1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright (c) 2017 Datto Inc.
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
57
58 /*
59 * SPA locking
60 *
61 * There are four basic locks for managing spa_t structures:
62 *
63 * spa_namespace_lock (global mutex)
64 *
65 * This lock must be acquired to do any of the following:
66 *
67 * - Lookup a spa_t by name
68 * - Add or remove a spa_t from the namespace
69 * - Increase spa_refcount from non-zero
70 * - Check if spa_refcount is zero
71 * - Rename a spa_t
72 * - add/remove/attach/detach devices
73 * - Held for the duration of create/destroy/import/export
74 *
75 * It does not need to handle recursion. A create or destroy may
76 * reference objects (files or zvols) in other pools, but by
77 * definition they must have an existing reference, and will never need
78 * to lookup a spa_t by name.
79 *
80 * spa_refcount (per-spa refcount_t protected by mutex)
81 *
82 * This reference count keep track of any active users of the spa_t. The
83 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
84 * the refcount is never really 'zero' - opening a pool implicitly keeps
85 * some references in the DMU. Internally we check against spa_minref, but
86 * present the image of a zero/non-zero value to consumers.
87 *
88 * spa_config_lock[] (per-spa array of rwlocks)
89 *
90 * This protects the spa_t from config changes, and must be held in
91 * the following circumstances:
92 *
93 * - RW_READER to perform I/O to the spa
94 * - RW_WRITER to change the vdev config
95 *
96 * The locking order is fairly straightforward:
97 *
98 * spa_namespace_lock -> spa_refcount
99 *
100 * The namespace lock must be acquired to increase the refcount from 0
101 * or to check if it is zero.
102 *
103 * spa_refcount -> spa_config_lock[]
104 *
105 * There must be at least one valid reference on the spa_t to acquire
106 * the config lock.
107 *
108 * spa_namespace_lock -> spa_config_lock[]
109 *
110 * The namespace lock must always be taken before the config lock.
111 *
112 *
113 * The spa_namespace_lock can be acquired directly and is globally visible.
114 *
115 * The namespace is manipulated using the following functions, all of which
116 * require the spa_namespace_lock to be held.
117 *
118 * spa_lookup() Lookup a spa_t by name.
119 *
120 * spa_add() Create a new spa_t in the namespace.
121 *
122 * spa_remove() Remove a spa_t from the namespace. This also
123 * frees up any memory associated with the spa_t.
124 *
125 * spa_next() Returns the next spa_t in the system, or the
126 * first if NULL is passed.
127 *
128 * spa_evict_all() Shutdown and remove all spa_t structures in
129 * the system.
130 *
131 * spa_guid_exists() Determine whether a pool/device guid exists.
132 *
133 * The spa_refcount is manipulated using the following functions:
134 *
135 * spa_open_ref() Adds a reference to the given spa_t. Must be
136 * called with spa_namespace_lock held if the
137 * refcount is currently zero.
138 *
139 * spa_close() Remove a reference from the spa_t. This will
140 * not free the spa_t or remove it from the
141 * namespace. No locking is required.
142 *
143 * spa_refcount_zero() Returns true if the refcount is currently
144 * zero. Must be called with spa_namespace_lock
145 * held.
146 *
147 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150 *
151 * To read the configuration, it suffices to hold one of these locks as reader.
152 * To modify the configuration, you must hold all locks as writer. To modify
153 * vdev state without altering the vdev tree's topology (e.g. online/offline),
154 * you must hold SCL_STATE and SCL_ZIO as writer.
155 *
156 * We use these distinct config locks to avoid recursive lock entry.
157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158 * block allocations (SCL_ALLOC), which may require reading space maps
159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160 *
161 * The spa config locks cannot be normal rwlocks because we need the
162 * ability to hand off ownership. For example, SCL_ZIO is acquired
163 * by the issuing thread and later released by an interrupt thread.
164 * They do, however, obey the usual write-wanted semantics to prevent
165 * writer (i.e. system administrator) starvation.
166 *
167 * The lock acquisition rules are as follows:
168 *
169 * SCL_CONFIG
170 * Protects changes to the vdev tree topology, such as vdev
171 * add/remove/attach/detach. Protects the dirty config list
172 * (spa_config_dirty_list) and the set of spares and l2arc devices.
173 *
174 * SCL_STATE
175 * Protects changes to pool state and vdev state, such as vdev
176 * online/offline/fault/degrade/clear. Protects the dirty state list
177 * (spa_state_dirty_list) and global pool state (spa_state).
178 *
179 * SCL_ALLOC
180 * Protects changes to metaslab groups and classes.
181 * Held as reader by metaslab_alloc() and metaslab_claim().
182 *
183 * SCL_ZIO
184 * Held by bp-level zios (those which have no io_vd upon entry)
185 * to prevent changes to the vdev tree. The bp-level zio implicitly
186 * protects all of its vdev child zios, which do not hold SCL_ZIO.
187 *
188 * SCL_FREE
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_free(). SCL_FREE is distinct from
191 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192 * blocks in zio_done() while another i/o that holds either
193 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194 *
195 * SCL_VDEV
196 * Held as reader to prevent changes to the vdev tree during trivial
197 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
198 * other locks, and lower than all of them, to ensure that it's safe
199 * to acquire regardless of caller context.
200 *
201 * In addition, the following rules apply:
202 *
203 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
204 * The lock ordering is SCL_CONFIG > spa_props_lock.
205 *
206 * (b) I/O operations on leaf vdevs. For any zio operation that takes
207 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208 * or zio_write_phys() -- the caller must ensure that the config cannot
209 * cannot change in the interim, and that the vdev cannot be reopened.
210 * SCL_STATE as reader suffices for both.
211 *
212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213 *
214 * spa_vdev_enter() Acquire the namespace lock and the config lock
215 * for writing.
216 *
217 * spa_vdev_exit() Release the config lock, wait for all I/O
218 * to complete, sync the updated configs to the
219 * cache, and release the namespace lock.
220 *
221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224 *
225 * spa_rename() is also implemented within this file since it requires
226 * manipulation of the namespace.
227 */
228
229 static avl_tree_t spa_namespace_avl;
230 kmutex_t spa_namespace_lock;
231 static kcondvar_t spa_namespace_cv;
232 static int spa_active_count;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
239
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
242
243 #ifdef ZFS_DEBUG
244 /*
245 * Everything except dprintf, spa, and indirect_remap is on by default
246 * in debug builds.
247 */
248 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA | ZFS_DEBUG_INDIRECT_REMAP);
249 #else
250 int zfs_flags = 0;
251 #endif
252
253 /*
254 * zfs_recover can be set to nonzero to attempt to recover from
255 * otherwise-fatal errors, typically caused by on-disk corruption. When
256 * set, calls to zfs_panic_recover() will turn into warning messages.
257 * This should only be used as a last resort, as it typically results
258 * in leaked space, or worse.
259 */
260 boolean_t zfs_recover = B_FALSE;
261
262 /*
263 * If destroy encounters an EIO while reading metadata (e.g. indirect
264 * blocks), space referenced by the missing metadata can not be freed.
265 * Normally this causes the background destroy to become "stalled", as
266 * it is unable to make forward progress. While in this stalled state,
267 * all remaining space to free from the error-encountering filesystem is
268 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
269 * permanently leak the space from indirect blocks that can not be read,
270 * and continue to free everything else that it can.
271 *
272 * The default, "stalling" behavior is useful if the storage partially
273 * fails (i.e. some but not all i/os fail), and then later recovers. In
274 * this case, we will be able to continue pool operations while it is
275 * partially failed, and when it recovers, we can continue to free the
276 * space, with no leaks. However, note that this case is actually
277 * fairly rare.
