1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25  * Copyright 2017 Nexenta Systems, Inc.
  26  * Copyright (c) 2014 Integros [integros.com]
  27  * Copyright 2016 Toomas Soome <tsoome@me.com>
  28  * Copyright 2017 Joyent, Inc.
  29  */
  30 
  31 #include <sys/zfs_context.h>
  32 #include <sys/fm/fs/zfs.h>
  33 #include <sys/spa.h>
  34 #include <sys/spa_impl.h>
  35 #include <sys/bpobj.h>
  36 #include <sys/dmu.h>
  37 #include <sys/dmu_tx.h>
  38 #include <sys/dsl_dir.h>
  39 #include <sys/vdev_impl.h>
  40 #include <sys/uberblock_impl.h>
  41 #include <sys/metaslab.h>
  42 #include <sys/metaslab_impl.h>
  43 #include <sys/space_map.h>
  44 #include <sys/space_reftree.h>
  45 #include <sys/zio.h>
  46 #include <sys/zap.h>
  47 #include <sys/fs/zfs.h>
  48 #include <sys/arc.h>
  49 #include <sys/zil.h>
  50 #include <sys/dsl_scan.h>
  51 #include <sys/abd.h>
  52 
  53 /*
  54  * Virtual device management.
  55  */
  56 
  57 static vdev_ops_t *vdev_ops_table[] = {
  58         &vdev_root_ops,
  59         &vdev_raidz_ops,
  60         &vdev_mirror_ops,
  61         &vdev_replacing_ops,
  62         &vdev_spare_ops,
  63         &vdev_disk_ops,
  64         &vdev_file_ops,
  65         &vdev_missing_ops,
  66         &vdev_hole_ops,
  67         &vdev_indirect_ops,
  68         NULL
  69 };
  70 
  71 /* maximum scrub/resilver I/O queue per leaf vdev */
  72 int zfs_scrub_limit = 10;
  73 
  74 /*
  75  * When a vdev is added, it will be divided into approximately (but no
  76  * more than) this number of metaslabs.
  77  */
  78 int metaslabs_per_vdev = 200;
  79 
  80 boolean_t vdev_validate_skip = B_FALSE;
  81 
  82 /*PRINTFLIKE2*/
  83 void
  84 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
  85 {
  86         va_list adx;
  87         char buf[256];
  88 
  89         va_start(adx, fmt);
  90         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
  91         va_end(adx);
  92 
  93         if (vd->vdev_path != NULL) {
  94                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
  95                     vd->vdev_path, buf);
  96         } else {
  97                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
  98                     vd->vdev_ops->vdev_op_type,
  99                     (u_longlong_t)vd->vdev_id,
 100                     (u_longlong_t)vd->vdev_guid, buf);
 101         }
 102 }
 103 
 104 void
 105 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
 106 {
 107         char state[20];
 108 
 109         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
 110                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
 111                     vd->vdev_ops->vdev_op_type);
 112                 return;
 113         }
 114 
 115         switch (vd->vdev_state) {
 116         case VDEV_STATE_UNKNOWN:
 117                 (void) snprintf(state, sizeof (state), "unknown");
 118                 break;
 119         case VDEV_STATE_CLOSED:
 120                 (void) snprintf(state, sizeof (state), "closed");
 121                 break;
 122         case VDEV_STATE_OFFLINE:
 123                 (void) snprintf(state, sizeof (state), "offline");
 124                 break;
 125         case VDEV_STATE_REMOVED:
 126                 (void) snprintf(state, sizeof (state), "removed");
 127                 break;
 128         case VDEV_STATE_CANT_OPEN:
 129                 (void) snprintf(state, sizeof (state), "can't open");
 130                 break;
 131         case VDEV_STATE_FAULTED:
 132                 (void) snprintf(state, sizeof (state), "faulted");
 133                 break;
 134         case VDEV_STATE_DEGRADED:
 135                 (void) snprintf(state, sizeof (state), "degraded");
 136                 break;
 137         case VDEV_STATE_HEALTHY:
 138                 (void) snprintf(state, sizeof (state), "healthy");
 139                 break;
 140         default:
 141                 (void) snprintf(state, sizeof (state), "<state %u>",
 142                     (uint_t)vd->vdev_state);
 143         }
 144 
 145         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
 146             "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
 147             vd->vdev_islog ? " (log)" : "",
 148             (u_longlong_t)vd->vdev_guid,
 149             vd->vdev_path ? vd->vdev_path : "N/A", state);
 150 
 151         for (uint64_t i = 0; i < vd->vdev_children; i++)
 152                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
 153 }
 154 
 155 /*
 156  * Given a vdev type, return the appropriate ops vector.
 157  */
 158 static vdev_ops_t *
 159 vdev_getops(const char *type)
 160 {
 161         vdev_ops_t *ops, **opspp;
 162 
 163         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
 164                 if (strcmp(ops->vdev_op_type, type) == 0)
 165                         break;
 166 
 167         return (ops);
 168 }
 169 
 170 /*
 171  * Default asize function: return the MAX of psize with the asize of
 172  * all children.  This is what's used by anything other than RAID-Z.
 173  */
 174 uint64_t
 175 vdev_default_asize(vdev_t *vd, uint64_t psize)
 176 {
 177         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
 178         uint64_t csize;
 179 
 180         for (int c = 0; c < vd->vdev_children; c++) {
 181                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
 182                 asize = MAX(asize, csize);
 183         }
 184 
 185         return (asize);
 186 }
 187 
 188 /*
 189  * Get the minimum allocatable size. We define the allocatable size as
 190  * the vdev's asize rounded to the nearest metaslab. This allows us to
 191  * replace or attach devices which don't have the same physical size but
 192  * can still satisfy the same number of allocations.
 193  */
 194 uint64_t
 195 vdev_get_min_asize(vdev_t *vd)
 196 {
 197         vdev_t *pvd = vd->vdev_parent;
 198 
 199         /*
 200          * If our parent is NULL (inactive spare or cache) or is the root,
 201          * just return our own asize.
 202          */
 203         if (pvd == NULL)
 204                 return (vd->vdev_asize);
 205 
 206         /*
 207          * The top-level vdev just returns the allocatable size rounded
 208          * to the nearest metaslab.
 209          */
 210         if (vd == vd->vdev_top)
 211                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
 212 
 213         /*
 214          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
 215          * so each child must provide at least 1/Nth of its asize.
 216          */
 217         if (pvd->vdev_ops == &vdev_raidz_ops)
 218                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
 219                     pvd->vdev_children);
 220 
 221         return (pvd->vdev_min_asize);
 222 }
 223 
 224 void
 225 vdev_set_min_asize(vdev_t *vd)
 226 {
 227         vd->vdev_min_asize = vdev_get_min_asize(vd);
 228 
 229         for (int c = 0; c < vd->vdev_children; c++)
 230                 vdev_set_min_asize(vd->vdev_child[c]);
 231 }
 232 
 233 vdev_t *
 234 vdev_lookup_top(spa_t *spa, uint64_t vdev)
 235 {
 236         vdev_t *rvd = spa->spa_root_vdev;
 237 
 238         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 239 
 240         if (vdev < rvd->vdev_children) {
 241                 ASSERT(rvd->vdev_child[vdev] != NULL);
 242                 return (rvd->vdev_child[vdev]);
 243         }
 244 
 245         return (NULL);
 246 }
 247 
 248 vdev_t *
 249 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
 250 {
 251         vdev_t *mvd;
 252 
 253         if (vd->vdev_guid == guid)
 254                 return (vd);
 255 
 256         for (int c = 0; c < vd->vdev_children; c++)
 257                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
 258                     NULL)
 259                         return (mvd);
 260 
 261         return (NULL);
 262 }
 263 
 264 static int
 265 vdev_count_leaves_impl(vdev_t *vd)
 266 {
 267         int n = 0;
 268 
 269         if (vd->vdev_ops->vdev_op_leaf)
 270                 return (1);
 271 
 272         for (int c = 0; c < vd->vdev_children; c++)
 273                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
 274 
 275         return (n);
 276 }
 277 
 278 int
 279 vdev_count_leaves(spa_t *spa)
 280 {
 281         return (vdev_count_leaves_impl(spa->spa_root_vdev));
 282 }
 283 
 284 void
 285 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
 286 {
 287         size_t oldsize, newsize;
 288         uint64_t id = cvd->vdev_id;
 289         vdev_t **newchild;
 290         spa_t *spa = cvd->vdev_spa;
 291 
 292         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 293         ASSERT(cvd->vdev_parent == NULL);
 294 
 295         cvd->vdev_parent = pvd;
 296 
 297         if (pvd == NULL)
 298                 return;
 299 
 300         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
 301 
 302         oldsize = pvd->vdev_children * sizeof (vdev_t *);
 303         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
 304         newsize = pvd->vdev_children * sizeof (vdev_t *);
 305 
 306         newchild = kmem_zalloc(newsize, KM_SLEEP);
 307         if (pvd->vdev_child != NULL) {
 308                 bcopy(pvd->vdev_child, newchild, oldsize);
 309                 kmem_free(pvd->vdev_child, oldsize);
 310         }
 311 
 312         pvd->vdev_child = newchild;
 313         pvd->vdev_child[id] = cvd;
 314 
 315         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
 316         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
 317 
 318         /*
 319          * Walk up all ancestors to update guid sum.
 320          */
 321         for (; pvd != NULL; pvd = pvd->vdev_parent)
 322                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
 323 }
 324 
 325 void
 326 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
 327 {
 328         int c;
 329         uint_t id = cvd->vdev_id;
 330 
 331         ASSERT(cvd->vdev_parent == pvd);
 332 
 333         if (pvd == NULL)
 334                 return;
 335 
 336         ASSERT(id < pvd->vdev_children);
 337         ASSERT(pvd->vdev_child[id] == cvd);
 338 
 339         pvd->vdev_child[id] = NULL;
 340         cvd->vdev_parent = NULL;
 341 
 342         for (c = 0; c < pvd->vdev_children; c++)
 343                 if (pvd->vdev_child[c])
 344                         break;
 345 
 346         if (c == pvd->vdev_children) {
 347                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
 348                 pvd->vdev_child = NULL;
 349                 pvd->vdev_children = 0;
 350         }
 351 
 352         /*
 353          * Walk up all ancestors to update guid sum.
 354          */
 355         for (; pvd != NULL; pvd = pvd->vdev_parent)
 356                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
 357 }
 358 
 359 /*
 360  * Remove any holes in the child array.
 361  */
 362 void
 363 vdev_compact_children(vdev_t *pvd)
 364 {
 365         vdev_t **newchild, *cvd;
 366         int oldc = pvd->vdev_children;
 367         int newc;
 368 
 369         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 370 
 371         for (int c = newc = 0; c < oldc; c++)
 372                 if (pvd->vdev_child[c])
 373                         newc++;
 374 
 375         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
 376 
 377         for (int c = newc = 0; c < oldc; c++) {
 378                 if ((cvd = pvd->vdev_child[c]) != NULL) {
 379                         newchild[newc] = cvd;
 380                         cvd->vdev_id = newc++;
 381                 }
 382         }
 383 
 384         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
 385         pvd->vdev_child = newchild;
 386         pvd->vdev_children = newc;
 387 }
 388 
 389 /*
 390  * Allocate and minimally initialize a vdev_t.
 391  */
 392 vdev_t *
 393 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 394 {
 395         vdev_t *vd;
 396         vdev_indirect_config_t *vic;
 397 
 398         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
 399         vic = &vd->vdev_indirect_config;
 400 
 401         if (spa->spa_root_vdev == NULL) {
 402                 ASSERT(ops == &vdev_root_ops);
 403                 spa->spa_root_vdev = vd;
 404                 spa->spa_load_guid = spa_generate_guid(NULL);
 405         }
 406 
 407         if (guid == 0 && ops != &vdev_hole_ops) {
 408                 if (spa->spa_root_vdev == vd) {
 409                         /*
 410                          * The root vdev's guid will also be the pool guid,
 411                          * which must be unique among all pools.
 412                          */
 413                         guid = spa_generate_guid(NULL);
 414                 } else {
 415                         /*
 416                          * Any other vdev's guid must be unique within the pool.
 417                          */
 418                         guid = spa_generate_guid(spa);
 419                 }
 420                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
 421         }
 422 
 423         vd->vdev_spa = spa;
 424         vd->vdev_id = id;
 425         vd->vdev_guid = guid;
 426         vd->vdev_guid_sum = guid;
 427         vd->vdev_ops = ops;
 428         vd->vdev_state = VDEV_STATE_CLOSED;
 429         vd->vdev_ishole = (ops == &vdev_hole_ops);
 430         vic->vic_prev_indirect_vdev = UINT64_MAX;
 431 
 432         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
 433         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
 434         vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
 435 
 436         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
 437         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
 438         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
 439         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
 440         for (int t = 0; t < DTL_TYPES; t++) {
 441                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
 442         }
 443         txg_list_create(&vd->vdev_ms_list, spa,
 444             offsetof(struct metaslab, ms_txg_node));
 445         txg_list_create(&vd->vdev_dtl_list, spa,
 446             offsetof(struct vdev, vdev_dtl_node));
 447         vd->vdev_stat.vs_timestamp = gethrtime();
 448         vdev_queue_init(vd);
 449         vdev_cache_init(vd);
 450 
 451         return (vd);
 452 }
 453 
 454 /*
 455  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
 456  * creating a new vdev or loading an existing one - the behavior is slightly
 457  * different for each case.
 458  */
 459 int
 460 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 461     int alloctype)
 462 {
 463         vdev_ops_t *ops;
 464         char *type;
 465         uint64_t guid = 0, islog, nparity;
 466         vdev_t *vd;
 467         vdev_indirect_config_t *vic;
 468 
 469         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 470 
 471         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
 472                 return (SET_ERROR(EINVAL));
 473 
 474         if ((ops = vdev_getops(type)) == NULL)
 475                 return (SET_ERROR(EINVAL));
 476 
 477         /*
 478          * If this is a load, get the vdev guid from the nvlist.
 479          * Otherwise, vdev_alloc_common() will generate one for us.
 480          */
 481         if (alloctype == VDEV_ALLOC_LOAD) {
 482                 uint64_t label_id;
 483 
 484                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
 485                     label_id != id)
 486                         return (SET_ERROR(EINVAL));
 487 
 488                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 489                         return (SET_ERROR(EINVAL));
 490         } else if (alloctype == VDEV_ALLOC_SPARE) {
 491                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 492                         return (SET_ERROR(EINVAL));
 493         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
 494                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 495                         return (SET_ERROR(EINVAL));
 496         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 497                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 498                         return (SET_ERROR(EINVAL));
 499         }
 500 
 501         /*
 502          * The first allocated vdev must be of type 'root'.
 503          */
 504         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
 505                 return (SET_ERROR(EINVAL));
 506 
 507         /*
 508          * Determine whether we're a log vdev.
 509          */
 510         islog = 0;
 511         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
 512         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
 513                 return (SET_ERROR(ENOTSUP));
 514 
 515         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
 516                 return (SET_ERROR(ENOTSUP));
 517 
 518         /*
 519          * Set the nparity property for RAID-Z vdevs.
