1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
  26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
  27  * Copyright 2013 DEY Storage Systems, Inc.
  28  * Copyright 2014 HybridCluster. All rights reserved.
  29  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  30  * Copyright 2013 Saso Kiselkov. All rights reserved.
  31  * Copyright (c) 2014 Integros [integros.com]
  32  */
  33 
  34 /* Portions Copyright 2010 Robert Milkowski */
  35 
  36 #ifndef _SYS_DMU_H
  37 #define _SYS_DMU_H
  38 
  39 /*
  40  * This file describes the interface that the DMU provides for its
  41  * consumers.
  42  *
  43  * The DMU also interacts with the SPA.  That interface is described in
  44  * dmu_spa.h.
  45  */
  46 
  47 #include <sys/zfs_context.h>
  48 #include <sys/inttypes.h>
  49 #include <sys/cred.h>
  50 #include <sys/fs/zfs.h>
  51 #include <sys/zio_compress.h>
  52 #include <sys/zio_priority.h>
  53 
  54 #ifdef  __cplusplus
  55 extern "C" {
  56 #endif
  57 
  58 struct uio;
  59 struct xuio;
  60 struct page;
  61 struct vnode;
  62 struct spa;
  63 struct zilog;
  64 struct zio;
  65 struct blkptr;
  66 struct zap_cursor;
  67 struct dsl_dataset;
  68 struct dsl_pool;
  69 struct dnode;
  70 struct drr_begin;
  71 struct drr_end;
  72 struct zbookmark_phys;
  73 struct spa;
  74 struct nvlist;
  75 struct arc_buf;
  76 struct zio_prop;
  77 struct sa_handle;
  78 
  79 typedef struct objset objset_t;
  80 typedef struct dmu_tx dmu_tx_t;
  81 typedef struct dsl_dir dsl_dir_t;
  82 typedef struct dnode dnode_t;
  83 
  84 typedef enum dmu_object_byteswap {
  85         DMU_BSWAP_UINT8,
  86         DMU_BSWAP_UINT16,
  87         DMU_BSWAP_UINT32,
  88         DMU_BSWAP_UINT64,
  89         DMU_BSWAP_ZAP,
  90         DMU_BSWAP_DNODE,
  91         DMU_BSWAP_OBJSET,
  92         DMU_BSWAP_ZNODE,
  93         DMU_BSWAP_OLDACL,
  94         DMU_BSWAP_ACL,
  95         /*
  96          * Allocating a new byteswap type number makes the on-disk format
  97          * incompatible with any other format that uses the same number.
  98          *
  99          * Data can usually be structured to work with one of the
 100          * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
 101          */
 102         DMU_BSWAP_NUMFUNCS
 103 } dmu_object_byteswap_t;
 104 
 105 #define DMU_OT_NEWTYPE 0x80
 106 #define DMU_OT_METADATA 0x40
 107 #define DMU_OT_BYTESWAP_MASK 0x3f
 108 
 109 /*
 110  * Defines a uint8_t object type. Object types specify if the data
 111  * in the object is metadata (boolean) and how to byteswap the data
 112  * (dmu_object_byteswap_t).
 113  */
 114 #define DMU_OT(byteswap, metadata) \
 115         (DMU_OT_NEWTYPE | \
 116         ((metadata) ? DMU_OT_METADATA : 0) | \
 117         ((byteswap) & DMU_OT_BYTESWAP_MASK))
 118 
 119 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
 120         ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
 121         (ot) < DMU_OT_NUMTYPES)
 122 
 123 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
 124         ((ot) & DMU_OT_METADATA) : \
 125         dmu_ot[(ot)].ot_metadata)
 126 
 127 /*
 128  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
 129  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
 130  * is repurposed for embedded BPs.
