1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
  28  */
  29 
  30 #include <sys/zfs_context.h>
  31 #include <sys/dnode.h>
  32 #include <sys/dmu_objset.h>
  33 #include <sys/dmu_zfetch.h>
  34 #include <sys/dmu.h>
  35 #include <sys/dbuf.h>
  36 #include <sys/kstat.h>
  37 
  38 /*
  39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
  40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
  41  * prescient prefetch never issues i/os that end up not being needed,
  42  * so it can't hurt performance.
  43  */
  44 boolean_t zfs_prefetch_disable = B_FALSE;
  45 
  46 /* max # of streams per zfetch */
  47 uint32_t        zfetch_max_streams = 8;
  48 /* min time before stream reclaim */
  49 uint32_t        zfetch_min_sec_reap = 2;
  50 /* max bytes to prefetch per stream (default 8MB) */
  51 uint32_t        zfetch_max_distance = 8 * 1024 * 1024;
  52 /* max bytes to prefetch indirects for per stream (default 64MB) */
  53 uint32_t        zfetch_max_idistance = 64 * 1024 * 1024;
  54 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
  55 uint64_t        zfetch_array_rd_sz = 1024 * 1024;
  56 
  57 typedef struct zfetch_stats {
  58         kstat_named_t zfetchstat_hits;
  59         kstat_named_t zfetchstat_misses;
  60         kstat_named_t zfetchstat_max_streams;
  61 } zfetch_stats_t;
  62 
  63 static zfetch_stats_t zfetch_stats = {
  64         { "hits",                       KSTAT_DATA_UINT64 },
  65         { "misses",                     KSTAT_DATA_UINT64 },
  66         { "max_streams",                KSTAT_DATA_UINT64 },
  67 };
  68 
  69 #define ZFETCHSTAT_BUMP(stat) \
  70         atomic_inc_64(&zfetch_stats.stat.value.ui64);
  71 
  72 kstat_t         *zfetch_ksp;
  73 
  74 void
  75 zfetch_init(void)
  76 {
  77         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
  78             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
  79             KSTAT_FLAG_VIRTUAL);
  80 
  81         if (zfetch_ksp != NULL) {
  82                 zfetch_ksp->ks_data = &zfetch_stats;
  83                 kstat_install(zfetch_ksp);
  84         }
  85 }
  86 
  87 void
  88 zfetch_fini(void)
  89 {
  90         if (zfetch_ksp != NULL) {
  91                 kstat_delete(zfetch_ksp);
  92                 zfetch_ksp = NULL;
  93         }
  94 }
  95 
  96 /*
  97  * This takes a pointer to a zfetch structure and a dnode.  It performs the
  98  * necessary setup for the zfetch structure, grokking data from the
  99  * associated dnode.
 100  */
 101 void
 102 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
 103 {
 104         if (zf == NULL)
 105                 return;
 106 
 107         zf->zf_dnode = dno;
 108 
 109         list_create(&zf->zf_stream, sizeof (zstream_t),
 110             offsetof(zstream_t, zs_node));
 111 
 112         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
 113 }
 114 
 115 static void
 116 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
 117 {
 118         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
 119         list_remove(&zf->zf_stream, zs);
 120         mutex_destroy(&zs->zs_lock);
 121         kmem_free(zs, sizeof (*zs));
 122 }
 123 
 124 /*
 125  * Clean-up state associated with a zfetch structure (e.g. destroy the
 126  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
 127  */
 128 void
 129 dmu_zfetch_fini(zfetch_t *zf)
 130 {
 131         zstream_t *zs;
 132 
 133         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
 134 
 135         rw_enter(&zf->zf_rwlock, RW_WRITER);
 136         while ((zs = list_head(&zf->zf_stream)) != NULL)
 137                 dmu_zfetch_stream_remove(zf, zs);
 138         rw_exit(&zf->zf_rwlock);
 139         list_destroy(&zf->zf_stream);
 140         rw_destroy(&zf->zf_rwlock);
 141 
 142         zf->zf_dnode = NULL;
 143 }
 144 
 145 /*
 146  * If there aren't too many streams already, create a new stream.
 147  * The "blkid" argument is the next block that we expect this stream to access.
 148  * While we're here, clean up old streams (which haven't been
 149  * accessed for at least zfetch_min_sec_reap seconds).
 150  */
 151 static void
 152 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
 153 {
 154         zstream_t *zs_next;
 155         int numstreams = 0;
 156 
 157         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
 158 
 159         /*
 160          * Clean up old streams.
 161          */
 162         for (zstream_t *zs = list_head(&zf->zf_stream);
 163             zs != NULL; zs = zs_next) {
 164                 zs_next = list_next(&zf->zf_stream, zs);
 165                 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
 166                     zfetch_min_sec_reap)
 167                         dmu_zfetch_stream_remove(zf, zs);
 168                 else
 169                         numstreams++;
 170         }
 171 
 172         /*
 173          * The maximum number of streams is normally zfetch_max_streams,
 174          * but for small files we lower it such that it's at least possible
 175          * for all the streams to be non-overlapping.
 176          *
 177          * If we are already at the maximum number of streams for this file,
 178          * even after removing old streams, then don't create this stream.
