1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
  25  * Copyright 2017 Nexenta Systems, Inc.
  26  */
  27 
  28 #ifndef _SYS_ZAP_H
  29 #define _SYS_ZAP_H
  30 
  31 /*
  32  * ZAP - ZFS Attribute Processor
  33  *
  34  * The ZAP is a module which sits on top of the DMU (Data Management
  35  * Unit) and implements a higher-level storage primitive using DMU
  36  * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
  37  *
  38  * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
  39  * Users should use only zap routines to access a zapobj - they should
  40  * not access the DMU object directly using DMU routines.
  41  *
  42  * The attributes stored in a zapobj are name-value pairs.  The name is
  43  * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
  44  * terminating NULL).  The value is an array of integers, which may be
  45  * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
  46  * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
  47  * Note that an 8-byte integer value can be used to store the location
  48  * (object number) of another dmu object (which may be itself a zapobj).
  49  * Note that you can use a zero-length attribute to store a single bit
  50  * of information - the attribute is present or not.
  51  *
  52  * The ZAP routines are thread-safe.  However, you must observe the
  53  * DMU's restriction that a transaction may not be operated on
  54  * concurrently.
  55  *
  56  * Any of the routines that return an int may return an I/O error (EIO
  57  * or ECHECKSUM).
  58  *
  59  *
  60  * Implementation / Performance Notes:
  61  *
  62  * The ZAP is intended to operate most efficiently on attributes with
  63  * short (49 bytes or less) names and single 8-byte values, for which
  64  * the microzap will be used.  The ZAP should be efficient enough so
  65  * that the user does not need to cache these attributes.
  66  *
  67  * The ZAP's locking scheme makes its routines thread-safe.  Operations
  68  * on different zapobjs will be processed concurrently.  Operations on
  69  * the same zapobj which only read data will be processed concurrently.
  70  * Operations on the same zapobj which modify data will be processed
  71  * concurrently when there are many attributes in the zapobj (because
  72  * the ZAP uses per-block locking - more than 128 * (number of cpus)
  73  * small attributes will suffice).
  74  */
  75 
  76 /*
  77  * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
  78  * strings) for the names of attributes, rather than a byte string
  79  * bounded by an explicit length.  If some day we want to support names
  80  * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
  81  * we'll have to add routines for using length-bounded strings.
  82  */
  83 
  84 #include <sys/dmu.h>
  85 #include <sys/refcount.h>
  86 
  87 #ifdef  __cplusplus
  88 extern "C" {
  89 #endif
  90 
  91 /*
  92  * Specifies matching criteria for ZAP lookups.
  93  * MT_NORMALIZE         Use ZAP normalization flags, which can include both
  94  *                      unicode normalization and case-insensitivity.
  95  * MT_MATCH_CASE        Do case-sensitive lookups even if MT_NORMALIZE is
  96  *                      specified and ZAP normalization flags include
  97  *                      U8_TEXTPREP_TOUPPER.
  98  */
  99 typedef enum matchtype {
 100         MT_NORMALIZE = 1 << 0,
 101         MT_MATCH_CASE = 1 << 1,
 102 } matchtype_t;
 103 
 104 typedef enum zap_flags {
 105         /* Use 64-bit hash value (serialized cursors will always use 64-bits) */
 106         ZAP_FLAG_HASH64 = 1 << 0,
 107         /* Key is binary, not string (zap_add_uint64() can be used) */
 108         ZAP_FLAG_UINT64_KEY = 1 << 1,
 109         /*
 110          * First word of key (which must be an array of uint64) is
 111          * already randomly distributed.
 112          */
 113         ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
 114 } zap_flags_t;
 115 
 116 /*
 117  * Create a new zapobj with no attributes and return its object number.
 118  */
 119 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
 120     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 121 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
 122     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 123 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
 124     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
 125     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 126 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
 127     uint64_t parent_obj, const char *name, dmu_tx_t *tx);
 128 
 129 /*
 130  * Initialize an already-allocated object.
 131  */
 132 void mzap_create_impl(objset_t *os, uint64_t obj, int normflags,
 133     zap_flags_t flags, dmu_tx_t *tx);
 134 
 135 /*
 136  * Create a new zapobj with no attributes from the given (unallocated)
 137  * object number.