 131  */
 132 #define DMU_OT_HAS_FILL(ot) \
 133         ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
 134 
 135 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
 136         ((ot) & DMU_OT_BYTESWAP_MASK) : \
 137         dmu_ot[(ot)].ot_byteswap)
 138 
 139 typedef enum dmu_object_type {
 140         DMU_OT_NONE,
 141         /* general: */
 142         DMU_OT_OBJECT_DIRECTORY,        /* ZAP */
 143         DMU_OT_OBJECT_ARRAY,            /* UINT64 */
 144         DMU_OT_PACKED_NVLIST,           /* UINT8 (XDR by nvlist_pack/unpack) */
 145         DMU_OT_PACKED_NVLIST_SIZE,      /* UINT64 */
 146         DMU_OT_BPOBJ,                   /* UINT64 */
 147         DMU_OT_BPOBJ_HDR,               /* UINT64 */
 148         /* spa: */
 149         DMU_OT_SPACE_MAP_HEADER,        /* UINT64 */
 150         DMU_OT_SPACE_MAP,               /* UINT64 */
 151         /* zil: */
 152         DMU_OT_INTENT_LOG,              /* UINT64 */
 153         /* dmu: */
 154         DMU_OT_DNODE,                   /* DNODE */
 155         DMU_OT_OBJSET,                  /* OBJSET */
 156         /* dsl: */
 157         DMU_OT_DSL_DIR,                 /* UINT64 */
 158         DMU_OT_DSL_DIR_CHILD_MAP,       /* ZAP */
 159         DMU_OT_DSL_DS_SNAP_MAP,         /* ZAP */
 160         DMU_OT_DSL_PROPS,               /* ZAP */
 161         DMU_OT_DSL_DATASET,             /* UINT64 */
 162         /* zpl: */
 163         DMU_OT_ZNODE,                   /* ZNODE */
 164         DMU_OT_OLDACL,                  /* Old ACL */
 165         DMU_OT_PLAIN_FILE_CONTENTS,     /* UINT8 */
 166         DMU_OT_DIRECTORY_CONTENTS,      /* ZAP */
 167         DMU_OT_MASTER_NODE,             /* ZAP */
 168         DMU_OT_UNLINKED_SET,            /* ZAP */
 169         /* zvol: */
 170         DMU_OT_ZVOL,                    /* UINT8 */
 171         DMU_OT_ZVOL_PROP,               /* ZAP */
 172         /* other; for testing only! */
 173         DMU_OT_PLAIN_OTHER,             /* UINT8 */
 174         DMU_OT_UINT64_OTHER,            /* UINT64 */
 175         DMU_OT_ZAP_OTHER,               /* ZAP */
 176         /* new object types: */
 177         DMU_OT_ERROR_LOG,               /* ZAP */
 178         DMU_OT_SPA_HISTORY,             /* UINT8 */
 179         DMU_OT_SPA_HISTORY_OFFSETS,     /* spa_his_phys_t */
 180         DMU_OT_POOL_PROPS,              /* ZAP */
 181         DMU_OT_DSL_PERMS,               /* ZAP */
 182         DMU_OT_ACL,                     /* ACL */
 183         DMU_OT_SYSACL,                  /* SYSACL */
 184         DMU_OT_FUID,                    /* FUID table (Packed NVLIST UINT8) */
 185         DMU_OT_FUID_SIZE,               /* FUID table size UINT64 */
 186         DMU_OT_NEXT_CLONES,             /* ZAP */
 187         DMU_OT_SCAN_QUEUE,              /* ZAP */
 188         DMU_OT_USERGROUP_USED,          /* ZAP */
 189         DMU_OT_USERGROUP_QUOTA,         /* ZAP */
 190         DMU_OT_USERREFS,                /* ZAP */
 191         DMU_OT_DDT_ZAP,                 /* ZAP */
 192         DMU_OT_DDT_STATS,               /* ZAP */
 193         DMU_OT_SA,                      /* System attr */
 194         DMU_OT_SA_MASTER_NODE,          /* ZAP */
 195         DMU_OT_SA_ATTR_REGISTRATION,    /* ZAP */
 196         DMU_OT_SA_ATTR_LAYOUTS,         /* ZAP */
 197         DMU_OT_SCAN_XLATE,              /* ZAP */
 198         DMU_OT_DEDUP,                   /* fake dedup BP from ddt_bp_create() */
 199         DMU_OT_DEADLIST,                /* ZAP */
 200         DMU_OT_DEADLIST_HDR,            /* UINT64 */
 201         DMU_OT_DSL_CLONES,              /* ZAP */
 202         DMU_OT_BPOBJ_SUBOBJ,            /* UINT64 */
 203         /*
 204          * Do not allocate new object types here. Doing so makes the on-disk
 205          * format incompatible with any other format that uses the same object
 206          * type number.
 207          *
 208          * When creating an object which does not have one of the above types
 209          * use the DMU_OTN_* type with the correct byteswap and metadata
 210          * values.
 211          *
 212          * The DMU_OTN_* types do not have entries in the dmu_ot table,
 213          * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
 214          * of indexing into dmu_ot directly (this works for both DMU_OT_* types
 215          * and DMU_OTN_* types).
 216          */
 217         DMU_OT_NUMTYPES,
 218 
 219         /*
 220          * Names for valid types declared with DMU_OT().