278 *
279 * Typically pools either (a) fail completely (but perhaps temporarily,
280 * e.g. a top-level vdev going offline), or (b) have localized,
281 * permanent errors (e.g. disk returns the wrong data due to bit flip or
282 * firmware bug). In case (a), this setting does not matter because the
283 * pool will be suspended and the sync thread will not be able to make
284 * forward progress regardless. In case (b), because the error is
285 * permanent, the best we can do is leak the minimum amount of space,
286 * which is what setting this flag will do. Therefore, it is reasonable
287 * for this flag to normally be set, but we chose the more conservative
288 * approach of not setting it, so that there is no possibility of
289 * leaking space in the "partial temporary" failure case.
290 */
291 boolean_t zfs_free_leak_on_eio = B_FALSE;
292
293 /*
294 * Expiration time in milliseconds. This value has two meanings. First it is
295 * used to determine when the spa_deadman() logic should fire. By default the
296 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
297 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
298 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
299 * in a system panic.
300 */
301 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
302
303 /*
304 * Check time in milliseconds. This defines the frequency at which we check
305 * for hung I/O.
306 */
307 uint64_t zfs_deadman_checktime_ms = 5000ULL;
308
309 /*
310 * Override the zfs deadman behavior via /etc/system. By default the
311 * deadman is enabled except on VMware and sparc deployments.
312 */
313 int zfs_deadman_enabled = -1;
314
315 /*
316 * The worst case is single-sector max-parity RAID-Z blocks, in which
317 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
318 * times the size; so just assume that. Add to this the fact that
319 * we can have up to 3 DVAs per bp, and one more factor of 2 because
320 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
321 * the worst case is:
322 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
323 */
324 int spa_asize_inflation = 24;
325
326 /*
327 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
328 * the pool to be consumed. This ensures that we don't run the pool
329 * completely out of space, due to unaccounted changes (e.g. to the MOS).
330 * It also limits the worst-case time to allocate space. If we have
331 * less than this amount of free space, most ZPL operations (e.g. write,
332 * create) will return ENOSPC.
333 *
334 * Certain operations (e.g. file removal, most administrative actions) can
335 * use half the slop space. They will only return ENOSPC if less than half
336 * the slop space is free. Typically, once the pool has less than the slop
337 * space free, the user will use these operations to free up space in the pool.
338 * These are the operations that call dsl_pool_adjustedsize() with the netfree
339 * argument set to TRUE.
340 *
341 * A very restricted set of operations are always permitted, regardless of
342 * the amount of free space. These are the operations that call
343 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
344 * operations result in a net increase in the amount of space used,
345 * it is possible to run the pool completely out of space, causing it to
346 * be permanently read-only.
347 *
348 * Note that on very small pools, the slop space will be larger than
349 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
350 * but we never allow it to be more than half the pool size.
351 *
352 * See also the comments in zfs_space_check_t.
353 */
354 int spa_slop_shift = 5;
355 uint64_t spa_min_slop = 128 * 1024 * 1024;
356
357 /*PRINTFLIKE2*/
358 void
359 spa_load_failed(spa_t *spa, const char *fmt, ...)
360 {
361 va_list adx;
362 char buf[256];
363
364 va_start(adx, fmt);
365 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
366 va_end(adx);
367
368 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
369 spa->spa_trust_config ? "trusted" : "untrusted", buf);
370 }
371
372 /*PRINTFLIKE2*/
373 void
374 spa_load_note(spa_t *spa, const char *fmt, ...)
375 {
376 va_list adx;
377 char buf[256];
378
379 va_start(adx, fmt);
380 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
381 va_end(adx);
382
383 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
384 spa->spa_trust_config ? "trusted" : "untrusted", buf);
385 }
386
387 /*
388 * ==========================================================================
389 * SPA config locking
390 * ==========================================================================
391 */
392 static void
393 spa_config_lock_init(spa_t *spa)
394 {
395 for (int i = 0; i < SCL_LOCKS; i++) {
396 spa_config_lock_t *scl = &spa->spa_config_lock[i];
397 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
398 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
399 refcount_create_untracked(&scl->scl_count);
400 scl->scl_writer = NULL;
401 scl->scl_write_wanted = 0;
402 }
403 }
404
405 static void
406 spa_config_lock_destroy(spa_t *spa)
407 {
408 for (int i = 0; i < SCL_LOCKS; i++) {
409 spa_config_lock_t *scl = &spa->spa_config_lock[i];
410 mutex_destroy(&scl->scl_lock);
411 cv_destroy(&scl->scl_cv);
412 refcount_destroy(&scl->scl_count);
413 ASSERT(scl->scl_writer == NULL);
414 ASSERT(scl->scl_write_wanted == 0);
415 }
416 }
417
418 int
419 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
420 {
421 for (int i = 0; i < SCL_LOCKS; i++) {
422 spa_config_lock_t *scl = &spa->spa_config_lock[i];
423 if (!(locks & (1 << i)))
424 continue;
425 mutex_enter(&scl->scl_lock);
426 if (rw == RW_READER) {
427 if (scl->scl_writer || scl->scl_write_wanted) {
428 mutex_exit(&scl->scl_lock);
429 spa_config_exit(spa, locks & ((1 << i) - 1),
430 tag);
431 return (0);
432 }
433 } else {
434 ASSERT(scl->scl_writer != curthread);
435 if (!refcount_is_zero(&scl->scl_count)) {
436 mutex_exit(&scl->scl_lock);
437 spa_config_exit(spa, locks & ((1 << i) - 1),
438 tag);
439 return (0);
440 }
441 scl->scl_writer = curthread;
442 }
443 (void) refcount_add(&scl->scl_count, tag);
444 mutex_exit(&scl->scl_lock);
445 }
446 return (1);
447 }
448
449 void
450 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
451 {
452 int wlocks_held = 0;
453
454 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
455
456 for (int i = 0; i < SCL_LOCKS; i++) {
457 spa_config_lock_t *scl = &spa->spa_config_lock[i];
458 if (scl->scl_writer == curthread)
459 wlocks_held |= (1 << i);
460 if (!(locks & (1 << i)))
461 continue;
462 mutex_enter(&scl->scl_lock);
463 if (rw == RW_READER) {
464 while (scl->scl_writer || scl->scl_write_wanted) {
465 cv_wait(&scl->scl_cv, &scl->scl_lock);
466 }
467 } else {
468 ASSERT(scl->scl_writer != curthread);
469 while (!refcount_is_zero(&scl->scl_count)) {
470 scl->scl_write_wanted++;
471 cv_wait(&scl->scl_cv, &scl->scl_lock);
472 scl->scl_write_wanted--;
473 }
474 scl->scl_writer = curthread;
475 }
476 (void) refcount_add(&scl->scl_count, tag);
477 mutex_exit(&scl->scl_lock);
478 }
479 ASSERT3U(wlocks_held, <=, locks);
480 }
481
482 void
483 spa_config_exit(spa_t *spa, int locks, void *tag)
484 {
485 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
486 spa_config_lock_t *scl = &spa->spa_config_lock[i];
487 if (!(locks & (1 << i)))
488 continue;
489 mutex_enter(&scl->scl_lock);
490 ASSERT(!refcount_is_zero(&scl->scl_count));
491 if (refcount_remove(&scl->scl_count, tag) == 0) {
492 ASSERT(scl->scl_writer == NULL ||
493 scl->scl_writer == curthread);
494 scl->scl_writer = NULL; /* OK in either case */
495 cv_broadcast(&scl->scl_cv);
496 }
497 mutex_exit(&scl->scl_lock);
498 }
499 }
500
501 int
502 spa_config_held(spa_t *spa, int locks, krw_t rw)
503 {
504 int locks_held = 0;
505
506 for (int i = 0; i < SCL_LOCKS; i++) {
507 spa_config_lock_t *scl = &spa->spa_config_lock[i];
508 if (!(locks & (1 << i)))
509 continue;
510 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
511 (rw == RW_WRITER && scl->scl_writer == curthread))
512 locks_held |= 1 << i;
513 }
514
515 return (locks_held);
516 }
517
518 /*
519 * ==========================================================================
520 * SPA namespace functions
521 * ==========================================================================
522 */
523
524 /*
525 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
526 * Returns NULL if no matching spa_t is found.
