1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
  26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  27  * Copyright 2013 Saso Kiselkov. All rights reserved.
  28  * Copyright (c) 2014 Integros [integros.com]
  29  * Copyright 2016 Toomas Soome <tsoome@me.com>
  30  * Copyright 2017 Joyent, Inc.
  31  * Copyright (c) 2017 Datto Inc.
  32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
  33  */
  34 
  35 /*
  36  * SPA: Storage Pool Allocator
  37  *
  38  * This file contains all the routines used when modifying on-disk SPA state.
  39  * This includes opening, importing, destroying, exporting a pool, and syncing a
  40  * pool.
  41  */
  42 
  43 #include <sys/zfs_context.h>
  44 #include <sys/fm/fs/zfs.h>
  45 #include <sys/spa_impl.h>
  46 #include <sys/zio.h>
  47 #include <sys/zio_checksum.h>
  48 #include <sys/dmu.h>
  49 #include <sys/dmu_tx.h>
  50 #include <sys/zap.h>
  51 #include <sys/zil.h>
  52 #include <sys/ddt.h>
  53 #include <sys/vdev_impl.h>
  54 #include <sys/vdev_removal.h>
  55 #include <sys/vdev_indirect_mapping.h>
  56 #include <sys/vdev_indirect_births.h>
  57 #include <sys/metaslab.h>
  58 #include <sys/metaslab_impl.h>
  59 #include <sys/uberblock_impl.h>
  60 #include <sys/txg.h>
  61 #include <sys/avl.h>
  62 #include <sys/bpobj.h>
  63 #include <sys/dmu_traverse.h>
  64 #include <sys/dmu_objset.h>
  65 #include <sys/unique.h>
  66 #include <sys/dsl_pool.h>
  67 #include <sys/dsl_dataset.h>
  68 #include <sys/dsl_dir.h>
  69 #include <sys/dsl_prop.h>
  70 #include <sys/dsl_synctask.h>
  71 #include <sys/fs/zfs.h>
  72 #include <sys/arc.h>
  73 #include <sys/callb.h>
  74 #include <sys/systeminfo.h>
  75 #include <sys/spa_boot.h>
  76 #include <sys/zfs_ioctl.h>
  77 #include <sys/dsl_scan.h>
  78 #include <sys/zfeature.h>
  79 #include <sys/dsl_destroy.h>
  80 #include <sys/abd.h>
  81 
  82 #ifdef  _KERNEL
  83 #include <sys/bootprops.h>
  84 #include <sys/callb.h>
  85 #include <sys/cpupart.h>
  86 #include <sys/pool.h>
  87 #include <sys/sysdc.h>
  88 #include <sys/zone.h>
  89 #endif  /* _KERNEL */
  90 
  91 #include "zfs_prop.h"
  92 #include "zfs_comutil.h"
  93 
  94 /*
  95  * The interval, in seconds, at which failed configuration cache file writes
  96  * should be retried.
  97  */
  98 int zfs_ccw_retry_interval = 300;
  99 
 100 typedef enum zti_modes {
 101         ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
 102         ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
 103         ZTI_MODE_NULL,                  /* don't create a taskq */
 104         ZTI_NMODES
 105 } zti_modes_t;
 106 
 107 #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
 108 #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
 109 #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
 110 
 111 #define ZTI_N(n)        ZTI_P(n, 1)
 112 #define ZTI_ONE         ZTI_N(1)
 113 
 114 typedef struct zio_taskq_info {
 115         zti_modes_t zti_mode;
 116         uint_t zti_value;
 117         uint_t zti_count;
 118 } zio_taskq_info_t;
 119 
 120 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 121         "issue", "issue_high", "intr", "intr_high"
 122 };
 123 
 124 /*
 125  * This table defines the taskq settings for each ZFS I/O type. When
 126  * initializing a pool, we use this table to create an appropriately sized
 127  * taskq. Some operations are low volume and therefore have a small, static
 128  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 129  * macros. Other operations process a large amount of data; the ZTI_BATCH
 130  * macro causes us to create a taskq oriented for throughput. Some operations
 131  * are so high frequency and short-lived that the taskq itself can become a a
 132  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 133  * additional degree of parallelism specified by the number of threads per-
 134  * taskq and the number of taskqs; when dispatching an event in this case, the
 135  * particular taskq is chosen at random.
 136  *
 137  * The different taskq priorities are to handle the different contexts (issue
 138  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 139  * need to be handled with minimum delay.
 140  */
 141 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 142         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 143         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 144         { ZTI_N(8),     ZTI_NULL,       ZTI_P(12, 8),   ZTI_NULL }, /* READ */
 145         { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 146         { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 147         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 148         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 149 };
 150 
 151 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 152 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 153 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 154 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport,
 155     boolean_t reloading);
 156 static void spa_vdev_resilver_done(spa_t *spa);
 157 
 158 uint_t          zio_taskq_batch_pct = 75;       /* 1 thread per cpu in pset */
 159 id_t            zio_taskq_psrset_bind = PS_NONE;
 160 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 161 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 162 
 163 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 164 extern int      zfs_sync_pass_deferred_free;
 165 
 166 /*
 167  * Report any spa_load_verify errors found, but do not fail spa_load.
 168  * This is used by zdb to analyze non-idle pools.
 169  */
 170 boolean_t       spa_load_verify_dryrun = B_FALSE;
 171 
 172 /*
 173  * This (illegal) pool name is used when temporarily importing a spa_t in order
 174  * to get the vdev stats associated with the imported devices.
 175  */
 176 #define TRYIMPORT_NAME  "$import"
 177 
 178 /*
 179  * For debugging purposes: print out vdev tree during pool import.
 180  */
 181 boolean_t       spa_load_print_vdev_tree = B_FALSE;
 182 
 183 /*
 184  * A non-zero value for zfs_max_missing_tvds means that we allow importing
 185  * pools with missing top-level vdevs. This is strictly intended for advanced
 186  * pool recovery cases since missing data is almost inevitable. Pools with
 187  * missing devices can only be imported read-only for safety reasons, and their
 188  * fail-mode will be automatically set to "continue".
 189  *
 190  * With 1 missing vdev we should be able to import the pool and mount all
 191  * datasets. User data that was not modified after the missing device has been
 192  * added should be recoverable. This means that snapshots created prior to the
 193  * addition of that device should be completely intact.
 194  *
 195  * With 2 missing vdevs, some datasets may fail to mount since there are
 196  * dataset statistics that are stored as regular metadata. Some data might be
 197  * recoverable if those vdevs were added recently.
 198  *
 199  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
 200  * may be missing entirely. Chances of data recovery are very low. Note that
 201  * there are also risks of performing an inadvertent rewind as we might be
 202  * missing all the vdevs with the latest uberblocks.
 203  */
 204 uint64_t        zfs_max_missing_tvds = 0;
 205 
 206 /*
 207  * The parameters below are similar to zfs_max_missing_tvds but are only
 208  * intended for a preliminary open of the pool with an untrusted config which
 209  * might be incomplete or out-dated.
 210  *
 211  * We are more tolerant for pools opened from a cachefile since we could have
 212  * an out-dated cachefile where a device removal was not registered.
 213  * We could have set the limit arbitrarily high but in the case where devices
 214  * are really missing we would want to return the proper error codes; we chose
 215  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
 216  * and we get a chance to retrieve the trusted config.
 217  */
 218 uint64_t        zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
 219 /*
 220  * In the case where config was assembled by scanning device paths (/dev/dsks
 221  * by default) we are less tolerant since all the existing devices should have
 222  * been detected and we want spa_load to return the right error codes.
 223  */
 224 uint64_t        zfs_max_missing_tvds_scan = 0;
 225 
 226 /*
 227  * ==========================================================================
 228  * SPA properties routines
 229  * ==========================================================================
 230  */
 231 
 232 /*
 233  * Add a (source=src, propname=propval) list to an nvlist.
 234  */
 235 static void
 236 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 237     uint64_t intval, zprop_source_t src)
 238 {
 239         const char *propname = zpool_prop_to_name(prop);
 240         nvlist_t *propval;
 241 
 242         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 243         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 244 
 245         if (strval != NULL)
 246                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 247         else
 248                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 249 
 250         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 251         nvlist_free(propval);
 252 }
 253 
 254 /*
 255  * Get property values from the spa configuration.
 256  */
 257 static void
 258 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 259 {
 260         vdev_t *rvd = spa->spa_root_vdev;
 261         dsl_pool_t *pool = spa->spa_dsl_pool;
 262         uint64_t size, alloc, cap, version;
 263         zprop_source_t src = ZPROP_SRC_NONE;
 264         spa_config_dirent_t *dp;
 265         metaslab_class_t *mc = spa_normal_class(spa);
 266 
 267         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 268 
 269         if (rvd != NULL) {
 270                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 271                 size = metaslab_class_get_space(spa_normal_class(spa));
 272                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 273                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 274                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 275                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 276                     size - alloc, src);
 277 
 278                 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
 279                     metaslab_class_fragmentation(mc), src);
 280                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
 281                     metaslab_class_expandable_space(mc), src);
 282                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 283                     (spa_mode(spa) == FREAD), src);
 284 
 285                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 286                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 287 
 288                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 289                     ddt_get_pool_dedup_ratio(spa), src);
 290 
 291                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 292                     rvd->vdev_state, src);
 293 
 294                 version = spa_version(spa);
 295                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 296                         src = ZPROP_SRC_DEFAULT;
 297                 else
 298                         src = ZPROP_SRC_LOCAL;
 299                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 300         }
 301 
 302         if (pool != NULL) {
 303                 /*
 304                  * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 305                  * when opening pools before this version freedir will be NULL.
 306                  */
 307                 if (pool->dp_free_dir != NULL) {
 308                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 309                             dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
 310                             src);
 311                 } else {
 312                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 313                             NULL, 0, src);
 314                 }
 315 
 316                 if (pool->dp_leak_dir != NULL) {
 317                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
 318                             dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
 319                             src);
 320                 } else {
 321                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
 322                             NULL, 0, src);
 323                 }
 324         }
 325 
 326         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 327 
 328         if (spa->spa_comment != NULL) {
 329                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 330                     0, ZPROP_SRC_LOCAL);
 331         }
 332 
 333         if (spa->spa_root != NULL)
 334                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 335                     0, ZPROP_SRC_LOCAL);
 336 
 337         if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
 338                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 339                     MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
 340         } else {
 341                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 342                     SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
 343         }
 344 
 345         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 346                 if (dp->scd_path == NULL) {
 347                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 348                             "none", 0, ZPROP_SRC_LOCAL);
 349                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 350                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 351                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 352                 }
 353         }
 354 }
 355 
 356 /*
 357  * Get zpool property values.
 358  */
 359 int
 360 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 361 {
 362         objset_t *mos = spa->spa_meta_objset;
 363         zap_cursor_t zc;
 364         zap_attribute_t za;
 365         int err;
 366 
 367         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 368 
 369         mutex_enter(&spa->spa_props_lock);
 370 
 371         /*
 372          * Get properties from the spa config.
 373          */
 374         spa_prop_get_config(spa, nvp);
 375 
 376         /* If no pool property object, no more prop to get. */
 377         if (mos == NULL || spa->spa_pool_props_object == 0) {
 378                 mutex_exit(&spa->spa_props_lock);
 379                 return (0);
 380         }
 381 
 382         /*
 383          * Get properties from the MOS pool property object.
 384          */
 385         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 386             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 387             zap_cursor_advance(&zc)) {
 388                 uint64_t intval = 0;
 389                 char *strval = NULL;
 390                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 391                 zpool_prop_t prop;
 392 
 393                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
 394                         continue;
 395 
 396                 switch (za.za_integer_length) {
 397                 case 8:
 398                         /* integer property */
 399                         if (za.za_first_integer !=
 400                             zpool_prop_default_numeric(prop))
 401                                 src = ZPROP_SRC_LOCAL;
 402 
 403                         if (prop == ZPOOL_PROP_BOOTFS) {
 404                                 dsl_pool_t *dp;
 405                                 dsl_dataset_t *ds = NULL;
 406 
 407                                 dp = spa_get_dsl(spa);
 408                                 dsl_pool_config_enter(dp, FTAG);
 409                                 if (err = dsl_dataset_hold_obj(dp,
 410                                     za.za_first_integer, FTAG, &ds)) {
 411                                         dsl_pool_config_exit(dp, FTAG);
 412                                         break;
 413                                 }
 414 
 415                                 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
 416                                     KM_SLEEP);
 417                                 dsl_dataset_name(ds, strval);
 418                                 dsl_dataset_rele(ds, FTAG);
 419                                 dsl_pool_config_exit(dp, FTAG);
 420                         } else {
 421                                 strval = NULL;
 422                                 intval = za.za_first_integer;
 423                         }
 424 
 425                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 426 
 427                         if (strval != NULL)
 428                                 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
 429 
 430                         break;
 431 
 432                 case 1:
 433                         /* string property */
 434                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 435                         err = zap_lookup(mos, spa->spa_pool_props_object,
 436                             za.za_name, 1, za.za_num_integers, strval);
 437                         if (err) {
 438                                 kmem_free(strval, za.za_num_integers);
 439                                 break;
 440                         }
 441                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 442                         kmem_free(strval, za.za_num_integers);
 443                         break;
 444 
 445                 default:
 446                         break;
 447                 }
 448         }
 449         zap_cursor_fini(&zc);
 450         mutex_exit(&spa->spa_props_lock);
 451 out:
 452         if (err && err != ENOENT) {
 453                 nvlist_free(*nvp);
 454                 *nvp = NULL;
 455                 return (err);
 456         }
 457 
 458         return (0);
 459 }
 460 
 461 /*
 462  * Validate the given pool properties nvlist and modify the list
 463  * for the property values to be set.
 464  */
 465 static int
 466 spa_prop_validate(spa_t *spa, nvlist_t *props)
 467 {
 468         nvpair_t *elem;
 469         int error = 0, reset_bootfs = 0;
 470         uint64_t objnum = 0;
 471         boolean_t has_feature = B_FALSE;
 472 
 473         elem = NULL;
 474         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 475                 uint64_t intval;
 476                 char *strval, *slash, *check, *fname;
 477                 const char *propname = nvpair_name(elem);
 478                 zpool_prop_t prop = zpool_name_to_prop(propname);
 479 
 480                 switch (prop) {
 481                 case ZPOOL_PROP_INVAL:
 482                         if (!zpool_prop_feature(propname)) {
 483                                 error = SET_ERROR(EINVAL);
 484                                 break;
 485                         }
 486 
 487                         /*
 488                          * Sanitize the input.
 489                          */
 490                         if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 491                                 error = SET_ERROR(EINVAL);
 492                                 break;
 493                         }
 494 
 495                         if (nvpair_value_uint64(elem, &intval) != 0) {
 496                                 error = SET_ERROR(EINVAL);
 497                                 break;
 498                         }
 499 
 500                         if (intval != 0) {
 501                                 error = SET_ERROR(EINVAL);
 502                                 break;
 503                         }
 504 
 505                         fname = strchr(propname, '@') + 1;
 506                         if (zfeature_lookup_name(fname, NULL) != 0) {
 507                                 error = SET_ERROR(EINVAL);
 508                                 break;
 509                         }
 510 
 511                         has_feature = B_TRUE;
 512                         break;
 513 
 514                 case ZPOOL_PROP_VERSION:
 515                         error = nvpair_value_uint64(elem, &intval);
 516                         if (!error &&
 517                             (intval < spa_version(spa) ||
 518                             intval > SPA_VERSION_BEFORE_FEATURES ||
 519                             has_feature))
 520                                 error = SET_ERROR(EINVAL);
 521                         break;
 522 
 523                 case ZPOOL_PROP_DELEGATION:
 524                 case ZPOOL_PROP_AUTOREPLACE:
 525                 case ZPOOL_PROP_LISTSNAPS:
 526                 case ZPOOL_PROP_AUTOEXPAND:
 527                         error = nvpair_value_uint64(elem, &intval);
 528                         if (!error && intval > 1)
 529                                 error = SET_ERROR(EINVAL);
 530                         break;
 531 
 532                 case ZPOOL_PROP_BOOTFS:
 533                         /*
 534                          * If the pool version is less than SPA_VERSION_BOOTFS,
 535                          * or the pool is still being created (version == 0),
 536                          * the bootfs property cannot be set.
 537                          */
 538                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 539                                 error = SET_ERROR(ENOTSUP);
 540                                 break;
 541                         }
 542 
 543                         /*
 544                          * Make sure the vdev config is bootable
 545                          */
 546                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 547                                 error = SET_ERROR(ENOTSUP);
 548                                 break;
 549                         }
 550 
 551                         reset_bootfs = 1;
 552 
 553                         error = nvpair_value_string(elem, &strval);
 554 
 555                         if (!error) {
 556                                 objset_t *os;
 557                                 uint64_t propval;
 558 
 559                                 if (strval == NULL || strval[0] == '\0') {
 560                                         objnum = zpool_prop_default_numeric(
 561                                             ZPOOL_PROP_BOOTFS);
 562                                         break;
 563                                 }
 564 
 565                                 if (error = dmu_objset_hold(strval, FTAG, &os))
 566                                         break;
 567 
 568                                 /*
 569                                  * Must be ZPL, and its property settings
 570                                  * must be supported by GRUB (compression
 571                                  * is not gzip, and large blocks are not used).
 572                                  */
 573 
 574                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 575                                         error = SET_ERROR(ENOTSUP);
 576                                 } else if ((error =
 577                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 578                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 579                                     &propval)) == 0 &&
 580                                     !BOOTFS_COMPRESS_VALID(propval)) {
 581                                         error = SET_ERROR(ENOTSUP);
 582                                 } else {
 583                                         objnum = dmu_objset_id(os);
 584                                 }
 585                                 dmu_objset_rele(os, FTAG);
 586                         }
 587                         break;
 588 
 589                 case ZPOOL_PROP_FAILUREMODE:
 590                         error = nvpair_value_uint64(elem, &intval);
 591                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 592                             intval > ZIO_FAILURE_MODE_PANIC))
 593                                 error = SET_ERROR(EINVAL);
 594 
 595                         /*
 596                          * This is a special case which only occurs when
 597                          * the pool has completely failed. This allows
 598                          * the user to change the in-core failmode property
 599                          * without syncing it out to disk (I/Os might
 600                          * currently be blocked). We do this by returning
 601                          * EIO to the caller (spa_prop_set) to trick it
 602                          * into thinking we encountered a property validation
 603                          * error.
 604                          */
 605                         if (!error && spa_suspended(spa)) {
 606                                 spa->spa_failmode = intval;
 607                                 error = SET_ERROR(EIO);
 608                         }
 609                         break;
 610 
 611                 case ZPOOL_PROP_CACHEFILE:
 612                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 613                                 break;
 614 
 615                         if (strval[0] == '\0')
 616                                 break;
 617 
 618                         if (strcmp(strval, "none") == 0)
 619                                 break;
 620 
 621                         if (strval[0] != '/') {
 622                                 error = SET_ERROR(EINVAL);
 623                                 break;
 624                         }
 625 
 626                         slash = strrchr(strval, '/');
 627                         ASSERT(slash != NULL);
 628 
 629                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 630                             strcmp(slash, "/..") == 0)
 631                                 error = SET_ERROR(EINVAL);
 632                         break;
 633 
 634                 case ZPOOL_PROP_COMMENT:
 635                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 636                                 break;
 637                         for (check = strval; *check != '\0'; check++) {
 638                                 /*
 639                                  * The kernel doesn't have an easy isprint()
 640                                  * check.  For this kernel check, we merely
 641                                  * check ASCII apart from DEL.  Fix this if
 642                                  * there is an easy-to-use kernel isprint().
 643                                  */
 644                                 if (*check >= 0x7f) {
 645                                         error = SET_ERROR(EINVAL);
 646                                         break;
 647                                 }
 648                         }
 649                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 650                                 error = E2BIG;
 651                         break;
 652 
 653                 case ZPOOL_PROP_DEDUPDITTO:
 654                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 655                                 error = SET_ERROR(ENOTSUP);
 656                         else
 657                                 error = nvpair_value_uint64(elem, &intval);
 658                         if (error == 0 &&
 659                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 660                                 error = SET_ERROR(EINVAL);
 661                         break;
 662                 }
 663 
 664                 if (error)
 665                         break;
 666         }
 667 
 668         if (!error && reset_bootfs) {
 669                 error = nvlist_remove(props,
 670                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 671 
 672                 if (!error) {
 673                         error = nvlist_add_uint64(props,
 674                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 675                 }
 676         }
 677 
 678         return (error);
 679 }
 680 
 681 void
 682 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 683 {
 684         char *cachefile;
 685         spa_config_dirent_t *dp;
 686 
 687         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 688             &cachefile) != 0)
 689                 return;
 690 
 691         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 692             KM_SLEEP);
 693 
 694         if (cachefile[0] == '\0')
 695                 dp->scd_path = spa_strdup(spa_config_path);
 696         else if (strcmp(cachefile, "none") == 0)
 697                 dp->scd_path = NULL;
 698         else
 699                 dp->scd_path = spa_strdup(cachefile);
 700 
 701         list_insert_head(&spa->spa_config_list, dp);
 702         if (need_sync)
 703                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 704 }
 705 
 706 int
 707 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 708 {
 709         int error;
 710         nvpair_t *elem = NULL;
 711         boolean_t need_sync = B_FALSE;
 712 
 713         if ((error = spa_prop_validate(spa, nvp)) != 0)
 714                 return (error);
 715 
 716         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 717                 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 718 
 719                 if (prop == ZPOOL_PROP_CACHEFILE ||
 720                     prop == ZPOOL_PROP_ALTROOT ||
 721                     prop == ZPOOL_PROP_READONLY)
 722                         continue;
 723 
 724                 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
 725                         uint64_t ver;
 726 
 727                         if (prop == ZPOOL_PROP_VERSION) {
 728                                 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 729                         } else {
 730                                 ASSERT(zpool_prop_feature(nvpair_name(elem)));
 731                                 ver = SPA_VERSION_FEATURES;
 732                                 need_sync = B_TRUE;
 733                         }
 734 
 735                         /* Save time if the version is already set. */
 736                         if (ver == spa_version(spa))
 737                                 continue;
 738 
 739                         /*
 740                          * In addition to the pool directory object, we might
 741                          * create the pool properties object, the features for
 742                          * read object, the features for write object, or the
 743                          * feature descriptions object.
 744                          */
 745                         error = dsl_sync_task(spa->spa_name, NULL,
 746                             spa_sync_version, &ver,
 747                             6, ZFS_SPACE_CHECK_RESERVED);
 748                         if (error)
 749                                 return (error);
 750                         continue;
 751                 }
 752 
 753                 need_sync = B_TRUE;
 754                 break;
 755         }
 756 
 757         if (need_sync) {
 758                 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 759                     nvp, 6, ZFS_SPACE_CHECK_RESERVED));
 760         }
 761 
 762         return (0);
 763 }
 764 
 765 /*
 766  * If the bootfs property value is dsobj, clear it.
 767  */
 768 void
 769 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 770 {
 771         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 772                 VERIFY(zap_remove(spa->spa_meta_objset,
 773                     spa->spa_pool_props_object,
 774                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 775                 spa->spa_bootfs = 0;
 776         }
 777 }
 778 
 779 /*ARGSUSED*/
 780 static int
 781 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 782 {
 783         uint64_t *newguid = arg;
 784         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 785         vdev_t *rvd = spa->spa_root_vdev;
 786         uint64_t vdev_state;
 787 
 788         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 789         vdev_state = rvd->vdev_state;
 790         spa_config_exit(spa, SCL_STATE, FTAG);
 791 
 792         if (vdev_state != VDEV_STATE_HEALTHY)
 793                 return (SET_ERROR(ENXIO));
 794 
 795         ASSERT3U(spa_guid(spa), !=, *newguid);
 796 
 797         return (0);
 798 }
 799 
 800 static void
 801 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 802 {
 803         uint64_t *newguid = arg;
 804         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 805         uint64_t oldguid;
 806         vdev_t *rvd = spa->spa_root_vdev;
 807 
 808         oldguid = spa_guid(spa);
 809 
 810         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 811         rvd->vdev_guid = *newguid;
 812         rvd->vdev_guid_sum += (*newguid - oldguid);
 813         vdev_config_dirty(rvd);
 814         spa_config_exit(spa, SCL_STATE, FTAG);
 815 
 816         spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 817             oldguid, *newguid);
 818 }
 819 
 820 /*
 821  * Change the GUID for the pool.  This is done so that we can later
 822  * re-import a pool built from a clone of our own vdevs.  We will modify
 823  * the root vdev's guid, our own pool guid, and then mark all of our
 824  * vdevs dirty.  Note that we must make sure that all our vdevs are
 825  * online when we do this, or else any vdevs that weren't present
 826  * would be orphaned from our pool.  We are also going to issue a
 827  * sysevent to update any watchers.
 828  */
 829 int
 830 spa_change_guid(spa_t *spa)
 831 {
 832         int error;
 833         uint64_t guid;
 834 
 835         mutex_enter(&spa->spa_vdev_top_lock);
 836         mutex_enter(&spa_namespace_lock);
 837         guid = spa_generate_guid(NULL);
 838 
 839         error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 840             spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
 841 
 842         if (error == 0) {
 843                 spa_write_cachefile(spa, B_FALSE, B_TRUE);
 844                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
 845         }
 846 
 847         mutex_exit(&spa_namespace_lock);
 848         mutex_exit(&spa->spa_vdev_top_lock);
 849 
 850         return (error);
 851 }
 852 
 853 /*
 854  * ==========================================================================
 855  * SPA state manipulation (open/create/destroy/import/export)
 856  * ==========================================================================
 857  */
 858 
 859 static int
 860 spa_error_entry_compare(const void *a, const void *b)
 861 {
 862         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 863         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 864         int ret;
 865 
 866         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 867             sizeof (zbookmark_phys_t));
 868 
 869         if (ret < 0)
 870                 return (-1);
 871         else if (ret > 0)
 872                 return (1);
 873         else
 874                 return (0);
 875 }
 876 
 877 /*
 878  * Utility function which retrieves copies of the current logs and
 879  * re-initializes them in the process.
 880  */
 881 void
 882 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 883 {
 884         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 885 
 886         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 887         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 888 
 889         avl_create(&spa->spa_errlist_scrub,
 890             spa_error_entry_compare, sizeof (spa_error_entry_t),
 891             offsetof(spa_error_entry_t, se_avl));
 892         avl_create(&spa->spa_errlist_last,
 893             spa_error_entry_compare, sizeof (spa_error_entry_t),
 894             offsetof(spa_error_entry_t, se_avl));
 895 }
 896 
 897 static void
 898 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 899 {
 900         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 901         enum zti_modes mode = ztip->zti_mode;
 902         uint_t value = ztip->zti_value;
 903         uint_t count = ztip->zti_count;
 904         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 905         char name[32];
 906         uint_t flags = 0;
 907         boolean_t batch = B_FALSE;
 908 
 909         if (mode == ZTI_MODE_NULL) {
 910                 tqs->stqs_count = 0;
 911                 tqs->stqs_taskq = NULL;
 912                 return;
 913         }
 914 
 915         ASSERT3U(count, >, 0);
 916 
 917         tqs->stqs_count = count;
 918         tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 919 
 920         switch (mode) {
 921         case ZTI_MODE_FIXED:
 922                 ASSERT3U(value, >=, 1);
 923                 value = MAX(value, 1);
 924                 break;
 925 
 926         case ZTI_MODE_BATCH:
 927                 batch = B_TRUE;
 928                 flags |= TASKQ_THREADS_CPU_PCT;
 929                 value = zio_taskq_batch_pct;
 930                 break;
 931 
 932         default:
 933                 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 934                     "spa_activate()",
 935                     zio_type_name[t], zio_taskq_types[q], mode, value);
 936                 break;
 937         }
 938 
 939         for (uint_t i = 0; i < count; i++) {
 940                 taskq_t *tq;
 941 
 942                 if (count > 1) {
 943                         (void) snprintf(name, sizeof (name), "%s_%s_%u",
 944                             zio_type_name[t], zio_taskq_types[q], i);
 945                 } else {
 946                         (void) snprintf(name, sizeof (name), "%s_%s",
 947                             zio_type_name[t], zio_taskq_types[q]);
 948                 }
 949 
 950                 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 951                         if (batch)
 952                                 flags |= TASKQ_DC_BATCH;
 953 
 954                         tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 955                             spa->spa_proc, zio_taskq_basedc, flags);
 956                 } else {
 957                         pri_t pri = maxclsyspri;
 958                         /*
 959                          * The write issue taskq can be extremely CPU
 960                          * intensive.  Run it at slightly lower priority
 961                          * than the other taskqs.