 221          */
 222         DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
 223         DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
 224         DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
 225         DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
 226         DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
 227         DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
 228         DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
 229         DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
 230         DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
 231         DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
 232 } dmu_object_type_t;
 233 
 234 /*
 235  * These flags are intended to be used to specify the "txg_how"
 236  * parameter when calling the dmu_tx_assign() function. See the comment
 237  * above dmu_tx_assign() for more details on the meaning of these flags.
 238  */
 239 #define TXG_NOWAIT      (0ULL)
 240 #define TXG_WAIT        (1ULL<<0)
 241 #define TXG_NOTHROTTLE  (1ULL<<1)
 242 
 243 void byteswap_uint64_array(void *buf, size_t size);
 244 void byteswap_uint32_array(void *buf, size_t size);
 245 void byteswap_uint16_array(void *buf, size_t size);
 246 void byteswap_uint8_array(void *buf, size_t size);
 247 void zap_byteswap(void *buf, size_t size);
 248 void zfs_oldacl_byteswap(void *buf, size_t size);
 249 void zfs_acl_byteswap(void *buf, size_t size);
 250 void zfs_znode_byteswap(void *buf, size_t size);
 251 
 252 #define DS_FIND_SNAPSHOTS       (1<<0)
 253 #define DS_FIND_CHILDREN        (1<<1)
 254 #define DS_FIND_SERIALIZE       (1<<2)
 255 
 256 /*
 257  * The maximum number of bytes that can be accessed as part of one
 258  * operation, including metadata.
 259  */
 260 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
 261 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
 262 
 263 #define DMU_USERUSED_OBJECT     (-1ULL)
 264 #define DMU_GROUPUSED_OBJECT    (-2ULL)
 265 
 266 /*
 267  * artificial blkids for bonus buffer and spill blocks
 268  */
 269 #define DMU_BONUS_BLKID         (-1ULL)
 270 #define DMU_SPILL_BLKID         (-2ULL)
 271 /*
 272  * Public routines to create, destroy, open, and close objsets.
 273  */
 274 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
 275 int dmu_objset_own(const char *name, dmu_objset_type_t type,
 276     boolean_t readonly, void *tag, objset_t **osp);
 277 void dmu_objset_rele(objset_t *os, void *tag);
 278 void dmu_objset_disown(objset_t *os, void *tag);
 279 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
 280 
 281 void dmu_objset_evict_dbufs(objset_t *os);
 282 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
 283     void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
 284 int dmu_objset_clone(const char *name, const char *origin);
 285 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
 286     struct nvlist *errlist);
 287 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
 288 int dmu_objset_snapshot_tmp(const char *, const char *, int);
 289 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
 290     int flags);
 291 void dmu_objset_byteswap(void *buf, size_t size);
 292 int dsl_dataset_rename_snapshot(const char *fsname,
 293     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
 294 int dmu_objset_remap_indirects(const char *fsname);
 295 
 296 typedef struct dmu_buf {
 297         uint64_t db_object;             /* object that this buffer is part of */
 298         uint64_t db_offset;             /* byte offset in this object */
 299         uint64_t db_size;               /* size of buffer in bytes */
 300         void *db_data;                  /* data in buffer */
 301 } dmu_buf_t;
 302 
 303 /*
 304  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
 305  */
 306 #define DMU_POOL_DIRECTORY_OBJECT       1
 307 #define DMU_POOL_CONFIG                 "config"
 308 #define DMU_POOL_FEATURES_FOR_WRITE     "features_for_write"
 309 #define DMU_POOL_FEATURES_FOR_READ      "features_for_read"
 310 #define DMU_POOL_FEATURE_DESCRIPTIONS   "feature_descriptions"
 311 #define DMU_POOL_FEATURE_ENABLED_TXG    "feature_enabled_txg"
 312 #define DMU_POOL_ROOT_DATASET           "root_dataset"
 313 #define DMU_POOL_SYNC_BPOBJ             "sync_bplist"
 314 #define DMU_POOL_ERRLOG_SCRUB           "errlog_scrub"
 315 #define DMU_POOL_ERRLOG_LAST            "errlog_last"
 316 #define DMU_POOL_SPARES                 "spares"
 317 #define DMU_POOL_DEFLATE                "deflate"
 318 #define DMU_POOL_HISTORY                "history"
 319 #define DMU_POOL_PROPS                  "pool_props"
 320 #define DMU_POOL_L2CACHE                "l2cache"
 321 #define DMU_POOL_TMP_USERREFS           "tmp_userrefs"
 322 #define DMU_POOL_DDT                    "DDT-%s-%s-%s"
 323 #define DMU_POOL_DDT_STATS              "DDT-statistics"
 324 #define DMU_POOL_CREATION_VERSION       "creation_version"
 325 #define DMU_POOL_SCAN                   "scan"
 326 #define DMU_POOL_FREE_BPOBJ             "free_bpobj"
 327 #define DMU_POOL_BPTREE_OBJ             "bptree_obj"
 328 #define DMU_POOL_EMPTY_BPOBJ            "empty_bpobj"
 329 #define DMU_POOL_CHECKSUM_SALT          "org.illumos:checksum_salt"
 330 #define DMU_POOL_VDEV_ZAP_MAP           "com.delphix:vdev_zap_map"
 331 #define DMU_POOL_REMOVING               "com.delphix:removing"
 332 #define DMU_POOL_OBSOLETE_BPOBJ         "com.delphix:obsolete_bpobj"
 333 #define DMU_POOL_CONDENSING_INDIRECT    "com.delphix:condensing_indirect"
 334 
 335 /*
 336  * Allocate an object from this objset.  The range of object numbers
 337  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
 338  *
 339  * The transaction must be assigned to a txg.  The newly allocated
 340  * object will be "held" in the transaction (ie. you can modify the
 341  * newly allocated object in this transaction).