 520          */
 521         nparity = -1ULL;
 522         if (ops == &vdev_raidz_ops) {
 523                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
 524                     &nparity) == 0) {
 525                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
 526                                 return (SET_ERROR(EINVAL));
 527                         /*
 528                          * Previous versions could only support 1 or 2 parity
 529                          * device.
 530                          */
 531                         if (nparity > 1 &&
 532                             spa_version(spa) < SPA_VERSION_RAIDZ2)
 533                                 return (SET_ERROR(ENOTSUP));
 534                         if (nparity > 2 &&
 535                             spa_version(spa) < SPA_VERSION_RAIDZ3)
 536                                 return (SET_ERROR(ENOTSUP));
 537                 } else {
 538                         /*
 539                          * We require the parity to be specified for SPAs that
 540                          * support multiple parity levels.
 541                          */
 542                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
 543                                 return (SET_ERROR(EINVAL));
 544                         /*
 545                          * Otherwise, we default to 1 parity device for RAID-Z.
 546                          */
 547                         nparity = 1;
 548                 }
 549         } else {
 550                 nparity = 0;
 551         }
 552         ASSERT(nparity != -1ULL);
 553 
 554         vd = vdev_alloc_common(spa, id, guid, ops);
 555         vic = &vd->vdev_indirect_config;
 556 
 557         vd->vdev_islog = islog;
 558         vd->vdev_nparity = nparity;
 559 
 560         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
 561                 vd->vdev_path = spa_strdup(vd->vdev_path);
 562         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
 563                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
 564         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 565             &vd->vdev_physpath) == 0)
 566                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
 567         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
 568                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
 569 
 570         /*
 571          * Set the whole_disk property.  If it's not specified, leave the value
 572          * as -1.
 573          */
 574         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 575             &vd->vdev_wholedisk) != 0)
 576                 vd->vdev_wholedisk = -1ULL;
 577 
 578         ASSERT0(vic->vic_mapping_object);
 579         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
 580             &vic->vic_mapping_object);
 581         ASSERT0(vic->vic_births_object);
 582         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
 583             &vic->vic_births_object);
 584         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
 585         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
 586             &vic->vic_prev_indirect_vdev);
 587 
 588         /*
 589          * Look for the 'not present' flag.  This will only be set if the device
 590          * was not present at the time of import.
 591          */
 592         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
 593             &vd->vdev_not_present);
 594 
 595         /*
 596          * Get the alignment requirement.
 597          */
 598         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 599 
 600         /*
 601          * Retrieve the vdev creation time.
 602          */
 603         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 604             &vd->vdev_crtxg);
 605 
 606         /*
 607          * If we're a top-level vdev, try to load the allocation parameters.
 608          */
 609         if (parent && !parent->vdev_parent &&
 610             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 611                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 612                     &vd->vdev_ms_array);
 613                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 614                     &vd->vdev_ms_shift);
 615                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
 616                     &vd->vdev_asize);
 617                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
 618                     &vd->vdev_removing);
 619                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
 620                     &vd->vdev_top_zap);
 621         } else {
 622                 ASSERT0(vd->vdev_top_zap);
 623         }
 624 
 625         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
 626                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
 627                     alloctype == VDEV_ALLOC_ADD ||
 628                     alloctype == VDEV_ALLOC_SPLIT ||
 629                     alloctype == VDEV_ALLOC_ROOTPOOL);
 630                 vd->vdev_mg = metaslab_group_create(islog ?
 631                     spa_log_class(spa) : spa_normal_class(spa), vd);
 632         }
 633 
 634         if (vd->vdev_ops->vdev_op_leaf &&
 635             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 636                 (void) nvlist_lookup_uint64(nv,
 637                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
 638         } else {
 639                 ASSERT0(vd->vdev_leaf_zap);
 640         }
 641 
 642         /*
 643          * If we're a leaf vdev, try to load the DTL object and other state.
 644          */
 645 
 646         if (vd->vdev_ops->vdev_op_leaf &&
 647             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
 648             alloctype == VDEV_ALLOC_ROOTPOOL)) {
 649                 if (alloctype == VDEV_ALLOC_LOAD) {
 650                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
 651                             &vd->vdev_dtl_object);
 652                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
 653                             &vd->vdev_unspare);
 654                 }
 655 
 656                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 657                         uint64_t spare = 0;
 658 
 659                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
 660                             &spare) == 0 && spare)
 661                                 spa_spare_add(vd);
 662                 }
 663 
 664                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
 665                     &vd->vdev_offline);
 666 
 667                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
 668                     &vd->vdev_resilver_txg);
 669 
 670                 /*
 671                  * When importing a pool, we want to ignore the persistent fault
 672                  * state, as the diagnosis made on another system may not be
 673                  * valid in the current context.  Local vdevs will
 674                  * remain in the faulted state.
 675                  */
 676                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
 677                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
 678                             &vd->vdev_faulted);
 679                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
 680                             &vd->vdev_degraded);
 681                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
 682                             &vd->vdev_removed);
 683 
 684                         if (vd->vdev_faulted || vd->vdev_degraded) {
 685                                 char *aux;
 686 
 687                                 vd->vdev_label_aux =
 688                                     VDEV_AUX_ERR_EXCEEDED;
 689                                 if (nvlist_lookup_string(nv,
 690                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
 691                                     strcmp(aux, "external") == 0)
 692                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
 693                         }
 694                 }
 695         }
 696 
 697         /*
 698          * Add ourselves to the parent's list of children.
 699          */
 700         vdev_add_child(parent, vd);
 701 
 702         *vdp = vd;
 703 
 704         return (0);
 705 }
 706 
 707 void
 708 vdev_free(vdev_t *vd)
 709 {
 710         spa_t *spa = vd->vdev_spa;
 711 
 712         /*
 713          * vdev_free() implies closing the vdev first.  This is simpler than
 714          * trying to ensure complicated semantics for all callers.
 715          */
 716         vdev_close(vd);
 717 
 718         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 719         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 720 
 721         /*
 722          * Free all children.
 723          */
 724         for (int c = 0; c < vd->vdev_children; c++)
 725                 vdev_free(vd->vdev_child[c]);
 726 
 727         ASSERT(vd->vdev_child == NULL);
 728         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 729 
 730         /*
 731          * Discard allocation state.
 732          */
 733         if (vd->vdev_mg != NULL) {
 734                 vdev_metaslab_fini(vd);
 735                 metaslab_group_destroy(vd->vdev_mg);
 736         }
 737 
 738         ASSERT0(vd->vdev_stat.vs_space);
 739         ASSERT0(vd->vdev_stat.vs_dspace);
 740         ASSERT0(vd->vdev_stat.vs_alloc);
 741 
 742         /*
 743          * Remove this vdev from its parent's child list.
 744          */
 745         vdev_remove_child(vd->vdev_parent, vd);
 746 
 747         ASSERT(vd->vdev_parent == NULL);
 748 
 749         /*
 750          * Clean up vdev structure.
 751          */
 752         vdev_queue_fini(vd);
 753         vdev_cache_fini(vd);
 754 
 755         if (vd->vdev_path)
 756                 spa_strfree(vd->vdev_path);
 757         if (vd->vdev_devid)
 758                 spa_strfree(vd->vdev_devid);
 759         if (vd->vdev_physpath)
 760                 spa_strfree(vd->vdev_physpath);
 761         if (vd->vdev_fru)
 762                 spa_strfree(vd->vdev_fru);
 763 
 764         if (vd->vdev_isspare)
 765                 spa_spare_remove(vd);
 766         if (vd->vdev_isl2cache)
 767                 spa_l2cache_remove(vd);
 768 
 769         txg_list_destroy(&vd->vdev_ms_list);
 770         txg_list_destroy(&vd->vdev_dtl_list);
 771 
 772         mutex_enter(&vd->vdev_dtl_lock);
 773         space_map_close(vd->vdev_dtl_sm);
 774         for (int t = 0; t < DTL_TYPES; t++) {
 775                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
 776                 range_tree_destroy(vd->vdev_dtl[t]);
 777         }
 778         mutex_exit(&vd->vdev_dtl_lock);
 779 
 780         EQUIV(vd->vdev_indirect_births != NULL,
 781             vd->vdev_indirect_mapping != NULL);
 782         if (vd->vdev_indirect_births != NULL) {
 783                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
 784                 vdev_indirect_births_close(vd->vdev_indirect_births);
 785         }
 786 
 787         if (vd->vdev_obsolete_sm != NULL) {
 788                 ASSERT(vd->vdev_removing ||
 789                     vd->vdev_ops == &vdev_indirect_ops);
 790                 space_map_close(vd->vdev_obsolete_sm);
 791                 vd->vdev_obsolete_sm = NULL;
 792         }
 793         range_tree_destroy(vd->vdev_obsolete_segments);
 794         rw_destroy(&vd->vdev_indirect_rwlock);
 795         mutex_destroy(&vd->vdev_obsolete_lock);
 796 
 797         mutex_destroy(&vd->vdev_queue_lock);
 798         mutex_destroy(&vd->vdev_dtl_lock);
 799         mutex_destroy(&vd->vdev_stat_lock);
 800         mutex_destroy(&vd->vdev_probe_lock);
 801 
 802         if (vd == spa->spa_root_vdev)
 803                 spa->spa_root_vdev = NULL;
 804 
 805         kmem_free(vd, sizeof (vdev_t));
 806 }
 807 
 808 /*
 809  * Transfer top-level vdev state from svd to tvd.
 810  */
 811 static void
 812 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 813 {
 814         spa_t *spa = svd->vdev_spa;
 815         metaslab_t *msp;
 816         vdev_t *vd;
 817         int t;
 818 
 819         ASSERT(tvd == tvd->vdev_top);
 820 
 821         tvd->vdev_ms_array = svd->vdev_ms_array;
 822         tvd->vdev_ms_shift = svd->vdev_ms_shift;
 823         tvd->vdev_ms_count = svd->vdev_ms_count;
 824         tvd->vdev_top_zap = svd->vdev_top_zap;
 825 
 826         svd->vdev_ms_array = 0;
 827         svd->vdev_ms_shift = 0;
 828         svd->vdev_ms_count = 0;
 829         svd->vdev_top_zap = 0;
 830 
 831         if (tvd->vdev_mg)
 832                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
 833         tvd->vdev_mg = svd->vdev_mg;
 834         tvd->vdev_ms = svd->vdev_ms;
 835 
 836         svd->vdev_mg = NULL;
 837         svd->vdev_ms = NULL;
 838 
 839         if (tvd->vdev_mg != NULL)
 840                 tvd->vdev_mg->mg_vd = tvd;
 841 
 842         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
 843         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
 844         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
 845 
 846         svd->vdev_stat.vs_alloc = 0;
 847         svd->vdev_stat.vs_space = 0;
 848         svd->vdev_stat.vs_dspace = 0;
 849 
 850         for (t = 0; t < TXG_SIZE; t++) {
 851                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
 852                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
 853                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
 854                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 855                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 856                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 857         }
 858 
 859         if (list_link_active(&svd->vdev_config_dirty_node)) {
 860                 vdev_config_clean(svd);
 861                 vdev_config_dirty(tvd);
 862         }
 863 
 864         if (list_link_active(&svd->vdev_state_dirty_node)) {
 865                 vdev_state_clean(svd);
 866                 vdev_state_dirty(tvd);
 867         }
 868 
 869         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 870         svd->vdev_deflate_ratio = 0;
 871 
 872         tvd->vdev_islog = svd->vdev_islog;
 873         svd->vdev_islog = 0;
 874 }
 875 
 876 static void
 877 vdev_top_update(vdev_t *tvd, vdev_t *vd)
 878 {
 879         if (vd == NULL)
 880                 return;
 881 
 882         vd->vdev_top = tvd;
 883 
 884         for (int c = 0; c < vd->vdev_children; c++)
 885                 vdev_top_update(tvd, vd->vdev_child[c]);
 886 }
 887 
 888 /*
 889  * Add a mirror/replacing vdev above an existing vdev.
 890  */
 891 vdev_t *
 892 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 893 {
 894         spa_t *spa = cvd->vdev_spa;
 895         vdev_t *pvd = cvd->vdev_parent;
 896         vdev_t *mvd;
 897 
 898         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 899 
 900         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 901 
 902         mvd->vdev_asize = cvd->vdev_asize;
 903         mvd->vdev_min_asize = cvd->vdev_min_asize;
 904         mvd->vdev_max_asize = cvd->vdev_max_asize;
 905         mvd->vdev_psize = cvd->vdev_psize;
 906         mvd->vdev_ashift = cvd->vdev_ashift;
 907         mvd->vdev_state = cvd->vdev_state;
 908         mvd->vdev_crtxg = cvd->vdev_crtxg;
 909 
 910         vdev_remove_child(pvd, cvd);
 911         vdev_add_child(pvd, mvd);
 912         cvd->vdev_id = mvd->vdev_children;
 913         vdev_add_child(mvd, cvd);
 914         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 915 
 916         if (mvd == mvd->vdev_top)
 917                 vdev_top_transfer(cvd, mvd);
 918 
 919         return (mvd);
 920 }
 921 
 922 /*
 923  * Remove a 1-way mirror/replacing vdev from the tree.
 924  */
 925 void
 926 vdev_remove_parent(vdev_t *cvd)
 927 {
 928         vdev_t *mvd = cvd->vdev_parent;
 929         vdev_t *pvd = mvd->vdev_parent;
 930 
 931         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 932 
 933         ASSERT(mvd->vdev_children == 1);
 934         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
 935             mvd->vdev_ops == &vdev_replacing_ops ||
 936             mvd->vdev_ops == &vdev_spare_ops);
 937         cvd->vdev_ashift = mvd->vdev_ashift;
 938 
 939         vdev_remove_child(mvd, cvd);
 940         vdev_remove_child(pvd, mvd);
 941 
 942         /*
 943          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
 944          * Otherwise, we could have detached an offline device, and when we
 945          * go to import the pool we'll think we have two top-level vdevs,
 946          * instead of a different version of the same top-level vdev.
 947          */
 948         if (mvd->vdev_top == mvd) {
 949                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
 950                 cvd->vdev_orig_guid = cvd->vdev_guid;
 951                 cvd->vdev_guid += guid_delta;
 952                 cvd->vdev_guid_sum += guid_delta;
 953         }
 954         cvd->vdev_id = mvd->vdev_id;
 955         vdev_add_child(pvd, cvd);
 956         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 957 
 958         if (cvd == cvd->vdev_top)
 959                 vdev_top_transfer(mvd, cvd);
 960 
 961         ASSERT(mvd->vdev_children == 0);
 962         vdev_free(mvd);
 963 }
 964 
 965 int
 966 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 967 {
 968         spa_t *spa = vd->vdev_spa;
 969         objset_t *mos = spa->spa_meta_objset;
 970         uint64_t m;
 971         uint64_t oldc = vd->vdev_ms_count;
 972         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 973         metaslab_t **mspp;
 974         int error;
 975 
 976         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 977 
 978         /*
 979          * This vdev is not being allocated from yet or is a hole.
