1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  26  * Copyright 2018 Nexenta Systems, Inc.  All rights reserved.
  27  * Copyright 2013 Saso Kiselkov. All rights reserved.
  28  * Copyright (c) 2014 Integros [integros.com]
  29  * Copyright 2016 Toomas Soome <tsoome@me.com>
  30  * Copyright 2018 Joyent, Inc.
  31  * Copyright (c) 2017 Datto Inc.
  32  */
  33 
  34 /*
  35  * SPA: Storage Pool Allocator
  36  *
  37  * This file contains all the routines used when modifying on-disk SPA state.
  38  * This includes opening, importing, destroying, exporting a pool, and syncing a
  39  * pool.
  40  */
  41 
  42 #include <sys/zfs_context.h>
  43 #include <sys/fm/fs/zfs.h>
  44 #include <sys/spa_impl.h>
  45 #include <sys/zio.h>
  46 #include <sys/zio_checksum.h>
  47 #include <sys/dmu.h>
  48 #include <sys/dmu_tx.h>
  49 #include <sys/zap.h>
  50 #include <sys/zil.h>
  51 #include <sys/ddt.h>
  52 #include <sys/vdev_impl.h>
  53 #include <sys/metaslab.h>
  54 #include <sys/metaslab_impl.h>
  55 #include <sys/uberblock_impl.h>
  56 #include <sys/txg.h>
  57 #include <sys/avl.h>
  58 #include <sys/dmu_traverse.h>
  59 #include <sys/dmu_objset.h>
  60 #include <sys/unique.h>
  61 #include <sys/dsl_pool.h>
  62 #include <sys/dsl_dataset.h>
  63 #include <sys/dsl_dir.h>
  64 #include <sys/dsl_prop.h>
  65 #include <sys/dsl_synctask.h>
  66 #include <sys/fs/zfs.h>
  67 #include <sys/arc.h>
  68 #include <sys/callb.h>
  69 #include <sys/systeminfo.h>
  70 #include <sys/spa_boot.h>
  71 #include <sys/zfs_ioctl.h>
  72 #include <sys/dsl_scan.h>
  73 #include <sys/zfeature.h>
  74 #include <sys/dsl_destroy.h>
  75 #include <sys/cos.h>
  76 #include <sys/special.h>
  77 #include <sys/wbc.h>
  78 #include <sys/abd.h>
  79 
  80 #ifdef  _KERNEL
  81 #include <sys/bootprops.h>
  82 #include <sys/callb.h>
  83 #include <sys/cpupart.h>
  84 #include <sys/pool.h>
  85 #include <sys/sysdc.h>
  86 #include <sys/zone.h>
  87 #endif  /* _KERNEL */
  88 
  89 #include "zfs_prop.h"
  90 #include "zfs_comutil.h"
  91 
  92 /*
  93  * The interval, in seconds, at which failed configuration cache file writes
  94  * should be retried.
  95  */
  96 static int zfs_ccw_retry_interval = 300;
  97 
  98 typedef enum zti_modes {
  99         ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
 100         ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
 101         ZTI_MODE_NULL,                  /* don't create a taskq */
 102         ZTI_NMODES
 103 } zti_modes_t;
 104 
 105 #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
 106 #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
 107 #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
 108 
 109 #define ZTI_N(n)        ZTI_P(n, 1)
 110 #define ZTI_ONE         ZTI_N(1)
 111 
 112 typedef struct zio_taskq_info {
 113         zti_modes_t zti_mode;
 114         uint_t zti_value;
 115         uint_t zti_count;
 116 } zio_taskq_info_t;
 117 
 118 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 119         "issue", "issue_high", "intr", "intr_high"
 120 };
 121 
 122 /*
 123  * This table defines the taskq settings for each ZFS I/O type. When
 124  * initializing a pool, we use this table to create an appropriately sized
 125  * taskq. Some operations are low volume and therefore have a small, static
 126  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 127  * macros. Other operations process a large amount of data; the ZTI_BATCH
 128  * macro causes us to create a taskq oriented for throughput. Some operations
 129  * are so high frequency and short-lived that the taskq itself can become a a
 130  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 131  * additional degree of parallelism specified by the number of threads per-
 132  * taskq and the number of taskqs; when dispatching an event in this case, the
 133  * particular taskq is chosen at random.
 134  *
 135  * The different taskq priorities are to handle the different contexts (issue
 136  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 137  * need to be handled with minimum delay.
 138  */
 139 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 140         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 141         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 142         { ZTI_N(8),     ZTI_NULL,       ZTI_P(12, 8),   ZTI_NULL }, /* READ */
 143         { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 144         { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 145         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 146         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 147 };
 148 
 149 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl,
 150     const char *name);
 151 static void spa_event_notify_impl(sysevent_t *ev);
 152 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 153 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 154 static void spa_vdev_sync_props(void *arg, dmu_tx_t *tx);
 155 static int spa_vdev_prop_set_nosync(vdev_t *, nvlist_t *, boolean_t *);
 156 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 157 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 158     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 159     char **ereport);
 160 static void spa_vdev_resilver_done(spa_t *spa);
 161 static void spa_auto_trim(spa_t *spa, uint64_t txg);
 162 static void spa_vdev_man_trim_done(spa_t *spa);
 163 static void spa_vdev_auto_trim_done(spa_t *spa);
 164 static uint64_t spa_min_trim_rate(spa_t *spa);
 165 
 166 uint_t          zio_taskq_batch_pct = 75;       /* 1 thread per cpu in pset */
 167 id_t            zio_taskq_psrset_bind = PS_NONE;
 168 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 169 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 170 
 171 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 172 extern int      zfs_sync_pass_deferred_free;
 173 
 174 /*
 175  * ==========================================================================
 176  * SPA properties routines
 177  * ==========================================================================
 178  */
 179 
 180 /*
 181  * Add a (source=src, propname=propval) list to an nvlist.
 182  */
 183 static void
 184 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 185     uint64_t intval, zprop_source_t src)
 186 {
 187         const char *propname = zpool_prop_to_name(prop);
 188         nvlist_t *propval;
 189 
 190         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 191         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 192 
 193         if (strval != NULL)
 194                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 195         else
 196                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 197 
 198         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 199         nvlist_free(propval);
 200 }
 201 
 202 /*
 203  * Get property values from the spa configuration.
 204  */
 205 static void
 206 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 207 {
 208         vdev_t *rvd = spa->spa_root_vdev;
 209         dsl_pool_t *pool = spa->spa_dsl_pool;
 210         spa_meta_placement_t *mp = &spa->spa_meta_policy;
 211         uint64_t size, alloc, cap, version;
 212         zprop_source_t src = ZPROP_SRC_NONE;
 213         spa_config_dirent_t *dp;
 214         metaslab_class_t *mc = spa_normal_class(spa);
 215 
 216         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 217 
 218         if (rvd != NULL) {
 219                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 220                 size = metaslab_class_get_space(spa_normal_class(spa));
 221                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 222                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 223                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 224                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 225                     size - alloc, src);
 226                 spa_prop_add_list(*nvp, ZPOOL_PROP_ENABLESPECIAL, NULL,
 227                     (uint64_t)spa->spa_usesc, src);
 228                 spa_prop_add_list(*nvp, ZPOOL_PROP_MINWATERMARK, NULL,
 229                     spa->spa_minwat, src);
 230                 spa_prop_add_list(*nvp, ZPOOL_PROP_HIWATERMARK, NULL,
 231                     spa->spa_hiwat, src);
 232                 spa_prop_add_list(*nvp, ZPOOL_PROP_LOWATERMARK, NULL,
 233                     spa->spa_lowat, src);
 234                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPMETA_DITTO, NULL,
 235                     spa->spa_ddt_meta_copies, src);
 236 
 237                 spa_prop_add_list(*nvp, ZPOOL_PROP_META_PLACEMENT, NULL,
 238                     mp->spa_enable_meta_placement_selection, src);
 239                 spa_prop_add_list(*nvp, ZPOOL_PROP_SYNC_TO_SPECIAL, NULL,
 240                     mp->spa_sync_to_special, src);
 241                 spa_prop_add_list(*nvp, ZPOOL_PROP_DDT_META_TO_METADEV, NULL,
 242                     mp->spa_ddt_meta_to_special, src);
 243                 spa_prop_add_list(*nvp, ZPOOL_PROP_ZFS_META_TO_METADEV,
 244                     NULL, mp->spa_zfs_meta_to_special, src);
 245                 spa_prop_add_list(*nvp, ZPOOL_PROP_SMALL_DATA_TO_METADEV, NULL,
 246                     mp->spa_small_data_to_special, src);
 247 
 248                 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
 249                     metaslab_class_fragmentation(mc), src);
 250                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
 251                     metaslab_class_expandable_space(mc), src);
 252                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 253                     (spa_mode(spa) == FREAD), src);
 254 
 255                 spa_prop_add_list(*nvp, ZPOOL_PROP_DDT_DESEGREGATION, NULL,
 256                     (spa->spa_ddt_class_min == spa->spa_ddt_class_max), src);
 257 
 258                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 259                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 260 
 261                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUP_BEST_EFFORT, NULL,
 262                     spa->spa_dedup_best_effort, src);
 263 
 264                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUP_LO_BEST_EFFORT, NULL,
 265                     spa->spa_dedup_lo_best_effort, src);
 266 
 267                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUP_HI_BEST_EFFORT, NULL,
 268                     spa->spa_dedup_hi_best_effort, src);
 269 
 270                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 271                     ddt_get_pool_dedup_ratio(spa), src);
 272 
 273                 spa_prop_add_list(*nvp, ZPOOL_PROP_DDTCAPPED, NULL,
 274                     spa->spa_ddt_capped, src);
 275 
 276                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 277                     rvd->vdev_state, src);
 278 
 279                 version = spa_version(spa);
 280                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 281                         src = ZPROP_SRC_DEFAULT;
 282                 else
 283                         src = ZPROP_SRC_LOCAL;
 284                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 285         }
 286 
 287         if (pool != NULL) {
 288                 /*
 289                  * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 290                  * when opening pools before this version freedir will be NULL.
 291                  */
 292                 if (pool->dp_free_dir != NULL) {
 293                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 294                             dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes +
 295                             pool->dp_long_freeing_total,
 296                             src);
 297                 } else {
 298                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 299                             NULL, pool->dp_long_freeing_total, src);
 300                 }
 301 
 302                 if (pool->dp_leak_dir != NULL) {
 303                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
 304                             dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
 305                             src);
 306                 } else {
 307                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
 308                             NULL, 0, src);
 309                 }
 310         }
 311 
 312         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 313 
 314         if (spa->spa_comment != NULL) {
 315                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 316                     0, ZPROP_SRC_LOCAL);
 317         }
 318 
 319         if (spa->spa_root != NULL)
 320                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 321                     0, ZPROP_SRC_LOCAL);
 322 
 323         if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
 324                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 325                     MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
 326         } else {
 327                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 328                     SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
 329         }
 330 
 331         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 332                 if (dp->scd_path == NULL) {
 333                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 334                             "none", 0, ZPROP_SRC_LOCAL);
 335                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 336                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 337                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 338                 }
 339         }
 340 }
 341 
 342 /*
 343  * Get zpool property values.
 344  */
 345 int
 346 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 347 {
 348         objset_t *mos = spa->spa_meta_objset;
 349         zap_cursor_t zc;
 350         zap_attribute_t za;
 351         int err;
 352 
 353         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 354 
 355         mutex_enter(&spa->spa_props_lock);
 356 
 357         /*
 358          * Get properties from the spa config.
 359          */
 360         spa_prop_get_config(spa, nvp);
 361 
 362         /* If no pool property object, no more prop to get. */
 363         if (mos == NULL || spa->spa_pool_props_object == 0) {
 364                 mutex_exit(&spa->spa_props_lock);
 365                 return (0);
 366         }
 367 
 368         /*
 369          * Get properties from the MOS pool property object.
 370          */
 371         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 372             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 373             zap_cursor_advance(&zc)) {
 374                 uint64_t intval = 0;
 375                 char *strval = NULL;
 376                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 377                 zpool_prop_t prop;
 378 
 379                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 380                         continue;
 381 
 382                 switch (za.za_integer_length) {
 383                 case 8:
 384                         /* integer property */
 385                         if (za.za_first_integer !=
 386                             zpool_prop_default_numeric(prop))
 387                                 src = ZPROP_SRC_LOCAL;
 388 
 389                         if (prop == ZPOOL_PROP_BOOTFS) {
 390                                 dsl_pool_t *dp;
 391                                 dsl_dataset_t *ds = NULL;
 392 
 393                                 dp = spa_get_dsl(spa);
 394                                 dsl_pool_config_enter(dp, FTAG);
 395                                 if (err = dsl_dataset_hold_obj(dp,
 396                                     za.za_first_integer, FTAG, &ds)) {
 397                                         dsl_pool_config_exit(dp, FTAG);
 398                                         break;
 399                                 }
 400 
 401                                 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
 402                                     KM_SLEEP);
 403                                 dsl_dataset_name(ds, strval);
 404                                 dsl_dataset_rele(ds, FTAG);
 405                                 dsl_pool_config_exit(dp, FTAG);
 406                         } else {
 407                                 strval = NULL;
 408                                 intval = za.za_first_integer;
 409                         }
 410 
 411                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 412 
 413                         if (strval != NULL)
 414                                 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
 415 
 416                         break;
 417 
 418                 case 1:
 419                         /* string property */
 420                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 421                         err = zap_lookup(mos, spa->spa_pool_props_object,
 422                             za.za_name, 1, za.za_num_integers, strval);
 423                         if (err) {
 424                                 kmem_free(strval, za.za_num_integers);
 425                                 break;
 426                         }
 427                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 428                         kmem_free(strval, za.za_num_integers);
 429                         break;
 430 
 431                 default:
 432                         break;
 433                 }
 434         }
 435         zap_cursor_fini(&zc);
 436         mutex_exit(&spa->spa_props_lock);
 437 out:
 438         if (err && err != ENOENT) {
 439                 nvlist_free(*nvp);
 440                 *nvp = NULL;
 441                 return (err);
 442         }
 443 
 444         return (0);
 445 }
 446 
 447 /*
 448  * Validate the given pool properties nvlist and modify the list
 449  * for the property values to be set.
 450  */
 451 static int
 452 spa_prop_validate(spa_t *spa, nvlist_t *props)
 453 {
 454         nvpair_t *elem;
 455         int error = 0, reset_bootfs = 0;
 456         uint64_t objnum = 0;
 457         boolean_t has_feature = B_FALSE;
 458         uint64_t lowat = spa->spa_lowat, hiwat = spa->spa_hiwat,
 459             minwat = spa->spa_minwat;
 460 
 461         elem = NULL;
 462         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 463                 uint64_t intval;
 464                 char *strval, *slash, *check, *fname;
 465                 const char *propname = nvpair_name(elem);
 466                 zpool_prop_t prop = zpool_name_to_prop(propname);
 467                 spa_feature_t feature;
 468 
 469                 switch (prop) {
 470                 case ZPROP_INVAL:
 471                         if (!zpool_prop_feature(propname)) {
 472                                 error = SET_ERROR(EINVAL);
 473                                 break;
 474                         }
 475 
 476                         /*
 477                          * Sanitize the input.
 478                          */
 479                         if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 480                                 error = SET_ERROR(EINVAL);
 481                                 break;
 482                         }
 483 
 484                         if (nvpair_value_uint64(elem, &intval) != 0) {
 485                                 error = SET_ERROR(EINVAL);
 486                                 break;
 487                         }
 488 
 489                         if (intval != 0) {
 490                                 error = SET_ERROR(EINVAL);
 491                                 break;
 492                         }
 493 
 494                         fname = strchr(propname, '@') + 1;
 495                         if (zfeature_lookup_name(fname, &feature) != 0) {
 496                                 error = SET_ERROR(EINVAL);
 497                                 break;
 498                         }
 499 
 500                         if (feature == SPA_FEATURE_WBC &&
 501                             !spa_has_special(spa)) {
 502                                 error = SET_ERROR(ENOTSUP);
 503                                 break;
 504                         }
 505 
 506                         has_feature = B_TRUE;
 507                         break;
 508 
 509                 case ZPOOL_PROP_VERSION:
 510                         error = nvpair_value_uint64(elem, &intval);
 511                         if (!error &&
 512                             (intval < spa_version(spa) ||
 513                             intval > SPA_VERSION_BEFORE_FEATURES ||
 514                             has_feature))
 515                                 error = SET_ERROR(EINVAL);
 516                         break;
 517 
 518                 case ZPOOL_PROP_DELEGATION:
 519                 case ZPOOL_PROP_AUTOREPLACE:
 520                 case ZPOOL_PROP_LISTSNAPS:
 521                 case ZPOOL_PROP_AUTOEXPAND:
 522                 case ZPOOL_PROP_DEDUP_BEST_EFFORT:
 523                 case ZPOOL_PROP_DDT_DESEGREGATION:
 524                 case ZPOOL_PROP_META_PLACEMENT:
 525                 case ZPOOL_PROP_FORCETRIM:
 526                 case ZPOOL_PROP_AUTOTRIM:
 527                         error = nvpair_value_uint64(elem, &intval);
 528                         if (!error && intval > 1)
 529                                 error = SET_ERROR(EINVAL);
 530                         break;
 531 
 532                 case ZPOOL_PROP_DDT_META_TO_METADEV:
 533                 case ZPOOL_PROP_ZFS_META_TO_METADEV:
 534                         error = nvpair_value_uint64(elem, &intval);
 535                         if (!error && intval > META_PLACEMENT_DUAL)
 536                                 error = SET_ERROR(EINVAL);
 537                         break;
 538 
 539                 case ZPOOL_PROP_SYNC_TO_SPECIAL:
 540                         error = nvpair_value_uint64(elem, &intval);
 541                         if (!error && intval > SYNC_TO_SPECIAL_ALWAYS)
 542                                 error = SET_ERROR(EINVAL);
 543                         break;
 544 
 545                 case ZPOOL_PROP_SMALL_DATA_TO_METADEV:
 546                         error = nvpair_value_uint64(elem, &intval);
 547                         if (!error && intval > SPA_MAXBLOCKSIZE)
 548                                 error = SET_ERROR(EINVAL);
 549                         break;
 550 
 551                 case ZPOOL_PROP_BOOTFS:
 552                         /*
 553                          * If the pool version is less than SPA_VERSION_BOOTFS,
 554                          * or the pool is still being created (version == 0),
 555                          * the bootfs property cannot be set.
 556                          */
 557                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 558                                 error = SET_ERROR(ENOTSUP);
 559                                 break;
 560                         }
 561 
 562                         /*
 563                          * Make sure the vdev config is bootable
 564                          */
 565                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 566                                 error = SET_ERROR(ENOTSUP);
 567                                 break;
 568                         }
 569 
 570                         reset_bootfs = 1;
 571 
 572                         error = nvpair_value_string(elem, &strval);
 573 
 574                         if (!error) {
 575                                 objset_t *os;
 576                                 uint64_t propval;
 577 
 578                                 if (strval == NULL || strval[0] == '\0') {
 579                                         objnum = zpool_prop_default_numeric(
 580                                             ZPOOL_PROP_BOOTFS);
 581                                         break;
 582                                 }
 583 
 584                                 if (error = dmu_objset_hold(strval, FTAG, &os))
 585                                         break;
 586 
 587                                 /*
 588                                  * Must be ZPL, and its property settings
 589                                  * must be supported by GRUB (compression
 590                                  * is not gzip, and large blocks are not used).
 591                                  */
 592 
 593                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 594                                         error = SET_ERROR(ENOTSUP);
 595                                 } else if ((error =
 596                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 597                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 598                                     &propval)) == 0 &&
 599                                     !BOOTFS_COMPRESS_VALID(propval)) {
 600                                         error = SET_ERROR(ENOTSUP);
 601                                 } else {
 602                                         objnum = dmu_objset_id(os);
 603                                 }
 604                                 dmu_objset_rele(os, FTAG);
 605                         }
 606                         break;
 607 
 608                 case ZPOOL_PROP_DEDUP_LO_BEST_EFFORT:
 609                         error = nvpair_value_uint64(elem, &intval);
 610                         if ((intval < 0) || (intval > 100) ||
 611                             (intval >= spa->spa_dedup_hi_best_effort))
 612                                 error = SET_ERROR(EINVAL);
 613                         break;
 614 
 615                 case ZPOOL_PROP_DEDUP_HI_BEST_EFFORT:
 616                         error = nvpair_value_uint64(elem, &intval);
 617                         if ((intval < 0) || (intval > 100) ||
 618                             (intval <= spa->spa_dedup_lo_best_effort))
 619                                 error = SET_ERROR(EINVAL);
 620                         break;
 621 
 622                 case ZPOOL_PROP_FAILUREMODE:
 623                         error = nvpair_value_uint64(elem, &intval);
 624                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 625                             intval > ZIO_FAILURE_MODE_PANIC))
 626                                 error = SET_ERROR(EINVAL);
 627 
 628                         /*
 629                          * This is a special case which only occurs when
 630                          * the pool has completely failed. This allows
 631                          * the user to change the in-core failmode property
 632                          * without syncing it out to disk (I/Os might
 633                          * currently be blocked). We do this by returning
 634                          * EIO to the caller (spa_prop_set) to trick it
 635                          * into thinking we encountered a property validation
 636                          * error.
 637                          */
 638                         if (!error && spa_suspended(spa)) {
 639                                 spa->spa_failmode = intval;
 640                                 error = SET_ERROR(EIO);
 641                         }
 642                         break;
 643 
 644                 case ZPOOL_PROP_CACHEFILE:
 645                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 646                                 break;
 647 
 648                         if (strval[0] == '\0')
 649                                 break;
 650 
 651                         if (strcmp(strval, "none") == 0)
 652                                 break;
 653 
 654                         if (strval[0] != '/') {
 655                                 error = SET_ERROR(EINVAL);
 656                                 break;
 657                         }
 658 
 659                         slash = strrchr(strval, '/');
 660                         ASSERT(slash != NULL);
 661 
 662                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 663                             strcmp(slash, "/..") == 0)
 664                                 error = SET_ERROR(EINVAL);
 665                         break;
 666 
 667                 case ZPOOL_PROP_COMMENT:
 668                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 669                                 break;
 670                         for (check = strval; *check != '\0'; check++) {
 671                                 /*
 672                                  * The kernel doesn't have an easy isprint()
 673                                  * check.  For this kernel check, we merely
 674                                  * check ASCII apart from DEL.  Fix this if
 675                                  * there is an easy-to-use kernel isprint().
 676                                  */
 677                                 if (*check >= 0x7f) {
 678                                         error = SET_ERROR(EINVAL);
 679                                         break;
 680                                 }
 681                         }
 682                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 683                                 error = SET_ERROR(E2BIG);
 684                         break;
 685 
 686                 case ZPOOL_PROP_DEDUPDITTO:
 687                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 688                                 error = SET_ERROR(ENOTSUP);
 689                         else
 690                                 error = nvpair_value_uint64(elem, &intval);
 691                         if (error == 0 &&
 692                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 693                                 error = SET_ERROR(EINVAL);
 694                         break;
 695 
 696                 case ZPOOL_PROP_MINWATERMARK:
 697                         error = nvpair_value_uint64(elem, &intval);
 698                         if (!error && (intval > 100))
 699                                 error = SET_ERROR(EINVAL);
 700                         minwat = intval;
 701                         break;
 702                 case ZPOOL_PROP_LOWATERMARK:
 703                         error = nvpair_value_uint64(elem, &intval);
 704                         if (!error && (intval > 100))
 705                                 error = SET_ERROR(EINVAL);
 706                         lowat = intval;
 707                         break;
 708                 case ZPOOL_PROP_HIWATERMARK:
 709                         error = nvpair_value_uint64(elem, &intval);
 710                         if (!error && (intval > 100))
 711                                 error = SET_ERROR(EINVAL);
 712                         hiwat = intval;
 713                         break;
 714                 case ZPOOL_PROP_DEDUPMETA_DITTO:
 715                         error = nvpair_value_uint64(elem, &intval);
 716                         if (!error && (intval > SPA_DVAS_PER_BP))
 717                                 error = SET_ERROR(EINVAL);
 718                         break;
 719                 case ZPOOL_PROP_SCRUB_PRIO:
 720                 case ZPOOL_PROP_RESILVER_PRIO:
 721                         error = nvpair_value_uint64(elem, &intval);
 722                         if (error || intval > 100)
 723                                 error = SET_ERROR(EINVAL);
 724                         break;
 725                 }
 726 
 727                 if (error)
 728                         break;
 729         }
 730 
 731         /* check if low watermark is less than high watermark */
 732         if (lowat != 0 && lowat >= hiwat)
 733                 error = SET_ERROR(EINVAL);
 734 
 735         /* check if min watermark is less than low watermark */
 736         if (minwat != 0 && minwat >= lowat)
 737                 error = SET_ERROR(EINVAL);
 738 
 739         if (!error && reset_bootfs) {
 740                 error = nvlist_remove(props,
 741                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 742 
 743                 if (!error) {
 744                         error = nvlist_add_uint64(props,
 745                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 746                 }
 747         }
 748 
 749         return (error);
 750 }
 751 
 752 void
 753 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 754 {
 755         char *cachefile;
 756         spa_config_dirent_t *dp;
 757 
 758         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 759             &cachefile) != 0)
 760                 return;
 761 
 762         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 763             KM_SLEEP);
 764 
 765         if (cachefile[0] == '\0')
 766                 dp->scd_path = spa_strdup(spa_config_path);
 767         else if (strcmp(cachefile, "none") == 0)
 768                 dp->scd_path = NULL;
 769         else
 770                 dp->scd_path = spa_strdup(cachefile);
 771 
 772         list_insert_head(&spa->spa_config_list, dp);
 773         if (need_sync)
 774                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 775 }
 776 
 777 int
 778 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 779 {
 780         int error;
 781         nvpair_t *elem = NULL;
 782         boolean_t need_sync = B_FALSE;
 783 
 784         if ((error = spa_prop_validate(spa, nvp)) != 0)
 785                 return (error);
 786 
 787         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 788                 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 789 
 790                 if (prop == ZPOOL_PROP_CACHEFILE ||
 791                     prop == ZPOOL_PROP_ALTROOT ||
 792                     prop == ZPOOL_PROP_READONLY)
 793                         continue;
 794 
 795                 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
 796                         uint64_t ver;
 797 
 798                         if (prop == ZPOOL_PROP_VERSION) {
 799                                 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 800                         } else {
 801                                 ASSERT(zpool_prop_feature(nvpair_name(elem)));
 802                                 ver = SPA_VERSION_FEATURES;
 803                                 need_sync = B_TRUE;
 804                         }
 805 
 806                         /* Save time if the version is already set. */
 807                         if (ver == spa_version(spa))
 808                                 continue;
 809 
 810                         /*
 811                          * In addition to the pool directory object, we might
 812                          * create the pool properties object, the features for
 813                          * read object, the features for write object, or the
 814                          * feature descriptions object.
 815                          */
 816                         error = dsl_sync_task(spa->spa_name, NULL,
 817                             spa_sync_version, &ver,
 818                             6, ZFS_SPACE_CHECK_RESERVED);
 819                         if (error)
 820                                 return (error);
 821                         continue;
 822                 }
 823 
 824                 need_sync = B_TRUE;
 825                 break;
 826         }
 827 
 828         if (need_sync) {
 829                 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 830                     nvp, 6, ZFS_SPACE_CHECK_RESERVED));
 831         }
 832 
 833         return (0);
 834 }
 835 
 836 /*
 837  * If the bootfs property value is dsobj, clear it.
 838  */
 839 void
 840 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 841 {
 842         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 843                 VERIFY(zap_remove(spa->spa_meta_objset,
 844                     spa->spa_pool_props_object,
 845                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 846                 spa->spa_bootfs = 0;
 847         }
 848 }
 849 
 850 /*ARGSUSED*/
 851 static int
 852 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 853 {
 854         uint64_t *newguid = arg;
 855         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 856         vdev_t *rvd = spa->spa_root_vdev;
 857         uint64_t vdev_state;
 858 
 859         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 860         vdev_state = rvd->vdev_state;
 861         spa_config_exit(spa, SCL_STATE, FTAG);
 862 
 863         if (vdev_state != VDEV_STATE_HEALTHY)
 864                 return (SET_ERROR(ENXIO));
 865 
 866         ASSERT3U(spa_guid(spa), !=, *newguid);
 867 
 868         return (0);
 869 }
 870 
 871 static void
 872 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 873 {
 874         uint64_t *newguid = arg;
 875         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 876         uint64_t oldguid;
 877         vdev_t *rvd = spa->spa_root_vdev;
 878 
 879         oldguid = spa_guid(spa);
 880 
 881         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 882         rvd->vdev_guid = *newguid;
 883         rvd->vdev_guid_sum += (*newguid - oldguid);
 884         vdev_config_dirty(rvd);
 885         spa_config_exit(spa, SCL_STATE, FTAG);
 886 
 887         spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 888             oldguid, *newguid);
 889 }
 890 
 891 /*
 892  * Change the GUID for the pool.  This is done so that we can later
 893  * re-import a pool built from a clone of our own vdevs.  We will modify
 894  * the root vdev's guid, our own pool guid, and then mark all of our
 895  * vdevs dirty.  Note that we must make sure that all our vdevs are
 896  * online when we do this, or else any vdevs that weren't present
 897  * would be orphaned from our pool.  We are also going to issue a
 898  * sysevent to update any watchers.
 899  */
 900 int
 901 spa_change_guid(spa_t *spa)
 902 {
 903         int error;
 904         uint64_t guid;
 905 
 906         mutex_enter(&spa->spa_vdev_top_lock);
 907         mutex_enter(&spa_namespace_lock);
 908         guid = spa_generate_guid(NULL);
 909 
 910         error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 911             spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
 912 
 913         if (error == 0) {
 914                 spa_config_sync(spa, B_FALSE, B_TRUE);
 915                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
 916         }
 917 
 918         mutex_exit(&spa_namespace_lock);
 919         mutex_exit(&spa->spa_vdev_top_lock);
 920 
 921         return (error);
 922 }
 923 
 924 /*
 925  * ==========================================================================
 926  * SPA state manipulation (open/create/destroy/import/export)
 927  * ==========================================================================
 928  */
 929 
 930 static int
 931 spa_error_entry_compare(const void *a, const void *b)
 932 {
 933         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 934         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 935         int ret;
 936 
 937         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 938             sizeof (zbookmark_phys_t));
 939 
 940         if (ret < 0)
 941                 return (-1);
 942         else if (ret > 0)
 943                 return (1);
 944         else
 945                 return (0);
 946 }
 947 
 948 /*
 949  * Utility function which retrieves copies of the current logs and
 950  * re-initializes them in the process.
 951  */
 952 void
 953 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 954 {
 955         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 956 
 957         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 958         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 959 
 960         avl_create(&spa->spa_errlist_scrub,
 961             spa_error_entry_compare, sizeof (spa_error_entry_t),
 962             offsetof(spa_error_entry_t, se_avl));
 963         avl_create(&spa->spa_errlist_last,
 964             spa_error_entry_compare, sizeof (spa_error_entry_t),
 965             offsetof(spa_error_entry_t, se_avl));
 966 }
 967 
 968 static void
 969 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 970 {
 971         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 972         enum zti_modes mode = ztip->zti_mode;
 973         uint_t value = ztip->zti_value;
 974         uint_t count = ztip->zti_count;
 975         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 976         char name[32];
 977         uint_t flags = 0;
 978         boolean_t batch = B_FALSE;
 979 
 980         if (mode == ZTI_MODE_NULL) {
 981                 tqs->stqs_count = 0;
 982                 tqs->stqs_taskq = NULL;
 983                 return;
 984         }
 985 
 986         ASSERT3U(count, >, 0);
 987 
 988         tqs->stqs_count = count;
 989         tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 990 
 991         switch (mode) {
 992         case ZTI_MODE_FIXED:
 993                 ASSERT3U(value, >=, 1);
 994                 value = MAX(value, 1);
 995                 break;
 996 
 997         case ZTI_MODE_BATCH:
 998                 batch = B_TRUE;
 999                 flags |= TASKQ_THREADS_CPU_PCT;
1000                 value = zio_taskq_batch_pct;
1001                 break;
1002 
1003         default:
1004                 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1005                     "spa_activate()",
1006                     zio_type_name[t], zio_taskq_types[q], mode, value);
1007                 break;
1008         }
1009 
1010         for (uint_t i = 0; i < count; i++) {
1011                 taskq_t *tq;
1012 
1013                 if (count > 1) {
1014                         (void) snprintf(name, sizeof (name), "%s_%s_%u",
1015                             zio_type_name[t], zio_taskq_types[q], i);
1016                 } else {
1017                         (void) snprintf(name, sizeof (name), "%s_%s",
1018                             zio_type_name[t], zio_taskq_types[q]);
1019                 }
1020 
1021                 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1022                         if (batch)
1023                                 flags |= TASKQ_DC_BATCH;
1024 
1025                         tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1026                             spa->spa_proc, zio_taskq_basedc, flags);
1027                 } else {
1028                         pri_t pri = maxclsyspri;
1029                         /*
1030                          * The write issue taskq can be extremely CPU
1031                          * intensive.  Run it at slightly lower priority
1032                          * than the other taskqs.