527 */
528 spa_t *
529 spa_lookup(const char *name)
530 {
531 static spa_t search; /* spa_t is large; don't allocate on stack */
532 spa_t *spa;
533 avl_index_t where;
534 char *cp;
535
536 ASSERT(MUTEX_HELD(&spa_namespace_lock));
537
538 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
539
540 /*
541 * If it's a full dataset name, figure out the pool name and
542 * just use that.
543 */
544 cp = strpbrk(search.spa_name, "/@#");
545 if (cp != NULL)
546 *cp = '\0';
547
548 spa = avl_find(&spa_namespace_avl, &search, &where);
549
550 return (spa);
551 }
552
553 /*
554 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
555 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
556 * looking for potentially hung I/Os.
557 */
558 void
559 spa_deadman(void *arg)
560 {
561 spa_t *spa = arg;
562
563 /*
564 * Disable the deadman timer if the pool is suspended.
565 */
566 if (spa_suspended(spa)) {
567 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
568 return;
569 }
570
571 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
572 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
573 ++spa->spa_deadman_calls);
574 if (zfs_deadman_enabled)
575 vdev_deadman(spa->spa_root_vdev);
576 }
577
578 /*
579 * Create an uninitialized spa_t with the given name. Requires
580 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
581 * exist by calling spa_lookup() first.
582 */
583 spa_t *
584 spa_add(const char *name, nvlist_t *config, const char *altroot)
585 {
586 spa_t *spa;
587 spa_config_dirent_t *dp;
588 cyc_handler_t hdlr;
589 cyc_time_t when;
590
591 ASSERT(MUTEX_HELD(&spa_namespace_lock));
592
593 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
594
595 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
596 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
597 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
598 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
599 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
600 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
601 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
602 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
603 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
604 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
605 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
606 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
607 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
608
609 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
610 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
611 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
612 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
613 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
614
615 for (int t = 0; t < TXG_SIZE; t++)
616 bplist_create(&spa->spa_free_bplist[t]);
617
618 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
619 spa->spa_state = POOL_STATE_UNINITIALIZED;
620 spa->spa_freeze_txg = UINT64_MAX;
621 spa->spa_final_txg = UINT64_MAX;
622 spa->spa_load_max_txg = UINT64_MAX;
623 spa->spa_proc = &p0;
624 spa->spa_proc_state = SPA_PROC_NONE;
625 spa->spa_trust_config = B_TRUE;
626
627 hdlr.cyh_func = spa_deadman;
628 hdlr.cyh_arg = spa;
629 hdlr.cyh_level = CY_LOW_LEVEL;
630
631 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
632
633 /*
634 * This determines how often we need to check for hung I/Os after
635 * the cyclic has already fired. Since checking for hung I/Os is
636 * an expensive operation we don't want to check too frequently.
637 * Instead wait for 5 seconds before checking again.
638 */
639 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
640 when.cyt_when = CY_INFINITY;
641 mutex_enter(&cpu_lock);
642 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
643 mutex_exit(&cpu_lock);
644
645 refcount_create(&spa->spa_refcount);
646 spa_config_lock_init(spa);
647
648 avl_add(&spa_namespace_avl, spa);
649
650 /*
651 * Set the alternate root, if there is one.
652 */
653 if (altroot) {
654 spa->spa_root = spa_strdup(altroot);
655 spa_active_count++;
656 }
657
658 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
659 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
660
661 /*
662 * Every pool starts with the default cachefile
663 */
664 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
665 offsetof(spa_config_dirent_t, scd_link));
666
667 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
668 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
669 list_insert_head(&spa->spa_config_list, dp);
670
671 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
672 KM_SLEEP) == 0);
673
674 if (config != NULL) {
675 nvlist_t *features;
676
677 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
678 &features) == 0) {
679 VERIFY(nvlist_dup(features, &spa->spa_label_features,
680 0) == 0);
681 }
682
683 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
684 }
685
686 if (spa->spa_label_features == NULL) {
687 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
688 KM_SLEEP) == 0);
689 }
690
691 spa->spa_iokstat = kstat_create("zfs", 0, name,
692 "disk", KSTAT_TYPE_IO, 1, 0);
693 if (spa->spa_iokstat) {
694 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
695 kstat_install(spa->spa_iokstat);
696 }
697
698 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
699
700 spa->spa_min_ashift = INT_MAX;
701 spa->spa_max_ashift = 0;
702
703 /*
704 * As a pool is being created, treat all features as disabled by
705 * setting SPA_FEATURE_DISABLED for all entries in the feature
706 * refcount cache.
707 */
708 for (int i = 0; i < SPA_FEATURES; i++) {
709 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
710 }
711
712 return (spa);
713 }
714
715 /*
716 * Removes a spa_t from the namespace, freeing up any memory used. Requires
717 * spa_namespace_lock. This is called only after the spa_t has been closed and
718 * deactivated.
719 */
720 void
721 spa_remove(spa_t *spa)
722 {
723 spa_config_dirent_t *dp;
724
725 ASSERT(MUTEX_HELD(&spa_namespace_lock));
726 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
727 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
728
729 nvlist_free(spa->spa_config_splitting);
730
731 avl_remove(&spa_namespace_avl, spa);
732 cv_broadcast(&spa_namespace_cv);
733
734 if (spa->spa_root) {
735 spa_strfree(spa->spa_root);
736 spa_active_count--;
737 }
738
739 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
740 list_remove(&spa->spa_config_list, dp);
741 if (dp->scd_path != NULL)
742 spa_strfree(dp->scd_path);
743 kmem_free(dp, sizeof (spa_config_dirent_t));
744 }
745
746 avl_destroy(&spa->spa_alloc_tree);
747 list_destroy(&spa->spa_config_list);
748
749 nvlist_free(spa->spa_label_features);
750 nvlist_free(spa->spa_load_info);
751 spa_config_set(spa, NULL);
752
753 mutex_enter(&cpu_lock);
754 if (spa->spa_deadman_cycid != CYCLIC_NONE)
755 cyclic_remove(spa->spa_deadman_cycid);
756 mutex_exit(&cpu_lock);
757 spa->spa_deadman_cycid = CYCLIC_NONE;
758
759 refcount_destroy(&spa->spa_refcount);
760
761 spa_config_lock_destroy(spa);
762
763 kstat_delete(spa->spa_iokstat);
764 spa->spa_iokstat = NULL;
765
766 for (int t = 0; t < TXG_SIZE; t++)
767 bplist_destroy(&spa->spa_free_bplist[t]);
768
769 zio_checksum_templates_free(spa);
770
771 cv_destroy(&spa->spa_async_cv);
772 cv_destroy(&spa->spa_evicting_os_cv);
773 cv_destroy(&spa->spa_proc_cv);
774 cv_destroy(&spa->spa_scrub_io_cv);
775 cv_destroy(&spa->spa_suspend_cv);
776
777 mutex_destroy(&spa->spa_alloc_lock);
778 mutex_destroy(&spa->spa_async_lock);
779 mutex_destroy(&spa->spa_errlist_lock);
780 mutex_destroy(&spa->spa_errlog_lock);
781 mutex_destroy(&spa->spa_evicting_os_lock);
782 mutex_destroy(&spa->spa_history_lock);
783 mutex_destroy(&spa->spa_proc_lock);
784 mutex_destroy(&spa->spa_props_lock);
785 mutex_destroy(&spa->spa_cksum_tmpls_lock);
786 mutex_destroy(&spa->spa_scrub_lock);
787 mutex_destroy(&spa->spa_suspend_lock);
788 mutex_destroy(&spa->spa_vdev_top_lock);
789 mutex_destroy(&spa->spa_iokstat_lock);
790
791 kmem_free(spa, sizeof (spa_t));
792 }
793
794 /*
795 * Given a pool, return the next pool in the namespace, or NULL if there is
796 * none. If 'prev' is NULL, return the first pool.
