1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Portions Copyright 2011 Martin Matuska
  24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  25  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 #include <sys/zfs_context.h>
  29 #include <sys/txg_impl.h>
  30 #include <sys/dmu_impl.h>
  31 #include <sys/dmu_tx.h>
  32 #include <sys/dsl_pool.h>
  33 #include <sys/dsl_scan.h>
  34 #include <sys/zil.h>
  35 #include <sys/callb.h>
  36 
  37 /*
  38  * ZFS Transaction Groups
  39  * ----------------------
  40  *
  41  * ZFS transaction groups are, as the name implies, groups of transactions
  42  * that act on persistent state. ZFS asserts consistency at the granularity of
  43  * these transaction groups. Each successive transaction group (txg) is
  44  * assigned a 64-bit consecutive identifier. There are three active
  45  * transaction group states: open, quiescing, or syncing. At any given time,
  46  * there may be an active txg associated with each state; each active txg may
  47  * either be processing, or blocked waiting to enter the next state. There may
  48  * be up to three active txgs, and there is always a txg in the open state
  49  * (though it may be blocked waiting to enter the quiescing state). In broad
  50  * strokes, transactions -- operations that change in-memory structures -- are
  51  * accepted into the txg in the open state, and are completed while the txg is
  52  * in the open or quiescing states. The accumulated changes are written to
  53  * disk in the syncing state.
  54  *
  55  * Open
  56  *
  57  * When a new txg becomes active, it first enters the open state. New
  58  * transactions -- updates to in-memory structures -- are assigned to the
  59  * currently open txg. There is always a txg in the open state so that ZFS can
  60  * accept new changes (though the txg may refuse new changes if it has hit
  61  * some limit). ZFS advances the open txg to the next state for a variety of
  62  * reasons such as it hitting a time or size threshold, or the execution of an
  63  * administrative action that must be completed in the syncing state.
  64  *
  65  * Quiescing
  66  *
  67  * After a txg exits the open state, it enters the quiescing state. The
  68  * quiescing state is intended to provide a buffer between accepting new
  69  * transactions in the open state and writing them out to stable storage in
  70  * the syncing state. While quiescing, transactions can continue their
  71  * operation without delaying either of the other states. Typically, a txg is
  72  * in the quiescing state very briefly since the operations are bounded by
  73  * software latencies rather than, say, slower I/O latencies. After all
  74  * transactions complete, the txg is ready to enter the next state.
  75  *
  76  * Syncing
  77  *
  78  * In the syncing state, the in-memory state built up during the open and (to
  79  * a lesser degree) the quiescing states is written to stable storage. The
  80  * process of writing out modified data can, in turn modify more data. For
  81  * example when we write new blocks, we need to allocate space for them; those
  82  * allocations modify metadata (space maps)... which themselves must be
  83  * written to stable storage. During the sync state, ZFS iterates, writing out
  84  * data until it converges and all in-memory changes have been written out.
  85  * The first such pass is the largest as it encompasses all the modified user
  86  * data (as opposed to filesystem metadata). Subsequent passes typically have
  87  * far less data to write as they consist exclusively of filesystem metadata.
  88  *
  89  * To ensure convergence, after a certain number of passes ZFS begins
  90  * overwriting locations on stable storage that had been allocated earlier in
  91  * the syncing state (and subsequently freed). ZFS usually allocates new
  92  * blocks to optimize for large, continuous, writes. For the syncing state to
  93  * converge however it must complete a pass where no new blocks are allocated
  94  * since each allocation requires a modification of persistent metadata.
  95  * Further, to hasten convergence, after a prescribed number of passes, ZFS
  96  * also defers frees, and stops compressing.