 342  *
 343  * dmu_object_alloc() chooses an object and returns it in *objectp.
 344  *
 345  * dmu_object_claim() allocates a specific object number.  If that
 346  * number is already allocated, it fails and returns EEXIST.
 347  *
 348  * Return 0 on success, or ENOSPC or EEXIST as specified above.
 349  */
 350 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
 351     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
 352 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
 353     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
 354 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
 355     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
 356 
 357 /*
 358  * Free an object from this objset.
 359  *
 360  * The object's data will be freed as well (ie. you don't need to call
 361  * dmu_free(object, 0, -1, tx)).
 362  *
 363  * The object need not be held in the transaction.
 364  *
 365  * If there are any holds on this object's buffers (via dmu_buf_hold()),
 366  * or tx holds on the object (via dmu_tx_hold_object()), you can not
 367  * free it; it fails and returns EBUSY.
 368  *
 369  * If the object is not allocated, it fails and returns ENOENT.
 370  *
 371  * Return 0 on success, or EBUSY or ENOENT as specified above.
 372  */
 373 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
 374 
 375 /*
 376  * Find the next allocated or free object.
 377  *
 378  * The objectp parameter is in-out.  It will be updated to be the next
 379  * object which is allocated.  Ignore objects which have not been
 380  * modified since txg.
 381  *
 382  * XXX Can only be called on a objset with no dirty data.
 383  *
 384  * Returns 0 on success, or ENOENT if there are no more objects.
 385  */
 386 int dmu_object_next(objset_t *os, uint64_t *objectp,
 387     boolean_t hole, uint64_t txg);
 388 
 389 /*
 390  * Set the data blocksize for an object.
 391  *
 392  * The object cannot have any blocks allcated beyond the first.  If
 393  * the first block is allocated already, the new size must be greater
 394  * than the current block size.  If these conditions are not met,
 395  * ENOTSUP will be returned.
 396  *
 397  * Returns 0 on success, or EBUSY if there are any holds on the object
 398  * contents, or ENOTSUP as described above.
 399  */
 400 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
 401     int ibs, dmu_tx_t *tx);
 402 
 403 /*
 404  * Set the checksum property on a dnode.  The new checksum algorithm will
 405  * apply to all newly written blocks; existing blocks will not be affected.
 406  */
 407 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
 408     dmu_tx_t *tx);
 409 
 410 /*
 411  * Set the compress property on a dnode.  The new compression algorithm will
 412  * apply to all newly written blocks; existing blocks will not be affected.
 413  */
 414 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
 415     dmu_tx_t *tx);
 416 
 417 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
 418 
 419 void
 420 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
 421     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
 422     int compressed_size, int byteorder, dmu_tx_t *tx);
 423 
 424 /*
 425  * Decide how to write a block: checksum, compression, number of copies, etc.
 426  */
 427 #define WP_NOFILL       0x1
 428 #define WP_DMU_SYNC     0x2
 429 #define WP_SPILL        0x4
 430 
 431 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
 432     struct zio_prop *zp);
 433 /*
 434  * The bonus data is accessed more or less like a regular buffer.
 435  * You must dmu_bonus_hold() to get the buffer, which will give you a
 436  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
 437  * data.  As with any normal buffer, you must call dmu_buf_will_dirty()
 438  * before modifying it, and the
 439  * object must be held in an assigned transaction before calling
 440  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
 441  * buffer as well.  You must release your hold with dmu_buf_rele().
 442  *
 443  * Returns ENOENT, EIO, or 0.