 179          */
 180         uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
 181             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
 182             zfetch_max_distance));
 183         if (numstreams >= max_streams) {
 184                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
 185                 return;
 186         }
 187 
 188         zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
 189         zs->zs_blkid = blkid;
 190         zs->zs_pf_blkid = blkid;
 191         zs->zs_ipf_blkid = blkid;
 192         zs->zs_atime = gethrtime();
 193         mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
 194 
 195         list_insert_head(&zf->zf_stream, zs);
 196 }
 197 
 198 /*
 199  * This is the predictive prefetch entry point.  It associates dnode access
 200  * specified with blkid and nblks arguments with prefetch stream, predicts
 201  * further accesses based on that stats and initiates speculative prefetch.
 202  * fetch_data argument specifies whether actual data blocks should be fetched:
 203  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
 204  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
 205  */
 206 void
 207 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
 208 {
 209         zstream_t *zs;
 210         int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
 211         int64_t pf_ahead_blks, max_blks;
 212         int epbs, max_dist_blks, pf_nblks, ipf_nblks;
 213         uint64_t end_of_access_blkid = blkid + nblks;
 214 
 215         if (zfs_prefetch_disable)
 216                 return;
 217 
 218         /*
 219          * As a fast path for small (single-block) files, ignore access
 220          * to the first block.
 221          */
 222         if (blkid == 0)
 223                 return;
 224 
 225         rw_enter(&zf->zf_rwlock, RW_READER);
 226 
 227         for (zs = list_head(&zf->zf_stream); zs != NULL;
 228             zs = list_next(&zf->zf_stream, zs)) {
 229                 if (blkid == zs->zs_blkid) {
 230                         mutex_enter(&zs->zs_lock);
 231                         /*
 232                          * zs_blkid could have changed before we
 233                          * acquired zs_lock; re-check them here.
 234                          */
 235                         if (blkid != zs->zs_blkid) {
 236                                 mutex_exit(&zs->zs_lock);
 237                                 continue;
 238                         }
 239                         break;
 240                 }
 241         }
 242 
 243         if (zs == NULL) {
 244                 /*
 245                  * This access is not part of any existing stream.  Create
 246                  * a new stream for it.
 247                  */
 248                 ZFETCHSTAT_BUMP(zfetchstat_misses);
 249                 if (rw_tryupgrade(&zf->zf_rwlock))
 250                         dmu_zfetch_stream_create(zf, end_of_access_blkid);
 251                 rw_exit(&zf->zf_rwlock);
 252                 return;
 253         }
 254 
 255         /*
 256          * This access was to a block that we issued a prefetch for on
 257          * behalf of this stream. Issue further prefetches for this stream.
 258          *
 259          * Normally, we start prefetching where we stopped
 260          * prefetching last (zs_pf_blkid).  But when we get our first
 261          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
 262          * want to prefetch the block we just accessed.  In this case,
 263          * start just after the block we just accessed.
 264          */
 265         pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
 266 
 267         /*
 268          * Double our amount of prefetched data, but don't let the
 269          * prefetch get further ahead than zfetch_max_distance.
 270          */
 271         if (fetch_data) {
 272                 max_dist_blks =
 273                     zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
 274                 /*
 275                  * Previously, we were (zs_pf_blkid - blkid) ahead.  We
 276                  * want to now be double that, so read that amount again,
 277                  * plus the amount we are catching up by (i.e. the amount
 278                  * read just now).
 279                  */
 280                 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
 281                 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
 282                 pf_nblks = MIN(pf_ahead_blks, max_blks);
 283         } else {
 284                 pf_nblks = 0;
 285         }
 286 
 287         zs->zs_pf_blkid = pf_start + pf_nblks;
 288 
 289         /*
 290          * Do the same for indirects, starting from where we stopped last,
 291          * or where we will stop reading data blocks (and the indirects
 292          * that point to them).
 293          */
 294         ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
 295         max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
 296         /*
 297          * We want to double our distance ahead of the data prefetch
 298          * (or reader, if we are not prefetching data).  Previously, we
 299          * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
 300          * that amount again, plus the amount we are catching up by
 301          * (i.e. the amount read now + the amount of data prefetched now).
 302          */
 303         pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
 304         max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
 305         ipf_nblks = MIN(pf_ahead_blks, max_blks);
 306         zs->zs_ipf_blkid = ipf_start + ipf_nblks;
 307 
 308         epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
 309         ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
 310         ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
 311 
 312         zs->zs_atime = gethrtime();
 313         zs->zs_blkid = end_of_access_blkid;
 314         mutex_exit(&zs->zs_lock);
 315         rw_exit(&zf->zf_rwlock);
 316 
 317         /*
 318          * dbuf_prefetch() is asynchronous (even when it needs to read
 319          * indirect blocks), but we still prefer to drop our locks before
 320          * calling it to reduce the time we hold them.
 321          */
 322 
 323         for (int i = 0; i < pf_nblks; i++) {
 324                 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
 325                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
 326         }
 327         for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
 328                 dbuf_prefetch(zf->zf_dnode, 1, iblk,
 329                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
 330         }
 331         ZFETCHSTAT_BUMP(zfetchstat_hits);
 332 }