1033                          */
1034                         if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1035                                 pri--;
1036 
1037                         tq = taskq_create_proc(name, value, pri, 50,
1038                             INT_MAX, spa->spa_proc, flags);
1039                 }
1040 
1041                 tqs->stqs_taskq[i] = tq;
1042         }
1043 }
1044 
1045 static void
1046 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1047 {
1048         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1049 
1050         if (tqs->stqs_taskq == NULL) {
1051                 ASSERT0(tqs->stqs_count);
1052                 return;
1053         }
1054 
1055         for (uint_t i = 0; i < tqs->stqs_count; i++) {
1056                 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1057                 taskq_destroy(tqs->stqs_taskq[i]);
1058         }
1059 
1060         kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1061         tqs->stqs_taskq = NULL;
1062 }
1063 
1064 /*
1065  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1066  * Note that a type may have multiple discrete taskqs to avoid lock contention
1067  * on the taskq itself. In that case we choose which taskq at random by using
1068  * the low bits of gethrtime().
1069  */
1070 void
1071 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1072     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1073 {
1074         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1075         taskq_t *tq;
1076 
1077         ASSERT3P(tqs->stqs_taskq, !=, NULL);
1078         ASSERT3U(tqs->stqs_count, !=, 0);
1079 
1080         if (tqs->stqs_count == 1) {
1081                 tq = tqs->stqs_taskq[0];
1082         } else {
1083                 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1084         }
1085 
1086         taskq_dispatch_ent(tq, func, arg, flags, ent);
1087 }
1088 
1089 static void
1090 spa_create_zio_taskqs(spa_t *spa)
1091 {
1092         for (int t = 0; t < ZIO_TYPES; t++) {
1093                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1094                         spa_taskqs_init(spa, t, q);
1095                 }
1096         }
1097 }
1098 
1099 #ifdef _KERNEL
1100 static void
1101 spa_thread(void *arg)
1102 {
1103         callb_cpr_t cprinfo;
1104 
1105         spa_t *spa = arg;
1106         user_t *pu = PTOU(curproc);
1107 
1108         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1109             spa->spa_name);
1110 
1111         ASSERT(curproc != &p0);
1112         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1113             "zpool-%s", spa->spa_name);
1114         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1115 
1116         /* bind this thread to the requested psrset */
1117         if (zio_taskq_psrset_bind != PS_NONE) {
1118                 pool_lock();
1119                 mutex_enter(&cpu_lock);
1120                 mutex_enter(&pidlock);
1121                 mutex_enter(&curproc->p_lock);
1122 
1123                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1124                     0, NULL, NULL) == 0)  {
1125                         curthread->t_bind_pset = zio_taskq_psrset_bind;
1126                 } else {
1127                         cmn_err(CE_WARN,
1128                             "Couldn't bind process for zfs pool \"%s\" to "
1129                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1130                 }
1131 
1132                 mutex_exit(&curproc->p_lock);
1133                 mutex_exit(&pidlock);
1134                 mutex_exit(&cpu_lock);
1135                 pool_unlock();
1136         }
1137 
1138         if (zio_taskq_sysdc) {
1139                 sysdc_thread_enter(curthread, 100, 0);
1140         }
1141 
1142         spa->spa_proc = curproc;
1143         spa->spa_did = curthread->t_did;
1144 
1145         spa_create_zio_taskqs(spa);
1146 
1147         mutex_enter(&spa->spa_proc_lock);
1148         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1149 
1150         spa->spa_proc_state = SPA_PROC_ACTIVE;
1151         cv_broadcast(&spa->spa_proc_cv);
1152 
1153         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1154         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1155                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1156         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1157 
1158         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1159         spa->spa_proc_state = SPA_PROC_GONE;
1160         spa->spa_proc = &p0;
1161         cv_broadcast(&spa->spa_proc_cv);
1162         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
1163 
1164         mutex_enter(&curproc->p_lock);
1165         lwp_exit();
1166 }
1167 #endif
1168 
1169 /*
1170  * Activate an uninitialized pool.
1171  */
1172 static void
1173 spa_activate(spa_t *spa, int mode)
1174 {
1175         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1176 
1177         spa->spa_state = POOL_STATE_ACTIVE;
1178         spa->spa_mode = mode;
1179 
1180         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1181         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1182         spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1183 
1184         /* Try to create a covering process */
1185         mutex_enter(&spa->spa_proc_lock);
1186         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1187         ASSERT(spa->spa_proc == &p0);
1188         spa->spa_did = 0;
1189 
1190         /* Only create a process if we're going to be around a while. */
1191         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1192                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1193                     NULL, 0) == 0) {
1194                         spa->spa_proc_state = SPA_PROC_CREATED;
1195                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
1196                                 cv_wait(&spa->spa_proc_cv,
1197                                     &spa->spa_proc_lock);
1198                         }
1199                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1200                         ASSERT(spa->spa_proc != &p0);
1201                         ASSERT(spa->spa_did != 0);
1202                 } else {
1203 #ifdef _KERNEL
1204                         cmn_err(CE_WARN,
1205                             "Couldn't create process for zfs pool \"%s\"\n",
1206                             spa->spa_name);
1207 #endif
1208                 }
1209         }
1210         mutex_exit(&spa->spa_proc_lock);
1211 
1212         /* If we didn't create a process, we need to create our taskqs. */
1213         if (spa->spa_proc == &p0) {
1214                 spa_create_zio_taskqs(spa);
1215         }
1216 
1217         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1218             offsetof(vdev_t, vdev_config_dirty_node));
1219         list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1220             offsetof(objset_t, os_evicting_node));
1221         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1222             offsetof(vdev_t, vdev_state_dirty_node));
1223 
1224         txg_list_create(&spa->spa_vdev_txg_list, spa,
1225             offsetof(struct vdev, vdev_txg_node));
1226 
1227         avl_create(&spa->spa_errlist_scrub,
1228             spa_error_entry_compare, sizeof (spa_error_entry_t),
1229             offsetof(spa_error_entry_t, se_avl));
1230         avl_create(&spa->spa_errlist_last,
1231             spa_error_entry_compare, sizeof (spa_error_entry_t),
1232             offsetof(spa_error_entry_t, se_avl));
1233 }
1234 
1235 /*
1236  * Opposite of spa_activate().
1237  */
1238 static void
1239 spa_deactivate(spa_t *spa)
1240 {
1241         ASSERT(spa->spa_sync_on == B_FALSE);
1242         ASSERT(spa->spa_dsl_pool == NULL);
1243         ASSERT(spa->spa_root_vdev == NULL);
1244         ASSERT(spa->spa_async_zio_root == NULL);
1245         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1246 
1247         spa_evicting_os_wait(spa);
1248 
1249         txg_list_destroy(&spa->spa_vdev_txg_list);
1250 
1251         list_destroy(&spa->spa_config_dirty_list);
1252         list_destroy(&spa->spa_evicting_os_list);
1253         list_destroy(&spa->spa_state_dirty_list);
1254 
1255         for (int t = 0; t < ZIO_TYPES; t++) {
1256                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1257                         spa_taskqs_fini(spa, t, q);
1258                 }
1259         }
1260 
1261         metaslab_class_destroy(spa->spa_normal_class);
1262         spa->spa_normal_class = NULL;
1263 
1264         metaslab_class_destroy(spa->spa_log_class);
1265         spa->spa_log_class = NULL;
1266 
1267         metaslab_class_destroy(spa->spa_special_class);
1268         spa->spa_special_class = NULL;
1269 
1270         /*
1271          * If this was part of an import or the open otherwise failed, we may
1272          * still have errors left in the queues.  Empty them just in case.
1273          */
1274         spa_errlog_drain(spa);
1275 
1276         avl_destroy(&spa->spa_errlist_scrub);
1277         avl_destroy(&spa->spa_errlist_last);
1278 
1279         spa->spa_state = POOL_STATE_UNINITIALIZED;
1280 
1281         mutex_enter(&spa->spa_proc_lock);
1282         if (spa->spa_proc_state != SPA_PROC_NONE) {
1283                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1284                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1285                 cv_broadcast(&spa->spa_proc_cv);
1286                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1287                         ASSERT(spa->spa_proc != &p0);
1288                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1289                 }
1290                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1291                 spa->spa_proc_state = SPA_PROC_NONE;
1292         }
1293         ASSERT(spa->spa_proc == &p0);
1294         mutex_exit(&spa->spa_proc_lock);
1295 
1296         /*
1297          * We want to make sure spa_thread() has actually exited the ZFS
1298          * module, so that the module can't be unloaded out from underneath
1299          * it.
1300          */
1301         if (spa->spa_did != 0) {
1302                 thread_join(spa->spa_did);
1303                 spa->spa_did = 0;
1304         }
1305 }
1306 
1307 /*
1308  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1309  * will create all the necessary vdevs in the appropriate layout, with each vdev
1310  * in the CLOSED state.  This will prep the pool before open/creation/import.
1311  * All vdev validation is done by the vdev_alloc() routine.
1312  */
1313 static int
1314 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1315     uint_t id, int atype)
1316 {
1317         nvlist_t **child;
1318         uint_t children;
1319         int error;
1320 
1321         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1322                 return (error);
1323 
1324         if ((*vdp)->vdev_ops->vdev_op_leaf)
1325                 return (0);
1326 
1327         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1328             &child, &children);
1329 
1330         if (error == ENOENT)
1331                 return (0);
1332 
1333         if (error) {
1334                 vdev_free(*vdp);
1335                 *vdp = NULL;
1336                 return (SET_ERROR(EINVAL));
1337         }
1338 
1339         for (int c = 0; c < children; c++) {
1340                 vdev_t *vd;
1341                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1342                     atype)) != 0) {
1343                         vdev_free(*vdp);
1344                         *vdp = NULL;
1345                         return (error);
1346                 }
1347         }
1348 
1349         ASSERT(*vdp != NULL);
1350 
1351         return (0);
1352 }
1353 
1354 /*
1355  * Opposite of spa_load().
1356  */
1357 static void
1358 spa_unload(spa_t *spa)
1359 {
1360         int i;
1361 
1362         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1363 
1364         /*
1365          * Stop manual trim before stopping spa sync, because manual trim
1366          * needs to execute a synctask (trim timestamp sync) at the end.
1367          */
1368         mutex_enter(&spa->spa_auto_trim_lock);
1369         mutex_enter(&spa->spa_man_trim_lock);
1370         spa_trim_stop_wait(spa);
1371         mutex_exit(&spa->spa_man_trim_lock);
1372         mutex_exit(&spa->spa_auto_trim_lock);
1373 
1374         /*
1375          * Stop async tasks.
1376          */
1377         spa_async_suspend(spa);
1378 
1379         /*
1380          * Stop syncing.
1381          */
1382         if (spa->spa_sync_on) {
1383                 txg_sync_stop(spa->spa_dsl_pool);
1384                 spa->spa_sync_on = B_FALSE;
1385         }
1386 
1387         /*
1388          * Even though vdev_free() also calls vdev_metaslab_fini, we need
1389          * to call it earlier, before we wait for async i/o to complete.
1390          * This ensures that there is no async metaslab prefetching, by
1391          * calling taskq_wait(mg_taskq).
1392          */
1393         if (spa->spa_root_vdev != NULL) {
1394                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1395                 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1396                         vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1397                 spa_config_exit(spa, SCL_ALL, FTAG);
1398         }
1399 
1400         /*
1401          * Wait for any outstanding async I/O to complete.
1402          */
1403         if (spa->spa_async_zio_root != NULL) {
1404                 for (int i = 0; i < max_ncpus; i++)
1405                         (void) zio_wait(spa->spa_async_zio_root[i]);
1406                 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1407                 spa->spa_async_zio_root = NULL;
1408         }
1409 
1410         bpobj_close(&spa->spa_deferred_bpobj);
1411 
1412         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1413 
1414         /*
1415          * Stop autotrim tasks.
1416          */
1417         mutex_enter(&spa->spa_auto_trim_lock);
1418         if (spa->spa_auto_trim_taskq)
1419                 spa_auto_trim_taskq_destroy(spa);
1420         mutex_exit(&spa->spa_auto_trim_lock);
1421 
1422         /*
1423          * Close all vdevs.
1424          */
1425         if (spa->spa_root_vdev)
1426                 vdev_free(spa->spa_root_vdev);
1427         ASSERT(spa->spa_root_vdev == NULL);
1428 
1429         /*
1430          * Close the dsl pool.
1431          */
1432         if (spa->spa_dsl_pool) {
1433                 dsl_pool_close(spa->spa_dsl_pool);
1434                 spa->spa_dsl_pool = NULL;
1435                 spa->spa_meta_objset = NULL;
1436         }
1437 
1438         ddt_unload(spa);
1439 
1440         /*
1441          * Drop and purge level 2 cache
1442          */
1443         spa_l2cache_drop(spa);
1444 
1445         for (i = 0; i < spa->spa_spares.sav_count; i++)
1446                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1447         if (spa->spa_spares.sav_vdevs) {
1448                 kmem_free(spa->spa_spares.sav_vdevs,
1449                     spa->spa_spares.sav_count * sizeof (void *));
1450                 spa->spa_spares.sav_vdevs = NULL;
1451         }
1452         if (spa->spa_spares.sav_config) {
1453                 nvlist_free(spa->spa_spares.sav_config);
1454                 spa->spa_spares.sav_config = NULL;
1455         }
1456         spa->spa_spares.sav_count = 0;
1457 
1458         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1459                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1460                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1461         }
1462         if (spa->spa_l2cache.sav_vdevs) {
1463                 kmem_free(spa->spa_l2cache.sav_vdevs,
1464                     spa->spa_l2cache.sav_count * sizeof (void *));
1465                 spa->spa_l2cache.sav_vdevs = NULL;
1466         }
1467         if (spa->spa_l2cache.sav_config) {
1468                 nvlist_free(spa->spa_l2cache.sav_config);
1469                 spa->spa_l2cache.sav_config = NULL;
1470         }
1471         spa->spa_l2cache.sav_count = 0;
1472 
1473         spa->spa_async_suspended = 0;
1474 
1475         if (spa->spa_comment != NULL) {
1476                 spa_strfree(spa->spa_comment);
1477                 spa->spa_comment = NULL;
1478         }
1479 
1480         spa_config_exit(spa, SCL_ALL, FTAG);
1481 }
1482 
1483 /*
1484  * Load (or re-load) the current list of vdevs describing the active spares for
1485  * this pool.  When this is called, we have some form of basic information in
1486  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1487  * then re-generate a more complete list including status information.
1488  */
1489 static void
1490 spa_load_spares(spa_t *spa)
1491 {
1492         nvlist_t **spares;
1493         uint_t nspares;
1494         int i;
1495         vdev_t *vd, *tvd;
1496 
1497         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1498 
1499         /*
1500          * First, close and free any existing spare vdevs.
1501          */
1502         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1503                 vd = spa->spa_spares.sav_vdevs[i];
1504 
1505                 /* Undo the call to spa_activate() below */
1506                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1507                     B_FALSE)) != NULL && tvd->vdev_isspare)
1508                         spa_spare_remove(tvd);
1509                 vdev_close(vd);
1510                 vdev_free(vd);
1511         }
1512 
1513         if (spa->spa_spares.sav_vdevs)
1514                 kmem_free(spa->spa_spares.sav_vdevs,
1515                     spa->spa_spares.sav_count * sizeof (void *));
1516 
1517         if (spa->spa_spares.sav_config == NULL)
1518                 nspares = 0;
1519         else
1520                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1521                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1522 
1523         spa->spa_spares.sav_count = (int)nspares;
1524         spa->spa_spares.sav_vdevs = NULL;
1525 
1526         if (nspares == 0)
1527                 return;
1528 
1529         /*
1530          * Construct the array of vdevs, opening them to get status in the
1531          * process.   For each spare, there is potentially two different vdev_t
1532          * structures associated with it: one in the list of spares (used only
1533          * for basic validation purposes) and one in the active vdev
1534          * configuration (if it's spared in).  During this phase we open and
1535          * validate each vdev on the spare list.  If the vdev also exists in the
1536          * active configuration, then we also mark this vdev as an active spare.
1537          */
1538         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1539             KM_SLEEP);
1540         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1541                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1542                     VDEV_ALLOC_SPARE) == 0);
1543                 ASSERT(vd != NULL);
1544 
1545                 spa->spa_spares.sav_vdevs[i] = vd;
1546 
1547                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1548                     B_FALSE)) != NULL) {
1549                         if (!tvd->vdev_isspare)
1550                                 spa_spare_add(tvd);
1551 
1552                         /*
1553                          * We only mark the spare active if we were successfully
1554                          * able to load the vdev.  Otherwise, importing a pool
1555                          * with a bad active spare would result in strange
1556                          * behavior, because multiple pool would think the spare
1557                          * is actively in use.
1558                          *
1559                          * There is a vulnerability here to an equally bizarre
1560                          * circumstance, where a dead active spare is later
1561                          * brought back to life (onlined or otherwise).  Given
1562                          * the rarity of this scenario, and the extra complexity
1563                          * it adds, we ignore the possibility.
1564                          */
1565                         if (!vdev_is_dead(tvd))
1566                                 spa_spare_activate(tvd);
1567                 }
1568 
1569                 vd->vdev_top = vd;
1570                 vd->vdev_aux = &spa->spa_spares;
1571 
1572                 if (vdev_open(vd) != 0)
1573                         continue;
1574 
1575                 if (vdev_validate_aux(vd) == 0)
1576                         spa_spare_add(vd);
1577         }
1578 
1579         /*
1580          * Recompute the stashed list of spares, with status information
1581          * this time.
1582          */
1583         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1584             DATA_TYPE_NVLIST_ARRAY) == 0);
1585 
1586         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1587             KM_SLEEP);
1588         for (i = 0; i < spa->spa_spares.sav_count; i++)
1589                 spares[i] = vdev_config_generate(spa,
1590                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1591         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1592             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1593         for (i = 0; i < spa->spa_spares.sav_count; i++)
1594                 nvlist_free(spares[i]);
1595         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1596 }
1597 
1598 /*
1599  * Load (or re-load) the current list of vdevs describing the active l2cache for
1600  * this pool.  When this is called, we have some form of basic information in
1601  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1602  * then re-generate a more complete list including status information.
1603  * Devices which are already active have their details maintained, and are
1604  * not re-opened.
1605  */
1606 static void
1607 spa_load_l2cache(spa_t *spa)
1608 {
1609         nvlist_t **l2cache;
1610         uint_t nl2cache;
1611         int i, j, oldnvdevs;
1612         uint64_t guid;
1613         vdev_t *vd, **oldvdevs, **newvdevs;
1614         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1615 
1616         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1617 
1618         if (sav->sav_config != NULL) {
1619                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1620                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1621                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1622         } else {
1623                 nl2cache = 0;
1624                 newvdevs = NULL;
1625         }
1626 
1627         oldvdevs = sav->sav_vdevs;
1628         oldnvdevs = sav->sav_count;
1629         sav->sav_vdevs = NULL;
1630         sav->sav_count = 0;
1631 
1632         /*
1633          * Process new nvlist of vdevs.
1634          */
1635         for (i = 0; i < nl2cache; i++) {
1636                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1637                     &guid) == 0);
1638 
1639                 newvdevs[i] = NULL;
1640                 for (j = 0; j < oldnvdevs; j++) {
1641                         vd = oldvdevs[j];
1642                         if (vd != NULL && guid == vd->vdev_guid) {
1643                                 /*
1644                                  * Retain previous vdev for add/remove ops.
1645                                  */
1646                                 newvdevs[i] = vd;
1647                                 oldvdevs[j] = NULL;
1648                                 break;
1649                         }
1650                 }
1651 
1652                 if (newvdevs[i] == NULL) {
1653                         /*
1654                          * Create new vdev
1655                          */
1656                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1657                             VDEV_ALLOC_L2CACHE) == 0);
1658                         ASSERT(vd != NULL);
1659                         newvdevs[i] = vd;
1660 
1661                         /*
1662                          * Commit this vdev as an l2cache device,
1663                          * even if it fails to open.
1664                          */
1665                         spa_l2cache_add(vd);
1666 
1667                         vd->vdev_top = vd;
1668                         vd->vdev_aux = sav;
1669 
1670                         spa_l2cache_activate(vd);
1671 
1672                         if (vdev_open(vd) != 0)
1673                                 continue;
1674 
1675                         (void) vdev_validate_aux(vd);
1676 
1677                         if (!vdev_is_dead(vd)) {
1678                                 boolean_t do_rebuild = B_FALSE;
1679 
1680                                 (void) nvlist_lookup_boolean_value(l2cache[i],
1681                                     ZPOOL_CONFIG_L2CACHE_PERSISTENT,
1682                                     &do_rebuild);
1683                                 l2arc_add_vdev(spa, vd, do_rebuild);
1684                         }
1685                 }
1686         }
1687 
1688         /*
1689          * Purge vdevs that were dropped
1690          */
1691         for (i = 0; i < oldnvdevs; i++) {
1692                 uint64_t pool;
1693 
1694                 vd = oldvdevs[i];
1695                 if (vd != NULL) {
1696                         ASSERT(vd->vdev_isl2cache);
1697 
1698                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1699                             pool != 0ULL && l2arc_vdev_present(vd))
1700                                 l2arc_remove_vdev(vd);
1701                         vdev_clear_stats(vd);
1702                         vdev_free(vd);
1703                 }
1704         }
1705 
1706         if (oldvdevs)
1707                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1708 
1709         if (sav->sav_config == NULL)
1710                 goto out;
1711 
1712         sav->sav_vdevs = newvdevs;
1713         sav->sav_count = (int)nl2cache;
1714 
1715         /*
1716          * Recompute the stashed list of l2cache devices, with status
1717          * information this time.
1718          */
1719         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1720             DATA_TYPE_NVLIST_ARRAY) == 0);
1721 
1722         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1723         for (i = 0; i < sav->sav_count; i++)
1724                 l2cache[i] = vdev_config_generate(spa,
1725                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1726         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1727             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1728 out:
1729         for (i = 0; i < sav->sav_count; i++)
1730                 nvlist_free(l2cache[i]);
1731         if (sav->sav_count)
1732                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1733 }
1734 
1735 static int
1736 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1737 {
1738         dmu_buf_t *db;
1739         char *packed = NULL;
1740         size_t nvsize = 0;
1741         int error;
1742         *value = NULL;
1743 
1744         error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1745         if (error != 0)
1746                 return (error);
1747 
1748         nvsize = *(uint64_t *)db->db_data;
1749         dmu_buf_rele(db, FTAG);
1750 
1751         packed = kmem_alloc(nvsize, KM_SLEEP);
1752         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1753             DMU_READ_PREFETCH);
1754         if (error == 0)
1755                 error = nvlist_unpack(packed, nvsize, value, 0);
1756         kmem_free(packed, nvsize);
1757 
1758         return (error);
1759 }
1760 
1761 /*
1762  * Checks to see if the given vdev could not be opened, in which case we post a
1763  * sysevent to notify the autoreplace code that the device has been removed.
1764  */
1765 static void
1766 spa_check_removed(vdev_t *vd)
1767 {
1768         for (int c = 0; c < vd->vdev_children; c++)
1769                 spa_check_removed(vd->vdev_child[c]);
1770 
1771         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1772             !vd->vdev_ishole) {
1773                 zfs_post_autoreplace(vd->vdev_spa, vd);
1774                 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1775         }
1776 }
1777 
1778 static void
1779 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1780 {
1781         ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1782 
1783         vd->vdev_top_zap = mvd->vdev_top_zap;
1784         vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1785 
1786         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1787                 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1788         }
1789 }
1790 
1791 /*
1792  * Validate the current config against the MOS config
1793  */
1794 static boolean_t
1795 spa_config_valid(spa_t *spa, nvlist_t *config)
1796 {
1797         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1798         nvlist_t *nv;
1799 
1800         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1801 
1802         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1803         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1804 
1805         /*
1806          * One of the earliest signs of a stale config is a mismatch
1807          * in the numbers of children vdev's
1808          */
1809         if (rvd->vdev_children != mrvd->vdev_children) {
1810                 vdev_free(mrvd);
1811                 spa_config_exit(spa, SCL_ALL, FTAG);
1812                 return (B_FALSE);
1813         }
1814         /*
1815          * If we're doing a normal import, then build up any additional
1816          * diagnostic information about missing devices in this config.
1817          * We'll pass this up to the user for further processing.
1818          */
1819         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1820                 nvlist_t **child, *nv;
1821                 uint64_t idx = 0;
1822 
1823                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1824                     KM_SLEEP);
1825                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1826 
1827                 for (int c = 0; c < rvd->vdev_children; c++) {
1828                         vdev_t *tvd = rvd->vdev_child[c];
1829                         vdev_t *mtvd  = mrvd->vdev_child[c];
1830 
1831                         if (tvd->vdev_ops == &vdev_missing_ops &&
1832                             mtvd->vdev_ops != &vdev_missing_ops &&
1833                             mtvd->vdev_islog)
1834                                 child[idx++] = vdev_config_generate(spa, mtvd,
1835                                     B_FALSE, 0);
1836                 }
1837 
1838                 if (idx) {
1839                         VERIFY(nvlist_add_nvlist_array(nv,
1840                             ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1841                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1842                             ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1843 
1844                         for (int i = 0; i < idx; i++)
1845                                 nvlist_free(child[i]);
1846                 }
1847                 nvlist_free(nv);
1848                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1849         }
1850 
1851         /*
1852          * Compare the root vdev tree with the information we have
1853          * from the MOS config (mrvd). Check each top-level vdev
1854          * with the corresponding MOS config top-level (mtvd).
1855          */
1856         for (int c = 0; c < rvd->vdev_children; c++) {
1857                 vdev_t *tvd = rvd->vdev_child[c];
1858                 vdev_t *mtvd  = mrvd->vdev_child[c];
1859 
1860                 /*
1861                  * Resolve any "missing" vdevs in the current configuration.
1862                  * If we find that the MOS config has more accurate information
1863                  * about the top-level vdev then use that vdev instead.
1864                  */
1865                 if (tvd->vdev_ops == &vdev_missing_ops &&
1866                     mtvd->vdev_ops != &vdev_missing_ops) {
1867 
1868                         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1869                                 continue;
1870 
1871                         /*
1872                          * Device specific actions.
1873                          */
1874                         if (mtvd->vdev_islog) {
1875                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1876                         } else {
1877                                 /*
1878                                  * XXX - once we have 'readonly' pool
1879                                  * support we should be able to handle
1880                                  * missing data devices by transitioning
1881                                  * the pool to readonly.
1882                                  */
1883                                 continue;
1884                         }
1885 
1886                         /*
1887                          * Swap the missing vdev with the data we were
1888                          * able to obtain from the MOS config.
1889                          */
1890                         vdev_remove_child(rvd, tvd);
1891                         vdev_remove_child(mrvd, mtvd);
1892 
1893                         vdev_add_child(rvd, mtvd);
1894                         vdev_add_child(mrvd, tvd);
1895 
1896                         spa_config_exit(spa, SCL_ALL, FTAG);
1897                         vdev_load(mtvd);
1898                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1899 
1900                         vdev_reopen(rvd);
1901                 } else {
1902                         if (mtvd->vdev_islog) {
1903                                 /*
1904                                  * Load the slog device's state from the MOS
1905                                  * config since it's possible that the label
1906                                  * does not contain the most up-to-date
1907                                  * information.
1908                                  */
1909                                 vdev_load_log_state(tvd, mtvd);
1910                                 vdev_reopen(tvd);
1911                         }
1912 
1913                         /*
1914                          * Per-vdev ZAP info is stored exclusively in the MOS.
1915                          */
1916                         spa_config_valid_zaps(tvd, mtvd);
1917                 }
1918         }
1919 
1920         vdev_free(mrvd);
1921         spa_config_exit(spa, SCL_ALL, FTAG);
1922 
1923         /*
1924          * Ensure we were able to validate the config.
1925          */
1926         return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1927 }
1928 
1929 /*
1930  * Check for missing log devices
1931  */
1932 static boolean_t
1933 spa_check_logs(spa_t *spa)
1934 {
1935         boolean_t rv = B_FALSE;
1936         dsl_pool_t *dp = spa_get_dsl(spa);
1937 
1938         switch (spa->spa_log_state) {
1939         case SPA_LOG_MISSING:
1940                 /* need to recheck in case slog has been restored */
1941         case SPA_LOG_UNKNOWN:
1942                 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1943                     zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1944                 if (rv)
1945                         spa_set_log_state(spa, SPA_LOG_MISSING);
1946                 break;
1947         }
1948         return (rv);
1949 }
1950 
1951 static boolean_t
1952 spa_passivate_log(spa_t *spa)
1953 {
1954         vdev_t *rvd = spa->spa_root_vdev;
1955         boolean_t slog_found = B_FALSE;
1956 
1957         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1958 
1959         if (!spa_has_slogs(spa))
1960                 return (B_FALSE);
1961 
1962         for (int c = 0; c < rvd->vdev_children; c++) {
1963                 vdev_t *tvd = rvd->vdev_child[c];
1964                 metaslab_group_t *mg = tvd->vdev_mg;
1965 
1966                 if (tvd->vdev_islog) {
1967                         metaslab_group_passivate(mg);
1968                         slog_found = B_TRUE;
1969                 }
1970         }
1971 
1972         return (slog_found);
1973 }
1974 
1975 static void
1976 spa_activate_log(spa_t *spa)
1977 {
1978         vdev_t *rvd = spa->spa_root_vdev;
1979 
1980         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1981 
1982         for (int c = 0; c < rvd->vdev_children; c++) {
1983                 vdev_t *tvd = rvd->vdev_child[c];
1984                 metaslab_group_t *mg = tvd->vdev_mg;
1985 
1986                 if (tvd->vdev_islog)
1987                         metaslab_group_activate(mg);
1988         }
1989 }
1990 
1991 int
1992 spa_offline_log(spa_t *spa)
1993 {
1994         int error;
1995 
1996         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1997             NULL, DS_FIND_CHILDREN);
1998         if (error == 0) {
1999                 /*
2000                  * We successfully offlined the log device, sync out the
2001                  * current txg so that the "stubby" block can be removed
2002                  * by zil_sync().