 444  */
 445 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
 446 int dmu_bonus_max(void);
 447 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
 448 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
 449 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
 450 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
 451 
 452 /*
 453  * Special spill buffer support used by "SA" framework
 454  */
 455 
 456 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
 457 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
 458     void *tag, dmu_buf_t **dbp);
 459 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
 460 
 461 /*
 462  * Obtain the DMU buffer from the specified object which contains the
 463  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
 464  * that it will remain in memory.  You must release the hold with
 465  * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
 466  * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
 467  *
 468  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
 469  * on the returned buffer before reading or writing the buffer's
 470  * db_data.  The comments for those routines describe what particular
 471  * operations are valid after calling them.
 472  *
 473  * The object number must be a valid, allocated object number.
 474  */
 475 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
 476     void *tag, dmu_buf_t **, int flags);
 477 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
 478     void *tag, dmu_buf_t **dbp, int flags);
 479 
 480 /*
 481  * Add a reference to a dmu buffer that has already been held via
 482  * dmu_buf_hold() in the current context.
 483  */
 484 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
 485 
 486 /*
 487  * Attempt to add a reference to a dmu buffer that is in an unknown state,
 488  * using a pointer that may have been invalidated by eviction processing.
 489  * The request will succeed if the passed in dbuf still represents the
 490  * same os/object/blkid, is ineligible for eviction, and has at least
 491  * one hold by a user other than the syncer.
 492  */
 493 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
 494     uint64_t blkid, void *tag);
 495 
 496 void dmu_buf_rele(dmu_buf_t *db, void *tag);
 497 uint64_t dmu_buf_refcount(dmu_buf_t *db);
 498 
 499 /*
 500  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
 501  * range of an object.  A pointer to an array of dmu_buf_t*'s is
 502  * returned (in *dbpp).
 503  *
 504  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
 505  * frees the array.  The hold on the array of buffers MUST be released
 506  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
 507  * individually with dmu_buf_rele.
 508  */
 509 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
 510     uint64_t length, boolean_t read, void *tag,
 511     int *numbufsp, dmu_buf_t ***dbpp);
 512 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
 513 
 514 typedef void dmu_buf_evict_func_t(void *user_ptr);
 515 
 516 /*
 517  * A DMU buffer user object may be associated with a dbuf for the
 518  * duration of its lifetime.  This allows the user of a dbuf (client)
 519  * to attach private data to a dbuf (e.g. in-core only data such as a
 520  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
 521  * when that dbuf has been evicted.  Clients typically respond to the
 522  * eviction notification by freeing their private data, thus ensuring
 523  * the same lifetime for both dbuf and private data.
 524  *
 525  * The mapping from a dmu_buf_user_t to any client private data is the
 526  * client's responsibility.  All current consumers of the API with private
 527  * data embed a dmu_buf_user_t as the first member of the structure for
 528  * their private data.  This allows conversions between the two types
 529  * with a simple cast.  Since the DMU buf user API never needs access
 530  * to the private data, other strategies can be employed if necessary
 531  * or convenient for the client (e.g. using container_of() to do the
 532  * conversion for private data that cannot have the dmu_buf_user_t as
 533  * its first member).
 534  *
 535  * Eviction callbacks are executed without the dbuf mutex held or any
 536  * other type of mechanism to guarantee that the dbuf is still available.
 537  * For this reason, users must assume the dbuf has already been freed
 538  * and not reference the dbuf from the callback context.
 539  *
 540  * Users requesting "immediate eviction" are notified as soon as the dbuf
 541  * is only referenced by dirty records (dirties == holds).  Otherwise the
 542  * notification occurs after eviction processing for the dbuf begins.
 543  */
 544 typedef struct dmu_buf_user {
 545         /*
 546          * Asynchronous user eviction callback state.
 547          */
 548         taskq_ent_t     dbu_tqent;
 549 
 550         /*
 551          * This instance's eviction function pointers.
 552          *
 553          * dbu_evict_func_sync is called synchronously and then
 554          * dbu_evict_func_async is executed asynchronously on a taskq.
 555          */
 556         dmu_buf_evict_func_t *dbu_evict_func_sync;
 557         dmu_buf_evict_func_t *dbu_evict_func_async;
 558 #ifdef ZFS_DEBUG
 559         /*
 560          * Pointer to user's dbuf pointer.  NULL for clients that do
 561          * not associate a dbuf with their user data.
 562          *
 563          * The dbuf pointer is cleared upon eviction so as to catch
 564          * use-after-evict bugs in clients.
 565          */
 566         dmu_buf_t **dbu_clear_on_evict_dbufp;
 567 #endif
 568 } dmu_buf_user_t;
 569 
 570 /*
 571  * Initialize the given dmu_buf_user_t instance with the eviction function
 572  * evict_func, to be called when the user is evicted.
