1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  24  */
  25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
  26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
  27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */
  28 
  29 #include <sys/dmu.h>
  30 #include <sys/dmu_impl.h>
  31 #include <sys/dmu_tx.h>
  32 #include <sys/dbuf.h>
  33 #include <sys/dnode.h>
  34 #include <sys/zfs_context.h>
  35 #include <sys/dmu_objset.h>
  36 #include <sys/dmu_traverse.h>
  37 #include <sys/dsl_dataset.h>
  38 #include <sys/dsl_dir.h>
  39 #include <sys/dsl_pool.h>
  40 #include <sys/dsl_synctask.h>
  41 #include <sys/dsl_prop.h>
  42 #include <sys/dmu_zfetch.h>
  43 #include <sys/zfs_ioctl.h>
  44 #include <sys/zap.h>
  45 #include <sys/zio_checksum.h>
  46 #include <sys/zio_compress.h>
  47 #include <sys/sa.h>
  48 #include <sys/zfeature.h>
  49 #include <sys/abd.h>
  50 #ifdef _KERNEL
  51 #include <sys/vmsystm.h>
  52 #include <sys/zfs_znode.h>
  53 #endif
  54 
  55 /*
  56  * Enable/disable nopwrite feature.
  57  */
  58 int zfs_nopwrite_enabled = 1;
  59 
  60 /*
  61  * Tunable to control percentage of dirtied blocks from frees in one TXG.
  62  * After this threshold is crossed, additional dirty blocks from frees
  63  * wait until the next TXG.
  64  * A value of zero will disable this throttle.
  65  */
  66 uint32_t zfs_per_txg_dirty_frees_percent = 30;
  67 
  68 /*
  69  * This can be used for testing, to ensure that certain actions happen
  70  * while in the middle of a remap (which might otherwise complete too
  71  * quickly).
  72  */
  73 int zfs_object_remap_one_indirect_delay_ticks = 0;
  74 
  75 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
  76         {       DMU_BSWAP_UINT8,        TRUE,   "unallocated"           },
  77         {       DMU_BSWAP_ZAP,          TRUE,   "object directory"      },
  78         {       DMU_BSWAP_UINT64,       TRUE,   "object array"          },
  79         {       DMU_BSWAP_UINT8,        TRUE,   "packed nvlist"         },
  80         {       DMU_BSWAP_UINT64,       TRUE,   "packed nvlist size"    },
  81         {       DMU_BSWAP_UINT64,       TRUE,   "bpobj"                 },
  82         {       DMU_BSWAP_UINT64,       TRUE,   "bpobj header"          },
  83         {       DMU_BSWAP_UINT64,       TRUE,   "SPA space map header"  },
  84         {       DMU_BSWAP_UINT64,       TRUE,   "SPA space map"         },
  85         {       DMU_BSWAP_UINT64,       TRUE,   "ZIL intent log"        },
  86         {       DMU_BSWAP_DNODE,        TRUE,   "DMU dnode"             },
  87         {       DMU_BSWAP_OBJSET,       TRUE,   "DMU objset"            },
  88         {       DMU_BSWAP_UINT64,       TRUE,   "DSL directory"         },
  89         {       DMU_BSWAP_ZAP,          TRUE,   "DSL directory child map"},
  90         {       DMU_BSWAP_ZAP,          TRUE,   "DSL dataset snap map"  },
  91         {       DMU_BSWAP_ZAP,          TRUE,   "DSL props"             },
  92         {       DMU_BSWAP_UINT64,       TRUE,   "DSL dataset"           },
  93         {       DMU_BSWAP_ZNODE,        TRUE,   "ZFS znode"             },
  94         {       DMU_BSWAP_OLDACL,       TRUE,   "ZFS V0 ACL"            },
  95         {       DMU_BSWAP_UINT8,        FALSE,  "ZFS plain file"        },
  96         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS directory"         },
  97         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS master node"       },
  98         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS delete queue"      },
  99         {       DMU_BSWAP_UINT8,        FALSE,  "zvol object"           },
 100         {       DMU_BSWAP_ZAP,          TRUE,   "zvol prop"             },
 101         {       DMU_BSWAP_UINT8,        FALSE,  "other uint8[]"         },
 102         {       DMU_BSWAP_UINT64,       FALSE,  "other uint64[]"        },
 103         {       DMU_BSWAP_ZAP,          TRUE,   "other ZAP"             },
 104         {       DMU_BSWAP_ZAP,          TRUE,   "persistent error log"  },
 105         {       DMU_BSWAP_UINT8,        TRUE,   "SPA history"           },
 106         {       DMU_BSWAP_UINT64,       TRUE,   "SPA history offsets"   },
 107         {       DMU_BSWAP_ZAP,          TRUE,   "Pool properties"       },
 108         {       DMU_BSWAP_ZAP,          TRUE,   "DSL permissions"       },
 109         {       DMU_BSWAP_ACL,          TRUE,   "ZFS ACL"               },
 110         {       DMU_BSWAP_UINT8,        TRUE,   "ZFS SYSACL"            },
 111         {       DMU_BSWAP_UINT8,        TRUE,   "FUID table"            },
 112         {       DMU_BSWAP_UINT64,       TRUE,   "FUID table size"       },
 113         {       DMU_BSWAP_ZAP,          TRUE,   "DSL dataset next clones"},
 114         {       DMU_BSWAP_ZAP,          TRUE,   "scan work queue"       },
 115         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS user/group used"   },
 116         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS user/group quota"  },
 117         {       DMU_BSWAP_ZAP,          TRUE,   "snapshot refcount tags"},
 118         {       DMU_BSWAP_ZAP,          TRUE,   "DDT ZAP algorithm"     },
 119         {       DMU_BSWAP_ZAP,          TRUE,   "DDT statistics"        },
 120         {       DMU_BSWAP_UINT8,        TRUE,   "System attributes"     },
 121         {       DMU_BSWAP_ZAP,          TRUE,   "SA master node"        },
 122         {       DMU_BSWAP_ZAP,          TRUE,   "SA attr registration"  },
 123         {       DMU_BSWAP_ZAP,          TRUE,   "SA attr layouts"       },
 124         {       DMU_BSWAP_ZAP,          TRUE,   "scan translations"     },
 125         {       DMU_BSWAP_UINT8,        FALSE,  "deduplicated block"    },
 126         {       DMU_BSWAP_ZAP,          TRUE,   "DSL deadlist map"      },
 127         {       DMU_BSWAP_UINT64,       TRUE,   "DSL deadlist map hdr"  },
 128         {       DMU_BSWAP_ZAP,          TRUE,   "DSL dir clones"        },