  97  *
  98  * In addition to writing out user data, we must also execute synctasks during
  99  * the syncing context. A synctask is the mechanism by which some
 100  * administrative activities work such as creating and destroying snapshots or
 101  * datasets. Note that when a synctask is initiated it enters the open txg,
 102  * and ZFS then pushes that txg as quickly as possible to completion of the
 103  * syncing state in order to reduce the latency of the administrative
 104  * activity. To complete the syncing state, ZFS writes out a new uberblock,
 105  * the root of the tree of blocks that comprise all state stored on the ZFS
 106  * pool. Finally, if there is a quiesced txg waiting, we signal that it can
 107  * now transition to the syncing state.
 108  *
 109  * It is possible to register a callback for a TX, so the callback will be
 110  * called after sync of the corresponding TX-group to disk.
 111  * Required callback and its optional argument can registered by using
 112  * dmu_tx_callback_register().
 113  * All callback are executed async via taskq (see txg_dispatch_callbacks).
 114  * There are 2 possible cases when a registered callback is called:
 115  *  1) the corresponding TX is commited to disk (the first arg is 0)
 116  *  2) the corresponding TX is aborted (the first arg is ECANCELED)
 117  */
 118 
 119 static void txg_sync_thread(void *arg);
 120 static void txg_quiesce_thread(void *arg);
 121 
 122 int zfs_txg_timeout = 5;        /* max seconds worth of delta per txg */
 123 
 124 /*
 125  * Prepare the txg subsystem.
 126  */
 127 void
 128 txg_init(dsl_pool_t *dp, uint64_t txg)
 129 {
 130         tx_state_t *tx = &dp->dp_tx;
 131         int c;
 132         bzero(tx, sizeof (tx_state_t));
 133 
 134         tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
 135 
 136         for (c = 0; c < max_ncpus; c++) {
 137                 int i;
 138 
 139                 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
 140                 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
 141                     NULL);
 142                 for (i = 0; i < TXG_SIZE; i++) {
 143                         cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
 144                             NULL);
 145                         list_create(&tx->tx_cpu[c].tc_callbacks[i],
 146                             sizeof (dmu_tx_callback_t),
 147                             offsetof(dmu_tx_callback_t, dcb_node));
 148                 }
 149         }
 150 
 151         mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
 152 
 153         cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
 154         cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
 155         cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
 156         cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
 157         cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
 158 
 159         tx->tx_open_txg = txg;
 160 }
 161 
 162 /*
 163  * Close down the txg subsystem.
 164  */
 165 void
 166 txg_fini(dsl_pool_t *dp)
 167 {
 168         tx_state_t *tx = &dp->dp_tx;
 169         int c;
 170 
 171         ASSERT0(tx->tx_threads);
 172 
 173         mutex_destroy(&tx->tx_sync_lock);
 174 
 175         cv_destroy(&tx->tx_sync_more_cv);
 176         cv_destroy(&tx->tx_sync_done_cv);
 177         cv_destroy(&tx->tx_quiesce_more_cv);
 178         cv_destroy(&tx->tx_quiesce_done_cv);
 179         cv_destroy(&tx->tx_exit_cv);
 180 
 181         for (c = 0; c < max_ncpus; c++) {
 182                 int i;
 183 
 184                 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
 185                 mutex_destroy(&tx->tx_cpu[c].tc_lock);
 186                 for (i = 0; i < TXG_SIZE; i++) {
 187                         cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
 188                         list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
 189                 }
 190         }
 191 
 192         if (tx->tx_commit_cb_taskq != NULL)
 193                 taskq_destroy(tx->tx_commit_cb_taskq);
 194 
 195         kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
 196 
 197         bzero(tx, sizeof (tx_state_t));
 198 }
 199 
 200 /*
 201  * Start syncing transaction groups.
 202  */
 203 void
 204 txg_sync_start(dsl_pool_t *dp)
 205 {
 206         tx_state_t *tx = &dp->dp_tx;
 207 
 208         mutex_enter(&tx->tx_sync_lock);
 209 
 210         dprintf("pool %p\n", dp);
 211 
 212         ASSERT0(tx->tx_threads);
 213 
 214         tx->tx_threads = 2;
 215 
 216         tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
 217             dp, 0, &p0, TS_RUN, minclsyspri);
 218 
 219         /*
 220          * The sync thread can need a larger-than-default stack size on
 221          * 32-bit x86.  This is due in part to nested pools and
 222          * scrub_visitbp() recursion.