 573  *
 574  * NOTE: This function should only be called once on a given dmu_buf_user_t.
 575  *       To allow enforcement of this, dbu must already be zeroed on entry.
 576  */
 577 /*ARGSUSED*/
 578 inline void
 579 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
 580     dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
 581 {
 582         ASSERT(dbu->dbu_evict_func_sync == NULL);
 583         ASSERT(dbu->dbu_evict_func_async == NULL);
 584 
 585         /* must have at least one evict func */
 586         IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
 587         dbu->dbu_evict_func_sync = evict_func_sync;
 588         dbu->dbu_evict_func_async = evict_func_async;
 589 #ifdef ZFS_DEBUG
 590         dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
 591 #endif
 592 }
 593 
 594 /*
 595  * Attach user data to a dbuf and mark it for normal (when the dbuf's
 596  * data is cleared or its reference count goes to zero) eviction processing.
 597  *
 598  * Returns NULL on success, or the existing user if another user currently
 599  * owns the buffer.
 600  */
 601 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
 602 
 603 /*
 604  * Attach user data to a dbuf and mark it for immediate (its dirty and
 605  * reference counts are equal) eviction processing.
 606  *
 607  * Returns NULL on success, or the existing user if another user currently
 608  * owns the buffer.
 609  */
 610 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
 611 
 612 /*
 613  * Replace the current user of a dbuf.
 614  *
 615  * If given the current user of a dbuf, replaces the dbuf's user with
 616  * "new_user" and returns the user data pointer that was replaced.
 617  * Otherwise returns the current, and unmodified, dbuf user pointer.
 618  */
 619 void *dmu_buf_replace_user(dmu_buf_t *db,
 620     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
 621 
 622 /*
 623  * Remove the specified user data for a DMU buffer.
 624  *
 625  * Returns the user that was removed on success, or the current user if
 626  * another user currently owns the buffer.
 627  */
 628 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
 629 
 630 /*
 631  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
 632  */
 633 void *dmu_buf_get_user(dmu_buf_t *db);
 634 
 635 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
 636 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
 637 void dmu_buf_dnode_exit(dmu_buf_t *db);
 638 
 639 /* Block until any in-progress dmu buf user evictions complete. */
 640 void dmu_buf_user_evict_wait(void);
 641 
 642 /*
 643  * Returns the blkptr associated with this dbuf, or NULL if not set.
 644  */
 645 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
 646 
 647 /*
 648  * Indicate that you are going to modify the buffer's data (db_data).
 649  *
 650  * The transaction (tx) must be assigned to a txg (ie. you've called
 651  * dmu_tx_assign()).  The buffer's object must be held in the tx
 652  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
 653  */
 654 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
 655 
 656 /*
 657  * You must create a transaction, then hold the objects which you will
 658  * (or might) modify as part of this transaction.  Then you must assign
 659  * the transaction to a transaction group.  Once the transaction has
 660  * been assigned, you can modify buffers which belong to held objects as
 661  * part of this transaction.  You can't modify buffers before the
 662  * transaction has been assigned; you can't modify buffers which don't
 663  * belong to objects which this transaction holds; you can't hold
 664  * objects once the transaction has been assigned.  You may hold an
 665  * object which you are going to free (with dmu_object_free()), but you
 666  * don't have to.
 667  *
 668  * You can abort the transaction before it has been assigned.
 669  *
 670  * Note that you may hold buffers (with dmu_buf_hold) at any time,
 671  * regardless of transaction state.
 672  */
 673 
 674 #define DMU_NEW_OBJECT  (-1ULL)
 675 #define DMU_OBJECT_END  (-1ULL)
 676 
 677 dmu_tx_t *dmu_tx_create(objset_t *os);
 678 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
 679 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
 680     int len);
 681 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
 682     uint64_t len);
 683 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
 684     uint64_t len);
 685 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
 686 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
 687 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
 688     const char *name);
 689 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
 690 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
 691 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
 692 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
 693 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
 694 void dmu_tx_abort(dmu_tx_t *tx);
 695 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
 696 void dmu_tx_wait(dmu_tx_t *tx);
 697 void dmu_tx_commit(dmu_tx_t *tx);
 698 void dmu_tx_mark_netfree(dmu_tx_t *tx);
 699 
 700 /*
 701  * To register a commit callback, dmu_tx_callback_register() must be called.
 702  *
 703  * dcb_data is a pointer to caller private data that is passed on as a
 704  * callback parameter. The caller is responsible for properly allocating and
 705  * freeing it.