 962                          */
 963                         if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
 964                                 pri--;
 965 
 966                         tq = taskq_create_proc(name, value, pri, 50,
 967                             INT_MAX, spa->spa_proc, flags);
 968                 }
 969 
 970                 tqs->stqs_taskq[i] = tq;
 971         }
 972 }
 973 
 974 static void
 975 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 976 {
 977         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 978 
 979         if (tqs->stqs_taskq == NULL) {
 980                 ASSERT0(tqs->stqs_count);
 981                 return;
 982         }
 983 
 984         for (uint_t i = 0; i < tqs->stqs_count; i++) {
 985                 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
 986                 taskq_destroy(tqs->stqs_taskq[i]);
 987         }
 988 
 989         kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
 990         tqs->stqs_taskq = NULL;
 991 }
 992 
 993 /*
 994  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
 995  * Note that a type may have multiple discrete taskqs to avoid lock contention
 996  * on the taskq itself. In that case we choose which taskq at random by using
 997  * the low bits of gethrtime().
 998  */
 999 void
1000 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1001     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1002 {
1003         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1004         taskq_t *tq;
1005 
1006         ASSERT3P(tqs->stqs_taskq, !=, NULL);
1007         ASSERT3U(tqs->stqs_count, !=, 0);
1008 
1009         if (tqs->stqs_count == 1) {
1010                 tq = tqs->stqs_taskq[0];
1011         } else {
1012                 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1013         }
1014 
1015         taskq_dispatch_ent(tq, func, arg, flags, ent);
1016 }
1017 
1018 static void
1019 spa_create_zio_taskqs(spa_t *spa)
1020 {
1021         for (int t = 0; t < ZIO_TYPES; t++) {
1022                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1023                         spa_taskqs_init(spa, t, q);
1024                 }
1025         }
1026 }
1027 
1028 #ifdef _KERNEL
1029 static void
1030 spa_thread(void *arg)
1031 {
1032         callb_cpr_t cprinfo;
1033 
1034         spa_t *spa = arg;
1035         user_t *pu = PTOU(curproc);
1036 
1037         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1038             spa->spa_name);
1039 
1040         ASSERT(curproc != &p0);
1041         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1042             "zpool-%s", spa->spa_name);
1043         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1044 
1045         /* bind this thread to the requested psrset */
1046         if (zio_taskq_psrset_bind != PS_NONE) {
1047                 pool_lock();
1048                 mutex_enter(&cpu_lock);
1049                 mutex_enter(&pidlock);
1050                 mutex_enter(&curproc->p_lock);
1051 
1052                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1053                     0, NULL, NULL) == 0)  {
1054                         curthread->t_bind_pset = zio_taskq_psrset_bind;
1055                 } else {
1056                         cmn_err(CE_WARN,
1057                             "Couldn't bind process for zfs pool \"%s\" to "
1058                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1059                 }
1060 
1061                 mutex_exit(&curproc->p_lock);
1062                 mutex_exit(&pidlock);
1063                 mutex_exit(&cpu_lock);
1064                 pool_unlock();
1065         }
1066 
1067         if (zio_taskq_sysdc) {
1068                 sysdc_thread_enter(curthread, 100, 0);
1069         }
1070 
1071         spa->spa_proc = curproc;
1072         spa->spa_did = curthread->t_did;
1073 
1074         spa_create_zio_taskqs(spa);
1075 
1076         mutex_enter(&spa->spa_proc_lock);
1077         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1078 
1079         spa->spa_proc_state = SPA_PROC_ACTIVE;
1080         cv_broadcast(&spa->spa_proc_cv);
1081 
1082         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1083         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1084                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1085         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1086 
1087         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1088         spa->spa_proc_state = SPA_PROC_GONE;
1089         spa->spa_proc = &p0;
1090         cv_broadcast(&spa->spa_proc_cv);
1091         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
1092 
1093         mutex_enter(&curproc->p_lock);
1094         lwp_exit();
1095 }
1096 #endif
1097 
1098 /*
1099  * Activate an uninitialized pool.
1100  */
1101 static void
1102 spa_activate(spa_t *spa, int mode)
1103 {
1104         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1105 
1106         spa->spa_state = POOL_STATE_ACTIVE;
1107         spa->spa_mode = mode;
1108 
1109         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1110         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1111 
1112         /* Try to create a covering process */
1113         mutex_enter(&spa->spa_proc_lock);
1114         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1115         ASSERT(spa->spa_proc == &p0);
1116         spa->spa_did = 0;
1117 
1118         /* Only create a process if we're going to be around a while. */
1119         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1120                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1121                     NULL, 0) == 0) {
1122                         spa->spa_proc_state = SPA_PROC_CREATED;
1123                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
1124                                 cv_wait(&spa->spa_proc_cv,
1125                                     &spa->spa_proc_lock);
1126                         }
1127                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1128                         ASSERT(spa->spa_proc != &p0);
1129                         ASSERT(spa->spa_did != 0);
1130                 } else {
1131 #ifdef _KERNEL
1132                         cmn_err(CE_WARN,
1133                             "Couldn't create process for zfs pool \"%s\"\n",
1134                             spa->spa_name);
1135 #endif
1136                 }
1137         }
1138         mutex_exit(&spa->spa_proc_lock);
1139 
1140         /* If we didn't create a process, we need to create our taskqs. */
1141         if (spa->spa_proc == &p0) {
1142                 spa_create_zio_taskqs(spa);
1143         }
1144 
1145         for (size_t i = 0; i < TXG_SIZE; i++)
1146                 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1147 
1148         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1149             offsetof(vdev_t, vdev_config_dirty_node));
1150         list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1151             offsetof(objset_t, os_evicting_node));
1152         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1153             offsetof(vdev_t, vdev_state_dirty_node));
1154 
1155         txg_list_create(&spa->spa_vdev_txg_list, spa,
1156             offsetof(struct vdev, vdev_txg_node));
1157 
1158         avl_create(&spa->spa_errlist_scrub,
1159             spa_error_entry_compare, sizeof (spa_error_entry_t),
1160             offsetof(spa_error_entry_t, se_avl));
1161         avl_create(&spa->spa_errlist_last,
1162             spa_error_entry_compare, sizeof (spa_error_entry_t),
1163             offsetof(spa_error_entry_t, se_avl));
1164 }
1165 
1166 /*
1167  * Opposite of spa_activate().
1168  */
1169 static void
1170 spa_deactivate(spa_t *spa)
1171 {
1172         ASSERT(spa->spa_sync_on == B_FALSE);
1173         ASSERT(spa->spa_dsl_pool == NULL);
1174         ASSERT(spa->spa_root_vdev == NULL);
1175         ASSERT(spa->spa_async_zio_root == NULL);
1176         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1177 
1178         spa_evicting_os_wait(spa);
1179 
1180         txg_list_destroy(&spa->spa_vdev_txg_list);
1181 
1182         list_destroy(&spa->spa_config_dirty_list);
1183         list_destroy(&spa->spa_evicting_os_list);
1184         list_destroy(&spa->spa_state_dirty_list);
1185 
1186         for (int t = 0; t < ZIO_TYPES; t++) {
1187                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1188                         spa_taskqs_fini(spa, t, q);
1189                 }
1190         }
1191 
1192         for (size_t i = 0; i < TXG_SIZE; i++) {
1193                 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1194                 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1195                 spa->spa_txg_zio[i] = NULL;
1196         }
1197 
1198         metaslab_class_destroy(spa->spa_normal_class);
1199         spa->spa_normal_class = NULL;
1200 
1201         metaslab_class_destroy(spa->spa_log_class);
1202         spa->spa_log_class = NULL;
1203 
1204         /*
1205          * If this was part of an import or the open otherwise failed, we may
1206          * still have errors left in the queues.  Empty them just in case.
1207          */
1208         spa_errlog_drain(spa);
1209 
1210         avl_destroy(&spa->spa_errlist_scrub);
1211         avl_destroy(&spa->spa_errlist_last);
1212 
1213         spa->spa_state = POOL_STATE_UNINITIALIZED;
1214 
1215         mutex_enter(&spa->spa_proc_lock);
1216         if (spa->spa_proc_state != SPA_PROC_NONE) {
1217                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1218                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1219                 cv_broadcast(&spa->spa_proc_cv);
1220                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1221                         ASSERT(spa->spa_proc != &p0);
1222                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1223                 }
1224                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1225                 spa->spa_proc_state = SPA_PROC_NONE;
1226         }
1227         ASSERT(spa->spa_proc == &p0);
1228         mutex_exit(&spa->spa_proc_lock);
1229 
1230         /*
1231          * We want to make sure spa_thread() has actually exited the ZFS
1232          * module, so that the module can't be unloaded out from underneath
1233          * it.
1234          */
1235         if (spa->spa_did != 0) {
1236                 thread_join(spa->spa_did);
1237                 spa->spa_did = 0;
1238         }
1239 }
1240 
1241 /*
1242  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1243  * will create all the necessary vdevs in the appropriate layout, with each vdev
1244  * in the CLOSED state.  This will prep the pool before open/creation/import.
1245  * All vdev validation is done by the vdev_alloc() routine.
1246  */
1247 static int
1248 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1249     uint_t id, int atype)
1250 {
1251         nvlist_t **child;
1252         uint_t children;
1253         int error;
1254 
1255         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1256                 return (error);
1257 
1258         if ((*vdp)->vdev_ops->vdev_op_leaf)
1259                 return (0);
1260 
1261         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1262             &child, &children);
1263 
1264         if (error == ENOENT)
1265                 return (0);
1266 
1267         if (error) {
1268                 vdev_free(*vdp);
1269                 *vdp = NULL;
1270                 return (SET_ERROR(EINVAL));
1271         }
1272 
1273         for (int c = 0; c < children; c++) {
1274                 vdev_t *vd;
1275                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1276                     atype)) != 0) {
1277                         vdev_free(*vdp);
1278                         *vdp = NULL;
1279                         return (error);
1280                 }
1281         }
1282 
1283         ASSERT(*vdp != NULL);
1284 
1285         return (0);
1286 }
1287 
1288 /*
1289  * Opposite of spa_load().
1290  */
1291 static void
1292 spa_unload(spa_t *spa)
1293 {
1294         int i;
1295 
1296         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1297 
1298         spa_load_note(spa, "UNLOADING");
1299 
1300         /*
1301          * Stop async tasks.
1302          */
1303         spa_async_suspend(spa);
1304 
1305         /*
1306          * Stop syncing.
1307          */
1308         if (spa->spa_sync_on) {
1309                 txg_sync_stop(spa->spa_dsl_pool);
1310                 spa->spa_sync_on = B_FALSE;
1311         }
1312 
1313         /*
1314          * Even though vdev_free() also calls vdev_metaslab_fini, we need
1315          * to call it earlier, before we wait for async i/o to complete.
1316          * This ensures that there is no async metaslab prefetching, by
1317          * calling taskq_wait(mg_taskq).
1318          */
1319         if (spa->spa_root_vdev != NULL) {
1320                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1321                 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1322                         vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1323                 spa_config_exit(spa, SCL_ALL, FTAG);
1324         }
1325 
1326         /*
1327          * Wait for any outstanding async I/O to complete.
1328          */
1329         if (spa->spa_async_zio_root != NULL) {
1330                 for (int i = 0; i < max_ncpus; i++)
1331                         (void) zio_wait(spa->spa_async_zio_root[i]);
1332                 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1333                 spa->spa_async_zio_root = NULL;
1334         }
1335 
1336         if (spa->spa_vdev_removal != NULL) {
1337                 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1338                 spa->spa_vdev_removal = NULL;
1339         }
1340 
1341         if (spa->spa_condense_zthr != NULL) {
1342                 ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1343                 zthr_destroy(spa->spa_condense_zthr);
1344                 spa->spa_condense_zthr = NULL;
1345         }
1346 
1347         spa_condense_fini(spa);
1348 
1349         bpobj_close(&spa->spa_deferred_bpobj);
1350 
1351         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1352 
1353         /*
1354          * Close all vdevs.
1355          */
1356         if (spa->spa_root_vdev)
1357                 vdev_free(spa->spa_root_vdev);
1358         ASSERT(spa->spa_root_vdev == NULL);
1359 
1360         /*
1361          * Close the dsl pool.
1362          */
1363         if (spa->spa_dsl_pool) {
1364                 dsl_pool_close(spa->spa_dsl_pool);
1365                 spa->spa_dsl_pool = NULL;
1366                 spa->spa_meta_objset = NULL;
1367         }
1368 
1369         ddt_unload(spa);
1370 
1371         /*
1372          * Drop and purge level 2 cache
1373          */
1374         spa_l2cache_drop(spa);
1375 
1376         for (i = 0; i < spa->spa_spares.sav_count; i++)
1377                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1378         if (spa->spa_spares.sav_vdevs) {
1379                 kmem_free(spa->spa_spares.sav_vdevs,
1380                     spa->spa_spares.sav_count * sizeof (void *));
1381                 spa->spa_spares.sav_vdevs = NULL;
1382         }
1383         if (spa->spa_spares.sav_config) {
1384                 nvlist_free(spa->spa_spares.sav_config);
1385                 spa->spa_spares.sav_config = NULL;
1386         }
1387         spa->spa_spares.sav_count = 0;
1388 
1389         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1390                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1391                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1392         }
1393         if (spa->spa_l2cache.sav_vdevs) {
1394                 kmem_free(spa->spa_l2cache.sav_vdevs,
1395                     spa->spa_l2cache.sav_count * sizeof (void *));
1396                 spa->spa_l2cache.sav_vdevs = NULL;
1397         }
1398         if (spa->spa_l2cache.sav_config) {
1399                 nvlist_free(spa->spa_l2cache.sav_config);
1400                 spa->spa_l2cache.sav_config = NULL;
1401         }
1402         spa->spa_l2cache.sav_count = 0;
1403 
1404         spa->spa_async_suspended = 0;
1405 
1406         spa->spa_indirect_vdevs_loaded = B_FALSE;
1407 
1408         if (spa->spa_comment != NULL) {
1409                 spa_strfree(spa->spa_comment);
1410                 spa->spa_comment = NULL;
1411         }
1412 
1413         spa_config_exit(spa, SCL_ALL, FTAG);
1414 }
1415 
1416 /*
1417  * Load (or re-load) the current list of vdevs describing the active spares for
1418  * this pool.  When this is called, we have some form of basic information in
1419  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1420  * then re-generate a more complete list including status information.
1421  */
1422 void
1423 spa_load_spares(spa_t *spa)
1424 {
1425         nvlist_t **spares;
1426         uint_t nspares;
1427         int i;
1428         vdev_t *vd, *tvd;
1429 
1430         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1431 
1432         /*
1433          * First, close and free any existing spare vdevs.
1434          */
1435         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1436                 vd = spa->spa_spares.sav_vdevs[i];
1437 
1438                 /* Undo the call to spa_activate() below */
1439                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1440                     B_FALSE)) != NULL && tvd->vdev_isspare)
1441                         spa_spare_remove(tvd);
1442                 vdev_close(vd);
1443                 vdev_free(vd);
1444         }
1445 
1446         if (spa->spa_spares.sav_vdevs)
1447                 kmem_free(spa->spa_spares.sav_vdevs,
1448                     spa->spa_spares.sav_count * sizeof (void *));
1449 
1450         if (spa->spa_spares.sav_config == NULL)
1451                 nspares = 0;
1452         else
1453                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1454                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1455 
1456         spa->spa_spares.sav_count = (int)nspares;
1457         spa->spa_spares.sav_vdevs = NULL;
1458 
1459         if (nspares == 0)
1460                 return;
1461 
1462         /*
1463          * Construct the array of vdevs, opening them to get status in the
1464          * process.   For each spare, there is potentially two different vdev_t
1465          * structures associated with it: one in the list of spares (used only
1466          * for basic validation purposes) and one in the active vdev
1467          * configuration (if it's spared in).  During this phase we open and
1468          * validate each vdev on the spare list.  If the vdev also exists in the
1469          * active configuration, then we also mark this vdev as an active spare.
1470          */
1471         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1472             KM_SLEEP);
1473         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1474                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1475                     VDEV_ALLOC_SPARE) == 0);
1476                 ASSERT(vd != NULL);
1477 
1478                 spa->spa_spares.sav_vdevs[i] = vd;
1479 
1480                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1481                     B_FALSE)) != NULL) {
1482                         if (!tvd->vdev_isspare)
1483                                 spa_spare_add(tvd);
1484 
1485                         /*
1486                          * We only mark the spare active if we were successfully
1487                          * able to load the vdev.  Otherwise, importing a pool
1488                          * with a bad active spare would result in strange
1489                          * behavior, because multiple pool would think the spare
1490                          * is actively in use.
1491                          *
1492                          * There is a vulnerability here to an equally bizarre
1493                          * circumstance, where a dead active spare is later
1494                          * brought back to life (onlined or otherwise).  Given
1495                          * the rarity of this scenario, and the extra complexity
1496                          * it adds, we ignore the possibility.
1497                          */
1498                         if (!vdev_is_dead(tvd))
1499                                 spa_spare_activate(tvd);
1500                 }
1501 
1502                 vd->vdev_top = vd;
1503                 vd->vdev_aux = &spa->spa_spares;
1504 
1505                 if (vdev_open(vd) != 0)
1506                         continue;
1507 
1508                 if (vdev_validate_aux(vd) == 0)
1509                         spa_spare_add(vd);
1510         }
1511 
1512         /*
1513          * Recompute the stashed list of spares, with status information
1514          * this time.
1515          */
1516         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1517             DATA_TYPE_NVLIST_ARRAY) == 0);
1518 
1519         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1520             KM_SLEEP);
1521         for (i = 0; i < spa->spa_spares.sav_count; i++)
1522                 spares[i] = vdev_config_generate(spa,
1523                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1524         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1525             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1526         for (i = 0; i < spa->spa_spares.sav_count; i++)
1527                 nvlist_free(spares[i]);
1528         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1529 }
1530 
1531 /*
1532  * Load (or re-load) the current list of vdevs describing the active l2cache for
1533  * this pool.  When this is called, we have some form of basic information in
1534  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1535  * then re-generate a more complete list including status information.
1536  * Devices which are already active have their details maintained, and are
1537  * not re-opened.
1538  */
1539 void
1540 spa_load_l2cache(spa_t *spa)
1541 {
1542         nvlist_t **l2cache;
1543         uint_t nl2cache;
1544         int i, j, oldnvdevs;
1545         uint64_t guid;
1546         vdev_t *vd, **oldvdevs, **newvdevs;
1547         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1548 
1549         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1550 
1551         if (sav->sav_config != NULL) {
1552                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1553                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1554                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1555         } else {
1556                 nl2cache = 0;
1557                 newvdevs = NULL;
1558         }
1559 
1560         oldvdevs = sav->sav_vdevs;
1561         oldnvdevs = sav->sav_count;
1562         sav->sav_vdevs = NULL;
1563         sav->sav_count = 0;
1564 
1565         /*
1566          * Process new nvlist of vdevs.
1567          */
1568         for (i = 0; i < nl2cache; i++) {
1569                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1570                     &guid) == 0);
1571 
1572                 newvdevs[i] = NULL;
1573                 for (j = 0; j < oldnvdevs; j++) {
1574                         vd = oldvdevs[j];
1575                         if (vd != NULL && guid == vd->vdev_guid) {
1576                                 /*
1577                                  * Retain previous vdev for add/remove ops.
1578                                  */
1579                                 newvdevs[i] = vd;
1580                                 oldvdevs[j] = NULL;
1581                                 break;
1582                         }
1583                 }
1584 
1585                 if (newvdevs[i] == NULL) {
1586                         /*
1587                          * Create new vdev
1588                          */
1589                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1590                             VDEV_ALLOC_L2CACHE) == 0);
1591                         ASSERT(vd != NULL);
1592                         newvdevs[i] = vd;
1593 
1594                         /*
1595                          * Commit this vdev as an l2cache device,
1596                          * even if it fails to open.
1597                          */
1598                         spa_l2cache_add(vd);
1599 
1600                         vd->vdev_top = vd;
1601                         vd->vdev_aux = sav;
1602 
1603                         spa_l2cache_activate(vd);
1604 
1605                         if (vdev_open(vd) != 0)
1606                                 continue;
1607 
1608                         (void) vdev_validate_aux(vd);
1609 
1610                         if (!vdev_is_dead(vd))
1611                                 l2arc_add_vdev(spa, vd);
1612                 }
1613         }
1614 
1615         /*
1616          * Purge vdevs that were dropped
1617          */
1618         for (i = 0; i < oldnvdevs; i++) {
1619                 uint64_t pool;
1620 
1621                 vd = oldvdevs[i];
1622                 if (vd != NULL) {
1623                         ASSERT(vd->vdev_isl2cache);
1624 
1625                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1626                             pool != 0ULL && l2arc_vdev_present(vd))
1627                                 l2arc_remove_vdev(vd);
1628                         vdev_clear_stats(vd);
1629                         vdev_free(vd);
1630                 }
1631         }
1632 
1633         if (oldvdevs)
1634                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1635 
1636         if (sav->sav_config == NULL)
1637                 goto out;
1638 
1639         sav->sav_vdevs = newvdevs;
1640         sav->sav_count = (int)nl2cache;
1641 
1642         /*
1643          * Recompute the stashed list of l2cache devices, with status
1644          * information this time.
1645          */
1646         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1647             DATA_TYPE_NVLIST_ARRAY) == 0);
1648 
1649         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1650         for (i = 0; i < sav->sav_count; i++)
1651                 l2cache[i] = vdev_config_generate(spa,
1652                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1653         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1654             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1655 out:
1656         for (i = 0; i < sav->sav_count; i++)
1657                 nvlist_free(l2cache[i]);
1658         if (sav->sav_count)
1659                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1660 }
1661 
1662 static int
1663 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1664 {
1665         dmu_buf_t *db;
1666         char *packed = NULL;
1667         size_t nvsize = 0;
1668         int error;
1669         *value = NULL;
1670 
1671         error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1672         if (error != 0)
1673                 return (error);
1674 
1675         nvsize = *(uint64_t *)db->db_data;
1676         dmu_buf_rele(db, FTAG);
1677 
1678         packed = kmem_alloc(nvsize, KM_SLEEP);
1679         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1680             DMU_READ_PREFETCH);
1681         if (error == 0)
1682                 error = nvlist_unpack(packed, nvsize, value, 0);
1683         kmem_free(packed, nvsize);
1684 
1685         return (error);
1686 }
1687 
1688 /*
1689  * Concrete top-level vdevs that are not missing and are not logs. At every
1690  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1691  */
1692 static uint64_t
1693 spa_healthy_core_tvds(spa_t *spa)
1694 {
1695         vdev_t *rvd = spa->spa_root_vdev;
1696         uint64_t tvds = 0;
1697 
1698         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1699                 vdev_t *vd = rvd->vdev_child[i];
1700                 if (vd->vdev_islog)
1701                         continue;
1702                 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1703                         tvds++;
1704         }
1705 
1706         return (tvds);
1707 }
1708 
1709 /*
1710  * Checks to see if the given vdev could not be opened, in which case we post a
1711  * sysevent to notify the autoreplace code that the device has been removed.
1712  */
1713 static void
1714 spa_check_removed(vdev_t *vd)
1715 {
1716         for (uint64_t c = 0; c < vd->vdev_children; c++)
1717                 spa_check_removed(vd->vdev_child[c]);
1718 
1719         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1720             vdev_is_concrete(vd)) {
1721                 zfs_post_autoreplace(vd->vdev_spa, vd);
1722                 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1723         }
1724 }
1725 
1726 static int
1727 spa_check_for_missing_logs(spa_t *spa)
1728 {
1729         vdev_t *rvd = spa->spa_root_vdev;
1730 
1731         /*
1732          * If we're doing a normal import, then build up any additional
1733          * diagnostic information about missing log devices.
1734          * We'll pass this up to the user for further processing.
1735          */
1736         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1737                 nvlist_t **child, *nv;
1738                 uint64_t idx = 0;
1739 
1740                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1741                     KM_SLEEP);
1742                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1743 
1744                 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1745                         vdev_t *tvd = rvd->vdev_child[c];
1746 
1747                         /*
1748                          * We consider a device as missing only if it failed
1749                          * to open (i.e. offline or faulted is not considered
1750                          * as missing).
1751                          */
1752                         if (tvd->vdev_islog &&
1753                             tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1754                                 child[idx++] = vdev_config_generate(spa, tvd,
1755                                     B_FALSE, VDEV_CONFIG_MISSING);
1756                         }
1757                 }
1758 
1759                 if (idx > 0) {
1760                         fnvlist_add_nvlist_array(nv,
1761                             ZPOOL_CONFIG_CHILDREN, child, idx);
1762                         fnvlist_add_nvlist(spa->spa_load_info,
1763                             ZPOOL_CONFIG_MISSING_DEVICES, nv);
1764 
1765                         for (uint64_t i = 0; i < idx; i++)
1766                                 nvlist_free(child[i]);
1767                 }
1768                 nvlist_free(nv);
1769                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1770 
1771                 if (idx > 0) {
1772                         spa_load_failed(spa, "some log devices are missing");
1773                         return (SET_ERROR(ENXIO));
1774                 }
1775         } else {
1776                 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1777                         vdev_t *tvd = rvd->vdev_child[c];
1778 
1779                         if (tvd->vdev_islog &&
1780                             tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1781                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1782                                 spa_load_note(spa, "some log devices are "
1783                                     "missing, ZIL is dropped.");
1784                                 break;
1785                         }
1786                 }
1787         }
1788 
1789         return (0);
1790 }
1791 
1792 /*
1793  * Check for missing log devices
1794  */
1795 static boolean_t
1796 spa_check_logs(spa_t *spa)
1797 {
1798         boolean_t rv = B_FALSE;
1799         dsl_pool_t *dp = spa_get_dsl(spa);
1800 
1801         switch (spa->spa_log_state) {
1802         case SPA_LOG_MISSING:
1803                 /* need to recheck in case slog has been restored */
1804         case SPA_LOG_UNKNOWN:
1805                 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1806                     zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1807                 if (rv)
1808                         spa_set_log_state(spa, SPA_LOG_MISSING);
1809                 break;
1810         }
1811         return (rv);
1812 }
1813 
1814 static boolean_t
1815 spa_passivate_log(spa_t *spa)
1816 {
1817         vdev_t *rvd = spa->spa_root_vdev;
1818         boolean_t slog_found = B_FALSE;
1819 
1820         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1821 
1822         if (!spa_has_slogs(spa))
1823                 return (B_FALSE);
1824 
1825         for (int c = 0; c < rvd->vdev_children; c++) {
1826                 vdev_t *tvd = rvd->vdev_child[c];
1827                 metaslab_group_t *mg = tvd->vdev_mg;
1828 
1829                 if (tvd->vdev_islog) {
1830                         metaslab_group_passivate(mg);
1831                         slog_found = B_TRUE;
1832                 }
1833         }
1834 
1835         return (slog_found);
1836 }
1837 
1838 static void
1839 spa_activate_log(spa_t *spa)
1840 {
1841         vdev_t *rvd = spa->spa_root_vdev;
1842 
1843         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1844 
1845         for (int c = 0; c < rvd->vdev_children; c++) {
1846                 vdev_t *tvd = rvd->vdev_child[c];
1847                 metaslab_group_t *mg = tvd->vdev_mg;
1848 
1849                 if (tvd->vdev_islog)
1850                         metaslab_group_activate(mg);
1851         }
1852 }
1853 
1854 int
1855 spa_reset_logs(spa_t *spa)
1856 {
1857         int error;
1858 
1859         error = dmu_objset_find(spa_name(spa), zil_reset,
1860             NULL, DS_FIND_CHILDREN);
1861         if (error == 0) {
1862                 /*
1863                  * We successfully offlined the log device, sync out the
1864                  * current txg so that the "stubby" block can be removed
1865                  * by zil_sync().
1866                  */
1867                 txg_wait_synced(spa->spa_dsl_pool, 0);
1868         }
1869         return (error);
1870 }
1871 
1872 static void
1873 spa_aux_check_removed(spa_aux_vdev_t *sav)
1874 {
1875         for (int i = 0; i < sav->sav_count; i++)
1876                 spa_check_removed(sav->sav_vdevs[i]);
1877 }
1878 
1879 void
1880 spa_claim_notify(zio_t *zio)
1881 {
1882         spa_t *spa = zio->io_spa;
1883 
1884         if (zio->io_error)
1885                 return;
1886 
1887         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
1888         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1889                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1890         mutex_exit(&spa->spa_props_lock);
1891 }
1892 
1893 typedef struct spa_load_error {
1894         uint64_t        sle_meta_count;
1895         uint64_t        sle_data_count;
1896 } spa_load_error_t;
1897 
1898 static void
1899 spa_load_verify_done(zio_t *zio)
1900 {
1901         blkptr_t *bp = zio->io_bp;
1902         spa_load_error_t *sle = zio->io_private;
1903         dmu_object_type_t type = BP_GET_TYPE(bp);
1904         int error = zio->io_error;
1905         spa_t *spa = zio->io_spa;
1906 
1907         abd_free(zio->io_abd);
1908         if (error) {
1909                 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1910                     type != DMU_OT_INTENT_LOG)
1911                         atomic_inc_64(&sle->sle_meta_count);
1912                 else
1913                         atomic_inc_64(&sle->sle_data_count);
1914         }
1915 
1916         mutex_enter(&spa->spa_scrub_lock);
1917         spa->spa_scrub_inflight--;
1918         cv_broadcast(&spa->spa_scrub_io_cv);
1919         mutex_exit(&spa->spa_scrub_lock);
1920 }
1921 
1922 /*
1923  * Maximum number of concurrent scrub i/os to create while verifying
1924  * a pool while importing it.