797 */
798 spa_t *
799 spa_next(spa_t *prev)
800 {
801 ASSERT(MUTEX_HELD(&spa_namespace_lock));
802
803 if (prev)
804 return (AVL_NEXT(&spa_namespace_avl, prev));
805 else
806 return (avl_first(&spa_namespace_avl));
807 }
808
809 /*
810 * ==========================================================================
811 * SPA refcount functions
812 * ==========================================================================
813 */
814
815 /*
816 * Add a reference to the given spa_t. Must have at least one reference, or
817 * have the namespace lock held.
818 */
819 void
820 spa_open_ref(spa_t *spa, void *tag)
821 {
822 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
823 MUTEX_HELD(&spa_namespace_lock));
824 (void) refcount_add(&spa->spa_refcount, tag);
825 }
826
827 /*
828 * Remove a reference to the given spa_t. Must have at least one reference, or
829 * have the namespace lock held.
830 */
831 void
832 spa_close(spa_t *spa, void *tag)
833 {
834 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
835 MUTEX_HELD(&spa_namespace_lock));
836 (void) refcount_remove(&spa->spa_refcount, tag);
837 }
838
839 /*
840 * Remove a reference to the given spa_t held by a dsl dir that is
841 * being asynchronously released. Async releases occur from a taskq
842 * performing eviction of dsl datasets and dirs. The namespace lock
843 * isn't held and the hold by the object being evicted may contribute to
844 * spa_minref (e.g. dataset or directory released during pool export),
845 * so the asserts in spa_close() do not apply.
846 */
847 void
848 spa_async_close(spa_t *spa, void *tag)
849 {
850 (void) refcount_remove(&spa->spa_refcount, tag);
851 }
852
853 /*
854 * Check to see if the spa refcount is zero. Must be called with
855 * spa_namespace_lock held. We really compare against spa_minref, which is the
856 * number of references acquired when opening a pool
857 */
858 boolean_t
859 spa_refcount_zero(spa_t *spa)
860 {
861 ASSERT(MUTEX_HELD(&spa_namespace_lock));
862
863 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
864 }
865
866 /*
867 * ==========================================================================
868 * SPA spare and l2cache tracking
869 * ==========================================================================
870 */
871
872 /*
873 * Hot spares and cache devices are tracked using the same code below,
874 * for 'auxiliary' devices.
875 */
876
877 typedef struct spa_aux {
878 uint64_t aux_guid;
879 uint64_t aux_pool;
880 avl_node_t aux_avl;
881 int aux_count;
882 } spa_aux_t;
883
884 static int
885 spa_aux_compare(const void *a, const void *b)
886 {
887 const spa_aux_t *sa = a;
888 const spa_aux_t *sb = b;
889
890 if (sa->aux_guid < sb->aux_guid)
891 return (-1);
892 else if (sa->aux_guid > sb->aux_guid)
893 return (1);
894 else
895 return (0);
896 }
897
898 void
899 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
900 {
901 avl_index_t where;
902 spa_aux_t search;
903 spa_aux_t *aux;
904
905 search.aux_guid = vd->vdev_guid;
906 if ((aux = avl_find(avl, &search, &where)) != NULL) {
907 aux->aux_count++;
908 } else {
909 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
910 aux->aux_guid = vd->vdev_guid;
911 aux->aux_count = 1;
912 avl_insert(avl, aux, where);
913 }
914 }
915
916 void
917 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
918 {
919 spa_aux_t search;
920 spa_aux_t *aux;
921 avl_index_t where;
922
923 search.aux_guid = vd->vdev_guid;
924 aux = avl_find(avl, &search, &where);
925
926 ASSERT(aux != NULL);
927
928 if (--aux->aux_count == 0) {
929 avl_remove(avl, aux);
930 kmem_free(aux, sizeof (spa_aux_t));
931 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
932 aux->aux_pool = 0ULL;
933 }
934 }
935
936 boolean_t
937 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
938 {
939 spa_aux_t search, *found;
940
941 search.aux_guid = guid;
942 found = avl_find(avl, &search, NULL);
943
944 if (pool) {
945 if (found)
946 *pool = found->aux_pool;
947 else
948 *pool = 0ULL;
949 }
950
951 if (refcnt) {
952 if (found)
953 *refcnt = found->aux_count;
954 else
955 *refcnt = 0;
956 }
957
958 return (found != NULL);
959 }
960
961 void
962 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
963 {
964 spa_aux_t search, *found;
965 avl_index_t where;
966
967 search.aux_guid = vd->vdev_guid;
968 found = avl_find(avl, &search, &where);
969 ASSERT(found != NULL);
970 ASSERT(found->aux_pool == 0ULL);
971
972 found->aux_pool = spa_guid(vd->vdev_spa);
973 }
974
975 /*
976 * Spares are tracked globally due to the following constraints:
977 *
978 * - A spare may be part of multiple pools.
979 * - A spare may be added to a pool even if it's actively in use within
980 * another pool.
981 * - A spare in use in any pool can only be the source of a replacement if
982 * the target is a spare in the same pool.
983 *
984 * We keep track of all spares on the system through the use of a reference
985 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
986 * spare, then we bump the reference count in the AVL tree. In addition, we set
987 * the 'vdev_isspare' member to indicate that the device is a spare (active or
988 * inactive). When a spare is made active (used to replace a device in the
989 * pool), we also keep track of which pool its been made a part of.
990 *
991 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
992 * called under the spa_namespace lock as part of vdev reconfiguration. The
993 * separate spare lock exists for the status query path, which does not need to
994 * be completely consistent with respect to other vdev configuration changes.
995 */
996
997 static int
998 spa_spare_compare(const void *a, const void *b)
999 {
1000 return (spa_aux_compare(a, b));
1001 }
1002
1003 void
1004 spa_spare_add(vdev_t *vd)
1005 {
1006 mutex_enter(&spa_spare_lock);
1007 ASSERT(!vd->vdev_isspare);
1008 spa_aux_add(vd, &spa_spare_avl);
1009 vd->vdev_isspare = B_TRUE;
1010 mutex_exit(&spa_spare_lock);
1011 }
1012
1013 void
1014 spa_spare_remove(vdev_t *vd)
1015 {
1016 mutex_enter(&spa_spare_lock);
1017 ASSERT(vd->vdev_isspare);
1018 spa_aux_remove(vd, &spa_spare_avl);
1019 vd->vdev_isspare = B_FALSE;
1020 mutex_exit(&spa_spare_lock);
1021 }
1022
1023 boolean_t
1024 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1025 {
1026 boolean_t found;
1027
1028 mutex_enter(&spa_spare_lock);
1029 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1030 mutex_exit(&spa_spare_lock);
1031
1032 return (found);
1033 }
1034
1035 void
1036 spa_spare_activate(vdev_t *vd)
1037 {
1038 mutex_enter(&spa_spare_lock);
1039 ASSERT(vd->vdev_isspare);
1040 spa_aux_activate(vd, &spa_spare_avl);
1041 mutex_exit(&spa_spare_lock);
1042 }
1043
1044 /*
1045 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1046 * Cache devices currently only support one pool per cache device, and so
1047 * for these devices the aux reference count is currently unused beyond 1.