 980          */
 981         if (vd->vdev_ms_shift == 0)
 982                 return (0);
 983 
 984         ASSERT(!vd->vdev_ishole);
 985 
 986         ASSERT(oldc <= newc);
 987 
 988         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 989 
 990         if (oldc != 0) {
 991                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
 992                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 993         }
 994 
 995         vd->vdev_ms = mspp;
 996         vd->vdev_ms_count = newc;
 997 
 998         for (m = oldc; m < newc; m++) {
 999                 uint64_t object = 0;
1000 
1001                 /*
1002                  * vdev_ms_array may be 0 if we are creating the "fake"
1003                  * metaslabs for an indirect vdev for zdb's leak detection.
1004                  * See zdb_leak_init().
1005                  */
1006                 if (txg == 0 && vd->vdev_ms_array != 0) {
1007                         error = dmu_read(mos, vd->vdev_ms_array,
1008                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1009                             DMU_READ_PREFETCH);
1010                         if (error != 0) {
1011                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1012                                     "array [error=%d]", error);
1013                                 return (error);
1014                         }
1015                 }
1016 
1017                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1018                     &(vd->vdev_ms[m]));
1019                 if (error != 0) {
1020                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1021                             error);
1022                         return (error);
1023                 }
1024         }
1025 
1026         if (txg == 0)
1027                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1028 
1029         /*
1030          * If the vdev is being removed we don't activate
1031          * the metaslabs since we want to ensure that no new
1032          * allocations are performed on this device.
1033          */
1034         if (oldc == 0 && !vd->vdev_removing)
1035                 metaslab_group_activate(vd->vdev_mg);
1036 
1037         if (txg == 0)
1038                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1039 
1040         return (0);
1041 }
1042 
1043 void
1044 vdev_metaslab_fini(vdev_t *vd)
1045 {
1046         if (vd->vdev_ms != NULL) {
1047                 uint64_t count = vd->vdev_ms_count;
1048 
1049                 metaslab_group_passivate(vd->vdev_mg);
1050                 for (uint64_t m = 0; m < count; m++) {
1051                         metaslab_t *msp = vd->vdev_ms[m];
1052 
1053                         if (msp != NULL)
1054                                 metaslab_fini(msp);
1055                 }
1056                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1057                 vd->vdev_ms = NULL;
1058 
1059                 vd->vdev_ms_count = 0;
1060         }
1061         ASSERT0(vd->vdev_ms_count);
1062 }
1063 
1064 typedef struct vdev_probe_stats {
1065         boolean_t       vps_readable;
1066         boolean_t       vps_writeable;
1067         int             vps_flags;
1068 } vdev_probe_stats_t;
1069 
1070 static void
1071 vdev_probe_done(zio_t *zio)
1072 {
1073         spa_t *spa = zio->io_spa;
1074         vdev_t *vd = zio->io_vd;
1075         vdev_probe_stats_t *vps = zio->io_private;
1076 
1077         ASSERT(vd->vdev_probe_zio != NULL);
1078 
1079         if (zio->io_type == ZIO_TYPE_READ) {
1080                 if (zio->io_error == 0)
1081                         vps->vps_readable = 1;
1082                 if (zio->io_error == 0 && spa_writeable(spa)) {
1083                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1084                             zio->io_offset, zio->io_size, zio->io_abd,
1085                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1086                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1087                 } else {
1088                         abd_free(zio->io_abd);
1089                 }
1090         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1091                 if (zio->io_error == 0)
1092                         vps->vps_writeable = 1;
1093                 abd_free(zio->io_abd);
1094         } else if (zio->io_type == ZIO_TYPE_NULL) {
1095                 zio_t *pio;
1096 
1097                 vd->vdev_cant_read |= !vps->vps_readable;
1098                 vd->vdev_cant_write |= !vps->vps_writeable;
1099 
1100                 if (vdev_readable(vd) &&
1101                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1102                         zio->io_error = 0;
1103                 } else {
1104                         ASSERT(zio->io_error != 0);
1105                         vdev_dbgmsg(vd, "failed probe");
1106                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1107                             spa, vd, NULL, 0, 0);
1108                         zio->io_error = SET_ERROR(ENXIO);
1109                 }
1110 
1111                 mutex_enter(&vd->vdev_probe_lock);
1112                 ASSERT(vd->vdev_probe_zio == zio);
1113                 vd->vdev_probe_zio = NULL;
1114                 mutex_exit(&vd->vdev_probe_lock);
1115 
1116                 zio_link_t *zl = NULL;
1117                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1118                         if (!vdev_accessible(vd, pio))
1119                                 pio->io_error = SET_ERROR(ENXIO);
1120 
1121                 kmem_free(vps, sizeof (*vps));
1122         }
1123 }
1124 
1125 /*
1126  * Determine whether this device is accessible.
1127  *
1128  * Read and write to several known locations: the pad regions of each
1129  * vdev label but the first, which we leave alone in case it contains
1130  * a VTOC.
1131  */
1132 zio_t *
1133 vdev_probe(vdev_t *vd, zio_t *zio)
1134 {
1135         spa_t *spa = vd->vdev_spa;
1136         vdev_probe_stats_t *vps = NULL;
1137         zio_t *pio;
1138 
1139         ASSERT(vd->vdev_ops->vdev_op_leaf);
1140 
1141         /*
1142          * Don't probe the probe.
1143          */
1144         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1145                 return (NULL);
1146 
1147         /*
1148          * To prevent 'probe storms' when a device fails, we create
1149          * just one probe i/o at a time.  All zios that want to probe
1150          * this vdev will become parents of the probe io.
1151          */
1152         mutex_enter(&vd->vdev_probe_lock);
1153 
1154         if ((pio = vd->vdev_probe_zio) == NULL) {
1155                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1156 
1157                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1158                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1159                     ZIO_FLAG_TRYHARD;
1160 
1161                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1162                         /*
1163                          * vdev_cant_read and vdev_cant_write can only
1164                          * transition from TRUE to FALSE when we have the
1165                          * SCL_ZIO lock as writer; otherwise they can only
1166                          * transition from FALSE to TRUE.  This ensures that
1167                          * any zio looking at these values can assume that
1168                          * failures persist for the life of the I/O.  That's
1169                          * important because when a device has intermittent
1170                          * connectivity problems, we want to ensure that
1171                          * they're ascribed to the device (ENXIO) and not
1172                          * the zio (EIO).
1173                          *
1174                          * Since we hold SCL_ZIO as writer here, clear both
1175                          * values so the probe can reevaluate from first
1176                          * principles.
1177                          */
1178                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1179                         vd->vdev_cant_read = B_FALSE;
1180                         vd->vdev_cant_write = B_FALSE;
1181                 }
1182 
1183                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1184                     vdev_probe_done, vps,
1185                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1186 
1187                 /*
1188                  * We can't change the vdev state in this context, so we
1189                  * kick off an async task to do it on our behalf.
1190                  */
1191                 if (zio != NULL) {
1192                         vd->vdev_probe_wanted = B_TRUE;
1193                         spa_async_request(spa, SPA_ASYNC_PROBE);
1194                 }
1195         }
1196 
1197         if (zio != NULL)
1198                 zio_add_child(zio, pio);
1199 
1200         mutex_exit(&vd->vdev_probe_lock);
1201 
1202         if (vps == NULL) {
1203                 ASSERT(zio != NULL);
1204                 return (NULL);
1205         }
1206 
1207         for (int l = 1; l < VDEV_LABELS; l++) {
1208                 zio_nowait(zio_read_phys(pio, vd,
1209                     vdev_label_offset(vd->vdev_psize, l,
1210                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1211                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1212                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1213                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1214         }
1215 
1216         if (zio == NULL)
1217                 return (pio);
1218 
1219         zio_nowait(pio);
1220         return (NULL);
1221 }
1222 
1223 static void
1224 vdev_open_child(void *arg)
1225 {
1226         vdev_t *vd = arg;
1227 
1228         vd->vdev_open_thread = curthread;
1229         vd->vdev_open_error = vdev_open(vd);
1230         vd->vdev_open_thread = NULL;
1231 }
1232 
1233 boolean_t
1234 vdev_uses_zvols(vdev_t *vd)
1235 {
1236         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1237             strlen(ZVOL_DIR)) == 0)
1238                 return (B_TRUE);
1239         for (int c = 0; c < vd->vdev_children; c++)
1240                 if (vdev_uses_zvols(vd->vdev_child[c]))
1241                         return (B_TRUE);
1242         return (B_FALSE);
1243 }
1244 
1245 void
1246 vdev_open_children(vdev_t *vd)
1247 {
1248         taskq_t *tq;
1249         int children = vd->vdev_children;
1250 
1251         /*
1252          * in order to handle pools on top of zvols, do the opens
1253          * in a single thread so that the same thread holds the
1254          * spa_namespace_lock
1255          */
1256         if (vdev_uses_zvols(vd)) {
1257                 for (int c = 0; c < children; c++)
1258                         vd->vdev_child[c]->vdev_open_error =
1259                             vdev_open(vd->vdev_child[c]);
1260                 return;
1261         }
1262         tq = taskq_create("vdev_open", children, minclsyspri,
1263             children, children, TASKQ_PREPOPULATE);
1264 
1265         for (int c = 0; c < children; c++)
1266                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1267                     TQ_SLEEP) != NULL);
1268 
1269         taskq_destroy(tq);
1270 }
1271 
1272 /*
1273  * Compute the raidz-deflation ratio.  Note, we hard-code
1274  * in 128k (1 << 17) because it is the "typical" blocksize.
1275  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1276  * otherwise it would inconsistently account for existing bp's.
1277  */
1278 static void
1279 vdev_set_deflate_ratio(vdev_t *vd)
1280 {
1281         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1282                 vd->vdev_deflate_ratio = (1 << 17) /
1283                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1284         }
1285 }
1286 
1287 /*
1288  * Prepare a virtual device for access.
1289  */
1290 int
1291 vdev_open(vdev_t *vd)
1292 {
1293         spa_t *spa = vd->vdev_spa;
1294         int error;
1295         uint64_t osize = 0;
1296         uint64_t max_osize = 0;
1297         uint64_t asize, max_asize, psize;
1298         uint64_t ashift = 0;
1299 
1300         ASSERT(vd->vdev_open_thread == curthread ||
1301             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1302         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1303             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1304             vd->vdev_state == VDEV_STATE_OFFLINE);
1305 
1306         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1307         vd->vdev_cant_read = B_FALSE;
1308         vd->vdev_cant_write = B_FALSE;
1309         vd->vdev_min_asize = vdev_get_min_asize(vd);
1310 
1311         /*
1312          * If this vdev is not removed, check its fault status.  If it's
1313          * faulted, bail out of the open.
1314          */
1315         if (!vd->vdev_removed && vd->vdev_faulted) {
1316                 ASSERT(vd->vdev_children == 0);
1317                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1318                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1319                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1320                     vd->vdev_label_aux);
1321                 return (SET_ERROR(ENXIO));
1322         } else if (vd->vdev_offline) {
1323                 ASSERT(vd->vdev_children == 0);
1324                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1325                 return (SET_ERROR(ENXIO));
1326         }
1327 
1328         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1329 
1330         /*
1331          * Reset the vdev_reopening flag so that we actually close
1332          * the vdev on error.
1333          */
1334         vd->vdev_reopening = B_FALSE;
1335         if (zio_injection_enabled && error == 0)
1336                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1337 
1338         if (error) {
1339                 if (vd->vdev_removed &&
1340                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1341                         vd->vdev_removed = B_FALSE;
1342 
1343                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1344                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1345                             vd->vdev_stat.vs_aux);
1346                 } else {
1347                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1348                             vd->vdev_stat.vs_aux);
1349                 }
1350                 return (error);
1351         }
1352 
1353         vd->vdev_removed = B_FALSE;
1354 
1355         /*
1356          * Recheck the faulted flag now that we have confirmed that
1357          * the vdev is accessible.  If we're faulted, bail.
1358          */
1359         if (vd->vdev_faulted) {
1360                 ASSERT(vd->vdev_children == 0);
1361                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1362                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1363                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1364                     vd->vdev_label_aux);
1365                 return (SET_ERROR(ENXIO));
1366         }
1367 
1368         if (vd->vdev_degraded) {
1369                 ASSERT(vd->vdev_children == 0);
1370                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1371                     VDEV_AUX_ERR_EXCEEDED);
1372         } else {
1373                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1374         }
1375 
1376         /*
1377          * For hole or missing vdevs we just return success.
1378          */
1379         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1380                 return (0);
1381 
1382         for (int c = 0; c < vd->vdev_children; c++) {
1383                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1384                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1385                             VDEV_AUX_NONE);
1386                         break;
1387                 }
1388         }
1389 
1390         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1391         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1392 
1393         if (vd->vdev_children == 0) {
1394                 if (osize < SPA_MINDEVSIZE) {
1395                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1396                             VDEV_AUX_TOO_SMALL);
1397                         return (SET_ERROR(EOVERFLOW));
1398                 }
1399                 psize = osize;
1400                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1401                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1402                     VDEV_LABEL_END_SIZE);
1403         } else {
1404                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1405                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1406                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1407                             VDEV_AUX_TOO_SMALL);
1408                         return (SET_ERROR(EOVERFLOW));
1409                 }
1410                 psize = 0;
1411                 asize = osize;
1412                 max_asize = max_osize;
1413         }
1414 
1415         vd->vdev_psize = psize;
1416 
1417         /*
1418          * Make sure the allocatable size hasn't shrunk too much.
1419          */
1420         if (asize < vd->vdev_min_asize) {
1421                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1422                     VDEV_AUX_BAD_LABEL);
1423                 return (SET_ERROR(EINVAL));
1424         }
1425 
1426         if (vd->vdev_asize == 0) {
1427                 /*
1428                  * This is the first-ever open, so use the computed values.
1429                  * For testing purposes, a higher ashift can be requested.
1430                  */
1431                 vd->vdev_asize = asize;
1432                 vd->vdev_max_asize = max_asize;
1433                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1434         } else {
1435                 /*
1436                  * Detect if the alignment requirement has increased.
1437                  * We don't want to make the pool unavailable, just
1438                  * issue a warning instead.
1439                  */
1440                 if (ashift > vd->vdev_top->vdev_ashift &&
1441                     vd->vdev_ops->vdev_op_leaf) {
1442                         cmn_err(CE_WARN,
1443                             "Disk, '%s', has a block alignment that is "
1444                             "larger than the pool's alignment\n",
1445                             vd->vdev_path);
1446                 }
1447                 vd->vdev_max_asize = max_asize;
1448         }
1449 
1450         /*
1451          * If all children are healthy we update asize if either:
1452          * The asize has increased, due to a device expansion caused by dynamic
1453          * LUN growth or vdev replacement, and automatic expansion is enabled;
1454          * making the additional space available.
1455          *
1456          * The asize has decreased, due to a device shrink usually caused by a
1457          * vdev replace with a smaller device. This ensures that calculations
1458          * based of max_asize and asize e.g. esize are always valid. It's safe
1459          * to do this as we've already validated that asize is greater than
1460          * vdev_min_asize.