 138  */
 139 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
 140     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 141 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
 142     int normflags, dmu_object_type_t ot,
 143     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
 144 
 145 /*
 146  * The zapobj passed in must be a valid ZAP object for all of the
 147  * following routines.
 148  */
 149 
 150 /*
 151  * Destroy this zapobj and all its attributes.
 152  *
 153  * Frees the object number using dmu_object_free.
 154  */
 155 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
 156 
 157 /*
 158  * Manipulate attributes.
 159  *
 160  * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
 161  */
 162 
 163 /*
 164  * Retrieve the contents of the attribute with the given name.
 165  *
 166  * If the requested attribute does not exist, the call will fail and
 167  * return ENOENT.
 168  *
 169  * If 'integer_size' is smaller than the attribute's integer size, the
 170  * call will fail and return EINVAL.
 171  *
 172  * If 'integer_size' is equal to or larger than the attribute's integer
 173  * size, the call will succeed and return 0.
 174  *
 175  * When converting to a larger integer size, the integers will be treated as
 176  * unsigned (ie. no sign-extension will be performed).
 177  *
 178  * 'num_integers' is the length (in integers) of 'buf'.
 179  *
 180  * If the attribute is longer than the buffer, as many integers as will
 181  * fit will be transferred to 'buf'.  If the entire attribute was not
 182  * transferred, the call will return EOVERFLOW.
 183  */
 184 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
 185     uint64_t integer_size, uint64_t num_integers, void *buf);
 186 
 187 /*
 188  * If rn_len is nonzero, realname will be set to the name of the found
 189  * entry (which may be different from the requested name if matchtype is
 190  * not MT_EXACT).
 191  *
 192  * If normalization_conflictp is not NULL, it will be set if there is
 193  * another name with the same case/unicode normalized form.
 194  */
 195 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
 196     uint64_t integer_size, uint64_t num_integers, void *buf,
 197     matchtype_t mt, char *realname, int rn_len,
 198     boolean_t *normalization_conflictp);
 199 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 200     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
 201 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
 202 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 203     int key_numints);
 204 int zap_lookup_by_dnode(dnode_t *dn, const char *name,
 205     uint64_t integer_size, uint64_t num_integers, void *buf);
 206 int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
 207     uint64_t integer_size, uint64_t num_integers, void *buf,
 208     matchtype_t mt, char *realname, int rn_len,
 209     boolean_t *ncp);
 210 
 211 int zap_count_write_by_dnode(dnode_t *dn, const char *name,
 212     int add, refcount_t *towrite, refcount_t *tooverwrite);
 213 
 214 /*
 215  * Create an attribute with the given name and value.
 216  *
 217  * If an attribute with the given name already exists, the call will
 218  * fail and return EEXIST.
 219  */
 220 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
 221     int integer_size, uint64_t num_integers,
 222     const void *val, dmu_tx_t *tx);
 223 int zap_add_by_dnode(dnode_t *dn, const char *key,
 224     int integer_size, uint64_t num_integers,
 225     const void *val, dmu_tx_t *tx);
 226 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
 227     int key_numints, int integer_size, uint64_t num_integers,
 228     const void *val, dmu_tx_t *tx);
 229 
 230 /*
 231  * Set the attribute with the given name to the given value.  If an
 232  * attribute with the given name does not exist, it will be created.  If
 233  * an attribute with the given name already exists, the previous value
 234  * will be overwritten.  The integer_size may be different from the
 235  * existing attribute's integer size, in which case the attribute's
 236  * integer size will be updated to the new value.
 237  */
 238 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
 239     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
 240 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 241     int key_numints,
 242     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
 243 
 244 /*
 245  * Get the length (in integers) and the integer size of the specified
 246  * attribute.
 247  *
 248  * If the requested attribute does not exist, the call will fail and
 249  * return ENOENT.
 250  */
 251 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
 252     uint64_t *integer_size, uint64_t *num_integers);
 253 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 254     int key_numints, uint64_t *integer_size, uint64_t *num_integers);
 255 
 256 /*
 257  * Remove the specified attribute.