2003                  */
2004                 txg_wait_synced(spa->spa_dsl_pool, 0);
2005         }
2006         return (error);
2007 }
2008 
2009 static void
2010 spa_aux_check_removed(spa_aux_vdev_t *sav)
2011 {
2012         for (int i = 0; i < sav->sav_count; i++)
2013                 spa_check_removed(sav->sav_vdevs[i]);
2014 }
2015 
2016 void
2017 spa_claim_notify(zio_t *zio)
2018 {
2019         spa_t *spa = zio->io_spa;
2020 
2021         if (zio->io_error)
2022                 return;
2023 
2024         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
2025         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2026                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2027         mutex_exit(&spa->spa_props_lock);
2028 }
2029 
2030 typedef struct spa_load_error {
2031         uint64_t        sle_meta_count;
2032         uint64_t        sle_data_count;
2033 } spa_load_error_t;
2034 
2035 static void
2036 spa_load_verify_done(zio_t *zio)
2037 {
2038         blkptr_t *bp = zio->io_bp;
2039         spa_load_error_t *sle = zio->io_private;
2040         dmu_object_type_t type = BP_GET_TYPE(bp);
2041         int error = zio->io_error;
2042         spa_t *spa = zio->io_spa;
2043 
2044         abd_free(zio->io_abd);
2045         if (error) {
2046                 if (BP_IS_METADATA(bp) && type != DMU_OT_INTENT_LOG)
2047                         atomic_inc_64(&sle->sle_meta_count);
2048                 else
2049                         atomic_inc_64(&sle->sle_data_count);
2050         }
2051 
2052         mutex_enter(&spa->spa_scrub_lock);
2053         spa->spa_scrub_inflight--;
2054         cv_broadcast(&spa->spa_scrub_io_cv);
2055         mutex_exit(&spa->spa_scrub_lock);
2056 }
2057 
2058 /*
2059  * Maximum number of concurrent scrub i/os to create while verifying
2060  * a pool while importing it.
2061  */
2062 int spa_load_verify_maxinflight = 10000;
2063 boolean_t spa_load_verify_metadata = B_TRUE;
2064 boolean_t spa_load_verify_data = B_TRUE;
2065 
2066 /*ARGSUSED*/
2067 static int
2068 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2069     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2070 {
2071         if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2072                 return (0);
2073         /*
2074          * Note: normally this routine will not be called if
2075          * spa_load_verify_metadata is not set.  However, it may be useful
2076          * to manually set the flag after the traversal has begun.
2077          */
2078         if (!spa_load_verify_metadata)
2079                 return (0);
2080         if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2081                 return (0);
2082 
2083         zio_t *rio = arg;
2084         size_t size = BP_GET_PSIZE(bp);
2085 
2086         mutex_enter(&spa->spa_scrub_lock);
2087         while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2088                 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2089         spa->spa_scrub_inflight++;
2090         mutex_exit(&spa->spa_scrub_lock);
2091 
2092         zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2093             spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2094             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2095             ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2096         return (0);
2097 }
2098 
2099 /* ARGSUSED */
2100 int
2101 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2102 {
2103         if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2104                 return (SET_ERROR(ENAMETOOLONG));
2105 
2106         return (0);
2107 }
2108 
2109 static int
2110 spa_load_verify(spa_t *spa)
2111 {
2112         zio_t *rio;
2113         spa_load_error_t sle = { 0 };
2114         zpool_rewind_policy_t policy;
2115         boolean_t verify_ok = B_FALSE;
2116         int error = 0;
2117 
2118         zpool_get_rewind_policy(spa->spa_config, &policy);
2119 
2120         if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2121                 return (0);
2122 
2123         dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2124         error = dmu_objset_find_dp(spa->spa_dsl_pool,
2125             spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2126             DS_FIND_CHILDREN);
2127         dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2128         if (error != 0)
2129                 return (error);
2130 
2131         rio = zio_root(spa, NULL, &sle,
2132             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2133 
2134         if (spa_load_verify_metadata) {
2135                 zbookmark_phys_t zb = { 0 };
2136                 error = traverse_pool(spa, spa->spa_verify_min_txg, UINT64_MAX,
2137                     TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2138                     spa_load_verify_cb, rio, &zb);
2139         }
2140 
2141         (void) zio_wait(rio);
2142 
2143         spa->spa_load_meta_errors = sle.sle_meta_count;
2144         spa->spa_load_data_errors = sle.sle_data_count;
2145 
2146         if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2147             sle.sle_data_count <= policy.zrp_maxdata) {
2148                 int64_t loss = 0;
2149 
2150                 verify_ok = B_TRUE;
2151                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2152                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2153 
2154                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2155                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2156                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2157                 VERIFY(nvlist_add_int64(spa->spa_load_info,
2158                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2159                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2160                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2161         } else {
2162                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2163         }
2164 
2165         if (error) {
2166                 if (error != ENXIO && error != EIO)
2167                         error = SET_ERROR(EIO);
2168                 return (error);
2169         }
2170 
2171         return (verify_ok ? 0 : EIO);
2172 }
2173 
2174 /*
2175  * Find a value in the pool props object.
2176  */
2177 static void
2178 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2179 {
2180         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2181             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2182 }
2183 
2184 /*
2185  * Find a value in the pool directory object.
2186  */
2187 static int
2188 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2189 {
2190         return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2191             name, sizeof (uint64_t), 1, val));
2192 }
2193 
2194 static void
2195 spa_set_ddt_classes(spa_t *spa, int desegregation)
2196 {
2197         /*
2198          * if desegregation is turned on then set up ddt_class restrictions
2199          */
2200         if (desegregation) {
2201                 spa->spa_ddt_class_min = DDT_CLASS_DUPLICATE;
2202                 spa->spa_ddt_class_max = DDT_CLASS_DUPLICATE;
2203         } else {
2204                 spa->spa_ddt_class_min = DDT_CLASS_DITTO;
2205                 spa->spa_ddt_class_max = DDT_CLASS_UNIQUE;
2206         }
2207 }
2208 
2209 static int
2210 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2211 {
2212         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2213         return (err);
2214 }
2215 
2216 /*
2217  * Fix up config after a partly-completed split.  This is done with the
2218  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2219  * pool have that entry in their config, but only the splitting one contains
2220  * a list of all the guids of the vdevs that are being split off.
2221  *
2222  * This function determines what to do with that list: either rejoin
2223  * all the disks to the pool, or complete the splitting process.  To attempt
2224  * the rejoin, each disk that is offlined is marked online again, and
2225  * we do a reopen() call.  If the vdev label for every disk that was
2226  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2227  * then we call vdev_split() on each disk, and complete the split.
2228  *
2229  * Otherwise we leave the config alone, with all the vdevs in place in
2230  * the original pool.
2231  */
2232 static void
2233 spa_try_repair(spa_t *spa, nvlist_t *config)
2234 {
2235         uint_t extracted;
2236         uint64_t *glist;
2237         uint_t i, gcount;
2238         nvlist_t *nvl;
2239         vdev_t **vd;
2240         boolean_t attempt_reopen;
2241 
2242         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2243                 return;
2244 
2245         /* check that the config is complete */
2246         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2247             &glist, &gcount) != 0)
2248                 return;
2249 
2250         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2251 
2252         /* attempt to online all the vdevs & validate */
2253         attempt_reopen = B_TRUE;
2254         for (i = 0; i < gcount; i++) {
2255                 if (glist[i] == 0)      /* vdev is hole */
2256                         continue;
2257 
2258                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2259                 if (vd[i] == NULL) {
2260                         /*
2261                          * Don't bother attempting to reopen the disks;
2262                          * just do the split.
2263                          */
2264                         attempt_reopen = B_FALSE;
2265                 } else {
2266                         /* attempt to re-online it */
2267                         vd[i]->vdev_offline = B_FALSE;
2268                 }
2269         }
2270 
2271         if (attempt_reopen) {
2272                 vdev_reopen(spa->spa_root_vdev);
2273 
2274                 /* check each device to see what state it's in */
2275                 for (extracted = 0, i = 0; i < gcount; i++) {
2276                         if (vd[i] != NULL &&
2277                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2278                                 break;
2279                         ++extracted;
2280                 }
2281         }
2282 
2283         /*
2284          * If every disk has been moved to the new pool, or if we never
2285          * even attempted to look at them, then we split them off for
2286          * good.
2287          */
2288         if (!attempt_reopen || gcount == extracted) {
2289                 for (i = 0; i < gcount; i++)
2290                         if (vd[i] != NULL)
2291                                 vdev_split(vd[i]);
2292                 vdev_reopen(spa->spa_root_vdev);
2293         }
2294 
2295         kmem_free(vd, gcount * sizeof (vdev_t *));
2296 }
2297 
2298 static int
2299 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2300     boolean_t mosconfig)
2301 {
2302         nvlist_t *config = spa->spa_config;
2303         char *ereport = FM_EREPORT_ZFS_POOL;
2304         char *comment;
2305         int error;
2306         uint64_t pool_guid;
2307         nvlist_t *nvl;
2308 
2309         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2310                 return (SET_ERROR(EINVAL));
2311 
2312         ASSERT(spa->spa_comment == NULL);
2313         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2314                 spa->spa_comment = spa_strdup(comment);
2315 
2316         /*
2317          * Versioning wasn't explicitly added to the label until later, so if
2318          * it's not present treat it as the initial version.
2319          */
2320         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2321             &spa->spa_ubsync.ub_version) != 0)
2322                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2323 
2324         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2325             &spa->spa_config_txg);
2326 
2327         if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2328             spa_guid_exists(pool_guid, 0)) {
2329                 error = SET_ERROR(EEXIST);
2330         } else {
2331                 spa->spa_config_guid = pool_guid;
2332 
2333                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2334                     &nvl) == 0) {
2335                         VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2336                             KM_SLEEP) == 0);
2337                 }
2338 
2339                 nvlist_free(spa->spa_load_info);
2340                 spa->spa_load_info = fnvlist_alloc();
2341 
2342                 gethrestime(&spa->spa_loaded_ts);
2343                 error = spa_load_impl(spa, pool_guid, config, state, type,
2344                     mosconfig, &ereport);
2345         }
2346 
2347         /*
2348          * Don't count references from objsets that are already closed
2349          * and are making their way through the eviction process.
2350          */
2351         spa_evicting_os_wait(spa);
2352         spa->spa_minref = refcount_count(&spa->spa_refcount);
2353         if (error) {
2354                 if (error != EEXIST) {
2355                         spa->spa_loaded_ts.tv_sec = 0;
2356                         spa->spa_loaded_ts.tv_nsec = 0;
2357                 }
2358                 if (error != EBADF) {
2359                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2360                 }
2361         }
2362         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2363         spa->spa_ena = 0;
2364         return (error);
2365 }
2366 
2367 /*
2368  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2369  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2370  * spa's per-vdev ZAP list.
2371  */
2372 static uint64_t
2373 vdev_count_verify_zaps(vdev_t *vd)
2374 {
2375         spa_t *spa = vd->vdev_spa;
2376         uint64_t total = 0;
2377         if (vd->vdev_top_zap != 0) {
2378                 total++;
2379                 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2380                     spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2381         }
2382         if (vd->vdev_leaf_zap != 0) {
2383                 total++;
2384                 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2385                     spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2386         }
2387 
2388         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2389                 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2390         }
2391 
2392         return (total);
2393 }
2394 
2395 /*
2396  * Load an existing storage pool, using the pool's builtin spa_config as a
2397  * source of configuration information.
2398  */
2399 static int
2400 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2401     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2402     char **ereport)
2403 {
2404         int error = 0;
2405         nvlist_t *nvroot = NULL;
2406         nvlist_t *label;
2407         vdev_t *rvd;
2408         uberblock_t *ub = &spa->spa_uberblock;
2409         uint64_t children, config_cache_txg = spa->spa_config_txg;
2410         int orig_mode = spa->spa_mode;
2411         int parse;
2412         uint64_t obj;
2413         boolean_t missing_feat_write = B_FALSE;
2414         spa_meta_placement_t *mp;
2415 
2416         /*
2417          * If this is an untrusted config, access the pool in read-only mode.
2418          * This prevents things like resilvering recently removed devices.
2419          */
2420         if (!mosconfig)
2421                 spa->spa_mode = FREAD;
2422 
2423         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2424 
2425         spa->spa_load_state = state;
2426 
2427         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2428                 return (SET_ERROR(EINVAL));
2429 
2430         parse = (type == SPA_IMPORT_EXISTING ?
2431             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2432 
2433         /*
2434          * Create "The Godfather" zio to hold all async IOs
2435          */
2436         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2437             KM_SLEEP);
2438         for (int i = 0; i < max_ncpus; i++) {
2439                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2440                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2441                     ZIO_FLAG_GODFATHER);
2442         }
2443 
2444         /*
2445          * Parse the configuration into a vdev tree.  We explicitly set the
2446          * value that will be returned by spa_version() since parsing the
2447          * configuration requires knowing the version number.
2448          */
2449         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2450         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2451         spa_config_exit(spa, SCL_ALL, FTAG);
2452 
2453         if (error != 0)
2454                 return (error);
2455 
2456         ASSERT(spa->spa_root_vdev == rvd);
2457         ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2458         ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2459 
2460         if (type != SPA_IMPORT_ASSEMBLE) {
2461                 ASSERT(spa_guid(spa) == pool_guid);
2462         }
2463 
2464         /*
2465          * Try to open all vdevs, loading each label in the process.
2466          */
2467         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2468         error = vdev_open(rvd);
2469         spa_config_exit(spa, SCL_ALL, FTAG);
2470         if (error != 0)
2471                 return (error);
2472 
2473         /*
2474          * We need to validate the vdev labels against the configuration that
2475          * we have in hand, which is dependent on the setting of mosconfig. If
2476          * mosconfig is true then we're validating the vdev labels based on
2477          * that config.  Otherwise, we're validating against the cached config
2478          * (zpool.cache) that was read when we loaded the zfs module, and then
2479          * later we will recursively call spa_load() and validate against
2480          * the vdev config.
2481          *
2482          * If we're assembling a new pool that's been split off from an
2483          * existing pool, the labels haven't yet been updated so we skip
2484          * validation for now.
2485          */
2486         if (type != SPA_IMPORT_ASSEMBLE) {
2487                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2488                 error = vdev_validate(rvd, mosconfig);
2489                 spa_config_exit(spa, SCL_ALL, FTAG);
2490 
2491                 if (error != 0)
2492                         return (error);
2493 
2494                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2495                         return (SET_ERROR(ENXIO));
2496         }
2497 
2498         /*
2499          * Find the best uberblock.
2500          */
2501         vdev_uberblock_load(rvd, ub, &label);
2502 
2503         /*
2504          * If we weren't able to find a single valid uberblock, return failure.
2505          */
2506         if (ub->ub_txg == 0) {
2507                 nvlist_free(label);
2508                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2509         }
2510 
2511         /*
2512          * If the pool has an unsupported version we can't open it.
2513          */
2514         if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2515                 nvlist_free(label);
2516                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2517         }
2518 
2519         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2520                 nvlist_t *features;
2521 
2522                 /*
2523                  * If we weren't able to find what's necessary for reading the
2524                  * MOS in the label, return failure.
2525                  */
2526                 if (label == NULL || nvlist_lookup_nvlist(label,
2527                     ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2528                         nvlist_free(label);
2529                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2530                             ENXIO));
2531                 }
2532 
2533                 /*
2534                  * Update our in-core representation with the definitive values
2535                  * from the label.
2536                  */
2537                 nvlist_free(spa->spa_label_features);
2538                 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2539         }
2540 
2541         nvlist_free(label);
2542 
2543         /*
2544          * Look through entries in the label nvlist's features_for_read. If
2545          * there is a feature listed there which we don't understand then we
2546          * cannot open a pool.
2547          */
2548         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2549                 nvlist_t *unsup_feat;
2550 
2551                 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2552                     0);
2553 
2554                 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2555                     NULL); nvp != NULL;
2556                     nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2557                         if (!zfeature_is_supported(nvpair_name(nvp))) {
2558                                 VERIFY(nvlist_add_string(unsup_feat,
2559                                     nvpair_name(nvp), "") == 0);
2560                         }
2561                 }
2562 
2563                 if (!nvlist_empty(unsup_feat)) {
2564                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2565                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2566                         nvlist_free(unsup_feat);
2567                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2568                             ENOTSUP));
2569                 }
2570 
2571                 nvlist_free(unsup_feat);
2572         }
2573 
2574         /*
2575          * If the vdev guid sum doesn't match the uberblock, we have an
2576          * incomplete configuration.  We first check to see if the pool
2577          * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2578          * If it is, defer the vdev_guid_sum check till later so we
2579          * can handle missing vdevs.
2580          */
2581         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2582             &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2583             rvd->vdev_guid_sum != ub->ub_guid_sum)
2584                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2585 
2586         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2587                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2588                 spa_try_repair(spa, config);
2589                 spa_config_exit(spa, SCL_ALL, FTAG);
2590                 nvlist_free(spa->spa_config_splitting);
2591                 spa->spa_config_splitting = NULL;
2592         }
2593 
2594         /*
2595          * Initialize internal SPA structures.
2596          */
2597         spa->spa_state = POOL_STATE_ACTIVE;
2598         spa->spa_ubsync = spa->spa_uberblock;
2599         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2600             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2601         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2602             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2603         spa->spa_claim_max_txg = spa->spa_first_txg;
2604         spa->spa_prev_software_version = ub->ub_software_version;
2605 
2606         error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2607         if (error)
2608                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2610 
2611         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2612                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2613 
2614         if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2615                 boolean_t missing_feat_read = B_FALSE;
2616                 nvlist_t *unsup_feat, *enabled_feat;
2617 
2618                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2619                     &spa->spa_feat_for_read_obj) != 0) {
2620                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2621                 }
2622 
2623                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2624                     &spa->spa_feat_for_write_obj) != 0) {
2625                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2626                 }
2627 
2628                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2629                     &spa->spa_feat_desc_obj) != 0) {
2630                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2631                 }
2632 
2633                 enabled_feat = fnvlist_alloc();
2634                 unsup_feat = fnvlist_alloc();
2635 
2636                 if (!spa_features_check(spa, B_FALSE,
2637                     unsup_feat, enabled_feat))
2638                         missing_feat_read = B_TRUE;
2639 
2640                 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2641                         if (!spa_features_check(spa, B_TRUE,
2642                             unsup_feat, enabled_feat)) {
2643                                 missing_feat_write = B_TRUE;
2644                         }
2645                 }
2646 
2647                 fnvlist_add_nvlist(spa->spa_load_info,
2648                     ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2649 
2650                 if (!nvlist_empty(unsup_feat)) {
2651                         fnvlist_add_nvlist(spa->spa_load_info,
2652                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2653                 }
2654 
2655                 fnvlist_free(enabled_feat);
2656                 fnvlist_free(unsup_feat);
2657 
2658                 if (!missing_feat_read) {
2659                         fnvlist_add_boolean(spa->spa_load_info,
2660                             ZPOOL_CONFIG_CAN_RDONLY);
2661                 }
2662 
2663                 /*
2664                  * If the state is SPA_LOAD_TRYIMPORT, our objective is
2665                  * twofold: to determine whether the pool is available for
2666                  * import in read-write mode and (if it is not) whether the
2667                  * pool is available for import in read-only mode. If the pool
2668                  * is available for import in read-write mode, it is displayed
2669                  * as available in userland; if it is not available for import
2670                  * in read-only mode, it is displayed as unavailable in
2671                  * userland. If the pool is available for import in read-only
2672                  * mode but not read-write mode, it is displayed as unavailable
2673                  * in userland with a special note that the pool is actually
2674                  * available for open in read-only mode.
2675                  *
2676                  * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2677                  * missing a feature for write, we must first determine whether
2678                  * the pool can be opened read-only before returning to
2679                  * userland in order to know whether to display the
2680                  * abovementioned note.
2681                  */
2682                 if (missing_feat_read || (missing_feat_write &&
2683                     spa_writeable(spa))) {
2684                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2685                             ENOTSUP));
2686                 }
2687 
2688                 /*
2689                  * Load refcounts for ZFS features from disk into an in-memory
2690                  * cache during SPA initialization.
2691                  */
2692                 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2693                         uint64_t refcount;
2694 
2695                         error = feature_get_refcount_from_disk(spa,
2696                             &spa_feature_table[i], &refcount);
2697                         if (error == 0) {
2698                                 spa->spa_feat_refcount_cache[i] = refcount;
2699                         } else if (error == ENOTSUP) {
2700                                 spa->spa_feat_refcount_cache[i] =
2701                                     SPA_FEATURE_DISABLED;
2702                         } else {
2703                                 return (spa_vdev_err(rvd,
2704                                     VDEV_AUX_CORRUPT_DATA, EIO));
2705                         }
2706                 }
2707         }
2708 
2709         if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2710                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2711                     &spa->spa_feat_enabled_txg_obj) != 0)
2712                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2713         }
2714 
2715         spa->spa_is_initializing = B_TRUE;
2716         error = dsl_pool_open(spa->spa_dsl_pool);
2717         spa->spa_is_initializing = B_FALSE;
2718         if (error != 0)
2719                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2720 
2721         if (!mosconfig) {
2722                 uint64_t hostid;
2723                 nvlist_t *policy = NULL, *nvconfig;
2724 
2725                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2726                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2727 
2728                 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2729                     ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2730                         char *hostname;
2731                         unsigned long myhostid = 0;
2732 
2733                         VERIFY(nvlist_lookup_string(nvconfig,
2734                             ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2735 
2736 #ifdef  _KERNEL
2737                         myhostid = zone_get_hostid(NULL);
2738 #else   /* _KERNEL */
2739                         /*
2740                          * We're emulating the system's hostid in userland, so
2741                          * we can't use zone_get_hostid().
2742                          */
2743                         (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2744 #endif  /* _KERNEL */
2745                         if (hostid != 0 && myhostid != 0 &&
2746                             hostid != myhostid) {
2747                                 nvlist_free(nvconfig);
2748                                 cmn_err(CE_WARN, "pool '%s' could not be "
2749                                     "loaded as it was last accessed by "
2750                                     "another system (host: %s hostid: 0x%lx). "
2751                                     "See: http://illumos.org/msg/ZFS-8000-EY",
2752                                     spa_name(spa), hostname,
2753                                     (unsigned long)hostid);
2754                                 return (SET_ERROR(EBADF));
2755                         }
2756                 }
2757                 if (nvlist_lookup_nvlist(spa->spa_config,
2758                     ZPOOL_REWIND_POLICY, &policy) == 0)
2759                         VERIFY(nvlist_add_nvlist(nvconfig,
2760                             ZPOOL_REWIND_POLICY, policy) == 0);
2761 
2762                 spa_config_set(spa, nvconfig);
2763                 spa_unload(spa);
2764                 spa_deactivate(spa);
2765                 spa_activate(spa, orig_mode);
2766 
2767                 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2768         }
2769 
2770         /* Grab the secret checksum salt from the MOS. */
2771         error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2772             DMU_POOL_CHECKSUM_SALT, 1,
2773             sizeof (spa->spa_cksum_salt.zcs_bytes),
2774             spa->spa_cksum_salt.zcs_bytes);
2775         if (error == ENOENT) {
2776                 /* Generate a new salt for subsequent use */
2777                 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2778                     sizeof (spa->spa_cksum_salt.zcs_bytes));
2779         } else if (error != 0) {
2780                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2781         }
2782 
2783         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2784                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2785         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2786         if (error != 0)
2787                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2788 
2789         /*
2790          * Load the bit that tells us to use the new accounting function
2791          * (raid-z deflation).  If we have an older pool, this will not
2792          * be present.
2793          */
2794         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2795         if (error != 0 && error != ENOENT)
2796                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2797 
2798         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2799             &spa->spa_creation_version);
2800         if (error != 0 && error != ENOENT)
2801                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2802 
2803         /*
2804          * Load the persistent error log.  If we have an older pool, this will
2805          * not be present.
2806          */
2807         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2808         if (error != 0 && error != ENOENT)
2809                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2810 
2811         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2812             &spa->spa_errlog_scrub);
2813         if (error != 0 && error != ENOENT)
2814                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2815 
2816         /*
2817          * Load the history object.  If we have an older pool, this
2818          * will not be present.
2819          */
2820         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2821         if (error != 0 && error != ENOENT)
2822                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2823 
2824         /*
2825          * Load the per-vdev ZAP map. If we have an older pool, this will not
2826          * be present; in this case, defer its creation to a later time to
2827          * avoid dirtying the MOS this early / out of sync context. See
2828          * spa_sync_config_object.
2829          */
2830 
2831         /* The sentinel is only available in the MOS config. */
2832         nvlist_t *mos_config;
2833         if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2834                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2835 
2836         error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2837             &spa->spa_all_vdev_zaps);
2838 
2839         if (error == ENOENT) {
2840                 VERIFY(!nvlist_exists(mos_config,
2841                     ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2842                 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2843                 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2844         } else if (error != 0) {
2845                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2846         } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2847                 /*
2848                  * An older version of ZFS overwrote the sentinel value, so
2849                  * we have orphaned per-vdev ZAPs in the MOS. Defer their
2850                  * destruction to later; see spa_sync_config_object.
2851                  */
2852                 spa->spa_avz_action = AVZ_ACTION_DESTROY;
2853                 /*
2854                  * We're assuming that no vdevs have had their ZAPs created
2855                  * before this. Better be sure of it.
2856                  */
2857                 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2858         }
2859         nvlist_free(mos_config);
2860 
2861         /*
2862          * If we're assembling the pool from the split-off vdevs of
2863          * an existing pool, we don't want to attach the spares & cache
2864          * devices.
2865          */
2866 
2867         /*
2868          * Load any hot spares for this pool.
2869          */
2870         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2871         if (error != 0 && error != ENOENT)
2872                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2873         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2874                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2875                 if (load_nvlist(spa, spa->spa_spares.sav_object,
2876                     &spa->spa_spares.sav_config) != 0)
2877                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2878 
2879                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2880                 spa_load_spares(spa);
2881                 spa_config_exit(spa, SCL_ALL, FTAG);
2882         } else if (error == 0) {
2883                 spa->spa_spares.sav_sync = B_TRUE;
2884         }
2885 
2886         /*
2887          * Load any level 2 ARC devices for this pool.
2888          */
2889         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2890             &spa->spa_l2cache.sav_object);
2891         if (error != 0 && error != ENOENT)
2892                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2893         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2894                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2895                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2896                     &spa->spa_l2cache.sav_config) != 0)
2897                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2898 
2899                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2900                 spa_load_l2cache(spa);
2901                 spa_config_exit(spa, SCL_ALL, FTAG);
2902         } else if (error == 0) {
2903                 spa->spa_l2cache.sav_sync = B_TRUE;
2904         }
2905 
2906         mp = &spa->spa_meta_policy;
2907 
2908         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2909         spa->spa_hiwat = zpool_prop_default_numeric(ZPOOL_PROP_HIWATERMARK);
2910         spa->spa_lowat = zpool_prop_default_numeric(ZPOOL_PROP_LOWATERMARK);
2911         spa->spa_minwat = zpool_prop_default_numeric(ZPOOL_PROP_MINWATERMARK);
2912         spa->spa_dedup_lo_best_effort =
2913             zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_LO_BEST_EFFORT);
2914         spa->spa_dedup_hi_best_effort =
2915             zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_HI_BEST_EFFORT);
2916 
2917         mp->spa_enable_meta_placement_selection =
2918             zpool_prop_default_numeric(ZPOOL_PROP_META_PLACEMENT);
2919         mp->spa_sync_to_special =
2920             zpool_prop_default_numeric(ZPOOL_PROP_SYNC_TO_SPECIAL);
2921         mp->spa_ddt_meta_to_special =
2922             zpool_prop_default_numeric(ZPOOL_PROP_DDT_META_TO_METADEV);
2923         mp->spa_zfs_meta_to_special =
2924             zpool_prop_default_numeric(ZPOOL_PROP_ZFS_META_TO_METADEV);
2925         mp->spa_small_data_to_special =
2926             zpool_prop_default_numeric(ZPOOL_PROP_SMALL_DATA_TO_METADEV);
2927         spa_set_ddt_classes(spa,
2928             zpool_prop_default_numeric(ZPOOL_PROP_DDT_DESEGREGATION));
2929 
2930         spa->spa_resilver_prio =
2931             zpool_prop_default_numeric(ZPOOL_PROP_RESILVER_PRIO);
2932         spa->spa_scrub_prio = zpool_prop_default_numeric(ZPOOL_PROP_SCRUB_PRIO);
2933 
2934         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2935         if (error && error != ENOENT)
2936                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2937 
2938         if (error == 0) {
2939                 uint64_t autoreplace;
2940                 uint64_t val = 0;
2941 
2942                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2943                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2944                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2945                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2946                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2947                 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize);
2948                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2949                     &spa->spa_dedup_ditto);
2950                 spa_prop_find(spa, ZPOOL_PROP_FORCETRIM, &spa->spa_force_trim);
2951 
2952                 mutex_enter(&spa->spa_auto_trim_lock);
2953                 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_auto_trim);
2954                 if (spa->spa_auto_trim == SPA_AUTO_TRIM_ON)
2955                         spa_auto_trim_taskq_create(spa);
2956                 mutex_exit(&spa->spa_auto_trim_lock);
2957 
2958                 spa_prop_find(spa, ZPOOL_PROP_HIWATERMARK, &spa->spa_hiwat);
2959                 spa_prop_find(spa, ZPOOL_PROP_LOWATERMARK, &spa->spa_lowat);
2960                 spa_prop_find(spa, ZPOOL_PROP_MINWATERMARK, &spa->spa_minwat);
2961                 spa_prop_find(spa, ZPOOL_PROP_DEDUPMETA_DITTO,
2962                     &spa->spa_ddt_meta_copies);
2963                 spa_prop_find(spa, ZPOOL_PROP_DDT_DESEGREGATION, &val);
2964                 spa_set_ddt_classes(spa, val);
2965 
2966                 spa_prop_find(spa, ZPOOL_PROP_RESILVER_PRIO,
2967                     &spa->spa_resilver_prio);
2968                 spa_prop_find(spa, ZPOOL_PROP_SCRUB_PRIO,
2969                     &spa->spa_scrub_prio);
2970 
2971                 spa_prop_find(spa, ZPOOL_PROP_DEDUP_BEST_EFFORT,
2972                     &spa->spa_dedup_best_effort);
2973                 spa_prop_find(spa, ZPOOL_PROP_DEDUP_LO_BEST_EFFORT,
2974                     &spa->spa_dedup_lo_best_effort);
2975                 spa_prop_find(spa, ZPOOL_PROP_DEDUP_HI_BEST_EFFORT,
2976                     &spa->spa_dedup_hi_best_effort);
2977 
2978                 spa_prop_find(spa, ZPOOL_PROP_META_PLACEMENT,
2979                     &mp->spa_enable_meta_placement_selection);
2980                 spa_prop_find(spa, ZPOOL_PROP_SYNC_TO_SPECIAL,
2981                     &mp->spa_sync_to_special);
2982                 spa_prop_find(spa, ZPOOL_PROP_DDT_META_TO_METADEV,
2983                     &mp->spa_ddt_meta_to_special);
2984                 spa_prop_find(spa, ZPOOL_PROP_ZFS_META_TO_METADEV,
2985                     &mp->spa_zfs_meta_to_special);
2986                 spa_prop_find(spa, ZPOOL_PROP_SMALL_DATA_TO_METADEV,
2987                     &mp->spa_small_data_to_special);
2988 
2989                 spa->spa_autoreplace = (autoreplace != 0);
2990         }
2991 
2992         error = spa_dir_prop(spa, DMU_POOL_COS_PROPS,
2993             &spa->spa_cos_props_object);
2994         if (error == 0)
2995                 (void) spa_load_cos_props(spa);
2996         error = spa_dir_prop(spa, DMU_POOL_VDEV_PROPS,
2997             &spa->spa_vdev_props_object);
2998         if (error == 0)
2999                 (void) spa_load_vdev_props(spa);
3000 
3001         (void) spa_dir_prop(spa, DMU_POOL_TRIM_START_TIME,
3002             &spa->spa_man_trim_start_time);
3003         (void) spa_dir_prop(spa, DMU_POOL_TRIM_STOP_TIME,
3004             &spa->spa_man_trim_stop_time);
3005 
3006         /*
3007          * If the 'autoreplace' property is set, then post a resource notifying
3008          * the ZFS DE that it should not issue any faults for unopenable
3009          * devices.  We also iterate over the vdevs, and post a sysevent for any
3010          * unopenable vdevs so that the normal autoreplace handler can take
3011          * over.
3012          */
3013         if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
3014                 spa_check_removed(spa->spa_root_vdev);
3015                 /*
3016                  * For the import case, this is done in spa_import(), because
3017                  * at this point we're using the spare definitions from
3018                  * the MOS config, not necessarily from the userland config.
3019                  */
3020                 if (state != SPA_LOAD_IMPORT) {
3021                         spa_aux_check_removed(&spa->spa_spares);
3022                         spa_aux_check_removed(&spa->spa_l2cache);
3023                 }
3024         }
3025 
3026         /*
3027          * Load the vdev state for all toplevel vdevs.
