev_t *
167 vdev_lookup_top(spa_t *spa, uint64_t vdev)
168 {
169 vdev_t *rvd = spa->spa_root_vdev;
170
171 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
172
173 if (vdev < rvd->vdev_children) {
174 ASSERT(rvd->vdev_child[vdev] != NULL);
175 return (rvd->vdev_child[vdev]);
176 }
177
178 return (NULL);
179 }
180
181 vdev_t *
182 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
183 {
184 vdev_t *mvd;
185
186 if (vd->vdev_guid == guid)
187 return (vd);
188
189 for (int c = 0; c < vd->vdev_children; c++)
190 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
191 NULL)
192 return (mvd);
193
194 return (NULL);
195 }
196
197 static int
198 vdev_count_leaves_impl(vdev_t *vd)
199 {
200 int n = 0;
201
202 if (vd->vdev_ops->vdev_op_leaf)
203 return (1);
204
205 for (int c = 0; c < vd->vdev_children; c++)
206 n += vdev_count_leaves_impl(vd->vdev_child[c]);
207
208 return (n);
209 }
210
211 int
212 vdev_count_leaves(spa_t *spa)
213 {
214 return (vdev_count_leaves_impl(spa->spa_root_vdev));
215 }
216
217 void
218 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
219 {
220 size_t oldsize, newsize;
221 uint64_t id = cvd->vdev_id;
222 vdev_t **newchild;
223 spa_t *spa = cvd->vdev_spa;
224
225 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
226 ASSERT(cvd->vdev_parent == NULL);
227
228 cvd->vdev_parent = pvd;
229
230 if (pvd == NULL)
231 return;
232
233 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
234
235 oldsize = pvd->vdev_children * sizeof (vdev_t *);
236 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
237 newsize = pvd->vdev_children * sizeof (vdev_t *);
238
239 newchild = kmem_zalloc(newsize, KM_SLEEP);
240 if (pvd->vdev_child != NULL) {
241 bcopy(pvd->vdev_child, newchild, oldsize);
242 kmem_free(pvd->vdev_child, oldsize);
243 }
244
245 pvd->vdev_child = newchild;
246 pvd->vdev_child[id] = cvd;
247
248 cvd->vdev_isspecial_child =
249 (pvd->vdev_isspecial || pvd->vdev_isspecial_child);
250
251 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
252 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
253
254 /*
255 * Walk up all ancestors to update guid sum.
256 */
257 for (; pvd != NULL; pvd = pvd->vdev_parent)
258 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
259 }
260
261 void
262 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
263 {
264 int c;
265 uint_t id = cvd->vdev_id;
266
267 ASSERT(cvd->vdev_parent == pvd);
268
269 if (pvd == NULL)
270 return;
271
272 ASSERT(id < pvd->vdev_children);
273 ASSERT(pvd->vdev_child[id] == cvd);
274
275 pvd->vdev_child[id] = NULL;
276 cvd->vdev_parent = NULL;
277
278 for (c = 0; c < pvd->vdev_children; c++)
279 if (pvd->vdev_child[c])
280 break;
281
282 if (c == pvd->vdev_children) {
283 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
284 pvd->vdev_child = NULL;
285 pvd->vdev_children = 0;
286 }
287
288 /*
289 * Walk up all ancestors to update guid sum.
290 */
291 for (; pvd != NULL; pvd = pvd->vdev_parent)
292 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
293 }
294
295 /*
296 * Remove any holes in the child array.
297 */
298 void
299 vdev_compact_children(vdev_t *pvd)
300 {
301 vdev_t **newchild, *cvd;
302 int oldc = pvd->vdev_children;
303 int newc;
304
305 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
306
307 for (int c = newc = 0; c < oldc; c++)
308 if (pvd->vdev_child[c])
309 newc++;
310
311 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
312
313 for (int c = newc = 0; c < oldc; c++) {
314 if ((cvd = pvd->vdev_child[c]) != NULL) {
315 newchild[newc] = cvd;
316 cvd->vdev_id = newc++;
317 }
318 }
319
320 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
321 pvd->vdev_child = newchild;
322 pvd->vdev_children = newc;
323 }
324
325 /*
326 * Allocate and minimally initialize a vdev_t.
327 */
328 vdev_t *
329 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
330 {
331 vdev_t *vd;
332
333 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
334
335 if (spa->spa_root_vdev == NULL) {
336 ASSERT(ops == &vdev_root_ops);
337 spa->spa_root_vdev = vd;
338 spa->spa_load_guid = spa_generate_guid(NULL);
339 }
340
341 if (guid == 0 && ops != &vdev_hole_ops) {
342 if (spa->spa_root_vdev == vd) {
343 /*
344 * The root vdev's guid will also be the pool guid,
345 * which must be unique among all pools.
346 */
347 guid = spa_generate_guid(NULL);
348 } else {
349 /*
350 * Any other vdev's guid must be unique within the pool.
351 */
352 guid = spa_generate_guid(spa);
353 }
354 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
355 }
356
357 vd->vdev_spa = spa;
358 vd->vdev_id = id;
359 vd->vdev_guid = guid;
360 vd->vdev_guid_sum = guid;
361 vd->vdev_ops = ops;
362 vd->vdev_state = VDEV_STATE_CLOSED;
363 vd->vdev_ishole = (ops == &vdev_hole_ops);
364
365 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
366 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
367 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
368 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
369 rw_init(&vd->vdev_tsd_lock, NULL, RW_DEFAULT, NULL);
370 for (int t = 0; t < DTL_TYPES; t++) {
371 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
372 &vd->vdev_dtl_lock);
373 }
374 txg_list_create(&vd->vdev_ms_list, spa,
375 offsetof(struct metaslab, ms_txg_node));
376 txg_list_create(&vd->vdev_dtl_list, spa,
377 offsetof(struct vdev, vdev_dtl_node));
378 vd->vdev_stat.vs_timestamp = gethrtime();
379 vdev_queue_init(vd);
380 vdev_cache_init(vd);
381
382 return (vd);
383 }
384
385 /*
386 * Allocate a new vdev. The 'alloctype' is used to control whether we are
387 * creating a new vdev or loading an existing one - the behavior is slightly
388 * different for each case.
389 */
390 int
391 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
392 int alloctype)
393 {
394 vdev_ops_t *ops;
395 char *type;
396 uint64_t guid = 0, nparity;
397 uint64_t isspecial = 0, islog = 0;
398 vdev_t *vd;
399
400 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
401
402 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
403 return (SET_ERROR(EINVAL));
404
405 if ((ops = vdev_getops(type)) == NULL)
406 return (SET_ERROR(EINVAL));
407
408 /*
409 * If this is a load, get the vdev guid from the nvlist.
410 * Otherwise, vdev_alloc_common() will generate one for us.
411 */
412 if (alloctype == VDEV_ALLOC_LOAD) {
413 uint64_t label_id;
414
415 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
416 label_id != id)
417 return (SET_ERROR(EINVAL));
418
419 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
420 return (SET_ERROR(EINVAL));
421 } else if (alloctype == VDEV_ALLOC_SPARE) {
422 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
423 return (SET_ERROR(EINVAL));
424 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
425 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
426 return (SET_ERROR(EINVAL));
427 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
428 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
429 return (SET_ERROR(EINVAL));
430 }
431
432 /*
433 * The first allocated vdev must be of type 'root'.
434 */
435 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
436 return (SET_ERROR(EINVAL));
437
438 /*
439 * Determine whether we're a log vdev.
440 */
441 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
442 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
443 return (SET_ERROR(ENOTSUP));
444
445 /*
446 * Determine whether we're a special vdev.
447 */
448 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPECIAL, &isspecial);
449 if (isspecial && spa_version(spa) < SPA_VERSION_FEATURES)
450 return (SET_ERROR(ENOTSUP));
451
452 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
453 return (SET_ERROR(ENOTSUP));
454
455 /*
456 * Set the nparity property for RAID-Z vdevs.
457 */
458 nparity = -1ULL;
459 if (ops == &vdev_raidz_ops) {
460 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
461 &nparity) == 0) {
462 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
463 return (SET_ERROR(EINVAL));
464 /*
465 * Previous versions could only support 1 or 2 parity
466 * device.
467 */
468 if (nparity > 1 &&
469 spa_version(spa) < SPA_VERSION_RAIDZ2)
470 return (SET_ERROR(ENOTSUP));
471 if (nparity > 2 &&
472 spa_version(spa) < SPA_VERSION_RAIDZ3)
473 return (SET_ERROR(ENOTSUP));
474 } else {
475 /*
476 * We require the parity to be specified for SPAs that
477 * support multiple parity levels.
478 */
479 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
480 return (SET_ERROR(EINVAL));
481 /*
482 * Otherwise, we default to 1 parity device for RAID-Z.
483 */
484 nparity = 1;
485 }
486 } else {
487 nparity = 0;
488 }
489 ASSERT(nparity != -1ULL);
490
491 vd = vdev_alloc_common(spa, id, guid, ops);
492
493 vd->vdev_islog = islog;
494 vd->vdev_isspecial = isspecial;
495 vd->vdev_nparity = nparity;
496 vd->vdev_isspecial_child = (parent != NULL &&
497 (parent->vdev_isspecial || parent->vdev_isspecial_child));
498
499 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
500 vd->vdev_path = spa_strdup(vd->vdev_path);
501 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
502 vd->vdev_devid = spa_strdup(vd->vdev_devid);
503 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
504 &vd->vdev_physpath) == 0)
505 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
506 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
507 vd->vdev_fru = spa_strdup(vd->vdev_fru);
508
509 #ifdef _KERNEL
510 if (vd->vdev_path) {
511 char dev_path[MAXPATHLEN];
512 char *last_slash = NULL;
513 kstat_t *exist = NULL;
514
515 if (strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) == 0)
516 last_slash = strrchr(vd->vdev_path, '/');
517
518 (void) sprintf(dev_path, "%s:%s", spa->spa_name,
519 last_slash != NULL ? last_slash + 1 : vd->vdev_path);
520
521 exist = kstat_hold_byname("zfs", 0, dev_path, ALL_ZONES);
522
523 if (!exist) {
524 vd->vdev_iokstat = kstat_create("zfs", 0, dev_path,
525 "zfs", KSTAT_TYPE_IO, 1, 0);
526
527 if (vd->vdev_iokstat) {
528 vd->vdev_iokstat->ks_lock =
529 &spa->spa_iokstat_lock;
530 kstat_install(vd->vdev_iokstat);
531 }
532 } else {
533 kstat_rele(exist);
534 }
535 }
536 #endif
537
538 /*
539 * Set the whole_disk property. If it's not specified, leave the value
540 * as -1.
541 */
542 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
543 &vd->vdev_wholedisk) != 0)
544 vd->vdev_wholedisk = -1ULL;
545
546 /*
547 * Set the is_ssd property. If it's not specified it means the media
548 * is not SSD or the request failed and we assume it's not.
549 */
550 if (nvlist_lookup_boolean(nv, ZPOOL_CONFIG_IS_SSD) == 0)
551 vd->vdev_is_ssd = B_TRUE;
552 else
553 vd->vdev_is_ssd = B_FALSE;
554
555 /*
556 * Look for the 'not present' flag. This will only be set if the device
557 * was not present at the time of import.
558 */
559 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
560 &vd->vdev_not_present);
561
562 /*
563 * Get the alignment requirement.
564 */
565 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
566
567 /*
568 * Retrieve the vdev creation time.
569 */
570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
571 &vd->vdev_crtxg);
572
573 /*
574 * If we're a top-level vdev, try to load the allocation parameters.
575 */
576 if (parent && !parent->vdev_parent &&
577 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
578 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
579 &vd->vdev_ms_array);
580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
581 &vd->vdev_ms_shift);
582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
583 &vd->vdev_asize);
584 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
585 &vd->vdev_removing);
586 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
587 &vd->vdev_top_zap);
588 } else {
589 ASSERT0(vd->vdev_top_zap);
590 }
591
592 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
593 metaslab_class_t *mc = isspecial ? spa_special_class(spa) :
594 (islog ? spa_log_class(spa) : spa_normal_class(spa));
595
596 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
597 alloctype == VDEV_ALLOC_ADD ||
598 alloctype == VDEV_ALLOC_SPLIT ||
599 alloctype == VDEV_ALLOC_ROOTPOOL);
600
601 vd->vdev_mg = metaslab_group_create(mc, vd);
602 }
603
604 if (vd->vdev_ops->vdev_op_leaf &&
605 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
606 (void) nvlist_lookup_uint64(nv,
607 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
608 } else {
609 ASSERT0(vd->vdev_leaf_zap);
610 }
611
612 /*
613 * If we're a leaf vdev, try to load the DTL object and other state.
614 */
615
616 if (vd->vdev_ops->vdev_op_leaf &&
617 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
618 alloctype == VDEV_ALLOC_ROOTPOOL)) {
619 if (alloctype == VDEV_ALLOC_LOAD) {
620 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
621 &vd->vdev_dtl_object);
622 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
623 &vd->vdev_unspare);
624 }
625
626 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
627 uint64_t spare = 0;
628
629 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
630 &spare) == 0 && spare)
631 spa_spare_add(vd);
632 }
633
634 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
635 &vd->vdev_offline);
636
637 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
638 &vd->vdev_resilver_txg);
639
640 /*
641 * When importing a pool, we want to ignore the persistent fault
642 * state, as the diagnosis made on another system may not be
643 * valid in the current context. Local vdevs will
644 * remain in the faulted state.
645 */
646 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
647 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
648 &vd->vdev_faulted);
649 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
650 &vd->vdev_degraded);
651 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
652 &vd->vdev_removed);
653
654 if (vd->vdev_faulted || vd->vdev_degraded) {
655 char *aux;
656
657 vd->vdev_label_aux =
658 VDEV_AUX_ERR_EXCEEDED;
659 if (nvlist_lookup_string(nv,
660 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
661 strcmp(aux, "external") == 0)
662 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
663 }
664 }
665 }
666
667 /*
668 * Add ourselves to the parent's list of children.