1925  */
1926 int spa_load_verify_maxinflight = 10000;
1927 boolean_t spa_load_verify_metadata = B_TRUE;
1928 boolean_t spa_load_verify_data = B_TRUE;
1929 
1930 /*ARGSUSED*/
1931 static int
1932 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1933     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1934 {
1935         if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1936                 return (0);
1937         /*
1938          * Note: normally this routine will not be called if
1939          * spa_load_verify_metadata is not set.  However, it may be useful
1940          * to manually set the flag after the traversal has begun.
1941          */
1942         if (!spa_load_verify_metadata)
1943                 return (0);
1944         if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
1945                 return (0);
1946 
1947         zio_t *rio = arg;
1948         size_t size = BP_GET_PSIZE(bp);
1949 
1950         mutex_enter(&spa->spa_scrub_lock);
1951         while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1952                 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1953         spa->spa_scrub_inflight++;
1954         mutex_exit(&spa->spa_scrub_lock);
1955 
1956         zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
1957             spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1958             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1959             ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1960         return (0);
1961 }
1962 
1963 /* ARGSUSED */
1964 int
1965 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1966 {
1967         if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1968                 return (SET_ERROR(ENAMETOOLONG));
1969 
1970         return (0);
1971 }
1972 
1973 static int
1974 spa_load_verify(spa_t *spa)
1975 {
1976         zio_t *rio;
1977         spa_load_error_t sle = { 0 };
1978         zpool_rewind_policy_t policy;
1979         boolean_t verify_ok = B_FALSE;
1980         int error = 0;
1981 
1982         zpool_get_rewind_policy(spa->spa_config, &policy);
1983 
1984         if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1985                 return (0);
1986 
1987         dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1988         error = dmu_objset_find_dp(spa->spa_dsl_pool,
1989             spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1990             DS_FIND_CHILDREN);
1991         dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1992         if (error != 0)
1993                 return (error);
1994 
1995         rio = zio_root(spa, NULL, &sle,
1996             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1997 
1998         if (spa_load_verify_metadata) {
1999                 if (spa->spa_extreme_rewind) {
2000                         spa_load_note(spa, "performing a complete scan of the "
2001                             "pool since extreme rewind is on. This may take "
2002                             "a very long time.\n  (spa_load_verify_data=%u, "
2003                             "spa_load_verify_metadata=%u)",
2004                             spa_load_verify_data, spa_load_verify_metadata);
2005                 }
2006                 error = traverse_pool(spa, spa->spa_verify_min_txg,
2007                     TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2008                     spa_load_verify_cb, rio);
2009         }
2010 
2011         (void) zio_wait(rio);
2012 
2013         spa->spa_load_meta_errors = sle.sle_meta_count;
2014         spa->spa_load_data_errors = sle.sle_data_count;
2015 
2016         if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2017                 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2018                     "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2019                     (u_longlong_t)sle.sle_data_count);
2020         }
2021 
2022         if (spa_load_verify_dryrun ||
2023             (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2024             sle.sle_data_count <= policy.zrp_maxdata)) {
2025                 int64_t loss = 0;
2026 
2027                 verify_ok = B_TRUE;
2028                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2029                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2030 
2031                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2032                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2033                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2034                 VERIFY(nvlist_add_int64(spa->spa_load_info,
2035                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2036                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2037                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2038         } else {
2039                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2040         }
2041 
2042         if (spa_load_verify_dryrun)
2043                 return (0);
2044 
2045         if (error) {
2046                 if (error != ENXIO && error != EIO)
2047                         error = SET_ERROR(EIO);
2048                 return (error);
2049         }
2050 
2051         return (verify_ok ? 0 : EIO);
2052 }
2053 
2054 /*
2055  * Find a value in the pool props object.
2056  */
2057 static void
2058 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2059 {
2060         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2061             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2062 }
2063 
2064 /*
2065  * Find a value in the pool directory object.
2066  */
2067 static int
2068 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2069 {
2070         int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2071             name, sizeof (uint64_t), 1, val);
2072 
2073         if (error != 0 && (error != ENOENT || log_enoent)) {
2074                 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2075                     "[error=%d]", name, error);
2076         }
2077 
2078         return (error);
2079 }
2080 
2081 static int
2082 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2083 {
2084         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2085         return (SET_ERROR(err));
2086 }
2087 
2088 static void
2089 spa_spawn_aux_threads(spa_t *spa)
2090 {
2091         ASSERT(spa_writeable(spa));
2092 
2093         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2094 
2095         spa_start_indirect_condensing_thread(spa);
2096 }
2097 
2098 /*
2099  * Fix up config after a partly-completed split.  This is done with the
2100  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2101  * pool have that entry in their config, but only the splitting one contains
2102  * a list of all the guids of the vdevs that are being split off.
2103  *
2104  * This function determines what to do with that list: either rejoin
2105  * all the disks to the pool, or complete the splitting process.  To attempt
2106  * the rejoin, each disk that is offlined is marked online again, and
2107  * we do a reopen() call.  If the vdev label for every disk that was
2108  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2109  * then we call vdev_split() on each disk, and complete the split.
2110  *
2111  * Otherwise we leave the config alone, with all the vdevs in place in
2112  * the original pool.
2113  */
2114 static void
2115 spa_try_repair(spa_t *spa, nvlist_t *config)
2116 {
2117         uint_t extracted;
2118         uint64_t *glist;
2119         uint_t i, gcount;
2120         nvlist_t *nvl;
2121         vdev_t **vd;
2122         boolean_t attempt_reopen;
2123 
2124         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2125                 return;
2126 
2127         /* check that the config is complete */
2128         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2129             &glist, &gcount) != 0)
2130                 return;
2131 
2132         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2133 
2134         /* attempt to online all the vdevs & validate */
2135         attempt_reopen = B_TRUE;
2136         for (i = 0; i < gcount; i++) {
2137                 if (glist[i] == 0)      /* vdev is hole */
2138                         continue;
2139 
2140                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2141                 if (vd[i] == NULL) {
2142                         /*
2143                          * Don't bother attempting to reopen the disks;
2144                          * just do the split.
2145                          */
2146                         attempt_reopen = B_FALSE;
2147                 } else {
2148                         /* attempt to re-online it */
2149                         vd[i]->vdev_offline = B_FALSE;
2150                 }
2151         }
2152 
2153         if (attempt_reopen) {
2154                 vdev_reopen(spa->spa_root_vdev);
2155 
2156                 /* check each device to see what state it's in */
2157                 for (extracted = 0, i = 0; i < gcount; i++) {
2158                         if (vd[i] != NULL &&
2159                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2160                                 break;
2161                         ++extracted;
2162                 }
2163         }
2164 
2165         /*
2166          * If every disk has been moved to the new pool, or if we never
2167          * even attempted to look at them, then we split them off for
2168          * good.
2169          */
2170         if (!attempt_reopen || gcount == extracted) {
2171                 for (i = 0; i < gcount; i++)
2172                         if (vd[i] != NULL)
2173                                 vdev_split(vd[i]);
2174                 vdev_reopen(spa->spa_root_vdev);
2175         }
2176 
2177         kmem_free(vd, gcount * sizeof (vdev_t *));
2178 }
2179 
2180 static int
2181 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2182 {
2183         char *ereport = FM_EREPORT_ZFS_POOL;
2184         int error;
2185 
2186         spa->spa_load_state = state;
2187 
2188         gethrestime(&spa->spa_loaded_ts);
2189         error = spa_load_impl(spa, type, &ereport, B_FALSE);
2190 
2191         /*
2192          * Don't count references from objsets that are already closed
2193          * and are making their way through the eviction process.
2194          */
2195         spa_evicting_os_wait(spa);
2196         spa->spa_minref = refcount_count(&spa->spa_refcount);
2197         if (error) {
2198                 if (error != EEXIST) {
2199                         spa->spa_loaded_ts.tv_sec = 0;
2200                         spa->spa_loaded_ts.tv_nsec = 0;
2201                 }
2202                 if (error != EBADF) {
2203                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2204                 }
2205         }
2206         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2207         spa->spa_ena = 0;
2208 
2209         return (error);
2210 }
2211 
2212 /*
2213  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2214  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2215  * spa's per-vdev ZAP list.
2216  */
2217 static uint64_t
2218 vdev_count_verify_zaps(vdev_t *vd)
2219 {
2220         spa_t *spa = vd->vdev_spa;
2221         uint64_t total = 0;
2222         if (vd->vdev_top_zap != 0) {
2223                 total++;
2224                 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2225                     spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2226         }
2227         if (vd->vdev_leaf_zap != 0) {
2228                 total++;
2229                 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2230                     spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2231         }
2232 
2233         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2234                 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2235         }
2236 
2237         return (total);
2238 }
2239 
2240 static int
2241 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2242 {
2243         uint64_t hostid;
2244         char *hostname;
2245         uint64_t myhostid = 0;
2246 
2247         if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2248             ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2249                 hostname = fnvlist_lookup_string(mos_config,
2250                     ZPOOL_CONFIG_HOSTNAME);
2251 
2252                 myhostid = zone_get_hostid(NULL);
2253 
2254                 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2255                         cmn_err(CE_WARN, "pool '%s' could not be "
2256                             "loaded as it was last accessed by "
2257                             "another system (host: %s hostid: 0x%llx). "
2258                             "See: http://illumos.org/msg/ZFS-8000-EY",
2259                             spa_name(spa), hostname, (u_longlong_t)hostid);
2260                         spa_load_failed(spa, "hostid verification failed: pool "
2261                             "last accessed by host: %s (hostid: 0x%llx)",
2262                             hostname, (u_longlong_t)hostid);
2263                         return (SET_ERROR(EBADF));
2264                 }
2265         }
2266 
2267         return (0);
2268 }
2269 
2270 static int
2271 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2272 {
2273         int error = 0;
2274         nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2275         int parse;
2276         vdev_t *rvd;
2277         uint64_t pool_guid;
2278         char *comment;
2279 
2280         /*
2281          * Versioning wasn't explicitly added to the label until later, so if
2282          * it's not present treat it as the initial version.
2283          */
2284         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2285             &spa->spa_ubsync.ub_version) != 0)
2286                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2287 
2288         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2289                 spa_load_failed(spa, "invalid config provided: '%s' missing",
2290                     ZPOOL_CONFIG_POOL_GUID);
2291                 return (SET_ERROR(EINVAL));
2292         }
2293 
2294         if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state ==
2295             SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) {
2296                 spa_load_failed(spa, "a pool with guid %llu is already open",
2297                     (u_longlong_t)pool_guid);
2298                 return (SET_ERROR(EEXIST));
2299         }
2300 
2301         spa->spa_config_guid = pool_guid;
2302 
2303         nvlist_free(spa->spa_load_info);
2304         spa->spa_load_info = fnvlist_alloc();
2305 
2306         ASSERT(spa->spa_comment == NULL);
2307         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2308                 spa->spa_comment = spa_strdup(comment);
2309 
2310         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2311             &spa->spa_config_txg);
2312 
2313         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2314                 spa->spa_config_splitting = fnvlist_dup(nvl);
2315 
2316         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2317                 spa_load_failed(spa, "invalid config provided: '%s' missing",
2318                     ZPOOL_CONFIG_VDEV_TREE);
2319                 return (SET_ERROR(EINVAL));
2320         }
2321 
2322         /*
2323          * Create "The Godfather" zio to hold all async IOs
2324          */
2325         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2326             KM_SLEEP);
2327         for (int i = 0; i < max_ncpus; i++) {
2328                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2329                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2330                     ZIO_FLAG_GODFATHER);
2331         }
2332 
2333         /*
2334          * Parse the configuration into a vdev tree.  We explicitly set the
2335          * value that will be returned by spa_version() since parsing the
2336          * configuration requires knowing the version number.
2337          */
2338         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2339         parse = (type == SPA_IMPORT_EXISTING ?
2340             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2341         error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2342         spa_config_exit(spa, SCL_ALL, FTAG);
2343 
2344         if (error != 0) {
2345                 spa_load_failed(spa, "unable to parse config [error=%d]",
2346                     error);
2347                 return (error);
2348         }
2349 
2350         ASSERT(spa->spa_root_vdev == rvd);
2351         ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2352         ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2353 
2354         if (type != SPA_IMPORT_ASSEMBLE) {
2355                 ASSERT(spa_guid(spa) == pool_guid);
2356         }
2357 
2358         return (0);
2359 }
2360 
2361 /*
2362  * Recursively open all vdevs in the vdev tree. This function is called twice:
2363  * first with the untrusted config, then with the trusted config.
2364  */
2365 static int
2366 spa_ld_open_vdevs(spa_t *spa)
2367 {
2368         int error = 0;
2369 
2370         /*
2371          * spa_missing_tvds_allowed defines how many top-level vdevs can be
2372          * missing/unopenable for the root vdev to be still considered openable.
2373          */
2374         if (spa->spa_trust_config) {
2375                 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2376         } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2377                 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2378         } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2379                 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2380         } else {
2381                 spa->spa_missing_tvds_allowed = 0;
2382         }
2383 
2384         spa->spa_missing_tvds_allowed =
2385             MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2386 
2387         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2388         error = vdev_open(spa->spa_root_vdev);
2389         spa_config_exit(spa, SCL_ALL, FTAG);
2390 
2391         if (spa->spa_missing_tvds != 0) {
2392                 spa_load_note(spa, "vdev tree has %lld missing top-level "
2393                     "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2394                 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2395                         /*
2396                          * Although theoretically we could allow users to open
2397                          * incomplete pools in RW mode, we'd need to add a lot
2398                          * of extra logic (e.g. adjust pool space to account
2399                          * for missing vdevs).
2400                          * This limitation also prevents users from accidentally
2401                          * opening the pool in RW mode during data recovery and
2402                          * damaging it further.
2403                          */
2404                         spa_load_note(spa, "pools with missing top-level "
2405                             "vdevs can only be opened in read-only mode.");
2406                         error = SET_ERROR(ENXIO);
2407                 } else {
2408                         spa_load_note(spa, "current settings allow for maximum "
2409                             "%lld missing top-level vdevs at this stage.",
2410                             (u_longlong_t)spa->spa_missing_tvds_allowed);
2411                 }
2412         }
2413         if (error != 0) {
2414                 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2415                     error);
2416         }
2417         if (spa->spa_missing_tvds != 0 || error != 0)
2418                 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2419 
2420         return (error);
2421 }
2422 
2423 /*
2424  * We need to validate the vdev labels against the configuration that
2425  * we have in hand. This function is called twice: first with an untrusted
2426  * config, then with a trusted config. The validation is more strict when the
2427  * config is trusted.
2428  */
2429 static int
2430 spa_ld_validate_vdevs(spa_t *spa)
2431 {
2432         int error = 0;
2433         vdev_t *rvd = spa->spa_root_vdev;
2434 
2435         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2436         error = vdev_validate(rvd);
2437         spa_config_exit(spa, SCL_ALL, FTAG);
2438 
2439         if (error != 0) {
2440                 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2441                 return (error);
2442         }
2443 
2444         if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2445                 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2446                     "some vdevs");
2447                 vdev_dbgmsg_print_tree(rvd, 2);
2448                 return (SET_ERROR(ENXIO));
2449         }
2450 
2451         return (0);
2452 }
2453 
2454 static int
2455 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2456 {
2457         vdev_t *rvd = spa->spa_root_vdev;
2458         nvlist_t *label;
2459         uberblock_t *ub = &spa->spa_uberblock;
2460 
2461         /*
2462          * Find the best uberblock.
2463          */
2464         vdev_uberblock_load(rvd, ub, &label);
2465 
2466         /*
2467          * If we weren't able to find a single valid uberblock, return failure.
2468          */
2469         if (ub->ub_txg == 0) {
2470                 nvlist_free(label);
2471                 spa_load_failed(spa, "no valid uberblock found");
2472                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2473         }
2474 
2475         spa_load_note(spa, "using uberblock with txg=%llu",
2476             (u_longlong_t)ub->ub_txg);
2477 
2478         /*
2479          * If the pool has an unsupported version we can't open it.
2480          */
2481         if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2482                 nvlist_free(label);
2483                 spa_load_failed(spa, "version %llu is not supported",
2484                     (u_longlong_t)ub->ub_version);
2485                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2486         }
2487 
2488         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2489                 nvlist_t *features;
2490 
2491                 /*
2492                  * If we weren't able to find what's necessary for reading the
2493                  * MOS in the label, return failure.
2494                  */
2495                 if (label == NULL) {
2496                         spa_load_failed(spa, "label config unavailable");
2497                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2498                             ENXIO));
2499                 }
2500 
2501                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2502                     &features) != 0) {
2503                         nvlist_free(label);
2504                         spa_load_failed(spa, "invalid label: '%s' missing",
2505                             ZPOOL_CONFIG_FEATURES_FOR_READ);
2506                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2507                             ENXIO));
2508                 }
2509 
2510                 /*
2511                  * Update our in-core representation with the definitive values
2512                  * from the label.
2513                  */
2514                 nvlist_free(spa->spa_label_features);
2515                 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2516         }
2517 
2518         nvlist_free(label);
2519 
2520         /*
2521          * Look through entries in the label nvlist's features_for_read. If
2522          * there is a feature listed there which we don't understand then we
2523          * cannot open a pool.
2524          */
2525         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2526                 nvlist_t *unsup_feat;
2527 
2528                 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2529                     0);
2530 
2531                 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2532                     NULL); nvp != NULL;
2533                     nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2534                         if (!zfeature_is_supported(nvpair_name(nvp))) {
2535                                 VERIFY(nvlist_add_string(unsup_feat,
2536                                     nvpair_name(nvp), "") == 0);
2537                         }
2538                 }
2539 
2540                 if (!nvlist_empty(unsup_feat)) {
2541                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2542                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2543                         nvlist_free(unsup_feat);
2544                         spa_load_failed(spa, "some features are unsupported");
2545                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2546                             ENOTSUP));
2547                 }
2548 
2549                 nvlist_free(unsup_feat);
2550         }
2551 
2552         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2553                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2554                 spa_try_repair(spa, spa->spa_config);
2555                 spa_config_exit(spa, SCL_ALL, FTAG);
2556                 nvlist_free(spa->spa_config_splitting);
2557                 spa->spa_config_splitting = NULL;
2558         }
2559 
2560         /*
2561          * Initialize internal SPA structures.
2562          */
2563         spa->spa_state = POOL_STATE_ACTIVE;
2564         spa->spa_ubsync = spa->spa_uberblock;
2565         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2566             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2567         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2568             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2569         spa->spa_claim_max_txg = spa->spa_first_txg;
2570         spa->spa_prev_software_version = ub->ub_software_version;
2571 
2572         return (0);
2573 }
2574 
2575 static int
2576 spa_ld_open_rootbp(spa_t *spa)
2577 {
2578         int error = 0;
2579         vdev_t *rvd = spa->spa_root_vdev;
2580 
2581         error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2582         if (error != 0) {
2583                 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2584                     "[error=%d]", error);
2585                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2586         }
2587         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2588 
2589         return (0);
2590 }
2591 
2592 static int
2593 spa_ld_load_trusted_config(spa_t *spa, spa_import_type_t type,
2594     boolean_t reloading)
2595 {
2596         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2597         nvlist_t *nv, *mos_config, *policy;
2598         int error = 0, copy_error;
2599         uint64_t healthy_tvds, healthy_tvds_mos;
2600         uint64_t mos_config_txg;
2601 
2602         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2603             != 0)
2604                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2605 
2606         /*
2607          * If we're assembling a pool from a split, the config provided is
2608          * already trusted so there is nothing to do.
2609          */
2610         if (type == SPA_IMPORT_ASSEMBLE)
2611                 return (0);
2612 
2613         healthy_tvds = spa_healthy_core_tvds(spa);
2614 
2615         if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2616             != 0) {
2617                 spa_load_failed(spa, "unable to retrieve MOS config");
2618                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619         }
2620 
2621         /*
2622          * If we are doing an open, pool owner wasn't verified yet, thus do
2623          * the verification here.
2624          */
2625         if (spa->spa_load_state == SPA_LOAD_OPEN) {
2626                 error = spa_verify_host(spa, mos_config);
2627                 if (error != 0) {
2628                         nvlist_free(mos_config);
2629                         return (error);
2630                 }
2631         }
2632 
2633         nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2634 
2635         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2636 
2637         /*
2638          * Build a new vdev tree from the trusted config
2639          */
2640         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2641 
2642         /*
2643          * Vdev paths in the MOS may be obsolete. If the untrusted config was
2644          * obtained by scanning /dev/dsk, then it will have the right vdev
2645          * paths. We update the trusted MOS config with this information.
2646          * We first try to copy the paths with vdev_copy_path_strict, which
2647          * succeeds only when both configs have exactly the same vdev tree.
2648          * If that fails, we fall back to a more flexible method that has a
2649          * best effort policy.
2650          */
2651         copy_error = vdev_copy_path_strict(rvd, mrvd);
2652         if (copy_error != 0 || spa_load_print_vdev_tree) {
2653                 spa_load_note(spa, "provided vdev tree:");
2654                 vdev_dbgmsg_print_tree(rvd, 2);
2655                 spa_load_note(spa, "MOS vdev tree:");
2656                 vdev_dbgmsg_print_tree(mrvd, 2);
2657         }
2658         if (copy_error != 0) {
2659                 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2660                     "back to vdev_copy_path_relaxed");
2661                 vdev_copy_path_relaxed(rvd, mrvd);
2662         }
2663 
2664         vdev_close(rvd);
2665         vdev_free(rvd);
2666         spa->spa_root_vdev = mrvd;
2667         rvd = mrvd;
2668         spa_config_exit(spa, SCL_ALL, FTAG);
2669 
2670         /*
2671          * We will use spa_config if we decide to reload the spa or if spa_load
2672          * fails and we rewind. We must thus regenerate the config using the
2673          * MOS information with the updated paths. Rewind policy is an import
2674          * setting and is not in the MOS. We copy it over to our new, trusted
2675          * config.
2676          */
2677         mos_config_txg = fnvlist_lookup_uint64(mos_config,
2678             ZPOOL_CONFIG_POOL_TXG);
2679         nvlist_free(mos_config);
2680         mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2681         if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_REWIND_POLICY,
2682             &policy) == 0)
2683                 fnvlist_add_nvlist(mos_config, ZPOOL_REWIND_POLICY, policy);
2684         spa_config_set(spa, mos_config);
2685         spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2686 
2687         /*
2688          * Now that we got the config from the MOS, we should be more strict
2689          * in checking blkptrs and can make assumptions about the consistency
2690          * of the vdev tree. spa_trust_config must be set to true before opening
2691          * vdevs in order for them to be writeable.
2692          */
2693         spa->spa_trust_config = B_TRUE;
2694 
2695         /*
2696          * Open and validate the new vdev tree
2697          */
2698         error = spa_ld_open_vdevs(spa);
2699         if (error != 0)
2700                 return (error);
2701 
2702         error = spa_ld_validate_vdevs(spa);
2703         if (error != 0)
2704                 return (error);
2705 
2706         if (copy_error != 0 || spa_load_print_vdev_tree) {
2707                 spa_load_note(spa, "final vdev tree:");
2708                 vdev_dbgmsg_print_tree(rvd, 2);
2709         }
2710 
2711         if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2712             !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2713                 /*
2714                  * Sanity check to make sure that we are indeed loading the
2715                  * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2716                  * in the config provided and they happened to be the only ones
2717                  * to have the latest uberblock, we could involuntarily perform
2718                  * an extreme rewind.
2719                  */
2720                 healthy_tvds_mos = spa_healthy_core_tvds(spa);
2721                 if (healthy_tvds_mos - healthy_tvds >=
2722                     SPA_SYNC_MIN_VDEVS) {
2723                         spa_load_note(spa, "config provided misses too many "
2724                             "top-level vdevs compared to MOS (%lld vs %lld). ",
2725                             (u_longlong_t)healthy_tvds,
2726                             (u_longlong_t)healthy_tvds_mos);
2727                         spa_load_note(spa, "vdev tree:");
2728                         vdev_dbgmsg_print_tree(rvd, 2);
2729                         if (reloading) {
2730                                 spa_load_failed(spa, "config was already "
2731                                     "provided from MOS. Aborting.");
2732                                 return (spa_vdev_err(rvd,
2733                                     VDEV_AUX_CORRUPT_DATA, EIO));
2734                         }
2735                         spa_load_note(spa, "spa must be reloaded using MOS "
2736                             "config");
2737                         return (SET_ERROR(EAGAIN));
2738                 }
2739         }
2740 
2741         error = spa_check_for_missing_logs(spa);
2742         if (error != 0)
2743                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2744 
2745         if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2746                 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2747                     "guid sum (%llu != %llu)",
2748                     (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2749                     (u_longlong_t)rvd->vdev_guid_sum);
2750                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2751                     ENXIO));
2752         }
2753 
2754         return (0);
2755 }
2756 
2757 static int
2758 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2759 {
2760         int error = 0;
2761         vdev_t *rvd = spa->spa_root_vdev;
2762 
2763         /*
2764          * Everything that we read before spa_remove_init() must be stored
2765          * on concreted vdevs.  Therefore we do this as early as possible.
2766          */
2767         error = spa_remove_init(spa);
2768         if (error != 0) {
2769                 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2770                     error);
2771                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2772         }
2773 
2774         /*
2775          * Retrieve information needed to condense indirect vdev mappings.
2776          */
2777         error = spa_condense_init(spa);
2778         if (error != 0) {
2779                 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2780                     error);
2781                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2782         }
2783 
2784         return (0);
2785 }
2786 
2787 static int
2788 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2789 {
2790         int error = 0;
2791         vdev_t *rvd = spa->spa_root_vdev;
2792 
2793         if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2794                 boolean_t missing_feat_read = B_FALSE;
2795                 nvlist_t *unsup_feat, *enabled_feat;
2796 
2797                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2798                     &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2799                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2800                 }
2801 
2802                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2803                     &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2804                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2805                 }
2806 
2807                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2808                     &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2809                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2810                 }
2811 
2812                 enabled_feat = fnvlist_alloc();
2813                 unsup_feat = fnvlist_alloc();
2814 
2815                 if (!spa_features_check(spa, B_FALSE,
2816                     unsup_feat, enabled_feat))
2817                         missing_feat_read = B_TRUE;
2818 
2819                 if (spa_writeable(spa) ||
2820                     spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2821                         if (!spa_features_check(spa, B_TRUE,
2822                             unsup_feat, enabled_feat)) {
2823                                 *missing_feat_writep = B_TRUE;
2824                         }
2825                 }
2826 
2827                 fnvlist_add_nvlist(spa->spa_load_info,
2828                     ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2829 
2830                 if (!nvlist_empty(unsup_feat)) {
2831                         fnvlist_add_nvlist(spa->spa_load_info,
2832                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2833                 }
2834 
2835                 fnvlist_free(enabled_feat);
2836                 fnvlist_free(unsup_feat);
2837 
2838                 if (!missing_feat_read) {
2839                         fnvlist_add_boolean(spa->spa_load_info,
2840                             ZPOOL_CONFIG_CAN_RDONLY);
2841                 }
2842 
2843                 /*
2844                  * If the state is SPA_LOAD_TRYIMPORT, our objective is
2845                  * twofold: to determine whether the pool is available for
2846                  * import in read-write mode and (if it is not) whether the
2847                  * pool is available for import in read-only mode. If the pool
2848                  * is available for import in read-write mode, it is displayed
2849                  * as available in userland; if it is not available for import
2850                  * in read-only mode, it is displayed as unavailable in
2851                  * userland. If the pool is available for import in read-only
2852                  * mode but not read-write mode, it is displayed as unavailable
2853                  * in userland with a special note that the pool is actually
2854                  * available for open in read-only mode.
2855                  *
2856                  * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2857                  * missing a feature for write, we must first determine whether
2858                  * the pool can be opened read-only before returning to
2859                  * userland in order to know whether to display the
2860                  * abovementioned note.
2861                  */
2862                 if (missing_feat_read || (*missing_feat_writep &&
2863                     spa_writeable(spa))) {
2864                         spa_load_failed(spa, "pool uses unsupported features");
2865                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2866                             ENOTSUP));
2867                 }
2868 
2869                 /*
2870                  * Load refcounts for ZFS features from disk into an in-memory
2871                  * cache during SPA initialization.