 129         {       DMU_BSWAP_UINT64,       TRUE,   "bpobj subobj"          }
 130 };
 131 
 132 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
 133         {       byteswap_uint8_array,   "uint8"         },
 134         {       byteswap_uint16_array,  "uint16"        },
 135         {       byteswap_uint32_array,  "uint32"        },
 136         {       byteswap_uint64_array,  "uint64"        },
 137         {       zap_byteswap,           "zap"           },
 138         {       dnode_buf_byteswap,     "dnode"         },
 139         {       dmu_objset_byteswap,    "objset"        },
 140         {       zfs_znode_byteswap,     "znode"         },
 141         {       zfs_oldacl_byteswap,    "oldacl"        },
 142         {       zfs_acl_byteswap,       "acl"           }
 143 };
 144 
 145 int
 146 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
 147     void *tag, dmu_buf_t **dbp)
 148 {
 149         uint64_t blkid;
 150         dmu_buf_impl_t *db;
 151 
 152         blkid = dbuf_whichblock(dn, 0, offset);
 153         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 154         db = dbuf_hold(dn, blkid, tag);
 155         rw_exit(&dn->dn_struct_rwlock);
 156 
 157         if (db == NULL) {
 158                 *dbp = NULL;
 159                 return (SET_ERROR(EIO));
 160         }
 161 
 162         *dbp = &db->db;
 163         return (0);
 164 }
 165 int
 166 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
 167     void *tag, dmu_buf_t **dbp)
 168 {
 169         dnode_t *dn;
 170         uint64_t blkid;
 171         dmu_buf_impl_t *db;
 172         int err;
 173 
 174         err = dnode_hold(os, object, FTAG, &dn);
 175         if (err)
 176                 return (err);
 177         blkid = dbuf_whichblock(dn, 0, offset);
 178         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 179         db = dbuf_hold(dn, blkid, tag);
 180         rw_exit(&dn->dn_struct_rwlock);
 181         dnode_rele(dn, FTAG);
 182 
 183         if (db == NULL) {
 184                 *dbp = NULL;
 185                 return (SET_ERROR(EIO));
 186         }
 187 
 188         *dbp = &db->db;
 189         return (err);
 190 }
 191 
 192 int
 193 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
 194     void *tag, dmu_buf_t **dbp, int flags)
 195 {
 196         int err;
 197         int db_flags = DB_RF_CANFAIL;
 198 
 199         if (flags & DMU_READ_NO_PREFETCH)
 200                 db_flags |= DB_RF_NOPREFETCH;
 201 
 202         err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
 203         if (err == 0) {
 204                 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
 205                 err = dbuf_read(db, NULL, db_flags);
 206                 if (err != 0) {
 207                         dbuf_rele(db, tag);
 208                         *dbp = NULL;
 209                 }
 210         }
 211 
 212         return (err);
 213 }
 214 
 215 int
 216 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
 217     void *tag, dmu_buf_t **dbp, int flags)
 218 {
 219         int err;
 220         int db_flags = DB_RF_CANFAIL;
 221 
 222         if (flags & DMU_READ_NO_PREFETCH)
 223                 db_flags |= DB_RF_NOPREFETCH;
 224 
 225         err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
 226         if (err == 0) {
 227                 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
 228                 err = dbuf_read(db, NULL, db_flags);
 229                 if (err != 0) {
 230                         dbuf_rele(db, tag);
 231                         *dbp = NULL;
 232                 }
 233         }
 234 
 235         return (err);
 236 }
 237 
 238 int
 239 dmu_bonus_max(void)
 240 {
 241         return (DN_MAX_BONUSLEN);
 242 }
 243 
 244 int
 245 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
 246 {
 247         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 248         dnode_t *dn;
 249         int error;
 250 
 251         DB_DNODE_ENTER(db);
 252         dn = DB_DNODE(db);
 253 
 254         if (dn->dn_bonus != db) {
 255                 error = SET_ERROR(EINVAL);
 256         } else if (newsize < 0 || newsize > db_fake->db_size) {
 257                 error = SET_ERROR(EINVAL);
 258         } else {
 259                 dnode_setbonuslen(dn, newsize, tx);
 260                 error = 0;
 261         }
 262 
 263         DB_DNODE_EXIT(db);
 264         return (error);
 265 }
 266 
 267 int
 268 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
 269 {
 270         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 271         dnode_t *dn;
 272         int error;
 273 
 274         DB_DNODE_ENTER(db);
 275         dn = DB_DNODE(db);
 276 
 277         if (!DMU_OT_IS_VALID(type)) {
 278                 error = SET_ERROR(EINVAL);
 279         } else if (dn->dn_bonus != db) {
 280                 error = SET_ERROR(EINVAL);
 281         } else {
 282                 dnode_setbonus_type(dn, type, tx);
 283                 error = 0;
 284         }
 285 
 286         DB_DNODE_EXIT(db);
 287         return (error);
 288 }
 289 
 290 dmu_object_type_t
 291 dmu_get_bonustype(dmu_buf_t *db_fake)
 292 {
 293         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 294         dnode_t *dn;
 295         dmu_object_type_t type;
 296 
 297         DB_DNODE_ENTER(db);
 298         dn = DB_DNODE(db);
 299         type = dn->dn_bonustype;
 300         DB_DNODE_EXIT(db);
 301 
 302         return (type);
 303 }
 304 
 305 int
 306 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
 307 {
 308         dnode_t *dn;
 309         int error;
 310 
 311         error = dnode_hold(os, object, FTAG, &dn);
 312         dbuf_rm_spill(dn, tx);
 313         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 314         dnode_rm_spill(dn, tx);
 315         rw_exit(&dn->dn_struct_rwlock);
 316         dnode_rele(dn, FTAG);
 317         return (error);
 318 }
 319 
 320 /*
 321  * returns ENOENT, EIO, or 0.