1461          */
1462         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1463             ((asize > vd->vdev_asize &&
1464             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1465             (asize < vd->vdev_asize)))
1466                 vd->vdev_asize = asize;
1467 
1468         vdev_set_min_asize(vd);
1469 
1470         /*
1471          * Ensure we can issue some IO before declaring the
1472          * vdev open for business.
1473          */
1474         if (vd->vdev_ops->vdev_op_leaf &&
1475             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1476                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1477                     VDEV_AUX_ERR_EXCEEDED);
1478                 return (error);
1479         }
1480 
1481         /*
1482          * Track the min and max ashift values for normal data devices.
1483          */
1484         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1485             !vd->vdev_islog && vd->vdev_aux == NULL) {
1486                 if (vd->vdev_ashift > spa->spa_max_ashift)
1487                         spa->spa_max_ashift = vd->vdev_ashift;
1488                 if (vd->vdev_ashift < spa->spa_min_ashift)
1489                         spa->spa_min_ashift = vd->vdev_ashift;
1490         }
1491 
1492         /*
1493          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1494          * resilver.  But don't do this if we are doing a reopen for a scrub,
1495          * since this would just restart the scrub we are already doing.
1496          */
1497         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1498             vdev_resilver_needed(vd, NULL, NULL))
1499                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1500 
1501         return (0);
1502 }
1503 
1504 /*
1505  * Called once the vdevs are all opened, this routine validates the label
1506  * contents. This needs to be done before vdev_load() so that we don't
1507  * inadvertently do repair I/Os to the wrong device.
1508  *
1509  * This function will only return failure if one of the vdevs indicates that it
1510  * has since been destroyed or exported.  This is only possible if
1511  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1512  * will be updated but the function will return 0.
1513  */
1514 int
1515 vdev_validate(vdev_t *vd)
1516 {
1517         spa_t *spa = vd->vdev_spa;
1518         nvlist_t *label;
1519         uint64_t guid = 0, aux_guid = 0, top_guid;
1520         uint64_t state;
1521         nvlist_t *nvl;
1522         uint64_t txg;
1523 
1524         if (vdev_validate_skip)
1525                 return (0);
1526 
1527         for (uint64_t c = 0; c < vd->vdev_children; c++)
1528                 if (vdev_validate(vd->vdev_child[c]) != 0)
1529                         return (SET_ERROR(EBADF));
1530 
1531         /*
1532          * If the device has already failed, or was marked offline, don't do
1533          * any further validation.  Otherwise, label I/O will fail and we will
1534          * overwrite the previous state.
1535          */
1536         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1537                 return (0);
1538 
1539         /*
1540          * If we are performing an extreme rewind, we allow for a label that
1541          * was modified at a point after the current txg.
1542          */
1543         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0)
1544                 txg = UINT64_MAX;
1545         else
1546                 txg = spa_last_synced_txg(spa);
1547 
1548         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1549                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1550                     VDEV_AUX_BAD_LABEL);
1551                 vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1552                 return (0);
1553         }
1554 
1555         /*
1556          * Determine if this vdev has been split off into another
1557          * pool.  If so, then refuse to open it.
1558          */
1559         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1560             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1561                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1562                     VDEV_AUX_SPLIT_POOL);
1563                 nvlist_free(label);
1564                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1565                 return (0);
1566         }
1567 
1568         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1569                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1570                     VDEV_AUX_CORRUPT_DATA);
1571                 nvlist_free(label);
1572                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1573                     ZPOOL_CONFIG_POOL_GUID);
1574                 return (0);
1575         }
1576 
1577         /*
1578          * If config is not trusted then ignore the spa guid check. This is
1579          * necessary because if the machine crashed during a re-guid the new
1580          * guid might have been written to all of the vdev labels, but not the
1581          * cached config. The check will be performed again once we have the
1582          * trusted config from the MOS.
1583          */
1584         if (spa->spa_trust_config && guid != spa_guid(spa)) {
1585                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1586                     VDEV_AUX_CORRUPT_DATA);
1587                 nvlist_free(label);
1588                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1589                     "match config (%llu != %llu)", (u_longlong_t)guid,
1590                     (u_longlong_t)spa_guid(spa));
1591                 return (0);
1592         }
1593 
1594         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1595             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1596             &aux_guid) != 0)
1597                 aux_guid = 0;
1598 
1599         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1600                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1601                     VDEV_AUX_CORRUPT_DATA);
1602                 nvlist_free(label);
1603                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1604                     ZPOOL_CONFIG_GUID);
1605                 return (0);
1606         }
1607 
1608         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1609             != 0) {
1610                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1611                     VDEV_AUX_CORRUPT_DATA);
1612                 nvlist_free(label);
1613                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1614                     ZPOOL_CONFIG_TOP_GUID);
1615                 return (0);
1616         }
1617 
1618         /*
1619          * If this vdev just became a top-level vdev because its sibling was
1620          * detached, it will have adopted the parent's vdev guid -- but the
1621          * label may or may not be on disk yet. Fortunately, either version
1622          * of the label will have the same top guid, so if we're a top-level
1623          * vdev, we can safely compare to that instead.
1624          * However, if the config comes from a cachefile that failed to update
1625          * after the detach, a top-level vdev will appear as a non top-level
1626          * vdev in the config. Also relax the constraints if we perform an
1627          * extreme rewind.
1628          *
1629          * If we split this vdev off instead, then we also check the
1630          * original pool's guid. We don't want to consider the vdev
1631          * corrupt if it is partway through a split operation.
1632          */
1633         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1634                 boolean_t mismatch = B_FALSE;
1635                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1636                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1637                                 mismatch = B_TRUE;
1638                 } else {
1639                         if (vd->vdev_guid != top_guid &&
1640                             vd->vdev_top->vdev_guid != guid)
1641                                 mismatch = B_TRUE;
1642                 }
1643 
1644                 if (mismatch) {
1645                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1646                             VDEV_AUX_CORRUPT_DATA);
1647                         nvlist_free(label);
1648                         vdev_dbgmsg(vd, "vdev_validate: config guid "
1649                             "doesn't match label guid");
1650                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1651                             (u_longlong_t)vd->vdev_guid,
1652                             (u_longlong_t)vd->vdev_top->vdev_guid);
1653                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1654                             "aux_guid %llu", (u_longlong_t)guid,
1655                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1656                         return (0);
1657                 }
1658         }
1659 
1660         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1661             &state) != 0) {
1662                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1663                     VDEV_AUX_CORRUPT_DATA);
1664                 nvlist_free(label);
1665                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1666                     ZPOOL_CONFIG_POOL_STATE);
1667                 return (0);
1668         }
1669 
1670         nvlist_free(label);
1671 
1672         /*
1673          * If this is a verbatim import, no need to check the
1674          * state of the pool.
1675          */
1676         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1677             spa_load_state(spa) == SPA_LOAD_OPEN &&
1678             state != POOL_STATE_ACTIVE) {
1679                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1680                     "for spa %s", (u_longlong_t)state, spa->spa_name);
1681                 return (SET_ERROR(EBADF));
1682         }
1683 
1684         /*
1685          * If we were able to open and validate a vdev that was
1686          * previously marked permanently unavailable, clear that state
1687          * now.
1688          */
1689         if (vd->vdev_not_present)
1690                 vd->vdev_not_present = 0;
1691 
1692         return (0);
1693 }
1694 
1695 static void
1696 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1697 {
1698         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1699                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1700                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1701                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1702                             dvd->vdev_path, svd->vdev_path);
1703                         spa_strfree(dvd->vdev_path);
1704                         dvd->vdev_path = spa_strdup(svd->vdev_path);
1705                 }
1706         } else if (svd->vdev_path != NULL) {
1707                 dvd->vdev_path = spa_strdup(svd->vdev_path);
1708                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1709                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1710         }
1711 }
1712 
1713 /*
1714  * Recursively copy vdev paths from one vdev to another. Source and destination
1715  * vdev trees must have same geometry otherwise return error. Intended to copy
1716  * paths from userland config into MOS config.
1717  */
1718 int
1719 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1720 {
1721         if ((svd->vdev_ops == &vdev_missing_ops) ||
1722             (svd->vdev_ishole && dvd->vdev_ishole) ||
1723             (dvd->vdev_ops == &vdev_indirect_ops))
1724                 return (0);
1725 
1726         if (svd->vdev_ops != dvd->vdev_ops) {
1727                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1728                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1729                 return (SET_ERROR(EINVAL));
1730         }
1731 
1732         if (svd->vdev_guid != dvd->vdev_guid) {
1733                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1734                     "%llu)", (u_longlong_t)svd->vdev_guid,
1735                     (u_longlong_t)dvd->vdev_guid);
1736                 return (SET_ERROR(EINVAL));
1737         }
1738 
1739         if (svd->vdev_children != dvd->vdev_children) {
1740                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1741                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
1742                     (u_longlong_t)dvd->vdev_children);
1743                 return (SET_ERROR(EINVAL));
1744         }
1745 
1746         for (uint64_t i = 0; i < svd->vdev_children; i++) {
1747                 int error = vdev_copy_path_strict(svd->vdev_child[i],
1748                     dvd->vdev_child[i]);
1749                 if (error != 0)
1750                         return (error);
1751         }
1752 
1753         if (svd->vdev_ops->vdev_op_leaf)
1754                 vdev_copy_path_impl(svd, dvd);
1755 
1756         return (0);
1757 }
1758 
1759 static void
1760 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1761 {
1762         ASSERT(stvd->vdev_top == stvd);
1763         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1764 
1765         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1766                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1767         }
1768 
1769         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1770                 return;
1771 
1772         /*
1773          * The idea here is that while a vdev can shift positions within
1774          * a top vdev (when replacing, attaching mirror, etc.) it cannot
1775          * step outside of it.
1776          */
1777         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1778 
1779         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1780                 return;
1781 
1782         ASSERT(vd->vdev_ops->vdev_op_leaf);
1783 
1784         vdev_copy_path_impl(vd, dvd);
1785 }
1786 
1787 /*
1788  * Recursively copy vdev paths from one root vdev to another. Source and
1789  * destination vdev trees may differ in geometry. For each destination leaf
1790  * vdev, search a vdev with the same guid and top vdev id in the source.
1791  * Intended to copy paths from userland config into MOS config.
1792  */
1793 void
1794 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1795 {
1796         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1797         ASSERT(srvd->vdev_ops == &vdev_root_ops);
1798         ASSERT(drvd->vdev_ops == &vdev_root_ops);
1799 
1800         for (uint64_t i = 0; i < children; i++) {
1801                 vdev_copy_path_search(srvd->vdev_child[i],
1802                     drvd->vdev_child[i]);
1803         }
1804 }
1805 
1806 /*
1807  * Close a virtual device.
1808  */
1809 void
1810 vdev_close(vdev_t *vd)
1811 {
1812         spa_t *spa = vd->vdev_spa;
1813         vdev_t *pvd = vd->vdev_parent;
1814 
1815         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1816 
1817         /*
1818          * If our parent is reopening, then we are as well, unless we are
1819          * going offline.
1820          */
1821         if (pvd != NULL && pvd->vdev_reopening)
1822                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1823 
1824         vd->vdev_ops->vdev_op_close(vd);
1825 
1826         vdev_cache_purge(vd);
1827 
1828         /*
1829          * We record the previous state before we close it, so that if we are
1830          * doing a reopen(), we don't generate FMA ereports if we notice that
1831          * it's still faulted.
1832          */
1833         vd->vdev_prevstate = vd->vdev_state;
1834 
1835         if (vd->vdev_offline)
1836                 vd->vdev_state = VDEV_STATE_OFFLINE;
1837         else
1838                 vd->vdev_state = VDEV_STATE_CLOSED;
1839         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1840 }
1841 
1842 void
1843 vdev_hold(vdev_t *vd)
1844 {
1845         spa_t *spa = vd->vdev_spa;
1846 
1847         ASSERT(spa_is_root(spa));
1848         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1849                 return;
1850 
1851         for (int c = 0; c < vd->vdev_children; c++)
1852                 vdev_hold(vd->vdev_child[c]);
1853 
1854         if (vd->vdev_ops->vdev_op_leaf)
1855                 vd->vdev_ops->vdev_op_hold(vd);
1856 }
1857 
1858 void
1859 vdev_rele(vdev_t *vd)
1860 {
1861         spa_t *spa = vd->vdev_spa;
1862 
1863         ASSERT(spa_is_root(spa));
1864         for (int c = 0; c < vd->vdev_children; c++)
1865                 vdev_rele(vd->vdev_child[c]);
1866 
1867         if (vd->vdev_ops->vdev_op_leaf)
1868                 vd->vdev_ops->vdev_op_rele(vd);
1869 }
1870 
1871 /*
1872  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1873  * reopen leaf vdevs which had previously been opened as they might deadlock
1874  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1875  * If the leaf has never been opened then open it, as usual.
1876  */
1877 void
1878 vdev_reopen(vdev_t *vd)
1879 {
1880         spa_t *spa = vd->vdev_spa;
1881 
1882         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1883 
1884         /* set the reopening flag unless we're taking the vdev offline */
1885         vd->vdev_reopening = !vd->vdev_offline;
1886         vdev_close(vd);
1887         (void) vdev_open(vd);
1888 
1889         /*
1890          * Call vdev_validate() here to make sure we have the same device.
1891          * Otherwise, a device with an invalid label could be successfully
1892          * opened in response to vdev_reopen().
1893          */
1894         if (vd->vdev_aux) {
1895                 (void) vdev_validate_aux(vd);
1896                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1897                     vd->vdev_aux == &spa->spa_l2cache &&
1898                     !l2arc_vdev_present(vd))
1899                         l2arc_add_vdev(spa, vd);
1900         } else {
1901                 (void) vdev_validate(vd);
1902         }
1903 
1904         /*
1905          * Reassess parent vdev's health.
1906          */
1907         vdev_propagate_state(vd);
1908 }
1909 
1910 int
1911 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1912 {
1913         int error;
1914 
1915         /*
1916          * Normally, partial opens (e.g. of a mirror) are allowed.
1917          * For a create, however, we want to fail the request if
1918          * there are any components we can't open.
1919          */
1920         error = vdev_open(vd);
1921 
1922         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1923                 vdev_close(vd);
1924                 return (error ? error : ENXIO);
1925         }
1926 
1927         /*
1928          * Recursively load DTLs and initialize all labels.
1929          */
1930         if ((error = vdev_dtl_load(vd)) != 0 ||
1931             (error = vdev_label_init(vd, txg, isreplacing ?
1932             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1933                 vdev_close(vd);
1934                 return (error);
1935         }
1936 
1937         return (0);
1938 }
1939 
1940 void
1941 vdev_metaslab_set_size(vdev_t *vd)
1942 {
1943         /*
1944          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1945          */
1946         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1947         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1948 }
1949 
1950 void
1951 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1952 {
1953         ASSERT(vd == vd->vdev_top);
1954         /* indirect vdevs don't have metaslabs or dtls */
1955         ASSERT(vdev_is_concrete(vd) || flags == 0);
1956         ASSERT(ISP2(flags));
1957         ASSERT(spa_writeable(vd->vdev_spa));
1958 
1959         if (flags & VDD_METASLAB)
1960                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1961 
1962         if (flags & VDD_DTL)
1963                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1964 
1965         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1966 }
1967 
1968 void
1969 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1970 {
1971         for (int c = 0; c < vd->vdev_children; c++)
1972                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1973 
1974         if (vd->vdev_ops->vdev_op_leaf)
1975                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1976 }
1977 
1978 /*
1979  * DTLs.
