1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
  27  */
  28 
  29 #include <sys/zfs_context.h>
  30 #include <sys/spa.h>
  31 #include <sys/dmu.h>
  32 #include <sys/dmu_tx.h>
  33 #include <sys/dnode.h>
  34 #include <sys/dsl_pool.h>
  35 #include <sys/zio.h>
  36 #include <sys/space_map.h>
  37 #include <sys/refcount.h>
  38 #include <sys/zfeature.h>
  39 
  40 /*
  41  * The data for a given space map can be kept on blocks of any size.
  42  * Larger blocks entail fewer i/o operations, but they also cause the
  43  * DMU to keep more data in-core, and also to waste more i/o bandwidth
  44  * when only a few blocks have changed since the last transaction group.
  45  */
  46 int space_map_blksz = (1 << 12);
  47 
  48 /*
  49  * Iterate through the space map, invoking the callback on each (non-debug)
  50  * space map entry.
  51  */
  52 int
  53 space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
  54 {
  55         uint64_t *entry, *entry_map, *entry_map_end;
  56         uint64_t bufsize, size, offset, end;
  57         int error = 0;
  58 
  59         end = space_map_length(sm);
  60 
  61         bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
  62         entry_map = zio_buf_alloc(bufsize);
  63 
  64         if (end > bufsize) {
  65                 dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
  66                     end - bufsize, ZIO_PRIORITY_SYNC_READ);
  67         }
  68 
  69         for (offset = 0; offset < end && error == 0; offset += bufsize) {
  70                 size = MIN(end - offset, bufsize);
  71                 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
  72                 VERIFY(size != 0);
  73                 ASSERT3U(sm->sm_blksz, !=, 0);
  74 
  75                 dprintf("object=%llu  offset=%llx  size=%llx\n",
  76                     space_map_object(sm), offset, size);
  77 
  78                 error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
  79                     entry_map, DMU_READ_PREFETCH);
  80                 if (error != 0)
  81                         break;
  82 
  83                 entry_map_end = entry_map + (size / sizeof (uint64_t));
  84                 for (entry = entry_map; entry < entry_map_end && error == 0;
  85                     entry++) {
  86                         uint64_t e = *entry;
  87                         uint64_t offset, size;
  88 
  89                         if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
  90                                 continue;
  91 
  92                         offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
  93                             sm->sm_start;
  94                         size = SM_RUN_DECODE(e) << sm->sm_shift;
  95 
  96                         VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
  97                         VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
  98                         VERIFY3U(offset, >=, sm->sm_start);
  99                         VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
 100                         error = callback(SM_TYPE_DECODE(e), offset, size, arg);
 101                 }
 102         }
 103 
 104         zio_buf_free(entry_map, bufsize);
 105         return (error);
 106 }
 107 
 108 typedef struct space_map_load_arg {
 109         space_map_t     *smla_sm;
 110         range_tree_t    *smla_rt;
 111         maptype_t       smla_type;
 112 } space_map_load_arg_t;
 113 
 114 static int
 115 space_map_load_callback(maptype_t type, uint64_t offset, uint64_t size,
 116     void *arg)
 117 {
 118         space_map_load_arg_t *smla = arg;
 119         if (type == smla->smla_type) {
 120                 VERIFY3U(range_tree_space(smla->smla_rt) + size, <=,
 121                     smla->smla_sm->sm_size);
 122                 range_tree_add(smla->smla_rt, offset, size);
 123         } else {
 124                 range_tree_remove(smla->smla_rt, offset, size);
 125         }
 126 
 127         return (0);
 128 }
 129 
 130 /*
 131  * Load the space map disk into the specified range tree. Segments of maptype
 132  * are added to the range tree, other segment types are removed.