669 */
670 vdev_add_child(parent, vd);
671
672 *vdp = vd;
673
674 return (0);
675 }
676
677 void
678 vdev_free(vdev_t *vd)
679 {
680 spa_t *spa = vd->vdev_spa;
681
682 /*
683 * Scan queues are normally destroyed at the end of a scan. If the
684 * queue exists here, that implies the vdev is being removed while
685 * the scan is still running.
686 */
687 if (vd->vdev_scan_io_queue != NULL) {
688 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
689 vd->vdev_scan_io_queue = NULL;
690 }
691
692 /*
693 * vdev_free() implies closing the vdev first. This is simpler than
694 * trying to ensure complicated semantics for all callers.
695 */
696 vdev_close(vd);
697
698 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
699 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
700
701 /*
702 * Free all children.
703 */
704 for (int c = 0; c < vd->vdev_children; c++)
705 vdev_free(vd->vdev_child[c]);
706
707 ASSERT(vd->vdev_child == NULL);
708 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
709
710 /*
711 * Discard allocation state.
712 */
713 if (vd->vdev_mg != NULL) {
714 vdev_metaslab_fini(vd);
715 metaslab_group_destroy(vd->vdev_mg);
716 }
717
718 ASSERT0(vd->vdev_stat.vs_space);
719 ASSERT0(vd->vdev_stat.vs_dspace);
720 ASSERT0(vd->vdev_stat.vs_alloc);
721
722 /*
723 * Remove this vdev from its parent's child list.
724 */
725 vdev_remove_child(vd->vdev_parent, vd);
726
727 ASSERT(vd->vdev_parent == NULL);
728
729 /*
730 * Clean up vdev structure.
731 */
732 vdev_queue_fini(vd);
733 vdev_cache_fini(vd);
734
735 if (vd->vdev_path)
736 spa_strfree(vd->vdev_path);
737 if (vd->vdev_devid)
738 spa_strfree(vd->vdev_devid);
739 if (vd->vdev_physpath)
740 spa_strfree(vd->vdev_physpath);
741 if (vd->vdev_fru)
742 spa_strfree(vd->vdev_fru);
743
744 if (vd->vdev_isspare)
745 spa_spare_remove(vd);
746 if (vd->vdev_isl2cache)
747 spa_l2cache_remove(vd);
748
749 txg_list_destroy(&vd->vdev_ms_list);
750 txg_list_destroy(&vd->vdev_dtl_list);
751
752 mutex_enter(&vd->vdev_dtl_lock);
753 space_map_close(vd->vdev_dtl_sm);
754 for (int t = 0; t < DTL_TYPES; t++) {
755 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
756 range_tree_destroy(vd->vdev_dtl[t]);
757 }
758 mutex_exit(&vd->vdev_dtl_lock);
759
760 if (vd->vdev_iokstat) {
761 kstat_delete(vd->vdev_iokstat);
762 vd->vdev_iokstat = NULL;
763 }
764 mutex_destroy(&vd->vdev_dtl_lock);
765 mutex_destroy(&vd->vdev_stat_lock);
766 mutex_destroy(&vd->vdev_probe_lock);
767 mutex_destroy(&vd->vdev_scan_io_queue_lock);
768 rw_destroy(&vd->vdev_tsd_lock);
769
770 if (vd == spa->spa_root_vdev)
771 spa->spa_root_vdev = NULL;
772
773 ASSERT3P(vd->vdev_scan_io_queue, ==, NULL);
774
775 kmem_free(vd, sizeof (vdev_t));
776 }
777
778 /*
779 * Transfer top-level vdev state from svd to tvd.
780 */
781 static void
782 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
783 {
784 spa_t *spa = svd->vdev_spa;
785 metaslab_t *msp;
786 vdev_t *vd;
787 int t;
788
789 ASSERT(tvd == tvd->vdev_top);
790
791 tvd->vdev_ms_array = svd->vdev_ms_array;
792 tvd->vdev_ms_shift = svd->vdev_ms_shift;
793 tvd->vdev_ms_count = svd->vdev_ms_count;
794 tvd->vdev_top_zap = svd->vdev_top_zap;
795
796 svd->vdev_ms_array = 0;
797 svd->vdev_ms_shift = 0;
798 svd->vdev_ms_count = 0;
799 svd->vdev_top_zap = 0;
800
801 if (tvd->vdev_mg)
802 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
803 tvd->vdev_mg = svd->vdev_mg;
804 tvd->vdev_ms = svd->vdev_ms;
805
806 svd->vdev_mg = NULL;
807 svd->vdev_ms = NULL;
808
809 if (tvd->vdev_mg != NULL)
810 tvd->vdev_mg->mg_vd = tvd;
811
812 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
813 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
814 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
815
816 svd->vdev_stat.vs_alloc = 0;
817 svd->vdev_stat.vs_space = 0;
818 svd->vdev_stat.vs_dspace = 0;
819
820 for (t = 0; t < TXG_SIZE; t++) {
821 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
822 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
823 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
824 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
825 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
826 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
827 }
828
829 if (list_link_active(&svd->vdev_config_dirty_node)) {
830 vdev_config_clean(svd);
831 vdev_config_dirty(tvd);
832 }
833
834 if (list_link_active(&svd->vdev_state_dirty_node)) {
835 vdev_state_clean(svd);
836 vdev_state_dirty(tvd);
837 }
838
839 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
840 svd->vdev_deflate_ratio = 0;
841
842 tvd->vdev_islog = svd->vdev_islog;
843 svd->vdev_islog = 0;
844
845 tvd->vdev_isspecial = svd->vdev_isspecial;
846 svd->vdev_isspecial = 0;
847 svd->vdev_isspecial_child = tvd->vdev_isspecial;
848
849 dsl_scan_io_queue_vdev_xfer(svd, tvd);
850 }
851
852 static void
853 vdev_top_update(vdev_t *tvd, vdev_t *vd)
854 {
855 if (vd == NULL)
856 return;
857
858 vd->vdev_top = tvd;
859
860 for (int c = 0; c < vd->vdev_children; c++)
861 vdev_top_update(tvd, vd->vdev_child[c]);
862 }
863
864 /*
865 * Add a mirror/replacing vdev above an existing vdev.
866 */
867 vdev_t *
868 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
869 {
870 spa_t *spa = cvd->vdev_spa;
871 vdev_t *pvd = cvd->vdev_parent;
872 vdev_t *mvd;
873
874 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
875
876 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
877
878 mvd->vdev_asize = cvd->vdev_asize;
879 mvd->vdev_min_asize = cvd->vdev_min_asize;
880 mvd->vdev_max_asize = cvd->vdev_max_asize;
881 mvd->vdev_ashift = cvd->vdev_ashift;
882 mvd->vdev_state = cvd->vdev_state;
883 mvd->vdev_crtxg = cvd->vdev_crtxg;
884
885 vdev_remove_child(pvd, cvd);
886 vdev_add_child(pvd, mvd);
887 cvd->vdev_id = mvd->vdev_children;
888 vdev_add_child(mvd, cvd);
889 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
890
891 if (mvd == mvd->vdev_top)
892 vdev_top_transfer(cvd, mvd);
893
894 return (mvd);
895 }
896
897 /*
898 * Remove a 1-way mirror/replacing vdev from the tree.
899 */
900 void
901 vdev_remove_parent(vdev_t *cvd)
902 {
903 vdev_t *mvd = cvd->vdev_parent;
904 vdev_t *pvd = mvd->vdev_parent;
905
906 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
907
908 ASSERT(mvd->vdev_children == 1);
909 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
910 mvd->vdev_ops == &vdev_replacing_ops ||
911 mvd->vdev_ops == &vdev_spare_ops);
912 cvd->vdev_ashift = mvd->vdev_ashift;
913
914 vdev_remove_child(mvd, cvd);
915 vdev_remove_child(pvd, mvd);
916
917 /*
918 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
919 * Otherwise, we could have detached an offline device, and when we
920 * go to import the pool we'll think we have two top-level vdevs,
921 * instead of a different version of the same top-level vdev.
922 */
923 if (mvd->vdev_top == mvd) {
924 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
925 cvd->vdev_orig_guid = cvd->vdev_guid;
926 cvd->vdev_guid += guid_delta;
927 cvd->vdev_guid_sum += guid_delta;
928 }
929 cvd->vdev_id = mvd->vdev_id;
930 vdev_add_child(pvd, cvd);
931 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
932
933 if (cvd == cvd->vdev_top)
934 vdev_top_transfer(mvd, cvd);
935
936 ASSERT(mvd->vdev_children == 0);
937 vdev_free(mvd);
938 }
939
940 int
941 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
942 {
943 spa_t *spa = vd->vdev_spa;
944 objset_t *mos = spa->spa_meta_objset;
945 uint64_t m;
946 uint64_t oldc = vd->vdev_ms_count;
947 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
948 metaslab_t **mspp;
949 int error;
950
951 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
952
953 /*
954 * This vdev is not being allocated from yet or is a hole.
955 */
956 if (vd->vdev_ms_shift == 0)
957 return (0);
958
959 ASSERT(!vd->vdev_ishole);
960
961 /*
962 * Compute the raidz-deflation ratio. Note, we hard-code
963 * in 128k (1 << 17) because it is the "typical" blocksize.
964 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
965 * otherwise it would inconsistently account for existing bp's.
966 */
967 vd->vdev_deflate_ratio = (1 << 17) /
968 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
969
970 ASSERT(oldc <= newc);
971
972 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
973
974 if (oldc != 0) {
975 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
976 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
977 }
978
979 vd->vdev_ms = mspp;
980 vd->vdev_ms_count = newc;
981
982 for (m = oldc; m < newc; m++) {
983 uint64_t object = 0;
984
985 if (txg == 0) {
986 error = dmu_read(mos, vd->vdev_ms_array,
987 m * sizeof (uint64_t), sizeof (uint64_t), &object,
988 DMU_READ_PREFETCH);
989 if (error)
990 return (error);
991 }
992
993 error = metaslab_init(vd->vdev_mg, m, object, txg,
994 &(vd->vdev_ms[m]));
995 if (error)
996 return (error);
997 }
998
999 if (txg == 0)
1000 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1001
1002 /*
1003 * If the vdev is being removed we don't activate
1004 * the metaslabs since we want to ensure that no new
1005 * allocations are performed on this device.
1006 */
1007 if (oldc == 0 && !vd->vdev_removing)
1008 metaslab_group_activate(vd->vdev_mg);
1009
1010 if (txg == 0)
1011 spa_config_exit(spa, SCL_ALLOC, FTAG);
1012
1013 return (0);
1014 }
1015
1016 void
1017 vdev_metaslab_fini(vdev_t *vd)
1018 {
1019 uint64_t m;
1020 uint64_t count = vd->vdev_ms_count;
1021
1022 if (vd->vdev_ms != NULL) {
1023 metaslab_group_passivate(vd->vdev_mg);
1024 for (m = 0; m < count; m++) {
1025 metaslab_t *msp = vd->vdev_ms[m];
1026
1027 if (msp != NULL)
1028 metaslab_fini(msp);
1029 }
1030 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1031 vd->vdev_ms = NULL;
1032 }
1033 }
1034
1035 typedef struct vdev_probe_stats {
1036 boolean_t vps_readable;
1037 boolean_t vps_writeable;
1038 int vps_flags;
1039 } vdev_probe_stats_t;
1040
1041 static void
1042 vdev_probe_done(zio_t *zio)
1043 {
1044 spa_t *spa = zio->io_spa;
1045 vdev_t *vd = zio->io_vd;
1046 vdev_probe_stats_t *vps = zio->io_private;
1047
1048 ASSERT(vd->vdev_probe_zio != NULL);
1049
1050 if (zio->io_type == ZIO_TYPE_READ) {
1051 if (zio->io_error == 0)
1052 vps->vps_readable = 1;
1053 if (zio->io_error == 0 && spa_writeable(spa)) {
1054 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1055 zio->io_offset, zio->io_size, zio->io_abd,
1056 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1057 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1058 } else {
1059 abd_free(zio->io_abd);
1060 }
1061 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1062 if (zio->io_error == 0)
1063 vps->vps_writeable = 1;
1064 abd_free(zio->io_abd);
1065 } else if (zio->io_type == ZIO_TYPE_NULL) {
1066 zio_t *pio;
1067
1068 vd->vdev_cant_read |= !vps->vps_readable;
1069 vd->vdev_cant_write |= !vps->vps_writeable;
1070
1071 if (vdev_readable(vd) &&
1072 (vdev_writeable(vd) || !spa_writeable(spa))) {
1073 zio->io_error = 0;
1074 } else {
1075 ASSERT(zio->io_error != 0);
1076 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1077 spa, vd, NULL, 0, 0);
1078 zio->io_error = SET_ERROR(ENXIO);
1079 }
1080
1081 mutex_enter(&vd->vdev_probe_lock);
1082 ASSERT(vd->vdev_probe_zio == zio);
1083 vd->vdev_probe_zio = NULL;
1084 mutex_exit(&vd->vdev_probe_lock);
1085
1086 zio_link_t *zl = NULL;
1087 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1088 if (!vdev_accessible(vd, pio))
1089 pio->io_error = SET_ERROR(ENXIO);
1090
1091 kmem_free(vps, sizeof (*vps));
1092 }
1093 }
1094
1095 /*
1096 * Determine whether this device is accessible.
1097 *
1098 * Read and write to several known locations: the pad regions of each
1099 * vdev label but the first, which we leave alone in case it contains
1100 * a VTOC.