1048 */
1049
1050 static int
1051 spa_l2cache_compare(const void *a, const void *b)
1052 {
1053 return (spa_aux_compare(a, b));
1054 }
1055
1056 void
1057 spa_l2cache_add(vdev_t *vd)
1058 {
1059 mutex_enter(&spa_l2cache_lock);
1060 ASSERT(!vd->vdev_isl2cache);
1061 spa_aux_add(vd, &spa_l2cache_avl);
1062 vd->vdev_isl2cache = B_TRUE;
1063 mutex_exit(&spa_l2cache_lock);
1064 }
1065
1066 void
1067 spa_l2cache_remove(vdev_t *vd)
1068 {
1069 mutex_enter(&spa_l2cache_lock);
1070 ASSERT(vd->vdev_isl2cache);
1071 spa_aux_remove(vd, &spa_l2cache_avl);
1072 vd->vdev_isl2cache = B_FALSE;
1073 mutex_exit(&spa_l2cache_lock);
1074 }
1075
1076 boolean_t
1077 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1078 {
1079 boolean_t found;
1080
1081 mutex_enter(&spa_l2cache_lock);
1082 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1083 mutex_exit(&spa_l2cache_lock);
1084
1085 return (found);
1086 }
1087
1088 void
1089 spa_l2cache_activate(vdev_t *vd)
1090 {
1091 mutex_enter(&spa_l2cache_lock);
1092 ASSERT(vd->vdev_isl2cache);
1093 spa_aux_activate(vd, &spa_l2cache_avl);
1094 mutex_exit(&spa_l2cache_lock);
1095 }
1096
1097 /*
1098 * ==========================================================================
1099 * SPA vdev locking
1100 * ==========================================================================
1101 */
1102
1103 /*
1104 * Lock the given spa_t for the purpose of adding or removing a vdev.
1105 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1106 * It returns the next transaction group for the spa_t.
1107 */
1108 uint64_t
1109 spa_vdev_enter(spa_t *spa)
1110 {
1111 mutex_enter(&spa->spa_vdev_top_lock);
1112 mutex_enter(&spa_namespace_lock);
1113 return (spa_vdev_config_enter(spa));
1114 }
1115
1116 /*
1117 * Internal implementation for spa_vdev_enter(). Used when a vdev
1118 * operation requires multiple syncs (i.e. removing a device) while
1119 * keeping the spa_namespace_lock held.
1120 */
1121 uint64_t
1122 spa_vdev_config_enter(spa_t *spa)
1123 {
1124 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1125
1126 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1127
1128 return (spa_last_synced_txg(spa) + 1);
1129 }
1130
1131 /*
1132 * Used in combination with spa_vdev_config_enter() to allow the syncing
1133 * of multiple transactions without releasing the spa_namespace_lock.
1134 */
1135 void
1136 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1137 {
1138 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1139
1140 int config_changed = B_FALSE;
1141
1142 ASSERT(txg > spa_last_synced_txg(spa));
1143
1144 spa->spa_pending_vdev = NULL;
1145
1146 /*
1147 * Reassess the DTLs.
1148 */
1149 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1150
1151 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1152 config_changed = B_TRUE;
1153 spa->spa_config_generation++;
1154 }
1155
1156 /*
1157 * Verify the metaslab classes.
1158 */
1159 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1160 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1161
1162 spa_config_exit(spa, SCL_ALL, spa);
1163
1164 /*
1165 * Panic the system if the specified tag requires it. This
1166 * is useful for ensuring that configurations are updated
1167 * transactionally.
1168 */
1169 if (zio_injection_enabled)
1170 zio_handle_panic_injection(spa, tag, 0);
1171
1172 /*
1173 * Note: this txg_wait_synced() is important because it ensures
1174 * that there won't be more than one config change per txg.
1175 * This allows us to use the txg as the generation number.
1176 */
1177 if (error == 0)
1178 txg_wait_synced(spa->spa_dsl_pool, txg);
1179
1180 if (vd != NULL) {
1181 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1182 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1183 vdev_free(vd);
1184 spa_config_exit(spa, SCL_ALL, spa);
1185 }
1186
1187 /*
1188 * If the config changed, update the config cache.
1189 */
1190 if (config_changed)
1191 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1192 }
1193
1194 /*
1195 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1196 * locking of spa_vdev_enter(), we also want make sure the transactions have
1197 * synced to disk, and then update the global configuration cache with the new
1198 * information.
1199 */
1200 int
1201 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1202 {
1203 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1204 mutex_exit(&spa_namespace_lock);
1205 mutex_exit(&spa->spa_vdev_top_lock);
1206
1207 return (error);
1208 }
1209
1210 /*
1211 * Lock the given spa_t for the purpose of changing vdev state.
1212 */
1213 void
1214 spa_vdev_state_enter(spa_t *spa, int oplocks)
1215 {
1216 int locks = SCL_STATE_ALL | oplocks;
1217
1218 /*
1219 * Root pools may need to read of the underlying devfs filesystem
1220 * when opening up a vdev. Unfortunately if we're holding the
1221 * SCL_ZIO lock it will result in a deadlock when we try to issue
1222 * the read from the root filesystem. Instead we "prefetch"
1223 * the associated vnodes that we need prior to opening the
1224 * underlying devices and cache them so that we can prevent
1225 * any I/O when we are doing the actual open.
1226 */
1227 if (spa_is_root(spa)) {
1228 int low = locks & ~(SCL_ZIO - 1);
1229 int high = locks & ~low;
1230
1231 spa_config_enter(spa, high, spa, RW_WRITER);
1232 vdev_hold(spa->spa_root_vdev);
1233 spa_config_enter(spa, low, spa, RW_WRITER);
1234 } else {
1235 spa_config_enter(spa, locks, spa, RW_WRITER);
1236 }
1237 spa->spa_vdev_locks = locks;
1238 }
1239
1240 int
1241 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1242 {
1243 boolean_t config_changed = B_FALSE;
1244
1245 if (vd != NULL || error == 0)
1246 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1247 0, 0, B_FALSE);
1248
1249 if (vd != NULL) {
1250 vdev_state_dirty(vd->vdev_top);
1251 config_changed = B_TRUE;
1252 spa->spa_config_generation++;
1253 }
1254
1255 if (spa_is_root(spa))
1256 vdev_rele(spa->spa_root_vdev);
1257
1258 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1259 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1260
1261 /*
1262 * If anything changed, wait for it to sync. This ensures that,
1263 * from the system administrator's perspective, zpool(1M) commands
1264 * are synchronous. This is important for things like zpool offline:
1265 * when the command completes, you expect no further I/O from ZFS.
1266 */
1267 if (vd != NULL)
1268 txg_wait_synced(spa->spa_dsl_pool, 0);
1269
1270 /*
1271 * If the config changed, update the config cache.
1272 */
1273 if (config_changed) {
1274 mutex_enter(&spa_namespace_lock);
1275 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1276 mutex_exit(&spa_namespace_lock);
1277 }
1278
1279 return (error);
1280 }
1281
1282 /*
1283 * ==========================================================================
1284 * Miscellaneous functions
1285 * ==========================================================================
1286 */
1287
1288 void
1289 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1290 {
1291 if (!nvlist_exists(spa->spa_label_features, feature)) {
1292 fnvlist_add_boolean(spa->spa_label_features, feature);
1293 /*
1294 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1295 * dirty the vdev config because lock SCL_CONFIG is not held.