 133  */
 134 int
 135 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
 136 {
 137         uint64_t space;
 138         int err;
 139         space_map_load_arg_t smla;
 140 
 141         VERIFY0(range_tree_space(rt));
 142         space = space_map_allocated(sm);
 143 
 144         if (maptype == SM_FREE) {
 145                 range_tree_add(rt, sm->sm_start, sm->sm_size);
 146                 space = sm->sm_size - space;
 147         }
 148 
 149         smla.smla_rt = rt;
 150         smla.smla_sm = sm;
 151         smla.smla_type = maptype;
 152         err = space_map_iterate(sm, space_map_load_callback, &smla);
 153 
 154         if (err == 0) {
 155                 VERIFY3U(range_tree_space(rt), ==, space);
 156         } else {
 157                 range_tree_vacate(rt, NULL, NULL);
 158         }
 159 
 160         return (err);
 161 }
 162 
 163 void
 164 space_map_histogram_clear(space_map_t *sm)
 165 {
 166         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 167                 return;
 168 
 169         bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
 170 }
 171 
 172 boolean_t
 173 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
 174 {
 175         /*
 176          * Verify that the in-core range tree does not have any
 177          * ranges smaller than our sm_shift size.
 178          */
 179         for (int i = 0; i < sm->sm_shift; i++) {
 180                 if (rt->rt_histogram[i] != 0)
 181                         return (B_FALSE);
 182         }
 183         return (B_TRUE);
 184 }
 185 
 186 void
 187 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
 188 {
 189         int idx = 0;
 190 
 191         ASSERT(dmu_tx_is_syncing(tx));
 192         VERIFY3U(space_map_object(sm), !=, 0);
 193 
 194         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 195                 return;
 196 
 197         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 198 
 199         ASSERT(space_map_histogram_verify(sm, rt));
 200         /*
 201          * Transfer the content of the range tree histogram to the space
 202          * map histogram. The space map histogram contains 32 buckets ranging
 203          * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
 204          * however, can represent ranges from 2^0 to 2^63. Since the space
 205          * map only cares about allocatable blocks (minimum of sm_shift) we
 206          * can safely ignore all ranges in the range tree smaller than sm_shift.
 207          */
 208         for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 209 
 210                 /*
 211                  * Since the largest histogram bucket in the space map is
 212                  * 2^(32+sm_shift-1), we need to normalize the values in
 213                  * the range tree for any bucket larger than that size. For
 214                  * example given an sm_shift of 9, ranges larger than 2^40
 215                  * would get normalized as if they were 1TB ranges. Assume
 216                  * the range tree had a count of 5 in the 2^44 (16TB) bucket,
 217                  * the calculation below would normalize this to 5 * 2^4 (16).
 218                  */
 219                 ASSERT3U(i, >=, idx + sm->sm_shift);
 220                 sm->sm_phys->smp_histogram[idx] +=
 221                     rt->rt_histogram[i] << (i - idx - sm->sm_shift);
 222 
 223                 /*
 224                  * Increment the space map's index as long as we haven't
 225                  * reached the maximum bucket size. Accumulate all ranges
 226                  * larger than the max bucket size into the last bucket.
 227                  */
 228                 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
 229                         ASSERT3U(idx + sm->sm_shift, ==, i);
 230                         idx++;
 231                         ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
 232                 }
 233         }
 234 }
 235 
 236 uint64_t
 237 space_map_entries(space_map_t *sm, range_tree_t *rt)
 238 {
 239         avl_tree_t *t = &rt->rt_root;
 240         range_seg_t *rs;
 241         uint64_t size, entries;
 242 
 243         /*
 244          * All space_maps always have a debug entry so account for it here.
 245          */
 246         entries = 1;
 247 
 248         /*
 249          * Traverse the range tree and calculate the number of space map
 250          * entries that would be required to write out the range tree.
 251          */
 252         for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
 253                 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 254                 entries += howmany(size, SM_RUN_MAX);
 255         }
 256         return (entries);
 257 }
 258 
 259 void
 260 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
 261     dmu_tx_t *tx)
 262 {
 263         objset_t *os = sm->sm_os;
 264         spa_t *spa = dmu_objset_spa(os);
 265         avl_tree_t *t = &rt->rt_root;
 266         range_seg_t *rs;
 267         uint64_t size, total, rt_space, nodes;
 268         uint64_t *entry, *entry_map, *entry_map_end;
 269         uint64_t expected_entries, actual_entries = 1;
 270 
 271         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 272         VERIFY3U(space_map_object(sm), !=, 0);
 273         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 274 
 275         /*
 276          * This field is no longer necessary since the in-core space map
 277          * now contains the object number but is maintained for backwards
 278          * compatibility.