 322  */
 323 int
 324 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
 325 {
 326         dnode_t *dn;
 327         dmu_buf_impl_t *db;
 328         int error;
 329 
 330         error = dnode_hold(os, object, FTAG, &dn);
 331         if (error)
 332                 return (error);
 333 
 334         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 335         if (dn->dn_bonus == NULL) {
 336                 rw_exit(&dn->dn_struct_rwlock);
 337                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 338                 if (dn->dn_bonus == NULL)
 339                         dbuf_create_bonus(dn);
 340         }
 341         db = dn->dn_bonus;
 342 
 343         /* as long as the bonus buf is held, the dnode will be held */
 344         if (refcount_add(&db->db_holds, tag) == 1) {
 345                 VERIFY(dnode_add_ref(dn, db));
 346                 atomic_inc_32(&dn->dn_dbufs_count);
 347         }
 348 
 349         /*
 350          * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
 351          * hold and incrementing the dbuf count to ensure that dnode_move() sees
 352          * a dnode hold for every dbuf.
 353          */
 354         rw_exit(&dn->dn_struct_rwlock);
 355 
 356         dnode_rele(dn, FTAG);
 357 
 358         VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
 359 
 360         *dbp = &db->db;
 361         return (0);
 362 }
 363 
 364 /*
 365  * returns ENOENT, EIO, or 0.
 366  *
 367  * This interface will allocate a blank spill dbuf when a spill blk
 368  * doesn't already exist on the dnode.
 369  *
 370  * if you only want to find an already existing spill db, then
 371  * dmu_spill_hold_existing() should be used.
 372  */
 373 int
 374 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
 375 {
 376         dmu_buf_impl_t *db = NULL;
 377         int err;
 378 
 379         if ((flags & DB_RF_HAVESTRUCT) == 0)
 380                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 381 
 382         db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
 383 
 384         if ((flags & DB_RF_HAVESTRUCT) == 0)
 385                 rw_exit(&dn->dn_struct_rwlock);
 386 
 387         ASSERT(db != NULL);
 388         err = dbuf_read(db, NULL, flags);
 389         if (err == 0)
 390                 *dbp = &db->db;
 391         else
 392                 dbuf_rele(db, tag);
 393         return (err);
 394 }
 395 
 396 int
 397 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
 398 {
 399         dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
 400         dnode_t *dn;
 401         int err;
 402 
 403         DB_DNODE_ENTER(db);
 404         dn = DB_DNODE(db);
 405 
 406         if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
 407                 err = SET_ERROR(EINVAL);
 408         } else {
 409                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 410 
 411                 if (!dn->dn_have_spill) {
 412                         err = SET_ERROR(ENOENT);
 413                 } else {
 414                         err = dmu_spill_hold_by_dnode(dn,
 415                             DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
 416                 }
 417 
 418                 rw_exit(&dn->dn_struct_rwlock);
 419         }
 420 
 421         DB_DNODE_EXIT(db);
 422         return (err);
 423 }
 424 
 425 int
 426 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
 427 {
 428         dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
 429         dnode_t *dn;
 430         int err;
 431 
 432         DB_DNODE_ENTER(db);
 433         dn = DB_DNODE(db);
 434         err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
 435         DB_DNODE_EXIT(db);
 436 
 437         return (err);
 438 }
 439 
 440 /*
 441  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
 442  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
 443  * and can induce severe lock contention when writing to several files
 444  * whose dnodes are in the same block.
 445  */
 446 static int
 447 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
 448     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
 449 {
 450         dmu_buf_t **dbp;
 451         uint64_t blkid, nblks, i;
 452         uint32_t dbuf_flags;
 453         int err;
 454         zio_t *zio;
 455 
 456         ASSERT(length <= DMU_MAX_ACCESS);
 457 
 458         /*
 459          * Note: We directly notify the prefetch code of this read, so that
 460          * we can tell it about the multi-block read.  dbuf_read() only knows
 461          * about the one block it is accessing.