1296 * Thankfully, in this case we don't need to dirty the config
1297 * because it will be written out anyway when we finish
1298 * creating the pool.
1299 */
1300 if (tx->tx_txg != TXG_INITIAL)
1301 vdev_config_dirty(spa->spa_root_vdev);
1302 }
1303 }
1304
1305 void
1306 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1307 {
1308 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1309 vdev_config_dirty(spa->spa_root_vdev);
1310 }
1311
1312 /*
1313 * Rename a spa_t.
1314 */
1315 int
1316 spa_rename(const char *name, const char *newname)
1317 {
1318 spa_t *spa;
1319 int err;
1320
1321 /*
1322 * Lookup the spa_t and grab the config lock for writing. We need to
1323 * actually open the pool so that we can sync out the necessary labels.
1324 * It's OK to call spa_open() with the namespace lock held because we
1325 * allow recursive calls for other reasons.
1326 */
1327 mutex_enter(&spa_namespace_lock);
1328 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1329 mutex_exit(&spa_namespace_lock);
1330 return (err);
1331 }
1332
1333 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1334
1335 avl_remove(&spa_namespace_avl, spa);
1336 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1337 avl_add(&spa_namespace_avl, spa);
1338
1339 /*
1340 * Sync all labels to disk with the new names by marking the root vdev
1341 * dirty and waiting for it to sync. It will pick up the new pool name
1342 * during the sync.
1343 */
1344 vdev_config_dirty(spa->spa_root_vdev);
1345
1346 spa_config_exit(spa, SCL_ALL, FTAG);
1347
1348 txg_wait_synced(spa->spa_dsl_pool, 0);
1349
1350 /*
1351 * Sync the updated config cache.
1352 */
1353 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1354
1355 spa_close(spa, FTAG);
1356
1357 mutex_exit(&spa_namespace_lock);
1358
1359 return (0);
1360 }
1361
1362 /*
1363 * Return the spa_t associated with given pool_guid, if it exists. If
1364 * device_guid is non-zero, determine whether the pool exists *and* contains
1365 * a device with the specified device_guid.
1366 */
1367 spa_t *
1368 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1369 {
1370 spa_t *spa;
1371 avl_tree_t *t = &spa_namespace_avl;
1372
1373 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1374
1375 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1376 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1377 continue;
1378 if (spa->spa_root_vdev == NULL)
1379 continue;
1380 if (spa_guid(spa) == pool_guid) {
1381 if (device_guid == 0)
1382 break;
1383
1384 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1385 device_guid) != NULL)
1386 break;
1387
1388 /*
1389 * Check any devices we may be in the process of adding.
1390 */
1391 if (spa->spa_pending_vdev) {
1392 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1393 device_guid) != NULL)
1394 break;
1395 }
1396 }
1397 }
1398
1399 return (spa);
1400 }
1401
1402 /*
1403 * Determine whether a pool with the given pool_guid exists.
1404 */
1405 boolean_t
1406 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1407 {
1408 return (spa_by_guid(pool_guid, device_guid) != NULL);
1409 }
1410
1411 char *
1412 spa_strdup(const char *s)
1413 {
1414 size_t len;
1415 char *new;
1416
1417 len = strlen(s);
1418 new = kmem_alloc(len + 1, KM_SLEEP);
1419 bcopy(s, new, len);
1420 new[len] = '\0';
1421
1422 return (new);
1423 }
1424
1425 void
1426 spa_strfree(char *s)
1427 {
1428 kmem_free(s, strlen(s) + 1);
1429 }
1430
1431 uint64_t
1432 spa_get_random(uint64_t range)
1433 {
1434 uint64_t r;
1435
1436 ASSERT(range != 0);
1437
1438 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1439
1440 return (r % range);
1441 }
1442
1443 uint64_t
1444 spa_generate_guid(spa_t *spa)
1445 {
1446 uint64_t guid = spa_get_random(-1ULL);
1447
1448 if (spa != NULL) {
1449 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1450 guid = spa_get_random(-1ULL);
1451 } else {
1452 while (guid == 0 || spa_guid_exists(guid, 0))
1453 guid = spa_get_random(-1ULL);
1454 }
1455
1456 return (guid);
1457 }
1458
1459 void
1460 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1461 {
1462 char type[256];
1463 char *checksum = NULL;
1464 char *compress = NULL;
1465
1466 if (bp != NULL) {
1467 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1468 dmu_object_byteswap_t bswap =
1469 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1470 (void) snprintf(type, sizeof (type), "bswap %s %s",
1471 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1472 "metadata" : "data",
1473 dmu_ot_byteswap[bswap].ob_name);
1474 } else {
1475 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1476 sizeof (type));
1477 }
1478 if (!BP_IS_EMBEDDED(bp)) {
1479 checksum =
1480 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1481 }
1482 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1483 }
1484
1485 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1486 compress);
1487 }
1488
1489 void
1490 spa_freeze(spa_t *spa)
1491 {
1492 uint64_t freeze_txg = 0;
1493
1494 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1495 if (spa->spa_freeze_txg == UINT64_MAX) {
1496 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1497 spa->spa_freeze_txg = freeze_txg;
1498 }
1499 spa_config_exit(spa, SCL_ALL, FTAG);
1500 if (freeze_txg != 0)
1501 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1502 }
1503
1504 void
1505 zfs_panic_recover(const char *fmt, ...)
1506 {
1507 va_list adx;
1508
1509 va_start(adx, fmt);
1510 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1511 va_end(adx);
1512 }
1513
1514 /*
1515 * This is a stripped-down version of strtoull, suitable only for converting
1516 * lowercase hexadecimal numbers that don't overflow.
1517 */
1518 uint64_t
1519 zfs_strtonum(const char *str, char **nptr)
1520 {
1521 uint64_t val = 0;
1522 char c;
1523 int digit;
1524
1525 while ((c = *str) != '\0') {
1526 if (c >= '0' && c <= '9')
1527 digit = c - '0';
1528 else if (c >= 'a' && c <= 'f')
1529 digit = 10 + c - 'a';
1530 else
1531 break;
1532
1533 val *= 16;
1534 val += digit;
1535
1536 str++;
1537 }
1538
1539 if (nptr)
1540 *nptr = (char *)str;
1541
1542 return (val);
1543 }
1544
1545 /*
1546 * ==========================================================================
1547 * Accessor functions
1548 * ==========================================================================
1549 */
1550
1551 boolean_t
1552 spa_shutting_down(spa_t *spa)
1553 {
1554 return (spa->spa_async_suspended);
1555 }
1556
1557 dsl_pool_t *
1558 spa_get_dsl(spa_t *spa)
1559 {
1560 return (spa->spa_dsl_pool);
1561 }
1562
1563 boolean_t
1564 spa_is_initializing(spa_t *spa)
1565 {
1566 return (spa->spa_is_initializing);
1567 }
1568
1569 boolean_t
1570 spa_indirect_vdevs_loaded(spa_t *spa)
1571 {
1572 return (spa->spa_indirect_vdevs_loaded);
1573 }
1574
1575 blkptr_t *
1576 spa_get_rootblkptr(spa_t *spa)
1577 {
1578 return (&spa->spa_ubsync.ub_rootbp);
1579 }
1580
1581 void
1582 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1583 {
1584 spa->spa_uberblock.ub_rootbp = *bp;
1585 }
1586
1587 void
1588 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1589 {
1590 if (spa->spa_root == NULL)
1591 buf[0] = '\0';
1592 else
1593 (void) strncpy(buf, spa->spa_root, buflen);
1594 }
1595
1596 int
1597 spa_sync_pass(spa_t *spa)
1598 {
1599 return (spa->spa_sync_pass);
1600 }
1601
1602 char *
1603 spa_name(spa_t *spa)
1604 {
1605 return (spa->spa_name);
1606 }
1607
1608 uint64_t
1609 spa_guid(spa_t *spa)
1610 {
1611 dsl_pool_t *dp = spa_get_dsl(spa);
1612 uint64_t guid;
1613
1614 /*
1615 * If we fail to parse the config during spa_load(), we can go through
1616 * the error path (which posts an ereport) and end up here with no root
1617 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1618 * this case.