2872                  */
2873                 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2874                         uint64_t refcount;
2875 
2876                         error = feature_get_refcount_from_disk(spa,
2877                             &spa_feature_table[i], &refcount);
2878                         if (error == 0) {
2879                                 spa->spa_feat_refcount_cache[i] = refcount;
2880                         } else if (error == ENOTSUP) {
2881                                 spa->spa_feat_refcount_cache[i] =
2882                                     SPA_FEATURE_DISABLED;
2883                         } else {
2884                                 spa_load_failed(spa, "error getting refcount "
2885                                     "for feature %s [error=%d]",
2886                                     spa_feature_table[i].fi_guid, error);
2887                                 return (spa_vdev_err(rvd,
2888                                     VDEV_AUX_CORRUPT_DATA, EIO));
2889                         }
2890                 }
2891         }
2892 
2893         if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2894                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2895                     &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
2896                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2897         }
2898 
2899         return (0);
2900 }
2901 
2902 static int
2903 spa_ld_load_special_directories(spa_t *spa)
2904 {
2905         int error = 0;
2906         vdev_t *rvd = spa->spa_root_vdev;
2907 
2908         spa->spa_is_initializing = B_TRUE;
2909         error = dsl_pool_open(spa->spa_dsl_pool);
2910         spa->spa_is_initializing = B_FALSE;
2911         if (error != 0) {
2912                 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
2913                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2914         }
2915 
2916         return (0);
2917 }
2918 
2919 static int
2920 spa_ld_get_props(spa_t *spa)
2921 {
2922         int error = 0;
2923         uint64_t obj;
2924         vdev_t *rvd = spa->spa_root_vdev;
2925 
2926         /* Grab the secret checksum salt from the MOS. */
2927         error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2928             DMU_POOL_CHECKSUM_SALT, 1,
2929             sizeof (spa->spa_cksum_salt.zcs_bytes),
2930             spa->spa_cksum_salt.zcs_bytes);
2931         if (error == ENOENT) {
2932                 /* Generate a new salt for subsequent use */
2933                 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2934                     sizeof (spa->spa_cksum_salt.zcs_bytes));
2935         } else if (error != 0) {
2936                 spa_load_failed(spa, "unable to retrieve checksum salt from "
2937                     "MOS [error=%d]", error);
2938                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2939         }
2940 
2941         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
2942                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2943         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2944         if (error != 0) {
2945                 spa_load_failed(spa, "error opening deferred-frees bpobj "
2946                     "[error=%d]", error);
2947                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2948         }
2949 
2950         /*
2951          * Load the bit that tells us to use the new accounting function
2952          * (raid-z deflation).  If we have an older pool, this will not
2953          * be present.
2954          */
2955         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
2956         if (error != 0 && error != ENOENT)
2957                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2958 
2959         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2960             &spa->spa_creation_version, B_FALSE);
2961         if (error != 0 && error != ENOENT)
2962                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2963 
2964         /*
2965          * Load the persistent error log.  If we have an older pool, this will
2966          * not be present.
2967          */
2968         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
2969             B_FALSE);
2970         if (error != 0 && error != ENOENT)
2971                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2972 
2973         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2974             &spa->spa_errlog_scrub, B_FALSE);
2975         if (error != 0 && error != ENOENT)
2976                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2977 
2978         /*
2979          * Load the history object.  If we have an older pool, this
2980          * will not be present.
2981          */
2982         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
2983         if (error != 0 && error != ENOENT)
2984                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2985 
2986         /*
2987          * Load the per-vdev ZAP map. If we have an older pool, this will not
2988          * be present; in this case, defer its creation to a later time to
2989          * avoid dirtying the MOS this early / out of sync context. See
2990          * spa_sync_config_object.
2991          */
2992 
2993         /* The sentinel is only available in the MOS config. */
2994         nvlist_t *mos_config;
2995         if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
2996                 spa_load_failed(spa, "unable to retrieve MOS config");
2997                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2998         }
2999 
3000         error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3001             &spa->spa_all_vdev_zaps, B_FALSE);
3002 
3003         if (error == ENOENT) {
3004                 VERIFY(!nvlist_exists(mos_config,
3005                     ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3006                 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3007                 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3008         } else if (error != 0) {
3009                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3010         } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3011                 /*
3012                  * An older version of ZFS overwrote the sentinel value, so
3013                  * we have orphaned per-vdev ZAPs in the MOS. Defer their
3014                  * destruction to later; see spa_sync_config_object.
3015                  */
3016                 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3017                 /*
3018                  * We're assuming that no vdevs have had their ZAPs created
3019                  * before this. Better be sure of it.
3020                  */
3021                 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3022         }
3023         nvlist_free(mos_config);
3024 
3025         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3026 
3027         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3028             B_FALSE);
3029         if (error && error != ENOENT)
3030                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3031 
3032         if (error == 0) {
3033                 uint64_t autoreplace;
3034 
3035                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3036                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3037                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3038                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3039                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3040                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3041                     &spa->spa_dedup_ditto);
3042 
3043                 spa->spa_autoreplace = (autoreplace != 0);
3044         }
3045 
3046         /*
3047          * If we are importing a pool with missing top-level vdevs,
3048          * we enforce that the pool doesn't panic or get suspended on
3049          * error since the likelihood of missing data is extremely high.
3050          */
3051         if (spa->spa_missing_tvds > 0 &&
3052             spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3053             spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3054                 spa_load_note(spa, "forcing failmode to 'continue' "
3055                     "as some top level vdevs are missing");
3056                 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3057         }
3058 
3059         return (0);
3060 }
3061 
3062 static int
3063 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3064 {
3065         int error = 0;
3066         vdev_t *rvd = spa->spa_root_vdev;
3067 
3068         /*
3069          * If we're assembling the pool from the split-off vdevs of
3070          * an existing pool, we don't want to attach the spares & cache
3071          * devices.
3072          */
3073 
3074         /*
3075          * Load any hot spares for this pool.
3076          */
3077         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3078             B_FALSE);
3079         if (error != 0 && error != ENOENT)
3080                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3081         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3082                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3083                 if (load_nvlist(spa, spa->spa_spares.sav_object,
3084                     &spa->spa_spares.sav_config) != 0) {
3085                         spa_load_failed(spa, "error loading spares nvlist");
3086                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3087                 }
3088 
3089                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3090                 spa_load_spares(spa);
3091                 spa_config_exit(spa, SCL_ALL, FTAG);
3092         } else if (error == 0) {
3093                 spa->spa_spares.sav_sync = B_TRUE;
3094         }
3095 
3096         /*
3097          * Load any level 2 ARC devices for this pool.
3098          */
3099         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3100             &spa->spa_l2cache.sav_object, B_FALSE);
3101         if (error != 0 && error != ENOENT)
3102                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3103         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3104                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3105                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3106                     &spa->spa_l2cache.sav_config) != 0) {
3107                         spa_load_failed(spa, "error loading l2cache nvlist");
3108                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3109                 }
3110 
3111                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3112                 spa_load_l2cache(spa);
3113                 spa_config_exit(spa, SCL_ALL, FTAG);
3114         } else if (error == 0) {
3115                 spa->spa_l2cache.sav_sync = B_TRUE;
3116         }
3117 
3118         return (0);
3119 }
3120 
3121 static int
3122 spa_ld_load_vdev_metadata(spa_t *spa)
3123 {
3124         int error = 0;
3125         vdev_t *rvd = spa->spa_root_vdev;
3126 
3127         /*
3128          * If the 'autoreplace' property is set, then post a resource notifying
3129          * the ZFS DE that it should not issue any faults for unopenable
3130          * devices.  We also iterate over the vdevs, and post a sysevent for any
3131          * unopenable vdevs so that the normal autoreplace handler can take
3132          * over.
3133          */
3134         if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3135                 spa_check_removed(spa->spa_root_vdev);
3136                 /*
3137                  * For the import case, this is done in spa_import(), because
3138                  * at this point we're using the spare definitions from
3139                  * the MOS config, not necessarily from the userland config.
3140                  */
3141                 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3142                         spa_aux_check_removed(&spa->spa_spares);
3143                         spa_aux_check_removed(&spa->spa_l2cache);
3144                 }
3145         }
3146 
3147         /*
3148          * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3149          */
3150         error = vdev_load(rvd);
3151         if (error != 0) {
3152                 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3153                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3154         }
3155 
3156         /*
3157          * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3158          */
3159         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3160         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3161         spa_config_exit(spa, SCL_ALL, FTAG);
3162 
3163         return (0);
3164 }
3165 
3166 static int
3167 spa_ld_load_dedup_tables(spa_t *spa)
3168 {
3169         int error = 0;
3170         vdev_t *rvd = spa->spa_root_vdev;
3171 
3172         error = ddt_load(spa);
3173         if (error != 0) {
3174                 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3175                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3176         }
3177 
3178         return (0);
3179 }
3180 
3181 static int
3182 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3183 {
3184         vdev_t *rvd = spa->spa_root_vdev;
3185 
3186         if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3187                 boolean_t missing = spa_check_logs(spa);
3188                 if (missing) {
3189                         if (spa->spa_missing_tvds != 0) {
3190                                 spa_load_note(spa, "spa_check_logs failed "
3191                                     "so dropping the logs");
3192                         } else {
3193                                 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3194                                 spa_load_failed(spa, "spa_check_logs failed");
3195                                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3196                                     ENXIO));
3197                         }
3198                 }
3199         }
3200 
3201         return (0);
3202 }
3203 
3204 static int
3205 spa_ld_verify_pool_data(spa_t *spa)
3206 {
3207         int error = 0;
3208         vdev_t *rvd = spa->spa_root_vdev;
3209 
3210         /*
3211          * We've successfully opened the pool, verify that we're ready
3212          * to start pushing transactions.
3213          */
3214         if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3215                 error = spa_load_verify(spa);
3216                 if (error != 0) {
3217                         spa_load_failed(spa, "spa_load_verify failed "
3218                             "[error=%d]", error);
3219                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3220                             error));
3221                 }
3222         }
3223 
3224         return (0);
3225 }
3226 
3227 static void
3228 spa_ld_claim_log_blocks(spa_t *spa)
3229 {
3230         dmu_tx_t *tx;
3231         dsl_pool_t *dp = spa_get_dsl(spa);
3232 
3233         /*
3234          * Claim log blocks that haven't been committed yet.
3235          * This must all happen in a single txg.
3236          * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3237          * invoked from zil_claim_log_block()'s i/o done callback.
3238          * Price of rollback is that we abandon the log.
3239          */
3240         spa->spa_claiming = B_TRUE;
3241 
3242         tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3243         (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3244             zil_claim, tx, DS_FIND_CHILDREN);
3245         dmu_tx_commit(tx);
3246 
3247         spa->spa_claiming = B_FALSE;
3248 
3249         spa_set_log_state(spa, SPA_LOG_GOOD);
3250 }
3251 
3252 static void
3253 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3254     boolean_t reloading)
3255 {
3256         vdev_t *rvd = spa->spa_root_vdev;
3257         int need_update = B_FALSE;
3258 
3259         /*
3260          * If the config cache is stale, or we have uninitialized
3261          * metaslabs (see spa_vdev_add()), then update the config.
3262          *
3263          * If this is a verbatim import, trust the current
3264          * in-core spa_config and update the disk labels.
3265          */
3266         if (reloading || config_cache_txg != spa->spa_config_txg ||
3267             spa->spa_load_state == SPA_LOAD_IMPORT ||
3268             spa->spa_load_state == SPA_LOAD_RECOVER ||
3269             (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3270                 need_update = B_TRUE;
3271 
3272         for (int c = 0; c < rvd->vdev_children; c++)
3273                 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3274                         need_update = B_TRUE;
3275 
3276         /*
3277          * Update the config cache asychronously in case we're the
3278          * root pool, in which case the config cache isn't writable yet.
3279          */
3280         if (need_update)
3281                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3282 }
3283 
3284 static void
3285 spa_ld_prepare_for_reload(spa_t *spa)
3286 {
3287         int mode = spa->spa_mode;
3288         int async_suspended = spa->spa_async_suspended;
3289 
3290         spa_unload(spa);
3291         spa_deactivate(spa);
3292         spa_activate(spa, mode);
3293 
3294         /*
3295          * We save the value of spa_async_suspended as it gets reset to 0 by
3296          * spa_unload(). We want to restore it back to the original value before
3297          * returning as we might be calling spa_async_resume() later.
3298          */
3299         spa->spa_async_suspended = async_suspended;
3300 }
3301 
3302 /*
3303  * Load an existing storage pool, using the config provided. This config
3304  * describes which vdevs are part of the pool and is later validated against
3305  * partial configs present in each vdev's label and an entire copy of the
3306  * config stored in the MOS.
3307  */
3308 static int
3309 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport,
3310     boolean_t reloading)
3311 {
3312         int error = 0;
3313         boolean_t missing_feat_write = B_FALSE;
3314 
3315         ASSERT(MUTEX_HELD(&spa_namespace_lock));
3316         ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3317 
3318         /*
3319          * Never trust the config that is provided unless we are assembling
3320          * a pool following a split.
3321          * This means don't trust blkptrs and the vdev tree in general. This
3322          * also effectively puts the spa in read-only mode since
3323          * spa_writeable() checks for spa_trust_config to be true.
3324          * We will later load a trusted config from the MOS.
3325          */
3326         if (type != SPA_IMPORT_ASSEMBLE)
3327                 spa->spa_trust_config = B_FALSE;
3328 
3329         if (reloading)
3330                 spa_load_note(spa, "RELOADING");
3331         else
3332                 spa_load_note(spa, "LOADING");
3333 
3334         /*
3335          * Parse the config provided to create a vdev tree.
3336          */
3337         error = spa_ld_parse_config(spa, type);
3338         if (error != 0)
3339                 return (error);
3340 
3341         /*
3342          * Now that we have the vdev tree, try to open each vdev. This involves
3343          * opening the underlying physical device, retrieving its geometry and
3344          * probing the vdev with a dummy I/O. The state of each vdev will be set
3345          * based on the success of those operations. After this we'll be ready
3346          * to read from the vdevs.
3347          */
3348         error = spa_ld_open_vdevs(spa);
3349         if (error != 0)
3350                 return (error);
3351 
3352         /*
3353          * Read the label of each vdev and make sure that the GUIDs stored
3354          * there match the GUIDs in the config provided.
3355          * If we're assembling a new pool that's been split off from an
3356          * existing pool, the labels haven't yet been updated so we skip
3357          * validation for now.
3358          */
3359         if (type != SPA_IMPORT_ASSEMBLE) {
3360                 error = spa_ld_validate_vdevs(spa);
3361                 if (error != 0)
3362                         return (error);
3363         }
3364 
3365         /*
3366          * Read vdev labels to find the best uberblock (i.e. latest, unless
3367          * spa_load_max_txg is set) and store it in spa_uberblock. We get the
3368          * list of features required to read blkptrs in the MOS from the vdev
3369          * label with the best uberblock and verify that our version of zfs
3370          * supports them all.
3371          */
3372         error = spa_ld_select_uberblock(spa, type);
3373         if (error != 0)
3374                 return (error);
3375 
3376         /*
3377          * Pass that uberblock to the dsl_pool layer which will open the root
3378          * blkptr. This blkptr points to the latest version of the MOS and will
3379          * allow us to read its contents.
3380          */
3381         error = spa_ld_open_rootbp(spa);
3382         if (error != 0)
3383                 return (error);
3384 
3385         /*
3386          * Retrieve the trusted config stored in the MOS and use it to create
3387          * a new, exact version of the vdev tree, then reopen all vdevs.
3388          */
3389         error = spa_ld_load_trusted_config(spa, type, reloading);
3390         if (error == EAGAIN) {
3391                 VERIFY(!reloading);
3392                 /*
3393                  * Redo the loading process with the trusted config if it is
3394                  * too different from the untrusted config.
3395                  */
3396                 spa_ld_prepare_for_reload(spa);
3397                 return (spa_load_impl(spa, type, ereport, B_TRUE));
3398         } else if (error != 0) {
3399                 return (error);
3400         }
3401 
3402         /*
3403          * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3404          * from the pool and their contents were re-mapped to other vdevs. Note
3405          * that everything that we read before this step must have been
3406          * rewritten on concrete vdevs after the last device removal was
3407          * initiated. Otherwise we could be reading from indirect vdevs before
3408          * we have loaded their mappings.
3409          */
3410         error = spa_ld_open_indirect_vdev_metadata(spa);
3411         if (error != 0)
3412                 return (error);
3413 
3414         /*
3415          * Retrieve the full list of active features from the MOS and check if
3416          * they are all supported.
3417          */
3418         error = spa_ld_check_features(spa, &missing_feat_write);
3419         if (error != 0)
3420                 return (error);
3421 
3422         /*
3423          * Load several special directories from the MOS needed by the dsl_pool
3424          * layer.
3425          */
3426         error = spa_ld_load_special_directories(spa);
3427         if (error != 0)
3428                 return (error);
3429 
3430         /*
3431          * Retrieve pool properties from the MOS.
3432          */
3433         error = spa_ld_get_props(spa);
3434         if (error != 0)
3435                 return (error);
3436 
3437         /*
3438          * Retrieve the list of auxiliary devices - cache devices and spares -
3439          * and open them.
3440          */
3441         error = spa_ld_open_aux_vdevs(spa, type);
3442         if (error != 0)
3443                 return (error);
3444 
3445         /*
3446          * Load the metadata for all vdevs. Also check if unopenable devices
3447          * should be autoreplaced.
3448          */
3449         error = spa_ld_load_vdev_metadata(spa);
3450         if (error != 0)
3451                 return (error);
3452 
3453         error = spa_ld_load_dedup_tables(spa);
3454         if (error != 0)
3455                 return (error);
3456 
3457         /*
3458          * Verify the logs now to make sure we don't have any unexpected errors
3459          * when we claim log blocks later.
3460          */
3461         error = spa_ld_verify_logs(spa, type, ereport);
3462         if (error != 0)
3463                 return (error);
3464 
3465         if (missing_feat_write) {
3466                 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3467 
3468                 /*
3469                  * At this point, we know that we can open the pool in
3470                  * read-only mode but not read-write mode. We now have enough
3471                  * information and can return to userland.
3472                  */
3473                 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3474                     ENOTSUP));
3475         }
3476 
3477         /*
3478          * Traverse the last txgs to make sure the pool was left off in a safe
3479          * state. When performing an extreme rewind, we verify the whole pool,
3480          * which can take a very long time.
3481          */
3482         error = spa_ld_verify_pool_data(spa);
3483         if (error != 0)
3484                 return (error);
3485 
3486         /*
3487          * Calculate the deflated space for the pool. This must be done before
3488          * we write anything to the pool because we'd need to update the space
3489          * accounting using the deflated sizes.
3490          */
3491         spa_update_dspace(spa);
3492 
3493         /*
3494          * We have now retrieved all the information we needed to open the
3495          * pool. If we are importing the pool in read-write mode, a few
3496          * additional steps must be performed to finish the import.
3497          */
3498         if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3499             spa->spa_load_max_txg == UINT64_MAX)) {
3500                 uint64_t config_cache_txg = spa->spa_config_txg;
3501 
3502                 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3503 
3504                 /*
3505                  * Traverse the ZIL and claim all blocks.
3506                  */
3507                 spa_ld_claim_log_blocks(spa);
3508 
3509                 /*
3510                  * Kick-off the syncing thread.
3511                  */
3512                 spa->spa_sync_on = B_TRUE;
3513                 txg_sync_start(spa->spa_dsl_pool);
3514 
3515                 /*
3516                  * Wait for all claims to sync.  We sync up to the highest
3517                  * claimed log block birth time so that claimed log blocks
3518                  * don't appear to be from the future.  spa_claim_max_txg
3519                  * will have been set for us by ZIL traversal operations
3520                  * performed above.
3521                  */
3522                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3523 
3524                 /*
3525                  * Check if we need to request an update of the config. On the
3526                  * next sync, we would update the config stored in vdev labels
3527                  * and the cachefile (by default /etc/zfs/zpool.cache).
3528                  */
3529                 spa_ld_check_for_config_update(spa, config_cache_txg,
3530                     reloading);
3531 
3532                 /*
3533                  * Check all DTLs to see if anything needs resilvering.
3534                  */
3535                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3536                     vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3537                         spa_async_request(spa, SPA_ASYNC_RESILVER);
3538 
3539                 /*
3540                  * Log the fact that we booted up (so that we can detect if
3541                  * we rebooted in the middle of an operation).
3542                  */
3543                 spa_history_log_version(spa, "open");
3544 
3545                 /*
3546                  * Delete any inconsistent datasets.
3547                  */
3548                 (void) dmu_objset_find(spa_name(spa),
3549                     dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3550 
3551                 /*
3552                  * Clean up any stale temporary dataset userrefs.
3553                  */
3554                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3555 
3556                 spa_restart_removal(spa);
3557 
3558                 spa_spawn_aux_threads(spa);
3559         }
3560 
3561         spa_load_note(spa, "LOADED");
3562 
3563         return (0);
3564 }
3565 
3566 static int
3567 spa_load_retry(spa_t *spa, spa_load_state_t state)
3568 {
3569         int mode = spa->spa_mode;
3570 
3571         spa_unload(spa);
3572         spa_deactivate(spa);
3573 
3574         spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3575 
3576         spa_activate(spa, mode);
3577         spa_async_suspend(spa);
3578 
3579         spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3580             (u_longlong_t)spa->spa_load_max_txg);
3581 
3582         return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3583 }
3584 
3585 /*
3586  * If spa_load() fails this function will try loading prior txg's. If
3587  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3588  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3589  * function will not rewind the pool and will return the same error as
3590  * spa_load().
3591  */
3592 static int
3593 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3594     int rewind_flags)
3595 {
3596         nvlist_t *loadinfo = NULL;
3597         nvlist_t *config = NULL;
3598         int load_error, rewind_error;
3599         uint64_t safe_rewind_txg;
3600         uint64_t min_txg;
3601 
3602         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3603                 spa->spa_load_max_txg = spa->spa_load_txg;
3604                 spa_set_log_state(spa, SPA_LOG_CLEAR);
3605         } else {
3606                 spa->spa_load_max_txg = max_request;
3607                 if (max_request != UINT64_MAX)
3608                         spa->spa_extreme_rewind = B_TRUE;
3609         }
3610 
3611         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
3612         if (load_error == 0)
3613                 return (0);
3614 
3615         if (spa->spa_root_vdev != NULL)
3616                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3617 
3618         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3619         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3620 
3621         if (rewind_flags & ZPOOL_NEVER_REWIND) {
3622                 nvlist_free(config);
3623                 return (load_error);
3624         }
3625 
3626         if (state == SPA_LOAD_RECOVER) {
3627                 /* Price of rolling back is discarding txgs, including log */
3628                 spa_set_log_state(spa, SPA_LOG_CLEAR);
3629         } else {
3630                 /*
3631                  * If we aren't rolling back save the load info from our first
3632                  * import attempt so that we can restore it after attempting
3633                  * to rewind.
3634                  */
3635                 loadinfo = spa->spa_load_info;
3636                 spa->spa_load_info = fnvlist_alloc();
3637         }
3638 
3639         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3640         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3641         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3642             TXG_INITIAL : safe_rewind_txg;
3643 
3644         /*
3645          * Continue as long as we're finding errors, we're still within
3646          * the acceptable rewind range, and we're still finding uberblocks
3647          */
3648         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3649             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3650                 if (spa->spa_load_max_txg < safe_rewind_txg)
3651                         spa->spa_extreme_rewind = B_TRUE;
3652                 rewind_error = spa_load_retry(spa, state);
3653         }
3654 
3655         spa->spa_extreme_rewind = B_FALSE;
3656         spa->spa_load_max_txg = UINT64_MAX;
3657 
3658         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3659                 spa_config_set(spa, config);
3660         else
3661                 nvlist_free(config);
3662 
3663         if (state == SPA_LOAD_RECOVER) {
3664                 ASSERT3P(loadinfo, ==, NULL);
3665                 return (rewind_error);
3666         } else {
3667                 /* Store the rewind info as part of the initial load info */
3668                 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3669                     spa->spa_load_info);
3670 
3671                 /* Restore the initial load info */
3672                 fnvlist_free(spa->spa_load_info);
3673                 spa->spa_load_info = loadinfo;
3674 
3675                 return (load_error);
3676         }
3677 }
3678 
3679 /*
3680  * Pool Open/Import
3681  *
3682  * The import case is identical to an open except that the configuration is sent
3683  * down from userland, instead of grabbed from the configuration cache.  For the
3684  * case of an open, the pool configuration will exist in the
3685  * POOL_STATE_UNINITIALIZED state.
3686  *
3687  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3688  * the same time open the pool, without having to keep around the spa_t in some
3689  * ambiguous state.
3690  */
3691 static int
3692 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3693     nvlist_t **config)
3694 {
3695         spa_t *spa;
3696         spa_load_state_t state = SPA_LOAD_OPEN;
3697         int error;
3698         int locked = B_FALSE;
3699 
3700         *spapp = NULL;
3701 
3702         /*
3703          * As disgusting as this is, we need to support recursive calls to this
3704          * function because dsl_dir_open() is called during spa_load(), and ends
3705          * up calling spa_open() again.  The real fix is to figure out how to
3706          * avoid dsl_dir_open() calling this in the first place.
3707          */
3708         if (mutex_owner(&spa_namespace_lock) != curthread) {
3709                 mutex_enter(&spa_namespace_lock);
3710                 locked = B_TRUE;
3711         }
3712 
3713         if ((spa = spa_lookup(pool)) == NULL) {
3714                 if (locked)
3715                         mutex_exit(&spa_namespace_lock);
3716                 return (SET_ERROR(ENOENT));
3717         }
3718 
3719         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3720                 zpool_rewind_policy_t policy;
3721 
3722                 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3723                     &policy);
3724                 if (policy.zrp_request & ZPOOL_DO_REWIND)
3725                         state = SPA_LOAD_RECOVER;
3726 
3727                 spa_activate(spa, spa_mode_global);
3728 
3729                 if (state != SPA_LOAD_RECOVER)
3730                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3731                 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
3732 
3733                 zfs_dbgmsg("spa_open_common: opening %s", pool);
3734                 error = spa_load_best(spa, state, policy.zrp_txg,
3735                     policy.zrp_request);
3736 
3737                 if (error == EBADF) {
3738                         /*
3739                          * If vdev_validate() returns failure (indicated by
3740                          * EBADF), it indicates that one of the vdevs indicates
3741                          * that the pool has been exported or destroyed.  If
3742                          * this is the case, the config cache is out of sync and
3743                          * we should remove the pool from the namespace.
3744                          */
3745                         spa_unload(spa);
3746                         spa_deactivate(spa);
3747                         spa_write_cachefile(spa, B_TRUE, B_TRUE);
3748                         spa_remove(spa);
3749                         if (locked)
3750                                 mutex_exit(&spa_namespace_lock);
3751                         return (SET_ERROR(ENOENT));
3752                 }
3753 
3754                 if (error) {
3755                         /*
3756                          * We can't open the pool, but we still have useful
3757                          * information: the state of each vdev after the
3758                          * attempted vdev_open().  Return this to the user.
3759                          */
3760                         if (config != NULL && spa->spa_config) {
3761                                 VERIFY(nvlist_dup(spa->spa_config, config,
3762                                     KM_SLEEP) == 0);
3763                                 VERIFY(nvlist_add_nvlist(*config,
3764                                     ZPOOL_CONFIG_LOAD_INFO,
3765                                     spa->spa_load_info) == 0);
3766                         }
3767                         spa_unload(spa);
3768                         spa_deactivate(spa);
3769                         spa->spa_last_open_failed = error;
3770                         if (locked)
3771                                 mutex_exit(&spa_namespace_lock);
3772                         *spapp = NULL;
3773                         return (error);
3774                 }
3775         }
3776 
3777         spa_open_ref(spa, tag);
3778 
3779         if (config != NULL)
3780                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3781 
3782         /*
3783          * If we've recovered the pool, pass back any information we
3784          * gathered while doing the load.
3785          */
3786         if (state == SPA_LOAD_RECOVER) {
3787                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3788                     spa->spa_load_info) == 0);
3789         }
3790 
3791         if (locked) {
3792                 spa->spa_last_open_failed = 0;
3793                 spa->spa_last_ubsync_txg = 0;
3794                 spa->spa_load_txg = 0;
3795                 mutex_exit(&spa_namespace_lock);
3796         }
3797 
3798         *spapp = spa;
3799 
3800         return (0);
3801 }
3802 
3803 int
3804 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3805     nvlist_t **config)
3806 {
3807         return (spa_open_common(name, spapp, tag, policy, config));
3808 }
3809 
3810 int
3811 spa_open(const char *name, spa_t **spapp, void *tag)
3812 {
3813         return (spa_open_common(name, spapp, tag, NULL, NULL));
3814 }
3815 
3816 /*
3817  * Lookup the given spa_t, incrementing the inject count in the process,
3818  * preventing it from being exported or destroyed.