 258  *
 259  * If the specified attribute does not exist, the call will fail and
 260  * return ENOENT.
 261  */
 262 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
 263 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
 264     matchtype_t mt, dmu_tx_t *tx);
 265 int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx);
 266 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 267     int key_numints, dmu_tx_t *tx);
 268 
 269 /*
 270  * Returns (in *count) the number of attributes in the specified zap
 271  * object.
 272  */
 273 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
 274 
 275 /*
 276  * Returns (in name) the name of the entry whose (value & mask)
 277  * (za_first_integer) is value, or ENOENT if not found.  The string
 278  * pointed to by name must be at least 256 bytes long.  If mask==0, the
 279  * match must be exact (ie, same as mask=-1ULL).
 280  */
 281 int zap_value_search(objset_t *os, uint64_t zapobj,
 282     uint64_t value, uint64_t mask, char *name);
 283 
 284 /*
 285  * Transfer all the entries from fromobj into intoobj.  Only works on
 286  * int_size=8 num_integers=1 values.  Fails if there are any duplicated
 287  * entries.
 288  */
 289 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
 290 
 291 /* Same as zap_join, but set the values to 'value'. */
 292 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
 293     uint64_t value, dmu_tx_t *tx);
 294 
 295 /* Same as zap_join, but add together any duplicated entries. */
 296 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
 297     dmu_tx_t *tx);
 298 
 299 /*
 300  * Manipulate entries where the name + value are the "same" (the name is
 301  * a stringified version of the value).
 302  */
 303 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
 304 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
 305 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
 306 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
 307     dmu_tx_t *tx);
 308 
 309 /* Here the key is an int and the value is a different int. */
 310 int zap_add_int_key(objset_t *os, uint64_t obj,
 311     uint64_t key, uint64_t value, dmu_tx_t *tx);
 312 int zap_update_int_key(objset_t *os, uint64_t obj,
 313     uint64_t key, uint64_t value, dmu_tx_t *tx);
 314 int zap_lookup_int_key(objset_t *os, uint64_t obj,
 315     uint64_t key, uint64_t *valuep);
 316 
 317 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
 318     dmu_tx_t *tx);
 319 
 320 struct zap;
 321 struct zap_leaf;
 322 typedef struct zap_cursor {
 323         /* This structure is opaque! */
 324         objset_t *zc_objset;
 325         struct zap *zc_zap;
 326         struct zap_leaf *zc_leaf;
 327         uint64_t zc_zapobj;
 328         uint64_t zc_serialized;
 329         uint64_t zc_hash;
 330         uint32_t zc_cd;
 331 } zap_cursor_t;
 332 
 333 typedef struct {
 334         int za_integer_length;
 335         /*
 336          * za_normalization_conflict will be set if there are additional
 337          * entries with this normalized form (eg, "foo" and "Foo").
 338          */
 339         boolean_t za_normalization_conflict;
 340         uint64_t za_num_integers;
 341         uint64_t za_first_integer;      /* no sign extension for <8byte ints */
 342         char za_name[ZAP_MAXNAMELEN];
 343 } zap_attribute_t;
 344 
 345 /*
 346  * The interface for listing all the attributes of a zapobj can be
 347  * thought of as cursor moving down a list of the attributes one by
 348  * one.  The cookie returned by the zap_cursor_serialize routine is
 349  * persistent across system calls (and across reboot, even).
 350  */
 351 
 352 /*
 353  * Initialize a zap cursor, pointing to the "first" attribute of the
 354  * zapobj.  You must _fini the cursor when you are done with it.
 355  */
 356 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
 357 void zap_cursor_fini(zap_cursor_t *zc);
 358 
 359 /*
 360  * Get the attribute currently pointed to by the cursor.  Returns
 361  * ENOENT if at the end of the attributes.
 362  */
 363 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
 364 
 365 /*
 366  * Advance the cursor to the next attribute.
 367  */
 368 void zap_cursor_advance(zap_cursor_t *zc);
 369 
 370 /*
 371  * Get a persistent cookie pointing to the current position of the zap
 372  * cursor.  The low 4 bits in the cookie are always zero, and thus can
 373  * be used as to differentiate a serialized cookie from a different type
 374  * of value.  The cookie will be less than 2^32 as long as there are
 375  * fewer than 2^22 (4.2 million) entries in the zap object.