 462          */
 463         dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
 464             DB_RF_NOPREFETCH;
 465 
 466         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 467         if (dn->dn_datablkshift) {
 468                 int blkshift = dn->dn_datablkshift;
 469                 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
 470                     P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
 471         } else {
 472                 if (offset + length > dn->dn_datablksz) {
 473                         zfs_panic_recover("zfs: accessing past end of object "
 474                             "%llx/%llx (size=%u access=%llu+%llu)",
 475                             (longlong_t)dn->dn_objset->
 476                             os_dsl_dataset->ds_object,
 477                             (longlong_t)dn->dn_object, dn->dn_datablksz,
 478                             (longlong_t)offset, (longlong_t)length);
 479                         rw_exit(&dn->dn_struct_rwlock);
 480                         return (SET_ERROR(EIO));
 481                 }
 482                 nblks = 1;
 483         }
 484         dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
 485 
 486         zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
 487         blkid = dbuf_whichblock(dn, 0, offset);
 488         for (i = 0; i < nblks; i++) {
 489                 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
 490                 if (db == NULL) {
 491                         rw_exit(&dn->dn_struct_rwlock);
 492                         dmu_buf_rele_array(dbp, nblks, tag);
 493                         zio_nowait(zio);
 494                         return (SET_ERROR(EIO));
 495                 }
 496 
 497                 /* initiate async i/o */
 498                 if (read)
 499                         (void) dbuf_read(db, zio, dbuf_flags);
 500                 dbp[i] = &db->db;
 501         }
 502 
 503         if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
 504             DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
 505                 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
 506                     read && DNODE_IS_CACHEABLE(dn));
 507         }
 508         rw_exit(&dn->dn_struct_rwlock);
 509 
 510         /* wait for async i/o */
 511         err = zio_wait(zio);
 512         if (err) {
 513                 dmu_buf_rele_array(dbp, nblks, tag);
 514                 return (err);
 515         }
 516 
 517         /* wait for other io to complete */
 518         if (read) {
 519                 for (i = 0; i < nblks; i++) {
 520                         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
 521                         mutex_enter(&db->db_mtx);
 522                         while (db->db_state == DB_READ ||
 523                             db->db_state == DB_FILL)
 524                                 cv_wait(&db->db_changed, &db->db_mtx);
 525                         if (db->db_state == DB_UNCACHED)
 526                                 err = SET_ERROR(EIO);
 527                         mutex_exit(&db->db_mtx);
 528                         if (err) {
 529                                 dmu_buf_rele_array(dbp, nblks, tag);
 530                                 return (err);
 531                         }
 532                 }
 533         }
 534 
 535         *numbufsp = nblks;
 536         *dbpp = dbp;
 537         return (0);
 538 }
 539 
 540 static int
 541 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
 542     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
 543 {
 544         dnode_t *dn;
 545         int err;
 546 
 547         err = dnode_hold(os, object, FTAG, &dn);
 548         if (err)
 549                 return (err);
 550 
 551         err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
 552             numbufsp, dbpp, DMU_READ_PREFETCH);
 553 
 554         dnode_rele(dn, FTAG);
 555 
 556         return (err);
 557 }
 558 
 559 int
 560 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
 561     uint64_t length, boolean_t read, void *tag, int *numbufsp,
 562     dmu_buf_t ***dbpp)
 563 {
 564         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 565         dnode_t *dn;
 566         int err;
 567 
 568         DB_DNODE_ENTER(db);
 569         dn = DB_DNODE(db);
 570         err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
 571             numbufsp, dbpp, DMU_READ_PREFETCH);
 572         DB_DNODE_EXIT(db);
 573 
 574         return (err);
 575 }
 576 
 577 void
 578 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
 579 {
 580         int i;
 581         dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
 582 
 583         if (numbufs == 0)
 584                 return;
 585 
 586         for (i = 0; i < numbufs; i++) {
 587                 if (dbp[i])
 588                         dbuf_rele(dbp[i], tag);
 589         }
 590 
 591         kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
 592 }
 593 
 594 /*
 595  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
 596  * indirect blocks prefeteched will be those that point to the blocks containing
 597  * the data starting at offset, and continuing to offset + len.
 598  *
 599  * Note that if the indirect blocks above the blocks being prefetched are not in
 600  * cache, they will be asychronously read in.
 601  */
 602 void
 603 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
 604     uint64_t len, zio_priority_t pri)
 605 {
 606         dnode_t *dn;
 607         uint64_t blkid;
 608         int nblks, err;
 609 
 610         if (len == 0) {  /* they're interested in the bonus buffer */
 611                 dn = DMU_META_DNODE(os);
 612 
 613                 if (object == 0 || object >= DN_MAX_OBJECT)
 614                         return;
 615 
 616                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 617                 blkid = dbuf_whichblock(dn, level,
 618                     object * sizeof (dnode_phys_t));
 619                 dbuf_prefetch(dn, level, blkid, pri, 0);
 620                 rw_exit(&dn->dn_struct_rwlock);
 621                 return;
 622         }
 623 
 624         /*
 625          * XXX - Note, if the dnode for the requested object is not
 626          * already cached, we will do a *synchronous* read in the
 627          * dnode_hold() call.  The same is true for any indirects.
 628          */
 629         err = dnode_hold(os, object, FTAG, &dn);
 630         if (err != 0)
 631                 return;
 632 
 633         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 634         /*
 635          * offset + len - 1 is the last byte we want to prefetch for, and offset
 636          * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
 637          * last block we want to prefetch, and dbuf_whichblock(dn, level,
 638          * offset)  is the first.  Then the number we need to prefetch is the
 639          * last - first + 1.
 640          */
 641         if (level > 0 || dn->dn_datablkshift != 0) {
 642                 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
 643                     dbuf_whichblock(dn, level, offset) + 1;
 644         } else {
 645                 nblks = (offset < dn->dn_datablksz);
 646         }
 647 
 648         if (nblks != 0) {
 649                 blkid = dbuf_whichblock(dn, level, offset);
 650                 for (int i = 0; i < nblks; i++)
 651                         dbuf_prefetch(dn, level, blkid + i, pri, 0);
 652         }
 653 
 654         rw_exit(&dn->dn_struct_rwlock);
 655 
 656         dnode_rele(dn, FTAG);
 657 }
 658 
 659 /*
 660  * Get the next "chunk" of file data to free.  We traverse the file from
 661  * the end so that the file gets shorter over time (if we crashes in the
 662  * middle, this will leave us in a better state).  We find allocated file
 663  * data by simply searching the allocated level 1 indirects.
 664  *
 665  * On input, *start should be the first offset that does not need to be
 666  * freed (e.g. "offset + length").  On return, *start will be the first
 667  * offset that should be freed.