1101 */
1102 zio_t *
1103 vdev_probe(vdev_t *vd, zio_t *zio)
1104 {
1105 spa_t *spa = vd->vdev_spa;
1106 vdev_probe_stats_t *vps = NULL;
1107 zio_t *pio;
1108
1109 ASSERT(vd->vdev_ops->vdev_op_leaf);
1110
1111 /*
1112 * Don't probe the probe.
1113 */
1114 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1115 return (NULL);
1116
1117 /*
1118 * To prevent 'probe storms' when a device fails, we create
1119 * just one probe i/o at a time. All zios that want to probe
1120 * this vdev will become parents of the probe io.
1121 */
1122 mutex_enter(&vd->vdev_probe_lock);
1123
1124 if ((pio = vd->vdev_probe_zio) == NULL) {
1125 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1126
1127 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1128 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1129 ZIO_FLAG_TRYHARD;
1130
1131 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1132 /*
1133 * vdev_cant_read and vdev_cant_write can only
1134 * transition from TRUE to FALSE when we have the
1135 * SCL_ZIO lock as writer; otherwise they can only
1136 * transition from FALSE to TRUE. This ensures that
1137 * any zio looking at these values can assume that
1138 * failures persist for the life of the I/O. That's
1139 * important because when a device has intermittent
1140 * connectivity problems, we want to ensure that
1141 * they're ascribed to the device (ENXIO) and not
1142 * the zio (EIO).
1143 *
1144 * Since we hold SCL_ZIO as writer here, clear both
1145 * values so the probe can reevaluate from first
1146 * principles.
1147 */
1148 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1149 vd->vdev_cant_read = B_FALSE;
1150 vd->vdev_cant_write = B_FALSE;
1151 }
1152
1153 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1154 vdev_probe_done, vps,
1155 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1156
1157 /*
1158 * We can't change the vdev state in this context, so we
1159 * kick off an async task to do it on our behalf.
1160 */
1161 if (zio != NULL) {
1162 vd->vdev_probe_wanted = B_TRUE;
1163 spa_async_request(spa, SPA_ASYNC_PROBE);
1164 }
1165 }
1166
1167 if (zio != NULL)
1168 zio_add_child(zio, pio);
1169
1170 mutex_exit(&vd->vdev_probe_lock);
1171
1172 if (vps == NULL) {
1173 ASSERT(zio != NULL);
1174 return (NULL);
1175 }
1176
1177 for (int l = 1; l < VDEV_LABELS; l++) {
1178 zio_nowait(zio_read_phys(pio, vd,
1179 vdev_label_offset(vd->vdev_psize, l,
1180 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1181 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1182 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1183 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1184 }
1185
1186 if (zio == NULL)
1187 return (pio);
1188
1189 zio_nowait(pio);
1190 return (NULL);
1191 }
1192
1193 static void
1194 vdev_open_child(void *arg)
1195 {
1196 vdev_t *vd = arg;
1197
1198 vd->vdev_open_thread = curthread;
1199 vd->vdev_open_error = vdev_open(vd);
1200 vd->vdev_open_thread = NULL;
1201 }
1202
1203 boolean_t
1204 vdev_uses_zvols(vdev_t *vd)
1205 {
1206 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1207 strlen(ZVOL_DIR)) == 0)
1208 return (B_TRUE);
1209 for (int c = 0; c < vd->vdev_children; c++)
1210 if (vdev_uses_zvols(vd->vdev_child[c]))
1211 return (B_TRUE);
1212 return (B_FALSE);
1213 }
1214
1215 void
1216 vdev_open_children(vdev_t *vd)
1217 {
1218 taskq_t *tq;
1219 int children = vd->vdev_children;
1220
1221 /*
1222 * in order to handle pools on top of zvols, do the opens
1223 * in a single thread so that the same thread holds the
1224 * spa_namespace_lock
1225 */
1226 if (vdev_uses_zvols(vd)) {
1227 for (int c = 0; c < children; c++)
1228 vd->vdev_child[c]->vdev_open_error =
1229 vdev_open(vd->vdev_child[c]);
1230 return;
1231 }
1232 tq = taskq_create("vdev_open", children, minclsyspri,
1233 children, children, TASKQ_PREPOPULATE);
1234
1235 for (int c = 0; c < children; c++)
1236 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1237 TQ_SLEEP) != NULL);
1238
1239 taskq_destroy(tq);
1240 }
1241
1242 /*
1243 * Prepare a virtual device for access.
1244 */
1245 int
1246 vdev_open(vdev_t *vd)
1247 {
1248 spa_t *spa = vd->vdev_spa;
1249 int error;
1250 uint64_t osize = 0;
1251 uint64_t max_osize = 0;
1252 uint64_t asize, max_asize, psize;
1253 uint64_t ashift = 0;
1254
1255 ASSERT(vd->vdev_open_thread == curthread ||
1256 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1257 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1258 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1259 vd->vdev_state == VDEV_STATE_OFFLINE);
1260
1261 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1262 vd->vdev_cant_read = B_FALSE;
1263 vd->vdev_cant_write = B_FALSE;
1264 vd->vdev_min_asize = vdev_get_min_asize(vd);
1265
1266 /*
1267 * If vdev isn't removed and is faulted for reasons other than failed
1268 * open, or if it's offline - bail out.
1269 */
1270 if (!vd->vdev_removed && vd->vdev_faulted &&
1271 vd->vdev_label_aux != VDEV_AUX_OPEN_FAILED) {
1272 ASSERT(vd->vdev_children == 0);
1273 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1274 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1275 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1276 vd->vdev_label_aux);
1277 return (SET_ERROR(ENXIO));
1278 } else if (vd->vdev_offline) {
1279 ASSERT(vd->vdev_children == 0);
1280 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1281 return (SET_ERROR(ENXIO));
1282 }
1283
1284 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1285
1286 /*
1287 * Reset the vdev_reopening flag so that we actually close
1288 * the vdev on error.
1289 */
1290 vd->vdev_reopening = B_FALSE;
1291 if (zio_injection_enabled && error == 0)
1292 error = zio_handle_device_injection(vd, NULL, ENXIO);
1293
1294 if (error) {
1295 if (vd->vdev_removed &&
1296 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1297 vd->vdev_removed = B_FALSE;
1298
1299 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1300 vd->vdev_stat.vs_aux);
1301 return (error);
1302 }
1303
1304 vd->vdev_removed = B_FALSE;
1305
1306 /*
1307 * Recheck the faulted flag now that we have confirmed that
1308 * the vdev is accessible. If we're faulted, bail.
1309 */
1310 if (vd->vdev_faulted) {
1311 ASSERT(vd->vdev_children == 0);
1312 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1313 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1314 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1315 vd->vdev_label_aux);
1316 return (SET_ERROR(ENXIO));
1317 }
1318
1319 if (vd->vdev_degraded) {
1320 ASSERT(vd->vdev_children == 0);
1321 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1322 VDEV_AUX_ERR_EXCEEDED);
1323 } else {
1324 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1325 }
1326
1327 /*
1328 * For hole or missing vdevs we just return success.
1329 */
1330 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1331 return (0);
1332
1333 for (int c = 0; c < vd->vdev_children; c++) {
1334 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1335 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1336 VDEV_AUX_NONE);
1337 break;
1338 }
1339 }
1340
1341 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1342 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1343
1344 if (vd->vdev_children == 0) {
1345 if (osize < SPA_MINDEVSIZE) {
1346 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1347 VDEV_AUX_TOO_SMALL);
1348 return (SET_ERROR(EOVERFLOW));
1349 }
1350 psize = osize;
1351 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1352 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1353 VDEV_LABEL_END_SIZE);
1354 } else {
1355 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1356 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1357 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1358 VDEV_AUX_TOO_SMALL);
1359 return (SET_ERROR(EOVERFLOW));
1360 }
1361 psize = 0;
1362 asize = osize;
1363 max_asize = max_osize;
1364 }
1365
1366 vd->vdev_psize = psize;
1367
1368 /*
1369 * Make sure the allocatable size hasn't shrunk too much.
1370 */
1371 if (asize < vd->vdev_min_asize) {
1372 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1373 VDEV_AUX_BAD_LABEL);
1374 return (SET_ERROR(EINVAL));
1375 }
1376
1377 if (vd->vdev_asize == 0) {
1378 /*
1379 * This is the first-ever open, so use the computed values.
1380 * For testing purposes, a higher ashift can be requested.
1381 */
1382 vd->vdev_asize = asize;
1383 vd->vdev_max_asize = max_asize;
1384 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1385 } else {
1386 /*
1387 * Detect if the alignment requirement has increased.
1388 * We don't want to make the pool unavailable, just
1389 * issue a warning instead.
1390 */
1391 if (ashift > vd->vdev_top->vdev_ashift &&
1392 vd->vdev_ops->vdev_op_leaf) {
1393 cmn_err(CE_WARN,
1394 "Disk, '%s', has a block alignment that is "
1395 "larger than the pool's alignment\n",
1396 vd->vdev_path);
1397 }
1398 vd->vdev_max_asize = max_asize;
1399 }
1400
1401 /*
1402 * If all children are healthy we update asize if either:
1403 * The asize has increased, due to a device expansion caused by dynamic
1404 * LUN growth or vdev replacement, and automatic expansion is enabled;
1405 * making the additional space available.
1406 *
1407 * The asize has decreased, due to a device shrink usually caused by a
1408 * vdev replace with a smaller device. This ensures that calculations
1409 * based of max_asize and asize e.g. esize are always valid. It's safe
1410 * to do this as we've already validated that asize is greater than
1411 * vdev_min_asize.
1412 */
1413 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1414 ((asize > vd->vdev_asize &&
1415 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1416 (asize < vd->vdev_asize)))
1417 vd->vdev_asize = asize;
1418
1419 vdev_set_min_asize(vd);
1420
1421 /*
1422 * Ensure we can issue some IO before declaring the
1423 * vdev open for business.
1424 */
1425 if (vd->vdev_ops->vdev_op_leaf &&
1426 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1427 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1428 VDEV_AUX_ERR_EXCEEDED);
1429 return (error);
1430 }
1431
1432 /*
1433 * Track the min and max ashift values for normal data devices.
1434 */
1435 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1436 !vd->vdev_islog && vd->vdev_aux == NULL) {
1437 if (vd->vdev_ashift > spa->spa_max_ashift)
1438 spa->spa_max_ashift = vd->vdev_ashift;
1439 if (vd->vdev_ashift < spa->spa_min_ashift)
1440 spa->spa_min_ashift = vd->vdev_ashift;
1441 }
1442
1443 /*
1444 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1445 * resilver. But don't do this if we are doing a reopen for a scrub,
1446 * since this would just restart the scrub we are already doing.
1447 */
1448 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1449 vdev_resilver_needed(vd, NULL, NULL))
1450 spa_async_request(spa, SPA_ASYNC_RESILVER);
1451
1452 return (0);
1453 }
1454
1455 /*
1456 * Called once the vdevs are all opened, this routine validates the label
1457 * contents. This needs to be done before vdev_load() so that we don't
1458 * inadvertently do repair I/Os to the wrong device.
1459 *
1460 * If 'strict' is false ignore the spa guid check. This is necessary because
1461 * if the machine crashed during a re-guid the new guid might have been written
1462 * to all of the vdev labels, but not the cached config. The strict check
1463 * will be performed when the pool is opened again using the mos config.
1464 *
1465 * This function will only return failure if one of the vdevs indicates that it
1466 * has since been destroyed or exported. This is only possible if
1467 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1468 * will be updated but the function will return 0.
1469 */
1470 int
1471 vdev_validate(vdev_t *vd, boolean_t strict)
1472 {
1473 spa_t *spa = vd->vdev_spa;
1474 nvlist_t *label;
1475 uint64_t guid = 0, top_guid;
1476 uint64_t state;
1477
1478 for (int c = 0; c < vd->vdev_children; c++)
1479 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1480 return (SET_ERROR(EBADF));
1481
1482 /*
1483 * If the device has already failed, or was marked offline, don't do
1484 * any further validation. Otherwise, label I/O will fail and we will
1485 * overwrite the previous state.
1486 */
1487 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1488 uint64_t aux_guid = 0;
1489 nvlist_t *nvl;
1490 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1491 spa_last_synced_txg(spa) : -1ULL;
1492
1493 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1494 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1495 VDEV_AUX_BAD_LABEL);
1496 return (0);
1497 }
1498
1499 /*
1500 * Determine if this vdev has been split off into another
1501 * pool. If so, then refuse to open it.
1502 */
1503 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1504 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1505 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1506 VDEV_AUX_SPLIT_POOL);
1507 nvlist_free(label);
1508 return (0);
1509 }
1510
1511 if (strict && (nvlist_lookup_uint64(label,
1512 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1513 guid != spa_guid(spa))) {
1514 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1515 VDEV_AUX_CORRUPT_DATA);
1516 nvlist_free(label);
1517 return (0);
1518 }
1519
1520 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1521 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1522 &aux_guid) != 0)
1523 aux_guid = 0;
1524
1525 /*
1526 * If this vdev just became a top-level vdev because its
1527 * sibling was detached, it will have adopted the parent's
1528 * vdev guid -- but the label may or may not be on disk yet.
1529 * Fortunately, either version of the label will have the
1530 * same top guid, so if we're a top-level vdev, we can
1531 * safely compare to that instead.
1532 *
1533 * If we split this vdev off instead, then we also check the
1534 * original pool's guid. We don't want to consider the vdev
1535 * corrupt if it is partway through a split operation.
1536 */
1537 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1538 &guid) != 0 ||
1539 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1540 &top_guid) != 0 ||
1541 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1542 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1543 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1544 VDEV_AUX_CORRUPT_DATA);
1545 nvlist_free(label);
1546 return (0);
1547 }
1548
1549 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1550 &state) != 0) {
1551 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1552 VDEV_AUX_CORRUPT_DATA);
1553 nvlist_free(label);
1554 return (0);
1555 }
1556
1557 nvlist_free(label);
1558
1559 /*
1560 * If this is a verbatim import, no need to check the
1561 * state of the pool.