1980  *
1981  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1982  * the vdev has less than perfect replication.  There are four kinds of DTL:
1983  *
1984  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1985  *
1986  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1987  *
1988  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1989  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1990  *      txgs that was scrubbed.
1991  *
1992  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1993  *      persistent errors or just some device being offline.
1994  *      Unlike the other three, the DTL_OUTAGE map is not generally
1995  *      maintained; it's only computed when needed, typically to
1996  *      determine whether a device can be detached.
1997  *
1998  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1999  * either has the data or it doesn't.
2000  *
2001  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2002  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2003  * if any child is less than fully replicated, then so is its parent.
2004  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2005  * comprising only those txgs which appear in 'maxfaults' or more children;
2006  * those are the txgs we don't have enough replication to read.  For example,
2007  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2008  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2009  * two child DTL_MISSING maps.
2010  *
2011  * It should be clear from the above that to compute the DTLs and outage maps
2012  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2013  * Therefore, that is all we keep on disk.  When loading the pool, or after
2014  * a configuration change, we generate all other DTLs from first principles.
2015  */
2016 void
2017 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2018 {
2019         range_tree_t *rt = vd->vdev_dtl[t];
2020 
2021         ASSERT(t < DTL_TYPES);
2022         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2023         ASSERT(spa_writeable(vd->vdev_spa));
2024 
2025         mutex_enter(&vd->vdev_dtl_lock);
2026         if (!range_tree_contains(rt, txg, size))
2027                 range_tree_add(rt, txg, size);
2028         mutex_exit(&vd->vdev_dtl_lock);
2029 }
2030 
2031 boolean_t
2032 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2033 {
2034         range_tree_t *rt = vd->vdev_dtl[t];
2035         boolean_t dirty = B_FALSE;
2036 
2037         ASSERT(t < DTL_TYPES);
2038         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2039 
2040         /*
2041          * While we are loading the pool, the DTLs have not been loaded yet.
2042          * Ignore the DTLs and try all devices.  This avoids a recursive
2043          * mutex enter on the vdev_dtl_lock, and also makes us try hard
2044          * when loading the pool (relying on the checksum to ensure that
2045          * we get the right data -- note that we while loading, we are
2046          * only reading the MOS, which is always checksummed).
2047          */
2048         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2049                 return (B_FALSE);
2050 
2051         mutex_enter(&vd->vdev_dtl_lock);
2052         if (range_tree_space(rt) != 0)
2053                 dirty = range_tree_contains(rt, txg, size);
2054         mutex_exit(&vd->vdev_dtl_lock);
2055 
2056         return (dirty);
2057 }
2058 
2059 boolean_t
2060 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2061 {
2062         range_tree_t *rt = vd->vdev_dtl[t];
2063         boolean_t empty;
2064 
2065         mutex_enter(&vd->vdev_dtl_lock);
2066         empty = (range_tree_space(rt) == 0);
2067         mutex_exit(&vd->vdev_dtl_lock);
2068 
2069         return (empty);
2070 }
2071 
2072 /*
2073  * Returns the lowest txg in the DTL range.
2074  */
2075 static uint64_t
2076 vdev_dtl_min(vdev_t *vd)
2077 {
2078         range_seg_t *rs;
2079 
2080         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2081         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2082         ASSERT0(vd->vdev_children);
2083 
2084         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2085         return (rs->rs_start - 1);
2086 }
2087 
2088 /*
2089  * Returns the highest txg in the DTL.
2090  */
2091 static uint64_t
2092 vdev_dtl_max(vdev_t *vd)
2093 {
2094         range_seg_t *rs;
2095 
2096         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2097         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2098         ASSERT0(vd->vdev_children);
2099 
2100         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2101         return (rs->rs_end);
2102 }
2103 
2104 /*
2105  * Determine if a resilvering vdev should remove any DTL entries from
2106  * its range. If the vdev was resilvering for the entire duration of the
2107  * scan then it should excise that range from its DTLs. Otherwise, this
2108  * vdev is considered partially resilvered and should leave its DTL
2109  * entries intact. The comment in vdev_dtl_reassess() describes how we
2110  * excise the DTLs.
2111  */
2112 static boolean_t
2113 vdev_dtl_should_excise(vdev_t *vd)
2114 {
2115         spa_t *spa = vd->vdev_spa;
2116         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2117 
2118         ASSERT0(scn->scn_phys.scn_errors);
2119         ASSERT0(vd->vdev_children);
2120 
2121         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2122                 return (B_FALSE);
2123 
2124         if (vd->vdev_resilver_txg == 0 ||
2125             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
2126                 return (B_TRUE);
2127 
2128         /*
2129          * When a resilver is initiated the scan will assign the scn_max_txg
2130          * value to the highest txg value that exists in all DTLs. If this
2131          * device's max DTL is not part of this scan (i.e. it is not in
2132          * the range (scn_min_txg, scn_max_txg] then it is not eligible
2133          * for excision.
2134          */
2135         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2136                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2137                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2138                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2139                 return (B_TRUE);
2140         }
2141         return (B_FALSE);
2142 }
2143 
2144 /*
2145  * Reassess DTLs after a config change or scrub completion.
2146  */
2147 void
2148 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2149 {
2150         spa_t *spa = vd->vdev_spa;
2151         avl_tree_t reftree;
2152         int minref;
2153 
2154         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2155 
2156         for (int c = 0; c < vd->vdev_children; c++)
2157                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2158                     scrub_txg, scrub_done);
2159 
2160         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2161                 return;
2162 
2163         if (vd->vdev_ops->vdev_op_leaf) {
2164                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2165 
2166                 mutex_enter(&vd->vdev_dtl_lock);
2167 
2168                 /*
2169                  * If we've completed a scan cleanly then determine
2170                  * if this vdev should remove any DTLs. We only want to
2171                  * excise regions on vdevs that were available during
2172                  * the entire duration of this scan.
2173                  */
2174                 if (scrub_txg != 0 &&
2175                     (spa->spa_scrub_started ||
2176                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2177                     vdev_dtl_should_excise(vd)) {
2178                         /*
2179                          * We completed a scrub up to scrub_txg.  If we
2180                          * did it without rebooting, then the scrub dtl
2181                          * will be valid, so excise the old region and
2182                          * fold in the scrub dtl.  Otherwise, leave the
2183                          * dtl as-is if there was an error.
2184                          *
2185                          * There's little trick here: to excise the beginning
2186                          * of the DTL_MISSING map, we put it into a reference
2187                          * tree and then add a segment with refcnt -1 that
2188                          * covers the range [0, scrub_txg).  This means
2189                          * that each txg in that range has refcnt -1 or 0.
2190                          * We then add DTL_SCRUB with a refcnt of 2, so that
2191                          * entries in the range [0, scrub_txg) will have a
2192                          * positive refcnt -- either 1 or 2.  We then convert
2193                          * the reference tree into the new DTL_MISSING map.
2194                          */
2195                         space_reftree_create(&reftree);
2196                         space_reftree_add_map(&reftree,
2197                             vd->vdev_dtl[DTL_MISSING], 1);
2198                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2199                         space_reftree_add_map(&reftree,
2200                             vd->vdev_dtl[DTL_SCRUB], 2);
2201                         space_reftree_generate_map(&reftree,
2202                             vd->vdev_dtl[DTL_MISSING], 1);
2203                         space_reftree_destroy(&reftree);
2204                 }
2205                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2206                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2207                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2208                 if (scrub_done)
2209                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2210                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2211                 if (!vdev_readable(vd))
2212                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2213                 else
2214                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2215                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2216 
2217                 /*
2218                  * If the vdev was resilvering and no longer has any
2219                  * DTLs then reset its resilvering flag.
2220                  */
2221                 if (vd->vdev_resilver_txg != 0 &&
2222                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2223                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
2224                         vd->vdev_resilver_txg = 0;
2225 
2226                 mutex_exit(&vd->vdev_dtl_lock);
2227 
2228                 if (txg != 0)
2229                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2230                 return;
2231         }
2232 
2233         mutex_enter(&vd->vdev_dtl_lock);
2234         for (int t = 0; t < DTL_TYPES; t++) {
2235                 /* account for child's outage in parent's missing map */
2236                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2237                 if (t == DTL_SCRUB)
2238                         continue;                       /* leaf vdevs only */
2239                 if (t == DTL_PARTIAL)
2240                         minref = 1;                     /* i.e. non-zero */
2241                 else if (vd->vdev_nparity != 0)
2242                         minref = vd->vdev_nparity + 1;       /* RAID-Z */
2243                 else
2244                         minref = vd->vdev_children;  /* any kind of mirror */
2245                 space_reftree_create(&reftree);
2246                 for (int c = 0; c < vd->vdev_children; c++) {
2247                         vdev_t *cvd = vd->vdev_child[c];
2248                         mutex_enter(&cvd->vdev_dtl_lock);
2249                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2250                         mutex_exit(&cvd->vdev_dtl_lock);
2251                 }
2252                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2253                 space_reftree_destroy(&reftree);
2254         }
2255         mutex_exit(&vd->vdev_dtl_lock);
2256 }
2257 
2258 int
2259 vdev_dtl_load(vdev_t *vd)
2260 {
2261         spa_t *spa = vd->vdev_spa;
2262         objset_t *mos = spa->spa_meta_objset;
2263         int error = 0;
2264 
2265         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2266                 ASSERT(vdev_is_concrete(vd));
2267 
2268                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2269                     vd->vdev_dtl_object, 0, -1ULL, 0);
2270                 if (error)
2271                         return (error);
2272                 ASSERT(vd->vdev_dtl_sm != NULL);
2273 
2274                 mutex_enter(&vd->vdev_dtl_lock);
2275 
2276                 /*
2277                  * Now that we've opened the space_map we need to update
2278                  * the in-core DTL.
2279                  */
2280                 space_map_update(vd->vdev_dtl_sm);
2281 
2282                 error = space_map_load(vd->vdev_dtl_sm,
2283                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2284                 mutex_exit(&vd->vdev_dtl_lock);
2285 
2286                 return (error);
2287         }
2288 
2289         for (int c = 0; c < vd->vdev_children; c++) {
2290                 error = vdev_dtl_load(vd->vdev_child[c]);
2291                 if (error != 0)
2292                         break;
2293         }
2294 
2295         return (error);
2296 }
2297 
2298 void
2299 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2300 {
2301         spa_t *spa = vd->vdev_spa;
2302 
2303         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2304         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2305             zapobj, tx));
2306 }
2307 
2308 uint64_t
2309 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2310 {
2311         spa_t *spa = vd->vdev_spa;
2312         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2313             DMU_OT_NONE, 0, tx);
2314 
2315         ASSERT(zap != 0);
2316         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2317             zap, tx));
2318 
2319         return (zap);
2320 }
2321 
2322 void
2323 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2324 {
2325         if (vd->vdev_ops != &vdev_hole_ops &&
2326             vd->vdev_ops != &vdev_missing_ops &&
2327             vd->vdev_ops != &vdev_root_ops &&
2328             !vd->vdev_top->vdev_removing) {
2329                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2330                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2331                 }
2332                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2333                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2334                 }
2335         }
2336         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2337                 vdev_construct_zaps(vd->vdev_child[i], tx);
2338         }
2339 }
2340 
2341 void
2342 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2343 {
2344         spa_t *spa = vd->vdev_spa;
2345         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2346         objset_t *mos = spa->spa_meta_objset;
2347         range_tree_t *rtsync;
2348         dmu_tx_t *tx;
2349         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2350 
2351         ASSERT(vdev_is_concrete(vd));
2352         ASSERT(vd->vdev_ops->vdev_op_leaf);
2353 
2354         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2355 
2356         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2357                 mutex_enter(&vd->vdev_dtl_lock);
2358                 space_map_free(vd->vdev_dtl_sm, tx);
2359                 space_map_close(vd->vdev_dtl_sm);
2360                 vd->vdev_dtl_sm = NULL;
2361                 mutex_exit(&vd->vdev_dtl_lock);
2362 
2363                 /*
2364                  * We only destroy the leaf ZAP for detached leaves or for
2365                  * removed log devices. Removed data devices handle leaf ZAP
2366                  * cleanup later, once cancellation is no longer possible.
2367                  */
2368                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2369                     vd->vdev_top->vdev_islog)) {
2370                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2371                         vd->vdev_leaf_zap = 0;
2372                 }
2373 
2374                 dmu_tx_commit(tx);
2375                 return;
2376         }
2377 
2378         if (vd->vdev_dtl_sm == NULL) {
2379                 uint64_t new_object;
2380 
2381                 new_object = space_map_alloc(mos, tx);
2382                 VERIFY3U(new_object, !=, 0);
2383 
2384                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2385                     0, -1ULL, 0));
2386                 ASSERT(vd->vdev_dtl_sm != NULL);
2387         }
2388 
2389         rtsync = range_tree_create(NULL, NULL);
2390 
2391         mutex_enter(&vd->vdev_dtl_lock);
2392         range_tree_walk(rt, range_tree_add, rtsync);
2393         mutex_exit(&vd->vdev_dtl_lock);
2394 
2395         space_map_truncate(vd->vdev_dtl_sm, tx);
2396         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2397         range_tree_vacate(rtsync, NULL, NULL);
2398 
2399         range_tree_destroy(rtsync);
2400 
2401         /*
2402          * If the object for the space map has changed then dirty
2403          * the top level so that we update the config.
2404          */
2405         if (object != space_map_object(vd->vdev_dtl_sm)) {
2406                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2407                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
2408                     (u_longlong_t)object,
2409                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2410                 vdev_config_dirty(vd->vdev_top);
2411         }
2412 
2413         dmu_tx_commit(tx);
2414 
2415         mutex_enter(&vd->vdev_dtl_lock);
2416         space_map_update(vd->vdev_dtl_sm);
2417         mutex_exit(&vd->vdev_dtl_lock);
2418 }
2419 
2420 /*
2421  * Determine whether the specified vdev can be offlined/detached/removed
2422  * without losing data.
2423  */
2424 boolean_t
2425 vdev_dtl_required(vdev_t *vd)
2426 {
2427         spa_t *spa = vd->vdev_spa;
2428         vdev_t *tvd = vd->vdev_top;
2429         uint8_t cant_read = vd->vdev_cant_read;
2430         boolean_t required;
2431 
2432         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2433 
2434         if (vd == spa->spa_root_vdev || vd == tvd)
2435                 return (B_TRUE);
2436 
2437         /*
2438          * Temporarily mark the device as unreadable, and then determine
2439          * whether this results in any DTL outages in the top-level vdev.
2440          * If not, we can safely offline/detach/remove the device.
2441          */
2442         vd->vdev_cant_read = B_TRUE;
2443         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2444         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2445         vd->vdev_cant_read = cant_read;
2446         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2447 
2448         if (!required && zio_injection_enabled)
2449                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2450 
2451         return (required);
2452 }
2453 
2454 /*
2455  * Determine if resilver is needed, and if so the txg range.