 223          */
 224         tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
 225             dp, 0, &p0, TS_RUN, minclsyspri);
 226 
 227         mutex_exit(&tx->tx_sync_lock);
 228 }
 229 
 230 static void
 231 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
 232 {
 233         CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
 234         mutex_enter(&tx->tx_sync_lock);
 235 }
 236 
 237 static void
 238 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
 239 {
 240         ASSERT(*tpp != NULL);
 241         *tpp = NULL;
 242         tx->tx_threads--;
 243         cv_broadcast(&tx->tx_exit_cv);
 244         CALLB_CPR_EXIT(cpr);            /* drops &tx->tx_sync_lock */
 245         thread_exit();
 246 }
 247 
 248 static void
 249 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
 250 {
 251         CALLB_CPR_SAFE_BEGIN(cpr);
 252 
 253         if (time)
 254                 (void) cv_timedwait(cv, &tx->tx_sync_lock,
 255                     ddi_get_lbolt() + time);
 256         else
 257                 cv_wait(cv, &tx->tx_sync_lock);
 258 
 259         CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
 260 }
 261 
 262 /*
 263  * Stop syncing transaction groups.
 264  */
 265 void
 266 txg_sync_stop(dsl_pool_t *dp)
 267 {
 268         tx_state_t *tx = &dp->dp_tx;
 269 
 270         dprintf("pool %p\n", dp);
 271         /*
 272          * Finish off any work in progress.
 273          */
 274         ASSERT3U(tx->tx_threads, ==, 2);
 275 
 276         /*
 277          * We need to ensure that we've vacated the deferred space_maps.
 278          */
 279         txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
 280 
 281         /*
 282          * Wake all sync threads and wait for them to die.
 283          */
 284         mutex_enter(&tx->tx_sync_lock);
 285 
 286         ASSERT3U(tx->tx_threads, ==, 2);
 287 
 288         tx->tx_exiting = 1;
 289 
 290         cv_broadcast(&tx->tx_quiesce_more_cv);
 291         cv_broadcast(&tx->tx_quiesce_done_cv);
 292         cv_broadcast(&tx->tx_sync_more_cv);
 293 
 294         while (tx->tx_threads != 0)
 295                 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
 296 
 297         tx->tx_exiting = 0;
 298 
 299         mutex_exit(&tx->tx_sync_lock);
 300 }
 301 
 302 uint64_t
 303 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
 304 {
 305         tx_state_t *tx = &dp->dp_tx;
 306         tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
 307         uint64_t txg;
 308 
 309         mutex_enter(&tc->tc_open_lock);
 310         txg = tx->tx_open_txg;
 311 
 312         mutex_enter(&tc->tc_lock);
 313         tc->tc_count[txg & TXG_MASK]++;
 314         mutex_exit(&tc->tc_lock);
 315 
 316         th->th_cpu = tc;
 317         th->th_txg = txg;
 318 
 319         return (txg);
 320 }
 321 
 322 void
 323 txg_rele_to_quiesce(txg_handle_t *th)
 324 {
 325         tx_cpu_t *tc = th->th_cpu;
 326 
 327         ASSERT(!MUTEX_HELD(&tc->tc_lock));
 328         mutex_exit(&tc->tc_open_lock);
 329 }
 330 
 331 void
 332 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
 333 {
 334         tx_cpu_t *tc = th->th_cpu;
 335         int g = th->th_txg & TXG_MASK;
 336 
 337         mutex_enter(&tc->tc_lock);
 338         list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
 339         mutex_exit(&tc->tc_lock);
 340 }
 341 
 342 /* This register function can be called only from sync-context */
 343 void
 344 txg_register_callbacks_sync(dsl_pool_t *dp, uint64_t txg, list_t *tx_callbacks)
 345 {
 346         tx_state_t *tx = &dp->dp_tx;
 347         tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
 348         txg_handle_t th;
 349 
 350         VERIFY3U(tx->tx_syncing_txg, ==, txg);
 351 
 352         th.th_cpu = tc;
 353         th.th_txg = txg;
 354 
 355         txg_register_callbacks(&th, tx_callbacks);
 356 }
 357 
 358 void
 359 txg_rele_to_sync(txg_handle_t *th)
 360 {
 361         tx_cpu_t *tc = th->th_cpu;
 362         int g = th->th_txg & TXG_MASK;
 363 
 364         mutex_enter(&tc->tc_lock);
 365         ASSERT(tc->tc_count[g] != 0);
 366         if (--tc->tc_count[g] == 0)
 367                 cv_broadcast(&tc->tc_cv[g]);
 368         mutex_exit(&tc->tc_lock);
 369 
 370         th->th_cpu = NULL;   /* defensive */
 371 }
 372 
 373 /*
 374  * Blocks until all transactions in the group are committed.