1562 */
1563 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1564 spa_load_state(spa) == SPA_LOAD_OPEN &&
1565 state != POOL_STATE_ACTIVE)
1566 return (SET_ERROR(EBADF));
1567
1568 /*
1569 * If we were able to open and validate a vdev that was
1570 * previously marked permanently unavailable, clear that state
1571 * now.
1572 */
1573 if (vd->vdev_not_present)
1574 vd->vdev_not_present = 0;
1575 }
1576
1577 return (0);
1578 }
1579
1580 /*
1581 * Close a virtual device.
1582 */
1583 void
1584 vdev_close(vdev_t *vd)
1585 {
1586 spa_t *spa = vd->vdev_spa;
1587 vdev_t *pvd = vd->vdev_parent;
1588
1589 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1590
1591 /*
1592 * If our parent is reopening, then we are as well, unless we are
1593 * going offline.
1594 */
1595 if (pvd != NULL && pvd->vdev_reopening)
1596 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1597
1598 vd->vdev_ops->vdev_op_close(vd);
1599
1600 vdev_cache_purge(vd);
1601
1602 /*
1603 * We record the previous state before we close it, so that if we are
1604 * doing a reopen(), we don't generate FMA ereports if we notice that
1605 * it's still faulted.
1606 */
1607 vd->vdev_prevstate = vd->vdev_state;
1608
1609 if (vd->vdev_offline)
1610 vd->vdev_state = VDEV_STATE_OFFLINE;
1611 else
1612 vd->vdev_state = VDEV_STATE_CLOSED;
1613 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1614 }
1615
1616 void
1617 vdev_hold(vdev_t *vd)
1618 {
1619 spa_t *spa = vd->vdev_spa;
1620
1621 ASSERT(spa_is_root(spa));
1622 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1623 return;
1624
1625 for (int c = 0; c < vd->vdev_children; c++)
1626 vdev_hold(vd->vdev_child[c]);
1627
1628 if (vd->vdev_ops->vdev_op_leaf)
1629 vd->vdev_ops->vdev_op_hold(vd);
1630 }
1631
1632 void
1633 vdev_rele(vdev_t *vd)
1634 {
1635 spa_t *spa = vd->vdev_spa;
1636
1637 ASSERT(spa_is_root(spa));
1638 for (int c = 0; c < vd->vdev_children; c++)
1639 vdev_rele(vd->vdev_child[c]);
1640
1641 if (vd->vdev_ops->vdev_op_leaf)
1642 vd->vdev_ops->vdev_op_rele(vd);
1643 }
1644
1645 /*
1646 * Reopen all interior vdevs and any unopened leaves. We don't actually
1647 * reopen leaf vdevs which had previously been opened as they might deadlock
1648 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1649 * If the leaf has never been opened then open it, as usual.
1650 */
1651 void
1652 vdev_reopen(vdev_t *vd)
1653 {
1654 spa_t *spa = vd->vdev_spa;
1655
1656 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1657
1658 /* set the reopening flag unless we're taking the vdev offline */
1659 vd->vdev_reopening = !vd->vdev_offline;
1660 vdev_close(vd);
1661 (void) vdev_open(vd);
1662
1663 /*
1664 * Call vdev_validate() here to make sure we have the same device.
1665 * Otherwise, a device with an invalid label could be successfully
1666 * opened in response to vdev_reopen().
1667 */
1668 if (vd->vdev_aux) {
1669 (void) vdev_validate_aux(vd);
1670 if (vdev_readable(vd) && vdev_writeable(vd) &&
1671 vd->vdev_aux == &spa->spa_l2cache &&
1672 !l2arc_vdev_present(vd)) {
1673 /*
1674 * When reopening we can assume persistent L2ARC is
1675 * supported, since we've already opened the device
1676 * in the past and prepended an L2ARC uberblock.
1677 */
1678 l2arc_add_vdev(spa, vd, B_TRUE);
1679 }
1680 } else {
1681 (void) vdev_validate(vd, B_TRUE);
1682 }
1683
1684 /*
1685 * Reassess parent vdev's health.
1686 */
1687 vdev_propagate_state(vd);
1688 }
1689
1690 int
1691 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1692 {
1693 int error;
1694
1695 /*
1696 * Normally, partial opens (e.g. of a mirror) are allowed.
1697 * For a create, however, we want to fail the request if
1698 * there are any components we can't open.
1699 */
1700 error = vdev_open(vd);
1701
1702 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1703 vdev_close(vd);
1704 return (error ? error : ENXIO);
1705 }
1706
1707 /*
1708 * Recursively load DTLs and initialize all labels.
1709 */
1710 if ((error = vdev_dtl_load(vd)) != 0 ||
1711 (error = vdev_label_init(vd, txg, isreplacing ?
1712 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1713 vdev_close(vd);
1714 return (error);
1715 }
1716
1717 return (0);
1718 }
1719
1720 void
1721 vdev_metaslab_set_size(vdev_t *vd)
1722 {
1723 /*
1724 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1725 */
1726 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1727 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1728 }
1729
1730 void
1731 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1732 {
1733 ASSERT(vd == vd->vdev_top);
1734 ASSERT(!vd->vdev_ishole);
1735 ASSERT(ISP2(flags));
1736 ASSERT(spa_writeable(vd->vdev_spa));
1737
1738 if (flags & VDD_METASLAB)
1739 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1740
1741 if (flags & VDD_DTL)
1742 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1743
1744 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1745 }
1746
1747 void
1748 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1749 {
1750 for (int c = 0; c < vd->vdev_children; c++)
1751 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1752
1753 if (vd->vdev_ops->vdev_op_leaf)
1754 vdev_dirty(vd->vdev_top, flags, vd, txg);
1755 }
1756
1757 /*
1758 * DTLs.
1759 *
1760 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1761 * the vdev has less than perfect replication. There are four kinds of DTL:
1762 *
1763 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1764 *
1765 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1766 *
1767 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1768 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1769 * txgs that was scrubbed.
1770 *
1771 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1772 * persistent errors or just some device being offline.
1773 * Unlike the other three, the DTL_OUTAGE map is not generally
1774 * maintained; it's only computed when needed, typically to
1775 * determine whether a device can be detached.
1776 *
1777 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1778 * either has the data or it doesn't.
1779 *
1780 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1781 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1782 * if any child is less than fully replicated, then so is its parent.
1783 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1784 * comprising only those txgs which appear in 'maxfaults' or more children;
1785 * those are the txgs we don't have enough replication to read. For example,
1786 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1787 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1788 * two child DTL_MISSING maps.
1789 *
1790 * It should be clear from the above that to compute the DTLs and outage maps
1791 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1792 * Therefore, that is all we keep on disk. When loading the pool, or after
1793 * a configuration change, we generate all other DTLs from first principles.
1794 */
1795 void
1796 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1797 {
1798 range_tree_t *rt = vd->vdev_dtl[t];
1799
1800 ASSERT(t < DTL_TYPES);
1801 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1802 ASSERT(spa_writeable(vd->vdev_spa));
1803
1804 mutex_enter(rt->rt_lock);
1805 if (!range_tree_contains(rt, txg, size))
1806 range_tree_add(rt, txg, size);
1807 mutex_exit(rt->rt_lock);
1808 }
1809
1810 boolean_t
1811 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1812 {
1813 range_tree_t *rt = vd->vdev_dtl[t];
1814 boolean_t dirty = B_FALSE;
1815
1816 ASSERT(t < DTL_TYPES);
1817 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1818
1819 mutex_enter(rt->rt_lock);
1820 if (range_tree_space(rt) != 0)
1821 dirty = range_tree_contains(rt, txg, size);
1822 mutex_exit(rt->rt_lock);
1823
1824 return (dirty);
1825 }
1826
1827 boolean_t
1828 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1829 {
1830 range_tree_t *rt = vd->vdev_dtl[t];
1831 boolean_t empty;
1832
1833 mutex_enter(rt->rt_lock);
1834 empty = (range_tree_space(rt) == 0);
1835 mutex_exit(rt->rt_lock);
1836
1837 return (empty);
1838 }
1839
1840 /*
1841 * Returns the lowest txg in the DTL range.
1842 */
1843 static uint64_t
1844 vdev_dtl_min(vdev_t *vd)
1845 {
1846 range_seg_t *rs;
1847
1848 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1849 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1850 ASSERT0(vd->vdev_children);
1851
1852 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1853 return (rs->rs_start - 1);
1854 }
1855
1856 /*
1857 * Returns the highest txg in the DTL.
1858 */
1859 static uint64_t
1860 vdev_dtl_max(vdev_t *vd)
1861 {
1862 range_seg_t *rs;
1863
1864 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1865 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1866 ASSERT0(vd->vdev_children);
1867
1868 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1869 return (rs->rs_end);
1870 }
1871
1872 /*
1873 * Determine if a resilvering vdev should remove any DTL entries from
1874 * its range. If the vdev was resilvering for the entire duration of the
1875 * scan then it should excise that range from its DTLs. Otherwise, this
1876 * vdev is considered partially resilvered and should leave its DTL
1877 * entries intact. The comment in vdev_dtl_reassess() describes how we
1878 * excise the DTLs.
1879 */
1880 static boolean_t
1881 vdev_dtl_should_excise(vdev_t *vd)
1882 {
1883 spa_t *spa = vd->vdev_spa;
1884 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1885
1886 ASSERT0(scn->scn_phys.scn_errors);
1887 ASSERT0(vd->vdev_children);
1888
1889 if (vd->vdev_state < VDEV_STATE_DEGRADED)
1890 return (B_FALSE);
1891
1892 if (vd->vdev_resilver_txg == 0 ||
1893 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1894 return (B_TRUE);
1895
1896 /*
1897 * When a resilver is initiated the scan will assign the scn_max_txg
1898 * value to the highest txg value that exists in all DTLs. If this
1899 * device's max DTL is not part of this scan (i.e. it is not in
1900 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1901 * for excision.
1902 */
1903 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1904 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1905 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1906 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1907 return (B_TRUE);
1908 }
1909 return (B_FALSE);
1910 }
1911
1912 /*
1913 * Reassess DTLs after a config change or scrub completion.
1914 */
1915 void
1916 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1917 {
1918 spa_t *spa = vd->vdev_spa;
1919 avl_tree_t reftree;
1920 int minref;
1921
1922 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1923
1924 for (int c = 0; c < vd->vdev_children; c++)
1925 vdev_dtl_reassess(vd->vdev_child[c], txg,
1926 scrub_txg, scrub_done);
1927
1928 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1929 return;
1930
1931 if (vd->vdev_ops->vdev_op_leaf) {
1932 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1933
1934 mutex_enter(&vd->vdev_dtl_lock);
1935
1936 /*
1937 * If we've completed a scan cleanly then determine
1938 * if this vdev should remove any DTLs. We only want to
1939 * excise regions on vdevs that were available during
1940 * the entire duration of this scan.
1941 */
1942 if (scrub_txg != 0 &&
1943 (spa->spa_scrub_started ||
1944 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1945 vdev_dtl_should_excise(vd)) {
1946 /*
1947 * We completed a scrub up to scrub_txg. If we
1948 * did it without rebooting, then the scrub dtl
1949 * will be valid, so excise the old region and
1950 * fold in the scrub dtl. Otherwise, leave the
1951 * dtl as-is if there was an error.
1952 *
1953 * There's little trick here: to excise the beginning
1954 * of the DTL_MISSING map, we put it into a reference
1955 * tree and then add a segment with refcnt -1 that
1956 * covers the range [0, scrub_txg). This means
1957 * that each txg in that range has refcnt -1 or 0.
1958 * We then add DTL_SCRUB with a refcnt of 2, so that
1959 * entries in the range [0, scrub_txg) will have a
1960 * positive refcnt -- either 1 or 2. We then convert
1961 * the reference tree into the new DTL_MISSING map.
1962 */
1963 space_reftree_create(&reftree);
1964 space_reftree_add_map(&reftree,
1965 vd->vdev_dtl[DTL_MISSING], 1);
1966 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1967 space_reftree_add_map(&reftree,
1968 vd->vdev_dtl[DTL_SCRUB], 2);
1969 space_reftree_generate_map(&reftree,
1970 vd->vdev_dtl[DTL_MISSING], 1);
1971 space_reftree_destroy(&reftree);
1972 }
1973 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1974 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1975 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1976 if (scrub_done)
1977 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1978 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1979 if (!vdev_readable(vd))
1980 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1981 else
1982 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1983 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1984
1985 /*
1986 * If the vdev was resilvering and no longer has any
1987 * DTLs then reset its resilvering flag.
1988 */
1989 if (vd->vdev_resilver_txg != 0 &&
1990 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1991 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1992 vd->vdev_resilver_txg = 0;
1993
1994 mutex_exit(&vd->vdev_dtl_lock);
1995
1996 if (txg != 0)
1997 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1998 return;
1999 }
2000
2001 mutex_enter(&vd->vdev_dtl_lock);
2002 for (int t = 0; t < DTL_TYPES; t++) {
2003 /* account for child's outage in parent's missing map */
2004 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2005 if (t == DTL_SCRUB)
2006 continue; /* leaf vdevs only */
2007 if (t == DTL_PARTIAL)
2008 minref = 1; /* i.e. non-zero */
2009 else if (vd->vdev_nparity != 0)
2010 minref = vd->vdev_nparity + 1; /* RAID-Z */
2011 else
2012 minref = vd->vdev_children; /* any kind of mirror */
2013 space_reftree_create(&reftree);
2014 for (int c = 0; c < vd->vdev_children; c++) {
2015 vdev_t *cvd = vd->vdev_child[c];
2016 mutex_enter(&cvd->vdev_dtl_lock);
2017 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2018 mutex_exit(&cvd->vdev_dtl_lock);
2019 }
2020 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2021 space_reftree_destroy(&reftree);
2022 }
2023 mutex_exit(&vd->vdev_dtl_lock);
2024 }
2025
2026 int
2027 vdev_dtl_load(vdev_t *vd)
2028 {
2029 spa_t *spa = vd->vdev_spa;
2030 objset_t *mos = spa->spa_meta_objset;
2031 int error = 0;
2032
2033 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2034 ASSERT(!vd->vdev_ishole);
2035
2036 error = space_map_open(&vd->vdev_dtl_sm, mos,
2037 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2038 if (error)
2039 return (error);
2040 ASSERT(vd->vdev_dtl_sm != NULL);
2041
2042 mutex_enter(&vd->vdev_dtl_lock);
2043
2044 /*
2045 * Now that we've opened the space_map we need to update
2046 * the in-core DTL.