3028          */
3029         vdev_load(rvd);
3030 
3031         /*
3032          * Propagate the leaf DTLs we just loaded all the way up the tree.
3033          */
3034         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3035         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3036         spa_config_exit(spa, SCL_ALL, FTAG);
3037 
3038         /*
3039          * Load the DDTs (dedup tables).
3040          */
3041         error = ddt_load(spa);
3042         if (error != 0)
3043                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3044 
3045         spa_update_dspace(spa);
3046 
3047         /*
3048          * Validate the config, using the MOS config to fill in any
3049          * information which might be missing.  If we fail to validate
3050          * the config then declare the pool unfit for use. If we're
3051          * assembling a pool from a split, the log is not transferred
3052          * over.
3053          */
3054         if (type != SPA_IMPORT_ASSEMBLE) {
3055                 nvlist_t *nvconfig;
3056 
3057                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
3058                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3059 
3060                 if (!spa_config_valid(spa, nvconfig)) {
3061                         nvlist_free(nvconfig);
3062                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3063                             ENXIO));
3064                 }
3065                 nvlist_free(nvconfig);
3066 
3067                 /*
3068                  * Now that we've validated the config, check the state of the
3069                  * root vdev.  If it can't be opened, it indicates one or
3070                  * more toplevel vdevs are faulted.
3071                  */
3072                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
3073                         return (SET_ERROR(ENXIO));
3074 
3075                 if (spa_writeable(spa) && spa_check_logs(spa)) {
3076                         *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3077                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
3078                 }
3079         }
3080 
3081         if (missing_feat_write) {
3082                 ASSERT(state == SPA_LOAD_TRYIMPORT);
3083 
3084                 /*
3085                  * At this point, we know that we can open the pool in
3086                  * read-only mode but not read-write mode. We now have enough
3087                  * information and can return to userland.
3088                  */
3089                 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
3090         }
3091 
3092         /*
3093          * We've successfully opened the pool, verify that we're ready
3094          * to start pushing transactions.
3095          */
3096         if (state != SPA_LOAD_TRYIMPORT) {
3097                 if (error = spa_load_verify(spa)) {
3098                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3099                             error));
3100                 }
3101         }
3102 
3103         if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
3104             spa->spa_load_max_txg == UINT64_MAX)) {
3105                 dmu_tx_t *tx;
3106                 int need_update = B_FALSE;
3107                 dsl_pool_t *dp = spa_get_dsl(spa);
3108 
3109                 ASSERT(state != SPA_LOAD_TRYIMPORT);
3110 
3111                 /*
3112                  * Claim log blocks that haven't been committed yet.
3113                  * This must all happen in a single txg.
3114                  * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3115                  * invoked from zil_claim_log_block()'s i/o done callback.
3116                  * Price of rollback is that we abandon the log.
3117                  */
3118                 spa->spa_claiming = B_TRUE;
3119 
3120                 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3121                 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3122                     zil_claim, tx, DS_FIND_CHILDREN);
3123                 dmu_tx_commit(tx);
3124 
3125                 spa->spa_claiming = B_FALSE;
3126 
3127                 spa_set_log_state(spa, SPA_LOG_GOOD);
3128                 spa->spa_sync_on = B_TRUE;
3129                 txg_sync_start(spa->spa_dsl_pool);
3130 
3131                 /*
3132                  * Wait for all claims to sync.  We sync up to the highest
3133                  * claimed log block birth time so that claimed log blocks
3134                  * don't appear to be from the future.  spa_claim_max_txg
3135                  * will have been set for us by either zil_check_log_chain()
3136                  * (invoked from spa_check_logs()) or zil_claim() above.
3137                  */
3138                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3139 
3140                 /*
3141                  * If the config cache is stale, or we have uninitialized
3142                  * metaslabs (see spa_vdev_add()), then update the config.
3143                  *
3144                  * If this is a verbatim import, trust the current
3145                  * in-core spa_config and update the disk labels.
3146                  */
3147                 if (config_cache_txg != spa->spa_config_txg ||
3148                     state == SPA_LOAD_IMPORT ||
3149                     state == SPA_LOAD_RECOVER ||
3150                     (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3151                         need_update = B_TRUE;
3152 
3153                 for (int c = 0; c < rvd->vdev_children; c++)
3154                         if (rvd->vdev_child[c]->vdev_ms_array == 0)
3155                                 need_update = B_TRUE;
3156 
3157                 /*
3158                  * Update the config cache asychronously in case we're the
3159                  * root pool, in which case the config cache isn't writable yet.
3160                  */
3161                 if (need_update)
3162                         spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3163 
3164                 /*
3165                  * Check all DTLs to see if anything needs resilvering.
3166                  */
3167                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3168                     vdev_resilver_needed(rvd, NULL, NULL))
3169                         spa_async_request(spa, SPA_ASYNC_RESILVER);
3170 
3171                 /*
3172                  * Log the fact that we booted up (so that we can detect if
3173                  * we rebooted in the middle of an operation).
3174                  */
3175                 spa_history_log_version(spa, "open");
3176 
3177                 dsl_destroy_inconsistent(spa_get_dsl(spa));
3178 
3179                 /*
3180                  * Clean up any stale temporary dataset userrefs.
3181                  */
3182                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3183         }
3184 
3185         spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
3186 
3187         return (0);
3188 }
3189 
3190 static int
3191 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3192 {
3193         int mode = spa->spa_mode;
3194 
3195         spa_unload(spa);
3196         spa_deactivate(spa);
3197 
3198         spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3199 
3200         spa_activate(spa, mode);
3201         spa_async_suspend(spa);
3202 
3203         return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3204 }
3205 
3206 /*
3207  * If spa_load() fails this function will try loading prior txg's. If
3208  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3209  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3210  * function will not rewind the pool and will return the same error as
3211  * spa_load().
3212  */
3213 static int
3214 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3215     uint64_t max_request, int rewind_flags)
3216 {
3217         nvlist_t *loadinfo = NULL;
3218         nvlist_t *config = NULL;
3219         int load_error, rewind_error;
3220         uint64_t safe_rewind_txg;
3221         uint64_t min_txg;
3222 
3223         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3224                 spa->spa_load_max_txg = spa->spa_load_txg;
3225                 spa_set_log_state(spa, SPA_LOG_CLEAR);
3226         } else {
3227                 spa->spa_load_max_txg = max_request;
3228                 if (max_request != UINT64_MAX)
3229                         spa->spa_extreme_rewind = B_TRUE;
3230         }
3231 
3232         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3233             mosconfig);
3234         if (load_error == 0)
3235                 return (0);
3236 
3237         if (spa->spa_root_vdev != NULL)
3238                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3239 
3240         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3241         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3242 
3243         if (rewind_flags & ZPOOL_NEVER_REWIND) {
3244                 nvlist_free(config);
3245                 return (load_error);
3246         }
3247 
3248         if (state == SPA_LOAD_RECOVER) {
3249                 /* Price of rolling back is discarding txgs, including log */
3250                 spa_set_log_state(spa, SPA_LOG_CLEAR);
3251         } else {
3252                 /*
3253                  * If we aren't rolling back save the load info from our first
3254                  * import attempt so that we can restore it after attempting
3255                  * to rewind.
3256                  */
3257                 loadinfo = spa->spa_load_info;
3258                 spa->spa_load_info = fnvlist_alloc();
3259         }
3260 
3261         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3262         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3263         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3264             TXG_INITIAL : safe_rewind_txg;
3265 
3266         /*
3267          * Continue as long as we're finding errors, we're still within
3268          * the acceptable rewind range, and we're still finding uberblocks
3269          */
3270         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3271             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3272                 if (spa->spa_load_max_txg < safe_rewind_txg)
3273                         spa->spa_extreme_rewind = B_TRUE;
3274                 rewind_error = spa_load_retry(spa, state, mosconfig);
3275         }
3276 
3277         spa->spa_extreme_rewind = B_FALSE;
3278         spa->spa_load_max_txg = UINT64_MAX;
3279 
3280         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3281                 spa_config_set(spa, config);
3282         else
3283                 nvlist_free(config);
3284 
3285         if (state == SPA_LOAD_RECOVER) {
3286                 ASSERT3P(loadinfo, ==, NULL);
3287                 return (rewind_error);
3288         } else {
3289                 /* Store the rewind info as part of the initial load info */
3290                 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3291                     spa->spa_load_info);
3292 
3293                 /* Restore the initial load info */
3294                 fnvlist_free(spa->spa_load_info);
3295                 spa->spa_load_info = loadinfo;
3296 
3297                 return (load_error);
3298         }
3299 }
3300 
3301 /*
3302  * Pool Open/Import
3303  *
3304  * The import case is identical to an open except that the configuration is sent
3305  * down from userland, instead of grabbed from the configuration cache.  For the
3306  * case of an open, the pool configuration will exist in the
3307  * POOL_STATE_UNINITIALIZED state.
3308  *
3309  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3310  * the same time open the pool, without having to keep around the spa_t in some
3311  * ambiguous state.
3312  */
3313 static int
3314 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3315     nvlist_t **config)
3316 {
3317         spa_t *spa;
3318         spa_load_state_t state = SPA_LOAD_OPEN;
3319         int error;
3320         int locked = B_FALSE;
3321         boolean_t open_with_activation = B_FALSE;
3322 
3323         *spapp = NULL;
3324 
3325         /*
3326          * As disgusting as this is, we need to support recursive calls to this
3327          * function because dsl_dir_open() is called during spa_load(), and ends
3328          * up calling spa_open() again.  The real fix is to figure out how to
3329          * avoid dsl_dir_open() calling this in the first place.
3330          */
3331         if (mutex_owner(&spa_namespace_lock) != curthread) {
3332                 mutex_enter(&spa_namespace_lock);
3333                 locked = B_TRUE;
3334         }
3335 
3336         if ((spa = spa_lookup(pool)) == NULL) {
3337                 if (locked)
3338                         mutex_exit(&spa_namespace_lock);
3339                 return (SET_ERROR(ENOENT));
3340         }
3341 
3342         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3343                 zpool_rewind_policy_t policy;
3344 
3345                 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3346                     &policy);
3347                 if (policy.zrp_request & ZPOOL_DO_REWIND)
3348                         state = SPA_LOAD_RECOVER;
3349 
3350                 spa_activate(spa, spa_mode_global);
3351 
3352                 if (state != SPA_LOAD_RECOVER)
3353                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3354 
3355                 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3356                     policy.zrp_request);
3357 
3358                 if (error == EBADF) {
3359                         /*
3360                          * If vdev_validate() returns failure (indicated by
3361                          * EBADF), it indicates that one of the vdevs indicates
3362                          * that the pool has been exported or destroyed.  If
3363                          * this is the case, the config cache is out of sync and
3364                          * we should remove the pool from the namespace.
3365                          */
3366                         spa_unload(spa);
3367                         spa_deactivate(spa);
3368                         spa_config_sync(spa, B_TRUE, B_TRUE);
3369                         spa_remove(spa);
3370                         if (locked)
3371                                 mutex_exit(&spa_namespace_lock);
3372                         return (SET_ERROR(ENOENT));
3373                 }
3374 
3375                 if (error) {
3376                         /*
3377                          * We can't open the pool, but we still have useful
3378                          * information: the state of each vdev after the
3379                          * attempted vdev_open().  Return this to the user.
3380                          */
3381                         if (config != NULL && spa->spa_config) {
3382                                 VERIFY(nvlist_dup(spa->spa_config, config,
3383                                     KM_SLEEP) == 0);
3384                                 VERIFY(nvlist_add_nvlist(*config,
3385                                     ZPOOL_CONFIG_LOAD_INFO,
3386                                     spa->spa_load_info) == 0);
3387                         }
3388                         spa_unload(spa);
3389                         spa_deactivate(spa);
3390                         spa->spa_last_open_failed = error;
3391                         if (locked)
3392                                 mutex_exit(&spa_namespace_lock);
3393                         *spapp = NULL;
3394                         return (error);
3395                 }
3396 
3397                 open_with_activation = B_TRUE;
3398         }
3399 
3400         spa_open_ref(spa, tag);
3401 
3402         if (config != NULL)
3403                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3404 
3405         /*
3406          * If we've recovered the pool, pass back any information we
3407          * gathered while doing the load.
3408          */
3409         if (state == SPA_LOAD_RECOVER) {
3410                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3411                     spa->spa_load_info) == 0);
3412         }
3413 
3414         if (locked) {
3415                 spa->spa_last_open_failed = 0;
3416                 spa->spa_last_ubsync_txg = 0;
3417                 spa->spa_load_txg = 0;
3418                 mutex_exit(&spa_namespace_lock);
3419         }
3420 
3421         if (open_with_activation)
3422                 wbc_activate(spa, B_FALSE);
3423 
3424         *spapp = spa;
3425 
3426         return (0);
3427 }
3428 
3429 int
3430 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3431     nvlist_t **config)
3432 {
3433         return (spa_open_common(name, spapp, tag, policy, config));
3434 }
3435 
3436 int
3437 spa_open(const char *name, spa_t **spapp, void *tag)
3438 {
3439         return (spa_open_common(name, spapp, tag, NULL, NULL));
3440 }
3441 
3442 /*
3443  * Lookup the given spa_t, incrementing the inject count in the process,
3444  * preventing it from being exported or destroyed.
3445  */
3446 spa_t *
3447 spa_inject_addref(char *name)
3448 {
3449         spa_t *spa;
3450 
3451         mutex_enter(&spa_namespace_lock);
3452         if ((spa = spa_lookup(name)) == NULL) {
3453                 mutex_exit(&spa_namespace_lock);
3454                 return (NULL);
3455         }
3456         spa->spa_inject_ref++;
3457         mutex_exit(&spa_namespace_lock);
3458 
3459         return (spa);
3460 }
3461 
3462 void
3463 spa_inject_delref(spa_t *spa)
3464 {
3465         mutex_enter(&spa_namespace_lock);
3466         spa->spa_inject_ref--;
3467         mutex_exit(&spa_namespace_lock);
3468 }
3469 
3470 /*
3471  * Add spares device information to the nvlist.
3472  */
3473 static void
3474 spa_add_spares(spa_t *spa, nvlist_t *config)
3475 {
3476         nvlist_t **spares;
3477         uint_t i, nspares;
3478         nvlist_t *nvroot;
3479         uint64_t guid;
3480         vdev_stat_t *vs;
3481         uint_t vsc;
3482         uint64_t pool;
3483 
3484         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3485 
3486         if (spa->spa_spares.sav_count == 0)
3487                 return;
3488 
3489         VERIFY(nvlist_lookup_nvlist(config,
3490             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3491         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3492             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3493         if (nspares != 0) {
3494                 VERIFY(nvlist_add_nvlist_array(nvroot,
3495                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3496                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3497                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3498 
3499                 /*
3500                  * Go through and find any spares which have since been
3501                  * repurposed as an active spare.  If this is the case, update
3502                  * their status appropriately.
3503                  */
3504                 for (i = 0; i < nspares; i++) {
3505                         VERIFY(nvlist_lookup_uint64(spares[i],
3506                             ZPOOL_CONFIG_GUID, &guid) == 0);
3507                         if (spa_spare_exists(guid, &pool, NULL) &&
3508                             pool != 0ULL) {
3509                                 VERIFY(nvlist_lookup_uint64_array(
3510                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
3511                                     (uint64_t **)&vs, &vsc) == 0);
3512                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
3513                                 vs->vs_aux = VDEV_AUX_SPARED;
3514                         }
3515                 }
3516         }
3517 }
3518 
3519 /*
3520  * Add l2cache device information to the nvlist, including vdev stats.
3521  */
3522 static void
3523 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3524 {
3525         nvlist_t **l2cache;
3526         uint_t i, j, nl2cache;
3527         nvlist_t *nvroot;
3528         uint64_t guid;
3529         vdev_t *vd;
3530         vdev_stat_t *vs;
3531         uint_t vsc;
3532 
3533         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3534 
3535         if (spa->spa_l2cache.sav_count == 0)
3536                 return;
3537 
3538         VERIFY(nvlist_lookup_nvlist(config,
3539             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3540         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3541             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3542         if (nl2cache != 0) {
3543                 VERIFY(nvlist_add_nvlist_array(nvroot,
3544                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3545                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3546                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3547 
3548                 /*
3549                  * Update level 2 cache device stats.
3550                  */
3551 
3552                 for (i = 0; i < nl2cache; i++) {
3553                         VERIFY(nvlist_lookup_uint64(l2cache[i],
3554                             ZPOOL_CONFIG_GUID, &guid) == 0);
3555 
3556                         vd = NULL;
3557                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3558                                 if (guid ==
3559                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3560                                         vd = spa->spa_l2cache.sav_vdevs[j];
3561                                         break;
3562                                 }
3563                         }
3564                         ASSERT(vd != NULL);
3565 
3566                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3567                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3568                             == 0);
3569                         vdev_get_stats(vd, vs);
3570                 }
3571         }
3572 }
3573 
3574 static void
3575 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3576 {
3577         nvlist_t *features;
3578         zap_cursor_t zc;
3579         zap_attribute_t za;
3580 
3581         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3582         VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3583 
3584         if (spa->spa_feat_for_read_obj != 0) {
3585                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3586                     spa->spa_feat_for_read_obj);
3587                     zap_cursor_retrieve(&zc, &za) == 0;
3588                     zap_cursor_advance(&zc)) {
3589                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3590                             za.za_num_integers == 1);
3591                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3592                             za.za_first_integer));
3593                 }
3594                 zap_cursor_fini(&zc);
3595         }
3596 
3597         if (spa->spa_feat_for_write_obj != 0) {
3598                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3599                     spa->spa_feat_for_write_obj);
3600                     zap_cursor_retrieve(&zc, &za) == 0;
3601                     zap_cursor_advance(&zc)) {
3602                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3603                             za.za_num_integers == 1);
3604                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3605                             za.za_first_integer));
3606                 }
3607                 zap_cursor_fini(&zc);
3608         }
3609 
3610         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3611             features) == 0);
3612         nvlist_free(features);
3613 }
3614 
3615 int
3616 spa_get_stats(const char *name, nvlist_t **config,
3617     char *altroot, size_t buflen)
3618 {
3619         int error;
3620         spa_t *spa;
3621 
3622         *config = NULL;
3623         error = spa_open_common(name, &spa, FTAG, NULL, config);
3624 
3625         if (spa != NULL) {
3626                 /*
3627                  * This still leaves a window of inconsistency where the spares
3628                  * or l2cache devices could change and the config would be
3629                  * self-inconsistent.
3630                  */
3631                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3632 
3633                 if (*config != NULL) {
3634                         uint64_t loadtimes[2];
3635 
3636                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3637                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3638                         VERIFY(nvlist_add_uint64_array(*config,
3639                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3640 
3641                         VERIFY(nvlist_add_uint64(*config,
3642                             ZPOOL_CONFIG_ERRCOUNT,
3643                             spa_get_errlog_size(spa)) == 0);
3644 
3645                         if (spa_suspended(spa))
3646                                 VERIFY(nvlist_add_uint64(*config,
3647                                     ZPOOL_CONFIG_SUSPENDED,
3648                                     spa->spa_failmode) == 0);
3649 
3650                         spa_add_spares(spa, *config);
3651                         spa_add_l2cache(spa, *config);
3652                         spa_add_feature_stats(spa, *config);
3653                 }
3654         }
3655 
3656         /*
3657          * We want to get the alternate root even for faulted pools, so we cheat
3658          * and call spa_lookup() directly.
3659          */
3660         if (altroot) {
3661                 if (spa == NULL) {
3662                         mutex_enter(&spa_namespace_lock);
3663                         spa = spa_lookup(name);
3664                         if (spa)
3665                                 spa_altroot(spa, altroot, buflen);
3666                         else
3667                                 altroot[0] = '\0';
3668                         spa = NULL;
3669                         mutex_exit(&spa_namespace_lock);
3670                 } else {
3671                         spa_altroot(spa, altroot, buflen);
3672                 }
3673         }
3674 
3675         if (spa != NULL) {
3676                 spa_config_exit(spa, SCL_CONFIG, FTAG);
3677                 spa_close(spa, FTAG);
3678         }
3679 
3680         return (error);
3681 }
3682 
3683 /*
3684  * Validate that the auxiliary device array is well formed.  We must have an
3685  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3686  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3687  * specified, as long as they are well-formed.
3688  */
3689 static int
3690 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3691     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3692     vdev_labeltype_t label)
3693 {
3694         nvlist_t **dev;
3695         uint_t i, ndev;
3696         vdev_t *vd;
3697         int error;
3698 
3699         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3700 
3701         /*
3702          * It's acceptable to have no devs specified.
3703          */
3704         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3705                 return (0);
3706 
3707         if (ndev == 0)
3708                 return (SET_ERROR(EINVAL));
3709 
3710         /*
3711          * Make sure the pool is formatted with a version that supports this
3712          * device type.
3713          */
3714         if (spa_version(spa) < version)
3715                 return (SET_ERROR(ENOTSUP));
3716 
3717         /*
3718          * Set the pending device list so we correctly handle device in-use
3719          * checking.
3720          */
3721         sav->sav_pending = dev;
3722         sav->sav_npending = ndev;
3723 
3724         for (i = 0; i < ndev; i++) {
3725                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3726                     mode)) != 0)
3727                         goto out;
3728 
3729                 if (!vd->vdev_ops->vdev_op_leaf) {
3730                         vdev_free(vd);
3731                         error = SET_ERROR(EINVAL);
3732                         goto out;
3733                 }
3734 
3735                 /*
3736                  * The L2ARC currently only supports disk devices in
3737                  * kernel context.  For user-level testing, we allow it.
3738                  */
3739 #ifdef _KERNEL
3740                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3741                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3742                         error = SET_ERROR(ENOTBLK);
3743                         vdev_free(vd);
3744                         goto out;
3745                 }
3746 #endif
3747                 vd->vdev_top = vd;
3748 
3749                 if ((error = vdev_open(vd)) == 0 &&
3750                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
3751                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3752                             vd->vdev_guid) == 0);
3753                 }
3754 
3755                 vdev_free(vd);
3756 
3757                 if (error &&
3758                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3759                         goto out;
3760                 else
3761                         error = 0;
3762         }
3763 
3764 out:
3765         sav->sav_pending = NULL;
3766         sav->sav_npending = 0;
3767         return (error);
3768 }
3769 
3770 static int
3771 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3772 {
3773         int error;
3774 
3775         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3776 
3777         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3778             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3779             VDEV_LABEL_SPARE)) != 0) {
3780                 return (error);
3781         }
3782 
3783         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3784             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3785             VDEV_LABEL_L2CACHE));
3786 }
3787 
3788 static void
3789 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3790     const char *config)
3791 {
3792         int i;
3793 
3794         if (sav->sav_config != NULL) {
3795                 nvlist_t **olddevs;
3796                 uint_t oldndevs;
3797                 nvlist_t **newdevs;
3798 
3799                 /*
3800                  * Generate new dev list by concatentating with the
3801                  * current dev list.
3802                  */
3803                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3804                     &olddevs, &oldndevs) == 0);
3805 
3806                 newdevs = kmem_alloc(sizeof (void *) *
3807                     (ndevs + oldndevs), KM_SLEEP);
3808                 for (i = 0; i < oldndevs; i++)
3809                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3810                             KM_SLEEP) == 0);
3811                 for (i = 0; i < ndevs; i++)
3812                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3813                             KM_SLEEP) == 0);
3814 
3815                 VERIFY(nvlist_remove(sav->sav_config, config,
3816                     DATA_TYPE_NVLIST_ARRAY) == 0);
3817 
3818                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3819                     config, newdevs, ndevs + oldndevs) == 0);
3820                 for (i = 0; i < oldndevs + ndevs; i++)
3821                         nvlist_free(newdevs[i]);
3822                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3823         } else {
3824                 /*
3825                  * Generate a new dev list.
3826                  */
3827                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3828                     KM_SLEEP) == 0);
3829                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3830                     devs, ndevs) == 0);
3831         }
3832 }
3833 
3834 /*
3835  * Stop and drop level 2 ARC devices
3836  */
3837 void
3838 spa_l2cache_drop(spa_t *spa)
3839 {
3840         vdev_t *vd;
3841         int i;
3842         spa_aux_vdev_t *sav = &spa->spa_l2cache;
3843 
3844         for (i = 0; i < sav->sav_count; i++) {
3845                 uint64_t pool;
3846 
3847                 vd = sav->sav_vdevs[i];
3848                 ASSERT(vd != NULL);
3849 
3850                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3851                     pool != 0ULL && l2arc_vdev_present(vd))
3852                         l2arc_remove_vdev(vd);
3853         }
3854 }
3855 
3856 /*
3857  * Pool Creation
3858  */
3859 int
3860 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3861     nvlist_t *zplprops)
3862 {
3863         spa_t *spa;
3864         char *altroot = NULL;
3865         vdev_t *rvd;
3866         dsl_pool_t *dp;
3867         dmu_tx_t *tx;
3868         int error = 0;
3869         uint64_t txg = TXG_INITIAL;
3870         nvlist_t **spares, **l2cache;
3871         uint_t nspares, nl2cache;
3872         uint64_t version, obj;
3873         boolean_t has_features = B_FALSE, wbc_feature_exists = B_FALSE;
3874         spa_meta_placement_t *mp;
3875 
3876         /*
3877          * If this pool already exists, return failure.
3878          */
3879         mutex_enter(&spa_namespace_lock);
3880         if (spa_lookup(pool) != NULL) {
3881                 mutex_exit(&spa_namespace_lock);
3882                 return (SET_ERROR(EEXIST));
3883         }
3884 
3885         /*
3886          * Allocate a new spa_t structure.
3887          */
3888         (void) nvlist_lookup_string(props,
3889             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3890         spa = spa_add(pool, NULL, altroot);
3891         spa_activate(spa, spa_mode_global);
3892 
3893         if (props != NULL) {
3894                 nvpair_t *wbc_feature_nvp = NULL;
3895 
3896                 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3897                     elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3898                         const char *propname = nvpair_name(elem);
3899                         if (zpool_prop_feature(propname)) {
3900                                 spa_feature_t feature;
3901                                 int err;
3902                                 const char *fname = strchr(propname, '@') + 1;
3903 
3904                                 err = zfeature_lookup_name(fname, &feature);
3905                                 if (err == 0 && feature == SPA_FEATURE_WBC) {
3906                                         wbc_feature_nvp = elem;
3907                                         wbc_feature_exists = B_TRUE;
3908                                 }
3909 
3910                                 has_features = B_TRUE;
3911                         }
3912                 }
3913 
3914                 /*
3915                  * We do not want to enabled feature@wbc if
3916                  * this pool does not have special vdev.
3917                  * At this stage we remove this feature from common list,
3918                  * but later after check that special vdev available this
3919                  * feature will be enabled
3920                  */
3921                 if (wbc_feature_nvp != NULL)
3922                         fnvlist_remove_nvpair(props, wbc_feature_nvp);
3923 
3924                 if ((error = spa_prop_validate(spa, props)) != 0) {
3925                         spa_deactivate(spa);
3926                         spa_remove(spa);
3927                         mutex_exit(&spa_namespace_lock);
3928                         return (error);
3929                 }
3930         }
3931 
3932 
3933         if (has_features || nvlist_lookup_uint64(props,
3934             zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3935                 version = SPA_VERSION;
3936         }
3937         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3938 
3939         spa->spa_first_txg = txg;
3940         spa->spa_uberblock.ub_txg = txg - 1;
3941         spa->spa_uberblock.ub_version = version;
3942         spa->spa_ubsync = spa->spa_uberblock;
3943         spa->spa_load_state = SPA_LOAD_CREATE;
3944 
3945         /*
3946          * Create "The Godfather" zio to hold all async IOs
3947          */
3948         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3949             KM_SLEEP);
3950         for (int i = 0; i < max_ncpus; i++) {
3951                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3952                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3953                     ZIO_FLAG_GODFATHER);
3954         }
3955 
3956         /*
3957          * Create the root vdev.
3958          */
3959         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3960 
3961         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3962 
3963         ASSERT(error != 0 || rvd != NULL);
3964         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3965 
3966         if (error == 0 && !zfs_allocatable_devs(nvroot))
3967                 error = SET_ERROR(EINVAL);
3968 
3969         if (error == 0 &&
3970             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3971             (error = spa_validate_aux(spa, nvroot, txg,
3972             VDEV_ALLOC_ADD)) == 0) {
3973                 for (int c = 0; c < rvd->vdev_children; c++) {
3974                         vdev_metaslab_set_size(rvd->vdev_child[c]);
3975                         vdev_expand(rvd->vdev_child[c], txg);
3976                 }
3977         }
3978 
3979         spa_config_exit(spa, SCL_ALL, FTAG);
3980 
3981         if (error != 0) {
3982                 spa_unload(spa);
3983                 spa_deactivate(spa);
3984                 spa_remove(spa);
3985                 mutex_exit(&spa_namespace_lock);
3986                 return (error);
3987         }
3988 
3989         /*
3990          * Get the list of spares, if specified.
3991          */
3992         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3993             &spares, &nspares) == 0) {
3994                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3995                     KM_SLEEP) == 0);
3996                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3997                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3998                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3999                 spa_load_spares(spa);
4000                 spa_config_exit(spa, SCL_ALL, FTAG);
4001                 spa->spa_spares.sav_sync = B_TRUE;
4002         }
4003 
4004         /*
4005          * Get the list of level 2 cache devices, if specified.
4006          */
4007         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4008             &l2cache, &nl2cache) == 0) {
4009                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4010                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
4011                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4012                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4013                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4014                 spa_load_l2cache(spa);
4015                 spa_config_exit(spa, SCL_ALL, FTAG);
4016                 spa->spa_l2cache.sav_sync = B_TRUE;
4017         }
4018 
4019         spa->spa_is_initializing = B_TRUE;
4020         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4021         spa->spa_meta_objset = dp->dp_meta_objset;
4022         spa->spa_is_initializing = B_FALSE;
4023 
4024         /*
4025          * Create DDTs (dedup tables).
4026          */
4027         ddt_create(spa);
4028 
4029         spa_update_dspace(spa);
4030 
4031         tx = dmu_tx_create_assigned(dp, txg);
4032 
4033         /*
4034          * Create the pool config object.
4035          */
4036         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4037             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4038             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4039 
4040         if (zap_add(spa->spa_meta_objset,
4041             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4042             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4043                 cmn_err(CE_PANIC, "failed to add pool config");
4044         }
4045 
4046         if (spa_version(spa) >= SPA_VERSION_FEATURES)
4047                 spa_feature_create_zap_objects(spa, tx);
4048 
4049         if (zap_add(spa->spa_meta_objset,
4050             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4051             sizeof (uint64_t), 1, &version, tx) != 0) {
4052                 cmn_err(CE_PANIC, "failed to add pool version");
4053         }
4054 
4055         /* Newly created pools with the right version are always deflated. */
4056         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4057                 spa->spa_deflate = TRUE;
4058                 if (zap_add(spa->spa_meta_objset,
4059                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4060                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4061                         cmn_err(CE_PANIC, "failed to add deflate");
4062                 }
4063         }
4064 
4065         /*
4066          * Create the deferred-free bpobj.  Turn off compression
4067          * because sync-to-convergence takes longer if the blocksize
4068          * keeps changing.
4069          */
4070         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4071         dmu_object_set_compress(spa->spa_meta_objset, obj,
4072             ZIO_COMPRESS_OFF, tx);
4073         if (zap_add(spa->spa_meta_objset,
4074             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4075             sizeof (uint64_t), 1, &obj, tx) != 0) {
4076                 cmn_err(CE_PANIC, "failed to add bpobj");
4077         }
4078         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4079             spa->spa_meta_objset, obj));
4080 
4081         /*
4082          * Create the pool's history object.
4083          */
4084         if (version >= SPA_VERSION_ZPOOL_HISTORY)
4085                 spa_history_create_obj(spa, tx);
4086 
4087         mp = &spa->spa_meta_policy;
4088 
4089         /*
4090          * Generate some random noise for salted checksums to operate on.