 375  *
 376  * On return, the transaction group has reached a stable state in which it can
 377  * then be passed off to the syncing context.
 378  */
 379 static void
 380 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
 381 {
 382         tx_state_t *tx = &dp->dp_tx;
 383         int g = txg & TXG_MASK;
 384         int c;
 385 
 386         /*
 387          * Grab all tc_open_locks so nobody else can get into this txg.
 388          */
 389         for (c = 0; c < max_ncpus; c++)
 390                 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
 391 
 392         ASSERT(txg == tx->tx_open_txg);
 393         tx->tx_open_txg++;
 394         tx->tx_open_time = gethrtime();
 395 
 396         DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
 397         DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
 398 
 399         /*
 400          * Now that we've incremented tx_open_txg, we can let threads
 401          * enter the next transaction group.
 402          */
 403         for (c = 0; c < max_ncpus; c++)
 404                 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
 405 
 406         /*
 407          * Quiesce the transaction group by waiting for everyone to txg_exit().
 408          */
 409         for (c = 0; c < max_ncpus; c++) {
 410                 tx_cpu_t *tc = &tx->tx_cpu[c];
 411                 mutex_enter(&tc->tc_lock);
 412                 while (tc->tc_count[g] != 0)
 413                         cv_wait(&tc->tc_cv[g], &tc->tc_lock);
 414                 mutex_exit(&tc->tc_lock);
 415         }
 416 }
 417 
 418 static void
 419 txg_do_callbacks(list_t *cb_list)
 420 {
 421         dmu_tx_do_callbacks(cb_list, 0);
 422 
 423         list_destroy(cb_list);
 424 
 425         kmem_free(cb_list, sizeof (list_t));
 426 }
 427 
 428 /*
 429  * Dispatch the commit callbacks registered on this txg to worker threads.
 430  *
 431  * If no callbacks are registered for a given TXG, nothing happens.
 432  * This function creates a taskq for the associated pool, if needed.
 433  */
 434 static void
 435 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
 436 {
 437         int c;
 438         tx_state_t *tx = &dp->dp_tx;
 439         list_t *cb_list;
 440 
 441         for (c = 0; c < max_ncpus; c++) {
 442                 tx_cpu_t *tc = &tx->tx_cpu[c];
 443                 /*
 444                  * No need to lock tx_cpu_t at this point, since this can
 445                  * only be called once a txg has been synced.
 446                  */
 447 
 448                 int g = txg & TXG_MASK;
 449 
 450                 if (list_is_empty(&tc->tc_callbacks[g]))
 451                         continue;
 452 
 453                 if (tx->tx_commit_cb_taskq == NULL) {
 454                         /*
 455                          * Commit callback taskq hasn't been created yet.