2047 */
2048 space_map_update(vd->vdev_dtl_sm);
2049
2050 error = space_map_load(vd->vdev_dtl_sm,
2051 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2052 mutex_exit(&vd->vdev_dtl_lock);
2053
2054 return (error);
2055 }
2056
2057 for (int c = 0; c < vd->vdev_children; c++) {
2058 error = vdev_dtl_load(vd->vdev_child[c]);
2059 if (error != 0)
2060 break;
2061 }
2062
2063 return (error);
2064 }
2065
2066 void
2067 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2068 {
2069 spa_t *spa = vd->vdev_spa;
2070
2071 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2072 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2073 zapobj, tx));
2074 }
2075
2076 uint64_t
2077 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2078 {
2079 spa_t *spa = vd->vdev_spa;
2080 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2081 DMU_OT_NONE, 0, tx);
2082
2083 ASSERT(zap != 0);
2084 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2085 zap, tx));
2086
2087 return (zap);
2088 }
2089
2090 void
2091 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2092 {
2093 if (vd->vdev_ops != &vdev_hole_ops &&
2094 vd->vdev_ops != &vdev_missing_ops &&
2095 vd->vdev_ops != &vdev_root_ops &&
2096 !vd->vdev_top->vdev_removing) {
2097 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2098 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2099 }
2100 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2101 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2102 }
2103 }
2104 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2105 vdev_construct_zaps(vd->vdev_child[i], tx);
2106 }
2107 }
2108
2109 void
2110 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2111 {
2112 spa_t *spa = vd->vdev_spa;
2113 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2114 objset_t *mos = spa->spa_meta_objset;
2115 range_tree_t *rtsync;
2116 kmutex_t rtlock;
2117 dmu_tx_t *tx;
2118 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2119
2120 ASSERT(!vd->vdev_ishole);
2121 ASSERT(vd->vdev_ops->vdev_op_leaf);
2122
2123 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2124
2125 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2126 mutex_enter(&vd->vdev_dtl_lock);
2127 space_map_free(vd->vdev_dtl_sm, tx);
2128 space_map_close(vd->vdev_dtl_sm);
2129 vd->vdev_dtl_sm = NULL;
2130 mutex_exit(&vd->vdev_dtl_lock);
2131
2132 /*
2133 * We only destroy the leaf ZAP for detached leaves or for
2134 * removed log devices. Removed data devices handle leaf ZAP
2135 * cleanup later, once cancellation is no longer possible.
2136 */
2137 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2138 vd->vdev_top->vdev_islog || vd->vdev_top->vdev_isspecial)) {
2139 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2140 vd->vdev_leaf_zap = 0;
2141 }
2142
2143 dmu_tx_commit(tx);
2144 return;
2145 }
2146
2147 if (vd->vdev_dtl_sm == NULL) {
2148 uint64_t new_object;
2149
2150 new_object = space_map_alloc(mos, tx);
2151 VERIFY3U(new_object, !=, 0);
2152
2153 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2154 0, -1ULL, 0, &vd->vdev_dtl_lock));
2155 ASSERT(vd->vdev_dtl_sm != NULL);
2156 }
2157
2158 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2159
2160 rtsync = range_tree_create(NULL, NULL, &rtlock);
2161
2162 mutex_enter(&rtlock);
2163
2164 mutex_enter(&vd->vdev_dtl_lock);
2165 range_tree_walk(rt, range_tree_add, rtsync);
2166 mutex_exit(&vd->vdev_dtl_lock);
2167
2168 space_map_truncate(vd->vdev_dtl_sm, tx);
2169 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2170 range_tree_vacate(rtsync, NULL, NULL);
2171
2172 range_tree_destroy(rtsync);
2173
2174 mutex_exit(&rtlock);
2175 mutex_destroy(&rtlock);
2176
2177 /*
2178 * If the object for the space map has changed then dirty
2179 * the top level so that we update the config.
2180 */
2181 if (object != space_map_object(vd->vdev_dtl_sm)) {
2182 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2183 "new object %llu", txg, spa_name(spa), object,
2184 space_map_object(vd->vdev_dtl_sm));
2185 vdev_config_dirty(vd->vdev_top);
2186 }
2187
2188 dmu_tx_commit(tx);
2189
2190 mutex_enter(&vd->vdev_dtl_lock);
2191 space_map_update(vd->vdev_dtl_sm);
2192 mutex_exit(&vd->vdev_dtl_lock);
2193 }
2194
2195 /*
2196 * Determine whether the specified vdev can be offlined/detached/removed
2197 * without losing data.
2198 */
2199 boolean_t
2200 vdev_dtl_required(vdev_t *vd)
2201 {
2202 spa_t *spa = vd->vdev_spa;
2203 vdev_t *tvd = vd->vdev_top;
2204 uint8_t cant_read = vd->vdev_cant_read;
2205 boolean_t required;
2206
2207 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2208
2209 if (vd == spa->spa_root_vdev || vd == tvd)
2210 return (B_TRUE);
2211
2212 /*
2213 * Temporarily mark the device as unreadable, and then determine
2214 * whether this results in any DTL outages in the top-level vdev.
2215 * If not, we can safely offline/detach/remove the device.
2216 */
2217 vd->vdev_cant_read = B_TRUE;
2218 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2219 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2220 vd->vdev_cant_read = cant_read;
2221 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2222
2223 if (!required && zio_injection_enabled)
2224 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2225
2226 return (required);
2227 }
2228
2229 /*
2230 * Determine if resilver is needed, and if so the txg range.
2231 */
2232 boolean_t
2233 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2234 {
2235 boolean_t needed = B_FALSE;
2236 uint64_t thismin = UINT64_MAX;
2237 uint64_t thismax = 0;
2238
2239 if (vd->vdev_children == 0) {
2240 mutex_enter(&vd->vdev_dtl_lock);
2241 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2242 vdev_writeable(vd)) {
2243
2244 thismin = vdev_dtl_min(vd);
2245 thismax = vdev_dtl_max(vd);
2246 needed = B_TRUE;
2247 }
2248 mutex_exit(&vd->vdev_dtl_lock);
2249 } else {
2250 for (int c = 0; c < vd->vdev_children; c++) {
2251 vdev_t *cvd = vd->vdev_child[c];
2252 uint64_t cmin, cmax;
2253
2254 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2255 thismin = MIN(thismin, cmin);
2256 thismax = MAX(thismax, cmax);
2257 needed = B_TRUE;
2258 }
2259 }
2260 }
2261
2262 if (needed && minp) {
2263 *minp = thismin;
2264 *maxp = thismax;
2265 }
2266 return (needed);
2267 }
2268
2269 void
2270 vdev_load(vdev_t *vd)
2271 {
2272 /*
2273 * Recursively load all children.
2274 */
2275 for (int c = 0; c < vd->vdev_children; c++)
2276 vdev_load(vd->vdev_child[c]);
2277
2278 /*
2279 * If this is a top-level vdev, initialize its metaslabs.
2280 */
2281 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2282 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2283 vdev_metaslab_init(vd, 0) != 0))
2284 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2285 VDEV_AUX_CORRUPT_DATA);
2286
2287 /*
2288 * If this is a leaf vdev, load its DTL.
2289 */
2290 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2291 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2292 VDEV_AUX_CORRUPT_DATA);
2293 }
2294
2295 /*
2296 * The special vdev case is used for hot spares and l2cache devices. Its
2297 * sole purpose it to set the vdev state for the associated vdev. To do this,
2298 * we make sure that we can open the underlying device, then try to read the
2299 * label, and make sure that the label is sane and that it hasn't been
2300 * repurposed to another pool.
2301 */
2302 int
2303 vdev_validate_aux(vdev_t *vd)
2304 {
2305 nvlist_t *label;
2306 uint64_t guid, version;
2307 uint64_t state;
2308
2309 if (!vdev_readable(vd))
2310 return (0);
2311
2312 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2313 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2314 VDEV_AUX_CORRUPT_DATA);
2315 return (-1);
2316 }
2317
2318 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2319 !SPA_VERSION_IS_SUPPORTED(version) ||
2320 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2321 guid != vd->vdev_guid ||
2322 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2323 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2324 VDEV_AUX_CORRUPT_DATA);
2325 nvlist_free(label);
2326 return (-1);
2327 }
2328
2329 /*
2330 * We don't actually check the pool state here. If it's in fact in
2331 * use by another pool, we update this fact on the fly when requested.
2332 */
2333 nvlist_free(label);
2334 return (0);
2335 }
2336
2337 void
2338 vdev_remove(vdev_t *vd, uint64_t txg)
2339 {
2340 spa_t *spa = vd->vdev_spa;
2341 objset_t *mos = spa->spa_meta_objset;
2342 dmu_tx_t *tx;
2343
2344 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2345 ASSERT(vd == vd->vdev_top);
2346 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2347
2348 if (vd->vdev_ms != NULL) {
2349 metaslab_group_t *mg = vd->vdev_mg;
2350
2351 metaslab_group_histogram_verify(mg);
2352 metaslab_class_histogram_verify(mg->mg_class);
2353
2354 for (int m = 0; m < vd->vdev_ms_count; m++) {
2355 metaslab_t *msp = vd->vdev_ms[m];
2356
2357 if (msp == NULL || msp->ms_sm == NULL)
2358 continue;
2359
2360 mutex_enter(&msp->ms_lock);
2361 /*
2362 * If the metaslab was not loaded when the vdev
2363 * was removed then the histogram accounting may
2364 * not be accurate. Update the histogram information
2365 * here so that we ensure that the metaslab group
2366 * and metaslab class are up-to-date.
2367 */
2368 metaslab_group_histogram_remove(mg, msp);
2369
2370 VERIFY0(space_map_allocated(msp->ms_sm));
2371 space_map_free(msp->ms_sm, tx);
2372 space_map_close(msp->ms_sm);
2373 msp->ms_sm = NULL;
2374 mutex_exit(&msp->ms_lock);
2375 }
2376
2377 metaslab_group_histogram_verify(mg);
2378 metaslab_class_histogram_verify(mg->mg_class);
2379 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2380 ASSERT0(mg->mg_histogram[i]);
2381
2382 }
2383
2384 if (vd->vdev_ms_array) {
2385 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2386 vd->vdev_ms_array = 0;
2387 }
2388
2389 if ((vd->vdev_islog || vd->vdev_isspecial) &&
2390 vd->vdev_top_zap != 0) {
2391 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2392 vd->vdev_top_zap = 0;
2393 }
2394 dmu_tx_commit(tx);
2395 }
2396
2397 void
2398 vdev_sync_done(vdev_t *vd, uint64_t txg)
2399 {
2400 metaslab_t *msp;
2401 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2402
2403 ASSERT(!vd->vdev_ishole);
2404
2405 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2406 metaslab_sync_done(msp, txg);
2407
2408 if (reassess)
2409 metaslab_sync_reassess(vd->vdev_mg);
2410 }
2411
2412 void
2413 vdev_sync(vdev_t *vd, uint64_t txg)
2414 {
2415 spa_t *spa = vd->vdev_spa;
2416 vdev_t *lvd;
2417 metaslab_t *msp;
2418 dmu_tx_t *tx;
2419
2420 ASSERT(!vd->vdev_ishole);
2421
2422 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2423 ASSERT(vd == vd->vdev_top);
2424 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2425 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2426 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2427 ASSERT(vd->vdev_ms_array != 0);
2428 vdev_config_dirty(vd);
2429 dmu_tx_commit(tx);
2430 }
2431
2432 /*
2433 * Remove the metadata associated with this vdev once it's empty.
2434 */
2435 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2436 vdev_remove(vd, txg);
2437
2438 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2439 metaslab_sync(msp, txg);
2440 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2441 }
2442
2443 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2444 vdev_dtl_sync(lvd, txg);
2445
2446 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2447 }
2448
2449 uint64_t
2450 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2451 {
2452 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2453 }
2454
2455 /*
2456 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2457 * not be opened, and no I/O is attempted.
2458 */
2459 int
2460 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2461 {
2462 vdev_t *vd, *tvd;
2463
2464 spa_vdev_state_enter(spa, SCL_NONE);
2465
2466 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2467 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2468
2469 if (!vd->vdev_ops->vdev_op_leaf)
2470 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2471
2472 tvd = vd->vdev_top;
2473
2474 /*
2475 * We don't directly use the aux state here, but if we do a
2476 * vdev_reopen(), we need this value to be present to remember why we
2477 * were faulted.
2478 */
2479 vd->vdev_label_aux = aux;
2480
2481 /*
2482 * Faulted state takes precedence over degraded.
2483 */
2484 vd->vdev_delayed_close = B_FALSE;
2485 vd->vdev_faulted = 1ULL;
2486 vd->vdev_degraded = 0ULL;
2487 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2488
2489 /*
2490 * If this device has the only valid copy of the data, then
2491 * back off and simply mark the vdev as degraded instead.
2492 */
2493 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2494 vd->vdev_degraded = 1ULL;
2495 vd->vdev_faulted = 0ULL;
2496
2497 /*
2498 * If we reopen the device and it's not dead, only then do we
2499 * mark it degraded.