 668  */
 669 static int
 670 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
 671 {
 672         uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
 673         /* bytes of data covered by a level-1 indirect block */
 674         uint64_t iblkrange =
 675             dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
 676 
 677         ASSERT3U(minimum, <=, *start);
 678 
 679         if (*start - minimum <= iblkrange * maxblks) {
 680                 *start = minimum;
 681                 return (0);
 682         }
 683         ASSERT(ISP2(iblkrange));
 684 
 685         for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
 686                 int err;
 687 
 688                 /*
 689                  * dnode_next_offset(BACKWARDS) will find an allocated L1
 690                  * indirect block at or before the input offset.  We must
 691                  * decrement *start so that it is at the end of the region
 692                  * to search.
 693                  */
 694                 (*start)--;
 695                 err = dnode_next_offset(dn,
 696                     DNODE_FIND_BACKWARDS, start, 2, 1, 0);
 697 
 698                 /* if there are no indirect blocks before start, we are done */
 699                 if (err == ESRCH) {
 700                         *start = minimum;
 701                         break;
 702                 } else if (err != 0) {
 703                         return (err);
 704                 }
 705 
 706                 /* set start to the beginning of this L1 indirect */
 707                 *start = P2ALIGN(*start, iblkrange);
 708         }
 709         if (*start < minimum)
 710                 *start = minimum;
 711         return (0);
 712 }
 713 
 714 /*
 715  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
 716  * otherwise return false.
 717  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
 718  */
 719 /*ARGSUSED*/
 720 static boolean_t
 721 dmu_objset_zfs_unmounting(objset_t *os)
 722 {
 723 #ifdef _KERNEL
 724         if (dmu_objset_type(os) == DMU_OST_ZFS)
 725                 return (zfs_get_vfs_flag_unmounted(os));
 726 #endif
 727         return (B_FALSE);
 728 }
 729 
 730 static int
 731 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
 732     uint64_t length)
 733 {
 734         uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
 735         int err;
 736         uint64_t dirty_frees_threshold;
 737         dsl_pool_t *dp = dmu_objset_pool(os);
 738 
 739         if (offset >= object_size)
 740                 return (0);
 741 
 742         if (zfs_per_txg_dirty_frees_percent <= 100)
 743                 dirty_frees_threshold =
 744                     zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
 745         else
 746                 dirty_frees_threshold = zfs_dirty_data_max / 4;
 747 
 748         if (length == DMU_OBJECT_END || offset + length > object_size)
 749                 length = object_size - offset;
 750 
 751         while (length != 0) {
 752                 uint64_t chunk_end, chunk_begin, chunk_len;
 753                 uint64_t long_free_dirty_all_txgs = 0;
 754                 dmu_tx_t *tx;
 755 
 756                 if (dmu_objset_zfs_unmounting(dn->dn_objset))
 757                         return (SET_ERROR(EINTR));
 758 
 759                 chunk_end = chunk_begin = offset + length;
 760 
 761                 /* move chunk_begin backwards to the beginning of this chunk */
 762                 err = get_next_chunk(dn, &chunk_begin, offset);
 763                 if (err)
 764                         return (err);
 765                 ASSERT3U(chunk_begin, >=, offset);
 766                 ASSERT3U(chunk_begin, <=, chunk_end);
 767 
 768                 chunk_len = chunk_end - chunk_begin;
 769 
 770                 mutex_enter(&dp->dp_lock);
 771                 for (int t = 0; t < TXG_SIZE; t++) {
 772                         long_free_dirty_all_txgs +=
 773                             dp->dp_long_free_dirty_pertxg[t];
 774                 }
 775                 mutex_exit(&dp->dp_lock);
 776 
 777                 /*
 778                  * To avoid filling up a TXG with just frees wait for
 779                  * the next TXG to open before freeing more chunks if
 780                  * we have reached the threshold of frees
 781                  */
 782                 if (dirty_frees_threshold != 0 &&
 783                     long_free_dirty_all_txgs >= dirty_frees_threshold) {
 784                         txg_wait_open(dp, 0);
 785                         continue;
 786                 }
 787 
 788                 tx = dmu_tx_create(os);
 789                 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
 790 
 791                 /*
 792                  * Mark this transaction as typically resulting in a net
 793                  * reduction in space used.
 794                  */
 795                 dmu_tx_mark_netfree(tx);
 796                 err = dmu_tx_assign(tx, TXG_WAIT);
 797                 if (err) {
 798                         dmu_tx_abort(tx);
 799                         return (err);
 800                 }
 801 
 802                 mutex_enter(&dp->dp_lock);
 803                 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
 804                     chunk_len;
 805                 mutex_exit(&dp->dp_lock);
 806                 DTRACE_PROBE3(free__long__range,
 807                     uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
 808                     uint64_t, dmu_tx_get_txg(tx));
 809                 dnode_free_range(dn, chunk_begin, chunk_len, tx);
 810                 dmu_tx_commit(tx);
 811 
 812                 length -= chunk_len;
 813         }
 814         return (0);
 815 }
 816 
 817 int
 818 dmu_free_long_range(objset_t *os, uint64_t object,
 819     uint64_t offset, uint64_t length)
 820 {
 821         dnode_t *dn;
 822         int err;
 823 
 824         err = dnode_hold(os, object, FTAG, &dn);
 825         if (err != 0)
 826                 return (err);
 827         err = dmu_free_long_range_impl(os, dn, offset, length);
 828 
 829         /*
 830          * It is important to zero out the maxblkid when freeing the entire
 831          * file, so that (a) subsequent calls to dmu_free_long_range_impl()
 832          * will take the fast path, and (b) dnode_reallocate() can verify
 833          * that the entire file has been freed.