 279          */
 280         sm->sm_phys->smp_object = sm->sm_object;
 281 
 282         if (range_tree_space(rt) == 0) {
 283                 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
 284                 return;
 285         }
 286 
 287         if (maptype == SM_ALLOC)
 288                 sm->sm_phys->smp_alloc += range_tree_space(rt);
 289         else
 290                 sm->sm_phys->smp_alloc -= range_tree_space(rt);
 291 
 292         expected_entries = space_map_entries(sm, rt);
 293 
 294         entry_map = zio_buf_alloc(sm->sm_blksz);
 295         entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
 296         entry = entry_map;
 297 
 298         *entry++ = SM_DEBUG_ENCODE(1) |
 299             SM_DEBUG_ACTION_ENCODE(maptype) |
 300             SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
 301             SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
 302 
 303         total = 0;
 304         nodes = avl_numnodes(&rt->rt_root);
 305         rt_space = range_tree_space(rt);
 306         for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
 307                 uint64_t start;
 308 
 309                 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 310                 start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
 311 
 312                 total += size << sm->sm_shift;
 313 
 314                 while (size != 0) {
 315                         uint64_t run_len;
 316 
 317                         run_len = MIN(size, SM_RUN_MAX);
 318 
 319                         if (entry == entry_map_end) {
 320                                 dmu_write(os, space_map_object(sm),
 321                                     sm->sm_phys->smp_objsize, sm->sm_blksz,
 322                                     entry_map, tx);
 323                                 sm->sm_phys->smp_objsize += sm->sm_blksz;
 324                                 entry = entry_map;
 325                         }
 326 
 327                         *entry++ = SM_OFFSET_ENCODE(start) |
 328                             SM_TYPE_ENCODE(maptype) |
 329                             SM_RUN_ENCODE(run_len);
 330 
 331                         start += run_len;
 332                         size -= run_len;
 333                         actual_entries++;
 334                 }
 335         }
 336 
 337         if (entry != entry_map) {
 338                 size = (entry - entry_map) * sizeof (uint64_t);
 339                 dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
 340                     size, entry_map, tx);
 341                 sm->sm_phys->smp_objsize += size;
 342         }
 343         ASSERT3U(expected_entries, ==, actual_entries);
 344 
 345         /*
 346          * Ensure that the space_map's accounting wasn't changed
 347          * while we were in the middle of writing it out.
 348          */
 349         VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
 350         VERIFY3U(range_tree_space(rt), ==, rt_space);
 351         VERIFY3U(range_tree_space(rt), ==, total);
 352 
 353         zio_buf_free(entry_map, sm->sm_blksz);
 354 }
 355 
 356 static int
 357 space_map_open_impl(space_map_t *sm)
 358 {
 359         int error;
 360         u_longlong_t blocks;
 361 
 362         error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
 363         if (error)
 364                 return (error);
 365 
 366         dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
 367         sm->sm_phys = sm->sm_dbuf->db_data;
 368         return (0);
 369 }
 370 
 371 int
 372 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
 373     uint64_t start, uint64_t size, uint8_t shift)
 374 {
 375         space_map_t *sm;
 376         int error;
 377 
 378         ASSERT(*smp == NULL);
 379         ASSERT(os != NULL);
 380         ASSERT(object != 0);
 381 
 382         sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
 383 
 384         sm->sm_start = start;
 385         sm->sm_size = size;
 386         sm->sm_shift = shift;
 387         sm->sm_os = os;
 388         sm->sm_object = object;
 389 
 390         error = space_map_open_impl(sm);
 391         if (error != 0) {
 392                 space_map_close(sm);
 393                 return (error);
 394         }
 395 
 396         *smp = sm;
 397 
 398         return (0);
 399 }
 400 
 401 void
 402 space_map_close(space_map_t *sm)
 403 {
 404         if (sm == NULL)
 405                 return;
 406 
 407         if (sm->sm_dbuf != NULL)
 408                 dmu_buf_rele(sm->sm_dbuf, sm);
 409         sm->sm_dbuf = NULL;
 410         sm->sm_phys = NULL;
 411 
 412         kmem_free(sm, sizeof (*sm));
 413 }
 414 
 415 void
 416 space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
 417 {
 418         objset_t *os = sm->sm_os;
 419         spa_t *spa = dmu_objset_spa(os);
 420         dmu_object_info_t doi;
 421 
 422         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 423         ASSERT(dmu_tx_is_syncing(tx));
 424         VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
 425 
 426         dmu_object_info_from_db(sm->sm_dbuf, &doi);
 427 
 428         /*
 429          * If the space map has the wrong bonus size (because
 430          * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
 431          * the wrong block size (because space_map_blksz has changed),
 432          * free and re-allocate its object with the updated sizes.