 376  */
 377 uint64_t zap_cursor_serialize(zap_cursor_t *zc);
 378 
 379 /*
 380  * Initialize a zap cursor pointing to the position recorded by
 381  * zap_cursor_serialize (in the "serialized" argument).  You can also
 382  * use a "serialized" argument of 0 to start at the beginning of the
 383  * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
 384  * zap_cursor_init(...).)
 385  */
 386 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
 387     uint64_t zapobj, uint64_t serialized);
 388 
 389 
 390 #define ZAP_HISTOGRAM_SIZE 10
 391 
 392 typedef struct zap_stats {
 393         /*
 394          * Size of the pointer table (in number of entries).
 395          * This is always a power of 2, or zero if it's a microzap.
 396          * In general, it should be considerably greater than zs_num_leafs.
 397          */
 398         uint64_t zs_ptrtbl_len;
 399 
 400         uint64_t zs_blocksize;          /* size of zap blocks */
 401 
 402         /*
 403          * The number of blocks used.  Note that some blocks may be
 404          * wasted because old ptrtbl's and large name/value blocks are
 405          * not reused.  (Although their space is reclaimed, we don't
 406          * reuse those offsets in the object.)
 407          */
 408         uint64_t zs_num_blocks;
 409 
 410         /*
 411          * Pointer table values from zap_ptrtbl in the zap_phys_t
 412          */
 413         uint64_t zs_ptrtbl_nextblk;       /* next (larger) copy start block */
 414         uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
 415         uint64_t zs_ptrtbl_zt_blk;        /* starting block number */
 416         uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
 417         uint64_t zs_ptrtbl_zt_shift;      /* bits to index it */
 418 
 419         /*
 420          * Values of the other members of the zap_phys_t
 421          */
 422         uint64_t zs_block_type;         /* ZBT_HEADER */
 423         uint64_t zs_magic;              /* ZAP_MAGIC */
 424         uint64_t zs_num_leafs;          /* The number of leaf blocks */
 425         uint64_t zs_num_entries;        /* The number of zap entries */
 426         uint64_t zs_salt;               /* salt to stir into hash function */
 427 
 428         /*
 429          * Histograms.  For all histograms, the last index
 430          * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
 431          * than what can be represented.  For example
 432          * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
 433          * of leafs with more than 45 entries.
 434          */
 435 
 436         /*
 437          * zs_leafs_with_n_pointers[n] is the number of leafs with
 438          * 2^n pointers to it.
 439          */
 440         uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
 441 
 442         /*
 443          * zs_leafs_with_n_entries[n] is the number of leafs with
 444          * [n*5, (n+1)*5) entries.  In the current implementation, there
 445          * can be at most 55 entries in any block, but there may be
 446          * fewer if the name or value is large, or the block is not
 447          * completely full.
 448          */
 449         uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
 450 
 451         /*
 452          * zs_leafs_n_tenths_full[n] is the number of leafs whose
 453          * fullness is in the range [n/10, (n+1)/10).
 454          */
 455         uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
 456 
 457         /*
 458          * zs_entries_using_n_chunks[n] is the number of entries which
 459          * consume n 24-byte chunks.  (Note, large names/values only use
 460          * one chunk, but contribute to zs_num_blocks_large.)
 461          */
 462         uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
 463 
 464         /*
 465          * zs_buckets_with_n_entries[n] is the number of buckets (each
 466          * leaf has 64 buckets) with n entries.
 467          * zs_buckets_with_n_entries[1] should be very close to
 468          * zs_num_entries.
 469          */
 470         uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
 471 } zap_stats_t;
 472 
 473 /*
 474  * Get statistics about a ZAP object.  Note: you need to be aware of the
 475  * internal implementation of the ZAP to correctly interpret some of the
 476  * statistics.  This interface shouldn't be relied on unless you really
 477  * know what you're doing.
 478  */
 479 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
 480 
 481 #ifdef  __cplusplus
 482 }
 483 #endif
 484 
 485 #endif  /* _SYS_ZAP_H */