 834          */
 835         if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
 836                 dn->dn_maxblkid = 0;
 837 
 838         dnode_rele(dn, FTAG);
 839         return (err);
 840 }
 841 
 842 int
 843 dmu_free_long_object(objset_t *os, uint64_t object)
 844 {
 845         dmu_tx_t *tx;
 846         int err;
 847 
 848         err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
 849         if (err != 0)
 850                 return (err);
 851 
 852         tx = dmu_tx_create(os);
 853         dmu_tx_hold_bonus(tx, object);
 854         dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
 855         dmu_tx_mark_netfree(tx);
 856         err = dmu_tx_assign(tx, TXG_WAIT);
 857         if (err == 0) {
 858                 err = dmu_object_free(os, object, tx);
 859                 dmu_tx_commit(tx);
 860         } else {
 861                 dmu_tx_abort(tx);
 862         }
 863 
 864         return (err);
 865 }
 866 
 867 int
 868 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
 869     uint64_t size, dmu_tx_t *tx)
 870 {
 871         dnode_t *dn;
 872         int err = dnode_hold(os, object, FTAG, &dn);
 873         if (err)
 874                 return (err);
 875         ASSERT(offset < UINT64_MAX);
 876         ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
 877         dnode_free_range(dn, offset, size, tx);
 878         dnode_rele(dn, FTAG);
 879         return (0);
 880 }
 881 
 882 static int
 883 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
 884     void *buf, uint32_t flags)
 885 {
 886         dmu_buf_t **dbp;
 887         int numbufs, err = 0;
 888 
 889         /*
 890          * Deal with odd block sizes, where there can't be data past the first
 891          * block.  If we ever do the tail block optimization, we will need to
 892          * handle that here as well.
 893          */
 894         if (dn->dn_maxblkid == 0) {
 895                 int newsz = offset > dn->dn_datablksz ? 0 :
 896                     MIN(size, dn->dn_datablksz - offset);
 897                 bzero((char *)buf + newsz, size - newsz);
 898                 size = newsz;
 899         }
 900 
 901         while (size > 0) {
 902                 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
 903                 int i;
 904 
 905                 /*
 906                  * NB: we could do this block-at-a-time, but it's nice
 907                  * to be reading in parallel.
 908                  */
 909                 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
 910                     TRUE, FTAG, &numbufs, &dbp, flags);
 911                 if (err)
 912                         break;
 913 
 914                 for (i = 0; i < numbufs; i++) {
 915                         int tocpy;
 916                         int bufoff;
 917                         dmu_buf_t *db = dbp[i];
 918 
 919                         ASSERT(size > 0);
 920 
 921                         bufoff = offset - db->db_offset;
 922                         tocpy = (int)MIN(db->db_size - bufoff, size);
 923 
 924                         bcopy((char *)db->db_data + bufoff, buf, tocpy);
 925 
 926                         offset += tocpy;
 927                         size -= tocpy;
 928                         buf = (char *)buf + tocpy;
 929                 }
 930                 dmu_buf_rele_array(dbp, numbufs, FTAG);
 931         }
 932         return (err);
 933 }
 934 
 935 int
 936 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 937     void *buf, uint32_t flags)
 938 {
 939         dnode_t *dn;
 940         int err;
 941 
 942         err = dnode_hold(os, object, FTAG, &dn);
 943         if (err != 0)
 944                 return (err);
 945 
 946         err = dmu_read_impl(dn, offset, size, buf, flags);
 947         dnode_rele(dn, FTAG);
 948         return (err);
 949 }
 950 
 951 int
 952 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
 953     uint32_t flags)
 954 {
 955         return (dmu_read_impl(dn, offset, size, buf, flags));
 956 }
 957 
 958 static void
 959 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
 960     const void *buf, dmu_tx_t *tx)
 961 {
 962         int i;
 963 
 964         for (i = 0; i < numbufs; i++) {
 965                 int tocpy;
 966                 int bufoff;
 967                 dmu_buf_t *db = dbp[i];
 968 
 969                 ASSERT(size > 0);
 970 
 971                 bufoff = offset - db->db_offset;
 972                 tocpy = (int)MIN(db->db_size - bufoff, size);
 973 
 974                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
 975 
 976                 if (tocpy == db->db_size)
 977                         dmu_buf_will_fill(db, tx);
 978                 else
 979                         dmu_buf_will_dirty(db, tx);
 980 
 981                 bcopy(buf, (char *)db->db_data + bufoff, tocpy);
 982 
 983                 if (tocpy == db->db_size)
 984                         dmu_buf_fill_done(db, tx);
 985 
 986                 offset += tocpy;
 987                 size -= tocpy;
 988                 buf = (char *)buf + tocpy;
 989         }
 990 }
 991 
 992 void
 993 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 994     const void *buf, dmu_tx_t *tx)
 995 {
 996         dmu_buf_t **dbp;
 997         int numbufs;
 998 
 999         if (size == 0)
1000                 return;
1001 
1002         VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1003             FALSE, FTAG, &numbufs, &dbp));
1004         dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1005         dmu_buf_rele_array(dbp, numbufs, FTAG);
1006 }
1007 
1008 void
1009 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1010     const void *buf, dmu_tx_t *tx)
1011 {
1012         dmu_buf_t **dbp;
1013         int numbufs;
1014 
1015         if (size == 0)
1016                 return;
1017 
1018         VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1019             FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1020         dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1021         dmu_buf_rele_array(dbp, numbufs, FTAG);
1022 }
1023 
1024 static int
1025 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
1026     uint64_t last_removal_txg, uint64_t offset)
1027 {
1028         uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
1029         int err = 0;
1030 
1031         rw_enter(&dn->dn_struct_rwlock, RW_READER);
1032         dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1033         ASSERT3P(dbuf, !=, NULL);
1034 
1035         /*
1036          * If the block hasn't been written yet, this default will ensure
1037          * we don't try to remap it.
1038          */
1039         uint64_t birth = UINT64_MAX;
1040         ASSERT3U(last_removal_txg, !=, UINT64_MAX);
1041         if (dbuf->db_blkptr != NULL)
1042                 birth = dbuf->db_blkptr->blk_birth;
1043         rw_exit(&dn->dn_struct_rwlock);
1044 
1045         /*
1046          * If this L1 was already written after the last removal, then we've
1047          * already tried to remap it.