4091          */
4092         (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4093             sizeof (spa->spa_cksum_salt.zcs_bytes));
4094 
4095         /*
4096          * Set pool properties.
4097          */
4098         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4099         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4100         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4101         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4102         spa->spa_minwat = zpool_prop_default_numeric(ZPOOL_PROP_MINWATERMARK);
4103         spa->spa_hiwat = zpool_prop_default_numeric(ZPOOL_PROP_HIWATERMARK);
4104         spa->spa_lowat = zpool_prop_default_numeric(ZPOOL_PROP_LOWATERMARK);
4105         spa->spa_ddt_meta_copies =
4106             zpool_prop_default_numeric(ZPOOL_PROP_DEDUPMETA_DITTO);
4107         spa->spa_dedup_best_effort =
4108             zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_BEST_EFFORT);
4109         spa->spa_dedup_lo_best_effort =
4110             zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_LO_BEST_EFFORT);
4111         spa->spa_dedup_hi_best_effort =
4112             zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_HI_BEST_EFFORT);
4113         spa->spa_force_trim = zpool_prop_default_numeric(ZPOOL_PROP_FORCETRIM);
4114 
4115         spa->spa_resilver_prio =
4116             zpool_prop_default_numeric(ZPOOL_PROP_RESILVER_PRIO);
4117         spa->spa_scrub_prio = zpool_prop_default_numeric(ZPOOL_PROP_SCRUB_PRIO);
4118 
4119         mutex_enter(&spa->spa_auto_trim_lock);
4120         spa->spa_auto_trim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
4121         if (spa->spa_auto_trim == SPA_AUTO_TRIM_ON)
4122                 spa_auto_trim_taskq_create(spa);
4123         mutex_exit(&spa->spa_auto_trim_lock);
4124 
4125         mp->spa_enable_meta_placement_selection =
4126             zpool_prop_default_numeric(ZPOOL_PROP_META_PLACEMENT);
4127         mp->spa_sync_to_special =
4128             zpool_prop_default_numeric(ZPOOL_PROP_SYNC_TO_SPECIAL);
4129         mp->spa_ddt_meta_to_special =
4130             zpool_prop_default_numeric(ZPOOL_PROP_DDT_META_TO_METADEV);
4131         mp->spa_zfs_meta_to_special =
4132             zpool_prop_default_numeric(ZPOOL_PROP_ZFS_META_TO_METADEV);
4133         mp->spa_small_data_to_special =
4134             zpool_prop_default_numeric(ZPOOL_PROP_SMALL_DATA_TO_METADEV);
4135 
4136         spa_set_ddt_classes(spa, 0);
4137 
4138         if (props != NULL) {
4139                 spa_configfile_set(spa, props, B_FALSE);
4140                 spa_sync_props(props, tx);
4141         }
4142 
4143         if (spa_has_special(spa)) {
4144                 spa_feature_enable(spa, SPA_FEATURE_META_DEVICES, tx);
4145                 spa_feature_incr(spa, SPA_FEATURE_META_DEVICES, tx);
4146 
4147                 if (wbc_feature_exists)
4148                         spa_feature_enable(spa, SPA_FEATURE_WBC, tx);
4149         }
4150 
4151         dmu_tx_commit(tx);
4152 
4153         spa->spa_sync_on = B_TRUE;
4154         txg_sync_start(spa->spa_dsl_pool);
4155 
4156         /*
4157          * We explicitly wait for the first transaction to complete so that our
4158          * bean counters are appropriately updated.
4159          */
4160         txg_wait_synced(spa->spa_dsl_pool, txg);
4161 
4162         spa_config_sync(spa, B_FALSE, B_TRUE);
4163         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4164 
4165         spa_history_log_version(spa, "create");
4166 
4167         /*
4168          * Don't count references from objsets that are already closed
4169          * and are making their way through the eviction process.
4170          */
4171         spa_evicting_os_wait(spa);
4172         spa->spa_minref = refcount_count(&spa->spa_refcount);
4173         spa->spa_load_state = SPA_LOAD_NONE;
4174 
4175         mutex_exit(&spa_namespace_lock);
4176 
4177         wbc_activate(spa, B_TRUE);
4178 
4179         return (0);
4180 }
4181 
4182 
4183 /*
4184  * See if the pool has special tier, and if so, enable/activate
4185  * the feature as needed. Activation is not reference counted.
4186  */
4187 static void
4188 spa_check_special_feature(spa_t *spa)
4189 {
4190         if (spa_has_special(spa)) {
4191                 nvlist_t *props = NULL;
4192 
4193                 if (!spa_feature_is_enabled(spa, SPA_FEATURE_META_DEVICES)) {
4194                         VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
4195                         VERIFY(nvlist_add_uint64(props,
4196                             FEATURE_META_DEVICES, 0) == 0);
4197                         VERIFY(spa_prop_set(spa, props) == 0);
4198                         nvlist_free(props);
4199                 }
4200 
4201                 if (!spa_feature_is_active(spa, SPA_FEATURE_META_DEVICES)) {
4202                         dmu_tx_t *tx =
4203                             dmu_tx_create_dd(spa->spa_dsl_pool->dp_mos_dir);
4204 
4205                         VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
4206                         spa_feature_incr(spa, SPA_FEATURE_META_DEVICES, tx);
4207                         dmu_tx_commit(tx);
4208                 }
4209         }
4210 }
4211 
4212 static void
4213 spa_special_feature_activate(void *arg, dmu_tx_t *tx)
4214 {
4215         spa_t *spa = (spa_t *)arg;
4216 
4217         if (spa_has_special(spa)) {
4218                 /* enable and activate as needed */
4219                 spa_feature_enable(spa, SPA_FEATURE_META_DEVICES, tx);
4220                 if (!spa_feature_is_active(spa, SPA_FEATURE_META_DEVICES)) {
4221                         spa_feature_incr(spa, SPA_FEATURE_META_DEVICES, tx);
4222                 }
4223 
4224                 spa_feature_enable(spa, SPA_FEATURE_WBC, tx);
4225         }
4226 }
4227 
4228 #ifdef _KERNEL
4229 /*
4230  * Get the root pool information from the root disk, then import the root pool
4231  * during the system boot up time.
4232  */
4233 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4234 
4235 static nvlist_t *
4236 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4237 {
4238         nvlist_t *config;
4239         nvlist_t *nvtop, *nvroot;
4240         uint64_t pgid;
4241 
4242         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4243                 return (NULL);
4244 
4245         /*
4246          * Add this top-level vdev to the child array.
4247          */
4248         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4249             &nvtop) == 0);
4250         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4251             &pgid) == 0);
4252         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4253 
4254         /*
4255          * Put this pool's top-level vdevs into a root vdev.
4256          */
4257         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4258         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4259             VDEV_TYPE_ROOT) == 0);
4260         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4261         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4262         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4263             &nvtop, 1) == 0);
4264 
4265         /*
4266          * Replace the existing vdev_tree with the new root vdev in
4267          * this pool's configuration (remove the old, add the new).
4268          */
4269         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4270         nvlist_free(nvroot);
4271         return (config);
4272 }
4273 
4274 /*
4275  * Walk the vdev tree and see if we can find a device with "better"
4276  * configuration. A configuration is "better" if the label on that
4277  * device has a more recent txg.
4278  */
4279 static void
4280 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4281 {
4282         for (int c = 0; c < vd->vdev_children; c++)
4283                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4284 
4285         if (vd->vdev_ops->vdev_op_leaf) {
4286                 nvlist_t *label;
4287                 uint64_t label_txg;
4288 
4289                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4290                     &label) != 0)
4291                         return;
4292 
4293                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4294                     &label_txg) == 0);
4295 
4296                 /*
4297                  * Do we have a better boot device?
4298                  */
4299                 if (label_txg > *txg) {
4300                         *txg = label_txg;
4301                         *avd = vd;
4302                 }
4303                 nvlist_free(label);
4304         }
4305 }
4306 
4307 /*
4308  * Import a root pool.
4309  *
4310  * For x86. devpath_list will consist of devid and/or physpath name of
4311  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4312  * The GRUB "findroot" command will return the vdev we should boot.
4313  *
4314  * For Sparc, devpath_list consists the physpath name of the booting device
4315  * no matter the rootpool is a single device pool or a mirrored pool.
4316  * e.g.
4317  *      "/pci@1f,0/ide@d/disk@0,0:a"
4318  */
4319 int
4320 spa_import_rootpool(char *devpath, char *devid)
4321 {
4322         spa_t *spa;
4323         vdev_t *rvd, *bvd, *avd = NULL;
4324         nvlist_t *config, *nvtop;
4325         uint64_t guid, txg;
4326         char *pname;
4327         int error;
4328 
4329         /*
4330          * Read the label from the boot device and generate a configuration.
4331          */
4332         config = spa_generate_rootconf(devpath, devid, &guid);
4333 #if defined(_OBP) && defined(_KERNEL)
4334         if (config == NULL) {
4335                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
4336                         /* iscsi boot */
4337                         get_iscsi_bootpath_phy(devpath);
4338                         config = spa_generate_rootconf(devpath, devid, &guid);
4339                 }
4340         }
4341 #endif
4342         if (config == NULL) {
4343                 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4344                     devpath);
4345                 return (SET_ERROR(EIO));
4346         }
4347 
4348         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4349             &pname) == 0);
4350         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4351 
4352         mutex_enter(&spa_namespace_lock);
4353         if ((spa = spa_lookup(pname)) != NULL || spa_config_guid_exists(guid)) {
4354                 /*
4355                  * Remove the existing root pool from the namespace so that we
4356                  * can replace it with the correct config we just read in.
4357                  */
4358                 spa_remove(spa);
4359         }
4360 
4361         spa = spa_add(pname, config, NULL);
4362         spa->spa_is_root = B_TRUE;
4363         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4364 
4365         /*
4366          * Build up a vdev tree based on the boot device's label config.
4367          */
4368         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4369             &nvtop) == 0);
4370         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4371         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4372             VDEV_ALLOC_ROOTPOOL);
4373         spa_config_exit(spa, SCL_ALL, FTAG);
4374         if (error) {
4375                 mutex_exit(&spa_namespace_lock);
4376                 nvlist_free(config);
4377                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4378                     pname);
4379                 return (error);
4380         }
4381 
4382         /*
4383          * Get the boot vdev.
4384          */
4385         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4386                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4387                     (u_longlong_t)guid);
4388                 error = SET_ERROR(ENOENT);
4389                 goto out;
4390         }
4391 
4392         /*
4393          * Determine if there is a better boot device.
4394          */
4395         avd = bvd;
4396         spa_alt_rootvdev(rvd, &avd, &txg);
4397         if (avd != bvd) {
4398                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4399                     "try booting from '%s'", avd->vdev_path);
4400                 error = SET_ERROR(EINVAL);
4401                 goto out;
4402         }
4403 
4404         /*
4405          * If the boot device is part of a spare vdev then ensure that
4406          * we're booting off the active spare.
4407          */
4408         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4409             !bvd->vdev_isspare) {
4410                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4411                     "try booting from '%s'",
4412                     bvd->vdev_parent->
4413                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4414                 error = SET_ERROR(EINVAL);
4415                 goto out;
4416         }
4417 
4418         error = 0;
4419 out:
4420         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4421         vdev_free(rvd);
4422         spa_config_exit(spa, SCL_ALL, FTAG);
4423         mutex_exit(&spa_namespace_lock);
4424 
4425         nvlist_free(config);
4426         return (error);
4427 }
4428 
4429 #endif
4430 
4431 /*
4432  * Import a non-root pool into the system.
4433  */
4434 int
4435 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4436 {
4437         spa_t *spa;
4438         char *altroot = NULL;
4439         spa_load_state_t state = SPA_LOAD_IMPORT;
4440         zpool_rewind_policy_t policy;
4441         uint64_t mode = spa_mode_global;
4442         uint64_t readonly = B_FALSE;
4443         int error;
4444         nvlist_t *nvroot;
4445         nvlist_t **spares, **l2cache;
4446         uint_t nspares, nl2cache;
4447         uint64_t guid;
4448 
4449         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0)
4450                 return (SET_ERROR(EINVAL));
4451 
4452         /*
4453          * If a pool with this name exists, return failure.
4454          */
4455         mutex_enter(&spa_namespace_lock);
4456         if (spa_lookup(pool) != NULL || spa_config_guid_exists(guid)) {
4457                 mutex_exit(&spa_namespace_lock);
4458                 return (SET_ERROR(EEXIST));
4459         }
4460 
4461         /*
4462          * Create and initialize the spa structure.
4463          */
4464         (void) nvlist_lookup_string(props,
4465             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4466         (void) nvlist_lookup_uint64(props,
4467             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4468         if (readonly)
4469                 mode = FREAD;
4470         spa = spa_add(pool, config, altroot);
4471         spa->spa_import_flags = flags;
4472 
4473         /*
4474          * Verbatim import - Take a pool and insert it into the namespace
4475          * as if it had been loaded at boot.
4476          */
4477         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4478                 if (props != NULL)
4479                         spa_configfile_set(spa, props, B_FALSE);
4480 
4481                 spa_config_sync(spa, B_FALSE, B_TRUE);
4482                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4483 
4484                 mutex_exit(&spa_namespace_lock);
4485                 return (0);
4486         }
4487 
4488         spa_activate(spa, mode);
4489 
4490         /*
4491          * Don't start async tasks until we know everything is healthy.
4492          */
4493         spa_async_suspend(spa);
4494 
4495         zpool_get_rewind_policy(config, &policy);
4496         if (policy.zrp_request & ZPOOL_DO_REWIND)
4497                 state = SPA_LOAD_RECOVER;
4498 
4499         /*
4500          * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4501          * because the user-supplied config is actually the one to trust when
4502          * doing an import.
4503          */
4504         if (state != SPA_LOAD_RECOVER)
4505                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4506 
4507         error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4508             policy.zrp_request);
4509 
4510         /*
4511          * Propagate anything learned while loading the pool and pass it
4512          * back to caller (i.e. rewind info, missing devices, etc).
4513          */
4514         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4515             spa->spa_load_info) == 0);
4516 
4517         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4518         /*
4519          * Toss any existing sparelist, as it doesn't have any validity
4520          * anymore, and conflicts with spa_has_spare().
4521          */
4522         if (spa->spa_spares.sav_config) {
4523                 nvlist_free(spa->spa_spares.sav_config);
4524                 spa->spa_spares.sav_config = NULL;
4525                 spa_load_spares(spa);
4526         }
4527         if (spa->spa_l2cache.sav_config) {
4528                 nvlist_free(spa->spa_l2cache.sav_config);
4529                 spa->spa_l2cache.sav_config = NULL;
4530                 spa_load_l2cache(spa);
4531         }
4532 
4533         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4534             &nvroot) == 0);
4535         if (error == 0)
4536                 error = spa_validate_aux(spa, nvroot, -1ULL,
4537                     VDEV_ALLOC_SPARE);
4538         if (error == 0)
4539                 error = spa_validate_aux(spa, nvroot, -1ULL,
4540                     VDEV_ALLOC_L2CACHE);
4541         spa_config_exit(spa, SCL_ALL, FTAG);
4542 
4543         if (props != NULL)
4544                 spa_configfile_set(spa, props, B_FALSE);
4545 
4546         if (error != 0 || (props && spa_writeable(spa) &&
4547             (error = spa_prop_set(spa, props)))) {
4548                 spa_unload(spa);
4549                 spa_deactivate(spa);
4550                 spa_remove(spa);
4551                 mutex_exit(&spa_namespace_lock);
4552                 return (error);
4553         }
4554 
4555         /*
4556          * Override any spares and level 2 cache devices as specified by
4557          * the user, as these may have correct device names/devids, etc.
4558          */
4559         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4560             &spares, &nspares) == 0) {
4561                 if (spa->spa_spares.sav_config)
4562                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4563                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4564                 else
4565                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4566                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
4567                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4568                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4569                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4570                 spa_load_spares(spa);
4571                 spa_config_exit(spa, SCL_ALL, FTAG);
4572                 spa->spa_spares.sav_sync = B_TRUE;
4573         }
4574         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4575             &l2cache, &nl2cache) == 0) {
4576                 if (spa->spa_l2cache.sav_config)
4577                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4578                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4579                 else
4580                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4581                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
4582                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4583                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4584                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4585                 spa_load_l2cache(spa);
4586                 spa_config_exit(spa, SCL_ALL, FTAG);
4587                 spa->spa_l2cache.sav_sync = B_TRUE;
4588         }
4589 
4590         /* At this point, we can load spare props */
4591         (void) spa_load_vdev_props(spa);
4592 
4593         /*
4594          * Check for any removed devices.
4595          */
4596         if (spa->spa_autoreplace) {
4597                 spa_aux_check_removed(&spa->spa_spares);
4598                 spa_aux_check_removed(&spa->spa_l2cache);
4599         }
4600 
4601         if (spa_writeable(spa)) {
4602                 /*
4603                  * Update the config cache to include the newly-imported pool.
4604                  */
4605                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4606         }
4607 
4608         /*
4609          * Start async resume as late as possible to reduce I/O activity when
4610          * importing a pool. This will let any pending txgs (e.g. from scrub
4611          * or resilver) to complete quickly thereby reducing import times in
4612          * such cases.
4613          */
4614         spa_async_resume(spa);
4615 
4616         /*
4617          * It's possible that the pool was expanded while it was exported.
4618          * We kick off an async task to handle this for us.
4619          */
4620         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4621 
4622         /* Set/activate meta feature as needed */
4623         if (!spa_writeable(spa))
4624                 spa_check_special_feature(spa);
4625         spa_history_log_version(spa, "import");
4626 
4627         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4628 
4629         mutex_exit(&spa_namespace_lock);
4630 
4631         if (!spa_writeable(spa))
4632                 return (0);
4633 
4634         wbc_activate(spa, B_FALSE);
4635 
4636         return (dsl_sync_task(spa->spa_name, NULL, spa_special_feature_activate,
4637             spa, 3, ZFS_SPACE_CHECK_RESERVED));
4638 }
4639 
4640 nvlist_t *
4641 spa_tryimport(nvlist_t *tryconfig)
4642 {
4643         nvlist_t *config = NULL;
4644         char *poolname;
4645         spa_t *spa;
4646         uint64_t state;
4647         int error;
4648 
4649         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4650                 return (NULL);
4651 
4652         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4653                 return (NULL);
4654 
4655         /*
4656          * Create and initialize the spa structure.
4657          */
4658         mutex_enter(&spa_namespace_lock);
4659         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4660         spa_activate(spa, FREAD);
4661 
4662         /*
4663          * Pass off the heavy lifting to spa_load().
4664          * Pass TRUE for mosconfig because the user-supplied config
4665          * is actually the one to trust when doing an import.
4666          */
4667         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4668 
4669         /*
4670          * If 'tryconfig' was at least parsable, return the current config.
4671          */
4672         if (spa->spa_root_vdev != NULL) {
4673                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4674                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4675                     poolname) == 0);
4676                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4677                     state) == 0);
4678                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4679                     spa->spa_uberblock.ub_timestamp) == 0);
4680                 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4681                     spa->spa_load_info) == 0);
4682 
4683                 /*
4684                  * If the bootfs property exists on this pool then we
4685                  * copy it out so that external consumers can tell which
4686                  * pools are bootable.
4687                  */
4688                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4689                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4690 
4691                         /*
4692                          * We have to play games with the name since the
4693                          * pool was opened as TRYIMPORT_NAME.
4694                          */
4695                         if (dsl_dsobj_to_dsname(spa_name(spa),
4696                             spa->spa_bootfs, tmpname) == 0) {
4697                                 char *cp;
4698                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4699 
4700                                 cp = strchr(tmpname, '/');
4701                                 if (cp == NULL) {
4702                                         (void) strlcpy(dsname, tmpname,
4703                                             MAXPATHLEN);
4704                                 } else {
4705                                         (void) snprintf(dsname, MAXPATHLEN,
4706                                             "%s/%s", poolname, ++cp);
4707                                 }
4708                                 VERIFY(nvlist_add_string(config,
4709                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4710                                 kmem_free(dsname, MAXPATHLEN);
4711                         }
4712                         kmem_free(tmpname, MAXPATHLEN);
4713                 }
4714 
4715                 /*
4716                  * Add the list of hot spares and level 2 cache devices.
4717                  */
4718                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4719                 spa_add_spares(spa, config);
4720                 spa_add_l2cache(spa, config);
4721                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4722         }
4723 
4724         spa_unload(spa);
4725         spa_deactivate(spa);
4726         spa_remove(spa);
4727         mutex_exit(&spa_namespace_lock);
4728 
4729         return (config);
4730 }
4731 
4732 /*
4733  * Pool export/destroy
4734  *
4735  * The act of destroying or exporting a pool is very simple.  We make sure there
4736  * is no more pending I/O and any references to the pool are gone.  Then, we
4737  * update the pool state and sync all the labels to disk, removing the
4738  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4739  * we don't sync the labels or remove the configuration cache.
4740  */
4741 static int
4742 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4743     boolean_t force, boolean_t hardforce, boolean_t saveconfig)
4744 {
4745         spa_t *spa;
4746         zfs_autosnap_t *autosnap;
4747         boolean_t wbcthr_stopped = B_FALSE;
4748 
4749         if (oldconfig)
4750                 *oldconfig = NULL;
4751 
4752         if (!(spa_mode_global & FWRITE))
4753                 return (SET_ERROR(EROFS));
4754 
4755         mutex_enter(&spa_namespace_lock);
4756         if ((spa = spa_lookup(pool)) == NULL) {
4757                 mutex_exit(&spa_namespace_lock);
4758                 return (SET_ERROR(ENOENT));
4759         }
4760 
4761         /*
4762          * Put a hold on the pool, drop the namespace lock, stop async tasks
4763          * and write cache thread, reacquire the namespace lock, and see
4764          * if we can export.
4765          */
4766         spa_open_ref(spa, FTAG);
4767         mutex_exit(&spa_namespace_lock);
4768 
4769         autosnap = spa_get_autosnap(spa);
4770         mutex_enter(&autosnap->autosnap_lock);
4771 
4772         if (autosnap_has_children_zone(autosnap,
4773             spa_name(spa), B_TRUE)) {
4774                 mutex_exit(&autosnap->autosnap_lock);
4775                 spa_close(spa, FTAG);
4776                 return (EBUSY);
4777         }
4778 
4779         mutex_exit(&autosnap->autosnap_lock);
4780 
4781         wbcthr_stopped = wbc_stop_thread(spa); /* stop write cache thread */
4782         autosnap_destroyer_thread_stop(spa);
4783         spa_async_suspend(spa);
4784         mutex_enter(&spa_namespace_lock);
4785         spa_close(spa, FTAG);
4786 
4787         /*
4788          * The pool will be in core if it's openable,
4789          * in which case we can modify its state.
4790          */
4791         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4792                 /*
4793                  * Objsets may be open only because they're dirty, so we
4794                  * have to force it to sync before checking spa_refcnt.
4795                  */
4796                 txg_wait_synced(spa->spa_dsl_pool, 0);
4797                 spa_evicting_os_wait(spa);
4798 
4799                 /*
4800                  * A pool cannot be exported or destroyed if there are active
4801                  * references.  If we are resetting a pool, allow references by
4802                  * fault injection handlers.
4803                  */
4804                 if (!spa_refcount_zero(spa) ||
4805                     (spa->spa_inject_ref != 0 &&
4806                     new_state != POOL_STATE_UNINITIALIZED)) {
4807                         spa_async_resume(spa);
4808                         mutex_exit(&spa_namespace_lock);
4809                         if (wbcthr_stopped)
4810                                 (void) wbc_start_thread(spa);
4811                         autosnap_destroyer_thread_start(spa);
4812                         return (SET_ERROR(EBUSY));
4813                 }
4814 
4815                 /*
4816                  * A pool cannot be exported if it has an active shared spare.
4817                  * This is to prevent other pools stealing the active spare
4818                  * from an exported pool. At user's own will, such pool can
4819                  * be forcedly exported.
4820                  */
4821                 if (!force && new_state == POOL_STATE_EXPORTED &&
4822                     spa_has_active_shared_spare(spa)) {
4823                         spa_async_resume(spa);
4824                         mutex_exit(&spa_namespace_lock);
4825                         if (wbcthr_stopped)
4826                                 (void) wbc_start_thread(spa);
4827                         autosnap_destroyer_thread_start(spa);
4828                         return (SET_ERROR(EXDEV));
4829                 }
4830 
4831                 /*
4832                  * We want this to be reflected on every label,
4833                  * so mark them all dirty.  spa_unload() will do the
4834                  * final sync that pushes these changes out.
4835                  */
4836                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4837                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4838                         spa->spa_state = new_state;
4839                         spa->spa_final_txg = spa_last_synced_txg(spa) +
4840                             TXG_DEFER_SIZE + 1;
4841                         vdev_config_dirty(spa->spa_root_vdev);
4842                         spa_config_exit(spa, SCL_ALL, FTAG);
4843                 }
4844         }
4845 
4846         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4847 
4848         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4849                 wbc_deactivate(spa);
4850 
4851                 spa_unload(spa);
4852                 spa_deactivate(spa);
4853         }
4854 
4855         if (oldconfig && spa->spa_config)
4856                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4857 
4858         if (new_state != POOL_STATE_UNINITIALIZED) {
4859                 if (!hardforce)
4860                         spa_config_sync(spa, !saveconfig, B_TRUE);
4861 
4862                 spa_remove(spa);
4863         }
4864         mutex_exit(&spa_namespace_lock);
4865 
4866         return (0);
4867 }
4868 
4869 /*
4870  * Destroy a storage pool.
4871  */
4872 int
4873 spa_destroy(char *pool)
4874 {
4875         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4876             B_FALSE, B_FALSE, B_FALSE));
4877 }
4878 
4879 /*
4880  * Export a storage pool.
4881  */
4882 int
4883 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4884     boolean_t hardforce, boolean_t saveconfig)
4885 {
4886         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4887             force, hardforce, saveconfig));
4888 }
4889 
4890 /*
4891  * Similar to spa_export(), this unloads the spa_t without actually removing it
4892  * from the namespace in any way.
4893  */
4894 int
4895 spa_reset(char *pool)
4896 {
4897         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4898             B_FALSE, B_FALSE, B_FALSE));
4899 }
4900 
4901 /*
4902  * ==========================================================================
4903  * Device manipulation
4904  * ==========================================================================
4905  */
4906 
4907 /*
4908  * Add a device to a storage pool.
4909  */
4910 int
4911 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4912 {
4913         uint64_t txg, id;
4914         int error;
4915         vdev_t *rvd = spa->spa_root_vdev;
4916         vdev_t *vd, *tvd;
4917         nvlist_t **spares, **l2cache;
4918         uint_t nspares, nl2cache;
4919         dmu_tx_t *tx = NULL;
4920 
4921         ASSERT(spa_writeable(spa));
4922 
4923         txg = spa_vdev_enter(spa);
4924 
4925         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4926             VDEV_ALLOC_ADD)) != 0)
4927                 return (spa_vdev_exit(spa, NULL, txg, error));
4928 
4929         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
4930 
4931         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4932             &nspares) != 0)
4933                 nspares = 0;
4934 
4935         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4936             &nl2cache) != 0)
4937                 nl2cache = 0;
4938 
4939         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4940                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4941 
4942         if (vd->vdev_children != 0 &&
4943             (error = vdev_create(vd, txg, B_FALSE)) != 0)
4944                 return (spa_vdev_exit(spa, vd, txg, error));
4945 
4946         /*
4947          * We must validate the spares and l2cache devices after checking the
4948          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4949          */
4950         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4951                 return (spa_vdev_exit(spa, vd, txg, error));
4952 
4953         /*
4954          * Transfer each new top-level vdev from vd to rvd.
4955          */
4956         for (int c = 0; c < vd->vdev_children; c++) {
4957 
4958                 /*
4959                  * Set the vdev id to the first hole, if one exists.
4960                  */
4961                 for (id = 0; id < rvd->vdev_children; id++) {
4962                         if (rvd->vdev_child[id]->vdev_ishole) {
4963                                 vdev_free(rvd->vdev_child[id]);
4964                                 break;
4965                         }
4966                 }
4967                 tvd = vd->vdev_child[c];
4968                 vdev_remove_child(vd, tvd);
4969                 tvd->vdev_id = id;
4970                 vdev_add_child(rvd, tvd);
4971                 vdev_config_dirty(tvd);
4972         }
4973 
4974         if (nspares != 0) {
4975                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4976                     ZPOOL_CONFIG_SPARES);
4977                 spa_load_spares(spa);
4978                 spa->spa_spares.sav_sync = B_TRUE;
4979         }
4980 
4981         if (nl2cache != 0) {
4982                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4983                     ZPOOL_CONFIG_L2CACHE);
4984                 spa_load_l2cache(spa);
4985                 spa->spa_l2cache.sav_sync = B_TRUE;
4986         }
4987 
4988         /*
4989          * We have to be careful when adding new vdevs to an existing pool.
4990          * If other threads start allocating from these vdevs before we
4991          * sync the config cache, and we lose power, then upon reboot we may
4992          * fail to open the pool because there are DVAs that the config cache
4993          * can't translate.  Therefore, we first add the vdevs without
4994          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4995          * and then let spa_config_update() initialize the new metaslabs.
4996          *
4997          * spa_load() checks for added-but-not-initialized vdevs, so that
4998          * if we lose power at any point in this sequence, the remaining
4999          * steps will be completed the next time we load the pool.
5000          */
5001         (void) spa_vdev_exit(spa, vd, txg, 0);
5002 
5003         mutex_enter(&spa_namespace_lock);
5004         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5005         spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5006         mutex_exit(&spa_namespace_lock);
5007 
5008         /*
5009          * "spa_last_synced_txg(spa) + 1" is used because:
5010          *   - spa_vdev_exit() calls txg_wait_synced() for "txg"
5011          *   - spa_config_update() calls txg_wait_synced() for
5012          *     "spa_last_synced_txg(spa) + 1"
5013          */
5014         tx = dmu_tx_create_assigned(spa_get_dsl(spa),
5015             spa_last_synced_txg(spa) + 1);
5016         spa_special_feature_activate(spa, tx);
5017         dmu_tx_commit(tx);
5018 
5019         wbc_activate(spa, B_FALSE);
5020 
5021         return (0);
5022 }
5023 
5024 /*
5025  * Attach a device to a mirror.  The arguments are the path to any device
5026  * in the mirror, and the nvroot for the new device.  If the path specifies
5027  * a device that is not mirrored, we automatically insert the mirror vdev.
5028  *
5029  * If 'replacing' is specified, the new device is intended to replace the
5030  * existing device; in this case the two devices are made into their own
5031  * mirror using the 'replacing' vdev, which is functionally identical to
5032  * the mirror vdev (it actually reuses all the same ops) but has a few
5033  * extra rules: you can't attach to it after it's been created, and upon
5034  * completion of resilvering, the first disk (the one being replaced)
5035  * is automatically detached.
5036  */
5037 int
5038 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5039 {
5040         uint64_t txg, dtl_max_txg;
5041         vdev_t *rvd = spa->spa_root_vdev;
5042         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5043         vdev_ops_t *pvops;
5044         char *oldvdpath, *newvdpath;
5045         int newvd_isspare;
5046         int error;
5047 
5048         ASSERT(spa_writeable(spa));
5049 
5050         txg = spa_vdev_enter(spa);
5051 
5052         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5053 
5054         if (oldvd == NULL)
5055                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5056 
5057         if (!oldvd->vdev_ops->vdev_op_leaf)
5058                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5059 
5060         pvd = oldvd->vdev_parent;
5061 
5062         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5063             VDEV_ALLOC_ATTACH)) != 0)
5064                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5065 
5066         if (newrootvd->vdev_children != 1)
5067                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5068 
5069         newvd = newrootvd->vdev_child[0];
5070 
5071         if (!newvd->vdev_ops->vdev_op_leaf)
5072                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5073 
5074         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5075                 return (spa_vdev_exit(spa, newrootvd, txg, error));
5076 
5077         /*
5078          * Spares can't replace logs
5079          */
5080         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5081                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5082 
5083         if (!replacing) {
5084                 /*
5085                  * For attach, the only allowable parent is a mirror or the root
5086                  * vdev.