 456                          */
 457                         tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
 458                             max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
 459                             TASKQ_PREPOPULATE);
 460                 }
 461 
 462                 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
 463                 list_create(cb_list, sizeof (dmu_tx_callback_t),
 464                     offsetof(dmu_tx_callback_t, dcb_node));
 465 
 466                 list_move_tail(cb_list, &tc->tc_callbacks[g]);
 467 
 468                 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
 469                     txg_do_callbacks, cb_list, TQ_SLEEP);
 470         }
 471 }
 472 
 473 static boolean_t
 474 txg_is_syncing(dsl_pool_t *dp)
 475 {
 476         tx_state_t *tx = &dp->dp_tx;
 477         ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
 478         return (tx->tx_syncing_txg != 0);
 479 }
 480 
 481 static boolean_t
 482 txg_is_quiescing(dsl_pool_t *dp)
 483 {
 484         tx_state_t *tx = &dp->dp_tx;
 485         ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
 486         return (tx->tx_quiescing_txg != 0);
 487 }
 488 
 489 static boolean_t
 490 txg_has_quiesced_to_sync(dsl_pool_t *dp)
 491 {
 492         tx_state_t *tx = &dp->dp_tx;
 493         ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
 494         return (tx->tx_quiesced_txg != 0);
 495 }
 496 
 497 static void
 498 txg_sync_thread(void *arg)
 499 {
 500         dsl_pool_t *dp = arg;
 501         spa_t *spa = dp->dp_spa;
 502         tx_state_t *tx = &dp->dp_tx;
 503         callb_cpr_t cpr;
 504         uint64_t start, delta;
 505 
 506         txg_thread_enter(tx, &cpr);
 507 
 508         start = delta = 0;
 509         for (;;) {
 510                 uint64_t timeout = zfs_txg_timeout * hz;
 511                 uint64_t timer;
 512                 uint64_t txg;
 513 
 514                 /*
 515                  * We sync when we're scanning, there's someone waiting
 516                  * on us, or the quiesce thread has handed off a txg to
 517                  * us, or we have reached our timeout.
 518                  */
 519                 timer = (delta >= timeout ? 0 : timeout - delta);
 520                 while (!dsl_scan_active(dp->dp_scan) &&
 521                     !tx->tx_exiting && timer > 0 &&
 522                     tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
 523                     !txg_has_quiesced_to_sync(dp) &&
 524                     dp->dp_dirty_total < zfs_dirty_data_sync) {
 525                         dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
 526                             tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
 527                         txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
 528                         delta = ddi_get_lbolt() - start;
 529                         timer = (delta > timeout ? 0 : timeout - delta);
 530                 }
 531 
 532                 /*
 533                  * Wait until the quiesce thread hands off a txg to us,
 534                  * prompting it to do so if necessary.
 535                  */
 536                 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
 537                         if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
 538                                 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
 539                         cv_broadcast(&tx->tx_quiesce_more_cv);
 540                         txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
 541                 }
 542 
 543                 if (tx->tx_exiting)
 544                         txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
 545 
 546                 /*
 547                  * Consume the quiesced txg which has been handed off to
 548                  * us.  This may cause the quiescing thread to now be
 549                  * able to quiesce another txg, so we must signal it.
 550                  */
 551                 ASSERT(tx->tx_quiesced_txg != 0);
 552                 txg = tx->tx_quiesced_txg;
 553                 tx->tx_quiesced_txg = 0;
 554                 tx->tx_syncing_txg = txg;
 555                 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
 556                 cv_broadcast(&tx->tx_quiesce_more_cv);
 557 
 558                 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
 559                     txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
 560                 mutex_exit(&tx->tx_sync_lock);
 561 
 562                 start = ddi_get_lbolt();
 563                 spa_sync(spa, txg);
 564                 delta = ddi_get_lbolt() - start;
 565 
 566                 mutex_enter(&tx->tx_sync_lock);
 567                 tx->tx_synced_txg = txg;
 568                 tx->tx_syncing_txg = 0;
 569                 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
 570                 cv_broadcast(&tx->tx_sync_done_cv);
 571 
 572                 /*
 573                  * Dispatch commit callbacks to worker threads.