2456  */
2457 boolean_t
2458 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2459 {
2460         boolean_t needed = B_FALSE;
2461         uint64_t thismin = UINT64_MAX;
2462         uint64_t thismax = 0;
2463 
2464         if (vd->vdev_children == 0) {
2465                 mutex_enter(&vd->vdev_dtl_lock);
2466                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2467                     vdev_writeable(vd)) {
2468 
2469                         thismin = vdev_dtl_min(vd);
2470                         thismax = vdev_dtl_max(vd);
2471                         needed = B_TRUE;
2472                 }
2473                 mutex_exit(&vd->vdev_dtl_lock);
2474         } else {
2475                 for (int c = 0; c < vd->vdev_children; c++) {
2476                         vdev_t *cvd = vd->vdev_child[c];
2477                         uint64_t cmin, cmax;
2478 
2479                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2480                                 thismin = MIN(thismin, cmin);
2481                                 thismax = MAX(thismax, cmax);
2482                                 needed = B_TRUE;
2483                         }
2484                 }
2485         }
2486 
2487         if (needed && minp) {
2488                 *minp = thismin;
2489                 *maxp = thismax;
2490         }
2491         return (needed);
2492 }
2493 
2494 int
2495 vdev_load(vdev_t *vd)
2496 {
2497         int error = 0;
2498         /*
2499          * Recursively load all children.
2500          */
2501         for (int c = 0; c < vd->vdev_children; c++) {
2502                 error = vdev_load(vd->vdev_child[c]);
2503                 if (error != 0) {
2504                         return (error);
2505                 }
2506         }
2507 
2508         vdev_set_deflate_ratio(vd);
2509 
2510         /*
2511          * If this is a top-level vdev, initialize its metaslabs.
2512          */
2513         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2514                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2515                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2516                             VDEV_AUX_CORRUPT_DATA);
2517                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2518                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2519                             (u_longlong_t)vd->vdev_asize);
2520                         return (SET_ERROR(ENXIO));
2521                 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2522                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2523                             "[error=%d]", error);
2524                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2525                             VDEV_AUX_CORRUPT_DATA);
2526                         return (error);
2527                 }
2528         }
2529 
2530         /*
2531          * If this is a leaf vdev, load its DTL.
2532          */
2533         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2534                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2535                     VDEV_AUX_CORRUPT_DATA);
2536                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2537                     "[error=%d]", error);
2538                 return (error);
2539         }
2540 
2541         uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2542         if (obsolete_sm_object != 0) {
2543                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2544                 ASSERT(vd->vdev_asize != 0);
2545                 ASSERT(vd->vdev_obsolete_sm == NULL);
2546 
2547                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2548                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2549                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2550                             VDEV_AUX_CORRUPT_DATA);
2551                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2552                             "obsolete spacemap (obj %llu) [error=%d]",
2553                             (u_longlong_t)obsolete_sm_object, error);
2554                         return (error);
2555                 }
2556                 space_map_update(vd->vdev_obsolete_sm);
2557         }
2558 
2559         return (0);
2560 }
2561 
2562 /*
2563  * The special vdev case is used for hot spares and l2cache devices.  Its
2564  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2565  * we make sure that we can open the underlying device, then try to read the
2566  * label, and make sure that the label is sane and that it hasn't been
2567  * repurposed to another pool.
2568  */
2569 int
2570 vdev_validate_aux(vdev_t *vd)
2571 {
2572         nvlist_t *label;
2573         uint64_t guid, version;
2574         uint64_t state;
2575 
2576         if (!vdev_readable(vd))
2577                 return (0);
2578 
2579         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2580                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2581                     VDEV_AUX_CORRUPT_DATA);
2582                 return (-1);
2583         }
2584 
2585         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2586             !SPA_VERSION_IS_SUPPORTED(version) ||
2587             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2588             guid != vd->vdev_guid ||
2589             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2590                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2591                     VDEV_AUX_CORRUPT_DATA);
2592                 nvlist_free(label);
2593                 return (-1);
2594         }
2595 
2596         /*
2597          * We don't actually check the pool state here.  If it's in fact in
2598          * use by another pool, we update this fact on the fly when requested.
2599          */
2600         nvlist_free(label);
2601         return (0);
2602 }
2603 
2604 /*
2605  * Free the objects used to store this vdev's spacemaps, and the array
2606  * that points to them.
2607  */
2608 void
2609 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2610 {
2611         if (vd->vdev_ms_array == 0)
2612                 return;
2613 
2614         objset_t *mos = vd->vdev_spa->spa_meta_objset;
2615         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2616         size_t array_bytes = array_count * sizeof (uint64_t);
2617         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2618         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2619             array_bytes, smobj_array, 0));
2620 
2621         for (uint64_t i = 0; i < array_count; i++) {
2622                 uint64_t smobj = smobj_array[i];
2623                 if (smobj == 0)
2624                         continue;
2625 
2626                 space_map_free_obj(mos, smobj, tx);
2627         }
2628 
2629         kmem_free(smobj_array, array_bytes);
2630         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2631         vd->vdev_ms_array = 0;
2632 }
2633 
2634 static void
2635 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2636 {
2637         spa_t *spa = vd->vdev_spa;
2638         dmu_tx_t *tx;
2639 
2640         ASSERT(vd == vd->vdev_top);
2641         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2642 
2643         if (vd->vdev_ms != NULL) {
2644                 metaslab_group_t *mg = vd->vdev_mg;
2645 
2646                 metaslab_group_histogram_verify(mg);
2647                 metaslab_class_histogram_verify(mg->mg_class);
2648 
2649                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2650                         metaslab_t *msp = vd->vdev_ms[m];
2651 
2652                         if (msp == NULL || msp->ms_sm == NULL)
2653                                 continue;
2654 
2655                         mutex_enter(&msp->ms_lock);
2656                         /*
2657                          * If the metaslab was not loaded when the vdev
2658                          * was removed then the histogram accounting may
2659                          * not be accurate. Update the histogram information
2660                          * here so that we ensure that the metaslab group
2661                          * and metaslab class are up-to-date.
2662                          */
2663                         metaslab_group_histogram_remove(mg, msp);
2664 
2665                         VERIFY0(space_map_allocated(msp->ms_sm));
2666                         space_map_close(msp->ms_sm);
2667                         msp->ms_sm = NULL;
2668                         mutex_exit(&msp->ms_lock);
2669                 }
2670 
2671                 metaslab_group_histogram_verify(mg);
2672                 metaslab_class_histogram_verify(mg->mg_class);
2673                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2674                         ASSERT0(mg->mg_histogram[i]);
2675         }
2676 
2677         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2678         vdev_destroy_spacemaps(vd, tx);
2679 
2680         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2681                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2682                 vd->vdev_top_zap = 0;
2683         }
2684         dmu_tx_commit(tx);
2685 }
2686 
2687 void
2688 vdev_sync_done(vdev_t *vd, uint64_t txg)
2689 {
2690         metaslab_t *msp;
2691         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2692 
2693         ASSERT(vdev_is_concrete(vd));
2694 
2695         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2696                 metaslab_sync_done(msp, txg);
2697 
2698         if (reassess)
2699                 metaslab_sync_reassess(vd->vdev_mg);
2700 }
2701 
2702 void
2703 vdev_sync(vdev_t *vd, uint64_t txg)
2704 {
2705         spa_t *spa = vd->vdev_spa;
2706         vdev_t *lvd;
2707         metaslab_t *msp;
2708         dmu_tx_t *tx;
2709 
2710         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2711                 dmu_tx_t *tx;
2712 
2713                 ASSERT(vd->vdev_removing ||
2714                     vd->vdev_ops == &vdev_indirect_ops);
2715 
2716                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2717                 vdev_indirect_sync_obsolete(vd, tx);
2718                 dmu_tx_commit(tx);
2719 
2720                 /*
2721                  * If the vdev is indirect, it can't have dirty
2722                  * metaslabs or DTLs.
2723                  */
2724                 if (vd->vdev_ops == &vdev_indirect_ops) {
2725                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2726                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2727                         return;
2728                 }
2729         }
2730 
2731         ASSERT(vdev_is_concrete(vd));
2732 
2733         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2734             !vd->vdev_removing) {
2735                 ASSERT(vd == vd->vdev_top);
2736                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2737                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2738                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2739                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2740                 ASSERT(vd->vdev_ms_array != 0);
2741                 vdev_config_dirty(vd);
2742                 dmu_tx_commit(tx);
2743         }
2744 
2745         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2746                 metaslab_sync(msp, txg);
2747                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2748         }
2749 
2750         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2751                 vdev_dtl_sync(lvd, txg);
2752 
2753         /*
2754          * Remove the metadata associated with this vdev once it's empty.
2755          * Note that this is typically used for log/cache device removal;
2756          * we don't empty toplevel vdevs when removing them.  But if
2757          * a toplevel happens to be emptied, this is not harmful.
2758          */
2759         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2760                 vdev_remove_empty(vd, txg);
2761         }
2762 
2763         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2764 }
2765 
2766 uint64_t
2767 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2768 {
2769         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2770 }
2771 
2772 /*
2773  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2774  * not be opened, and no I/O is attempted.
2775  */
2776 int
2777 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2778 {
2779         vdev_t *vd, *tvd;
2780 
2781         spa_vdev_state_enter(spa, SCL_NONE);
2782 
2783         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2784                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2785 
2786         if (!vd->vdev_ops->vdev_op_leaf)
2787                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2788 
2789         tvd = vd->vdev_top;
2790 
2791         /*
2792          * We don't directly use the aux state here, but if we do a
2793          * vdev_reopen(), we need this value to be present to remember why we
2794          * were faulted.
2795          */
2796         vd->vdev_label_aux = aux;
2797 
2798         /*
2799          * Faulted state takes precedence over degraded.
2800          */
2801         vd->vdev_delayed_close = B_FALSE;
2802         vd->vdev_faulted = 1ULL;
2803         vd->vdev_degraded = 0ULL;
2804         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2805 
2806         /*
2807          * If this device has the only valid copy of the data, then
2808          * back off and simply mark the vdev as degraded instead.
2809          */
2810         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2811                 vd->vdev_degraded = 1ULL;
2812                 vd->vdev_faulted = 0ULL;
2813 
2814                 /*
2815                  * If we reopen the device and it's not dead, only then do we
2816                  * mark it degraded.
2817                  */
2818                 vdev_reopen(tvd);
2819 
2820                 if (vdev_readable(vd))
2821                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2822         }
2823 
2824         return (spa_vdev_state_exit(spa, vd, 0));
2825 }
2826 
2827 /*
2828  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2829  * user that something is wrong.  The vdev continues to operate as normal as far
2830  * as I/O is concerned.
2831  */
2832 int
2833 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2834 {
2835         vdev_t *vd;
2836 
2837         spa_vdev_state_enter(spa, SCL_NONE);
2838 
2839         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2840                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2841 
2842         if (!vd->vdev_ops->vdev_op_leaf)
2843                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2844 
2845         /*
2846          * If the vdev is already faulted, then don't do anything.
2847          */
2848         if (vd->vdev_faulted || vd->vdev_degraded)
2849                 return (spa_vdev_state_exit(spa, NULL, 0));
2850 
2851         vd->vdev_degraded = 1ULL;
2852         if (!vdev_is_dead(vd))
2853                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2854                     aux);
2855 
2856         return (spa_vdev_state_exit(spa, vd, 0));
2857 }
2858 
2859 /*
2860  * Online the given vdev.
2861  *
2862  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2863  * spare device should be detached when the device finishes resilvering.
2864  * Second, the online should be treated like a 'test' online case, so no FMA
2865  * events are generated if the device fails to open.
2866  */
2867 int
2868 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2869 {
2870         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2871         boolean_t wasoffline;
2872         vdev_state_t oldstate;
2873 
2874         spa_vdev_state_enter(spa, SCL_NONE);
2875 
2876         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2877                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2878 
2879         if (!vd->vdev_ops->vdev_op_leaf)
2880                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2881 
2882         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2883         oldstate = vd->vdev_state;
2884 
2885         tvd = vd->vdev_top;
2886         vd->vdev_offline = B_FALSE;
2887         vd->vdev_tmpoffline = B_FALSE;
2888         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2889         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2890 
2891         /* XXX - L2ARC 1.0 does not support expansion */
2892         if (!vd->vdev_aux) {
2893                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2894                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2895         }
2896 
2897         vdev_reopen(tvd);
2898         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2899 
2900         if (!vd->vdev_aux) {
2901                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2902                         pvd->vdev_expanding = B_FALSE;
2903         }
2904 
2905         if (newstate)
2906                 *newstate = vd->vdev_state;
2907         if ((flags & ZFS_ONLINE_UNSPARE) &&
2908             !vdev_is_dead(vd) && vd->vdev_parent &&
2909             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2910             vd->vdev_parent->vdev_child[0] == vd)
2911                 vd->vdev_unspare = B_TRUE;
2912 
2913         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2914 
2915                 /* XXX - L2ARC 1.0 does not support expansion */
2916                 if (vd->vdev_aux)
2917                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2918                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2919         }
2920 
2921         if (wasoffline ||
2922             (oldstate < VDEV_STATE_DEGRADED &&
2923             vd->vdev_state >= VDEV_STATE_DEGRADED))
2924                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2925 
2926         return (spa_vdev_state_exit(spa, vd, 0));
2927 }
2928 
2929 static int
2930 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2931 {
2932         vdev_t *vd, *tvd;
2933         int error = 0;
2934         uint64_t generation;
2935         metaslab_group_t *mg;
2936 
2937 top:
2938         spa_vdev_state_enter(spa, SCL_ALLOC);
2939 
2940         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2941                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2942 
2943         if (!vd->vdev_ops->vdev_op_leaf)
2944                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2945 
2946         tvd = vd->vdev_top;
2947         mg = tvd->vdev_mg;
2948         generation = spa->spa_config_generation + 1;
2949 
2950         /*
2951          * If the device isn't already offline, try to offline it.
2952          */
2953         if (!vd->vdev_offline) {
2954                 /*
2955                  * If this device has the only valid copy of some data,
2956                  * don't allow it to be offlined. Log devices are always
2957                  * expendable.
2958                  */
2959                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2960                     vdev_dtl_required(vd))
2961                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2962 
2963                 /*
2964                  * If the top-level is a slog and it has had allocations
2965                  * then proceed.  We check that the vdev's metaslab group
2966                  * is not NULL since it's possible that we may have just
2967                  * added this vdev but not yet initialized its metaslabs.
2968                  */
2969                 if (tvd->vdev_islog && mg != NULL) {
2970                         /*
2971                          * Prevent any future allocations.
2972                          */
2973                         metaslab_group_passivate(mg);
2974                         (void) spa_vdev_state_exit(spa, vd, 0);
2975 
2976                         error = spa_reset_logs(spa);
2977 
2978                         spa_vdev_state_enter(spa, SCL_ALLOC);
2979 
2980                         /*
2981                          * Check to see if the config has changed.