3819  */
3820 spa_t *
3821 spa_inject_addref(char *name)
3822 {
3823         spa_t *spa;
3824 
3825         mutex_enter(&spa_namespace_lock);
3826         if ((spa = spa_lookup(name)) == NULL) {
3827                 mutex_exit(&spa_namespace_lock);
3828                 return (NULL);
3829         }
3830         spa->spa_inject_ref++;
3831         mutex_exit(&spa_namespace_lock);
3832 
3833         return (spa);
3834 }
3835 
3836 void
3837 spa_inject_delref(spa_t *spa)
3838 {
3839         mutex_enter(&spa_namespace_lock);
3840         spa->spa_inject_ref--;
3841         mutex_exit(&spa_namespace_lock);
3842 }
3843 
3844 /*
3845  * Add spares device information to the nvlist.
3846  */
3847 static void
3848 spa_add_spares(spa_t *spa, nvlist_t *config)
3849 {
3850         nvlist_t **spares;
3851         uint_t i, nspares;
3852         nvlist_t *nvroot;
3853         uint64_t guid;
3854         vdev_stat_t *vs;
3855         uint_t vsc;
3856         uint64_t pool;
3857 
3858         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3859 
3860         if (spa->spa_spares.sav_count == 0)
3861                 return;
3862 
3863         VERIFY(nvlist_lookup_nvlist(config,
3864             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3865         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3866             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3867         if (nspares != 0) {
3868                 VERIFY(nvlist_add_nvlist_array(nvroot,
3869                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3870                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3871                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3872 
3873                 /*
3874                  * Go through and find any spares which have since been
3875                  * repurposed as an active spare.  If this is the case, update
3876                  * their status appropriately.
3877                  */
3878                 for (i = 0; i < nspares; i++) {
3879                         VERIFY(nvlist_lookup_uint64(spares[i],
3880                             ZPOOL_CONFIG_GUID, &guid) == 0);
3881                         if (spa_spare_exists(guid, &pool, NULL) &&
3882                             pool != 0ULL) {
3883                                 VERIFY(nvlist_lookup_uint64_array(
3884                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
3885                                     (uint64_t **)&vs, &vsc) == 0);
3886                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
3887                                 vs->vs_aux = VDEV_AUX_SPARED;
3888                         }
3889                 }
3890         }
3891 }
3892 
3893 /*
3894  * Add l2cache device information to the nvlist, including vdev stats.
3895  */
3896 static void
3897 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3898 {
3899         nvlist_t **l2cache;
3900         uint_t i, j, nl2cache;
3901         nvlist_t *nvroot;
3902         uint64_t guid;
3903         vdev_t *vd;
3904         vdev_stat_t *vs;
3905         uint_t vsc;
3906 
3907         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3908 
3909         if (spa->spa_l2cache.sav_count == 0)
3910                 return;
3911 
3912         VERIFY(nvlist_lookup_nvlist(config,
3913             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3914         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3915             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3916         if (nl2cache != 0) {
3917                 VERIFY(nvlist_add_nvlist_array(nvroot,
3918                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3919                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3920                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3921 
3922                 /*
3923                  * Update level 2 cache device stats.
3924                  */
3925 
3926                 for (i = 0; i < nl2cache; i++) {
3927                         VERIFY(nvlist_lookup_uint64(l2cache[i],
3928                             ZPOOL_CONFIG_GUID, &guid) == 0);
3929 
3930                         vd = NULL;
3931                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3932                                 if (guid ==
3933                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3934                                         vd = spa->spa_l2cache.sav_vdevs[j];
3935                                         break;
3936                                 }
3937                         }
3938                         ASSERT(vd != NULL);
3939 
3940                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3941                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3942                             == 0);
3943                         vdev_get_stats(vd, vs);
3944                 }
3945         }
3946 }
3947 
3948 static void
3949 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3950 {
3951         nvlist_t *features;
3952         zap_cursor_t zc;
3953         zap_attribute_t za;
3954 
3955         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3956         VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3957 
3958         if (spa->spa_feat_for_read_obj != 0) {
3959                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3960                     spa->spa_feat_for_read_obj);
3961                     zap_cursor_retrieve(&zc, &za) == 0;
3962                     zap_cursor_advance(&zc)) {
3963                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3964                             za.za_num_integers == 1);
3965                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3966                             za.za_first_integer));
3967                 }
3968                 zap_cursor_fini(&zc);
3969         }
3970 
3971         if (spa->spa_feat_for_write_obj != 0) {
3972                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3973                     spa->spa_feat_for_write_obj);
3974                     zap_cursor_retrieve(&zc, &za) == 0;
3975                     zap_cursor_advance(&zc)) {
3976                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3977                             za.za_num_integers == 1);
3978                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3979                             za.za_first_integer));
3980                 }
3981                 zap_cursor_fini(&zc);
3982         }
3983 
3984         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3985             features) == 0);
3986         nvlist_free(features);
3987 }
3988 
3989 int
3990 spa_get_stats(const char *name, nvlist_t **config,
3991     char *altroot, size_t buflen)
3992 {
3993         int error;
3994         spa_t *spa;
3995 
3996         *config = NULL;
3997         error = spa_open_common(name, &spa, FTAG, NULL, config);
3998 
3999         if (spa != NULL) {
4000                 /*
4001                  * This still leaves a window of inconsistency where the spares
4002                  * or l2cache devices could change and the config would be
4003                  * self-inconsistent.
4004                  */
4005                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4006 
4007                 if (*config != NULL) {
4008                         uint64_t loadtimes[2];
4009 
4010                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4011                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4012                         VERIFY(nvlist_add_uint64_array(*config,
4013                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4014 
4015                         VERIFY(nvlist_add_uint64(*config,
4016                             ZPOOL_CONFIG_ERRCOUNT,
4017                             spa_get_errlog_size(spa)) == 0);
4018 
4019                         if (spa_suspended(spa))
4020                                 VERIFY(nvlist_add_uint64(*config,
4021                                     ZPOOL_CONFIG_SUSPENDED,
4022                                     spa->spa_failmode) == 0);
4023 
4024                         spa_add_spares(spa, *config);
4025                         spa_add_l2cache(spa, *config);
4026                         spa_add_feature_stats(spa, *config);
4027                 }
4028         }
4029 
4030         /*
4031          * We want to get the alternate root even for faulted pools, so we cheat
4032          * and call spa_lookup() directly.
4033          */
4034         if (altroot) {
4035                 if (spa == NULL) {
4036                         mutex_enter(&spa_namespace_lock);
4037                         spa = spa_lookup(name);
4038                         if (spa)
4039                                 spa_altroot(spa, altroot, buflen);
4040                         else
4041                                 altroot[0] = '\0';
4042                         spa = NULL;
4043                         mutex_exit(&spa_namespace_lock);
4044                 } else {
4045                         spa_altroot(spa, altroot, buflen);
4046                 }
4047         }
4048 
4049         if (spa != NULL) {
4050                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4051                 spa_close(spa, FTAG);
4052         }
4053 
4054         return (error);
4055 }
4056 
4057 /*
4058  * Validate that the auxiliary device array is well formed.  We must have an
4059  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4060  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4061  * specified, as long as they are well-formed.
4062  */
4063 static int
4064 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4065     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4066     vdev_labeltype_t label)
4067 {
4068         nvlist_t **dev;
4069         uint_t i, ndev;
4070         vdev_t *vd;
4071         int error;
4072 
4073         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4074 
4075         /*
4076          * It's acceptable to have no devs specified.
4077          */
4078         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4079                 return (0);
4080 
4081         if (ndev == 0)
4082                 return (SET_ERROR(EINVAL));
4083 
4084         /*
4085          * Make sure the pool is formatted with a version that supports this
4086          * device type.
4087          */
4088         if (spa_version(spa) < version)
4089                 return (SET_ERROR(ENOTSUP));
4090 
4091         /*
4092          * Set the pending device list so we correctly handle device in-use
4093          * checking.
4094          */
4095         sav->sav_pending = dev;
4096         sav->sav_npending = ndev;
4097 
4098         for (i = 0; i < ndev; i++) {
4099                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4100                     mode)) != 0)
4101                         goto out;
4102 
4103                 if (!vd->vdev_ops->vdev_op_leaf) {
4104                         vdev_free(vd);
4105                         error = SET_ERROR(EINVAL);
4106                         goto out;
4107                 }
4108 
4109                 /*
4110                  * The L2ARC currently only supports disk devices in
4111                  * kernel context.  For user-level testing, we allow it.
4112                  */
4113 #ifdef _KERNEL
4114                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4115                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4116                         error = SET_ERROR(ENOTBLK);
4117                         vdev_free(vd);
4118                         goto out;
4119                 }
4120 #endif
4121                 vd->vdev_top = vd;
4122 
4123                 if ((error = vdev_open(vd)) == 0 &&
4124                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
4125                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4126                             vd->vdev_guid) == 0);
4127                 }
4128 
4129                 vdev_free(vd);
4130 
4131                 if (error &&
4132                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4133                         goto out;
4134                 else
4135                         error = 0;
4136         }
4137 
4138 out:
4139         sav->sav_pending = NULL;
4140         sav->sav_npending = 0;
4141         return (error);
4142 }
4143 
4144 static int
4145 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4146 {
4147         int error;
4148 
4149         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4150 
4151         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4152             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4153             VDEV_LABEL_SPARE)) != 0) {
4154                 return (error);
4155         }
4156 
4157         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4158             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4159             VDEV_LABEL_L2CACHE));
4160 }
4161 
4162 static void
4163 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4164     const char *config)
4165 {
4166         int i;
4167 
4168         if (sav->sav_config != NULL) {
4169                 nvlist_t **olddevs;
4170                 uint_t oldndevs;
4171                 nvlist_t **newdevs;
4172 
4173                 /*
4174                  * Generate new dev list by concatentating with the
4175                  * current dev list.
4176                  */
4177                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4178                     &olddevs, &oldndevs) == 0);
4179 
4180                 newdevs = kmem_alloc(sizeof (void *) *
4181                     (ndevs + oldndevs), KM_SLEEP);
4182                 for (i = 0; i < oldndevs; i++)
4183                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4184                             KM_SLEEP) == 0);
4185                 for (i = 0; i < ndevs; i++)
4186                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4187                             KM_SLEEP) == 0);
4188 
4189                 VERIFY(nvlist_remove(sav->sav_config, config,
4190                     DATA_TYPE_NVLIST_ARRAY) == 0);
4191 
4192                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4193                     config, newdevs, ndevs + oldndevs) == 0);
4194                 for (i = 0; i < oldndevs + ndevs; i++)
4195                         nvlist_free(newdevs[i]);
4196                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4197         } else {
4198                 /*
4199                  * Generate a new dev list.
4200                  */
4201                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4202                     KM_SLEEP) == 0);
4203                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4204                     devs, ndevs) == 0);
4205         }
4206 }
4207 
4208 /*
4209  * Stop and drop level 2 ARC devices
4210  */
4211 void
4212 spa_l2cache_drop(spa_t *spa)
4213 {
4214         vdev_t *vd;
4215         int i;
4216         spa_aux_vdev_t *sav = &spa->spa_l2cache;
4217 
4218         for (i = 0; i < sav->sav_count; i++) {
4219                 uint64_t pool;
4220 
4221                 vd = sav->sav_vdevs[i];
4222                 ASSERT(vd != NULL);
4223 
4224                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4225                     pool != 0ULL && l2arc_vdev_present(vd))
4226                         l2arc_remove_vdev(vd);
4227         }
4228 }
4229 
4230 /*
4231  * Pool Creation
4232  */
4233 int
4234 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4235     nvlist_t *zplprops)
4236 {
4237         spa_t *spa;
4238         char *altroot = NULL;
4239         vdev_t *rvd;
4240         dsl_pool_t *dp;
4241         dmu_tx_t *tx;
4242         int error = 0;
4243         uint64_t txg = TXG_INITIAL;
4244         nvlist_t **spares, **l2cache;
4245         uint_t nspares, nl2cache;
4246         uint64_t version, obj;
4247         boolean_t has_features;
4248 
4249         /*
4250          * If this pool already exists, return failure.
4251          */
4252         mutex_enter(&spa_namespace_lock);
4253         if (spa_lookup(pool) != NULL) {
4254                 mutex_exit(&spa_namespace_lock);
4255                 return (SET_ERROR(EEXIST));
4256         }
4257 
4258         /*
4259          * Allocate a new spa_t structure.
4260          */
4261         (void) nvlist_lookup_string(props,
4262             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4263         spa = spa_add(pool, NULL, altroot);
4264         spa_activate(spa, spa_mode_global);
4265 
4266         if (props && (error = spa_prop_validate(spa, props))) {
4267                 spa_deactivate(spa);
4268                 spa_remove(spa);
4269                 mutex_exit(&spa_namespace_lock);
4270                 return (error);
4271         }
4272 
4273         has_features = B_FALSE;
4274         for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4275             elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4276                 if (zpool_prop_feature(nvpair_name(elem)))
4277                         has_features = B_TRUE;
4278         }
4279 
4280         if (has_features || nvlist_lookup_uint64(props,
4281             zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4282                 version = SPA_VERSION;
4283         }
4284         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4285 
4286         spa->spa_first_txg = txg;
4287         spa->spa_uberblock.ub_txg = txg - 1;
4288         spa->spa_uberblock.ub_version = version;
4289         spa->spa_ubsync = spa->spa_uberblock;
4290         spa->spa_load_state = SPA_LOAD_CREATE;
4291         spa->spa_removing_phys.sr_state = DSS_NONE;
4292         spa->spa_removing_phys.sr_removing_vdev = -1;
4293         spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4294 
4295         /*
4296          * Create "The Godfather" zio to hold all async IOs
4297          */
4298         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4299             KM_SLEEP);
4300         for (int i = 0; i < max_ncpus; i++) {
4301                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4302                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4303                     ZIO_FLAG_GODFATHER);
4304         }
4305 
4306         /*
4307          * Create the root vdev.
4308          */
4309         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4310 
4311         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4312 
4313         ASSERT(error != 0 || rvd != NULL);
4314         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4315 
4316         if (error == 0 && !zfs_allocatable_devs(nvroot))
4317                 error = SET_ERROR(EINVAL);
4318 
4319         if (error == 0 &&
4320             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4321             (error = spa_validate_aux(spa, nvroot, txg,
4322             VDEV_ALLOC_ADD)) == 0) {
4323                 for (int c = 0; c < rvd->vdev_children; c++) {
4324                         vdev_metaslab_set_size(rvd->vdev_child[c]);
4325                         vdev_expand(rvd->vdev_child[c], txg);
4326                 }
4327         }
4328 
4329         spa_config_exit(spa, SCL_ALL, FTAG);
4330 
4331         if (error != 0) {
4332                 spa_unload(spa);
4333                 spa_deactivate(spa);
4334                 spa_remove(spa);
4335                 mutex_exit(&spa_namespace_lock);
4336                 return (error);
4337         }
4338 
4339         /*
4340          * Get the list of spares, if specified.
4341          */
4342         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4343             &spares, &nspares) == 0) {
4344                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4345                     KM_SLEEP) == 0);
4346                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4347                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4348                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4349                 spa_load_spares(spa);
4350                 spa_config_exit(spa, SCL_ALL, FTAG);
4351                 spa->spa_spares.sav_sync = B_TRUE;
4352         }
4353 
4354         /*
4355          * Get the list of level 2 cache devices, if specified.
4356          */
4357         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4358             &l2cache, &nl2cache) == 0) {
4359                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4360                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
4361                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4362                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4363                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4364                 spa_load_l2cache(spa);
4365                 spa_config_exit(spa, SCL_ALL, FTAG);
4366                 spa->spa_l2cache.sav_sync = B_TRUE;
4367         }
4368 
4369         spa->spa_is_initializing = B_TRUE;
4370         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4371         spa->spa_meta_objset = dp->dp_meta_objset;
4372         spa->spa_is_initializing = B_FALSE;
4373 
4374         /*
4375          * Create DDTs (dedup tables).
4376          */
4377         ddt_create(spa);
4378 
4379         spa_update_dspace(spa);
4380 
4381         tx = dmu_tx_create_assigned(dp, txg);
4382 
4383         /*
4384          * Create the pool config object.
4385          */
4386         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4387             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4388             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4389 
4390         if (zap_add(spa->spa_meta_objset,
4391             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4392             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4393                 cmn_err(CE_PANIC, "failed to add pool config");
4394         }
4395 
4396         if (spa_version(spa) >= SPA_VERSION_FEATURES)
4397                 spa_feature_create_zap_objects(spa, tx);
4398 
4399         if (zap_add(spa->spa_meta_objset,
4400             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4401             sizeof (uint64_t), 1, &version, tx) != 0) {
4402                 cmn_err(CE_PANIC, "failed to add pool version");
4403         }
4404 
4405         /* Newly created pools with the right version are always deflated. */
4406         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4407                 spa->spa_deflate = TRUE;
4408                 if (zap_add(spa->spa_meta_objset,
4409                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4410                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4411                         cmn_err(CE_PANIC, "failed to add deflate");
4412                 }
4413         }
4414 
4415         /*
4416          * Create the deferred-free bpobj.  Turn off compression
4417          * because sync-to-convergence takes longer if the blocksize
4418          * keeps changing.
4419          */
4420         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4421         dmu_object_set_compress(spa->spa_meta_objset, obj,
4422             ZIO_COMPRESS_OFF, tx);
4423         if (zap_add(spa->spa_meta_objset,
4424             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4425             sizeof (uint64_t), 1, &obj, tx) != 0) {
4426                 cmn_err(CE_PANIC, "failed to add bpobj");
4427         }
4428         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4429             spa->spa_meta_objset, obj));
4430 
4431         /*
4432          * Create the pool's history object.
4433          */
4434         if (version >= SPA_VERSION_ZPOOL_HISTORY)
4435                 spa_history_create_obj(spa, tx);
4436 
4437         /*
4438          * Generate some random noise for salted checksums to operate on.
4439          */
4440         (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4441             sizeof (spa->spa_cksum_salt.zcs_bytes));
4442 
4443         /*
4444          * Set pool properties.
4445          */
4446         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4447         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4448         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4449         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4450 
4451         if (props != NULL) {
4452                 spa_configfile_set(spa, props, B_FALSE);
4453                 spa_sync_props(props, tx);
4454         }
4455 
4456         dmu_tx_commit(tx);
4457 
4458         spa->spa_sync_on = B_TRUE;
4459         txg_sync_start(spa->spa_dsl_pool);
4460 
4461         /*
4462          * We explicitly wait for the first transaction to complete so that our
4463          * bean counters are appropriately updated.
4464          */
4465         txg_wait_synced(spa->spa_dsl_pool, txg);
4466 
4467         spa_spawn_aux_threads(spa);
4468 
4469         spa_write_cachefile(spa, B_FALSE, B_TRUE);
4470         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4471 
4472         spa_history_log_version(spa, "create");
4473 
4474         /*
4475          * Don't count references from objsets that are already closed
4476          * and are making their way through the eviction process.
4477          */
4478         spa_evicting_os_wait(spa);
4479         spa->spa_minref = refcount_count(&spa->spa_refcount);
4480         spa->spa_load_state = SPA_LOAD_NONE;
4481 
4482         mutex_exit(&spa_namespace_lock);
4483 
4484         return (0);
4485 }
4486 
4487 #ifdef _KERNEL
4488 /*
4489  * Get the root pool information from the root disk, then import the root pool
4490  * during the system boot up time.
4491  */
4492 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4493 
4494 static nvlist_t *
4495 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4496 {
4497         nvlist_t *config;
4498         nvlist_t *nvtop, *nvroot;
4499         uint64_t pgid;
4500 
4501         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4502                 return (NULL);
4503 
4504         /*
4505          * Add this top-level vdev to the child array.
4506          */
4507         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4508             &nvtop) == 0);
4509         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4510             &pgid) == 0);
4511         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4512 
4513         /*
4514          * Put this pool's top-level vdevs into a root vdev.
4515          */
4516         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4517         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4518             VDEV_TYPE_ROOT) == 0);
4519         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4520         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4521         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4522             &nvtop, 1) == 0);
4523 
4524         /*
4525          * Replace the existing vdev_tree with the new root vdev in
4526          * this pool's configuration (remove the old, add the new).
4527          */
4528         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4529         nvlist_free(nvroot);
4530         return (config);
4531 }
4532 
4533 /*
4534  * Walk the vdev tree and see if we can find a device with "better"
4535  * configuration. A configuration is "better" if the label on that
4536  * device has a more recent txg.
4537  */
4538 static void
4539 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4540 {
4541         for (int c = 0; c < vd->vdev_children; c++)
4542                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4543 
4544         if (vd->vdev_ops->vdev_op_leaf) {
4545                 nvlist_t *label;
4546                 uint64_t label_txg;
4547 
4548                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4549                     &label) != 0)
4550                         return;
4551 
4552                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4553                     &label_txg) == 0);
4554 
4555                 /*
4556                  * Do we have a better boot device?
4557                  */
4558                 if (label_txg > *txg) {
4559                         *txg = label_txg;
4560                         *avd = vd;
4561                 }
4562                 nvlist_free(label);
4563         }
4564 }
4565 
4566 /*
4567  * Import a root pool.
4568  *
4569  * For x86. devpath_list will consist of devid and/or physpath name of
4570  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4571  * The GRUB "findroot" command will return the vdev we should boot.
4572  *
4573  * For Sparc, devpath_list consists the physpath name of the booting device
4574  * no matter the rootpool is a single device pool or a mirrored pool.
4575  * e.g.
4576  *      "/pci@1f,0/ide@d/disk@0,0:a"
4577  */
4578 int
4579 spa_import_rootpool(char *devpath, char *devid)
4580 {
4581         spa_t *spa;
4582         vdev_t *rvd, *bvd, *avd = NULL;
4583         nvlist_t *config, *nvtop;
4584         uint64_t guid, txg;
4585         char *pname;
4586         int error;
4587 
4588         /*
4589          * Read the label from the boot device and generate a configuration.
4590          */
4591         config = spa_generate_rootconf(devpath, devid, &guid);
4592 #if defined(_OBP) && defined(_KERNEL)
4593         if (config == NULL) {
4594                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
4595                         /* iscsi boot */
4596                         get_iscsi_bootpath_phy(devpath);
4597                         config = spa_generate_rootconf(devpath, devid, &guid);
4598                 }
4599         }
4600 #endif
4601         if (config == NULL) {
4602                 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4603                     devpath);
4604                 return (SET_ERROR(EIO));
4605         }
4606 
4607         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4608             &pname) == 0);
4609         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4610 
4611         mutex_enter(&spa_namespace_lock);
4612         if ((spa = spa_lookup(pname)) != NULL) {
4613                 /*
4614                  * Remove the existing root pool from the namespace so that we
4615                  * can replace it with the correct config we just read in.
4616                  */
4617                 spa_remove(spa);
4618         }
4619 
4620         spa = spa_add(pname, config, NULL);
4621         spa->spa_is_root = B_TRUE;
4622         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4623         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4624             &spa->spa_ubsync.ub_version) != 0)
4625                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4626 
4627         /*
4628          * Build up a vdev tree based on the boot device's label config.
4629          */
4630         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4631             &nvtop) == 0);
4632         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4633         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4634             VDEV_ALLOC_ROOTPOOL);
4635         spa_config_exit(spa, SCL_ALL, FTAG);
4636         if (error) {
4637                 mutex_exit(&spa_namespace_lock);
4638                 nvlist_free(config);
4639                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4640                     pname);
4641                 return (error);
4642         }
4643 
4644         /*
4645          * Get the boot vdev.
4646          */
4647         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4648                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4649                     (u_longlong_t)guid);
4650                 error = SET_ERROR(ENOENT);
4651                 goto out;
4652         }
4653 
4654         /*
4655          * Determine if there is a better boot device.
4656          */
4657         avd = bvd;
4658         spa_alt_rootvdev(rvd, &avd, &txg);
4659         if (avd != bvd) {
4660                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4661                     "try booting from '%s'", avd->vdev_path);
4662                 error = SET_ERROR(EINVAL);
4663                 goto out;
4664         }
4665 
4666         /*
4667          * If the boot device is part of a spare vdev then ensure that
4668          * we're booting off the active spare.
4669          */
4670         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4671             !bvd->vdev_isspare) {
4672                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4673                     "try booting from '%s'",
4674                     bvd->vdev_parent->
4675                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4676                 error = SET_ERROR(EINVAL);
4677                 goto out;
4678         }
4679 
4680         error = 0;
4681 out:
4682         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4683         vdev_free(rvd);
4684         spa_config_exit(spa, SCL_ALL, FTAG);
4685         mutex_exit(&spa_namespace_lock);
4686 
4687         nvlist_free(config);
4688         return (error);
4689 }
4690 
4691 #endif
4692 
4693 /*
4694  * Import a non-root pool into the system.
4695  */
4696 int
4697 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4698 {
4699         spa_t *spa;
4700         char *altroot = NULL;
4701         spa_load_state_t state = SPA_LOAD_IMPORT;
4702         zpool_rewind_policy_t policy;
4703         uint64_t mode = spa_mode_global;
4704         uint64_t readonly = B_FALSE;
4705         int error;
4706         nvlist_t *nvroot;
4707         nvlist_t **spares, **l2cache;
4708         uint_t nspares, nl2cache;
4709 
4710         /*
4711          * If a pool with this name exists, return failure.
4712          */
4713         mutex_enter(&spa_namespace_lock);
4714         if (spa_lookup(pool) != NULL) {
4715                 mutex_exit(&spa_namespace_lock);
4716                 return (SET_ERROR(EEXIST));
4717         }
4718 
4719         /*
4720          * Create and initialize the spa structure.
4721          */
4722         (void) nvlist_lookup_string(props,
4723             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4724         (void) nvlist_lookup_uint64(props,
4725             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4726         if (readonly)
4727                 mode = FREAD;
4728         spa = spa_add(pool, config, altroot);
4729         spa->spa_import_flags = flags;
4730 
4731         /*
4732          * Verbatim import - Take a pool and insert it into the namespace
4733          * as if it had been loaded at boot.
4734          */
4735         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4736                 if (props != NULL)
4737                         spa_configfile_set(spa, props, B_FALSE);
4738 
4739                 spa_write_cachefile(spa, B_FALSE, B_TRUE);
4740                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4741                 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
4742                 mutex_exit(&spa_namespace_lock);
4743                 return (0);
4744         }
4745 
4746         spa_activate(spa, mode);
4747 
4748         /*
4749          * Don't start async tasks until we know everything is healthy.
4750          */
4751         spa_async_suspend(spa);
4752 
4753         zpool_get_rewind_policy(config, &policy);
4754         if (policy.zrp_request & ZPOOL_DO_REWIND)
4755                 state = SPA_LOAD_RECOVER;
4756 
4757         spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
4758 
4759         if (state != SPA_LOAD_RECOVER) {
4760                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4761                 zfs_dbgmsg("spa_import: importing %s", pool);
4762         } else {
4763                 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
4764                     "(RECOVERY MODE)", pool, (longlong_t)policy.zrp_txg);
4765         }
4766         error = spa_load_best(spa, state, policy.zrp_txg, policy.zrp_request);
4767 
4768         /*
4769          * Propagate anything learned while loading the pool and pass it
4770          * back to caller (i.e. rewind info, missing devices, etc).
4771          */
4772         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4773             spa->spa_load_info) == 0);
4774 
4775         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4776         /*
4777          * Toss any existing sparelist, as it doesn't have any validity
4778          * anymore, and conflicts with spa_has_spare().
4779          */
4780         if (spa->spa_spares.sav_config) {
4781                 nvlist_free(spa->spa_spares.sav_config);
4782                 spa->spa_spares.sav_config = NULL;
4783                 spa_load_spares(spa);
4784         }
4785         if (spa->spa_l2cache.sav_config) {
4786                 nvlist_free(spa->spa_l2cache.sav_config);
4787                 spa->spa_l2cache.sav_config = NULL;
4788                 spa_load_l2cache(spa);
4789         }
4790 
4791         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4792             &nvroot) == 0);
4793         if (error == 0)
4794                 error = spa_validate_aux(spa, nvroot, -1ULL,
4795                     VDEV_ALLOC_SPARE);
4796         if (error == 0)
4797                 error = spa_validate_aux(spa, nvroot, -1ULL,
4798                     VDEV_ALLOC_L2CACHE);
4799         spa_config_exit(spa, SCL_ALL, FTAG);
4800 
4801         if (props != NULL)
4802                 spa_configfile_set(spa, props, B_FALSE);
4803 
4804         if (error != 0 || (props && spa_writeable(spa) &&
4805             (error = spa_prop_set(spa, props)))) {
4806                 spa_unload(spa);
4807                 spa_deactivate(spa);
4808                 spa_remove(spa);
4809                 mutex_exit(&spa_namespace_lock);
4810                 return (error);
4811         }
4812 
4813         spa_async_resume(spa);
4814 
4815         /*
4816          * Override any spares and level 2 cache devices as specified by
4817          * the user, as these may have correct device names/devids, etc.