 574                  */
 575                 txg_dispatch_callbacks(dp, txg);
 576         }
 577 }
 578 
 579 static void
 580 txg_quiesce_thread(void *arg)
 581 {
 582         dsl_pool_t *dp = arg;
 583         tx_state_t *tx = &dp->dp_tx;
 584         callb_cpr_t cpr;
 585 
 586         txg_thread_enter(tx, &cpr);
 587 
 588         for (;;) {
 589                 uint64_t txg;
 590 
 591                 /*
 592                  * We quiesce when there's someone waiting on us.
 593                  * However, we can only have one txg in "quiescing" or
 594                  * "quiesced, waiting to sync" state.  So we wait until
 595                  * the "quiesced, waiting to sync" txg has been consumed
 596                  * by the sync thread.
 597                  */
 598                 while (!tx->tx_exiting &&
 599                     (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
 600                     txg_has_quiesced_to_sync(dp)))
 601                         txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
 602 
 603                 if (tx->tx_exiting)
 604                         txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
 605 
 606                 txg = tx->tx_open_txg;
 607                 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
 608                     txg, tx->tx_quiesce_txg_waiting,
 609                     tx->tx_sync_txg_waiting);
 610                 tx->tx_quiescing_txg = txg;
 611 
 612                 mutex_exit(&tx->tx_sync_lock);
 613                 txg_quiesce(dp, txg);
 614                 mutex_enter(&tx->tx_sync_lock);
 615 
 616                 /*
 617                  * Hand this txg off to the sync thread.
 618                  */
 619                 dprintf("quiesce done, handing off txg %llu\n", txg);
 620                 tx->tx_quiescing_txg = 0;
 621                 tx->tx_quiesced_txg = txg;
 622                 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
 623                 cv_broadcast(&tx->tx_sync_more_cv);
 624                 cv_broadcast(&tx->tx_quiesce_done_cv);
 625         }
 626 }
 627 
 628 /*
 629  * Delay this thread by delay nanoseconds if we are still in the open
 630  * transaction group and there is already a waiting txg quiescing or quiesced.
 631  * Abort the delay if this txg stalls or enters the quiescing state.
 632  */
 633 void
 634 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
 635 {
 636         tx_state_t *tx = &dp->dp_tx;
 637         hrtime_t start = gethrtime();
 638 
 639         /* don't delay if this txg could transition to quiescing immediately */
 640         if (tx->tx_open_txg > txg ||
 641             tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
 642                 return;
 643 
 644         mutex_enter(&tx->tx_sync_lock);
 645         if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
 646                 mutex_exit(&tx->tx_sync_lock);
 647                 return;
 648         }
 649 
 650         while (gethrtime() - start < delay &&
 651             tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
 652                 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
 653                     &tx->tx_sync_lock, delay, resolution, 0);
 654         }
 655 
 656         mutex_exit(&tx->tx_sync_lock);
 657 }
 658 
 659 void
 660 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
 661 {
 662         tx_state_t *tx = &dp->dp_tx;
 663 
 664         ASSERT(!dsl_pool_config_held(dp));
 665 
 666         mutex_enter(&tx->tx_sync_lock);
 667         ASSERT3U(tx->tx_threads, ==, 2);
 668         if (txg == 0)
 669                 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
 670         if (tx->tx_sync_txg_waiting < txg)
 671                 tx->tx_sync_txg_waiting = txg;
 672         dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
 673             txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
 674         while (tx->tx_synced_txg < txg) {
 675                 dprintf("broadcasting sync more "
 676                     "tx_synced=%llu waiting=%llu dp=%p\n",
 677                     tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
 678                 cv_broadcast(&tx->tx_sync_more_cv);
 679                 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
 680         }
 681         mutex_exit(&tx->tx_sync_lock);
 682 }
 683 
 684 void
 685 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
 686 {
 687         tx_state_t *tx = &dp->dp_tx;
 688 
 689         ASSERT(!dsl_pool_config_held(dp));
 690 
 691         mutex_enter(&tx->tx_sync_lock);
 692         ASSERT3U(tx->tx_threads, ==, 2);
 693         if (txg == 0)
 694                 txg = tx->tx_open_txg + 1;
 695         if (tx->tx_quiesce_txg_waiting < txg)
 696                 tx->tx_quiesce_txg_waiting = txg;
 697         dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
 698             txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
 699         while (tx->tx_open_txg < txg) {
 700                 cv_broadcast(&tx->tx_quiesce_more_cv);
 701                 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
 702         }
 703         mutex_exit(&tx->tx_sync_lock);
 704 }
 705 
 706 /*
 707  * If there isn't a txg syncing or in the pipeline, push another txg through
 708  * the pipeline by queiscing the open txg.