2982                          */
2983                         if (error || generation != spa->spa_config_generation) {
2984                                 metaslab_group_activate(mg);
2985                                 if (error)
2986                                         return (spa_vdev_state_exit(spa,
2987                                             vd, error));
2988                                 (void) spa_vdev_state_exit(spa, vd, 0);
2989                                 goto top;
2990                         }
2991                         ASSERT0(tvd->vdev_stat.vs_alloc);
2992                 }
2993 
2994                 /*
2995                  * Offline this device and reopen its top-level vdev.
2996                  * If the top-level vdev is a log device then just offline
2997                  * it. Otherwise, if this action results in the top-level
2998                  * vdev becoming unusable, undo it and fail the request.
2999                  */
3000                 vd->vdev_offline = B_TRUE;
3001                 vdev_reopen(tvd);
3002 
3003                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3004                     vdev_is_dead(tvd)) {
3005                         vd->vdev_offline = B_FALSE;
3006                         vdev_reopen(tvd);
3007                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3008                 }
3009 
3010                 /*
3011                  * Add the device back into the metaslab rotor so that
3012                  * once we online the device it's open for business.
3013                  */
3014                 if (tvd->vdev_islog && mg != NULL)
3015                         metaslab_group_activate(mg);
3016         }
3017 
3018         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3019 
3020         return (spa_vdev_state_exit(spa, vd, 0));
3021 }
3022 
3023 int
3024 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3025 {
3026         int error;
3027 
3028         mutex_enter(&spa->spa_vdev_top_lock);
3029         error = vdev_offline_locked(spa, guid, flags);
3030         mutex_exit(&spa->spa_vdev_top_lock);
3031 
3032         return (error);
3033 }
3034 
3035 /*
3036  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3037  * vdev_offline(), we assume the spa config is locked.  We also clear all
3038  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3039  */
3040 void
3041 vdev_clear(spa_t *spa, vdev_t *vd)
3042 {
3043         vdev_t *rvd = spa->spa_root_vdev;
3044 
3045         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3046 
3047         if (vd == NULL)
3048                 vd = rvd;
3049 
3050         vd->vdev_stat.vs_read_errors = 0;
3051         vd->vdev_stat.vs_write_errors = 0;
3052         vd->vdev_stat.vs_checksum_errors = 0;
3053 
3054         for (int c = 0; c < vd->vdev_children; c++)
3055                 vdev_clear(spa, vd->vdev_child[c]);
3056 
3057         /*
3058          * It makes no sense to "clear" an indirect vdev.
3059          */
3060         if (!vdev_is_concrete(vd))
3061                 return;
3062 
3063         /*
3064          * If we're in the FAULTED state or have experienced failed I/O, then
3065          * clear the persistent state and attempt to reopen the device.  We
3066          * also mark the vdev config dirty, so that the new faulted state is
3067          * written out to disk.
3068          */
3069         if (vd->vdev_faulted || vd->vdev_degraded ||
3070             !vdev_readable(vd) || !vdev_writeable(vd)) {
3071 
3072                 /*
3073                  * When reopening in reponse to a clear event, it may be due to
3074                  * a fmadm repair request.  In this case, if the device is
3075                  * still broken, we want to still post the ereport again.
3076                  */
3077                 vd->vdev_forcefault = B_TRUE;
3078 
3079                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3080                 vd->vdev_cant_read = B_FALSE;
3081                 vd->vdev_cant_write = B_FALSE;
3082 
3083                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3084 
3085                 vd->vdev_forcefault = B_FALSE;
3086 
3087                 if (vd != rvd && vdev_writeable(vd->vdev_top))
3088                         vdev_state_dirty(vd->vdev_top);
3089 
3090                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3091                         spa_async_request(spa, SPA_ASYNC_RESILVER);
3092 
3093                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3094         }
3095 
3096         /*
3097          * When clearing a FMA-diagnosed fault, we always want to
3098          * unspare the device, as we assume that the original spare was
3099          * done in response to the FMA fault.
3100          */
3101         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3102             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3103             vd->vdev_parent->vdev_child[0] == vd)
3104                 vd->vdev_unspare = B_TRUE;
3105 }
3106 
3107 boolean_t
3108 vdev_is_dead(vdev_t *vd)
3109 {
3110         /*
3111          * Holes and missing devices are always considered "dead".
3112          * This simplifies the code since we don't have to check for
3113          * these types of devices in the various code paths.
3114          * Instead we rely on the fact that we skip over dead devices
3115          * before issuing I/O to them.
3116          */
3117         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3118             vd->vdev_ops == &vdev_hole_ops ||
3119             vd->vdev_ops == &vdev_missing_ops);
3120 }
3121 
3122 boolean_t
3123 vdev_readable(vdev_t *vd)
3124 {
3125         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3126 }
3127 
3128 boolean_t
3129 vdev_writeable(vdev_t *vd)
3130 {
3131         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3132             vdev_is_concrete(vd));
3133 }
3134 
3135 boolean_t
3136 vdev_allocatable(vdev_t *vd)
3137 {
3138         uint64_t state = vd->vdev_state;
3139 
3140         /*
3141          * We currently allow allocations from vdevs which may be in the
3142          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3143          * fails to reopen then we'll catch it later when we're holding
3144          * the proper locks.  Note that we have to get the vdev state
3145          * in a local variable because although it changes atomically,
3146          * we're asking two separate questions about it.
3147          */
3148         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3149             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3150             vd->vdev_mg->mg_initialized);
3151 }
3152 
3153 boolean_t
3154 vdev_accessible(vdev_t *vd, zio_t *zio)
3155 {
3156         ASSERT(zio->io_vd == vd);
3157 
3158         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3159                 return (B_FALSE);
3160 
3161         if (zio->io_type == ZIO_TYPE_READ)
3162                 return (!vd->vdev_cant_read);
3163 
3164         if (zio->io_type == ZIO_TYPE_WRITE)
3165                 return (!vd->vdev_cant_write);
3166 
3167         return (B_TRUE);
3168 }
3169 
3170 /*
3171  * Get statistics for the given vdev.
3172  */
3173 void
3174 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3175 {
3176         spa_t *spa = vd->vdev_spa;
3177         vdev_t *rvd = spa->spa_root_vdev;
3178         vdev_t *tvd = vd->vdev_top;
3179 
3180         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3181 
3182         mutex_enter(&vd->vdev_stat_lock);
3183         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3184         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3185         vs->vs_state = vd->vdev_state;
3186         vs->vs_rsize = vdev_get_min_asize(vd);
3187         if (vd->vdev_ops->vdev_op_leaf)
3188                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3189         /*
3190          * Report expandable space on top-level, non-auxillary devices only.
3191          * The expandable space is reported in terms of metaslab sized units
3192          * since that determines how much space the pool can expand.
3193          */
3194         if (vd->vdev_aux == NULL && tvd != NULL) {
3195                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3196                     spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3197         }
3198         if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3199             vdev_is_concrete(vd)) {
3200                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3201         }
3202 
3203         /*
3204          * If we're getting stats on the root vdev, aggregate the I/O counts
3205          * over all top-level vdevs (i.e. the direct children of the root).
3206          */
3207         if (vd == rvd) {
3208                 for (int c = 0; c < rvd->vdev_children; c++) {
3209                         vdev_t *cvd = rvd->vdev_child[c];
3210                         vdev_stat_t *cvs = &cvd->vdev_stat;
3211 
3212                         for (int t = 0; t < ZIO_TYPES; t++) {
3213                                 vs->vs_ops[t] += cvs->vs_ops[t];
3214                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3215                         }
3216                         cvs->vs_scan_removing = cvd->vdev_removing;
3217                 }
3218         }
3219         mutex_exit(&vd->vdev_stat_lock);
3220 }
3221 
3222 void
3223 vdev_clear_stats(vdev_t *vd)
3224 {
3225         mutex_enter(&vd->vdev_stat_lock);
3226         vd->vdev_stat.vs_space = 0;
3227         vd->vdev_stat.vs_dspace = 0;
3228         vd->vdev_stat.vs_alloc = 0;
3229         mutex_exit(&vd->vdev_stat_lock);
3230 }
3231 
3232 void
3233 vdev_scan_stat_init(vdev_t *vd)
3234 {
3235         vdev_stat_t *vs = &vd->vdev_stat;
3236 
3237         for (int c = 0; c < vd->vdev_children; c++)
3238                 vdev_scan_stat_init(vd->vdev_child[c]);
3239 
3240         mutex_enter(&vd->vdev_stat_lock);
3241         vs->vs_scan_processed = 0;
3242         mutex_exit(&vd->vdev_stat_lock);
3243 }
3244 
3245 void
3246 vdev_stat_update(zio_t *zio, uint64_t psize)
3247 {
3248         spa_t *spa = zio->io_spa;
3249         vdev_t *rvd = spa->spa_root_vdev;
3250         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3251         vdev_t *pvd;
3252         uint64_t txg = zio->io_txg;
3253         vdev_stat_t *vs = &vd->vdev_stat;
3254         zio_type_t type = zio->io_type;
3255         int flags = zio->io_flags;
3256 
3257         /*
3258          * If this i/o is a gang leader, it didn't do any actual work.
3259          */
3260         if (zio->io_gang_tree)
3261                 return;
3262 
3263         if (zio->io_error == 0) {
3264                 /*
3265                  * If this is a root i/o, don't count it -- we've already
3266                  * counted the top-level vdevs, and vdev_get_stats() will
3267                  * aggregate them when asked.  This reduces contention on
3268                  * the root vdev_stat_lock and implicitly handles blocks
3269                  * that compress away to holes, for which there is no i/o.
3270                  * (Holes never create vdev children, so all the counters
3271                  * remain zero, which is what we want.)
3272                  *
3273                  * Note: this only applies to successful i/o (io_error == 0)
3274                  * because unlike i/o counts, errors are not additive.
3275                  * When reading a ditto block, for example, failure of
3276                  * one top-level vdev does not imply a root-level error.
3277                  */
3278                 if (vd == rvd)
3279                         return;
3280 
3281                 ASSERT(vd == zio->io_vd);
3282 
3283                 if (flags & ZIO_FLAG_IO_BYPASS)
3284                         return;
3285 
3286                 mutex_enter(&vd->vdev_stat_lock);
3287 
3288                 if (flags & ZIO_FLAG_IO_REPAIR) {
3289                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3290                                 dsl_scan_phys_t *scn_phys =
3291                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3292                                 uint64_t *processed = &scn_phys->scn_processed;
3293 
3294                                 /* XXX cleanup? */
3295                                 if (vd->vdev_ops->vdev_op_leaf)
3296                                         atomic_add_64(processed, psize);
3297                                 vs->vs_scan_processed += psize;
3298                         }
3299 
3300                         if (flags & ZIO_FLAG_SELF_HEAL)
3301                                 vs->vs_self_healed += psize;
3302                 }
3303 
3304                 vs->vs_ops[type]++;
3305                 vs->vs_bytes[type] += psize;
3306 
3307                 mutex_exit(&vd->vdev_stat_lock);
3308                 return;
3309         }
3310 
3311         if (flags & ZIO_FLAG_SPECULATIVE)
3312                 return;
3313 
3314         /*
3315          * If this is an I/O error that is going to be retried, then ignore the
3316          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3317          * hard errors, when in reality they can happen for any number of
3318          * innocuous reasons (bus resets, MPxIO link failure, etc).
3319          */
3320         if (zio->io_error == EIO &&
3321             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3322                 return;
3323 
3324         /*
3325          * Intent logs writes won't propagate their error to the root
3326          * I/O so don't mark these types of failures as pool-level
3327          * errors.
3328          */
3329         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3330                 return;
3331 
3332         mutex_enter(&vd->vdev_stat_lock);
3333         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3334                 if (zio->io_error == ECKSUM)
3335                         vs->vs_checksum_errors++;
3336                 else
3337                         vs->vs_read_errors++;
3338         }
3339         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3340                 vs->vs_write_errors++;
3341         mutex_exit(&vd->vdev_stat_lock);
3342 
3343         if (spa->spa_load_state == SPA_LOAD_NONE &&
3344             type == ZIO_TYPE_WRITE && txg != 0 &&
3345             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3346             (flags & ZIO_FLAG_SCAN_THREAD) ||
3347             spa->spa_claiming)) {
3348                 /*
3349                  * This is either a normal write (not a repair), or it's
3350                  * a repair induced by the scrub thread, or it's a repair
3351                  * made by zil_claim() during spa_load() in the first txg.
3352                  * In the normal case, we commit the DTL change in the same
3353                  * txg as the block was born.  In the scrub-induced repair
3354                  * case, we know that scrubs run in first-pass syncing context,
3355                  * so we commit the DTL change in spa_syncing_txg(spa).
3356                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3357                  *
3358                  * We currently do not make DTL entries for failed spontaneous
3359                  * self-healing writes triggered by normal (non-scrubbing)
3360                  * reads, because we have no transactional context in which to
3361                  * do so -- and it's not clear that it'd be desirable anyway.
3362                  */
3363                 if (vd->vdev_ops->vdev_op_leaf) {
3364                         uint64_t commit_txg = txg;
3365                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3366                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3367                                 ASSERT(spa_sync_pass(spa) == 1);
3368                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3369                                 commit_txg = spa_syncing_txg(spa);
3370                         } else if (spa->spa_claiming) {
3371                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3372                                 commit_txg = spa_first_txg(spa);
3373                         }
3374                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3375                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3376                                 return;
3377                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3378                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3379                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3380                 }
3381                 if (vd != rvd)
3382                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3383         }
3384 }
3385 
3386 /*
3387  * Update the in-core space usage stats for this vdev, its metaslab class,
3388  * and the root vdev.
3389  */
3390 void
3391 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3392     int64_t space_delta)
3393 {
3394         int64_t dspace_delta = space_delta;
3395         spa_t *spa = vd->vdev_spa;
3396         vdev_t *rvd = spa->spa_root_vdev;
3397         metaslab_group_t *mg = vd->vdev_mg;
3398         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3399 
3400         ASSERT(vd == vd->vdev_top);
3401 
3402         /*
3403          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3404          * factor.  We must calculate this here and not at the root vdev
3405          * because the root vdev's psize-to-asize is simply the max of its
3406          * childrens', thus not accurate enough for us.
3407          */
3408         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3409         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3410         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3411             vd->vdev_deflate_ratio;
3412 
3413         mutex_enter(&vd->vdev_stat_lock);
3414         vd->vdev_stat.vs_alloc += alloc_delta;
3415         vd->vdev_stat.vs_space += space_delta;
3416         vd->vdev_stat.vs_dspace += dspace_delta;
3417         mutex_exit(&vd->vdev_stat_lock);
3418 
3419         if (mc == spa_normal_class(spa)) {
3420                 mutex_enter(&rvd->vdev_stat_lock);
3421                 rvd->vdev_stat.vs_alloc += alloc_delta;
3422                 rvd->vdev_stat.vs_space += space_delta;
3423                 rvd->vdev_stat.vs_dspace += dspace_delta;
3424                 mutex_exit(&rvd->vdev_stat_lock);
3425         }
3426 
3427         if (mc != NULL) {
3428                 ASSERT(rvd == vd->vdev_parent);
3429                 ASSERT(vd->vdev_ms_count != 0);
3430 
3431                 metaslab_class_space_update(mc,
3432                     alloc_delta, defer_delta, space_delta, dspace_delta);
3433         }
3434 }
3435 
3436 /*
3437  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3438  * so that it will be written out next time the vdev configuration is synced.