 433          *
 434          * Otherwise, just truncate the current object.
 435          */
 436         if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
 437             doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
 438             doi.doi_data_block_size != space_map_blksz) {
 439                 zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
 440                     "object[%llu]: old bonus %u, old blocksz %u",
 441                     dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
 442                     doi.doi_bonus_size, doi.doi_data_block_size);
 443 
 444                 space_map_free(sm, tx);
 445                 dmu_buf_rele(sm->sm_dbuf, sm);
 446 
 447                 sm->sm_object = space_map_alloc(sm->sm_os, tx);
 448                 VERIFY0(space_map_open_impl(sm));
 449         } else {
 450                 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
 451 
 452                 /*
 453                  * If the spacemap is reallocated, its histogram
 454                  * will be reset.  Do the same in the common case so that
 455                  * bugs related to the uncommon case do not go unnoticed.
 456                  */
 457                 bzero(sm->sm_phys->smp_histogram,
 458                     sizeof (sm->sm_phys->smp_histogram));
 459         }
 460 
 461         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 462         sm->sm_phys->smp_objsize = 0;
 463         sm->sm_phys->smp_alloc = 0;
 464 }
 465 
 466 /*
 467  * Update the in-core space_map allocation and length values.
 468  */
 469 void
 470 space_map_update(space_map_t *sm)
 471 {
 472         if (sm == NULL)
 473                 return;
 474 
 475         sm->sm_alloc = sm->sm_phys->smp_alloc;
 476         sm->sm_length = sm->sm_phys->smp_objsize;
 477 }
 478 
 479 uint64_t
 480 space_map_alloc(objset_t *os, dmu_tx_t *tx)
 481 {
 482         spa_t *spa = dmu_objset_spa(os);
 483         uint64_t object;
 484         int bonuslen;
 485 
 486         if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 487                 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
 488                 bonuslen = sizeof (space_map_phys_t);
 489                 ASSERT3U(bonuslen, <=, dmu_bonus_max());
 490         } else {
 491                 bonuslen = SPACE_MAP_SIZE_V0;
 492         }
 493 
 494         object = dmu_object_alloc(os,
 495             DMU_OT_SPACE_MAP, space_map_blksz,
 496             DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
 497 
 498         return (object);
 499 }
 500 
 501 void
 502 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
 503 {
 504         spa_t *spa = dmu_objset_spa(os);
 505         if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 506                 dmu_object_info_t doi;
 507 
 508                 VERIFY0(dmu_object_info(os, smobj, &doi));
 509                 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
 510                         spa_feature_decr(spa,
 511                             SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
 512                 }
 513         }
 514 
 515         VERIFY0(dmu_object_free(os, smobj, tx));
 516 }
 517 
 518 void
 519 space_map_free(space_map_t *sm, dmu_tx_t *tx)
 520 {
 521         if (sm == NULL)
 522                 return;
 523 
 524         space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
 525         sm->sm_object = 0;
 526 }
 527 
 528 uint64_t
 529 space_map_object(space_map_t *sm)
 530 {
 531         return (sm != NULL ? sm->sm_object : 0);
 532 }
 533 
 534 /*
 535  * Returns the already synced, on-disk allocated space.
 536  */
 537 uint64_t
 538 space_map_allocated(space_map_t *sm)
 539 {
 540         return (sm != NULL ? sm->sm_alloc : 0);
 541 }
 542 
 543 /*
 544  * Returns the already synced, on-disk length;
 545  */
 546 uint64_t
 547 space_map_length(space_map_t *sm)
 548 {
 549         return (sm != NULL ? sm->sm_length : 0);
 550 }
 551 
 552 /*
 553  * Returns the allocated space that is currently syncing.
 554  */
 555 int64_t
 556 space_map_alloc_delta(space_map_t *sm)
 557 {
 558         if (sm == NULL)
 559                 return (0);
 560         ASSERT(sm->sm_dbuf != NULL);
 561         return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
 562 }