 709  */
 710 void
 711 txg_kick(dsl_pool_t *dp)
 712 {
 713         tx_state_t *tx = &dp->dp_tx;
 714 
 715         ASSERT(!dsl_pool_config_held(dp));
 716 
 717         mutex_enter(&tx->tx_sync_lock);
 718         if (!txg_is_syncing(dp) &&
 719             !txg_is_quiescing(dp) &&
 720             tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
 721             tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
 722             tx->tx_quiesced_txg <= tx->tx_synced_txg) {
 723                 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
 724                 cv_broadcast(&tx->tx_quiesce_more_cv);
 725         }
 726         mutex_exit(&tx->tx_sync_lock);
 727 }
 728 
 729 boolean_t
 730 txg_stalled(dsl_pool_t *dp)
 731 {
 732         tx_state_t *tx = &dp->dp_tx;
 733         return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
 734 }
 735 
 736 boolean_t
 737 txg_sync_waiting(dsl_pool_t *dp)
 738 {
 739         tx_state_t *tx = &dp->dp_tx;
 740 
 741         return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
 742             tx->tx_quiesced_txg != 0);
 743 }
 744 
 745 /*
 746  * Verify that this txg is active (open, quiescing, syncing).  Non-active
 747  * txg's should not be manipulated.
 748  */
 749 void
 750 txg_verify(spa_t *spa, uint64_t txg)
 751 {
 752         dsl_pool_t *dp = spa_get_dsl(spa);
 753         if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
 754                 return;
 755         ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
 756         ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
 757         ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
 758 }
 759 
 760 /*
 761  * Per-txg object lists.
 762  */
 763 void
 764 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
 765 {
 766         int t;
 767 
 768         mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
 769 
 770         tl->tl_offset = offset;
 771         tl->tl_spa = spa;
 772 
 773         for (t = 0; t < TXG_SIZE; t++)
 774                 tl->tl_head[t] = NULL;
 775 }
 776 
 777 void
 778 txg_list_destroy(txg_list_t *tl)
 779 {
 780         int t;
 781 
 782         for (t = 0; t < TXG_SIZE; t++)
 783                 ASSERT(txg_list_empty(tl, t));
 784 
 785         mutex_destroy(&tl->tl_lock);
 786 }
 787 
 788 boolean_t
 789 txg_list_empty(txg_list_t *tl, uint64_t txg)
 790 {
 791         txg_verify(tl->tl_spa, txg);
 792         return (tl->tl_head[txg & TXG_MASK] == NULL);
 793 }
 794 
 795 /*
 796  * Returns true if all txg lists are empty.
 797  *
 798  * Warning: this is inherently racy (an item could be added immediately
 799  * after this function returns). We don't bother with the lock because
 800  * it wouldn't change the semantics.
 801  */
 802 boolean_t
 803 txg_all_lists_empty(txg_list_t *tl)
 804 {
 805         for (int i = 0; i < TXG_SIZE; i++) {
 806                 if (!txg_list_empty(tl, i)) {
 807                         return (B_FALSE);
 808                 }
 809         }
 810         return (B_TRUE);
 811 }
 812 
 813 /*
 814  * Add an entry to the list (unless it's already on the list).
 815  * Returns B_TRUE if it was actually added.