1619 */
1620 if (spa->spa_root_vdev == NULL)
1621 return (spa->spa_config_guid);
1622
1623 guid = spa->spa_last_synced_guid != 0 ?
1624 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1625
1626 /*
1627 * Return the most recently synced out guid unless we're
1628 * in syncing context.
1629 */
1630 if (dp && dsl_pool_sync_context(dp))
1631 return (spa->spa_root_vdev->vdev_guid);
1632 else
1633 return (guid);
1634 }
1635
1636 uint64_t
1637 spa_load_guid(spa_t *spa)
1638 {
1639 /*
1640 * This is a GUID that exists solely as a reference for the
1641 * purposes of the arc. It is generated at load time, and
1642 * is never written to persistent storage.
1643 */
1644 return (spa->spa_load_guid);
1645 }
1646
1647 uint64_t
1648 spa_last_synced_txg(spa_t *spa)
1649 {
1650 return (spa->spa_ubsync.ub_txg);
1651 }
1652
1653 uint64_t
1654 spa_first_txg(spa_t *spa)
1655 {
1656 return (spa->spa_first_txg);
1657 }
1658
1659 uint64_t
1660 spa_syncing_txg(spa_t *spa)
1661 {
1662 return (spa->spa_syncing_txg);
1663 }
1664
1665 /*
1666 * Return the last txg where data can be dirtied. The final txgs
1667 * will be used to just clear out any deferred frees that remain.
1668 */
1669 uint64_t
1670 spa_final_dirty_txg(spa_t *spa)
1671 {
1672 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1673 }
1674
1675 pool_state_t
1676 spa_state(spa_t *spa)
1677 {
1678 return (spa->spa_state);
1679 }
1680
1681 spa_load_state_t
1682 spa_load_state(spa_t *spa)
1683 {
1684 return (spa->spa_load_state);
1685 }
1686
1687 uint64_t
1688 spa_freeze_txg(spa_t *spa)
1689 {
1690 return (spa->spa_freeze_txg);
1691 }
1692
1693 /* ARGSUSED */
1694 uint64_t
1695 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1696 {
1697 return (lsize * spa_asize_inflation);
1698 }
1699
1700 /*
1701 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1702 * or at least 128MB, unless that would cause it to be more than half the
1703 * pool size.
1704 *
1705 * See the comment above spa_slop_shift for details.
1706 */
1707 uint64_t
1708 spa_get_slop_space(spa_t *spa)
1709 {
1710 uint64_t space = spa_get_dspace(spa);
1711 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1712 }
1713
1714 uint64_t
1715 spa_get_dspace(spa_t *spa)
1716 {
1717 return (spa->spa_dspace);
1718 }
1719
1720 void
1721 spa_update_dspace(spa_t *spa)
1722 {
1723 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1724 ddt_get_dedup_dspace(spa);
1725 if (spa->spa_vdev_removal != NULL) {
1726 /*
1727 * We can't allocate from the removing device, so
1728 * subtract its size. This prevents the DMU/DSL from
1729 * filling up the (now smaller) pool while we are in the
1730 * middle of removing the device.
1731 *
1732 * Note that the DMU/DSL doesn't actually know or care
1733 * how much space is allocated (it does its own tracking
1734 * of how much space has been logically used). So it
1735 * doesn't matter that the data we are moving may be
1736 * allocated twice (on the old device and the new
1737 * device).
1738 */
1739 vdev_t *vd = spa->spa_vdev_removal->svr_vdev;
1740 spa->spa_dspace -= spa_deflate(spa) ?
1741 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1742 }
1743 }
1744
1745 /*
1746 * Return the failure mode that has been set to this pool. The default
1747 * behavior will be to block all I/Os when a complete failure occurs.
1748 */
1749 uint8_t
1750 spa_get_failmode(spa_t *spa)
1751 {
1752 return (spa->spa_failmode);
1753 }
1754
1755 boolean_t
1756 spa_suspended(spa_t *spa)
1757 {
1758 return (spa->spa_suspended);
1759 }
1760
1761 uint64_t
1762 spa_version(spa_t *spa)
1763 {
1764 return (spa->spa_ubsync.ub_version);
1765 }
1766
1767 boolean_t
1768 spa_deflate(spa_t *spa)
1769 {
1770 return (spa->spa_deflate);
1771 }
1772
1773 metaslab_class_t *
1774 spa_normal_class(spa_t *spa)
1775 {
1776 return (spa->spa_normal_class);
1777 }
1778
1779 metaslab_class_t *
1780 spa_log_class(spa_t *spa)
1781 {
1782 return (spa->spa_log_class);
1783 }
1784
1785 void
1786 spa_evicting_os_register(spa_t *spa, objset_t *os)
1787 {
1788 mutex_enter(&spa->spa_evicting_os_lock);
1789 list_insert_head(&spa->spa_evicting_os_list, os);
1790 mutex_exit(&spa->spa_evicting_os_lock);
1791 }
1792
1793 void
1794 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1795 {
1796 mutex_enter(&spa->spa_evicting_os_lock);
1797 list_remove(&spa->spa_evicting_os_list, os);
1798 cv_broadcast(&spa->spa_evicting_os_cv);
1799 mutex_exit(&spa->spa_evicting_os_lock);
1800 }
1801
1802 void
1803 spa_evicting_os_wait(spa_t *spa)
1804 {
1805 mutex_enter(&spa->spa_evicting_os_lock);
1806 while (!list_is_empty(&spa->spa_evicting_os_list))
1807 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1808 mutex_exit(&spa->spa_evicting_os_lock);
1809
1810 dmu_buf_user_evict_wait();
1811 }
1812
1813 int
1814 spa_max_replication(spa_t *spa)
1815 {
1816 /*
1817 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1818 * handle BPs with more than one DVA allocated. Set our max
1819 * replication level accordingly.