5087                  */
5088                 if (pvd->vdev_ops != &vdev_mirror_ops &&
5089                     pvd->vdev_ops != &vdev_root_ops)
5090                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5091 
5092                 pvops = &vdev_mirror_ops;
5093         } else {
5094                 /*
5095                  * Active hot spares can only be replaced by inactive hot
5096                  * spares.
5097                  */
5098                 if (pvd->vdev_ops == &vdev_spare_ops &&
5099                     oldvd->vdev_isspare &&
5100                     !spa_has_spare(spa, newvd->vdev_guid))
5101                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5102 
5103                 /*
5104                  * If the source is a hot spare, and the parent isn't already a
5105                  * spare, then we want to create a new hot spare.  Otherwise, we
5106                  * want to create a replacing vdev.  The user is not allowed to
5107                  * attach to a spared vdev child unless the 'isspare' state is
5108                  * the same (spare replaces spare, non-spare replaces
5109                  * non-spare).
5110                  */
5111                 if (pvd->vdev_ops == &vdev_replacing_ops &&
5112                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5113                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5114                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5115                     newvd->vdev_isspare != oldvd->vdev_isspare) {
5116                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5117                 }
5118 
5119                 if (newvd->vdev_isspare)
5120                         pvops = &vdev_spare_ops;
5121                 else
5122                         pvops = &vdev_replacing_ops;
5123         }
5124 
5125         /*
5126          * Make sure the new device is big enough.
5127          */
5128         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5129                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5130 
5131         /*
5132          * The new device cannot have a higher alignment requirement
5133          * than the top-level vdev.
5134          */
5135         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5136                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5137 
5138         /*
5139          * If this is an in-place replacement, update oldvd's path and devid
5140          * to make it distinguishable from newvd, and unopenable from now on.
5141          */
5142         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5143                 spa_strfree(oldvd->vdev_path);
5144                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5145                     KM_SLEEP);
5146                 (void) sprintf(oldvd->vdev_path, "%s/%s",
5147                     newvd->vdev_path, "old");
5148                 if (oldvd->vdev_devid != NULL) {
5149                         spa_strfree(oldvd->vdev_devid);
5150                         oldvd->vdev_devid = NULL;
5151                 }
5152         }
5153 
5154         /* mark the device being resilvered */
5155         newvd->vdev_resilver_txg = txg;
5156 
5157         /*
5158          * If the parent is not a mirror, or if we're replacing, insert the new
5159          * mirror/replacing/spare vdev above oldvd.
5160          */
5161         if (pvd->vdev_ops != pvops)
5162                 pvd = vdev_add_parent(oldvd, pvops);
5163 
5164         ASSERT(pvd->vdev_top->vdev_parent == rvd);
5165         ASSERT(pvd->vdev_ops == pvops);
5166         ASSERT(oldvd->vdev_parent == pvd);
5167 
5168         /*
5169          * Extract the new device from its root and add it to pvd.
5170          */
5171         vdev_remove_child(newrootvd, newvd);
5172         newvd->vdev_id = pvd->vdev_children;
5173         newvd->vdev_crtxg = oldvd->vdev_crtxg;
5174         vdev_add_child(pvd, newvd);
5175 
5176         tvd = newvd->vdev_top;
5177         ASSERT(pvd->vdev_top == tvd);
5178         ASSERT(tvd->vdev_parent == rvd);
5179 
5180         vdev_config_dirty(tvd);
5181 
5182         /*
5183          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5184          * for any dmu_sync-ed blocks.  It will propagate upward when
5185          * spa_vdev_exit() calls vdev_dtl_reassess().
5186          */
5187         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5188 
5189         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5190             dtl_max_txg - TXG_INITIAL);
5191 
5192         if (newvd->vdev_isspare) {
5193                 spa_spare_activate(newvd);
5194                 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5195         }
5196 
5197         oldvdpath = spa_strdup(oldvd->vdev_path);
5198         newvdpath = spa_strdup(newvd->vdev_path);
5199         newvd_isspare = newvd->vdev_isspare;
5200 
5201         /*
5202          * Mark newvd's DTL dirty in this txg.
5203          */
5204         vdev_dirty(tvd, VDD_DTL, newvd, txg);
5205 
5206         /*
5207          * Schedule the resilver to restart in the future. We do this to
5208          * ensure that dmu_sync-ed blocks have been stitched into the
5209          * respective datasets.
5210          */
5211         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5212 
5213         if (spa->spa_bootfs)
5214                 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5215 
5216         spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5217 
5218         /*
5219          * Check CoS property of the old vdev, add reference by new vdev
5220          */
5221         if (oldvd->vdev_queue.vq_cos) {
5222                 cos_hold(oldvd->vdev_queue.vq_cos);
5223                 newvd->vdev_queue.vq_cos = oldvd->vdev_queue.vq_cos;
5224         }
5225 
5226         /*
5227          * Commit the config
5228          */
5229         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5230 
5231         spa_history_log_internal(spa, "vdev attach", NULL,
5232             "%s vdev=%s %s vdev=%s",
5233             replacing && newvd_isspare ? "spare in" :
5234             replacing ? "replace" : "attach", newvdpath,
5235             replacing ? "for" : "to", oldvdpath);
5236 
5237         spa_strfree(oldvdpath);
5238         spa_strfree(newvdpath);
5239 
5240         return (0);
5241 }
5242 
5243 /*
5244  * Detach a device from a mirror or replacing vdev.
5245  *
5246  * If 'replace_done' is specified, only detach if the parent
5247  * is a replacing vdev.
5248  */
5249 int
5250 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5251 {
5252         uint64_t txg;
5253         int error;
5254         vdev_t *rvd = spa->spa_root_vdev;
5255         vdev_t *vd, *pvd, *cvd, *tvd;
5256         boolean_t unspare = B_FALSE;
5257         uint64_t unspare_guid = 0;
5258         char *vdpath;
5259 
5260         ASSERT(spa_writeable(spa));
5261 
5262         txg = spa_vdev_enter(spa);
5263 
5264         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5265 
5266         if (vd == NULL)
5267                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5268 
5269         if (!vd->vdev_ops->vdev_op_leaf)
5270                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5271 
5272         pvd = vd->vdev_parent;
5273 
5274         /*
5275          * If the parent/child relationship is not as expected, don't do it.
5276          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5277          * vdev that's replacing B with C.  The user's intent in replacing
5278          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5279          * the replace by detaching C, the expected behavior is to end up
5280          * M(A,B).  But suppose that right after deciding to detach C,
5281          * the replacement of B completes.  We would have M(A,C), and then
5282          * ask to detach C, which would leave us with just A -- not what
5283          * the user wanted.  To prevent this, we make sure that the
5284          * parent/child relationship hasn't changed -- in this example,
5285          * that C's parent is still the replacing vdev R.
5286          */
5287         if (pvd->vdev_guid != pguid && pguid != 0)
5288                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5289 
5290         /*
5291          * Only 'replacing' or 'spare' vdevs can be replaced.
5292          */
5293         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5294             pvd->vdev_ops != &vdev_spare_ops)
5295                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5296 
5297         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5298             spa_version(spa) >= SPA_VERSION_SPARES);
5299 
5300         /*
5301          * Only mirror, replacing, and spare vdevs support detach.
5302          */
5303         if (pvd->vdev_ops != &vdev_replacing_ops &&
5304             pvd->vdev_ops != &vdev_mirror_ops &&
5305             pvd->vdev_ops != &vdev_spare_ops)
5306                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5307 
5308         /*
5309          * If this device has the only valid copy of some data,
5310          * we cannot safely detach it.
5311          */
5312         if (vdev_dtl_required(vd))
5313                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5314 
5315         ASSERT(pvd->vdev_children >= 2);
5316 
5317         /*
5318          * If we are detaching the second disk from a replacing vdev, then
5319          * check to see if we changed the original vdev's path to have "/old"
5320          * at the end in spa_vdev_attach().  If so, undo that change now.
5321          */
5322         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5323             vd->vdev_path != NULL) {
5324                 size_t len = strlen(vd->vdev_path);
5325 
5326                 for (int c = 0; c < pvd->vdev_children; c++) {
5327                         cvd = pvd->vdev_child[c];
5328 
5329                         if (cvd == vd || cvd->vdev_path == NULL)
5330                                 continue;
5331 
5332                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5333                             strcmp(cvd->vdev_path + len, "/old") == 0) {
5334                                 spa_strfree(cvd->vdev_path);
5335                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
5336                                 break;
5337                         }
5338                 }
5339         }
5340 
5341         /*
5342          * If we are detaching the original disk from a spare, then it implies
5343          * that the spare should become a real disk, and be removed from the
5344          * active spare list for the pool.
5345          */
5346         if (pvd->vdev_ops == &vdev_spare_ops &&
5347             vd->vdev_id == 0 &&
5348             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5349                 unspare = B_TRUE;
5350 
5351         /*
5352          * Erase the disk labels so the disk can be used for other things.
5353          * This must be done after all other error cases are handled,
5354          * but before we disembowel vd (so we can still do I/O to it).
5355          * But if we can't do it, don't treat the error as fatal --
5356          * it may be that the unwritability of the disk is the reason
5357          * it's being detached!
5358          */
5359         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5360 
5361         /*
5362          * Remove vd from its parent and compact the parent's children.
5363          */
5364         vdev_remove_child(pvd, vd);
5365         vdev_compact_children(pvd);
5366 
5367         /*
5368          * Remember one of the remaining children so we can get tvd below.
5369          */
5370         cvd = pvd->vdev_child[pvd->vdev_children - 1];
5371 
5372         /*
5373          * If we need to remove the remaining child from the list of hot spares,
5374          * do it now, marking the vdev as no longer a spare in the process.
5375          * We must do this before vdev_remove_parent(), because that can
5376          * change the GUID if it creates a new toplevel GUID.  For a similar
5377          * reason, we must remove the spare now, in the same txg as the detach;
5378          * otherwise someone could attach a new sibling, change the GUID, and
5379          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5380          */
5381         if (unspare) {
5382                 ASSERT(cvd->vdev_isspare);
5383                 spa_spare_remove(cvd);
5384                 unspare_guid = cvd->vdev_guid;
5385                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5386                 cvd->vdev_unspare = B_TRUE;
5387         }
5388 
5389         /*
5390          * If the parent mirror/replacing vdev only has one child,
5391          * the parent is no longer needed.  Remove it from the tree.
5392          */
5393         if (pvd->vdev_children == 1) {
5394                 if (pvd->vdev_ops == &vdev_spare_ops)
5395                         cvd->vdev_unspare = B_FALSE;
5396                 vdev_remove_parent(cvd);
5397         }
5398 
5399 
5400         /*
5401          * We don't set tvd until now because the parent we just removed
5402          * may have been the previous top-level vdev.
5403          */
5404         tvd = cvd->vdev_top;
5405         ASSERT(tvd->vdev_parent == rvd);
5406 
5407         /*
5408          * Reevaluate the parent vdev state.
5409          */
5410         vdev_propagate_state(cvd);
5411 
5412         /*
5413          * If the 'autoexpand' property is set on the pool then automatically
5414          * try to expand the size of the pool. For example if the device we
5415          * just detached was smaller than the others, it may be possible to
5416          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5417          * first so that we can obtain the updated sizes of the leaf vdevs.
5418          */
5419         if (spa->spa_autoexpand) {
5420                 vdev_reopen(tvd);
5421                 vdev_expand(tvd, txg);
5422         }
5423 
5424         vdev_config_dirty(tvd);
5425 
5426         /*
5427          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5428          * vd->vdev_detached is set and free vd's DTL object in syncing context.
5429          * But first make sure we're not on any *other* txg's DTL list, to
5430          * prevent vd from being accessed after it's freed.
5431          */
5432         vdpath = spa_strdup(vd->vdev_path);
5433         for (int t = 0; t < TXG_SIZE; t++)
5434                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5435         vd->vdev_detached = B_TRUE;
5436         vdev_dirty(tvd, VDD_DTL, vd, txg);
5437 
5438         spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5439 
5440         /*
5441          * Release the references to CoS descriptors if any
5442          */
5443         if (vd->vdev_queue.vq_cos) {
5444                 cos_rele(vd->vdev_queue.vq_cos);
5445                 vd->vdev_queue.vq_cos = NULL;
5446         }
5447 
5448         /* hang on to the spa before we release the lock */
5449         spa_open_ref(spa, FTAG);
5450 
5451         error = spa_vdev_exit(spa, vd, txg, 0);
5452 
5453         spa_history_log_internal(spa, "detach", NULL,
5454             "vdev=%s", vdpath);
5455         spa_strfree(vdpath);
5456 
5457         /*
5458          * If this was the removal of the original device in a hot spare vdev,
5459          * then we want to go through and remove the device from the hot spare
5460          * list of every other pool.
5461          */
5462         if (unspare) {
5463                 spa_t *altspa = NULL;
5464 
5465                 mutex_enter(&spa_namespace_lock);
5466                 while ((altspa = spa_next(altspa)) != NULL) {
5467                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
5468                             altspa == spa)
5469                                 continue;
5470 
5471                         spa_open_ref(altspa, FTAG);
5472                         mutex_exit(&spa_namespace_lock);
5473                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5474                         mutex_enter(&spa_namespace_lock);
5475                         spa_close(altspa, FTAG);
5476                 }
5477                 mutex_exit(&spa_namespace_lock);
5478 
5479                 /* search the rest of the vdevs for spares to remove */
5480                 spa_vdev_resilver_done(spa);
5481         }
5482 
5483         /* all done with the spa; OK to release */
5484         mutex_enter(&spa_namespace_lock);
5485         spa_close(spa, FTAG);
5486         mutex_exit(&spa_namespace_lock);
5487 
5488         return (error);
5489 }
5490 
5491 /*
5492  * Split a set of devices from their mirrors, and create a new pool from them.
5493  */
5494 int
5495 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5496     nvlist_t *props, boolean_t exp)
5497 {
5498         int error = 0;
5499         uint64_t txg, *glist;
5500         spa_t *newspa;
5501         uint_t c, children, lastlog;
5502         nvlist_t **child, *nvl, *tmp;
5503         dmu_tx_t *tx;
5504         char *altroot = NULL;
5505         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
5506         boolean_t activate_slog;
5507 
5508         ASSERT(spa_writeable(spa));
5509 
5510         /*
5511          * split for pools with activated WBC
5512          * will be implemented in the next release
5513          */
5514         if (spa_feature_is_active(spa, SPA_FEATURE_WBC))
5515                 return (SET_ERROR(ENOTSUP));
5516 
5517         txg = spa_vdev_enter(spa);
5518 
5519         /* clear the log and flush everything up to now */
5520         activate_slog = spa_passivate_log(spa);
5521         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5522         error = spa_offline_log(spa);
5523         txg = spa_vdev_config_enter(spa);
5524 
5525         if (activate_slog)
5526                 spa_activate_log(spa);
5527 
5528         if (error != 0)
5529                 return (spa_vdev_exit(spa, NULL, txg, error));
5530 
5531         /* check new spa name before going any further */
5532         if (spa_lookup(newname) != NULL)
5533                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5534 
5535         /*
5536          * scan through all the children to ensure they're all mirrors
5537          */
5538         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5539             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5540             &children) != 0)
5541                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5542 
5543         /* first, check to ensure we've got the right child count */
5544         rvd = spa->spa_root_vdev;
5545         lastlog = 0;
5546         for (c = 0; c < rvd->vdev_children; c++) {
5547                 vdev_t *vd = rvd->vdev_child[c];
5548 
5549                 /* don't count the holes & logs as children */
5550                 if (vd->vdev_islog || vd->vdev_ishole) {
5551                         if (lastlog == 0)
5552                                 lastlog = c;
5553                         continue;
5554                 }
5555 
5556                 lastlog = 0;
5557         }
5558         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5559                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5560 
5561         /* next, ensure no spare or cache devices are part of the split */
5562         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5563             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5564                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5565 
5566         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5567         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5568 
5569         /* then, loop over each vdev and validate it */
5570         for (c = 0; c < children; c++) {
5571                 uint64_t is_hole = 0;
5572 
5573                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5574                     &is_hole);
5575 
5576                 if (is_hole != 0) {
5577                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5578                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5579                                 continue;
5580                         } else {
5581                                 error = SET_ERROR(EINVAL);
5582                                 break;
5583                         }
5584                 }
5585 
5586                 /* which disk is going to be split? */
5587                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5588                     &glist[c]) != 0) {
5589                         error = SET_ERROR(EINVAL);
5590                         break;
5591                 }
5592 
5593                 /* look it up in the spa */
5594                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5595                 if (vml[c] == NULL) {
5596                         error = SET_ERROR(ENODEV);
5597                         break;
5598                 }
5599 
5600                 /* make sure there's nothing stopping the split */
5601                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5602                     vml[c]->vdev_islog ||
5603                     vml[c]->vdev_ishole ||
5604                     vml[c]->vdev_isspare ||
5605                     vml[c]->vdev_isl2cache ||
5606                     !vdev_writeable(vml[c]) ||
5607                     vml[c]->vdev_children != 0 ||
5608                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5609                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5610                         error = SET_ERROR(EINVAL);
5611                         break;
5612                 }
5613 
5614                 if (vdev_dtl_required(vml[c])) {
5615                         error = SET_ERROR(EBUSY);
5616                         break;
5617                 }
5618 
5619                 /* we need certain info from the top level */
5620                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5621                     vml[c]->vdev_top->vdev_ms_array) == 0);
5622                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5623                     vml[c]->vdev_top->vdev_ms_shift) == 0);
5624                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5625                     vml[c]->vdev_top->vdev_asize) == 0);
5626                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5627                     vml[c]->vdev_top->vdev_ashift) == 0);
5628 
5629                 /* transfer per-vdev ZAPs */
5630                 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5631                 VERIFY0(nvlist_add_uint64(child[c],
5632                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5633 
5634                 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5635                 VERIFY0(nvlist_add_uint64(child[c],
5636                     ZPOOL_CONFIG_VDEV_TOP_ZAP,
5637                     vml[c]->vdev_parent->vdev_top_zap));
5638         }
5639 
5640         if (error != 0) {
5641                 kmem_free(vml, children * sizeof (vdev_t *));
5642                 kmem_free(glist, children * sizeof (uint64_t));
5643                 return (spa_vdev_exit(spa, NULL, txg, error));
5644         }
5645 
5646         /* stop writers from using the disks */
5647         for (c = 0; c < children; c++) {
5648                 if (vml[c] != NULL)
5649                         vml[c]->vdev_offline = B_TRUE;
5650         }
5651         vdev_reopen(spa->spa_root_vdev);
5652 
5653         /*
5654          * Temporarily record the splitting vdevs in the spa config.  This
5655          * will disappear once the config is regenerated.
5656          */
5657         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5658         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5659             glist, children) == 0);
5660         kmem_free(glist, children * sizeof (uint64_t));
5661 
5662         mutex_enter(&spa->spa_props_lock);
5663         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5664             nvl) == 0);
5665         mutex_exit(&spa->spa_props_lock);
5666         spa->spa_config_splitting = nvl;
5667         vdev_config_dirty(spa->spa_root_vdev);
5668 
5669         /* configure and create the new pool */
5670         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5671         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5672             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5673         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5674             spa_version(spa)) == 0);
5675         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5676             spa->spa_config_txg) == 0);
5677         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5678             spa_generate_guid(NULL)) == 0);
5679         VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5680         (void) nvlist_lookup_string(props,
5681             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5682 
5683         /* add the new pool to the namespace */
5684         newspa = spa_add(newname, config, altroot);
5685         newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5686         newspa->spa_config_txg = spa->spa_config_txg;
5687         spa_set_log_state(newspa, SPA_LOG_CLEAR);
5688 
5689         /* release the spa config lock, retaining the namespace lock */
5690         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5691 
5692         if (zio_injection_enabled)
5693                 zio_handle_panic_injection(spa, FTAG, 1);
5694 
5695         spa_activate(newspa, spa_mode_global);
5696         spa_async_suspend(newspa);
5697 
5698         /* create the new pool from the disks of the original pool */
5699         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5700         if (error)
5701                 goto out;
5702 
5703         /* if that worked, generate a real config for the new pool */
5704         if (newspa->spa_root_vdev != NULL) {
5705                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5706                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
5707                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5708                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5709                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5710                     B_TRUE));
5711         }
5712 
5713         /* set the props */
5714         if (props != NULL) {
5715                 spa_configfile_set(newspa, props, B_FALSE);
5716                 error = spa_prop_set(newspa, props);
5717                 if (error)
5718                         goto out;
5719         }
5720 
5721         /* flush everything */
5722         txg = spa_vdev_config_enter(newspa);
5723         vdev_config_dirty(newspa->spa_root_vdev);
5724         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5725 
5726         if (zio_injection_enabled)
5727                 zio_handle_panic_injection(spa, FTAG, 2);
5728 
5729         spa_async_resume(newspa);
5730 
5731         /* finally, update the original pool's config */
5732         txg = spa_vdev_config_enter(spa);
5733         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5734         error = dmu_tx_assign(tx, TXG_WAIT);
5735         if (error != 0)
5736                 dmu_tx_abort(tx);
5737         for (c = 0; c < children; c++) {
5738                 if (vml[c] != NULL) {
5739                         vdev_t *tvd = vml[c]->vdev_top;
5740 
5741                         /*
5742                          * Need to be sure the detachable VDEV is not
5743                          * on any *other* txg's DTL list to prevent it
5744                          * from being accessed after it's freed.
5745                          */
5746                         for (int t = 0; t < TXG_SIZE; t++) {
5747                                 (void) txg_list_remove_this(
5748                                     &tvd->vdev_dtl_list, vml[c], t);
5749                         }
5750 
5751                         vdev_split(vml[c]);
5752                         if (error == 0)
5753                                 spa_history_log_internal(spa, "detach", tx,
5754                                     "vdev=%s", vml[c]->vdev_path);
5755 
5756                         vdev_free(vml[c]);
5757                 }
5758         }
5759         spa->spa_avz_action = AVZ_ACTION_REBUILD;
5760         vdev_config_dirty(spa->spa_root_vdev);
5761         spa->spa_config_splitting = NULL;
5762         nvlist_free(nvl);
5763         if (error == 0)
5764                 dmu_tx_commit(tx);
5765         (void) spa_vdev_exit(spa, NULL, txg, 0);
5766 
5767         if (zio_injection_enabled)
5768                 zio_handle_panic_injection(spa, FTAG, 3);
5769 
5770         /* split is complete; log a history record */
5771         spa_history_log_internal(newspa, "split", NULL,
5772             "from pool %s", spa_name(spa));
5773 
5774         kmem_free(vml, children * sizeof (vdev_t *));
5775 
5776         /* if we're not going to mount the filesystems in userland, export */
5777         if (exp)
5778                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5779                     B_FALSE, B_FALSE, B_FALSE);
5780 
5781         return (error);
5782 
5783 out:
5784         spa_unload(newspa);
5785         spa_deactivate(newspa);
5786         spa_remove(newspa);
5787 
5788         txg = spa_vdev_config_enter(spa);
5789 
5790         /* re-online all offlined disks */
5791         for (c = 0; c < children; c++) {
5792                 if (vml[c] != NULL)
5793                         vml[c]->vdev_offline = B_FALSE;
5794         }
5795         vdev_reopen(spa->spa_root_vdev);
5796 
5797         nvlist_free(spa->spa_config_splitting);
5798         spa->spa_config_splitting = NULL;
5799         (void) spa_vdev_exit(spa, NULL, txg, error);
5800 
5801         kmem_free(vml, children * sizeof (vdev_t *));
5802         return (error);
5803 }
5804 
5805 static nvlist_t *
5806 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5807 {
5808         for (int i = 0; i < count; i++) {
5809                 uint64_t guid;
5810 
5811                 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5812                     &guid) == 0);
5813 
5814                 if (guid == target_guid)
5815                         return (nvpp[i]);
5816         }
5817 
5818         return (NULL);
5819 }
5820 
5821 static void
5822 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5823     nvlist_t *dev_to_remove)
5824 {
5825         nvlist_t **newdev = NULL;
5826 
5827         if (count > 1)
5828                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5829 
5830         for (int i = 0, j = 0; i < count; i++) {
5831                 if (dev[i] == dev_to_remove)
5832                         continue;
5833                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5834         }
5835 
5836         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5837         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5838 
5839         for (int i = 0; i < count - 1; i++)
5840                 nvlist_free(newdev[i]);
5841 
5842         if (count > 1)
5843                 kmem_free(newdev, (count - 1) * sizeof (void *));
5844 }
5845 
5846 /*
5847  * Evacuate the device.
5848  */
5849 static int
5850 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5851 {
5852         uint64_t txg;
5853         int error = 0;
5854 
5855         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5856         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5857         ASSERT(vd == vd->vdev_top);
5858 
5859         /*
5860          * Evacuate the device.  We don't hold the config lock as writer
5861          * since we need to do I/O but we do keep the
5862          * spa_namespace_lock held.  Once this completes the device
5863          * should no longer have any blocks allocated on it.
5864          */
5865         if (vd->vdev_islog) {
5866                 if (vd->vdev_stat.vs_alloc != 0)
5867                         error = spa_offline_log(spa);
5868         } else {
5869                 error = SET_ERROR(ENOTSUP);
5870         }
5871 
5872         if (error)
5873                 return (error);
5874 
5875         /*
5876          * The evacuation succeeded.  Remove any remaining MOS metadata
5877          * associated with this vdev, and wait for these changes to sync.
5878          */
5879         ASSERT0(vd->vdev_stat.vs_alloc);
5880         txg = spa_vdev_config_enter(spa);
5881         vd->vdev_removing = B_TRUE;
5882         vdev_dirty_leaves(vd, VDD_DTL, txg);
5883         vdev_config_dirty(vd);
5884         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5885 
5886         return (0);
5887 }
5888 
5889 /*
5890  * Complete the removal by cleaning up the namespace.
5891  */
5892 static void
5893 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5894 {
5895         vdev_t *rvd = spa->spa_root_vdev;
5896         uint64_t id = vd->vdev_id;
5897         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5898 
5899         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5900         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5901         ASSERT(vd == vd->vdev_top);
5902 
5903         /*
5904          * Only remove any devices which are empty.
5905          */
5906         if (vd->vdev_stat.vs_alloc != 0)
5907                 return;
5908 
5909         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5910 
5911         if (list_link_active(&vd->vdev_state_dirty_node))
5912                 vdev_state_clean(vd);
5913         if (list_link_active(&vd->vdev_config_dirty_node))
5914                 vdev_config_clean(vd);
5915 
5916         vdev_free(vd);
5917 
5918         if (last_vdev) {
5919                 vdev_compact_children(rvd);
5920         } else {
5921                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5922                 vdev_add_child(rvd, vd);
5923         }
5924         vdev_config_dirty(rvd);
5925 
5926         /*
5927          * Reassess the health of our root vdev.
5928          */
5929         vdev_reopen(rvd);
5930 }
5931 
5932 /*
5933  * Remove a device from the pool -
5934  *
5935  * Removing a device from the vdev namespace requires several steps
5936  * and can take a significant amount of time.  As a result we use
5937  * the spa_vdev_config_[enter/exit] functions which allow us to
5938  * grab and release the spa_config_lock while still holding the namespace
5939  * lock.  During each step the configuration is synced out.
5940  *
5941  * Currently, this supports removing only hot spares, slogs, level 2 ARC
5942  * and special devices.
5943  */
5944 int
5945 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5946 {
5947         vdev_t *vd;
5948         sysevent_t *ev = NULL;
5949         metaslab_group_t *mg;
5950         nvlist_t **spares, **l2cache, *nv;
5951         uint64_t txg = 0;
5952         uint_t nspares, nl2cache;
5953         int error = 0;
5954         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5955 
5956         ASSERT(spa_writeable(spa));
5957 
5958         if (!locked)
5959                 txg = spa_vdev_enter(spa);
5960 
5961         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5962 
5963         if (spa->spa_spares.sav_vdevs != NULL &&
5964             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5965             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5966             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5967                 /*
5968                  * Only remove the hot spare if it's not currently in use
5969                  * in this pool.
5970                  */
5971                 if (vd == NULL || unspare) {
5972                         if (vd == NULL)
5973                                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5974 
5975                         /*
5976                          * Release the references to CoS descriptors if any
5977                          */
5978                         if (vd != NULL && vd->vdev_queue.vq_cos) {
5979                                 cos_rele(vd->vdev_queue.vq_cos);
5980                                 vd->vdev_queue.vq_cos = NULL;
5981                         }
5982 
5983                         ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
5984                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
5985                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5986                         spa_load_spares(spa);
5987                         spa->spa_spares.sav_sync = B_TRUE;
5988                 } else {
5989                         error = SET_ERROR(EBUSY);
5990                 }
5991         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5992             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5993             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5994             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5995                 /*
5996                  * Cache devices can always be removed.
5997                  */
5998                 if (vd == NULL)
5999                         vd = spa_lookup_by_guid(spa, guid, B_TRUE);
6000                 /*
6001                  * Release the references to CoS descriptors if any
6002                  */
6003                 if (vd != NULL && vd->vdev_queue.vq_cos) {
6004                         cos_rele(vd->vdev_queue.vq_cos);
6005                         vd->vdev_queue.vq_cos = NULL;
6006                 }
6007 
6008                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
6009                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
6010                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
6011                 spa_load_l2cache(spa);
6012                 spa->spa_l2cache.sav_sync = B_TRUE;
6013         } else if (vd != NULL && vd->vdev_islog) {
6014                 ASSERT(!locked);
6015 
6016                 if (vd != vd->vdev_top)
6017                         return (spa_vdev_exit(spa, NULL, txg, SET_ERROR(ENOTSUP)));
6018 
6019                 mg = vd->vdev_mg;
6020 
6021                 /*
6022                  * Stop allocating from this vdev.
6023                  */
6024                 metaslab_group_passivate(mg);
6025 
6026                 /*
6027                  * Wait for the youngest allocations and frees to sync,
6028                  * and then wait for the deferral of those frees to finish.
6029                  */
6030                 spa_vdev_config_exit(spa, NULL,
6031                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
6032 
6033                 /*
6034                  * Attempt to evacuate the vdev.
6035                  */
6036                 error = spa_vdev_remove_evacuate(spa, vd);
6037 
6038                 txg = spa_vdev_config_enter(spa);
6039 
6040                 /*
6041                  * If we couldn't evacuate the vdev, unwind.
6042                  */
6043                 if (error) {
6044                         metaslab_group_activate(mg);
6045                         return (spa_vdev_exit(spa, NULL, txg, error));
6046                 }
6047 
6048                 /*
6049                  * Release the references to CoS descriptors if any
6050                  */
6051                 if (vd->vdev_queue.vq_cos) {
6052                         cos_rele(vd->vdev_queue.vq_cos);
6053                         vd->vdev_queue.vq_cos = NULL;
6054                 }
6055 
6056                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV);
6057 
6058                 /*
6059                  * Clean up the vdev namespace.
6060                  */
6061                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV);
6062                 spa_vdev_remove_from_namespace(spa, vd);
6063 
6064         } else if (vd != NULL && vdev_is_special(vd)) {
6065                 ASSERT(!locked);
6066 
6067                 if (vd != vd->vdev_top)
6068                         return (spa_vdev_exit(spa, NULL, txg, SET_ERROR(ENOTSUP)));
6069 
6070                 error = spa_special_vdev_remove(spa, vd, &txg);
6071                 if (error == 0) {
6072                         ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV);
6073                         spa_vdev_remove_from_namespace(spa, vd);
6074 
6075                         /*
6076                          * User sees this field as 'enablespecial'
6077                          * pool-level property
6078                          */
6079                         spa->spa_usesc = B_FALSE;
6080                 }
6081         } else if (vd != NULL) {
6082                 /*
6083                  * Normal vdevs cannot be removed (yet).
6084                  */
6085                 error = SET_ERROR(ENOTSUP);
6086         } else {
6087                 /*
6088                  * There is no vdev of any kind with the specified guid.
6089                  */
6090                 error = SET_ERROR(ENOENT);
6091         }
6092 
6093         if (!locked)
6094                 error = spa_vdev_exit(spa, NULL, txg, error);
6095 
6096         if (ev)
6097                 spa_event_notify_impl(ev);
6098 
6099         return (error);
6100 }
6101 
6102 /*
6103  * Find any device that's done replacing, or a vdev marked 'unspare' that's
6104  * currently spared, so we can detach it.