 816  */
 817 boolean_t
 818 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
 819 {
 820         int t = txg & TXG_MASK;
 821         txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
 822         boolean_t add;
 823 
 824         txg_verify(tl->tl_spa, txg);
 825         mutex_enter(&tl->tl_lock);
 826         add = (tn->tn_member[t] == 0);
 827         if (add) {
 828                 tn->tn_member[t] = 1;
 829                 tn->tn_next[t] = tl->tl_head[t];
 830                 tl->tl_head[t] = tn;
 831         }
 832         mutex_exit(&tl->tl_lock);
 833 
 834         return (add);
 835 }
 836 
 837 /*
 838  * Add an entry to the end of the list, unless it's already on the list.
 839  * (walks list to find end)
 840  * Returns B_TRUE if it was actually added.
 841  */
 842 boolean_t
 843 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
 844 {
 845         int t = txg & TXG_MASK;
 846         txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
 847         boolean_t add;
 848 
 849         txg_verify(tl->tl_spa, txg);
 850         mutex_enter(&tl->tl_lock);
 851         add = (tn->tn_member[t] == 0);
 852         if (add) {
 853                 txg_node_t **tp;
 854 
 855                 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
 856                         continue;
 857 
 858                 tn->tn_member[t] = 1;
 859                 tn->tn_next[t] = NULL;
 860                 *tp = tn;
 861         }
 862         mutex_exit(&tl->tl_lock);
 863 
 864         return (add);
 865 }
 866 
 867 /*
 868  * Remove the head of the list and return it.
 869  */
 870 void *
 871 txg_list_remove(txg_list_t *tl, uint64_t txg)
 872 {
 873         int t = txg & TXG_MASK;
 874         txg_node_t *tn;
 875         void *p = NULL;
 876 
 877         txg_verify(tl->tl_spa, txg);
 878         mutex_enter(&tl->tl_lock);
 879         if ((tn = tl->tl_head[t]) != NULL) {
 880                 p = (char *)tn - tl->tl_offset;
 881                 tl->tl_head[t] = tn->tn_next[t];
 882                 tn->tn_next[t] = NULL;
 883                 tn->tn_member[t] = 0;
 884         }
 885         mutex_exit(&tl->tl_lock);
 886 
 887         return (p);
 888 }
 889 
 890 /*
 891  * Remove a specific item from the list and return it.
 892  */
 893 void *
 894 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
 895 {
 896         int t = txg & TXG_MASK;
 897         txg_node_t *tn, **tp;
 898 
 899         txg_verify(tl->tl_spa, txg);
 900         mutex_enter(&tl->tl_lock);
 901 
 902         for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
 903                 if ((char *)tn - tl->tl_offset == p) {
 904                         *tp = tn->tn_next[t];
 905                         tn->tn_next[t] = NULL;
 906                         tn->tn_member[t] = 0;
 907                         mutex_exit(&tl->tl_lock);
 908                         return (p);
 909                 }
 910         }
 911 
 912         mutex_exit(&tl->tl_lock);
 913 
 914         return (NULL);
 915 }
 916 
 917 boolean_t
 918 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
 919 {
 920         int t = txg & TXG_MASK;
 921         txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
 922 
 923         txg_verify(tl->tl_spa, txg);
 924         return (tn->tn_member[t] != 0);
 925 }
 926 
 927 /*
 928  * Walk a txg list -- only safe if you know it's not changing.
 929  */
 930 void *
 931 txg_list_head(txg_list_t *tl, uint64_t txg)
 932 {
 933         int t = txg & TXG_MASK;
 934         txg_node_t *tn = tl->tl_head[t];
 935 
 936         txg_verify(tl->tl_spa, txg);
 937         return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
 938 }
 939 
 940 void *
 941 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
 942 {
 943         int t = txg & TXG_MASK;
 944         txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
 945 
 946         txg_verify(tl->tl_spa, txg);
 947         tn = tn->tn_next[t];
 948 
 949         return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
 950 }