1820 */
1821 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1822 return (1);
1823 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1824 }
1825
1826 int
1827 spa_prev_software_version(spa_t *spa)
1828 {
1829 return (spa->spa_prev_software_version);
1830 }
1831
1832 uint64_t
1833 spa_deadman_synctime(spa_t *spa)
1834 {
1835 return (spa->spa_deadman_synctime);
1836 }
1837
1838 uint64_t
1839 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1840 {
1841 uint64_t asize = DVA_GET_ASIZE(dva);
1842 uint64_t dsize = asize;
1843
1844 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1845
1846 if (asize != 0 && spa->spa_deflate) {
1847 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1848 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1849 }
1850
1851 return (dsize);
1852 }
1853
1854 uint64_t
1855 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1856 {
1857 uint64_t dsize = 0;
1858
1859 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1860 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1861
1862 return (dsize);
1863 }
1864
1865 uint64_t
1866 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1867 {
1868 uint64_t dsize = 0;
1869
1870 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1871
1872 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1873 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1874
1875 spa_config_exit(spa, SCL_VDEV, FTAG);
1876
1877 return (dsize);
1878 }
1879
1880 /*
1881 * ==========================================================================
1882 * Initialization and Termination
1883 * ==========================================================================
1884 */
1885
1886 static int
1887 spa_name_compare(const void *a1, const void *a2)
1888 {
1889 const spa_t *s1 = a1;
1890 const spa_t *s2 = a2;
1891 int s;
1892
1893 s = strcmp(s1->spa_name, s2->spa_name);
1894 if (s > 0)
1895 return (1);
1896 if (s < 0)
1897 return (-1);
1898 return (0);
1899 }
1900
1901 int
1902 spa_busy(void)
1903 {
1904 return (spa_active_count);
1905 }
1906
1907 void
1908 spa_boot_init()
1909 {
1910 spa_config_load();
1911 }
1912
1913 void
1914 spa_init(int mode)
1915 {
1916 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1917 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1918 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1919 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1920
1921 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1922 offsetof(spa_t, spa_avl));
1923
1924 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1925 offsetof(spa_aux_t, aux_avl));
1926
1927 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1928 offsetof(spa_aux_t, aux_avl));
1929
1930 spa_mode_global = mode;
1931
1932 #ifdef _KERNEL
1933 spa_arch_init();
1934 #else
1935 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1936 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1937 if (arc_procfd == -1) {
1938 perror("could not enable watchpoints: "
1939 "opening /proc/self/ctl failed: ");
1940 } else {
1941 arc_watch = B_TRUE;
1942 }
1943 }
1944 #endif
1945
1946 refcount_init();
1947 unique_init();
1948 range_tree_init();
1949 metaslab_alloc_trace_init();
1950 zio_init();
1951 dmu_init();
1952 zil_init();
1953 vdev_cache_stat_init();
1954 zfs_prop_init();
1955 zpool_prop_init();
1956 zpool_feature_init();
1957 spa_config_load();
1958 l2arc_start();
1959 }
1960
1961 void
1962 spa_fini(void)
1963 {
1964 l2arc_stop();
1965
1966 spa_evict_all();
1967
1968 vdev_cache_stat_fini();
1969 zil_fini();
1970 dmu_fini();
1971 zio_fini();
1972 metaslab_alloc_trace_fini();
1973 range_tree_fini();
1974 unique_fini();
1975 refcount_fini();
1976
1977 avl_destroy(&spa_namespace_avl);
1978 avl_destroy(&spa_spare_avl);
1979 avl_destroy(&spa_l2cache_avl);
1980
1981 cv_destroy(&spa_namespace_cv);
1982 mutex_destroy(&spa_namespace_lock);
1983 mutex_destroy(&spa_spare_lock);
1984 mutex_destroy(&spa_l2cache_lock);
1985 }
1986
1987 /*
1988 * Return whether this pool has slogs. No locking needed.
1989 * It's not a problem if the wrong answer is returned as it's only for
1990 * performance and not correctness
1991 */
1992 boolean_t
1993 spa_has_slogs(spa_t *spa)
1994 {
1995 return (spa->spa_log_class->mc_rotor != NULL);
1996 }
1997
1998 spa_log_state_t
1999 spa_get_log_state(spa_t *spa)
2000 {
2001 return (spa->spa_log_state);
2002 }
2003
2004 void
2005 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2006 {
2007 spa->spa_log_state = state;
2008 }
2009
2010 boolean_t
2011 spa_is_root(spa_t *spa)
2012 {
2013 return (spa->spa_is_root);
2014 }
2015
2016 boolean_t
2017 spa_writeable(spa_t *spa)
2018 {
2019 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2020 }
2021
2022 /*
2023 * Returns true if there is a pending sync task in any of the current
2024 * syncing txg, the current quiescing txg, or the current open txg.
2025 */
2026 boolean_t
2027 spa_has_pending_synctask(spa_t *spa)
2028 {
2029 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2030 }
2031
2032 int
2033 spa_mode(spa_t *spa)
2034 {
2035 return (spa->spa_mode);
2036 }
2037
2038 uint64_t
2039 spa_bootfs(spa_t *spa)
2040 {
2041 return (spa->spa_bootfs);
2042 }
2043
2044 uint64_t
2045 spa_delegation(spa_t *spa)
2046 {
2047 return (spa->spa_delegation);
2048 }
2049
2050 objset_t *
2051 spa_meta_objset(spa_t *spa)
2052 {
2053 return (spa->spa_meta_objset);
2054 }
2055
2056 enum zio_checksum
2057 spa_dedup_checksum(spa_t *spa)
2058 {
2059 return (spa->spa_dedup_checksum);
2060 }
2061
2062 /*
2063 * Reset pool scan stat per scan pass (or reboot).
2064 */
2065 void
2066 spa_scan_stat_init(spa_t *spa)
2067 {
2068 /* data not stored on disk */
2069 spa->spa_scan_pass_start = gethrestime_sec();
2070 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2071 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2072 else
2073 spa->spa_scan_pass_scrub_pause = 0;
2074 spa->spa_scan_pass_scrub_spent_paused = 0;
2075 spa->spa_scan_pass_exam = 0;
2076 vdev_scan_stat_init(spa->spa_root_vdev);
2077 }
2078
2079 /*
2080 * Get scan stats for zpool status reports
2081 */
2082 int
2083 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2084 {
2085 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2086
2087 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2088 return (SET_ERROR(ENOENT));
2089 bzero(ps, sizeof (pool_scan_stat_t));
2090
2091 /* data stored on disk */
2092 ps->pss_func = scn->scn_phys.scn_func;
2093 ps->pss_start_time = scn->scn_phys.scn_start_time;
2094 ps->pss_end_time = scn->scn_phys.scn_end_time;
2095 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2096 ps->pss_examined = scn->scn_phys.scn_examined;
2097 ps->pss_to_process = scn->scn_phys.scn_to_process;
2098 ps->pss_processed = scn->scn_phys.scn_processed;
2099 ps->pss_errors = scn->scn_phys.scn_errors;
2100 ps->pss_state = scn->scn_phys.scn_state;
2101
2102 /* data not stored on disk */
2103 ps->pss_pass_start = spa->spa_scan_pass_start;
2104 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2105 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2106 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2107
2108 return (0);
2109 }
2110
2111 boolean_t
2112 spa_debug_enabled(spa_t *spa)
2113 {
2114 return (spa->spa_debug);
2115 }
2116
2117 int
2118 spa_maxblocksize(spa_t *spa)
2119 {
2120 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2121 return (SPA_MAXBLOCKSIZE);
2122 else
2123 return (SPA_OLD_MAXBLOCKSIZE);
2124 }
2125
2126 /*
2127 * Returns the txg that the last device removal completed. No indirect mappings
2128 * have been added since this txg.
2129 */
2130 uint64_t
2131 spa_get_last_removal_txg(spa_t *spa)
2132 {
2133 uint64_t vdevid;
2134 uint64_t ret = -1ULL;
2135
2136 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2137 /*
2138 * sr_prev_indirect_vdev is only modified while holding all the
2139 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2140 * examining it.
2141 */
2142 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2143
2144 while (vdevid != -1ULL) {
2145 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2146 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2147
2148 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2149
2150 /*
2151 * If the removal did not remap any data, we don't care.
2152 */
2153 if (vdev_indirect_births_count(vib) != 0) {
2154 ret = vdev_indirect_births_last_entry_txg(vib);
2155 break;
2156 }
2157
2158 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2159 }
2160 spa_config_exit(spa, SCL_VDEV, FTAG);
2161
2162 IMPLY(ret != -1ULL,
2163 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2164
2165 return (ret);
2166 }
2167
2168 boolean_t
2169 spa_trust_config(spa_t *spa)
2170 {
2171 return (spa->spa_trust_config);
2172 }
2173
2174 uint64_t
2175 spa_missing_tvds_allowed(spa_t *spa)
2176 {
2177 return (spa->spa_missing_tvds_allowed);
2178 }
2179
2180 void
2181 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2182 {
2183 spa->spa_missing_tvds = missing;
2184 }