3439  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3440  */
3441 void
3442 vdev_config_dirty(vdev_t *vd)
3443 {
3444         spa_t *spa = vd->vdev_spa;
3445         vdev_t *rvd = spa->spa_root_vdev;
3446         int c;
3447 
3448         ASSERT(spa_writeable(spa));
3449 
3450         /*
3451          * If this is an aux vdev (as with l2cache and spare devices), then we
3452          * update the vdev config manually and set the sync flag.
3453          */
3454         if (vd->vdev_aux != NULL) {
3455                 spa_aux_vdev_t *sav = vd->vdev_aux;
3456                 nvlist_t **aux;
3457                 uint_t naux;
3458 
3459                 for (c = 0; c < sav->sav_count; c++) {
3460                         if (sav->sav_vdevs[c] == vd)
3461                                 break;
3462                 }
3463 
3464                 if (c == sav->sav_count) {
3465                         /*
3466                          * We're being removed.  There's nothing more to do.
3467                          */
3468                         ASSERT(sav->sav_sync == B_TRUE);
3469                         return;
3470                 }
3471 
3472                 sav->sav_sync = B_TRUE;
3473 
3474                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3475                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3476                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3477                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3478                 }
3479 
3480                 ASSERT(c < naux);
3481 
3482                 /*
3483                  * Setting the nvlist in the middle if the array is a little
3484                  * sketchy, but it will work.
3485                  */
3486                 nvlist_free(aux[c]);
3487                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3488 
3489                 return;
3490         }
3491 
3492         /*
3493          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3494          * must either hold SCL_CONFIG as writer, or must be the sync thread
3495          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3496          * so this is sufficient to ensure mutual exclusion.
3497          */
3498         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3499             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3500             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3501 
3502         if (vd == rvd) {
3503                 for (c = 0; c < rvd->vdev_children; c++)
3504                         vdev_config_dirty(rvd->vdev_child[c]);
3505         } else {
3506                 ASSERT(vd == vd->vdev_top);
3507 
3508                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3509                     vdev_is_concrete(vd)) {
3510                         list_insert_head(&spa->spa_config_dirty_list, vd);
3511                 }
3512         }
3513 }
3514 
3515 void
3516 vdev_config_clean(vdev_t *vd)
3517 {
3518         spa_t *spa = vd->vdev_spa;
3519 
3520         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3521             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3522             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3523 
3524         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3525         list_remove(&spa->spa_config_dirty_list, vd);
3526 }
3527 
3528 /*
3529  * Mark a top-level vdev's state as dirty, so that the next pass of
3530  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3531  * the state changes from larger config changes because they require
3532  * much less locking, and are often needed for administrative actions.
3533  */
3534 void
3535 vdev_state_dirty(vdev_t *vd)
3536 {
3537         spa_t *spa = vd->vdev_spa;
3538 
3539         ASSERT(spa_writeable(spa));
3540         ASSERT(vd == vd->vdev_top);
3541 
3542         /*
3543          * The state list is protected by the SCL_STATE lock.  The caller
3544          * must either hold SCL_STATE as writer, or must be the sync thread
3545          * (which holds SCL_STATE as reader).  There's only one sync thread,
3546          * so this is sufficient to ensure mutual exclusion.
3547          */
3548         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3549             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3550             spa_config_held(spa, SCL_STATE, RW_READER)));
3551 
3552         if (!list_link_active(&vd->vdev_state_dirty_node) &&
3553             vdev_is_concrete(vd))
3554                 list_insert_head(&spa->spa_state_dirty_list, vd);
3555 }
3556 
3557 void
3558 vdev_state_clean(vdev_t *vd)
3559 {
3560         spa_t *spa = vd->vdev_spa;
3561 
3562         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3563             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3564             spa_config_held(spa, SCL_STATE, RW_READER)));
3565 
3566         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3567         list_remove(&spa->spa_state_dirty_list, vd);
3568 }
3569 
3570 /*
3571  * Propagate vdev state up from children to parent.
3572  */
3573 void
3574 vdev_propagate_state(vdev_t *vd)
3575 {
3576         spa_t *spa = vd->vdev_spa;
3577         vdev_t *rvd = spa->spa_root_vdev;
3578         int degraded = 0, faulted = 0;
3579         int corrupted = 0;
3580         vdev_t *child;
3581 
3582         if (vd->vdev_children > 0) {
3583                 for (int c = 0; c < vd->vdev_children; c++) {
3584                         child = vd->vdev_child[c];
3585 
3586                         /*
3587                          * Don't factor holes or indirect vdevs into the
3588                          * decision.
3589                          */
3590                         if (!vdev_is_concrete(child))
3591                                 continue;
3592 
3593                         if (!vdev_readable(child) ||
3594                             (!vdev_writeable(child) && spa_writeable(spa))) {
3595                                 /*
3596                                  * Root special: if there is a top-level log
3597                                  * device, treat the root vdev as if it were
3598                                  * degraded.
3599                                  */
3600                                 if (child->vdev_islog && vd == rvd)
3601                                         degraded++;
3602                                 else
3603                                         faulted++;
3604                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3605                                 degraded++;
3606                         }
3607 
3608                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3609                                 corrupted++;
3610                 }
3611 
3612                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3613 
3614                 /*
3615                  * Root special: if there is a top-level vdev that cannot be
3616                  * opened due to corrupted metadata, then propagate the root
3617                  * vdev's aux state as 'corrupt' rather than 'insufficient
3618                  * replicas'.
3619                  */
3620                 if (corrupted && vd == rvd &&
3621                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3622                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3623                             VDEV_AUX_CORRUPT_DATA);
3624         }
3625 
3626         if (vd->vdev_parent)
3627                 vdev_propagate_state(vd->vdev_parent);
3628 }
3629 
3630 /*
3631  * Set a vdev's state.  If this is during an open, we don't update the parent
3632  * state, because we're in the process of opening children depth-first.
3633  * Otherwise, we propagate the change to the parent.
3634  *
3635  * If this routine places a device in a faulted state, an appropriate ereport is
3636  * generated.
3637  */
3638 void
3639 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3640 {
3641         uint64_t save_state;
3642         spa_t *spa = vd->vdev_spa;
3643 
3644         if (state == vd->vdev_state) {
3645                 vd->vdev_stat.vs_aux = aux;
3646                 return;
3647         }
3648 
3649         save_state = vd->vdev_state;
3650 
3651         vd->vdev_state = state;
3652         vd->vdev_stat.vs_aux = aux;
3653 
3654         /*
3655          * If we are setting the vdev state to anything but an open state, then
3656          * always close the underlying device unless the device has requested
3657          * a delayed close (i.e. we're about to remove or fault the device).
3658          * Otherwise, we keep accessible but invalid devices open forever.
3659          * We don't call vdev_close() itself, because that implies some extra
3660          * checks (offline, etc) that we don't want here.  This is limited to
3661          * leaf devices, because otherwise closing the device will affect other
3662          * children.
3663          */
3664         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3665             vd->vdev_ops->vdev_op_leaf)
3666                 vd->vdev_ops->vdev_op_close(vd);
3667 
3668         /*
3669          * If we have brought this vdev back into service, we need
3670          * to notify fmd so that it can gracefully repair any outstanding
3671          * cases due to a missing device.  We do this in all cases, even those
3672          * that probably don't correlate to a repaired fault.  This is sure to
3673          * catch all cases, and we let the zfs-retire agent sort it out.  If
3674          * this is a transient state it's OK, as the retire agent will
3675          * double-check the state of the vdev before repairing it.
3676          */
3677         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3678             vd->vdev_prevstate != state)
3679                 zfs_post_state_change(spa, vd);
3680 
3681         if (vd->vdev_removed &&
3682             state == VDEV_STATE_CANT_OPEN &&
3683             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3684                 /*
3685                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3686                  * device was previously marked removed and someone attempted to
3687                  * reopen it.  If this failed due to a nonexistent device, then
3688                  * keep the device in the REMOVED state.  We also let this be if
3689                  * it is one of our special test online cases, which is only
3690                  * attempting to online the device and shouldn't generate an FMA
3691                  * fault.
3692                  */
3693                 vd->vdev_state = VDEV_STATE_REMOVED;
3694                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3695         } else if (state == VDEV_STATE_REMOVED) {
3696                 vd->vdev_removed = B_TRUE;
3697         } else if (state == VDEV_STATE_CANT_OPEN) {
3698                 /*
3699                  * If we fail to open a vdev during an import or recovery, we
3700                  * mark it as "not available", which signifies that it was
3701                  * never there to begin with.  Failure to open such a device
3702                  * is not considered an error.
3703                  */
3704                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3705                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3706                     vd->vdev_ops->vdev_op_leaf)
3707                         vd->vdev_not_present = 1;
3708 
3709                 /*
3710                  * Post the appropriate ereport.  If the 'prevstate' field is
3711                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3712                  * that this is part of a vdev_reopen().  In this case, we don't
3713                  * want to post the ereport if the device was already in the
3714                  * CANT_OPEN state beforehand.
3715                  *
3716                  * If the 'checkremove' flag is set, then this is an attempt to
3717                  * online the device in response to an insertion event.  If we
3718                  * hit this case, then we have detected an insertion event for a
3719                  * faulted or offline device that wasn't in the removed state.
3720                  * In this scenario, we don't post an ereport because we are
3721                  * about to replace the device, or attempt an online with
3722                  * vdev_forcefault, which will generate the fault for us.
3723                  */
3724                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3725                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3726                     vd != spa->spa_root_vdev) {
3727                         const char *class;
3728 
3729                         switch (aux) {
3730                         case VDEV_AUX_OPEN_FAILED:
3731                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3732                                 break;
3733                         case VDEV_AUX_CORRUPT_DATA:
3734                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3735                                 break;
3736                         case VDEV_AUX_NO_REPLICAS:
3737                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3738                                 break;
3739                         case VDEV_AUX_BAD_GUID_SUM:
3740                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3741                                 break;
3742                         case VDEV_AUX_TOO_SMALL:
3743                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3744                                 break;
3745                         case VDEV_AUX_BAD_LABEL:
3746                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3747                                 break;
3748                         default:
3749                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3750                         }
3751 
3752                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3753                 }
3754 
3755                 /* Erase any notion of persistent removed state */
3756                 vd->vdev_removed = B_FALSE;
3757         } else {
3758                 vd->vdev_removed = B_FALSE;
3759         }
3760 
3761         if (!isopen && vd->vdev_parent)
3762                 vdev_propagate_state(vd->vdev_parent);
3763 }
3764 
3765 boolean_t
3766 vdev_children_are_offline(vdev_t *vd)
3767 {
3768         ASSERT(!vd->vdev_ops->vdev_op_leaf);
3769 
3770         for (uint64_t i = 0; i < vd->vdev_children; i++) {
3771                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
3772                         return (B_FALSE);
3773         }
3774 
3775         return (B_TRUE);
3776 }
3777 
3778 /*
3779  * Check the vdev configuration to ensure that it's capable of supporting
3780  * a root pool. We do not support partial configuration.
3781  * In addition, only a single top-level vdev is allowed.
3782  */
3783 boolean_t
3784 vdev_is_bootable(vdev_t *vd)
3785 {
3786         if (!vd->vdev_ops->vdev_op_leaf) {
3787                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3788 
3789                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3790                     vd->vdev_children > 1) {
3791                         return (B_FALSE);
3792                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3793                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3794                         return (B_FALSE);
3795                 }
3796         }
3797 
3798         for (int c = 0; c < vd->vdev_children; c++) {
3799                 if (!vdev_is_bootable(vd->vdev_child[c]))
3800                         return (B_FALSE);
3801         }
3802         return (B_TRUE);
3803 }
3804 
3805 boolean_t
3806 vdev_is_concrete(vdev_t *vd)
3807 {
3808         vdev_ops_t *ops = vd->vdev_ops;
3809         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3810             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3811                 return (B_FALSE);
3812         } else {
3813                 return (B_TRUE);
3814         }
3815 }
3816 
3817 /*
3818  * Determine if a log device has valid content.  If the vdev was
3819  * removed or faulted in the MOS config then we know that
3820  * the content on the log device has already been written to the pool.
3821  */
3822 boolean_t
3823 vdev_log_state_valid(vdev_t *vd)
3824 {
3825         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3826             !vd->vdev_removed)
3827                 return (B_TRUE);
3828 
3829         for (int c = 0; c < vd->vdev_children; c++)
3830                 if (vdev_log_state_valid(vd->vdev_child[c]))
3831                         return (B_TRUE);
3832 
3833         return (B_FALSE);
3834 }
3835 
3836 /*
3837  * Expand a vdev if possible.
3838  */
3839 void
3840 vdev_expand(vdev_t *vd, uint64_t txg)
3841 {
3842         ASSERT(vd->vdev_top == vd);
3843         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3844 
3845         vdev_set_deflate_ratio(vd);
3846 
3847         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3848             vdev_is_concrete(vd)) {
3849                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3850                 vdev_config_dirty(vd);
3851         }
3852 }
3853 
3854 /*
3855  * Split a vdev.
3856  */
3857 void
3858 vdev_split(vdev_t *vd)
3859 {
3860         vdev_t *cvd, *pvd = vd->vdev_parent;
3861 
3862         vdev_remove_child(pvd, vd);
3863         vdev_compact_children(pvd);
3864 
3865         cvd = pvd->vdev_child[0];
3866         if (pvd->vdev_children == 1) {
3867                 vdev_remove_parent(cvd);
3868                 cvd->vdev_splitting = B_TRUE;
3869         }
3870         vdev_propagate_state(cvd);
3871 }
3872 
3873 void
3874 vdev_deadman(vdev_t *vd)
3875 {
3876         for (int c = 0; c < vd->vdev_children; c++) {
3877                 vdev_t *cvd = vd->vdev_child[c];
3878 
3879                 vdev_deadman(cvd);
3880         }
3881 
3882         if (vd->vdev_ops->vdev_op_leaf) {
3883                 vdev_queue_t *vq = &vd->vdev_queue;
3884 
3885                 mutex_enter(&vq->vq_lock);
3886                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3887                         spa_t *spa = vd->vdev_spa;
3888                         zio_t *fio;
3889                         uint64_t delta;
3890 
3891                         /*
3892                          * Look at the head of all the pending queues,
3893                          * if any I/O has been outstanding for longer than
3894                          * the spa_deadman_synctime we panic the system.
3895                          */
3896                         fio = avl_first(&vq->vq_active_tree);
3897                         delta = gethrtime() - fio->io_timestamp;
3898                         if (delta > spa_deadman_synctime(spa)) {
3899                                 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
3900                                     "%lluns, delta %lluns, last io %lluns",
3901                                     fio->io_timestamp, (u_longlong_t)delta,
3902                                     vq->vq_io_complete_ts);
3903                                 fm_panic("I/O to pool '%s' appears to be "
3904                                     "hung.", spa_name(spa));
3905                         }
3906                 }
3907                 mutex_exit(&vq->vq_lock);
3908         }
3909 }