1048          */
1049         if (birth <= last_removal_txg &&
1050             dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
1051             dbuf_can_remap(dbuf)) {
1052                 dmu_tx_t *tx = dmu_tx_create(os);
1053                 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
1054                 err = dmu_tx_assign(tx, TXG_WAIT);
1055                 if (err == 0) {
1056                         (void) dbuf_dirty(dbuf, tx);
1057                         dmu_tx_commit(tx);
1058                 } else {
1059                         dmu_tx_abort(tx);
1060                 }
1061         }
1062 
1063         dbuf_rele(dbuf, FTAG);
1064 
1065         delay(zfs_object_remap_one_indirect_delay_ticks);
1066 
1067         return (err);
1068 }
1069 
1070 /*
1071  * Remap all blockpointers in the object, if possible, so that they reference
1072  * only concrete vdevs.
1073  *
1074  * To do this, iterate over the L0 blockpointers and remap any that reference
1075  * an indirect vdev. Note that we only examine L0 blockpointers; since we
1076  * cannot guarantee that we can remap all blockpointer anyways (due to split
1077  * blocks), we do not want to make the code unnecessarily complicated to
1078  * catch the unlikely case that there is an L1 block on an indirect vdev that
1079  * contains no indirect blockpointers.
1080  */
1081 int
1082 dmu_object_remap_indirects(objset_t *os, uint64_t object,
1083     uint64_t last_removal_txg)
1084 {
1085         uint64_t offset, l1span;
1086         int err;
1087         dnode_t *dn;
1088 
1089         err = dnode_hold(os, object, FTAG, &dn);
1090         if (err != 0) {
1091                 return (err);
1092         }
1093 
1094         if (dn->dn_nlevels <= 1) {
1095                 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1096                         err = SET_ERROR(EINTR);
1097                 }
1098 
1099                 /*
1100                  * If the dnode has no indirect blocks, we cannot dirty them.
1101                  * We still want to remap the blkptr(s) in the dnode if
1102                  * appropriate, so mark it as dirty.
1103                  */
1104                 if (err == 0 && dnode_needs_remap(dn)) {
1105                         dmu_tx_t *tx = dmu_tx_create(os);
1106                         dmu_tx_hold_bonus(tx, dn->dn_object);
1107                         if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) {
1108                                 dnode_setdirty(dn, tx);
1109                                 dmu_tx_commit(tx);
1110                         } else {
1111                                 dmu_tx_abort(tx);
1112                         }
1113                 }
1114 
1115                 dnode_rele(dn, FTAG);
1116                 return (err);
1117         }
1118 
1119         offset = 0;
1120         l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
1121             dn->dn_datablkshift);
1122         /*
1123          * Find the next L1 indirect that is not a hole.
1124          */
1125         while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
1126                 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1127                         err = SET_ERROR(EINTR);
1128                         break;
1129                 }
1130                 if ((err = dmu_object_remap_one_indirect(os, dn,
1131                     last_removal_txg, offset)) != 0) {
1132                         break;
1133                 }
1134                 offset += l1span;
1135         }
1136 
1137         dnode_rele(dn, FTAG);
1138         return (err);
1139 }
1140 
1141 void
1142 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1143     dmu_tx_t *tx)
1144 {
1145         dmu_buf_t **dbp;
1146         int numbufs, i;
1147 
1148         if (size == 0)
1149                 return;
1150 
1151         VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1152             FALSE, FTAG, &numbufs, &dbp));
1153 
1154         for (i = 0; i < numbufs; i++) {
1155                 dmu_buf_t *db = dbp[i];
1156 
1157                 dmu_buf_will_not_fill(db, tx);
1158         }
1159         dmu_buf_rele_array(dbp, numbufs, FTAG);
1160 }
1161 
1162 void
1163 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1164     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1165     int compressed_size, int byteorder, dmu_tx_t *tx)
1166 {
1167         dmu_buf_t *db;
1168 
1169         ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1170         ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1171         VERIFY0(dmu_buf_hold_noread(os, object, offset,
1172             FTAG, &db));
1173 
1174         dmu_buf_write_embedded(db,
1175             data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1176             uncompressed_size, compressed_size, byteorder, tx);
1177 
1178         dmu_buf_rele(db, FTAG);
1179 }
1180 
1181 /*
1182  * DMU support for xuio
1183  */
1184 kstat_t *xuio_ksp = NULL;
1185 
1186 int
1187 dmu_xuio_init(xuio_t *xuio, int nblk)
1188 {
1189         dmu_xuio_t *priv;
1190         uio_t *uio = &xuio->xu_uio;
1191 
1192         uio->uio_iovcnt = nblk;
1193         uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1194 
1195         priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1196         priv->cnt = nblk;
1197         priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1198         priv->iovp = uio->uio_iov;
1199         XUIO_XUZC_PRIV(xuio) = priv;
1200 
1201         if (XUIO_XUZC_RW(xuio) == UIO_READ)
1202                 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1203         else
1204                 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1205 
1206         return (0);
1207 }
1208 
1209 void
1210 dmu_xuio_fini(xuio_t *xuio)
1211 {
1212         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1213         int nblk = priv->cnt;
1214 
1215         kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1216         kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1217         kmem_free(priv, sizeof (dmu_xuio_t));
1218 
1219         if (XUIO_XUZC_RW(xuio) == UIO_READ)
1220                 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1221         else
1222                 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1223 }
1224 
1225 /*
1226  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1227  * and increase priv->next by 1.