4818          */
4819         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4820             &spares, &nspares) == 0) {
4821                 if (spa->spa_spares.sav_config)
4822                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4823                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4824                 else
4825                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4826                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
4827                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4828                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4829                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4830                 spa_load_spares(spa);
4831                 spa_config_exit(spa, SCL_ALL, FTAG);
4832                 spa->spa_spares.sav_sync = B_TRUE;
4833         }
4834         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4835             &l2cache, &nl2cache) == 0) {
4836                 if (spa->spa_l2cache.sav_config)
4837                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4838                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4839                 else
4840                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4841                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
4842                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4843                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4844                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4845                 spa_load_l2cache(spa);
4846                 spa_config_exit(spa, SCL_ALL, FTAG);
4847                 spa->spa_l2cache.sav_sync = B_TRUE;
4848         }
4849 
4850         /*
4851          * Check for any removed devices.
4852          */
4853         if (spa->spa_autoreplace) {
4854                 spa_aux_check_removed(&spa->spa_spares);
4855                 spa_aux_check_removed(&spa->spa_l2cache);
4856         }
4857 
4858         if (spa_writeable(spa)) {
4859                 /*
4860                  * Update the config cache to include the newly-imported pool.
4861                  */
4862                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4863         }
4864 
4865         /*
4866          * It's possible that the pool was expanded while it was exported.
4867          * We kick off an async task to handle this for us.
4868          */
4869         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4870 
4871         spa_history_log_version(spa, "import");
4872 
4873         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4874 
4875         mutex_exit(&spa_namespace_lock);
4876 
4877         return (0);
4878 }
4879 
4880 nvlist_t *
4881 spa_tryimport(nvlist_t *tryconfig)
4882 {
4883         nvlist_t *config = NULL;
4884         char *poolname, *cachefile;
4885         spa_t *spa;
4886         uint64_t state;
4887         int error;
4888         zpool_rewind_policy_t policy;
4889 
4890         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4891                 return (NULL);
4892 
4893         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4894                 return (NULL);
4895 
4896         /*
4897          * Create and initialize the spa structure.
4898          */
4899         mutex_enter(&spa_namespace_lock);
4900         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4901         spa_activate(spa, FREAD);
4902 
4903         /*
4904          * Rewind pool if a max txg was provided. Note that even though we
4905          * retrieve the complete rewind policy, only the rewind txg is relevant
4906          * for tryimport.
4907          */
4908         zpool_get_rewind_policy(spa->spa_config, &policy);
4909         if (policy.zrp_txg != UINT64_MAX) {
4910                 spa->spa_load_max_txg = policy.zrp_txg;
4911                 spa->spa_extreme_rewind = B_TRUE;
4912                 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
4913                     poolname, (longlong_t)policy.zrp_txg);
4914         } else {
4915                 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
4916         }
4917 
4918         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
4919             == 0) {
4920                 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
4921                 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4922         } else {
4923                 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
4924         }
4925 
4926         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
4927 
4928         /*
4929          * If 'tryconfig' was at least parsable, return the current config.
4930          */
4931         if (spa->spa_root_vdev != NULL) {
4932                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4933                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4934                     poolname) == 0);
4935                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4936                     state) == 0);
4937                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4938                     spa->spa_uberblock.ub_timestamp) == 0);
4939                 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4940                     spa->spa_load_info) == 0);
4941 
4942                 /*
4943                  * If the bootfs property exists on this pool then we
4944                  * copy it out so that external consumers can tell which
4945                  * pools are bootable.
4946                  */
4947                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4948                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4949 
4950                         /*
4951                          * We have to play games with the name since the
4952                          * pool was opened as TRYIMPORT_NAME.
4953                          */
4954                         if (dsl_dsobj_to_dsname(spa_name(spa),
4955                             spa->spa_bootfs, tmpname) == 0) {
4956                                 char *cp;
4957                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4958 
4959                                 cp = strchr(tmpname, '/');
4960                                 if (cp == NULL) {
4961                                         (void) strlcpy(dsname, tmpname,
4962                                             MAXPATHLEN);
4963                                 } else {
4964                                         (void) snprintf(dsname, MAXPATHLEN,
4965                                             "%s/%s", poolname, ++cp);
4966                                 }
4967                                 VERIFY(nvlist_add_string(config,
4968                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4969                                 kmem_free(dsname, MAXPATHLEN);
4970                         }
4971                         kmem_free(tmpname, MAXPATHLEN);
4972                 }
4973 
4974                 /*
4975                  * Add the list of hot spares and level 2 cache devices.
4976                  */
4977                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4978                 spa_add_spares(spa, config);
4979                 spa_add_l2cache(spa, config);
4980                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4981         }
4982 
4983         spa_unload(spa);
4984         spa_deactivate(spa);
4985         spa_remove(spa);
4986         mutex_exit(&spa_namespace_lock);
4987 
4988         return (config);
4989 }
4990 
4991 /*
4992  * Pool export/destroy
4993  *
4994  * The act of destroying or exporting a pool is very simple.  We make sure there
4995  * is no more pending I/O and any references to the pool are gone.  Then, we
4996  * update the pool state and sync all the labels to disk, removing the
4997  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4998  * we don't sync the labels or remove the configuration cache.
4999  */
5000 static int
5001 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5002     boolean_t force, boolean_t hardforce)
5003 {
5004         spa_t *spa;
5005 
5006         if (oldconfig)
5007                 *oldconfig = NULL;
5008 
5009         if (!(spa_mode_global & FWRITE))
5010                 return (SET_ERROR(EROFS));
5011 
5012         mutex_enter(&spa_namespace_lock);
5013         if ((spa = spa_lookup(pool)) == NULL) {
5014                 mutex_exit(&spa_namespace_lock);
5015                 return (SET_ERROR(ENOENT));
5016         }
5017 
5018         /*
5019          * Put a hold on the pool, drop the namespace lock, stop async tasks,
5020          * reacquire the namespace lock, and see if we can export.
5021          */
5022         spa_open_ref(spa, FTAG);
5023         mutex_exit(&spa_namespace_lock);
5024         spa_async_suspend(spa);
5025         mutex_enter(&spa_namespace_lock);
5026         spa_close(spa, FTAG);
5027 
5028         /*
5029          * The pool will be in core if it's openable,
5030          * in which case we can modify its state.
5031          */
5032         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5033                 /*
5034                  * Objsets may be open only because they're dirty, so we
5035                  * have to force it to sync before checking spa_refcnt.
5036                  */
5037                 txg_wait_synced(spa->spa_dsl_pool, 0);
5038                 spa_evicting_os_wait(spa);
5039 
5040                 /*
5041                  * A pool cannot be exported or destroyed if there are active
5042                  * references.  If we are resetting a pool, allow references by
5043                  * fault injection handlers.
5044                  */
5045                 if (!spa_refcount_zero(spa) ||
5046                     (spa->spa_inject_ref != 0 &&
5047                     new_state != POOL_STATE_UNINITIALIZED)) {
5048                         spa_async_resume(spa);
5049                         mutex_exit(&spa_namespace_lock);
5050                         return (SET_ERROR(EBUSY));
5051                 }
5052 
5053                 /*
5054                  * A pool cannot be exported if it has an active shared spare.
5055                  * This is to prevent other pools stealing the active spare
5056                  * from an exported pool. At user's own will, such pool can
5057                  * be forcedly exported.
5058                  */
5059                 if (!force && new_state == POOL_STATE_EXPORTED &&
5060                     spa_has_active_shared_spare(spa)) {
5061                         spa_async_resume(spa);
5062                         mutex_exit(&spa_namespace_lock);
5063                         return (SET_ERROR(EXDEV));
5064                 }
5065 
5066                 /*
5067                  * We want this to be reflected on every label,
5068                  * so mark them all dirty.  spa_unload() will do the
5069                  * final sync that pushes these changes out.
5070                  */
5071                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5072                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5073                         spa->spa_state = new_state;
5074                         spa->spa_final_txg = spa_last_synced_txg(spa) +
5075                             TXG_DEFER_SIZE + 1;
5076                         vdev_config_dirty(spa->spa_root_vdev);
5077                         spa_config_exit(spa, SCL_ALL, FTAG);
5078                 }
5079         }
5080 
5081         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5082 
5083         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5084                 spa_unload(spa);
5085                 spa_deactivate(spa);
5086         }
5087 
5088         if (oldconfig && spa->spa_config)
5089                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5090 
5091         if (new_state != POOL_STATE_UNINITIALIZED) {
5092                 if (!hardforce)
5093                         spa_write_cachefile(spa, B_TRUE, B_TRUE);
5094                 spa_remove(spa);
5095         }
5096         mutex_exit(&spa_namespace_lock);
5097 
5098         return (0);
5099 }
5100 
5101 /*
5102  * Destroy a storage pool.
5103  */
5104 int
5105 spa_destroy(char *pool)
5106 {
5107         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5108             B_FALSE, B_FALSE));
5109 }
5110 
5111 /*
5112  * Export a storage pool.
5113  */
5114 int
5115 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5116     boolean_t hardforce)
5117 {
5118         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5119             force, hardforce));
5120 }
5121 
5122 /*
5123  * Similar to spa_export(), this unloads the spa_t without actually removing it
5124  * from the namespace in any way.
5125  */
5126 int
5127 spa_reset(char *pool)
5128 {
5129         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5130             B_FALSE, B_FALSE));
5131 }
5132 
5133 /*
5134  * ==========================================================================
5135  * Device manipulation
5136  * ==========================================================================
5137  */
5138 
5139 /*
5140  * Add a device to a storage pool.
5141  */
5142 int
5143 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5144 {
5145         uint64_t txg, id;
5146         int error;
5147         vdev_t *rvd = spa->spa_root_vdev;
5148         vdev_t *vd, *tvd;
5149         nvlist_t **spares, **l2cache;
5150         uint_t nspares, nl2cache;
5151 
5152         ASSERT(spa_writeable(spa));
5153 
5154         txg = spa_vdev_enter(spa);
5155 
5156         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5157             VDEV_ALLOC_ADD)) != 0)
5158                 return (spa_vdev_exit(spa, NULL, txg, error));
5159 
5160         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
5161 
5162         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5163             &nspares) != 0)
5164                 nspares = 0;
5165 
5166         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5167             &nl2cache) != 0)
5168                 nl2cache = 0;
5169 
5170         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5171                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5172 
5173         if (vd->vdev_children != 0 &&
5174             (error = vdev_create(vd, txg, B_FALSE)) != 0)
5175                 return (spa_vdev_exit(spa, vd, txg, error));
5176 
5177         /*
5178          * We must validate the spares and l2cache devices after checking the
5179          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5180          */
5181         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5182                 return (spa_vdev_exit(spa, vd, txg, error));
5183 
5184         /*
5185          * If we are in the middle of a device removal, we can only add
5186          * devices which match the existing devices in the pool.
5187          * If we are in the middle of a removal, or have some indirect
5188          * vdevs, we can not add raidz toplevels.
5189          */
5190         if (spa->spa_vdev_removal != NULL ||
5191             spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5192                 for (int c = 0; c < vd->vdev_children; c++) {
5193                         tvd = vd->vdev_child[c];
5194                         if (spa->spa_vdev_removal != NULL &&
5195                             tvd->vdev_ashift !=
5196                             spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
5197                                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5198                         }
5199                         /* Fail if top level vdev is raidz */
5200                         if (tvd->vdev_ops == &vdev_raidz_ops) {
5201                                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5202                         }
5203                         /*
5204                          * Need the top level mirror to be
5205                          * a mirror of leaf vdevs only
5206                          */
5207                         if (tvd->vdev_ops == &vdev_mirror_ops) {
5208                                 for (uint64_t cid = 0;
5209                                     cid < tvd->vdev_children; cid++) {
5210                                         vdev_t *cvd = tvd->vdev_child[cid];
5211                                         if (!cvd->vdev_ops->vdev_op_leaf) {
5212                                                 return (spa_vdev_exit(spa, vd,
5213                                                     txg, EINVAL));
5214                                         }
5215                                 }
5216                         }
5217                 }
5218         }
5219 
5220         for (int c = 0; c < vd->vdev_children; c++) {
5221 
5222                 /*
5223                  * Set the vdev id to the first hole, if one exists.
5224                  */
5225                 for (id = 0; id < rvd->vdev_children; id++) {
5226                         if (rvd->vdev_child[id]->vdev_ishole) {
5227                                 vdev_free(rvd->vdev_child[id]);
5228                                 break;
5229                         }
5230                 }
5231                 tvd = vd->vdev_child[c];
5232                 vdev_remove_child(vd, tvd);
5233                 tvd->vdev_id = id;
5234                 vdev_add_child(rvd, tvd);
5235                 vdev_config_dirty(tvd);
5236         }
5237 
5238         if (nspares != 0) {
5239                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5240                     ZPOOL_CONFIG_SPARES);
5241                 spa_load_spares(spa);
5242                 spa->spa_spares.sav_sync = B_TRUE;
5243         }
5244 
5245         if (nl2cache != 0) {
5246                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5247                     ZPOOL_CONFIG_L2CACHE);
5248                 spa_load_l2cache(spa);
5249                 spa->spa_l2cache.sav_sync = B_TRUE;
5250         }
5251 
5252         /*
5253          * We have to be careful when adding new vdevs to an existing pool.
5254          * If other threads start allocating from these vdevs before we
5255          * sync the config cache, and we lose power, then upon reboot we may
5256          * fail to open the pool because there are DVAs that the config cache
5257          * can't translate.  Therefore, we first add the vdevs without
5258          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5259          * and then let spa_config_update() initialize the new metaslabs.
5260          *
5261          * spa_load() checks for added-but-not-initialized vdevs, so that
5262          * if we lose power at any point in this sequence, the remaining
5263          * steps will be completed the next time we load the pool.
5264          */
5265         (void) spa_vdev_exit(spa, vd, txg, 0);
5266 
5267         mutex_enter(&spa_namespace_lock);
5268         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5269         spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5270         mutex_exit(&spa_namespace_lock);
5271 
5272         return (0);
5273 }
5274 
5275 /*
5276  * Attach a device to a mirror.  The arguments are the path to any device
5277  * in the mirror, and the nvroot for the new device.  If the path specifies
5278  * a device that is not mirrored, we automatically insert the mirror vdev.
5279  *
5280  * If 'replacing' is specified, the new device is intended to replace the
5281  * existing device; in this case the two devices are made into their own
5282  * mirror using the 'replacing' vdev, which is functionally identical to
5283  * the mirror vdev (it actually reuses all the same ops) but has a few
5284  * extra rules: you can't attach to it after it's been created, and upon
5285  * completion of resilvering, the first disk (the one being replaced)
5286  * is automatically detached.
5287  */
5288 int
5289 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5290 {
5291         uint64_t txg, dtl_max_txg;
5292         vdev_t *rvd = spa->spa_root_vdev;
5293         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5294         vdev_ops_t *pvops;
5295         char *oldvdpath, *newvdpath;
5296         int newvd_isspare;
5297         int error;
5298 
5299         ASSERT(spa_writeable(spa));
5300 
5301         txg = spa_vdev_enter(spa);
5302 
5303         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5304 
5305         if (spa->spa_vdev_removal != NULL ||
5306             spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5307                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5308         }
5309 
5310         if (oldvd == NULL)
5311                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5312 
5313         if (!oldvd->vdev_ops->vdev_op_leaf)
5314                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5315 
5316         pvd = oldvd->vdev_parent;
5317 
5318         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5319             VDEV_ALLOC_ATTACH)) != 0)
5320                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5321 
5322         if (newrootvd->vdev_children != 1)
5323                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5324 
5325         newvd = newrootvd->vdev_child[0];
5326 
5327         if (!newvd->vdev_ops->vdev_op_leaf)
5328                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5329 
5330         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5331                 return (spa_vdev_exit(spa, newrootvd, txg, error));
5332 
5333         /*
5334          * Spares can't replace logs
5335          */
5336         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5337                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5338 
5339         if (!replacing) {
5340                 /*
5341                  * For attach, the only allowable parent is a mirror or the root
5342                  * vdev.
5343                  */
5344                 if (pvd->vdev_ops != &vdev_mirror_ops &&
5345                     pvd->vdev_ops != &vdev_root_ops)
5346                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5347 
5348                 pvops = &vdev_mirror_ops;
5349         } else {
5350                 /*
5351                  * Active hot spares can only be replaced by inactive hot
5352                  * spares.
5353                  */
5354                 if (pvd->vdev_ops == &vdev_spare_ops &&
5355                     oldvd->vdev_isspare &&
5356                     !spa_has_spare(spa, newvd->vdev_guid))
5357                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5358 
5359                 /*
5360                  * If the source is a hot spare, and the parent isn't already a
5361                  * spare, then we want to create a new hot spare.  Otherwise, we
5362                  * want to create a replacing vdev.  The user is not allowed to
5363                  * attach to a spared vdev child unless the 'isspare' state is
5364                  * the same (spare replaces spare, non-spare replaces
5365                  * non-spare).
5366                  */
5367                 if (pvd->vdev_ops == &vdev_replacing_ops &&
5368                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5369                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5370                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5371                     newvd->vdev_isspare != oldvd->vdev_isspare) {
5372                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5373                 }
5374 
5375                 if (newvd->vdev_isspare)
5376                         pvops = &vdev_spare_ops;
5377                 else
5378                         pvops = &vdev_replacing_ops;
5379         }
5380 
5381         /*
5382          * Make sure the new device is big enough.
5383          */
5384         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5385                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5386 
5387         /*
5388          * The new device cannot have a higher alignment requirement
5389          * than the top-level vdev.
5390          */
5391         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5392                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5393 
5394         /*
5395          * If this is an in-place replacement, update oldvd's path and devid
5396          * to make it distinguishable from newvd, and unopenable from now on.
5397          */
5398         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5399                 spa_strfree(oldvd->vdev_path);
5400                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5401                     KM_SLEEP);
5402                 (void) sprintf(oldvd->vdev_path, "%s/%s",
5403                     newvd->vdev_path, "old");
5404                 if (oldvd->vdev_devid != NULL) {
5405                         spa_strfree(oldvd->vdev_devid);
5406                         oldvd->vdev_devid = NULL;
5407                 }
5408         }
5409 
5410         /* mark the device being resilvered */
5411         newvd->vdev_resilver_txg = txg;
5412 
5413         /*
5414          * If the parent is not a mirror, or if we're replacing, insert the new
5415          * mirror/replacing/spare vdev above oldvd.
5416          */
5417         if (pvd->vdev_ops != pvops)
5418                 pvd = vdev_add_parent(oldvd, pvops);
5419 
5420         ASSERT(pvd->vdev_top->vdev_parent == rvd);
5421         ASSERT(pvd->vdev_ops == pvops);
5422         ASSERT(oldvd->vdev_parent == pvd);
5423 
5424         /*
5425          * Extract the new device from its root and add it to pvd.
5426          */
5427         vdev_remove_child(newrootvd, newvd);
5428         newvd->vdev_id = pvd->vdev_children;
5429         newvd->vdev_crtxg = oldvd->vdev_crtxg;
5430         vdev_add_child(pvd, newvd);
5431 
5432         tvd = newvd->vdev_top;
5433         ASSERT(pvd->vdev_top == tvd);
5434         ASSERT(tvd->vdev_parent == rvd);
5435 
5436         vdev_config_dirty(tvd);
5437 
5438         /*
5439          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5440          * for any dmu_sync-ed blocks.  It will propagate upward when
5441          * spa_vdev_exit() calls vdev_dtl_reassess().
5442          */
5443         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5444 
5445         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5446             dtl_max_txg - TXG_INITIAL);
5447 
5448         if (newvd->vdev_isspare) {
5449                 spa_spare_activate(newvd);
5450                 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5451         }
5452 
5453         oldvdpath = spa_strdup(oldvd->vdev_path);
5454         newvdpath = spa_strdup(newvd->vdev_path);
5455         newvd_isspare = newvd->vdev_isspare;
5456 
5457         /*
5458          * Mark newvd's DTL dirty in this txg.
5459          */
5460         vdev_dirty(tvd, VDD_DTL, newvd, txg);
5461 
5462         /*
5463          * Schedule the resilver to restart in the future. We do this to
5464          * ensure that dmu_sync-ed blocks have been stitched into the
5465          * respective datasets.
5466          */
5467         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5468 
5469         if (spa->spa_bootfs)
5470                 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5471 
5472         spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5473 
5474         /*
5475          * Commit the config
5476          */
5477         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5478 
5479         spa_history_log_internal(spa, "vdev attach", NULL,
5480             "%s vdev=%s %s vdev=%s",
5481             replacing && newvd_isspare ? "spare in" :
5482             replacing ? "replace" : "attach", newvdpath,
5483             replacing ? "for" : "to", oldvdpath);
5484 
5485         spa_strfree(oldvdpath);
5486         spa_strfree(newvdpath);
5487 
5488         return (0);
5489 }
5490 
5491 /*
5492  * Detach a device from a mirror or replacing vdev.
5493  *
5494  * If 'replace_done' is specified, only detach if the parent
5495  * is a replacing vdev.
5496  */
5497 int
5498 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5499 {
5500         uint64_t txg;
5501         int error;
5502         vdev_t *rvd = spa->spa_root_vdev;
5503         vdev_t *vd, *pvd, *cvd, *tvd;
5504         boolean_t unspare = B_FALSE;
5505         uint64_t unspare_guid = 0;
5506         char *vdpath;
5507 
5508         ASSERT(spa_writeable(spa));
5509 
5510         txg = spa_vdev_enter(spa);
5511 
5512         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5513 
5514         if (vd == NULL)
5515                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5516 
5517         if (!vd->vdev_ops->vdev_op_leaf)
5518                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5519 
5520         pvd = vd->vdev_parent;
5521 
5522         /*
5523          * If the parent/child relationship is not as expected, don't do it.
5524          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5525          * vdev that's replacing B with C.  The user's intent in replacing
5526          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5527          * the replace by detaching C, the expected behavior is to end up
5528          * M(A,B).  But suppose that right after deciding to detach C,
5529          * the replacement of B completes.  We would have M(A,C), and then
5530          * ask to detach C, which would leave us with just A -- not what
5531          * the user wanted.  To prevent this, we make sure that the
5532          * parent/child relationship hasn't changed -- in this example,
5533          * that C's parent is still the replacing vdev R.
5534          */
5535         if (pvd->vdev_guid != pguid && pguid != 0)
5536                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5537 
5538         /*
5539          * Only 'replacing' or 'spare' vdevs can be replaced.
5540          */
5541         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5542             pvd->vdev_ops != &vdev_spare_ops)
5543                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5544 
5545         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5546             spa_version(spa) >= SPA_VERSION_SPARES);
5547 
5548         /*
5549          * Only mirror, replacing, and spare vdevs support detach.
5550          */
5551         if (pvd->vdev_ops != &vdev_replacing_ops &&
5552             pvd->vdev_ops != &vdev_mirror_ops &&
5553             pvd->vdev_ops != &vdev_spare_ops)
5554                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5555 
5556         /*
5557          * If this device has the only valid copy of some data,
5558          * we cannot safely detach it.
5559          */
5560         if (vdev_dtl_required(vd))
5561                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5562 
5563         ASSERT(pvd->vdev_children >= 2);
5564 
5565         /*
5566          * If we are detaching the second disk from a replacing vdev, then
5567          * check to see if we changed the original vdev's path to have "/old"
5568          * at the end in spa_vdev_attach().  If so, undo that change now.
5569          */
5570         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5571             vd->vdev_path != NULL) {
5572                 size_t len = strlen(vd->vdev_path);
5573 
5574                 for (int c = 0; c < pvd->vdev_children; c++) {
5575                         cvd = pvd->vdev_child[c];
5576 
5577                         if (cvd == vd || cvd->vdev_path == NULL)
5578                                 continue;
5579 
5580                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5581                             strcmp(cvd->vdev_path + len, "/old") == 0) {
5582                                 spa_strfree(cvd->vdev_path);
5583                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
5584                                 break;
5585                         }
5586                 }
5587         }
5588 
5589         /*
5590          * If we are detaching the original disk from a spare, then it implies
5591          * that the spare should become a real disk, and be removed from the
5592          * active spare list for the pool.
5593          */
5594         if (pvd->vdev_ops == &vdev_spare_ops &&
5595             vd->vdev_id == 0 &&
5596             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5597                 unspare = B_TRUE;
5598 
5599         /*
5600          * Erase the disk labels so the disk can be used for other things.
5601          * This must be done after all other error cases are handled,
5602          * but before we disembowel vd (so we can still do I/O to it).
5603          * But if we can't do it, don't treat the error as fatal --
5604          * it may be that the unwritability of the disk is the reason
5605          * it's being detached!
5606          */
5607         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5608 
5609         /*
5610          * Remove vd from its parent and compact the parent's children.
5611          */
5612         vdev_remove_child(pvd, vd);
5613         vdev_compact_children(pvd);
5614 
5615         /*
5616          * Remember one of the remaining children so we can get tvd below.
5617          */
5618         cvd = pvd->vdev_child[pvd->vdev_children - 1];
5619 
5620         /*
5621          * If we need to remove the remaining child from the list of hot spares,
5622          * do it now, marking the vdev as no longer a spare in the process.
5623          * We must do this before vdev_remove_parent(), because that can
5624          * change the GUID if it creates a new toplevel GUID.  For a similar
5625          * reason, we must remove the spare now, in the same txg as the detach;
5626          * otherwise someone could attach a new sibling, change the GUID, and
5627          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5628          */
5629         if (unspare) {
5630                 ASSERT(cvd->vdev_isspare);
5631                 spa_spare_remove(cvd);
5632                 unspare_guid = cvd->vdev_guid;
5633                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5634                 cvd->vdev_unspare = B_TRUE;
5635         }
5636 
5637         /*
5638          * If the parent mirror/replacing vdev only has one child,
5639          * the parent is no longer needed.  Remove it from the tree.
5640          */
5641         if (pvd->vdev_children == 1) {
5642                 if (pvd->vdev_ops == &vdev_spare_ops)
5643                         cvd->vdev_unspare = B_FALSE;
5644                 vdev_remove_parent(cvd);
5645         }
5646 
5647 
5648         /*
5649          * We don't set tvd until now because the parent we just removed
5650          * may have been the previous top-level vdev.
5651          */
5652         tvd = cvd->vdev_top;
5653         ASSERT(tvd->vdev_parent == rvd);
5654 
5655         /*
5656          * Reevaluate the parent vdev state.
5657          */
5658         vdev_propagate_state(cvd);
5659 
5660         /*
5661          * If the 'autoexpand' property is set on the pool then automatically
5662          * try to expand the size of the pool. For example if the device we
5663          * just detached was smaller than the others, it may be possible to
5664          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5665          * first so that we can obtain the updated sizes of the leaf vdevs.
5666          */
5667         if (spa->spa_autoexpand) {
5668                 vdev_reopen(tvd);
5669                 vdev_expand(tvd, txg);
5670         }
5671 
5672         vdev_config_dirty(tvd);
5673 
5674         /*
5675          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5676          * vd->vdev_detached is set and free vd's DTL object in syncing context.
5677          * But first make sure we're not on any *other* txg's DTL list, to
5678          * prevent vd from being accessed after it's freed.
5679          */
5680         vdpath = spa_strdup(vd->vdev_path);
5681         for (int t = 0; t < TXG_SIZE; t++)
5682                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5683         vd->vdev_detached = B_TRUE;
5684         vdev_dirty(tvd, VDD_DTL, vd, txg);
5685 
5686         spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5687 
5688         /* hang on to the spa before we release the lock */
5689         spa_open_ref(spa, FTAG);
5690 
5691         error = spa_vdev_exit(spa, vd, txg, 0);
5692 
5693         spa_history_log_internal(spa, "detach", NULL,
5694             "vdev=%s", vdpath);
5695         spa_strfree(vdpath);
5696 
5697         /*
5698          * If this was the removal of the original device in a hot spare vdev,
5699          * then we want to go through and remove the device from the hot spare
5700          * list of every other pool.
5701          */
5702         if (unspare) {
5703                 spa_t *altspa = NULL;
5704 
5705                 mutex_enter(&spa_namespace_lock);
5706                 while ((altspa = spa_next(altspa)) != NULL) {
5707                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
5708                             altspa == spa)
5709                                 continue;
5710 
5711                         spa_open_ref(altspa, FTAG);
5712                         mutex_exit(&spa_namespace_lock);
5713                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5714                         mutex_enter(&spa_namespace_lock);
5715                         spa_close(altspa, FTAG);
5716                 }
5717                 mutex_exit(&spa_namespace_lock);
5718 
5719                 /* search the rest of the vdevs for spares to remove */
5720                 spa_vdev_resilver_done(spa);
5721         }
5722 
5723         /* all done with the spa; OK to release */
5724         mutex_enter(&spa_namespace_lock);
5725         spa_close(spa, FTAG);
5726         mutex_exit(&spa_namespace_lock);
5727 
5728         return (error);
5729 }
5730 
5731 /*
5732  * Split a set of devices from their mirrors, and create a new pool from them.