6105  */
6106 static vdev_t *
6107 spa_vdev_resilver_done_hunt(vdev_t *vd)
6108 {
6109         vdev_t *newvd, *oldvd;
6110 
6111         for (int c = 0; c < vd->vdev_children; c++) {
6112                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6113                 if (oldvd != NULL)
6114                         return (oldvd);
6115         }
6116 
6117         /*
6118          * Check for a completed replacement.  We always consider the first
6119          * vdev in the list to be the oldest vdev, and the last one to be
6120          * the newest (see spa_vdev_attach() for how that works).  In
6121          * the case where the newest vdev is faulted, we will not automatically
6122          * remove it after a resilver completes.  This is OK as it will require
6123          * user intervention to determine which disk the admin wishes to keep.
6124          */
6125         if (vd->vdev_ops == &vdev_replacing_ops) {
6126                 ASSERT(vd->vdev_children > 1);
6127 
6128                 newvd = vd->vdev_child[vd->vdev_children - 1];
6129                 oldvd = vd->vdev_child[0];
6130 
6131                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6132                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6133                     !vdev_dtl_required(oldvd))
6134                         return (oldvd);
6135         }
6136 
6137         /*
6138          * Check for a completed resilver with the 'unspare' flag set.
6139          * Also potentially update faulted state.
6140          */
6141         if (vd->vdev_ops == &vdev_spare_ops) {
6142                 vdev_t *first = vd->vdev_child[0];
6143                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6144 
6145                 if (last->vdev_unspare) {
6146                         oldvd = first;
6147                         newvd = last;
6148                 } else if (first->vdev_unspare) {
6149                         oldvd = last;
6150                         newvd = first;
6151                 } else {
6152                         oldvd = NULL;
6153                 }
6154 
6155                 if (oldvd != NULL &&
6156                     vdev_dtl_empty(newvd, DTL_MISSING) &&
6157                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6158                     !vdev_dtl_required(oldvd))
6159                         return (oldvd);
6160 
6161                 vdev_propagate_state(vd);
6162 
6163                 /*
6164                  * If there are more than two spares attached to a disk,
6165                  * and those spares are not required, then we want to
6166                  * attempt to free them up now so that they can be used
6167                  * by other pools.  Once we're back down to a single
6168                  * disk+spare, we stop removing them.
6169                  */
6170                 if (vd->vdev_children > 2) {
6171                         newvd = vd->vdev_child[1];
6172 
6173                         if (newvd->vdev_isspare && last->vdev_isspare &&
6174                             vdev_dtl_empty(last, DTL_MISSING) &&
6175                             vdev_dtl_empty(last, DTL_OUTAGE) &&
6176                             !vdev_dtl_required(newvd))
6177                                 return (newvd);
6178                 }
6179         }
6180 
6181         return (NULL);
6182 }
6183 
6184 static void
6185 spa_vdev_resilver_done(spa_t *spa)
6186 {
6187         vdev_t *vd, *pvd, *ppvd;
6188         uint64_t guid, sguid, pguid, ppguid;
6189 
6190         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6191 
6192         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6193                 pvd = vd->vdev_parent;
6194                 ppvd = pvd->vdev_parent;
6195                 guid = vd->vdev_guid;
6196                 pguid = pvd->vdev_guid;
6197                 ppguid = ppvd->vdev_guid;
6198                 sguid = 0;
6199                 /*
6200                  * If we have just finished replacing a hot spared device, then
6201                  * we need to detach the parent's first child (the original hot
6202                  * spare) as well.
6203                  */
6204                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6205                     ppvd->vdev_children == 2) {
6206                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6207                         sguid = ppvd->vdev_child[1]->vdev_guid;
6208                 }
6209                 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6210 
6211                 spa_config_exit(spa, SCL_ALL, FTAG);
6212                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6213                         return;
6214                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6215                         return;
6216                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6217         }
6218 
6219         spa_config_exit(spa, SCL_ALL, FTAG);
6220 }
6221 
6222 /*
6223  * ==========================================================================
6224  * SPA Scanning
6225  * ==========================================================================
6226  */
6227 int
6228 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6229 {
6230         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6231 
6232         if (dsl_scan_resilvering(spa->spa_dsl_pool))
6233                 return (SET_ERROR(EBUSY));
6234 
6235         return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6236 }
6237 
6238 int
6239 spa_scan_stop(spa_t *spa)
6240 {
6241         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6242         if (dsl_scan_resilvering(spa->spa_dsl_pool))
6243                 return (SET_ERROR(EBUSY));
6244         return (dsl_scan_cancel(spa->spa_dsl_pool));
6245 }
6246 
6247 int
6248 spa_scan(spa_t *spa, pool_scan_func_t func)
6249 {
6250         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6251 
6252         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6253                 return (SET_ERROR(ENOTSUP));
6254 
6255         /*
6256          * If a resilver was requested, but there is no DTL on a
6257          * writeable leaf device, we have nothing to do.
6258          */
6259         if (func == POOL_SCAN_RESILVER &&
6260             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6261                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6262                 return (0);
6263         }
6264 
6265         return (dsl_scan(spa->spa_dsl_pool, func));
6266 }
6267 
6268 /*
6269  * ==========================================================================
6270  * SPA async task processing
6271  * ==========================================================================
6272  */
6273 
6274 static void
6275 spa_async_remove(spa_t *spa, vdev_t *vd)
6276 {
6277         if (vd->vdev_remove_wanted) {
6278                 vd->vdev_remove_wanted = B_FALSE;
6279                 vd->vdev_delayed_close = B_FALSE;
6280                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6281 
6282                 /*
6283                  * We want to clear the stats, but we don't want to do a full
6284                  * vdev_clear() as that will cause us to throw away
6285                  * degraded/faulted state as well as attempt to reopen the
6286                  * device, all of which is a waste.
6287                  */
6288                 vd->vdev_stat.vs_read_errors = 0;
6289                 vd->vdev_stat.vs_write_errors = 0;
6290                 vd->vdev_stat.vs_checksum_errors = 0;
6291 
6292                 vdev_state_dirty(vd->vdev_top);
6293         }
6294 
6295         for (int c = 0; c < vd->vdev_children; c++)
6296                 spa_async_remove(spa, vd->vdev_child[c]);
6297 }
6298 
6299 static void
6300 spa_async_probe(spa_t *spa, vdev_t *vd)
6301 {
6302         if (vd->vdev_probe_wanted) {
6303                 vd->vdev_probe_wanted = B_FALSE;
6304                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
6305         }
6306 
6307         for (int c = 0; c < vd->vdev_children; c++)
6308                 spa_async_probe(spa, vd->vdev_child[c]);
6309 }
6310 
6311 static void
6312 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6313 {
6314         sysevent_id_t eid;
6315         nvlist_t *attr;
6316         char *physpath;
6317 
6318         if (!spa->spa_autoexpand)
6319                 return;
6320 
6321         for (int c = 0; c < vd->vdev_children; c++) {
6322                 vdev_t *cvd = vd->vdev_child[c];
6323                 spa_async_autoexpand(spa, cvd);
6324         }
6325 
6326         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6327                 return;
6328 
6329         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6330         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6331 
6332         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6333         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6334 
6335         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6336             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6337 
6338         nvlist_free(attr);
6339         kmem_free(physpath, MAXPATHLEN);
6340 }
6341 
6342 static void
6343 spa_async_thread(void *arg)
6344 {
6345         spa_t *spa = (spa_t *)arg;
6346         int tasks;
6347 
6348         ASSERT(spa->spa_sync_on);
6349 
6350         mutex_enter(&spa->spa_async_lock);
6351         tasks = spa->spa_async_tasks;
6352         spa->spa_async_tasks = 0;
6353         mutex_exit(&spa->spa_async_lock);
6354 
6355         /*
6356          * See if the config needs to be updated.
6357          */
6358         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6359                 uint64_t old_space, new_space;
6360 
6361                 mutex_enter(&spa_namespace_lock);
6362                 old_space = metaslab_class_get_space(spa_normal_class(spa));
6363                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6364                 new_space = metaslab_class_get_space(spa_normal_class(spa));
6365                 mutex_exit(&spa_namespace_lock);
6366 
6367                 /*
6368                  * If the pool grew as a result of the config update,
6369                  * then log an internal history event.
6370                  */
6371                 if (new_space != old_space) {
6372                         spa_history_log_internal(spa, "vdev online", NULL,
6373                             "pool '%s' size: %llu(+%llu)",
6374                             spa_name(spa), new_space, new_space - old_space);
6375                 }
6376         }
6377 
6378         /*
6379          * See if any devices need to be marked REMOVED.
6380          */
6381         if (tasks & SPA_ASYNC_REMOVE) {
6382                 spa_vdev_state_enter(spa, SCL_NONE);
6383                 spa_async_remove(spa, spa->spa_root_vdev);
6384                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6385                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6386                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6387                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6388                 (void) spa_vdev_state_exit(spa, NULL, 0);
6389         }
6390 
6391         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6392                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6393                 spa_async_autoexpand(spa, spa->spa_root_vdev);
6394                 spa_config_exit(spa, SCL_CONFIG, FTAG);
6395         }
6396 
6397         /*
6398          * See if any devices need to be probed.
6399          */
6400         if (tasks & SPA_ASYNC_PROBE) {
6401                 spa_vdev_state_enter(spa, SCL_NONE);
6402                 spa_async_probe(spa, spa->spa_root_vdev);
6403                 (void) spa_vdev_state_exit(spa, NULL, 0);
6404         }
6405 
6406         /*
6407          * If any devices are done replacing, detach them.
6408          */
6409         if (tasks & SPA_ASYNC_RESILVER_DONE)
6410                 spa_vdev_resilver_done(spa);
6411 
6412         /*
6413          * Kick off a resilver.
6414          */
6415         if (tasks & SPA_ASYNC_RESILVER)
6416                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6417 
6418         /*
6419          * Kick off L2 cache rebuilding.
6420          */
6421         if (tasks & SPA_ASYNC_L2CACHE_REBUILD)
6422                 l2arc_spa_rebuild_start(spa);
6423 
6424         if (tasks & SPA_ASYNC_MAN_TRIM_TASKQ_DESTROY) {
6425                 mutex_enter(&spa->spa_man_trim_lock);
6426                 spa_man_trim_taskq_destroy(spa);
6427                 mutex_exit(&spa->spa_man_trim_lock);
6428         }
6429 
6430         /*
6431          * Let the world know that we're done.
6432          */
6433         mutex_enter(&spa->spa_async_lock);
6434         spa->spa_async_thread = NULL;
6435         cv_broadcast(&spa->spa_async_cv);
6436         mutex_exit(&spa->spa_async_lock);
6437         thread_exit();
6438 }
6439 
6440 void
6441 spa_async_suspend(spa_t *spa)
6442 {
6443         mutex_enter(&spa->spa_async_lock);
6444         spa->spa_async_suspended++;
6445         while (spa->spa_async_thread != NULL)
6446                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6447         mutex_exit(&spa->spa_async_lock);
6448 }
6449 
6450 void
6451 spa_async_resume(spa_t *spa)
6452 {
6453         mutex_enter(&spa->spa_async_lock);
6454         ASSERT(spa->spa_async_suspended != 0);
6455         spa->spa_async_suspended--;
6456         mutex_exit(&spa->spa_async_lock);
6457 }
6458 
6459 static boolean_t
6460 spa_async_tasks_pending(spa_t *spa)
6461 {
6462         uint_t non_config_tasks;
6463         uint_t config_task;
6464         boolean_t config_task_suspended;
6465 
6466         non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6467         config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6468         if (spa->spa_ccw_fail_time == 0) {
6469                 config_task_suspended = B_FALSE;
6470         } else {
6471                 config_task_suspended =
6472                     (gethrtime() - spa->spa_ccw_fail_time) <
6473                     (zfs_ccw_retry_interval * NANOSEC);
6474         }
6475 
6476         return (non_config_tasks || (config_task && !config_task_suspended));
6477 }
6478 
6479 static void
6480 spa_async_dispatch(spa_t *spa)
6481 {
6482         mutex_enter(&spa->spa_async_lock);
6483         if (spa_async_tasks_pending(spa) &&
6484             !spa->spa_async_suspended &&
6485             spa->spa_async_thread == NULL &&
6486             rootdir != NULL)
6487                 spa->spa_async_thread = thread_create(NULL, 0,
6488                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6489         mutex_exit(&spa->spa_async_lock);
6490 }
6491 
6492 void
6493 spa_async_request(spa_t *spa, int task)
6494 {
6495         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6496         mutex_enter(&spa->spa_async_lock);
6497         spa->spa_async_tasks |= task;
6498         mutex_exit(&spa->spa_async_lock);
6499 }
6500 
6501 void
6502 spa_async_unrequest(spa_t *spa, int task)
6503 {
6504         zfs_dbgmsg("spa=%s async unrequest task=%u", spa->spa_name, task);
6505         mutex_enter(&spa->spa_async_lock);
6506         spa->spa_async_tasks &= ~task;
6507         mutex_exit(&spa->spa_async_lock);
6508 }
6509 
6510 /*
6511  * ==========================================================================
6512  * SPA syncing routines
6513  * ==========================================================================
6514  */
6515 
6516 static int
6517 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6518 {
6519         bpobj_t *bpo = arg;
6520         bpobj_enqueue(bpo, bp, tx);
6521         return (0);
6522 }
6523 
6524 static int
6525 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6526 {
6527         zio_t *zio = arg;
6528 
6529         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6530             zio->io_flags));
6531         return (0);
6532 }
6533 
6534 /*
6535  * Note: this simple function is not inlined to make it easier to dtrace the
6536  * amount of time spent syncing frees.
6537  */
6538 static void
6539 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6540 {
6541         zio_t *zio = zio_root(spa, NULL, NULL, 0);
6542         bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6543         VERIFY(zio_wait(zio) == 0);
6544 }
6545 
6546 /*
6547  * Note: this simple function is not inlined to make it easier to dtrace the
6548  * amount of time spent syncing deferred frees.
6549  */
6550 static void
6551 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6552 {
6553         zio_t *zio = zio_root(spa, NULL, NULL, 0);
6554         VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6555             spa_free_sync_cb, zio, tx), ==, 0);
6556         VERIFY0(zio_wait(zio));
6557 }
6558 
6559 
6560 static void
6561 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6562 {
6563         char *packed = NULL;
6564         size_t bufsize;
6565         size_t nvsize = 0;
6566         dmu_buf_t *db;
6567 
6568         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6569 
6570         /*
6571          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6572          * information.  This avoids the dmu_buf_will_dirty() path and
6573          * saves us a pre-read to get data we don't actually care about.
6574          */
6575         bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6576         packed = kmem_alloc(bufsize, KM_SLEEP);
6577 
6578         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6579             KM_SLEEP) == 0);
6580         bzero(packed + nvsize, bufsize - nvsize);
6581 
6582         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6583 
6584         kmem_free(packed, bufsize);
6585 
6586         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6587         dmu_buf_will_dirty(db, tx);
6588         *(uint64_t *)db->db_data = nvsize;
6589         dmu_buf_rele(db, FTAG);
6590 }
6591 
6592 static void
6593 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6594     const char *config, const char *entry)
6595 {
6596         nvlist_t *nvroot;
6597         nvlist_t **list;
6598         int i;
6599 
6600         if (!sav->sav_sync)
6601                 return;
6602 
6603         /*
6604          * Update the MOS nvlist describing the list of available devices.
6605          * spa_validate_aux() will have already made sure this nvlist is
6606          * valid and the vdevs are labeled appropriately.
6607          */
6608         if (sav->sav_object == 0) {
6609                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6610                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6611                     sizeof (uint64_t), tx);
6612                 VERIFY(zap_update(spa->spa_meta_objset,
6613                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6614                     &sav->sav_object, tx) == 0);
6615         }
6616 
6617         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6618         if (sav->sav_count == 0) {
6619                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6620         } else {
6621                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6622                 for (i = 0; i < sav->sav_count; i++)
6623                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6624                             B_FALSE, VDEV_CONFIG_L2CACHE);
6625                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6626                     sav->sav_count) == 0);
6627                 for (i = 0; i < sav->sav_count; i++)
6628                         nvlist_free(list[i]);
6629                 kmem_free(list, sav->sav_count * sizeof (void *));
6630         }
6631 
6632         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6633         nvlist_free(nvroot);
6634 
6635         sav->sav_sync = B_FALSE;
6636 }
6637 
6638 /*
6639  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6640  * The all-vdev ZAP must be empty.
6641  */
6642 static void
6643 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6644 {
6645         spa_t *spa = vd->vdev_spa;
6646         if (vd->vdev_top_zap != 0) {
6647                 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6648                     vd->vdev_top_zap, tx));
6649         }
6650         if (vd->vdev_leaf_zap != 0) {
6651                 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6652                     vd->vdev_leaf_zap, tx));
6653         }
6654         for (uint64_t i = 0; i < vd->vdev_children; i++) {
6655                 spa_avz_build(vd->vdev_child[i], avz, tx);
6656         }
6657 }
6658 
6659 static void
6660 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6661 {
6662         nvlist_t *config;
6663 
6664         /*
6665          * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6666          * its config may not be dirty but we still need to build per-vdev ZAPs.
6667          * Similarly, if the pool is being assembled (e.g. after a split), we
6668          * need to rebuild the AVZ although the config may not be dirty.
6669          */
6670         if (list_is_empty(&spa->spa_config_dirty_list) &&
6671             spa->spa_avz_action == AVZ_ACTION_NONE)
6672                 return;
6673 
6674         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6675 
6676         ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6677             spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6678             spa->spa_all_vdev_zaps != 0);
6679 
6680         if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6681                 /* Make and build the new AVZ */
6682                 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6683                     DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6684                 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6685 
6686                 /* Diff old AVZ with new one */
6687                 zap_cursor_t zc;
6688                 zap_attribute_t za;
6689 
6690                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6691                     spa->spa_all_vdev_zaps);
6692                     zap_cursor_retrieve(&zc, &za) == 0;
6693                     zap_cursor_advance(&zc)) {
6694                         uint64_t vdzap = za.za_first_integer;
6695                         if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6696                             vdzap) == ENOENT) {
6697                                 /*
6698                                  * ZAP is listed in old AVZ but not in new one;
6699                                  * destroy it
6700                                  */
6701                                 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6702                                     tx));
6703                         }
6704                 }
6705 
6706                 zap_cursor_fini(&zc);
6707 
6708                 /* Destroy the old AVZ */
6709                 VERIFY0(zap_destroy(spa->spa_meta_objset,
6710                     spa->spa_all_vdev_zaps, tx));
6711 
6712                 /* Replace the old AVZ in the dir obj with the new one */
6713                 VERIFY0(zap_update(spa->spa_meta_objset,
6714                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6715                     sizeof (new_avz), 1, &new_avz, tx));
6716 
6717                 spa->spa_all_vdev_zaps = new_avz;
6718         } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6719                 zap_cursor_t zc;
6720                 zap_attribute_t za;
6721 
6722                 /* Walk through the AVZ and destroy all listed ZAPs */
6723                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6724                     spa->spa_all_vdev_zaps);
6725                     zap_cursor_retrieve(&zc, &za) == 0;
6726                     zap_cursor_advance(&zc)) {
6727                         uint64_t zap = za.za_first_integer;
6728                         VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6729                 }
6730 
6731                 zap_cursor_fini(&zc);
6732 
6733                 /* Destroy and unlink the AVZ itself */
6734                 VERIFY0(zap_destroy(spa->spa_meta_objset,
6735                     spa->spa_all_vdev_zaps, tx));
6736                 VERIFY0(zap_remove(spa->spa_meta_objset,
6737                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6738                 spa->spa_all_vdev_zaps = 0;
6739         }
6740 
6741         if (spa->spa_all_vdev_zaps == 0) {
6742                 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6743                     DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6744                     DMU_POOL_VDEV_ZAP_MAP, tx);
6745         }
6746         spa->spa_avz_action = AVZ_ACTION_NONE;
6747 
6748         /* Create ZAPs for vdevs that don't have them. */
6749         vdev_construct_zaps(spa->spa_root_vdev, tx);
6750 
6751         config = spa_config_generate(spa, spa->spa_root_vdev,
6752             dmu_tx_get_txg(tx), B_FALSE);
6753 
6754         /*
6755          * If we're upgrading the spa version then make sure that
6756          * the config object gets updated with the correct version.
6757          */
6758         if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6759                 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6760                     spa->spa_uberblock.ub_version);
6761 
6762         spa_config_exit(spa, SCL_STATE, FTAG);
6763 
6764         nvlist_free(spa->spa_config_syncing);
6765         spa->spa_config_syncing = config;
6766 
6767         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6768 }
6769 
6770 static void
6771 spa_sync_version(void *arg, dmu_tx_t *tx)
6772 {
6773         uint64_t *versionp = arg;
6774         uint64_t version = *versionp;
6775         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6776 
6777         /*
6778          * Setting the version is special cased when first creating the pool.
6779          */
6780         ASSERT(tx->tx_txg != TXG_INITIAL);
6781 
6782         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6783         ASSERT(version >= spa_version(spa));
6784 
6785         spa->spa_uberblock.ub_version = version;
6786         vdev_config_dirty(spa->spa_root_vdev);
6787         spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6788 }
6789 
6790 /*
6791  * Set zpool properties.
6792  */
6793 static void
6794 spa_sync_props(void *arg, dmu_tx_t *tx)
6795 {
6796         nvlist_t *nvp = arg;
6797         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6798         spa_meta_placement_t *mp = &spa->spa_meta_policy;
6799         objset_t *mos = spa->spa_meta_objset;
6800         nvpair_t *elem = NULL;
6801 
6802         mutex_enter(&spa->spa_props_lock);
6803 
6804         while ((elem = nvlist_next_nvpair(nvp, elem))) {
6805                 uint64_t intval;
6806                 char *strval, *fname;
6807                 zpool_prop_t prop;
6808                 const char *propname;
6809                 zprop_type_t proptype;
6810                 spa_feature_t fid;
6811 
6812                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6813                 case ZPROP_INVAL:
6814                         /*
6815                          * We checked this earlier in spa_prop_validate().
6816                          */
6817                         ASSERT(zpool_prop_feature(nvpair_name(elem)));
6818 
6819                         fname = strchr(nvpair_name(elem), '@') + 1;
6820                         VERIFY0(zfeature_lookup_name(fname, &fid));
6821 
6822                         spa_feature_enable(spa, fid, tx);
6823                         spa_history_log_internal(spa, "set", tx,
6824                             "%s=enabled", nvpair_name(elem));
6825                         break;
6826 
6827                 case ZPOOL_PROP_VERSION:
6828                         intval = fnvpair_value_uint64(elem);
6829                         /*
6830                          * The version is synced seperatly before other
6831                          * properties and should be correct by now.
6832                          */
6833                         ASSERT3U(spa_version(spa), >=, intval);
6834                         break;
6835 
6836                 case ZPOOL_PROP_ALTROOT:
6837                         /*
6838                          * 'altroot' is a non-persistent property. It should
6839                          * have been set temporarily at creation or import time.
6840                          */
6841                         ASSERT(spa->spa_root != NULL);
6842                         break;
6843 
6844                 case ZPOOL_PROP_READONLY:
6845                 case ZPOOL_PROP_CACHEFILE:
6846                         /*
6847                          * 'readonly' and 'cachefile' are also non-persisitent
6848                          * properties.
6849                          */
6850                         break;
6851                 case ZPOOL_PROP_COMMENT:
6852                         strval = fnvpair_value_string(elem);
6853                         if (spa->spa_comment != NULL)
6854                                 spa_strfree(spa->spa_comment);
6855                         spa->spa_comment = spa_strdup(strval);
6856                         /*
6857                          * We need to dirty the configuration on all the vdevs
6858                          * so that their labels get updated.  It's unnecessary
6859                          * to do this for pool creation since the vdev's
6860                          * configuratoin has already been dirtied.
6861                          */
6862                         if (tx->tx_txg != TXG_INITIAL)
6863                                 vdev_config_dirty(spa->spa_root_vdev);
6864                         spa_history_log_internal(spa, "set", tx,
6865                             "%s=%s", nvpair_name(elem), strval);
6866                         break;
6867                 default:
6868                         /*
6869                          * Set pool property values in the poolprops mos object.
6870                          */
6871                         if (spa->spa_pool_props_object == 0) {
6872                                 spa->spa_pool_props_object =
6873                                     zap_create_link(mos, DMU_OT_POOL_PROPS,
6874                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6875                                     tx);
6876                         }
6877 
6878                         /* normalize the property name */
6879                         propname = zpool_prop_to_name(prop);
6880                         proptype = zpool_prop_get_type(prop);
6881 
6882                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
6883                                 ASSERT(proptype == PROP_TYPE_STRING);
6884                                 strval = fnvpair_value_string(elem);
6885                                 VERIFY0(zap_update(mos,
6886                                     spa->spa_pool_props_object, propname,
6887                                     1, strlen(strval) + 1, strval, tx));
6888                                 spa_history_log_internal(spa, "set", tx,
6889                                     "%s=%s", nvpair_name(elem), strval);
6890                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6891                                 intval = fnvpair_value_uint64(elem);
6892 
6893                                 if (proptype == PROP_TYPE_INDEX) {
6894                                         const char *unused;
6895                                         VERIFY0(zpool_prop_index_to_string(
6896                                             prop, intval, &unused));
6897                                 }
6898                                 VERIFY0(zap_update(mos,
6899                                     spa->spa_pool_props_object, propname,
6900                                     8, 1, &intval, tx));
6901                                 spa_history_log_internal(spa, "set", tx,
6902                                     "%s=%lld", nvpair_name(elem), intval);
6903                         } else {
6904                                 ASSERT(0); /* not allowed */
6905                         }
6906 
6907                         switch (prop) {
6908                         case ZPOOL_PROP_DELEGATION:
6909                                 spa->spa_delegation = intval;
6910                                 break;
6911                         case ZPOOL_PROP_DDT_DESEGREGATION:
6912                                 spa_set_ddt_classes(spa, intval);
6913                                 break;
6914                         case ZPOOL_PROP_DEDUP_BEST_EFFORT:
6915                                 spa->spa_dedup_best_effort = intval;
6916                                 break;
6917                         case ZPOOL_PROP_DEDUP_LO_BEST_EFFORT:
6918                                 spa->spa_dedup_lo_best_effort = intval;
6919                                 break;
6920                         case ZPOOL_PROP_DEDUP_HI_BEST_EFFORT:
6921                                 spa->spa_dedup_hi_best_effort = intval;
6922                                 break;
6923                         case ZPOOL_PROP_BOOTFS:
6924                                 spa->spa_bootfs = intval;
6925                                 break;
6926                         case ZPOOL_PROP_FAILUREMODE:
6927                                 spa->spa_failmode = intval;
6928                                 break;
6929                         case ZPOOL_PROP_FORCETRIM:
6930                                 spa->spa_force_trim = intval;
6931                                 break;
6932                         case ZPOOL_PROP_AUTOTRIM:
6933                                 mutex_enter(&spa->spa_auto_trim_lock);
6934                                 if (intval != spa->spa_auto_trim) {
6935                                         spa->spa_auto_trim = intval;
6936                                         if (intval != 0)
6937                                                 spa_auto_trim_taskq_create(spa);
6938                                         else
6939                                                 spa_auto_trim_taskq_destroy(
6940                                                     spa);
6941                                 }
6942                                 mutex_exit(&spa->spa_auto_trim_lock);
6943                                 break;
6944                         case ZPOOL_PROP_AUTOEXPAND:
6945                                 spa->spa_autoexpand = intval;
6946                                 if (tx->tx_txg != TXG_INITIAL)
6947                                         spa_async_request(spa,
6948                                             SPA_ASYNC_AUTOEXPAND);
6949                                 break;
6950                         case ZPOOL_PROP_DEDUPDITTO:
6951                                 spa->spa_dedup_ditto = intval;
6952                                 break;
6953                         case ZPOOL_PROP_MINWATERMARK:
6954                                 spa->spa_minwat = intval;
6955                                 break;
6956                         case ZPOOL_PROP_LOWATERMARK:
6957                                 spa->spa_lowat = intval;
6958                                 break;
6959                         case ZPOOL_PROP_HIWATERMARK:
6960                                 spa->spa_hiwat = intval;
6961                                 break;
6962                         case ZPOOL_PROP_DEDUPMETA_DITTO:
6963                                 spa->spa_ddt_meta_copies = intval;
6964                                 break;
6965                         case ZPOOL_PROP_META_PLACEMENT:
6966                                 mp->spa_enable_meta_placement_selection =
6967                                     intval;
6968                                 break;
6969                         case ZPOOL_PROP_SYNC_TO_SPECIAL:
6970                                 mp->spa_sync_to_special = intval;
6971                                 break;
6972                         case ZPOOL_PROP_DDT_META_TO_METADEV:
6973                                 mp->spa_ddt_meta_to_special = intval;
6974                                 break;
6975                         case ZPOOL_PROP_ZFS_META_TO_METADEV:
6976                                 mp->spa_zfs_meta_to_special = intval;
6977                                 break;
6978                         case ZPOOL_PROP_SMALL_DATA_TO_METADEV:
6979                                 mp->spa_small_data_to_special = intval;
6980                                 break;
6981                         case ZPOOL_PROP_RESILVER_PRIO:
6982                                 spa->spa_resilver_prio = intval;
6983                                 break;
6984                         case ZPOOL_PROP_SCRUB_PRIO:
6985                                 spa->spa_scrub_prio = intval;
6986                                 break;
6987                         default:
6988                                 break;
6989                         }
6990                 }
6991 
6992         }
6993 
6994         mutex_exit(&spa->spa_props_lock);
6995 }
6996 
6997 /*
6998  * Perform one-time upgrade on-disk changes.  spa_version() does not
6999  * reflect the new version this txg, so there must be no changes this
7000  * txg to anything that the upgrade code depends on after it executes.
7001  * Therefore this must be called after dsl_pool_sync() does the sync
7002  * tasks.
7003  */
7004 static void
7005 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7006 {
7007         dsl_pool_t *dp = spa->spa_dsl_pool;
7008 
7009         ASSERT(spa->spa_sync_pass == 1);
7010 
7011         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7012 
7013         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7014             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7015                 dsl_pool_create_origin(dp, tx);
7016 
7017                 /* Keeping the origin open increases spa_minref */
7018                 spa->spa_minref += 3;
7019         }
7020 
7021         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7022             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7023                 dsl_pool_upgrade_clones(dp, tx);
7024         }
7025 
7026         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7027             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7028                 dsl_pool_upgrade_dir_clones(dp, tx);
7029 
7030                 /* Keeping the freedir open increases spa_minref */
7031                 spa->spa_minref += 3;
7032         }
7033 
7034         if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7035             spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7036                 spa_feature_create_zap_objects(spa, tx);
7037         }
7038 
7039         /*
7040          * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7041          * when possibility to use lz4 compression for metadata was added
7042          * Old pools that have this feature enabled must be upgraded to have
7043          * this feature active
7044          */
7045         if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7046                 boolean_t lz4_en = spa_feature_is_enabled(spa,
7047                     SPA_FEATURE_LZ4_COMPRESS);
7048                 boolean_t lz4_ac = spa_feature_is_active(spa,
7049                     SPA_FEATURE_LZ4_COMPRESS);
7050 
7051                 if (lz4_en && !lz4_ac)
7052                         spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7053         }
7054 
7055         /*
7056          * If we haven't written the salt, do so now.  Note that the
7057          * feature may not be activated yet, but that's fine since
7058          * the presence of this ZAP entry is backwards compatible.