 706  *
 707  * When registering a callback, the transaction must be already created, but
 708  * it cannot be committed or aborted. It can be assigned to a txg or not.
 709  *
 710  * The callback will be called after the transaction has been safely written
 711  * to stable storage and will also be called if the dmu_tx is aborted.
 712  * If there is any error which prevents the transaction from being committed to
 713  * disk, the callback will be called with a value of error != 0.
 714  */
 715 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
 716 
 717 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
 718     void *dcb_data);
 719 
 720 /*
 721  * Free up the data blocks for a defined range of a file.  If size is
 722  * -1, the range from offset to end-of-file is freed.
 723  */
 724 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
 725         uint64_t size, dmu_tx_t *tx);
 726 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
 727         uint64_t size);
 728 int dmu_free_long_object(objset_t *os, uint64_t object);
 729 
 730 /*
 731  * Convenience functions.
 732  *
 733  * Canfail routines will return 0 on success, or an errno if there is a
 734  * nonrecoverable I/O error.
 735  */
 736 #define DMU_READ_PREFETCH       0 /* prefetch */
 737 #define DMU_READ_NO_PREFETCH    1 /* don't prefetch */
 738 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 739         void *buf, uint32_t flags);
 740 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
 741     uint32_t flags);
 742 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 743         const void *buf, dmu_tx_t *tx);
 744 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
 745     const void *buf, dmu_tx_t *tx);
 746 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 747         dmu_tx_t *tx);
 748 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
 749 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
 750 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
 751     dmu_tx_t *tx);
 752 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
 753     dmu_tx_t *tx);
 754 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
 755     uint64_t size, struct page *pp, dmu_tx_t *tx);
 756 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
 757 void dmu_return_arcbuf(struct arc_buf *buf);
 758 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
 759     dmu_tx_t *tx);
 760 int dmu_xuio_init(struct xuio *uio, int niov);
 761 void dmu_xuio_fini(struct xuio *uio);
 762 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
 763     size_t n);
 764 int dmu_xuio_cnt(struct xuio *uio);
 765 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
 766 void dmu_xuio_clear(struct xuio *uio, int i);
 767 void xuio_stat_wbuf_copied(void);
 768 void xuio_stat_wbuf_nocopy(void);
 769 
 770 extern boolean_t zfs_prefetch_disable;
 771 extern int zfs_max_recordsize;
 772 
 773 /*
 774  * Asynchronously try to read in the data.
 775  */
 776 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
 777     uint64_t len, enum zio_priority pri);
 778 
 779 typedef struct dmu_object_info {
 780         /* All sizes are in bytes unless otherwise indicated. */
 781         uint32_t doi_data_block_size;
 782         uint32_t doi_metadata_block_size;
 783         dmu_object_type_t doi_type;
 784         dmu_object_type_t doi_bonus_type;
 785         uint64_t doi_bonus_size;
 786         uint8_t doi_indirection;                /* 2 = dnode->indirect->data */
 787         uint8_t doi_checksum;
 788         uint8_t doi_compress;
 789         uint8_t doi_nblkptr;
 790         uint8_t doi_pad[4];
 791         uint64_t doi_physical_blocks_512;       /* data + metadata, 512b blks */
 792         uint64_t doi_max_offset;
 793         uint64_t doi_fill_count;                /* number of non-empty blocks */
 794 } dmu_object_info_t;
 795 
 796 typedef void arc_byteswap_func_t(void *buf, size_t size);
 797 
 798 typedef struct dmu_object_type_info {
 799         dmu_object_byteswap_t   ot_byteswap;
 800         boolean_t               ot_metadata;
 801         char                    *ot_name;
 802 } dmu_object_type_info_t;
 803 
 804 typedef struct dmu_object_byteswap_info {
 805         arc_byteswap_func_t     *ob_func;
 806         char                    *ob_name;
 807 } dmu_object_byteswap_info_t;
 808 
 809 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
 810 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
 811 
 812 /*
 813  * Get information on a DMU object.
 814  *
 815  * Return 0 on success or ENOENT if object is not allocated.
 816  *
 817  * If doi is NULL, just indicates whether the object exists.
 818  */
 819 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
 820 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
 821 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
 822 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
 823 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
 824 /*
 825  * Like dmu_object_info_from_db, but faster still when you only care about
 826  * the size.  This is specifically optimized for zfs_getattr().
 827  */
 828 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
 829     u_longlong_t *nblk512);
 830 
 831 typedef struct dmu_objset_stats {
 832         uint64_t dds_num_clones; /* number of clones of this */
 833         uint64_t dds_creation_txg;
 834         uint64_t dds_guid;
 835         dmu_objset_type_t dds_type;
 836         uint8_t dds_is_snapshot;
 837         uint8_t dds_inconsistent;
 838         char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
 839 } dmu_objset_stats_t;
 840 
 841 /*
 842  * Get stats on a dataset.