5733  */
5734 int
5735 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5736     nvlist_t *props, boolean_t exp)
5737 {
5738         int error = 0;
5739         uint64_t txg, *glist;
5740         spa_t *newspa;
5741         uint_t c, children, lastlog;
5742         nvlist_t **child, *nvl, *tmp;
5743         dmu_tx_t *tx;
5744         char *altroot = NULL;
5745         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
5746         boolean_t activate_slog;
5747 
5748         ASSERT(spa_writeable(spa));
5749 
5750         txg = spa_vdev_enter(spa);
5751 
5752         /* clear the log and flush everything up to now */
5753         activate_slog = spa_passivate_log(spa);
5754         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5755         error = spa_reset_logs(spa);
5756         txg = spa_vdev_config_enter(spa);
5757 
5758         if (activate_slog)
5759                 spa_activate_log(spa);
5760 
5761         if (error != 0)
5762                 return (spa_vdev_exit(spa, NULL, txg, error));
5763 
5764         /* check new spa name before going any further */
5765         if (spa_lookup(newname) != NULL)
5766                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5767 
5768         /*
5769          * scan through all the children to ensure they're all mirrors
5770          */
5771         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5772             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5773             &children) != 0)
5774                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5775 
5776         /* first, check to ensure we've got the right child count */
5777         rvd = spa->spa_root_vdev;
5778         lastlog = 0;
5779         for (c = 0; c < rvd->vdev_children; c++) {
5780                 vdev_t *vd = rvd->vdev_child[c];
5781 
5782                 /* don't count the holes & logs as children */
5783                 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
5784                         if (lastlog == 0)
5785                                 lastlog = c;
5786                         continue;
5787                 }
5788 
5789                 lastlog = 0;
5790         }
5791         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5792                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5793 
5794         /* next, ensure no spare or cache devices are part of the split */
5795         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5796             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5797                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5798 
5799         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5800         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5801 
5802         /* then, loop over each vdev and validate it */
5803         for (c = 0; c < children; c++) {
5804                 uint64_t is_hole = 0;
5805 
5806                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5807                     &is_hole);
5808 
5809                 if (is_hole != 0) {
5810                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5811                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5812                                 continue;
5813                         } else {
5814                                 error = SET_ERROR(EINVAL);
5815                                 break;
5816                         }
5817                 }
5818 
5819                 /* which disk is going to be split? */
5820                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5821                     &glist[c]) != 0) {
5822                         error = SET_ERROR(EINVAL);
5823                         break;
5824                 }
5825 
5826                 /* look it up in the spa */
5827                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5828                 if (vml[c] == NULL) {
5829                         error = SET_ERROR(ENODEV);
5830                         break;
5831                 }
5832 
5833                 /* make sure there's nothing stopping the split */
5834                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5835                     vml[c]->vdev_islog ||
5836                     !vdev_is_concrete(vml[c]) ||
5837                     vml[c]->vdev_isspare ||
5838                     vml[c]->vdev_isl2cache ||
5839                     !vdev_writeable(vml[c]) ||
5840                     vml[c]->vdev_children != 0 ||
5841                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5842                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5843                         error = SET_ERROR(EINVAL);
5844                         break;
5845                 }
5846 
5847                 if (vdev_dtl_required(vml[c])) {
5848                         error = SET_ERROR(EBUSY);
5849                         break;
5850                 }
5851 
5852                 /* we need certain info from the top level */
5853                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5854                     vml[c]->vdev_top->vdev_ms_array) == 0);
5855                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5856                     vml[c]->vdev_top->vdev_ms_shift) == 0);
5857                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5858                     vml[c]->vdev_top->vdev_asize) == 0);
5859                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5860                     vml[c]->vdev_top->vdev_ashift) == 0);
5861 
5862                 /* transfer per-vdev ZAPs */
5863                 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5864                 VERIFY0(nvlist_add_uint64(child[c],
5865                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5866 
5867                 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5868                 VERIFY0(nvlist_add_uint64(child[c],
5869                     ZPOOL_CONFIG_VDEV_TOP_ZAP,
5870                     vml[c]->vdev_parent->vdev_top_zap));
5871         }
5872 
5873         if (error != 0) {
5874                 kmem_free(vml, children * sizeof (vdev_t *));
5875                 kmem_free(glist, children * sizeof (uint64_t));
5876                 return (spa_vdev_exit(spa, NULL, txg, error));
5877         }
5878 
5879         /* stop writers from using the disks */
5880         for (c = 0; c < children; c++) {
5881                 if (vml[c] != NULL)
5882                         vml[c]->vdev_offline = B_TRUE;
5883         }
5884         vdev_reopen(spa->spa_root_vdev);
5885 
5886         /*
5887          * Temporarily record the splitting vdevs in the spa config.  This
5888          * will disappear once the config is regenerated.
5889          */
5890         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5891         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5892             glist, children) == 0);
5893         kmem_free(glist, children * sizeof (uint64_t));
5894 
5895         mutex_enter(&spa->spa_props_lock);
5896         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5897             nvl) == 0);
5898         mutex_exit(&spa->spa_props_lock);
5899         spa->spa_config_splitting = nvl;
5900         vdev_config_dirty(spa->spa_root_vdev);
5901 
5902         /* configure and create the new pool */
5903         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5904         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5905             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5906         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5907             spa_version(spa)) == 0);
5908         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5909             spa->spa_config_txg) == 0);
5910         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5911             spa_generate_guid(NULL)) == 0);
5912         VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5913         (void) nvlist_lookup_string(props,
5914             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5915 
5916         /* add the new pool to the namespace */
5917         newspa = spa_add(newname, config, altroot);
5918         newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5919         newspa->spa_config_txg = spa->spa_config_txg;
5920         spa_set_log_state(newspa, SPA_LOG_CLEAR);
5921 
5922         /* release the spa config lock, retaining the namespace lock */
5923         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5924 
5925         if (zio_injection_enabled)
5926                 zio_handle_panic_injection(spa, FTAG, 1);
5927 
5928         spa_activate(newspa, spa_mode_global);
5929         spa_async_suspend(newspa);
5930 
5931         newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
5932 
5933         /* create the new pool from the disks of the original pool */
5934         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
5935         if (error)
5936                 goto out;
5937 
5938         /* if that worked, generate a real config for the new pool */
5939         if (newspa->spa_root_vdev != NULL) {
5940                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5941                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
5942                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5943                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5944                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5945                     B_TRUE));
5946         }
5947 
5948         /* set the props */
5949         if (props != NULL) {
5950                 spa_configfile_set(newspa, props, B_FALSE);
5951                 error = spa_prop_set(newspa, props);
5952                 if (error)
5953                         goto out;
5954         }
5955 
5956         /* flush everything */
5957         txg = spa_vdev_config_enter(newspa);
5958         vdev_config_dirty(newspa->spa_root_vdev);
5959         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5960 
5961         if (zio_injection_enabled)
5962                 zio_handle_panic_injection(spa, FTAG, 2);
5963 
5964         spa_async_resume(newspa);
5965 
5966         /* finally, update the original pool's config */
5967         txg = spa_vdev_config_enter(spa);
5968         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5969         error = dmu_tx_assign(tx, TXG_WAIT);
5970         if (error != 0)
5971                 dmu_tx_abort(tx);
5972         for (c = 0; c < children; c++) {
5973                 if (vml[c] != NULL) {
5974                         vdev_split(vml[c]);
5975                         if (error == 0)
5976                                 spa_history_log_internal(spa, "detach", tx,
5977                                     "vdev=%s", vml[c]->vdev_path);
5978 
5979                         vdev_free(vml[c]);
5980                 }
5981         }
5982         spa->spa_avz_action = AVZ_ACTION_REBUILD;
5983         vdev_config_dirty(spa->spa_root_vdev);
5984         spa->spa_config_splitting = NULL;
5985         nvlist_free(nvl);
5986         if (error == 0)
5987                 dmu_tx_commit(tx);
5988         (void) spa_vdev_exit(spa, NULL, txg, 0);
5989 
5990         if (zio_injection_enabled)
5991                 zio_handle_panic_injection(spa, FTAG, 3);
5992 
5993         /* split is complete; log a history record */
5994         spa_history_log_internal(newspa, "split", NULL,
5995             "from pool %s", spa_name(spa));
5996 
5997         kmem_free(vml, children * sizeof (vdev_t *));
5998 
5999         /* if we're not going to mount the filesystems in userland, export */
6000         if (exp)
6001                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6002                     B_FALSE, B_FALSE);
6003 
6004         return (error);
6005 
6006 out:
6007         spa_unload(newspa);
6008         spa_deactivate(newspa);
6009         spa_remove(newspa);
6010 
6011         txg = spa_vdev_config_enter(spa);
6012 
6013         /* re-online all offlined disks */
6014         for (c = 0; c < children; c++) {
6015                 if (vml[c] != NULL)
6016                         vml[c]->vdev_offline = B_FALSE;
6017         }
6018         vdev_reopen(spa->spa_root_vdev);
6019 
6020         nvlist_free(spa->spa_config_splitting);
6021         spa->spa_config_splitting = NULL;
6022         (void) spa_vdev_exit(spa, NULL, txg, error);
6023 
6024         kmem_free(vml, children * sizeof (vdev_t *));
6025         return (error);
6026 }
6027 
6028 /*
6029  * Find any device that's done replacing, or a vdev marked 'unspare' that's
6030  * currently spared, so we can detach it.
6031  */
6032 static vdev_t *
6033 spa_vdev_resilver_done_hunt(vdev_t *vd)
6034 {
6035         vdev_t *newvd, *oldvd;
6036 
6037         for (int c = 0; c < vd->vdev_children; c++) {
6038                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6039                 if (oldvd != NULL)
6040                         return (oldvd);
6041         }
6042 
6043         /*
6044          * Check for a completed replacement.  We always consider the first
6045          * vdev in the list to be the oldest vdev, and the last one to be
6046          * the newest (see spa_vdev_attach() for how that works).  In
6047          * the case where the newest vdev is faulted, we will not automatically
6048          * remove it after a resilver completes.  This is OK as it will require
6049          * user intervention to determine which disk the admin wishes to keep.
6050          */
6051         if (vd->vdev_ops == &vdev_replacing_ops) {
6052                 ASSERT(vd->vdev_children > 1);
6053 
6054                 newvd = vd->vdev_child[vd->vdev_children - 1];
6055                 oldvd = vd->vdev_child[0];
6056 
6057                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6058                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6059                     !vdev_dtl_required(oldvd))
6060                         return (oldvd);
6061         }
6062 
6063         /*
6064          * Check for a completed resilver with the 'unspare' flag set.
6065          */
6066         if (vd->vdev_ops == &vdev_spare_ops) {
6067                 vdev_t *first = vd->vdev_child[0];
6068                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6069 
6070                 if (last->vdev_unspare) {
6071                         oldvd = first;
6072                         newvd = last;
6073                 } else if (first->vdev_unspare) {
6074                         oldvd = last;
6075                         newvd = first;
6076                 } else {
6077                         oldvd = NULL;
6078                 }
6079 
6080                 if (oldvd != NULL &&
6081                     vdev_dtl_empty(newvd, DTL_MISSING) &&
6082                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6083                     !vdev_dtl_required(oldvd))
6084                         return (oldvd);
6085 
6086                 /*
6087                  * If there are more than two spares attached to a disk,
6088                  * and those spares are not required, then we want to
6089                  * attempt to free them up now so that they can be used
6090                  * by other pools.  Once we're back down to a single
6091                  * disk+spare, we stop removing them.
6092                  */
6093                 if (vd->vdev_children > 2) {
6094                         newvd = vd->vdev_child[1];
6095 
6096                         if (newvd->vdev_isspare && last->vdev_isspare &&
6097                             vdev_dtl_empty(last, DTL_MISSING) &&
6098                             vdev_dtl_empty(last, DTL_OUTAGE) &&
6099                             !vdev_dtl_required(newvd))
6100                                 return (newvd);
6101                 }
6102         }
6103 
6104         return (NULL);
6105 }
6106 
6107 static void
6108 spa_vdev_resilver_done(spa_t *spa)
6109 {
6110         vdev_t *vd, *pvd, *ppvd;
6111         uint64_t guid, sguid, pguid, ppguid;
6112 
6113         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6114 
6115         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6116                 pvd = vd->vdev_parent;
6117                 ppvd = pvd->vdev_parent;
6118                 guid = vd->vdev_guid;
6119                 pguid = pvd->vdev_guid;
6120                 ppguid = ppvd->vdev_guid;
6121                 sguid = 0;
6122                 /*
6123                  * If we have just finished replacing a hot spared device, then
6124                  * we need to detach the parent's first child (the original hot
6125                  * spare) as well.
6126                  */
6127                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6128                     ppvd->vdev_children == 2) {
6129                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6130                         sguid = ppvd->vdev_child[1]->vdev_guid;
6131                 }
6132                 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6133 
6134                 spa_config_exit(spa, SCL_ALL, FTAG);
6135                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6136                         return;
6137                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6138                         return;
6139                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6140         }
6141 
6142         spa_config_exit(spa, SCL_ALL, FTAG);
6143 }
6144 
6145 /*
6146  * Update the stored path or FRU for this vdev.
6147  */
6148 int
6149 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6150     boolean_t ispath)
6151 {
6152         vdev_t *vd;
6153         boolean_t sync = B_FALSE;
6154 
6155         ASSERT(spa_writeable(spa));
6156 
6157         spa_vdev_state_enter(spa, SCL_ALL);
6158 
6159         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6160                 return (spa_vdev_state_exit(spa, NULL, ENOENT));
6161 
6162         if (!vd->vdev_ops->vdev_op_leaf)
6163                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6164 
6165         if (ispath) {
6166                 if (strcmp(value, vd->vdev_path) != 0) {
6167                         spa_strfree(vd->vdev_path);
6168                         vd->vdev_path = spa_strdup(value);
6169                         sync = B_TRUE;
6170                 }
6171         } else {
6172                 if (vd->vdev_fru == NULL) {
6173                         vd->vdev_fru = spa_strdup(value);
6174                         sync = B_TRUE;
6175                 } else if (strcmp(value, vd->vdev_fru) != 0) {
6176                         spa_strfree(vd->vdev_fru);
6177                         vd->vdev_fru = spa_strdup(value);
6178                         sync = B_TRUE;
6179                 }
6180         }
6181 
6182         return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6183 }
6184 
6185 int
6186 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6187 {
6188         return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6189 }
6190 
6191 int
6192 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6193 {
6194         return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6195 }
6196 
6197 /*
6198  * ==========================================================================
6199  * SPA Scanning
6200  * ==========================================================================
6201  */
6202 int
6203 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6204 {
6205         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6206 
6207         if (dsl_scan_resilvering(spa->spa_dsl_pool))
6208                 return (SET_ERROR(EBUSY));
6209 
6210         return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6211 }
6212 
6213 int
6214 spa_scan_stop(spa_t *spa)
6215 {
6216         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6217         if (dsl_scan_resilvering(spa->spa_dsl_pool))
6218                 return (SET_ERROR(EBUSY));
6219         return (dsl_scan_cancel(spa->spa_dsl_pool));
6220 }
6221 
6222 int
6223 spa_scan(spa_t *spa, pool_scan_func_t func)
6224 {
6225         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6226 
6227         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6228                 return (SET_ERROR(ENOTSUP));
6229 
6230         /*
6231          * If a resilver was requested, but there is no DTL on a
6232          * writeable leaf device, we have nothing to do.
6233          */
6234         if (func == POOL_SCAN_RESILVER &&
6235             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6236                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6237                 return (0);
6238         }
6239 
6240         return (dsl_scan(spa->spa_dsl_pool, func));
6241 }
6242 
6243 /*
6244  * ==========================================================================
6245  * SPA async task processing
6246  * ==========================================================================
6247  */
6248 
6249 static void
6250 spa_async_remove(spa_t *spa, vdev_t *vd)
6251 {
6252         if (vd->vdev_remove_wanted) {
6253                 vd->vdev_remove_wanted = B_FALSE;
6254                 vd->vdev_delayed_close = B_FALSE;
6255                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6256 
6257                 /*
6258                  * We want to clear the stats, but we don't want to do a full
6259                  * vdev_clear() as that will cause us to throw away
6260                  * degraded/faulted state as well as attempt to reopen the
6261                  * device, all of which is a waste.
6262                  */
6263                 vd->vdev_stat.vs_read_errors = 0;
6264                 vd->vdev_stat.vs_write_errors = 0;
6265                 vd->vdev_stat.vs_checksum_errors = 0;
6266 
6267                 vdev_state_dirty(vd->vdev_top);
6268         }
6269 
6270         for (int c = 0; c < vd->vdev_children; c++)
6271                 spa_async_remove(spa, vd->vdev_child[c]);
6272 }
6273 
6274 static void
6275 spa_async_probe(spa_t *spa, vdev_t *vd)
6276 {
6277         if (vd->vdev_probe_wanted) {
6278                 vd->vdev_probe_wanted = B_FALSE;
6279                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
6280         }
6281 
6282         for (int c = 0; c < vd->vdev_children; c++)
6283                 spa_async_probe(spa, vd->vdev_child[c]);
6284 }
6285 
6286 static void
6287 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6288 {
6289         sysevent_id_t eid;
6290         nvlist_t *attr;
6291         char *physpath;
6292 
6293         if (!spa->spa_autoexpand)
6294                 return;
6295 
6296         for (int c = 0; c < vd->vdev_children; c++) {
6297                 vdev_t *cvd = vd->vdev_child[c];
6298                 spa_async_autoexpand(spa, cvd);
6299         }
6300 
6301         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6302                 return;
6303 
6304         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6305         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6306 
6307         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6308         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6309 
6310         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6311             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6312 
6313         nvlist_free(attr);
6314         kmem_free(physpath, MAXPATHLEN);
6315 }
6316 
6317 static void
6318 spa_async_thread(void *arg)
6319 {
6320         spa_t *spa = (spa_t *)arg;
6321         int tasks;
6322 
6323         ASSERT(spa->spa_sync_on);
6324 
6325         mutex_enter(&spa->spa_async_lock);
6326         tasks = spa->spa_async_tasks;
6327         spa->spa_async_tasks = 0;
6328         mutex_exit(&spa->spa_async_lock);
6329 
6330         /*
6331          * See if the config needs to be updated.
6332          */
6333         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6334                 uint64_t old_space, new_space;
6335 
6336                 mutex_enter(&spa_namespace_lock);
6337                 old_space = metaslab_class_get_space(spa_normal_class(spa));
6338                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6339                 new_space = metaslab_class_get_space(spa_normal_class(spa));
6340                 mutex_exit(&spa_namespace_lock);
6341 
6342                 /*
6343                  * If the pool grew as a result of the config update,
6344                  * then log an internal history event.
6345                  */
6346                 if (new_space != old_space) {
6347                         spa_history_log_internal(spa, "vdev online", NULL,
6348                             "pool '%s' size: %llu(+%llu)",
6349                             spa_name(spa), new_space, new_space - old_space);
6350                 }
6351         }
6352 
6353         /*
6354          * See if any devices need to be marked REMOVED.
6355          */
6356         if (tasks & SPA_ASYNC_REMOVE) {
6357                 spa_vdev_state_enter(spa, SCL_NONE);
6358                 spa_async_remove(spa, spa->spa_root_vdev);
6359                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6360                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6361                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6362                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6363                 (void) spa_vdev_state_exit(spa, NULL, 0);
6364         }
6365 
6366         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6367                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6368                 spa_async_autoexpand(spa, spa->spa_root_vdev);
6369                 spa_config_exit(spa, SCL_CONFIG, FTAG);
6370         }
6371 
6372         /*
6373          * See if any devices need to be probed.
6374          */
6375         if (tasks & SPA_ASYNC_PROBE) {
6376                 spa_vdev_state_enter(spa, SCL_NONE);
6377                 spa_async_probe(spa, spa->spa_root_vdev);
6378                 (void) spa_vdev_state_exit(spa, NULL, 0);
6379         }
6380 
6381         /*
6382          * If any devices are done replacing, detach them.
6383          */
6384         if (tasks & SPA_ASYNC_RESILVER_DONE)
6385                 spa_vdev_resilver_done(spa);
6386 
6387         /*
6388          * Kick off a resilver.
6389          */
6390         if (tasks & SPA_ASYNC_RESILVER)
6391                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6392 
6393         /*
6394          * Let the world know that we're done.
6395          */
6396         mutex_enter(&spa->spa_async_lock);
6397         spa->spa_async_thread = NULL;
6398         cv_broadcast(&spa->spa_async_cv);
6399         mutex_exit(&spa->spa_async_lock);
6400         thread_exit();
6401 }
6402 
6403 void
6404 spa_async_suspend(spa_t *spa)
6405 {
6406         mutex_enter(&spa->spa_async_lock);
6407         spa->spa_async_suspended++;
6408         while (spa->spa_async_thread != NULL)
6409                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6410         mutex_exit(&spa->spa_async_lock);
6411 
6412         spa_vdev_remove_suspend(spa);
6413 
6414         zthr_t *condense_thread = spa->spa_condense_zthr;
6415         if (condense_thread != NULL && zthr_isrunning(condense_thread))
6416                 VERIFY0(zthr_cancel(condense_thread));
6417 }
6418 
6419 void
6420 spa_async_resume(spa_t *spa)
6421 {
6422         mutex_enter(&spa->spa_async_lock);
6423         ASSERT(spa->spa_async_suspended != 0);
6424         spa->spa_async_suspended--;
6425         mutex_exit(&spa->spa_async_lock);
6426         spa_restart_removal(spa);
6427 
6428         zthr_t *condense_thread = spa->spa_condense_zthr;
6429         if (condense_thread != NULL && !zthr_isrunning(condense_thread))
6430                 zthr_resume(condense_thread);
6431 }
6432 
6433 static boolean_t
6434 spa_async_tasks_pending(spa_t *spa)
6435 {
6436         uint_t non_config_tasks;
6437         uint_t config_task;
6438         boolean_t config_task_suspended;
6439 
6440         non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6441         config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6442         if (spa->spa_ccw_fail_time == 0) {
6443                 config_task_suspended = B_FALSE;
6444         } else {
6445                 config_task_suspended =
6446                     (gethrtime() - spa->spa_ccw_fail_time) <
6447                     (zfs_ccw_retry_interval * NANOSEC);
6448         }
6449 
6450         return (non_config_tasks || (config_task && !config_task_suspended));
6451 }
6452 
6453 static void
6454 spa_async_dispatch(spa_t *spa)
6455 {
6456         mutex_enter(&spa->spa_async_lock);
6457         if (spa_async_tasks_pending(spa) &&
6458             !spa->spa_async_suspended &&
6459             spa->spa_async_thread == NULL &&
6460             rootdir != NULL)
6461                 spa->spa_async_thread = thread_create(NULL, 0,
6462                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6463         mutex_exit(&spa->spa_async_lock);
6464 }
6465 
6466 void
6467 spa_async_request(spa_t *spa, int task)
6468 {
6469         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6470         mutex_enter(&spa->spa_async_lock);
6471         spa->spa_async_tasks |= task;
6472         mutex_exit(&spa->spa_async_lock);
6473 }
6474 
6475 /*
6476  * ==========================================================================
6477  * SPA syncing routines
6478  * ==========================================================================
6479  */
6480 
6481 static int
6482 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6483 {
6484         bpobj_t *bpo = arg;
6485         bpobj_enqueue(bpo, bp, tx);
6486         return (0);
6487 }
6488 
6489 static int
6490 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6491 {
6492         zio_t *zio = arg;
6493 
6494         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6495             zio->io_flags));
6496         return (0);
6497 }
6498 
6499 /*
6500  * Note: this simple function is not inlined to make it easier to dtrace the
6501  * amount of time spent syncing frees.
6502  */
6503 static void
6504 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6505 {
6506         zio_t *zio = zio_root(spa, NULL, NULL, 0);
6507         bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6508         VERIFY(zio_wait(zio) == 0);
6509 }
6510 
6511 /*
6512  * Note: this simple function is not inlined to make it easier to dtrace the
6513  * amount of time spent syncing deferred frees.
6514  */
6515 static void
6516 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6517 {
6518         zio_t *zio = zio_root(spa, NULL, NULL, 0);
6519         VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6520             spa_free_sync_cb, zio, tx), ==, 0);
6521         VERIFY0(zio_wait(zio));
6522 }
6523 
6524 
6525 static void
6526 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6527 {
6528         char *packed = NULL;
6529         size_t bufsize;
6530         size_t nvsize = 0;
6531         dmu_buf_t *db;
6532 
6533         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6534 
6535         /*
6536          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6537          * information.  This avoids the dmu_buf_will_dirty() path and
6538          * saves us a pre-read to get data we don't actually care about.
6539          */
6540         bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6541         packed = kmem_alloc(bufsize, KM_SLEEP);
6542 
6543         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6544             KM_SLEEP) == 0);
6545         bzero(packed + nvsize, bufsize - nvsize);
6546 
6547         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6548 
6549         kmem_free(packed, bufsize);
6550 
6551         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6552         dmu_buf_will_dirty(db, tx);
6553         *(uint64_t *)db->db_data = nvsize;
6554         dmu_buf_rele(db, FTAG);
6555 }
6556 
6557 static void
6558 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6559     const char *config, const char *entry)
6560 {
6561         nvlist_t *nvroot;
6562         nvlist_t **list;
6563         int i;
6564 
6565         if (!sav->sav_sync)
6566                 return;
6567 
6568         /*
6569          * Update the MOS nvlist describing the list of available devices.
6570          * spa_validate_aux() will have already made sure this nvlist is
6571          * valid and the vdevs are labeled appropriately.
6572          */
6573         if (sav->sav_object == 0) {
6574                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6575                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6576                     sizeof (uint64_t), tx);
6577                 VERIFY(zap_update(spa->spa_meta_objset,
6578                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6579                     &sav->sav_object, tx) == 0);
6580         }
6581 
6582         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6583         if (sav->sav_count == 0) {
6584                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6585         } else {
6586                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6587                 for (i = 0; i < sav->sav_count; i++)
6588                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6589                             B_FALSE, VDEV_CONFIG_L2CACHE);
6590                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6591                     sav->sav_count) == 0);
6592                 for (i = 0; i < sav->sav_count; i++)
6593                         nvlist_free(list[i]);
6594                 kmem_free(list, sav->sav_count * sizeof (void *));
6595         }
6596 
6597         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6598         nvlist_free(nvroot);
6599 
6600         sav->sav_sync = B_FALSE;
6601 }
6602 
6603 /*
6604  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6605  * The all-vdev ZAP must be empty.
6606  */
6607 static void
6608 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6609 {
6610         spa_t *spa = vd->vdev_spa;
6611         if (vd->vdev_top_zap != 0) {
6612                 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6613                     vd->vdev_top_zap, tx));
6614         }
6615         if (vd->vdev_leaf_zap != 0) {
6616                 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6617                     vd->vdev_leaf_zap, tx));
6618         }
6619         for (uint64_t i = 0; i < vd->vdev_children; i++) {
6620                 spa_avz_build(vd->vdev_child[i], avz, tx);
6621         }
6622 }
6623 
6624 static void
6625 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6626 {
6627         nvlist_t *config;
6628 
6629         /*
6630          * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6631          * its config may not be dirty but we still need to build per-vdev ZAPs.
6632          * Similarly, if the pool is being assembled (e.g. after a split), we
6633          * need to rebuild the AVZ although the config may not be dirty.
6634          */
6635         if (list_is_empty(&spa->spa_config_dirty_list) &&
6636             spa->spa_avz_action == AVZ_ACTION_NONE)
6637                 return;
6638 
6639         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6640 
6641         ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6642             spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6643             spa->spa_all_vdev_zaps != 0);
6644 
6645         if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6646                 /* Make and build the new AVZ */
6647                 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6648                     DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6649                 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6650 
6651                 /* Diff old AVZ with new one */
6652                 zap_cursor_t zc;
6653                 zap_attribute_t za;
6654 
6655                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6656                     spa->spa_all_vdev_zaps);
6657                     zap_cursor_retrieve(&zc, &za) == 0;
6658                     zap_cursor_advance(&zc)) {
6659                         uint64_t vdzap = za.za_first_integer;
6660                         if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6661                             vdzap) == ENOENT) {
6662                                 /*
6663                                  * ZAP is listed in old AVZ but not in new one;
6664                                  * destroy it
6665                                  */
6666                                 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6667                                     tx));
6668                         }
6669                 }
6670 
6671                 zap_cursor_fini(&zc);
6672 
6673                 /* Destroy the old AVZ */
6674                 VERIFY0(zap_destroy(spa->spa_meta_objset,
6675                     spa->spa_all_vdev_zaps, tx));
6676 
6677                 /* Replace the old AVZ in the dir obj with the new one */
6678                 VERIFY0(zap_update(spa->spa_meta_objset,
6679                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6680                     sizeof (new_avz), 1, &new_avz, tx));
6681 
6682                 spa->spa_all_vdev_zaps = new_avz;
6683         } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6684                 zap_cursor_t zc;
6685                 zap_attribute_t za;
6686 
6687                 /* Walk through the AVZ and destroy all listed ZAPs */
6688                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6689                     spa->spa_all_vdev_zaps);
6690                     zap_cursor_retrieve(&zc, &za) == 0;
6691                     zap_cursor_advance(&zc)) {
6692                         uint64_t zap = za.za_first_integer;
6693                         VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6694                 }
6695 
6696                 zap_cursor_fini(&zc);
6697 
6698                 /* Destroy and unlink the AVZ itself */
6699                 VERIFY0(zap_destroy(spa->spa_meta_objset,
6700                     spa->spa_all_vdev_zaps, tx));
6701                 VERIFY0(zap_remove(spa->spa_meta_objset,
6702                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6703                 spa->spa_all_vdev_zaps = 0;
6704         }
6705 
6706         if (spa->spa_all_vdev_zaps == 0) {
6707                 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6708                     DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6709                     DMU_POOL_VDEV_ZAP_MAP, tx);
6710         }
6711         spa->spa_avz_action = AVZ_ACTION_NONE;
6712 
6713         /* Create ZAPs for vdevs that don't have them. */
6714         vdev_construct_zaps(spa->spa_root_vdev, tx);
6715 
6716         config = spa_config_generate(spa, spa->spa_root_vdev,
6717             dmu_tx_get_txg(tx), B_FALSE);
6718 
6719         /*
6720          * If we're upgrading the spa version then make sure that
6721          * the config object gets updated with the correct version.