2500 */
2501 vdev_reopen(tvd);
2502
2503 if (vdev_readable(vd))
2504 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2505 }
2506
2507 return (spa_vdev_state_exit(spa, vd, 0));
2508 }
2509
2510 /*
2511 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2512 * user that something is wrong. The vdev continues to operate as normal as far
2513 * as I/O is concerned.
2514 */
2515 int
2516 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2517 {
2518 vdev_t *vd;
2519
2520 spa_vdev_state_enter(spa, SCL_NONE);
2521
2522 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2523 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2524
2525 if (!vd->vdev_ops->vdev_op_leaf)
2526 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2527
2528 /*
2529 * If the vdev is already faulted, then don't do anything.
2530 */
2531 if (vd->vdev_faulted || vd->vdev_degraded)
2532 return (spa_vdev_state_exit(spa, NULL, 0));
2533
2534 vd->vdev_degraded = 1ULL;
2535 if (!vdev_is_dead(vd))
2536 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2537 aux);
2538
2539 return (spa_vdev_state_exit(spa, vd, 0));
2540 }
2541
2542 /*
2543 * Online the given vdev.
2544 *
2545 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2546 * spare device should be detached when the device finishes resilvering.
2547 * Second, the online should be treated like a 'test' online case, so no FMA
2548 * events are generated if the device fails to open.
2549 */
2550 int
2551 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2552 {
2553 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2554 boolean_t wasoffline;
2555 vdev_state_t oldstate;
2556
2557 spa_vdev_state_enter(spa, SCL_NONE);
2558
2559 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2560 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2561
2562 if (!vd->vdev_ops->vdev_op_leaf)
2563 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2564
2565 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2566 oldstate = vd->vdev_state;
2567
2568 tvd = vd->vdev_top;
2569 vd->vdev_offline = 0ULL;
2570 vd->vdev_tmpoffline = 0ULL;
2571 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2572 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2573
2574 /* XXX - L2ARC 1.0 does not support expansion */
2575 if (!vd->vdev_aux) {
2576 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2577 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2578 }
2579
2580 vdev_reopen(tvd);
2581 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2582
2583 if (!vd->vdev_aux) {
2584 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2585 pvd->vdev_expanding = B_FALSE;
2586 }
2587
2588 if (newstate)
2589 *newstate = vd->vdev_state;
2590 if ((flags & ZFS_ONLINE_UNSPARE) &&
2591 !vdev_is_dead(vd) && vd->vdev_parent &&
2592 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2593 vd->vdev_parent->vdev_child[0] == vd)
2594 vd->vdev_unspare = B_TRUE;
2595
2596 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2597
2598 /* XXX - L2ARC 1.0 does not support expansion */
2599 if (vd->vdev_aux)
2600 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2601 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2602 }
2603
2604 if (wasoffline ||
2605 (oldstate < VDEV_STATE_DEGRADED &&
2606 vd->vdev_state >= VDEV_STATE_DEGRADED))
2607 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2608
2609 return (spa_vdev_state_exit(spa, vd, 0));
2610 }
2611
2612 static int
2613 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2614 {
2615 vdev_t *vd, *tvd;
2616 int error = 0;
2617 uint64_t generation;
2618 metaslab_group_t *mg;
2619
2620 top:
2621 spa_vdev_state_enter(spa, SCL_ALLOC);
2622
2623 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2624 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2625
2626 if (!vd->vdev_ops->vdev_op_leaf)
2627 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2628
2629 tvd = vd->vdev_top;
2630 mg = tvd->vdev_mg;
2631 generation = spa->spa_config_generation + 1;
2632
2633 /*
2634 * If the device isn't already offline, try to offline it.
2635 */
2636 if (!vd->vdev_offline) {
2637 /*
2638 * If this device has the only valid copy of some data,
2639 * don't allow it to be offlined. Log devices are always
2640 * expendable.
2641 */
2642 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2643 vdev_dtl_required(vd))
2644 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2645
2646 /*
2647 * If the top-level is a slog and it has had allocations
2648 * then proceed. We check that the vdev's metaslab group
2649 * is not NULL since it's possible that we may have just
2650 * added this vdev but not yet initialized its metaslabs.
2651 */
2652 if (tvd->vdev_islog && mg != NULL) {
2653 /*
2654 * Prevent any future allocations.
2655 */
2656 metaslab_group_passivate(mg);
2657 (void) spa_vdev_state_exit(spa, vd, 0);
2658
2659 error = spa_offline_log(spa);
2660
2661 spa_vdev_state_enter(spa, SCL_ALLOC);
2662
2663 /*
2664 * Check to see if the config has changed.
2665 */
2666 if (error || generation != spa->spa_config_generation) {
2667 metaslab_group_activate(mg);
2668 if (error)
2669 return (spa_vdev_state_exit(spa,
2670 vd, error));
2671 (void) spa_vdev_state_exit(spa, vd, 0);
2672 goto top;
2673 }
2674 ASSERT0(tvd->vdev_stat.vs_alloc);
2675 }
2676
2677 /*
2678 * Offline this device and reopen its top-level vdev.
2679 * If the top-level vdev is a log device then just offline
2680 * it. Otherwise, if this action results in the top-level
2681 * vdev becoming unusable, undo it and fail the request.
2682 */
2683 vd->vdev_offline = B_TRUE;
2684 vdev_reopen(tvd);
2685
2686 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2687 vdev_is_dead(tvd)) {
2688 vd->vdev_offline = B_FALSE;
2689 vdev_reopen(tvd);
2690 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2691 }
2692
2693 /*
2694 * Add the device back into the metaslab rotor so that
2695 * once we online the device it's open for business.
2696 */
2697 if (tvd->vdev_islog && mg != NULL)
2698 metaslab_group_activate(mg);
2699 }
2700
2701 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2702
2703 return (spa_vdev_state_exit(spa, vd, 0));
2704 }
2705
2706 int
2707 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2708 {
2709 int error;
2710
2711 mutex_enter(&spa->spa_vdev_top_lock);
2712 error = vdev_offline_locked(spa, guid, flags);
2713 mutex_exit(&spa->spa_vdev_top_lock);
2714
2715 return (error);
2716 }
2717
2718 /*
2719 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2720 * vdev_offline(), we assume the spa config is locked. We also clear all
2721 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2722 */
2723 void
2724 vdev_clear(spa_t *spa, vdev_t *vd)
2725 {
2726 int c;
2727 vdev_t *rvd = spa->spa_root_vdev;
2728
2729 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2730
2731 if (vd == NULL) {
2732 vd = rvd;
2733
2734 /* Go through spare and l2cache vdevs */
2735 for (c = 0; c < spa->spa_spares.sav_count; c++)
2736 vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2737 for (c = 0; c < spa->spa_l2cache.sav_count; c++)
2738 vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2739 }
2740
2741 vd->vdev_stat.vs_read_errors = 0;
2742 vd->vdev_stat.vs_write_errors = 0;
2743 vd->vdev_stat.vs_checksum_errors = 0;
2744
2745 /*
2746 * If all disk vdevs failed at the same time (e.g. due to a
2747 * disconnected cable), that suspends I/O activity to the pool,
2748 * which stalls spa_sync if there happened to be any dirty data.
2749 * As a consequence, this flag might not be cleared, because it
2750 * is only lowered by spa_async_remove (which cannot run). This
2751 * then prevents zio_resume from succeeding even if vdev reopen
2752 * succeeds, leading to an indefinitely suspended pool. So we
2753 * lower the flag here to allow zio_resume to succeed, provided
2754 * reopening of the vdevs succeeds.
2755 */
2756 vd->vdev_remove_wanted = B_FALSE;
2757
2758 for (c = 0; c < vd->vdev_children; c++)
2759 vdev_clear(spa, vd->vdev_child[c]);
2760
2761 /*
2762 * If we're in the FAULTED state or have experienced failed I/O, then
2763 * clear the persistent state and attempt to reopen the device. We
2764 * also mark the vdev config dirty, so that the new faulted state is
2765 * written out to disk.
2766 */
2767 if (vd->vdev_faulted || vd->vdev_degraded ||
2768 !vdev_readable(vd) || !vdev_writeable(vd)) {
2769
2770 /*
2771 * When reopening in reponse to a clear event, it may be due to
2772 * a fmadm repair request. In this case, if the device is
2773 * still broken, we want to still post the ereport again.
2774 */
2775 vd->vdev_forcefault = B_TRUE;
2776
2777 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2778 vd->vdev_cant_read = B_FALSE;
2779 vd->vdev_cant_write = B_FALSE;
2780
2781 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2782
2783 vd->vdev_forcefault = B_FALSE;
2784
2785 if (vd != rvd && vdev_writeable(vd->vdev_top))
2786 vdev_state_dirty(vd->vdev_top);
2787
2788 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2789 spa_async_request(spa, SPA_ASYNC_RESILVER);
2790
2791 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
2792 }
2793
2794 /*
2795 * When clearing a FMA-diagnosed fault, we always want to
2796 * unspare the device, as we assume that the original spare was
2797 * done in response to the FMA fault.
2798 */
2799 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2800 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2801 vd->vdev_parent->vdev_child[0] == vd)
2802 vd->vdev_unspare = B_TRUE;
2803 }
2804
2805 boolean_t
2806 vdev_is_dead(vdev_t *vd)
2807 {
2808 /*
2809 * Holes and missing devices are always considered "dead".
2810 * This simplifies the code since we don't have to check for
2811 * these types of devices in the various code paths.
2812 * Instead we rely on the fact that we skip over dead devices
2813 * before issuing I/O to them.
2814 */
2815 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2816 vd->vdev_ops == &vdev_missing_ops);
2817 }
2818
2819 boolean_t
2820 vdev_readable(vdev_t *vd)
2821 {
2822 return (vd != NULL && !vdev_is_dead(vd) && !vd->vdev_cant_read);
2823 }
2824
2825 boolean_t
2826 vdev_writeable(vdev_t *vd)
2827 {
2828 return (vd != NULL && !vdev_is_dead(vd) && !vd->vdev_cant_write);
2829 }
2830
2831 boolean_t
2832 vdev_allocatable(vdev_t *vd)
2833 {
2834 uint64_t state = vd->vdev_state;
2835
2836 /*
2837 * We currently allow allocations from vdevs which may be in the
2838 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2839 * fails to reopen then we'll catch it later when we're holding
2840 * the proper locks. Note that we have to get the vdev state
2841 * in a local variable because although it changes atomically,
2842 * we're asking two separate questions about it.
2843 */
2844 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2845 !vd->vdev_cant_write && !vd->vdev_ishole &&
2846 vd->vdev_mg->mg_initialized);
2847 }
2848
2849 boolean_t
2850 vdev_accessible(vdev_t *vd, zio_t *zio)
2851 {
2852 ASSERT(zio->io_vd == vd);
2853
2854 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2855 return (B_FALSE);
2856
2857 if (zio->io_type == ZIO_TYPE_READ)
2858 return (!vd->vdev_cant_read);
2859
2860 if (zio->io_type == ZIO_TYPE_WRITE)
2861 return (!vd->vdev_cant_write);
2862
2863 return (B_TRUE);
2864 }
2865
2866 /*
2867 * Get statistics for the given vdev.
2868 */
2869 void
2870 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2871 {
2872 spa_t *spa = vd->vdev_spa;
2873 vdev_t *rvd = spa->spa_root_vdev;
2874 vdev_t *tvd = vd->vdev_top;
2875
2876 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2877
2878 mutex_enter(&vd->vdev_stat_lock);
2879 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2880 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2881 vs->vs_state = vd->vdev_state;
2882 vs->vs_rsize = vdev_get_min_asize(vd);
2883 if (vd->vdev_ops->vdev_op_leaf)
2884 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2885 /*
2886 * Report expandable space on top-level, non-auxillary devices only.
2887 * The expandable space is reported in terms of metaslab sized units
2888 * since that determines how much space the pool can expand.
2889 */
2890 if (vd->vdev_aux == NULL && tvd != NULL) {
2891 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
2892 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
2893 }
2894 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2895 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2896 }
2897
2898 /*
2899 * If we're getting stats on the root vdev, aggregate the I/O counts
2900 * over all top-level vdevs (i.e. the direct children of the root).
2901 */
2902 if (vd == rvd) {
2903 for (int c = 0; c < rvd->vdev_children; c++) {
2904 vdev_t *cvd = rvd->vdev_child[c];
2905 vdev_stat_t *cvs = &cvd->vdev_stat;
2906
2907 for (int t = 0; t < ZIO_TYPES; t++) {
2908 vs->vs_ops[t] += cvs->vs_ops[t];
2909 vs->vs_bytes[t] += cvs->vs_bytes[t];
2910 vs->vs_iotime[t] += cvs->vs_iotime[t];
2911 vs->vs_latency[t] += cvs->vs_latency[t];
2912 }
2913 cvs->vs_scan_removing = cvd->vdev_removing;
2914 }
2915 }
2916 mutex_exit(&vd->vdev_stat_lock);
2917 }
2918
2919 void
2920 vdev_clear_stats(vdev_t *vd)
2921 {
2922 mutex_enter(&vd->vdev_stat_lock);
2923 vd->vdev_stat.vs_space = 0;
2924 vd->vdev_stat.vs_dspace = 0;
2925 vd->vdev_stat.vs_alloc = 0;
2926 mutex_exit(&vd->vdev_stat_lock);
2927 }
2928
2929 void
2930 vdev_scan_stat_init(vdev_t *vd)
2931 {
2932 vdev_stat_t *vs = &vd->vdev_stat;
2933
2934 for (int c = 0; c < vd->vdev_children; c++)
2935 vdev_scan_stat_init(vd->vdev_child[c]);
2936
2937 mutex_enter(&vd->vdev_stat_lock);
2938 vs->vs_scan_processed = 0;
2939 mutex_exit(&vd->vdev_stat_lock);
2940 }
2941
2942 void
2943 vdev_stat_update(zio_t *zio, uint64_t psize)
2944 {
2945 spa_t *spa = zio->io_spa;
2946 vdev_t *rvd = spa->spa_root_vdev;
2947 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2948 vdev_t *pvd;
2949 uint64_t txg = zio->io_txg;
2950 vdev_stat_t *vs = &vd->vdev_stat;
2951 zio_type_t type = zio->io_type;
2952 int flags = zio->io_flags;
2953
2954 /*
2955 * If this i/o is a gang leader, it didn't do any actual work.