7059          */
7060         if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7061             DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7062                 VERIFY0(zap_add(spa->spa_meta_objset,
7063                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7064                     sizeof (spa->spa_cksum_salt.zcs_bytes),
7065                     spa->spa_cksum_salt.zcs_bytes, tx));
7066         }
7067 
7068         rrw_exit(&dp->dp_config_rwlock, FTAG);
7069 }
7070 
7071 static void
7072 spa_initialize_alloc_trees(spa_t *spa, uint32_t max_queue_depth,
7073     uint64_t queue_depth_total)
7074 {
7075         vdev_t *rvd = spa->spa_root_vdev;
7076         boolean_t dva_throttle_enabled = zio_dva_throttle_enabled;
7077         metaslab_class_t *mcs[2] = {
7078                 spa_normal_class(spa),
7079                 spa_special_class(spa)
7080         };
7081         size_t mcs_len = sizeof (mcs) / sizeof (metaslab_class_t *);
7082 
7083         for (size_t i = 0; i < mcs_len; i++) {
7084                 metaslab_class_t *mc = mcs[i];
7085 
7086                 ASSERT0(refcount_count(&mc->mc_alloc_slots));
7087                 mc->mc_alloc_max_slots = queue_depth_total;
7088                 mc->mc_alloc_throttle_enabled = dva_throttle_enabled;
7089 
7090                 ASSERT3U(mc->mc_alloc_max_slots, <=,
7091                     max_queue_depth * rvd->vdev_children);
7092         }
7093 }
7094 
7095 static void
7096 spa_check_alloc_trees(spa_t *spa)
7097 {
7098         metaslab_class_t *mcs[2] = {
7099                 spa_normal_class(spa),
7100                 spa_special_class(spa)
7101         };
7102         size_t mcs_len = sizeof (mcs) / sizeof (metaslab_class_t *);
7103 
7104         for (size_t i = 0; i < mcs_len; i++) {
7105                 metaslab_class_t *mc = mcs[i];
7106 
7107                 mutex_enter(&mc->mc_alloc_lock);
7108                 VERIFY0(avl_numnodes(&mc->mc_alloc_tree));
7109                 mutex_exit(&mc->mc_alloc_lock);
7110         }
7111 }
7112 
7113 /*
7114  * Sync the specified transaction group.  New blocks may be dirtied as
7115  * part of the process, so we iterate until it converges.
7116  */
7117 void
7118 spa_sync(spa_t *spa, uint64_t txg)
7119 {
7120         dsl_pool_t *dp = spa->spa_dsl_pool;
7121         objset_t *mos = spa->spa_meta_objset;
7122         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7123         vdev_t *rvd = spa->spa_root_vdev;
7124         vdev_t *vd;
7125         dmu_tx_t *tx;
7126         int error;
7127         uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7128             zfs_vdev_queue_depth_pct / 100;
7129 
7130         VERIFY(spa_writeable(spa));
7131 
7132         /*
7133          * Lock out configuration changes.
7134          */
7135         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7136 
7137         spa->spa_syncing_txg = txg;
7138         spa->spa_sync_pass = 0;
7139 
7140         spa_check_alloc_trees(spa);
7141 
7142         /*
7143          * Another pool management task might be currently preventing
7144          * from starting and the current txg sync was invoked on its behalf,
7145          * so be prepared to postpone autotrim processing.
7146          */
7147         if (mutex_tryenter(&spa->spa_auto_trim_lock)) {
7148                 if (spa->spa_auto_trim == SPA_AUTO_TRIM_ON)
7149                         spa_auto_trim(spa, txg);
7150                 mutex_exit(&spa->spa_auto_trim_lock);
7151         }
7152 
7153         /*
7154          * If there are any pending vdev state changes, convert them
7155          * into config changes that go out with this transaction group.
7156          */
7157         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7158         while (list_head(&spa->spa_state_dirty_list) != NULL) {
7159                 /*
7160                  * We need the write lock here because, for aux vdevs,
7161                  * calling vdev_config_dirty() modifies sav_config.
7162                  * This is ugly and will become unnecessary when we
7163                  * eliminate the aux vdev wart by integrating all vdevs
7164                  * into the root vdev tree.
7165                  */
7166                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7167                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7168                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7169                         vdev_state_clean(vd);
7170                         vdev_config_dirty(vd);
7171                 }
7172                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7173                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7174         }
7175         spa_config_exit(spa, SCL_STATE, FTAG);
7176 
7177         tx = dmu_tx_create_assigned(dp, txg);
7178 
7179         spa->spa_sync_starttime = gethrtime();
7180         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7181             spa->spa_sync_starttime + spa->spa_deadman_synctime));
7182 
7183         /*
7184          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7185          * set spa_deflate if we have no raid-z vdevs.
7186          */
7187         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7188             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7189                 int i;
7190 
7191                 for (i = 0; i < rvd->vdev_children; i++) {
7192                         vd = rvd->vdev_child[i];
7193                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7194                                 break;
7195                 }
7196                 if (i == rvd->vdev_children) {
7197                         spa->spa_deflate = TRUE;
7198                         VERIFY(0 == zap_add(spa->spa_meta_objset,
7199                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7200                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7201                 }
7202         }
7203 
7204         /*
7205          * Set the top-level vdev's max queue depth. Evaluate each
7206          * top-level's async write queue depth in case it changed.
7207          * The max queue depth will not change in the middle of syncing
7208          * out this txg.
7209          */
7210         uint64_t queue_depth_total = 0;
7211         for (int c = 0; c < rvd->vdev_children; c++) {
7212                 vdev_t *tvd = rvd->vdev_child[c];
7213                 metaslab_group_t *mg = tvd->vdev_mg;
7214 
7215                 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7216                     !metaslab_group_initialized(mg))
7217                         continue;
7218 
7219                 /*
7220                  * It is safe to do a lock-free check here because only async
7221                  * allocations look at mg_max_alloc_queue_depth, and async
7222                  * allocations all happen from spa_sync().
7223                  */
7224                 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
7225                 mg->mg_max_alloc_queue_depth = max_queue_depth;
7226                 queue_depth_total += mg->mg_max_alloc_queue_depth;
7227         }
7228 
7229         spa_initialize_alloc_trees(spa, max_queue_depth,
7230             queue_depth_total);
7231 
7232         /*
7233          * Iterate to convergence.
7234          */
7235 
7236         zfs_autosnap_t *autosnap = spa_get_autosnap(dp->dp_spa);
7237         mutex_enter(&autosnap->autosnap_lock);
7238 
7239         autosnap_zone_t *zone = list_head(&autosnap->autosnap_zones);
7240         while (zone != NULL) {
7241                 zone->created = B_FALSE;
7242                 zone->dirty = B_FALSE;
7243                 zone = list_next(&autosnap->autosnap_zones, zone);
7244         }
7245 
7246         mutex_exit(&autosnap->autosnap_lock);
7247 
7248         do {
7249                 int pass = ++spa->spa_sync_pass;
7250 
7251                 spa_sync_config_object(spa, tx);
7252                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7253                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7254                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7255                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7256                 spa_errlog_sync(spa, txg);
7257                 dsl_pool_sync(dp, txg);
7258 
7259                 if (pass < zfs_sync_pass_deferred_free) {
7260                         spa_sync_frees(spa, free_bpl, tx);
7261                 } else {
7262                         /*
7263                          * We can not defer frees in pass 1, because
7264                          * we sync the deferred frees later in pass 1.
7265                          */
7266                         ASSERT3U(pass, >, 1);
7267                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
7268                             &spa->spa_deferred_bpobj, tx);
7269                 }
7270 
7271                 ddt_sync(spa, txg);
7272                 dsl_scan_sync(dp, tx);
7273 
7274                 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7275                         vdev_sync(vd, txg);
7276 
7277                 if (pass == 1) {
7278                         spa_sync_upgrades(spa, tx);
7279                         ASSERT3U(txg, >=,
7280                             spa->spa_uberblock.ub_rootbp.blk_birth);
7281                         /*
7282                          * Note: We need to check if the MOS is dirty
7283                          * because we could have marked the MOS dirty
7284                          * without updating the uberblock (e.g. if we
7285                          * have sync tasks but no dirty user data).  We
7286                          * need to check the uberblock's rootbp because
7287                          * it is updated if we have synced out dirty
7288                          * data (though in this case the MOS will most
7289                          * likely also be dirty due to second order
7290                          * effects, we don't want to rely on that here).
7291                          */
7292                         if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7293                             !dmu_objset_is_dirty(mos, txg)) {
7294                                 /*
7295                                  * Nothing changed on the first pass,
7296                                  * therefore this TXG is a no-op.  Avoid
7297                                  * syncing deferred frees, so that we
7298                                  * can keep this TXG as a no-op.
7299                                  */
7300                                 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7301                                     txg));
7302                                 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7303                                 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7304                                 break;
7305                         }
7306                         spa_sync_deferred_frees(spa, tx);
7307                 }
7308 
7309         } while (dmu_objset_is_dirty(mos, txg));
7310 
7311         if (!list_is_empty(&spa->spa_config_dirty_list)) {
7312                 /*
7313                  * Make sure that the number of ZAPs for all the vdevs matches
7314                  * the number of ZAPs in the per-vdev ZAP list. This only gets
7315                  * called if the config is dirty; otherwise there may be
7316                  * outstanding AVZ operations that weren't completed in
7317                  * spa_sync_config_object.
7318                  */
7319                 uint64_t all_vdev_zap_entry_count;
7320                 ASSERT0(zap_count(spa->spa_meta_objset,
7321                     spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7322                 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7323                     all_vdev_zap_entry_count);
7324         }
7325 
7326         /*
7327          * Rewrite the vdev configuration (which includes the uberblock)
7328          * to commit the transaction group.
7329          *
7330          * If there are no dirty vdevs, we sync the uberblock to a few
7331          * random top-level vdevs that are known to be visible in the
7332          * config cache (see spa_vdev_add() for a complete description).
7333          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7334          */
7335         for (;;) {
7336                 /*
7337                  * We hold SCL_STATE to prevent vdev open/close/etc.
7338                  * while we're attempting to write the vdev labels.
7339                  */
7340                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7341 
7342                 if (list_is_empty(&spa->spa_config_dirty_list)) {
7343                         vdev_t *svd[SPA_DVAS_PER_BP];
7344                         int svdcount = 0;
7345                         int children = rvd->vdev_children;
7346                         int c0 = spa_get_random(children);
7347 
7348                         for (int c = 0; c < children; c++) {
7349                                 vd = rvd->vdev_child[(c0 + c) % children];
7350                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
7351                                         continue;
7352                                 svd[svdcount++] = vd;
7353                                 if (svdcount == SPA_DVAS_PER_BP)
7354                                         break;
7355                         }
7356                         error = vdev_config_sync(svd, svdcount, txg);
7357                 } else {
7358                         error = vdev_config_sync(rvd->vdev_child,
7359                             rvd->vdev_children, txg);
7360                 }
7361 
7362                 if (error == 0)
7363                         spa->spa_last_synced_guid = rvd->vdev_guid;
7364 
7365                 spa_config_exit(spa, SCL_STATE, FTAG);
7366 
7367                 if (error == 0)
7368                         break;
7369                 zio_suspend(spa, NULL);
7370                 zio_resume_wait(spa);
7371         }
7372         dmu_tx_commit(tx);
7373 
7374         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7375 
7376         /*
7377          * Clear the dirty config list.
7378          */
7379         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7380                 vdev_config_clean(vd);
7381 
7382         /*
7383          * Now that the new config has synced transactionally,
7384          * let it become visible to the config cache.
7385          */
7386         if (spa->spa_config_syncing != NULL) {
7387                 spa_config_set(spa, spa->spa_config_syncing);
7388                 spa->spa_config_txg = txg;
7389                 spa->spa_config_syncing = NULL;
7390         }
7391 
7392         dsl_pool_sync_done(dp, txg);
7393 
7394         spa_check_alloc_trees(spa);
7395 
7396         /*
7397          * Update usable space statistics.
7398          */
7399         while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7400                 vdev_sync_done(vd, txg);
7401 
7402         spa_update_dspace(spa);
7403         spa_update_latency(spa);
7404         /*
7405          * It had better be the case that we didn't dirty anything
7406          * since vdev_config_sync().
7407          */
7408         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7409         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7410         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7411 
7412         spa->spa_sync_pass = 0;
7413 
7414         spa_check_special(spa);
7415 
7416         /*
7417          * Update the last synced uberblock here. We want to do this at
7418          * the end of spa_sync() so that consumers of spa_last_synced_txg()
7419          * will be guaranteed that all the processing associated with
7420          * that txg has been completed.
7421          */
7422         spa->spa_ubsync = spa->spa_uberblock;
7423         spa_config_exit(spa, SCL_CONFIG, FTAG);
7424 
7425         spa_handle_ignored_writes(spa);
7426 
7427         /*
7428          * If any async tasks have been requested, kick them off.
7429          */
7430         spa_async_dispatch(spa);
7431 }
7432 
7433 /*
7434  * Sync all pools.  We don't want to hold the namespace lock across these
7435  * operations, so we take a reference on the spa_t and drop the lock during the
7436  * sync.
7437  */
7438 void
7439 spa_sync_allpools(void)
7440 {
7441         spa_t *spa = NULL;
7442         mutex_enter(&spa_namespace_lock);
7443         while ((spa = spa_next(spa)) != NULL) {
7444                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7445                     !spa_writeable(spa) || spa_suspended(spa))
7446                         continue;
7447                 spa_open_ref(spa, FTAG);
7448                 mutex_exit(&spa_namespace_lock);
7449                 txg_wait_synced(spa_get_dsl(spa), 0);
7450                 mutex_enter(&spa_namespace_lock);
7451                 spa_close(spa, FTAG);
7452         }
7453         mutex_exit(&spa_namespace_lock);
7454 }
7455 
7456 /*
7457  * ==========================================================================
7458  * Miscellaneous routines
7459  * ==========================================================================
7460  */
7461 
7462 /*
7463  * Remove all pools in the system.
7464  */
7465 void
7466 spa_evict_all(void)
7467 {
7468         spa_t *spa;
7469 
7470         /*
7471          * Remove all cached state.  All pools should be closed now,
7472          * so every spa in the AVL tree should be unreferenced.
7473          */
7474         mutex_enter(&spa_namespace_lock);
7475         while ((spa = spa_next(NULL)) != NULL) {
7476                 /*
7477                  * Stop async tasks.  The async thread may need to detach
7478                  * a device that's been replaced, which requires grabbing
7479                  * spa_namespace_lock, so we must drop it here.
7480                  */
7481                 spa_open_ref(spa, FTAG);
7482                 mutex_exit(&spa_namespace_lock);
7483                 spa_async_suspend(spa);
7484                 mutex_enter(&spa_namespace_lock);
7485                 spa_close(spa, FTAG);
7486 
7487                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7488                         wbc_deactivate(spa);
7489 
7490                         spa_unload(spa);
7491                         spa_deactivate(spa);
7492                 }
7493 
7494                 spa_remove(spa);
7495         }
7496         mutex_exit(&spa_namespace_lock);
7497 }
7498 
7499 vdev_t *
7500 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7501 {
7502         vdev_t *vd;
7503         int i;
7504 
7505         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7506                 return (vd);
7507 
7508         if (aux) {
7509                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7510                         vd = spa->spa_l2cache.sav_vdevs[i];
7511                         if (vd->vdev_guid == guid)
7512                                 return (vd);
7513                 }
7514 
7515                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7516                         vd = spa->spa_spares.sav_vdevs[i];
7517                         if (vd->vdev_guid == guid)
7518                                 return (vd);
7519                 }
7520         }
7521 
7522         return (NULL);
7523 }
7524 
7525 void
7526 spa_upgrade(spa_t *spa, uint64_t version)
7527 {
7528         ASSERT(spa_writeable(spa));
7529 
7530         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7531 
7532         /*
7533          * This should only be called for a non-faulted pool, and since a
7534          * future version would result in an unopenable pool, this shouldn't be
7535          * possible.
7536          */
7537         ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7538         ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7539 
7540         spa->spa_uberblock.ub_version = version;
7541         vdev_config_dirty(spa->spa_root_vdev);
7542 
7543         spa_config_exit(spa, SCL_ALL, FTAG);
7544 
7545         txg_wait_synced(spa_get_dsl(spa), 0);
7546 }
7547 
7548 boolean_t
7549 spa_has_spare(spa_t *spa, uint64_t guid)
7550 {
7551         int i;
7552         uint64_t spareguid;
7553         spa_aux_vdev_t *sav = &spa->spa_spares;
7554 
7555         for (i = 0; i < sav->sav_count; i++)
7556                 if (sav->sav_vdevs[i]->vdev_guid == guid)
7557                         return (B_TRUE);
7558 
7559         for (i = 0; i < sav->sav_npending; i++) {
7560                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7561                     &spareguid) == 0 && spareguid == guid)
7562                         return (B_TRUE);
7563         }
7564 
7565         return (B_FALSE);
7566 }
7567 
7568 /*
7569  * Check if a pool has an active shared spare device.
7570  * Note: reference count of an active spare is 2, as a spare and as a replace
7571  */
7572 static boolean_t
7573 spa_has_active_shared_spare(spa_t *spa)
7574 {
7575         int i, refcnt;
7576         uint64_t pool;
7577         spa_aux_vdev_t *sav = &spa->spa_spares;
7578 
7579         for (i = 0; i < sav->sav_count; i++) {
7580                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7581                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7582                     refcnt > 2)
7583                         return (B_TRUE);
7584         }
7585 
7586         return (B_FALSE);
7587 }
7588 
7589 /*
7590  * Post a sysevent corresponding to the given event.  The 'name' must be one of
7591  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7592  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7593  * in the userland libzpool, as we don't want consumers to misinterpret ztest
7594  * or zdb as real changes.
7595  */
7596 static sysevent_t *
7597 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7598 {
7599         sysevent_t              *ev = NULL;
7600 #ifdef _KERNEL
7601         sysevent_attr_list_t    *attr = NULL;
7602         sysevent_value_t        value;
7603 
7604         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7605             SE_SLEEP);
7606         ASSERT(ev != NULL);
7607 
7608         value.value_type = SE_DATA_TYPE_STRING;
7609         value.value.sv_string = spa_name(spa);
7610         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7611                 goto done;
7612 
7613         value.value_type = SE_DATA_TYPE_UINT64;
7614         value.value.sv_uint64 = spa_guid(spa);
7615         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7616                 goto done;
7617 
7618         if (vd != NULL) {
7619                 value.value_type = SE_DATA_TYPE_UINT64;
7620                 value.value.sv_uint64 = vd->vdev_guid;
7621                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7622                     SE_SLEEP) != 0)
7623                         goto done;
7624 
7625                 if (vd->vdev_path) {
7626                         value.value_type = SE_DATA_TYPE_STRING;
7627                         value.value.sv_string = vd->vdev_path;
7628                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7629                             &value, SE_SLEEP) != 0)
7630                                 goto done;
7631                 }
7632         }
7633 
7634         if (hist_nvl != NULL) {
7635                 fnvlist_merge((nvlist_t *)attr, hist_nvl);
7636         }
7637 
7638         if (sysevent_attach_attributes(ev, attr) != 0)
7639                 goto done;
7640         attr = NULL;
7641 
7642 done:
7643         if (attr)
7644                 sysevent_free_attr(attr);
7645 
7646 #endif
7647         return (ev);
7648 }
7649 
7650 static void
7651 spa_event_post(void *arg)
7652 {
7653 #ifdef _KERNEL
7654         sysevent_t *ev = (sysevent_t *)arg;
7655 
7656         sysevent_id_t           eid;
7657 
7658         (void) log_sysevent(ev, SE_SLEEP, &eid);
7659         sysevent_free(ev);
7660 #endif
7661 }
7662 
7663 /*
7664  * Dispatch event notifications to the taskq such that the corresponding
7665  * sysevents are queued with no spa locks held
7666  */
7667 taskq_t *spa_sysevent_taskq;
7668 
7669 static void
7670 spa_event_notify_impl(sysevent_t *ev)
7671 {
7672         if (taskq_dispatch(spa_sysevent_taskq, spa_event_post,
7673             ev, TQ_NOSLEEP) == NULL) {
7674                 /*
7675                  * These are management sysevents; as much as it is
7676                  * unpleasant to drop these due to syseventd not being able
7677                  * to keep up, perhaps due to resource shortages, we are not
7678                  * going to sleep here and risk locking up the pool sync
7679                  * process; notify admin of problems
7680                  */
7681                 cmn_err(CE_NOTE, "Could not dispatch sysevent nofitication "
7682                     "for %s, please check state of syseventd\n",
7683                     sysevent_get_subclass_name(ev));
7684 
7685                 sysevent_free(ev);
7686 
7687                 return;
7688         }
7689 }
7690 
7691 void
7692 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7693 {
7694         spa_event_notify_impl(spa_event_create(spa, vd, hist_nvl, name));
7695 }
7696 
7697 /*
7698  * Dispatches all auto-trim processing to all top-level vdevs. This is
7699  * called from spa_sync once every txg.
7700  */
7701 static void
7702 spa_auto_trim(spa_t *spa, uint64_t txg)
7703 {
7704         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER) == SCL_CONFIG);
7705         ASSERT(MUTEX_HELD(&spa->spa_auto_trim_lock));
7706         ASSERT(spa->spa_auto_trim_taskq != NULL);
7707 
7708         for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7709                 vdev_trim_info_t *vti = kmem_zalloc(sizeof (*vti), KM_SLEEP);
7710                 vti->vti_vdev = spa->spa_root_vdev->vdev_child[i];
7711                 vti->vti_txg = txg;
7712                 vti->vti_done_cb = (void (*)(void *))spa_vdev_auto_trim_done;
7713                 vti->vti_done_arg = spa;
7714                 (void) taskq_dispatch(spa->spa_auto_trim_taskq,
7715                     (void (*)(void *))vdev_auto_trim, vti, TQ_SLEEP);
7716                 spa->spa_num_auto_trimming++;
7717         }
7718 }
7719 
7720 /*
7721  * Performs the sync update of the MOS pool directory's trim start/stop values.
7722  */
7723 static void
7724 spa_trim_update_time_sync(void *arg, dmu_tx_t *tx)
7725 {
7726         spa_t *spa = arg;
7727         VERIFY0(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7728             DMU_POOL_TRIM_START_TIME, sizeof (uint64_t), 1,
7729             &spa->spa_man_trim_start_time, tx));
7730         VERIFY0(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7731             DMU_POOL_TRIM_STOP_TIME, sizeof (uint64_t), 1,
7732             &spa->spa_man_trim_stop_time, tx));
7733 }
7734 
7735 /*
7736  * Updates the in-core and on-disk manual TRIM operation start/stop time.
7737  * Passing UINT64_MAX for either start_time or stop_time means that no
7738  * update to that value should be recorded.
7739  */
7740 static dmu_tx_t *
7741 spa_trim_update_time(spa_t *spa, uint64_t start_time, uint64_t stop_time)
7742 {
7743         int err;
7744         dmu_tx_t *tx;
7745 
7746         ASSERT(MUTEX_HELD(&spa->spa_man_trim_lock));
7747         if (start_time != UINT64_MAX)
7748                 spa->spa_man_trim_start_time = start_time;
7749         if (stop_time != UINT64_MAX)
7750                 spa->spa_man_trim_stop_time = stop_time;
7751         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7752         err = dmu_tx_assign(tx, TXG_WAIT);
7753         if (err) {
7754                 dmu_tx_abort(tx);
7755                 return (NULL);
7756         }
7757         dsl_sync_task_nowait(spa_get_dsl(spa), spa_trim_update_time_sync,
7758             spa, 1, ZFS_SPACE_CHECK_RESERVED, tx);
7759 
7760         return (tx);
7761 }
7762 
7763 /*
7764  * Initiates an manual TRIM of the whole pool. This kicks off individual
7765  * TRIM tasks for each top-level vdev, which then pass over all of the free
7766  * space in all of the vdev's metaslabs and issues TRIM commands for that
7767  * space to the underlying vdevs.
7768  */
7769 extern void
7770 spa_man_trim(spa_t *spa, uint64_t rate)
7771 {
7772         dmu_tx_t *time_update_tx;
7773 
7774         mutex_enter(&spa->spa_man_trim_lock);
7775 
7776         if (rate != 0)
7777                 spa->spa_man_trim_rate = MAX(rate, spa_min_trim_rate(spa));
7778         else
7779                 spa->spa_man_trim_rate = 0;
7780 
7781         if (spa->spa_num_man_trimming) {
7782                 /*
7783                  * TRIM is already ongoing. Wake up all sleeping vdev trim
7784                  * threads because the trim rate might have changed above.
7785                  */
7786                 cv_broadcast(&spa->spa_man_trim_update_cv);
7787                 mutex_exit(&spa->spa_man_trim_lock);
7788                 return;
7789         }
7790         spa_man_trim_taskq_create(spa);
7791         spa->spa_man_trim_stop = B_FALSE;
7792 
7793         spa_event_notify(spa, NULL, NULL, ESC_ZFS_TRIM_START);
7794         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7795         for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7796                 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7797                 vdev_trim_info_t *vti = kmem_zalloc(sizeof (*vti), KM_SLEEP);
7798                 vti->vti_vdev = vd;
7799                 vti->vti_done_cb = (void (*)(void *))spa_vdev_man_trim_done;
7800                 vti->vti_done_arg = spa;
7801                 spa->spa_num_man_trimming++;
7802 
7803                 vd->vdev_trim_prog = 0;
7804                 (void) taskq_dispatch(spa->spa_man_trim_taskq,
7805                     (void (*)(void *))vdev_man_trim, vti, TQ_SLEEP);
7806         }
7807         spa_config_exit(spa, SCL_CONFIG, FTAG);
7808         time_update_tx = spa_trim_update_time(spa, gethrestime_sec(), 0);
7809         mutex_exit(&spa->spa_man_trim_lock);
7810         /* mustn't hold spa_man_trim_lock to prevent deadlock /w syncing ctx */
7811         if (time_update_tx != NULL)
7812                 dmu_tx_commit(time_update_tx);
7813 }
7814 
7815 /*
7816  * Orders a manual TRIM operation to stop and returns immediately.
7817  */
7818 extern void
7819 spa_man_trim_stop(spa_t *spa)
7820 {
7821         boolean_t held = MUTEX_HELD(&spa->spa_man_trim_lock);
7822         if (!held)
7823                 mutex_enter(&spa->spa_man_trim_lock);
7824         spa->spa_man_trim_stop = B_TRUE;
7825         cv_broadcast(&spa->spa_man_trim_update_cv);
7826         if (!held)
7827                 mutex_exit(&spa->spa_man_trim_lock);
7828 }
7829 
7830 /*
7831  * Orders a manual TRIM operation to stop and waits for both manual and
7832  * automatic TRIM to complete. By holding both the spa_man_trim_lock and
7833  * the spa_auto_trim_lock, the caller can guarantee that after this
7834  * function returns, no new TRIM operations can be initiated in parallel.
7835  */
7836 void
7837 spa_trim_stop_wait(spa_t *spa)
7838 {
7839         ASSERT(MUTEX_HELD(&spa->spa_man_trim_lock));
7840         ASSERT(MUTEX_HELD(&spa->spa_auto_trim_lock));
7841         spa->spa_man_trim_stop = B_TRUE;
7842         cv_broadcast(&spa->spa_man_trim_update_cv);
7843         while (spa->spa_num_man_trimming > 0)
7844                 cv_wait(&spa->spa_man_trim_done_cv, &spa->spa_man_trim_lock);
7845         while (spa->spa_num_auto_trimming > 0)
7846                 cv_wait(&spa->spa_auto_trim_done_cv, &spa->spa_auto_trim_lock);
7847 }
7848 
7849 /*
7850  * Returns manual TRIM progress. Progress is indicated by four return values:
7851  * 1) prog: the number of bytes of space on the pool in total that manual
7852  *      TRIM has already passed (regardless if the space is allocated or not).
7853  *      Completion of the operation is indicated when either the returned value
7854  *      is zero, or when the returned value is equal to the sum of the sizes of
7855  *      all top-level vdevs.
7856  * 2) rate: the trim rate in bytes per second. A value of zero indicates that
7857  *      trim progresses as fast as possible.
7858  * 3) start_time: the UNIXTIME of when the last manual TRIM operation was
7859  *      started. If no manual trim was ever initiated on the pool, this is
7860  *      zero.
7861  * 4) stop_time: the UNIXTIME of when the last manual TRIM operation has
7862  *      stopped on the pool. If a trim was started (start_time != 0), but has
7863  *      not yet completed, stop_time will be zero. If a trim is NOT currently
7864  *      ongoing and start_time is non-zero, this indicates that the previously
7865  *      initiated TRIM operation was interrupted.
7866  */
7867 extern void
7868 spa_get_trim_prog(spa_t *spa, uint64_t *prog, uint64_t *rate,
7869     uint64_t *start_time, uint64_t *stop_time)
7870 {
7871         uint64_t total = 0;
7872         vdev_t *root_vd = spa->spa_root_vdev;
7873 
7874         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
7875         mutex_enter(&spa->spa_man_trim_lock);
7876         if (spa->spa_num_man_trimming > 0) {
7877                 for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
7878                         total += root_vd->vdev_child[i]->vdev_trim_prog;
7879                 }
7880         }
7881         *prog = total;
7882         *rate = spa->spa_man_trim_rate;
7883         *start_time = spa->spa_man_trim_start_time;
7884         *stop_time = spa->spa_man_trim_stop_time;
7885         mutex_exit(&spa->spa_man_trim_lock);
7886 }
7887 
7888 /*
7889  * Callback when a vdev_man_trim has finished on a single top-level vdev.
7890  */
7891 static void
7892 spa_vdev_man_trim_done(spa_t *spa)
7893 {
7894         dmu_tx_t *time_update_tx = NULL;
7895 
7896         mutex_enter(&spa->spa_man_trim_lock);
7897         ASSERT(spa->spa_num_man_trimming > 0);
7898         spa->spa_num_man_trimming--;
7899         if (spa->spa_num_man_trimming == 0) {
7900                 /* if we were interrupted, leave stop_time at zero */
7901                 if (!spa->spa_man_trim_stop)
7902                         time_update_tx = spa_trim_update_time(spa, UINT64_MAX,
7903                             gethrestime_sec());
7904                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_TRIM_FINISH);
7905                 spa_async_request(spa, SPA_ASYNC_MAN_TRIM_TASKQ_DESTROY);
7906                 cv_broadcast(&spa->spa_man_trim_done_cv);
7907         }
7908         mutex_exit(&spa->spa_man_trim_lock);
7909 
7910         if (time_update_tx != NULL)
7911                 dmu_tx_commit(time_update_tx);
7912 }
7913 
7914 /*
7915  * Called from vdev_auto_trim when a vdev has completed its auto-trim
7916  * processing.
7917  */
7918 static void
7919 spa_vdev_auto_trim_done(spa_t *spa)
7920 {
7921         mutex_enter(&spa->spa_auto_trim_lock);
7922         ASSERT(spa->spa_num_auto_trimming > 0);
7923         spa->spa_num_auto_trimming--;
7924         if (spa->spa_num_auto_trimming == 0)
7925                 cv_broadcast(&spa->spa_auto_trim_done_cv);
7926         mutex_exit(&spa->spa_auto_trim_lock);
7927 }
7928 
7929 /*
7930  * Determines the minimum sensible rate at which a manual TRIM can be
7931  * performed on a given spa and returns it. Since we perform TRIM in
7932  * metaslab-sized increments, we'll just let the longest step between
7933  * metaslab TRIMs be 100s (random number, really). Thus, on a typical
7934  * 200-metaslab vdev, the longest TRIM should take is about 5.5 hours.
7935  * It *can* take longer if the device is really slow respond to
7936  * zio_trim() commands or it contains more than 200 metaslabs, or
7937  * metaslab sizes vary widely between top-level vdevs.
7938  */
7939 static uint64_t
7940 spa_min_trim_rate(spa_t *spa)
7941 {
7942         uint64_t smallest_ms_sz = UINT64_MAX;
7943 
7944         /* find the smallest metaslab */
7945         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7946         for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7947                 smallest_ms_sz = MIN(smallest_ms_sz,
7948                     spa->spa_root_vdev->vdev_child[i]->vdev_ms[0]->ms_size);
7949         }
7950         spa_config_exit(spa, SCL_CONFIG, FTAG);
7951         VERIFY(smallest_ms_sz != 0);
7952 
7953         /* minimum TRIM rate is 1/100th of the smallest metaslab size */
7954         return (smallest_ms_sz / 100);
7955 }