 843  */
 844 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
 845 
 846 /*
 847  * Add entries to the nvlist for all the objset's properties.  See
 848  * zfs_prop_table[] and zfs(1m) for details on the properties.
 849  */
 850 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
 851 
 852 /*
 853  * Get the space usage statistics for statvfs().
 854  *
 855  * refdbytes is the amount of space "referenced" by this objset.
 856  * availbytes is the amount of space available to this objset, taking
 857  * into account quotas & reservations, assuming that no other objsets
 858  * use the space first.  These values correspond to the 'referenced' and
 859  * 'available' properties, described in the zfs(1m) manpage.
 860  *
 861  * usedobjs and availobjs are the number of objects currently allocated,
 862  * and available.
 863  */
 864 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
 865     uint64_t *usedobjsp, uint64_t *availobjsp);
 866 
 867 /*
 868  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
 869  * (Contrast with the ds_guid which is a 64-bit ID that will never
 870  * change, so there is a small probability that it will collide.)
 871  */
 872 uint64_t dmu_objset_fsid_guid(objset_t *os);
 873 
 874 /*
 875  * Get the [cm]time for an objset's snapshot dir
 876  */
 877 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
 878 
 879 int dmu_objset_is_snapshot(objset_t *os);
 880 
 881 extern struct spa *dmu_objset_spa(objset_t *os);
 882 extern struct zilog *dmu_objset_zil(objset_t *os);
 883 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
 884 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
 885 extern void dmu_objset_name(objset_t *os, char *buf);
 886 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
 887 extern uint64_t dmu_objset_id(objset_t *os);
 888 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
 889 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
 890 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
 891     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
 892 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
 893     int maxlen, boolean_t *conflict);
 894 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
 895     uint64_t *idp, uint64_t *offp);
 896 
 897 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
 898     void *bonus, uint64_t *userp, uint64_t *groupp);
 899 extern void dmu_objset_register_type(dmu_objset_type_t ost,
 900     objset_used_cb_t *cb);
 901 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
 902 extern void *dmu_objset_get_user(objset_t *os);
 903 
 904 /*
 905  * Return the txg number for the given assigned transaction.
 906  */
 907 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
 908 
 909 /*
 910  * Synchronous write.
 911  * If a parent zio is provided this function initiates a write on the
 912  * provided buffer as a child of the parent zio.
 913  * In the absence of a parent zio, the write is completed synchronously.
 914  * At write completion, blk is filled with the bp of the written block.
 915  * Note that while the data covered by this function will be on stable
 916  * storage when the write completes this new data does not become a
 917  * permanent part of the file until the associated transaction commits.
 918  */
 919 
 920 /*
 921  * {zfs,zvol,ztest}_get_done() args
 922  */
 923 typedef struct zgd {
 924         struct lwb      *zgd_lwb;
 925         struct blkptr   *zgd_bp;
 926         dmu_buf_t       *zgd_db;
 927         struct rl       *zgd_rl;
 928         void            *zgd_private;
 929 } zgd_t;
 930 
 931 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
 932 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
 933 
 934 /*
 935  * Find the next hole or data block in file starting at *off
 936  * Return found offset in *off. Return ESRCH for end of file.
 937  */
 938 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
 939     uint64_t *off);
 940 
 941 /*
 942  * Check if a DMU object has any dirty blocks. If so, sync out
 943  * all pending transaction groups. Otherwise, this function
 944  * does not alter DMU state. This could be improved to only sync
 945  * out the necessary transaction groups for this particular
 946  * object.
 947  */
 948 int dmu_object_wait_synced(objset_t *os, uint64_t object);
 949 
 950 /*
 951  * Initial setup and final teardown.
 952  */
 953 extern void dmu_init(void);
 954 extern void dmu_fini(void);
 955 
 956 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
 957     uint64_t object, uint64_t offset, int len);
 958 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
 959     dmu_traverse_cb_t cb, void *arg);
 960 
 961 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
 962     struct vnode *vp, offset_t *offp);
 963 
 964 /* CRC64 table */
 965 #define ZFS_CRC64_POLY  0xC96C5795D7870F42ULL   /* ECMA-182, reflected form */
 966 extern uint64_t zfs_crc64_table[256];
 967 
 968 extern int zfs_mdcomp_disable;
 969 
 970 #ifdef  __cplusplus
 971 }
 972 #endif
 973 
 974 #endif  /* _SYS_DMU_H */