2956 */
2957 if (zio->io_gang_tree)
2958 return;
2959
2960 if (zio->io_error == 0) {
2961 /*
2962 * If this is a root i/o, don't count it -- we've already
2963 * counted the top-level vdevs, and vdev_get_stats() will
2964 * aggregate them when asked. This reduces contention on
2965 * the root vdev_stat_lock and implicitly handles blocks
2966 * that compress away to holes, for which there is no i/o.
2967 * (Holes never create vdev children, so all the counters
2968 * remain zero, which is what we want.)
2969 *
2970 * Note: this only applies to successful i/o (io_error == 0)
2971 * because unlike i/o counts, errors are not additive.
2972 * When reading a ditto block, for example, failure of
2973 * one top-level vdev does not imply a root-level error.
2974 */
2975 if (vd == rvd)
2976 return;
2977
2978 ASSERT(vd == zio->io_vd);
2979
2980 if (flags & ZIO_FLAG_IO_BYPASS)
2981 return;
2982
2983 mutex_enter(&vd->vdev_stat_lock);
2984
2985 if (flags & ZIO_FLAG_IO_REPAIR) {
2986 if (flags & ZIO_FLAG_SCAN_THREAD) {
2987 dsl_scan_phys_t *scn_phys =
2988 &spa->spa_dsl_pool->dp_scan->scn_phys;
2989 uint64_t *processed = &scn_phys->scn_processed;
2990
2991 /* XXX cleanup? */
2992 if (vd->vdev_ops->vdev_op_leaf)
2993 atomic_add_64(processed, psize);
2994 vs->vs_scan_processed += psize;
2995 }
2996
2997 if (flags & ZIO_FLAG_SELF_HEAL)
2998 vs->vs_self_healed += psize;
2999 }
3000
3001 vs->vs_ops[type]++;
3002 vs->vs_bytes[type] += psize;
3003
3004 /*
3005 * While measuring each delta in nanoseconds, we should keep
3006 * cumulative iotime in microseconds so it doesn't overflow on
3007 * a busy system.
3008 */
3009 vs->vs_iotime[type] += (zio->io_vd_timestamp) / 1000;
3010
3011 /*
3012 * Latency is an exponential moving average of iotime deltas
3013 * with tuneable alpha measured in 1/10th of percent.
3014 */
3015 vs->vs_latency[type] += ((int64_t)zio->io_vd_timestamp -
3016 vs->vs_latency[type]) * zfs_vs_latency_alpha / 1000;
3017
3018 mutex_exit(&vd->vdev_stat_lock);
3019 return;
3020 }
3021
3022 if (flags & ZIO_FLAG_SPECULATIVE)
3023 return;
3024
3025 /*
3026 * If this is an I/O error that is going to be retried, then ignore the
3027 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3028 * hard errors, when in reality they can happen for any number of
3029 * innocuous reasons (bus resets, MPxIO link failure, etc).
3030 */
3031 if (zio->io_error == EIO &&
3032 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3033 return;
3034
3035 /*
3036 * Intent logs writes won't propagate their error to the root
3037 * I/O so don't mark these types of failures as pool-level
3038 * errors.
3039 */
3040 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3041 return;
3042
3043 mutex_enter(&vd->vdev_stat_lock);
3044 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3045 if (zio->io_error == ECKSUM)
3046 vs->vs_checksum_errors++;
3047 else
3048 vs->vs_read_errors++;
3049 }
3050 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3051 vs->vs_write_errors++;
3052 mutex_exit(&vd->vdev_stat_lock);
3053
3054 if ((vd->vdev_isspecial || vd->vdev_isspecial_child) &&
3055 (vs->vs_checksum_errors != 0 || vs->vs_read_errors != 0 ||
3056 vs->vs_write_errors != 0 || !vdev_readable(vd) ||
3057 !vdev_writeable(vd)) && !spa->spa_special_has_errors) {
3058 /* all new writes will be placed on normal */
3059 cmn_err(CE_WARN, "New writes to special vdev [%s] "
3060 "will be stopped", (vd->vdev_path != NULL) ?
3061 vd->vdev_path : "undefined");
3062 spa->spa_special_has_errors = B_TRUE;
3063 }
3064
3065 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3066 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3067 (flags & ZIO_FLAG_SCAN_THREAD) ||
3068 spa->spa_claiming)) {
3069 /*
3070 * This is either a normal write (not a repair), or it's
3071 * a repair induced by the scrub thread, or it's a repair
3072 * made by zil_claim() during spa_load() in the first txg.
3073 * In the normal case, we commit the DTL change in the same
3074 * txg as the block was born. In the scrub-induced repair
3075 * case, we know that scrubs run in first-pass syncing context,
3076 * so we commit the DTL change in spa_syncing_txg(spa).
3077 * In the zil_claim() case, we commit in spa_first_txg(spa).
3078 *
3079 * We currently do not make DTL entries for failed spontaneous
3080 * self-healing writes triggered by normal (non-scrubbing)
3081 * reads, because we have no transactional context in which to
3082 * do so -- and it's not clear that it'd be desirable anyway.
3083 */
3084 if (vd->vdev_ops->vdev_op_leaf) {
3085 uint64_t commit_txg = txg;
3086 if (flags & ZIO_FLAG_SCAN_THREAD) {
3087 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3088 ASSERT(spa_sync_pass(spa) == 1);
3089 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3090 commit_txg = spa_syncing_txg(spa);
3091 } else if (spa->spa_claiming) {
3092 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3093 commit_txg = spa_first_txg(spa);
3094 }
3095 ASSERT(commit_txg >= spa_syncing_txg(spa));
3096 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3097 return;
3098 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3099 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3100 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3101 }
3102 if (vd != rvd)
3103 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3104 }
3105 }
3106
3107 /*
3108 * Update the in-core space usage stats for this vdev, its metaslab class,
3109 * and the root vdev.
3110 */
3111 void
3112 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3113 int64_t space_delta)
3114 {
3115 int64_t dspace_delta = space_delta;
3116 spa_t *spa = vd->vdev_spa;
3117 vdev_t *rvd = spa->spa_root_vdev;
3118 metaslab_group_t *mg = vd->vdev_mg;
3119 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3120
3121 ASSERT(vd == vd->vdev_top);
3122
3123 /*
3124 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3125 * factor. We must calculate this here and not at the root vdev
3126 * because the root vdev's psize-to-asize is simply the max of its
3127 * childrens', thus not accurate enough for us.
3128 */
3129 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3130 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3131 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3132 vd->vdev_deflate_ratio;
3133
3134 mutex_enter(&vd->vdev_stat_lock);
3135 vd->vdev_stat.vs_alloc += alloc_delta;
3136 vd->vdev_stat.vs_space += space_delta;
3137 vd->vdev_stat.vs_dspace += dspace_delta;
3138 mutex_exit(&vd->vdev_stat_lock);
3139
3140 if (mc == spa_normal_class(spa) || mc == spa_special_class(spa)) {
3141 mutex_enter(&rvd->vdev_stat_lock);
3142 rvd->vdev_stat.vs_alloc += alloc_delta;
3143 rvd->vdev_stat.vs_space += space_delta;
3144 rvd->vdev_stat.vs_dspace += dspace_delta;
3145 mutex_exit(&rvd->vdev_stat_lock);
3146 }
3147
3148 if (mc != NULL) {
3149 ASSERT(rvd == vd->vdev_parent);
3150 ASSERT(vd->vdev_ms_count != 0);
3151
3152 metaslab_class_space_update(mc,
3153 alloc_delta, defer_delta, space_delta, dspace_delta);
3154 }
3155 }
3156
3157 /*
3158 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3159 * so that it will be written out next time the vdev configuration is synced.
3160 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3161 */
3162 void
3163 vdev_config_dirty(vdev_t *vd)
3164 {
3165 spa_t *spa = vd->vdev_spa;
3166 vdev_t *rvd = spa->spa_root_vdev;
3167 int c;
3168
3169 ASSERT(spa_writeable(spa));
3170
3171 /*
3172 * If this is an aux vdev (as with l2cache and spare devices), then we
3173 * update the vdev config manually and set the sync flag.
3174 */
3175 if (vd->vdev_aux != NULL) {
3176 spa_aux_vdev_t *sav = vd->vdev_aux;
3177 nvlist_t **aux;
3178 uint_t naux;
3179
3180 for (c = 0; c < sav->sav_count; c++) {
3181 if (sav->sav_vdevs[c] == vd)
3182 break;
3183 }
3184
3185 if (c == sav->sav_count) {
3186 /*
3187 * We're being removed. There's nothing more to do.
3188 */
3189 ASSERT(sav->sav_sync == B_TRUE);
3190 return;
3191 }
3192
3193 sav->sav_sync = B_TRUE;
3194
3195 if (nvlist_lookup_nvlist_array(sav->sav_config,
3196 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3197 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3198 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3199 }
3200
3201 ASSERT(c < naux);
3202
3203 /*
3204 * Setting the nvlist in the middle if the array is a little
3205 * sketchy, but it will work.
3206 */
3207 nvlist_free(aux[c]);
3208 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3209
3210 return;
3211 }
3212
3213 /*
3214 * The dirty list is protected by the SCL_CONFIG lock. The caller
3215 * must either hold SCL_CONFIG as writer, or must be the sync thread
3216 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3217 * so this is sufficient to ensure mutual exclusion.
3218 */
3219 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3220 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3221 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3222
3223 if (vd == rvd) {
3224 for (c = 0; c < rvd->vdev_children; c++)
3225 vdev_config_dirty(rvd->vdev_child[c]);
3226 } else {
3227 ASSERT(vd == vd->vdev_top);
3228
3229 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3230 !vd->vdev_ishole)
3231 list_insert_head(&spa->spa_config_dirty_list, vd);
3232 }
3233 }
3234
3235 void
3236 vdev_config_clean(vdev_t *vd)
3237 {
3238 spa_t *spa = vd->vdev_spa;
3239
3240 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3241 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3242 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3243
3244 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3245 list_remove(&spa->spa_config_dirty_list, vd);
3246 }
3247
3248 /*
3249 * Mark a top-level vdev's state as dirty, so that the next pass of
3250 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3251 * the state changes from larger config changes because they require
3252 * much less locking, and are often needed for administrative actions.
3253 */
3254 void
3255 vdev_state_dirty(vdev_t *vd)
3256 {
3257 spa_t *spa = vd->vdev_spa;
3258
3259 ASSERT(spa_writeable(spa));
3260 ASSERT(vd == vd->vdev_top);
3261
3262 /*
3263 * The state list is protected by the SCL_STATE lock. The caller
3264 * must either hold SCL_STATE as writer, or must be the sync thread
3265 * (which holds SCL_STATE as reader). There's only one sync thread,
3266 * so this is sufficient to ensure mutual exclusion.
3267 */
3268 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3269 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3270 spa_config_held(spa, SCL_STATE, RW_READER)));
3271
3272 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3273 list_insert_head(&spa->spa_state_dirty_list, vd);
3274 }
3275
3276 void
3277 vdev_state_clean(vdev_t *vd)
3278 {
3279 spa_t *spa = vd->vdev_spa;
3280
3281 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3282 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3283 spa_config_held(spa, SCL_STATE, RW_READER)));
3284
3285 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3286 list_remove(&spa->spa_state_dirty_list, vd);
3287 }
3288
3289 /*
3290 * Propagate vdev state up from children to parent.
3291 */
3292 void
3293 vdev_propagate_state(vdev_t *vd)
3294 {
3295 spa_t *spa = vd->vdev_spa;
3296 vdev_t *rvd = spa->spa_root_vdev;
3297 int degraded = 0, faulted = 0;
3298 int corrupted = 0;
3299 vdev_t *child;
3300
3301 if (vd->vdev_children > 0) {
3302 for (int c = 0; c < vd->vdev_children; c++) {
3303 child = vd->vdev_child[c];
3304
3305 /*
3306 * Don't factor holes into the decision.
3307 */
3308 if (child->vdev_ishole)
3309 continue;
3310
3311 if (!vdev_readable(child) ||
3312 (!vdev_writeable(child) && spa_writeable(spa))) {
3313 /*
3314 * Root special: if there is a top-level log
3315 * device, treat the root vdev as if it were
3316 * degraded.
3317 */
3318 if (child->vdev_islog && vd == rvd)
3319 degraded++;
3320 else
3321 faulted++;
3322 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3323 degraded++;
3324 }
3325
3326 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3327 corrupted++;
3328 }
3329
3330 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3331
3332 /*
3333 * Root special: if there is a top-level vdev that cannot be
3334 * opened due to corrupted metadata, then propagate the root
3335 * vdev's aux state as 'corrupt' rather than 'insufficient
3336 * replicas'.
3337 */
3338 if (corrupted && vd == rvd &&
3339 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3340 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3341 VDEV_AUX_CORRUPT_DATA);
3342 }
3343
3344 if (vd->vdev_parent)
3345 vdev_propagate_state(vd->vdev_parent);
3346 }
3347
3348 /*
3349 * Set a vdev's state. If this is during an open, we don't update the parent
3350 * state, because we're in the process of opening children depth-first.
3351 * Otherwise, we propagate the change to the parent.
3352 *
3353 * If this routine places a device in a faulted state, an appropriate ereport is
3354 * generated.