6722          */
6723         if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6724                 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6725                     spa->spa_uberblock.ub_version);
6726 
6727         spa_config_exit(spa, SCL_STATE, FTAG);
6728 
6729         nvlist_free(spa->spa_config_syncing);
6730         spa->spa_config_syncing = config;
6731 
6732         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6733 }
6734 
6735 static void
6736 spa_sync_version(void *arg, dmu_tx_t *tx)
6737 {
6738         uint64_t *versionp = arg;
6739         uint64_t version = *versionp;
6740         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6741 
6742         /*
6743          * Setting the version is special cased when first creating the pool.
6744          */
6745         ASSERT(tx->tx_txg != TXG_INITIAL);
6746 
6747         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6748         ASSERT(version >= spa_version(spa));
6749 
6750         spa->spa_uberblock.ub_version = version;
6751         vdev_config_dirty(spa->spa_root_vdev);
6752         spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6753 }
6754 
6755 /*
6756  * Set zpool properties.
6757  */
6758 static void
6759 spa_sync_props(void *arg, dmu_tx_t *tx)
6760 {
6761         nvlist_t *nvp = arg;
6762         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6763         objset_t *mos = spa->spa_meta_objset;
6764         nvpair_t *elem = NULL;
6765 
6766         mutex_enter(&spa->spa_props_lock);
6767 
6768         while ((elem = nvlist_next_nvpair(nvp, elem))) {
6769                 uint64_t intval;
6770                 char *strval, *fname;
6771                 zpool_prop_t prop;
6772                 const char *propname;
6773                 zprop_type_t proptype;
6774                 spa_feature_t fid;
6775 
6776                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6777                 case ZPOOL_PROP_INVAL:
6778                         /*
6779                          * We checked this earlier in spa_prop_validate().
6780                          */
6781                         ASSERT(zpool_prop_feature(nvpair_name(elem)));
6782 
6783                         fname = strchr(nvpair_name(elem), '@') + 1;
6784                         VERIFY0(zfeature_lookup_name(fname, &fid));
6785 
6786                         spa_feature_enable(spa, fid, tx);
6787                         spa_history_log_internal(spa, "set", tx,
6788                             "%s=enabled", nvpair_name(elem));
6789                         break;
6790 
6791                 case ZPOOL_PROP_VERSION:
6792                         intval = fnvpair_value_uint64(elem);
6793                         /*
6794                          * The version is synced seperatly before other
6795                          * properties and should be correct by now.
6796                          */
6797                         ASSERT3U(spa_version(spa), >=, intval);
6798                         break;
6799 
6800                 case ZPOOL_PROP_ALTROOT:
6801                         /*
6802                          * 'altroot' is a non-persistent property. It should
6803                          * have been set temporarily at creation or import time.
6804                          */
6805                         ASSERT(spa->spa_root != NULL);
6806                         break;
6807 
6808                 case ZPOOL_PROP_READONLY:
6809                 case ZPOOL_PROP_CACHEFILE:
6810                         /*
6811                          * 'readonly' and 'cachefile' are also non-persisitent
6812                          * properties.
6813                          */
6814                         break;
6815                 case ZPOOL_PROP_COMMENT:
6816                         strval = fnvpair_value_string(elem);
6817                         if (spa->spa_comment != NULL)
6818                                 spa_strfree(spa->spa_comment);
6819                         spa->spa_comment = spa_strdup(strval);
6820                         /*
6821                          * We need to dirty the configuration on all the vdevs
6822                          * so that their labels get updated.  It's unnecessary
6823                          * to do this for pool creation since the vdev's
6824                          * configuratoin has already been dirtied.
6825                          */
6826                         if (tx->tx_txg != TXG_INITIAL)
6827                                 vdev_config_dirty(spa->spa_root_vdev);
6828                         spa_history_log_internal(spa, "set", tx,
6829                             "%s=%s", nvpair_name(elem), strval);
6830                         break;
6831                 default:
6832                         /*
6833                          * Set pool property values in the poolprops mos object.
6834                          */
6835                         if (spa->spa_pool_props_object == 0) {
6836                                 spa->spa_pool_props_object =
6837                                     zap_create_link(mos, DMU_OT_POOL_PROPS,
6838                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6839                                     tx);
6840                         }
6841 
6842                         /* normalize the property name */
6843                         propname = zpool_prop_to_name(prop);
6844                         proptype = zpool_prop_get_type(prop);
6845 
6846                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
6847                                 ASSERT(proptype == PROP_TYPE_STRING);
6848                                 strval = fnvpair_value_string(elem);
6849                                 VERIFY0(zap_update(mos,
6850                                     spa->spa_pool_props_object, propname,
6851                                     1, strlen(strval) + 1, strval, tx));
6852                                 spa_history_log_internal(spa, "set", tx,
6853                                     "%s=%s", nvpair_name(elem), strval);
6854                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6855                                 intval = fnvpair_value_uint64(elem);
6856 
6857                                 if (proptype == PROP_TYPE_INDEX) {
6858                                         const char *unused;
6859                                         VERIFY0(zpool_prop_index_to_string(
6860                                             prop, intval, &unused));
6861                                 }
6862                                 VERIFY0(zap_update(mos,
6863                                     spa->spa_pool_props_object, propname,
6864                                     8, 1, &intval, tx));
6865                                 spa_history_log_internal(spa, "set", tx,
6866                                     "%s=%lld", nvpair_name(elem), intval);
6867                         } else {
6868                                 ASSERT(0); /* not allowed */
6869                         }
6870 
6871                         switch (prop) {
6872                         case ZPOOL_PROP_DELEGATION:
6873                                 spa->spa_delegation = intval;
6874                                 break;
6875                         case ZPOOL_PROP_BOOTFS:
6876                                 spa->spa_bootfs = intval;
6877                                 break;
6878                         case ZPOOL_PROP_FAILUREMODE:
6879                                 spa->spa_failmode = intval;
6880                                 break;
6881                         case ZPOOL_PROP_AUTOEXPAND:
6882                                 spa->spa_autoexpand = intval;
6883                                 if (tx->tx_txg != TXG_INITIAL)
6884                                         spa_async_request(spa,
6885                                             SPA_ASYNC_AUTOEXPAND);
6886                                 break;
6887                         case ZPOOL_PROP_DEDUPDITTO:
6888                                 spa->spa_dedup_ditto = intval;
6889                                 break;
6890                         default:
6891                                 break;
6892                         }
6893                 }
6894 
6895         }
6896 
6897         mutex_exit(&spa->spa_props_lock);
6898 }
6899 
6900 /*
6901  * Perform one-time upgrade on-disk changes.  spa_version() does not
6902  * reflect the new version this txg, so there must be no changes this
6903  * txg to anything that the upgrade code depends on after it executes.
6904  * Therefore this must be called after dsl_pool_sync() does the sync
6905  * tasks.
6906  */
6907 static void
6908 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6909 {
6910         dsl_pool_t *dp = spa->spa_dsl_pool;
6911 
6912         ASSERT(spa->spa_sync_pass == 1);
6913 
6914         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6915 
6916         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6917             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6918                 dsl_pool_create_origin(dp, tx);
6919 
6920                 /* Keeping the origin open increases spa_minref */
6921                 spa->spa_minref += 3;
6922         }
6923 
6924         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6925             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6926                 dsl_pool_upgrade_clones(dp, tx);
6927         }
6928 
6929         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6930             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6931                 dsl_pool_upgrade_dir_clones(dp, tx);
6932 
6933                 /* Keeping the freedir open increases spa_minref */
6934                 spa->spa_minref += 3;
6935         }
6936 
6937         if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6938             spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6939                 spa_feature_create_zap_objects(spa, tx);
6940         }
6941 
6942         /*
6943          * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6944          * when possibility to use lz4 compression for metadata was added
6945          * Old pools that have this feature enabled must be upgraded to have
6946          * this feature active
6947          */
6948         if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6949                 boolean_t lz4_en = spa_feature_is_enabled(spa,
6950                     SPA_FEATURE_LZ4_COMPRESS);
6951                 boolean_t lz4_ac = spa_feature_is_active(spa,
6952                     SPA_FEATURE_LZ4_COMPRESS);
6953 
6954                 if (lz4_en && !lz4_ac)
6955                         spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6956         }
6957 
6958         /*
6959          * If we haven't written the salt, do so now.  Note that the
6960          * feature may not be activated yet, but that's fine since
6961          * the presence of this ZAP entry is backwards compatible.
6962          */
6963         if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6964             DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6965                 VERIFY0(zap_add(spa->spa_meta_objset,
6966                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6967                     sizeof (spa->spa_cksum_salt.zcs_bytes),
6968                     spa->spa_cksum_salt.zcs_bytes, tx));
6969         }
6970 
6971         rrw_exit(&dp->dp_config_rwlock, FTAG);
6972 }
6973 
6974 static void
6975 vdev_indirect_state_sync_verify(vdev_t *vd)
6976 {
6977         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6978         vdev_indirect_births_t *vib = vd->vdev_indirect_births;
6979 
6980         if (vd->vdev_ops == &vdev_indirect_ops) {
6981                 ASSERT(vim != NULL);
6982                 ASSERT(vib != NULL);
6983         }
6984 
6985         if (vdev_obsolete_sm_object(vd) != 0) {
6986                 ASSERT(vd->vdev_obsolete_sm != NULL);
6987                 ASSERT(vd->vdev_removing ||
6988                     vd->vdev_ops == &vdev_indirect_ops);
6989                 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
6990                 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
6991 
6992                 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
6993                     space_map_object(vd->vdev_obsolete_sm));
6994                 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
6995                     space_map_allocated(vd->vdev_obsolete_sm));
6996         }
6997         ASSERT(vd->vdev_obsolete_segments != NULL);
6998 
6999         /*
7000          * Since frees / remaps to an indirect vdev can only
7001          * happen in syncing context, the obsolete segments
7002          * tree must be empty when we start syncing.
7003          */
7004         ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7005 }
7006 
7007 /*
7008  * Sync the specified transaction group.  New blocks may be dirtied as
7009  * part of the process, so we iterate until it converges.
7010  */
7011 void
7012 spa_sync(spa_t *spa, uint64_t txg)
7013 {
7014         dsl_pool_t *dp = spa->spa_dsl_pool;
7015         objset_t *mos = spa->spa_meta_objset;
7016         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7017         vdev_t *rvd = spa->spa_root_vdev;
7018         vdev_t *vd;
7019         dmu_tx_t *tx;
7020         int error;
7021         uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7022             zfs_vdev_queue_depth_pct / 100;
7023 
7024         VERIFY(spa_writeable(spa));
7025 
7026         /*
7027          * Wait for i/os issued in open context that need to complete
7028          * before this txg syncs.
7029          */
7030         VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
7031         spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
7032 
7033         /*
7034          * Lock out configuration changes.
7035          */
7036         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7037 
7038         spa->spa_syncing_txg = txg;
7039         spa->spa_sync_pass = 0;
7040 
7041         mutex_enter(&spa->spa_alloc_lock);
7042         VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7043         mutex_exit(&spa->spa_alloc_lock);
7044 
7045         /*
7046          * If there are any pending vdev state changes, convert them
7047          * into config changes that go out with this transaction group.
7048          */
7049         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7050         while (list_head(&spa->spa_state_dirty_list) != NULL) {
7051                 /*
7052                  * We need the write lock here because, for aux vdevs,
7053                  * calling vdev_config_dirty() modifies sav_config.
7054                  * This is ugly and will become unnecessary when we
7055                  * eliminate the aux vdev wart by integrating all vdevs
7056                  * into the root vdev tree.
7057                  */
7058                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7059                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7060                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7061                         vdev_state_clean(vd);
7062                         vdev_config_dirty(vd);
7063                 }
7064                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7065                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7066         }
7067         spa_config_exit(spa, SCL_STATE, FTAG);
7068 
7069         tx = dmu_tx_create_assigned(dp, txg);
7070 
7071         spa->spa_sync_starttime = gethrtime();
7072         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7073             spa->spa_sync_starttime + spa->spa_deadman_synctime));
7074 
7075         /*
7076          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7077          * set spa_deflate if we have no raid-z vdevs.
7078          */
7079         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7080             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7081                 int i;
7082 
7083                 for (i = 0; i < rvd->vdev_children; i++) {
7084                         vd = rvd->vdev_child[i];
7085                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7086                                 break;
7087                 }
7088                 if (i == rvd->vdev_children) {
7089                         spa->spa_deflate = TRUE;
7090                         VERIFY(0 == zap_add(spa->spa_meta_objset,
7091                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7092                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7093                 }
7094         }
7095 
7096         /*
7097          * Set the top-level vdev's max queue depth. Evaluate each
7098          * top-level's async write queue depth in case it changed.
7099          * The max queue depth will not change in the middle of syncing
7100          * out this txg.
7101          */
7102         uint64_t queue_depth_total = 0;
7103         for (int c = 0; c < rvd->vdev_children; c++) {
7104                 vdev_t *tvd = rvd->vdev_child[c];
7105                 metaslab_group_t *mg = tvd->vdev_mg;
7106 
7107                 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7108                     !metaslab_group_initialized(mg))
7109                         continue;
7110 
7111                 /*
7112                  * It is safe to do a lock-free check here because only async
7113                  * allocations look at mg_max_alloc_queue_depth, and async
7114                  * allocations all happen from spa_sync().
7115                  */
7116                 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
7117                 mg->mg_max_alloc_queue_depth = max_queue_depth;
7118                 queue_depth_total += mg->mg_max_alloc_queue_depth;
7119         }
7120         metaslab_class_t *mc = spa_normal_class(spa);
7121         ASSERT0(refcount_count(&mc->mc_alloc_slots));
7122         mc->mc_alloc_max_slots = queue_depth_total;
7123         mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7124 
7125         ASSERT3U(mc->mc_alloc_max_slots, <=,
7126             max_queue_depth * rvd->vdev_children);
7127 
7128         for (int c = 0; c < rvd->vdev_children; c++) {
7129                 vdev_t *vd = rvd->vdev_child[c];
7130                 vdev_indirect_state_sync_verify(vd);
7131 
7132                 if (vdev_indirect_should_condense(vd)) {
7133                         spa_condense_indirect_start_sync(vd, tx);
7134                         break;
7135                 }
7136         }
7137 
7138         /*
7139          * Iterate to convergence.
7140          */
7141         do {
7142                 int pass = ++spa->spa_sync_pass;
7143 
7144                 spa_sync_config_object(spa, tx);
7145                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7146                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7147                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7148                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7149                 spa_errlog_sync(spa, txg);
7150                 dsl_pool_sync(dp, txg);
7151 
7152                 if (pass < zfs_sync_pass_deferred_free) {
7153                         spa_sync_frees(spa, free_bpl, tx);
7154                 } else {
7155                         /*
7156                          * We can not defer frees in pass 1, because
7157                          * we sync the deferred frees later in pass 1.
7158                          */
7159                         ASSERT3U(pass, >, 1);
7160                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
7161                             &spa->spa_deferred_bpobj, tx);
7162                 }
7163 
7164                 ddt_sync(spa, txg);
7165                 dsl_scan_sync(dp, tx);
7166 
7167                 if (spa->spa_vdev_removal != NULL)
7168                         svr_sync(spa, tx);
7169 
7170                 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7171                     != NULL)
7172                         vdev_sync(vd, txg);
7173 
7174                 if (pass == 1) {
7175                         spa_sync_upgrades(spa, tx);
7176                         ASSERT3U(txg, >=,
7177                             spa->spa_uberblock.ub_rootbp.blk_birth);
7178                         /*
7179                          * Note: We need to check if the MOS is dirty
7180                          * because we could have marked the MOS dirty
7181                          * without updating the uberblock (e.g. if we
7182                          * have sync tasks but no dirty user data).  We
7183                          * need to check the uberblock's rootbp because
7184                          * it is updated if we have synced out dirty
7185                          * data (though in this case the MOS will most
7186                          * likely also be dirty due to second order
7187                          * effects, we don't want to rely on that here).
7188                          */
7189                         if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7190                             !dmu_objset_is_dirty(mos, txg)) {
7191                                 /*
7192                                  * Nothing changed on the first pass,
7193                                  * therefore this TXG is a no-op.  Avoid
7194                                  * syncing deferred frees, so that we
7195                                  * can keep this TXG as a no-op.
7196                                  */
7197                                 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7198                                     txg));
7199                                 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7200                                 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7201                                 break;
7202                         }
7203                         spa_sync_deferred_frees(spa, tx);
7204                 }
7205 
7206         } while (dmu_objset_is_dirty(mos, txg));
7207 
7208         if (!list_is_empty(&spa->spa_config_dirty_list)) {
7209                 /*
7210                  * Make sure that the number of ZAPs for all the vdevs matches
7211                  * the number of ZAPs in the per-vdev ZAP list. This only gets
7212                  * called if the config is dirty; otherwise there may be
7213                  * outstanding AVZ operations that weren't completed in
7214                  * spa_sync_config_object.
7215                  */
7216                 uint64_t all_vdev_zap_entry_count;
7217                 ASSERT0(zap_count(spa->spa_meta_objset,
7218                     spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7219                 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7220                     all_vdev_zap_entry_count);
7221         }
7222 
7223         if (spa->spa_vdev_removal != NULL) {
7224                 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7225         }
7226 
7227         /*
7228          * Rewrite the vdev configuration (which includes the uberblock)
7229          * to commit the transaction group.
7230          *
7231          * If there are no dirty vdevs, we sync the uberblock to a few
7232          * random top-level vdevs that are known to be visible in the
7233          * config cache (see spa_vdev_add() for a complete description).
7234          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7235          */
7236         for (;;) {
7237                 /*
7238                  * We hold SCL_STATE to prevent vdev open/close/etc.
7239                  * while we're attempting to write the vdev labels.
7240                  */
7241                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7242 
7243                 if (list_is_empty(&spa->spa_config_dirty_list)) {
7244                         vdev_t *svd[SPA_SYNC_MIN_VDEVS];
7245                         int svdcount = 0;
7246                         int children = rvd->vdev_children;
7247                         int c0 = spa_get_random(children);
7248 
7249                         for (int c = 0; c < children; c++) {
7250                                 vd = rvd->vdev_child[(c0 + c) % children];
7251                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7252                                     !vdev_is_concrete(vd))
7253                                         continue;
7254                                 svd[svdcount++] = vd;
7255                                 if (svdcount == SPA_SYNC_MIN_VDEVS)
7256                                         break;
7257                         }
7258                         error = vdev_config_sync(svd, svdcount, txg);
7259                 } else {
7260                         error = vdev_config_sync(rvd->vdev_child,
7261                             rvd->vdev_children, txg);
7262                 }
7263 
7264                 if (error == 0)
7265                         spa->spa_last_synced_guid = rvd->vdev_guid;
7266 
7267                 spa_config_exit(spa, SCL_STATE, FTAG);
7268 
7269                 if (error == 0)
7270                         break;
7271                 zio_suspend(spa, NULL);
7272                 zio_resume_wait(spa);
7273         }
7274         dmu_tx_commit(tx);
7275 
7276         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7277 
7278         /*
7279          * Clear the dirty config list.
7280          */
7281         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7282                 vdev_config_clean(vd);
7283 
7284         /*
7285          * Now that the new config has synced transactionally,
7286          * let it become visible to the config cache.
7287          */
7288         if (spa->spa_config_syncing != NULL) {
7289                 spa_config_set(spa, spa->spa_config_syncing);
7290                 spa->spa_config_txg = txg;
7291                 spa->spa_config_syncing = NULL;
7292         }
7293 
7294         dsl_pool_sync_done(dp, txg);
7295 
7296         mutex_enter(&spa->spa_alloc_lock);
7297         VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7298         mutex_exit(&spa->spa_alloc_lock);
7299 
7300         /*
7301          * Update usable space statistics.
7302          */
7303         while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7304                 vdev_sync_done(vd, txg);
7305 
7306         spa_update_dspace(spa);
7307 
7308         /*
7309          * It had better be the case that we didn't dirty anything
7310          * since vdev_config_sync().
7311          */
7312         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7313         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7314         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7315 
7316         spa->spa_sync_pass = 0;
7317 
7318         /*
7319          * Update the last synced uberblock here. We want to do this at
7320          * the end of spa_sync() so that consumers of spa_last_synced_txg()
7321          * will be guaranteed that all the processing associated with
7322          * that txg has been completed.
7323          */
7324         spa->spa_ubsync = spa->spa_uberblock;
7325         spa_config_exit(spa, SCL_CONFIG, FTAG);
7326 
7327         spa_handle_ignored_writes(spa);
7328 
7329         /*
7330          * If any async tasks have been requested, kick them off.
7331          */
7332         spa_async_dispatch(spa);
7333 }
7334 
7335 /*
7336  * Sync all pools.  We don't want to hold the namespace lock across these
7337  * operations, so we take a reference on the spa_t and drop the lock during the
7338  * sync.
7339  */
7340 void
7341 spa_sync_allpools(void)
7342 {
7343         spa_t *spa = NULL;
7344         mutex_enter(&spa_namespace_lock);
7345         while ((spa = spa_next(spa)) != NULL) {
7346                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7347                     !spa_writeable(spa) || spa_suspended(spa))
7348                         continue;
7349                 spa_open_ref(spa, FTAG);
7350                 mutex_exit(&spa_namespace_lock);
7351                 txg_wait_synced(spa_get_dsl(spa), 0);
7352                 mutex_enter(&spa_namespace_lock);
7353                 spa_close(spa, FTAG);
7354         }
7355         mutex_exit(&spa_namespace_lock);
7356 }
7357 
7358 /*
7359  * ==========================================================================
7360  * Miscellaneous routines
7361  * ==========================================================================
7362  */
7363 
7364 /*
7365  * Remove all pools in the system.
7366  */
7367 void
7368 spa_evict_all(void)
7369 {
7370         spa_t *spa;
7371 
7372         /*
7373          * Remove all cached state.  All pools should be closed now,
7374          * so every spa in the AVL tree should be unreferenced.
7375          */
7376         mutex_enter(&spa_namespace_lock);
7377         while ((spa = spa_next(NULL)) != NULL) {
7378                 /*
7379                  * Stop async tasks.  The async thread may need to detach
7380                  * a device that's been replaced, which requires grabbing
7381                  * spa_namespace_lock, so we must drop it here.
7382                  */
7383                 spa_open_ref(spa, FTAG);
7384                 mutex_exit(&spa_namespace_lock);
7385                 spa_async_suspend(spa);
7386                 mutex_enter(&spa_namespace_lock);
7387                 spa_close(spa, FTAG);
7388 
7389                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7390                         spa_unload(spa);
7391                         spa_deactivate(spa);
7392                 }
7393                 spa_remove(spa);
7394         }
7395         mutex_exit(&spa_namespace_lock);
7396 }
7397 
7398 vdev_t *
7399 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7400 {
7401         vdev_t *vd;
7402         int i;
7403 
7404         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7405                 return (vd);
7406 
7407         if (aux) {
7408                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7409                         vd = spa->spa_l2cache.sav_vdevs[i];
7410                         if (vd->vdev_guid == guid)
7411                                 return (vd);
7412                 }
7413 
7414                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7415                         vd = spa->spa_spares.sav_vdevs[i];
7416                         if (vd->vdev_guid == guid)
7417                                 return (vd);
7418                 }
7419         }
7420 
7421         return (NULL);
7422 }
7423 
7424 void
7425 spa_upgrade(spa_t *spa, uint64_t version)
7426 {
7427         ASSERT(spa_writeable(spa));
7428 
7429         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7430 
7431         /*
7432          * This should only be called for a non-faulted pool, and since a
7433          * future version would result in an unopenable pool, this shouldn't be
7434          * possible.
7435          */
7436         ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7437         ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7438 
7439         spa->spa_uberblock.ub_version = version;
7440         vdev_config_dirty(spa->spa_root_vdev);
7441 
7442         spa_config_exit(spa, SCL_ALL, FTAG);
7443 
7444         txg_wait_synced(spa_get_dsl(spa), 0);
7445 }
7446 
7447 boolean_t
7448 spa_has_spare(spa_t *spa, uint64_t guid)
7449 {
7450         int i;
7451         uint64_t spareguid;
7452         spa_aux_vdev_t *sav = &spa->spa_spares;
7453 
7454         for (i = 0; i < sav->sav_count; i++)
7455                 if (sav->sav_vdevs[i]->vdev_guid == guid)
7456                         return (B_TRUE);
7457 
7458         for (i = 0; i < sav->sav_npending; i++) {
7459                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7460                     &spareguid) == 0 && spareguid == guid)
7461                         return (B_TRUE);
7462         }
7463 
7464         return (B_FALSE);
7465 }
7466 
7467 /*
7468  * Check if a pool has an active shared spare device.
7469  * Note: reference count of an active spare is 2, as a spare and as a replace
7470  */
7471 static boolean_t
7472 spa_has_active_shared_spare(spa_t *spa)
7473 {
7474         int i, refcnt;
7475         uint64_t pool;
7476         spa_aux_vdev_t *sav = &spa->spa_spares;
7477 
7478         for (i = 0; i < sav->sav_count; i++) {
7479                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7480                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7481                     refcnt > 2)
7482                         return (B_TRUE);
7483         }
7484 
7485         return (B_FALSE);
7486 }
7487 
7488 sysevent_t *
7489 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7490 {
7491         sysevent_t              *ev = NULL;
7492 #ifdef _KERNEL
7493         sysevent_attr_list_t    *attr = NULL;
7494         sysevent_value_t        value;
7495 
7496         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7497             SE_SLEEP);
7498         ASSERT(ev != NULL);
7499 
7500         value.value_type = SE_DATA_TYPE_STRING;
7501         value.value.sv_string = spa_name(spa);
7502         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7503                 goto done;
7504 
7505         value.value_type = SE_DATA_TYPE_UINT64;
7506         value.value.sv_uint64 = spa_guid(spa);
7507         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7508                 goto done;
7509 
7510         if (vd) {
7511                 value.value_type = SE_DATA_TYPE_UINT64;
7512                 value.value.sv_uint64 = vd->vdev_guid;
7513                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7514                     SE_SLEEP) != 0)
7515                         goto done;
7516 
7517                 if (vd->vdev_path) {
7518                         value.value_type = SE_DATA_TYPE_STRING;
7519                         value.value.sv_string = vd->vdev_path;
7520                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7521                             &value, SE_SLEEP) != 0)
7522                                 goto done;
7523                 }
7524         }
7525 
7526         if (hist_nvl != NULL) {
7527                 fnvlist_merge((nvlist_t *)attr, hist_nvl);
7528         }
7529 
7530         if (sysevent_attach_attributes(ev, attr) != 0)
7531                 goto done;
7532         attr = NULL;
7533 
7534 done:
7535         if (attr)
7536                 sysevent_free_attr(attr);
7537 
7538 #endif
7539         return (ev);
7540 }
7541 
7542 void
7543 spa_event_post(sysevent_t *ev)
7544 {
7545 #ifdef _KERNEL
7546         sysevent_id_t           eid;
7547 
7548         (void) log_sysevent(ev, SE_SLEEP, &eid);
7549         sysevent_free(ev);
7550 #endif
7551 }
7552 
7553 void
7554 spa_event_discard(sysevent_t *ev)
7555 {
7556 #ifdef _KERNEL
7557         sysevent_free(ev);
7558 #endif
7559 }
7560 
7561 /*
7562  * Post a sysevent corresponding to the given event.  The 'name' must be one of
7563  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7564  * filled in from the spa and (optionally) the vdev and history nvl.  This
7565  * doesn't do anything in the userland libzpool, as we don't want consumers to
7566  * misinterpret ztest or zdb as real changes.
7567  */
7568 void
7569 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7570 {
7571         spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
7572 }