3355 */
3356 void
3357 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3358 {
3359 uint64_t save_state;
3360 spa_t *spa = vd->vdev_spa;
3361
3362 if (state == vd->vdev_state) {
3363 vd->vdev_stat.vs_aux = aux;
3364 return;
3365 }
3366
3367 save_state = vd->vdev_state;
3368
3369 vd->vdev_state = state;
3370 vd->vdev_stat.vs_aux = aux;
3371
3372 /*
3373 * If we are setting the vdev state to anything but an open state, then
3374 * always close the underlying device unless the device has requested
3375 * a delayed close (i.e. we're about to remove or fault the device).
3376 * Otherwise, we keep accessible but invalid devices open forever.
3377 * We don't call vdev_close() itself, because that implies some extra
3378 * checks (offline, etc) that we don't want here. This is limited to
3379 * leaf devices, because otherwise closing the device will affect other
3380 * children.
3381 */
3382 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3383 vd->vdev_ops->vdev_op_leaf)
3384 vd->vdev_ops->vdev_op_close(vd);
3385
3386 /*
3387 * If we have brought this vdev back into service, we need
3388 * to notify fmd so that it can gracefully repair any outstanding
3389 * cases due to a missing device. We do this in all cases, even those
3390 * that probably don't correlate to a repaired fault. This is sure to
3391 * catch all cases, and we let the zfs-retire agent sort it out. If
3392 * this is a transient state it's OK, as the retire agent will
3393 * double-check the state of the vdev before repairing it.
3394 */
3395 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3396 vd->vdev_prevstate != state)
3397 zfs_post_state_change(spa, vd);
3398
3399 if (vd->vdev_removed &&
3400 state == VDEV_STATE_CANT_OPEN &&
3401 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3402 /*
3403 * If the previous state is set to VDEV_STATE_REMOVED, then this
3404 * device was previously marked removed and someone attempted to
3405 * reopen it. If this failed due to a nonexistent device, then
3406 * keep the device in the REMOVED state. We also let this be if
3407 * it is one of our special test online cases, which is only
3408 * attempting to online the device and shouldn't generate an FMA
3409 * fault.
3410 */
3411 vd->vdev_state = VDEV_STATE_REMOVED;
3412 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3413 } else if (state == VDEV_STATE_REMOVED) {
3414 vd->vdev_removed = B_TRUE;
3415 } else if (state == VDEV_STATE_CANT_OPEN) {
3416 /*
3417 * If we fail to open a vdev during an import or recovery, we
3418 * mark it as "not available", which signifies that it was
3419 * never there to begin with. Failure to open such a device
3420 * is not considered an error.
3421 */
3422 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3423 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3424 vd->vdev_ops->vdev_op_leaf)
3425 vd->vdev_not_present = 1;
3426
3427 /*
3428 * Post the appropriate ereport. If the 'prevstate' field is
3429 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3430 * that this is part of a vdev_reopen(). In this case, we don't
3431 * want to post the ereport if the device was already in the
3432 * CANT_OPEN state beforehand.
3433 *
3434 * If the 'checkremove' flag is set, then this is an attempt to
3435 * online the device in response to an insertion event. If we
3436 * hit this case, then we have detected an insertion event for a
3437 * faulted or offline device that wasn't in the removed state.
3438 * In this scenario, we don't post an ereport because we are
3439 * about to replace the device, or attempt an online with
3440 * vdev_forcefault, which will generate the fault for us.
3441 */
3442 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3443 !vd->vdev_not_present && !vd->vdev_checkremove &&
3444 vd != spa->spa_root_vdev) {
3445 const char *class;
3446
3447 switch (aux) {
3448 case VDEV_AUX_OPEN_FAILED:
3449 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3450 break;
3451 case VDEV_AUX_CORRUPT_DATA:
3452 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3453 break;
3454 case VDEV_AUX_NO_REPLICAS:
3455 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3456 break;
3457 case VDEV_AUX_BAD_GUID_SUM:
3458 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3459 break;
3460 case VDEV_AUX_TOO_SMALL:
3461 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3462 break;
3463 case VDEV_AUX_BAD_LABEL:
3464 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3465 break;
3466 default:
3467 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3468 }
3469
3470 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3471 }
3472
3473 /* Erase any notion of persistent removed state */
3474 vd->vdev_removed = B_FALSE;
3475 } else {
3476 vd->vdev_removed = B_FALSE;
3477 }
3478
3479 if (!isopen && vd->vdev_parent)
3480 vdev_propagate_state(vd->vdev_parent);
3481 }
3482
3483 /*
3484 * Check the vdev configuration to ensure that it's capable of supporting
3485 * a root pool. We do not support partial configuration.
3486 * In addition, only a single top-level vdev is allowed.
3487 */
3488 boolean_t
3489 vdev_is_bootable(vdev_t *vd)
3490 {
3491 if (!vd->vdev_ops->vdev_op_leaf) {
3492 char *vdev_type = vd->vdev_ops->vdev_op_type;
3493
3494 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3495 vd->vdev_children > 1) {
3496 return (B_FALSE);
3497 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3498 return (B_FALSE);
3499 }
3500 }
3501
3502 for (int c = 0; c < vd->vdev_children; c++) {
3503 if (!vdev_is_bootable(vd->vdev_child[c]))
3504 return (B_FALSE);
3505 }
3506 return (B_TRUE);
3507 }
3508
3509 /*
3510 * Load the state from the original vdev tree (ovd) which
3511 * we've retrieved from the MOS config object. If the original
3512 * vdev was offline or faulted then we transfer that state to the
3513 * device in the current vdev tree (nvd).
3514 */
3515 void
3516 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3517 {
3518 spa_t *spa = nvd->vdev_spa;
3519
3520 ASSERT(nvd->vdev_top->vdev_islog);
3521 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3522 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3523
3524 for (int c = 0; c < nvd->vdev_children; c++)
3525 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3526
3527 if (nvd->vdev_ops->vdev_op_leaf) {
3528 /*
3529 * Restore the persistent vdev state
3530 */
3531 nvd->vdev_offline = ovd->vdev_offline;
3532 nvd->vdev_faulted = ovd->vdev_faulted;
3533 nvd->vdev_degraded = ovd->vdev_degraded;
3534 nvd->vdev_removed = ovd->vdev_removed;
3535 }
3536 }
3537
3538 /*
3539 * Determine if a log device has valid content. If the vdev was
3540 * removed or faulted in the MOS config then we know that
3541 * the content on the log device has already been written to the pool.
3542 */
3543 boolean_t
3544 vdev_log_state_valid(vdev_t *vd)
3545 {
3546 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3547 !vd->vdev_removed)
3548 return (B_TRUE);
3549
3550 for (int c = 0; c < vd->vdev_children; c++)
3551 if (vdev_log_state_valid(vd->vdev_child[c]))
3552 return (B_TRUE);
3553
3554 return (B_FALSE);
3555 }
3556
3557 /*
3558 * Expand a vdev if possible.
3559 */
3560 void
3561 vdev_expand(vdev_t *vd, uint64_t txg)
3562 {
3563 ASSERT(vd->vdev_top == vd);
3564 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3565
3566 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3567 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3568 vdev_config_dirty(vd);
3569 }
3570 }
3571
3572 /*
3573 * Split a vdev.
3574 */
3575 void
3576 vdev_split(vdev_t *vd)
3577 {
3578 vdev_t *cvd, *pvd = vd->vdev_parent;
3579
3580 vdev_remove_child(pvd, vd);
3581 vdev_compact_children(pvd);
3582
3583 cvd = pvd->vdev_child[0];
3584 if (pvd->vdev_children == 1) {
3585 vdev_remove_parent(cvd);
3586 cvd->vdev_splitting = B_TRUE;
3587 }
3588 vdev_propagate_state(cvd);
3589 }
3590
3591 void
3592 vdev_deadman(vdev_t *vd)
3593 {
3594 for (int c = 0; c < vd->vdev_children; c++) {
3595 vdev_t *cvd = vd->vdev_child[c];
3596
3597 vdev_deadman(cvd);
3598 }
3599
3600 if (vd->vdev_ops->vdev_op_leaf) {
3601 vdev_queue_t *vq = &vd->vdev_queue;
3602
3603 mutex_enter(&vq->vq_lock);
3604 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3605 spa_t *spa = vd->vdev_spa;
3606 zio_t *fio;
3607 uint64_t delta;
3608
3609 /*
3610 * Look at the head of all the pending queues,
3611 * if any I/O has been outstanding for longer than
3612 * the spa_deadman_synctime we panic the system.
3613 */
3614 fio = avl_first(&vq->vq_active_tree);
3615 delta = gethrtime() - fio->io_timestamp;
3616 if (delta > spa_deadman_synctime(spa)) {
3617 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3618 "delta %lluns, last io %lluns",
3619 fio->io_timestamp, delta,
3620 vq->vq_io_complete_ts);
3621 fm_panic("I/O to pool '%s' appears to be "
3622 "hung.", spa_name(spa));
3623 }
3624 }
3625 mutex_exit(&vq->vq_lock);
3626 }
3627 }
3628
3629 boolean_t
3630 vdev_type_is_ddt(vdev_t *vd)
3631 {
3632 uint64_t pool;
3633
3634 if (vd->vdev_l2ad_ddt == 1 &&
3635 zfs_ddt_limit_type == DDT_LIMIT_TO_L2ARC) {
3636 ASSERT(spa_l2cache_exists(vd->vdev_guid, &pool));
3637 ASSERT(vd->vdev_isl2cache);
3638 return (B_TRUE);
3639 }
3640 return (B_FALSE);
3641 }
3642
3643 /* count leaf vdev(s) under the given vdev */
3644 uint_t
3645 vdev_count_leaf_vdevs(vdev_t *vd)
3646 {
3647 uint_t cnt = 0;
3648
3649 if (vd->vdev_ops->vdev_op_leaf)
3650 return (1);
3651
3652 /* if this is not a leaf vdev - visit children */
3653 for (int c = 0; c < vd->vdev_children; c++)
3654 cnt += vdev_count_leaf_vdevs(vd->vdev_child[c]);
3655
3656 return (cnt);
3657 }
3658
3659 /*
3660 * Implements the per-vdev portion of manual TRIM. The function passes over
3661 * all metaslabs on this vdev and performs a metaslab_trim_all on them. It's
3662 * also responsible for rate-control if spa_man_trim_rate is non-zero.
3663 */
3664 void
3665 vdev_man_trim(vdev_trim_info_t *vti)
3666 {
3667 clock_t t = ddi_get_lbolt();
3668 spa_t *spa = vti->vti_vdev->vdev_spa;
3669 vdev_t *vd = vti->vti_vdev;
3670
3671 vd->vdev_man_trimming = B_TRUE;
3672 vd->vdev_trim_prog = 0;
3673
3674 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_READER);
3675 for (uint64_t i = 0; i < vti->vti_vdev->vdev_ms_count &&
3676 !spa->spa_man_trim_stop; i++) {
3677 uint64_t delta;
3678 metaslab_t *msp = vd->vdev_ms[i];
3679 zio_t *trim_io = metaslab_trim_all(msp, &delta);
3680
3681 atomic_add_64(&vd->vdev_trim_prog, msp->ms_size);
3682 spa_config_exit(spa, SCL_STATE_ALL, FTAG);
3683
3684 (void) zio_wait(trim_io);
3685
3686 /* delay loop to handle fixed-rate trimming */
3687 for (;;) {
3688 uint64_t rate = spa->spa_man_trim_rate;
3689 uint64_t sleep_delay;
3690
3691 if (rate == 0) {
3692 /* No delay, just update 't' and move on. */
3693 t = ddi_get_lbolt();
3694 break;
3695 }
3696
3697 sleep_delay = (delta * hz) / rate;
3698 mutex_enter(&spa->spa_man_trim_lock);
3699 (void) cv_timedwait(&spa->spa_man_trim_update_cv,
3700 &spa->spa_man_trim_lock, t);
3701 mutex_exit(&spa->spa_man_trim_lock);
3702
3703 /* If interrupted, don't try to relock, get out */
3704 if (spa->spa_man_trim_stop)
3705 goto out;
3706
3707 /* Timeout passed, move on to the next metaslab. */
3708 if (ddi_get_lbolt() >= t + sleep_delay) {
3709 t += sleep_delay;
3710 break;
3711 }
3712 }
3713 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_READER);
3714 }
3715 spa_config_exit(spa, SCL_STATE_ALL, FTAG);
3716 out:
3717 vd->vdev_man_trimming = B_FALSE;
3718 /*
3719 * Ensure we're marked as "completed" even if we've had to stop
3720 * before processing all metaslabs.
3721 */
3722 vd->vdev_trim_prog = vd->vdev_asize;
3723
3724 ASSERT(vti->vti_done_cb != NULL);
3725 vti->vti_done_cb(vti->vti_done_arg);
3726
3727 kmem_free(vti, sizeof (*vti));
3728 }
3729
3730 /*
3731 * Runs through all metaslabs on the vdev and does their autotrim processing.
3732 */
3733 void
3734 vdev_auto_trim(vdev_trim_info_t *vti)
3735 {
3736 vdev_t *vd = vti->vti_vdev;
3737 spa_t *spa = vd->vdev_spa;
3738 uint64_t txg = vti->vti_txg;
3739
3740 if (vd->vdev_man_trimming)
3741 goto out;
3742
3743 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_READER);
3744 for (uint64_t i = 0; i < vd->vdev_ms_count; i++)
3745 metaslab_auto_trim(vd->vdev_ms[i], txg);
3746 spa_config_exit(spa, SCL_STATE_ALL, FTAG);
3747 out:
3748 ASSERT(vti->vti_done_cb != NULL);
3749 vti->vti_done_cb(vti->vti_done_arg);
3750
3751 kmem_free(vti, sizeof (*vti));
3752 }