1228  */
1229 int
1230 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1231 {
1232         struct iovec *iov;
1233         uio_t *uio = &xuio->xu_uio;
1234         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1235         int i = priv->next++;
1236 
1237         ASSERT(i < priv->cnt);
1238         ASSERT(off + n <= arc_buf_lsize(abuf));
1239         iov = uio->uio_iov + i;
1240         iov->iov_base = (char *)abuf->b_data + off;
1241         iov->iov_len = n;
1242         priv->bufs[i] = abuf;
1243         return (0);
1244 }
1245 
1246 int
1247 dmu_xuio_cnt(xuio_t *xuio)
1248 {
1249         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1250         return (priv->cnt);
1251 }
1252 
1253 arc_buf_t *
1254 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1255 {
1256         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1257 
1258         ASSERT(i < priv->cnt);
1259         return (priv->bufs[i]);
1260 }
1261 
1262 void
1263 dmu_xuio_clear(xuio_t *xuio, int i)
1264 {
1265         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1266 
1267         ASSERT(i < priv->cnt);
1268         priv->bufs[i] = NULL;
1269 }
1270 
1271 static void
1272 xuio_stat_init(void)
1273 {
1274         xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1275             KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1276             KSTAT_FLAG_VIRTUAL);
1277         if (xuio_ksp != NULL) {
1278                 xuio_ksp->ks_data = &xuio_stats;
1279                 kstat_install(xuio_ksp);
1280         }
1281 }
1282 
1283 static void
1284 xuio_stat_fini(void)
1285 {
1286         if (xuio_ksp != NULL) {
1287                 kstat_delete(xuio_ksp);
1288                 xuio_ksp = NULL;
1289         }
1290 }
1291 
1292 void
1293 xuio_stat_wbuf_copied(void)
1294 {
1295         XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1296 }
1297 
1298 void
1299 xuio_stat_wbuf_nocopy(void)
1300 {
1301         XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1302 }
1303 
1304 #ifdef _KERNEL
1305 static int
1306 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1307 {
1308         dmu_buf_t **dbp;
1309         int numbufs, i, err;
1310         xuio_t *xuio = NULL;
1311 
1312         /*
1313          * NB: we could do this block-at-a-time, but it's nice
1314          * to be reading in parallel.
1315          */
1316         err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1317             TRUE, FTAG, &numbufs, &dbp, 0);
1318         if (err)
1319                 return (err);
1320 
1321         if (uio->uio_extflg == UIO_XUIO)
1322                 xuio = (xuio_t *)uio;
1323 
1324         for (i = 0; i < numbufs; i++) {
1325                 int tocpy;
1326                 int bufoff;
1327                 dmu_buf_t *db = dbp[i];
1328 
1329                 ASSERT(size > 0);
1330 
1331                 bufoff = uio->uio_loffset - db->db_offset;
1332                 tocpy = (int)MIN(db->db_size - bufoff, size);
1333 
1334                 if (xuio) {
1335                         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1336                         arc_buf_t *dbuf_abuf = dbi->db_buf;
1337                         arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1338                         err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1339                         if (!err) {
1340                                 uio->uio_resid -= tocpy;
1341                                 uio->uio_loffset += tocpy;
1342                         }
1343 
1344                         if (abuf == dbuf_abuf)
1345                                 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1346                         else
1347                                 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1348                 } else {
1349                         err = uiomove((char *)db->db_data + bufoff, tocpy,
1350                             UIO_READ, uio);
1351                 }
1352                 if (err)
1353                         break;
1354 
1355                 size -= tocpy;
1356         }
1357         dmu_buf_rele_array(dbp, numbufs, FTAG);
1358 
1359         return (err);
1360 }
1361 
1362 /*
1363  * Read 'size' bytes into the uio buffer.
1364  * From object zdb->db_object.
1365  * Starting at offset uio->uio_loffset.
1366  *
1367  * If the caller already has a dbuf in the target object
1368  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1369  * because we don't have to find the dnode_t for the object.
1370  */
1371 int
1372 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1373 {
1374         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1375         dnode_t *dn;
1376         int err;
1377 
1378         if (size == 0)
1379                 return (0);
1380 
1381         DB_DNODE_ENTER(db);
1382         dn = DB_DNODE(db);
1383         err = dmu_read_uio_dnode(dn, uio, size);
1384         DB_DNODE_EXIT(db);
1385 
1386         return (err);
1387 }
1388 
1389 /*
1390  * Read 'size' bytes into the uio buffer.
1391  * From the specified object
1392  * Starting at offset uio->uio_loffset.
1393  */
1394 int
1395 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1396 {
1397         dnode_t *dn;
1398         int err;
1399 
1400         if (size == 0)
1401                 return (0);
1402 
1403         err = dnode_hold(os, object, FTAG, &dn);
1404         if (err)
1405                 return (err);
1406 
1407         err = dmu_read_uio_dnode(dn, uio, size);
1408 
1409         dnode_rele(dn, FTAG);
1410 
1411         return (err);
1412 }
1413 
1414 static int
1415 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1416 {
1417         dmu_buf_t **dbp;
1418         int numbufs;
1419         int err = 0;
1420         int i;
1421 
1422         err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1423             FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1424         if (err)
1425                 return (err);
1426 
1427         for (i = 0; i < numbufs; i++) {
1428                 int tocpy;
1429                 int bufoff;
1430                 dmu_buf_t *db = dbp[i];
1431 
1432                 ASSERT(size > 0);
1433 
1434                 bufoff = uio->uio_loffset - db->db_offset;
1435                 tocpy = (int)MIN(db->db_size - bufoff, size);
1436 
1437                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1438 
1439                 if (tocpy == db->db_size)
1440                         dmu_buf_will_fill(db, tx);
1441                 else
1442                         dmu_buf_will_dirty(db, tx);
1443 
1444                 /*
1445                  * XXX uiomove could block forever (eg. nfs-backed
1446                  * pages).  There needs to be a uiolockdown() function
1447                  * to lock the pages in memory, so that uiomove won't
1448                  * block.
1449                  */
1450                 err = uiomove((char *)db->db_data + bufoff, tocpy,
1451                     UIO_WRITE, uio);
1452 
1453                 if (tocpy == db->db_size)
1454                         dmu_buf_fill_done(db, tx);
1455 
1456                 if (err)
1457                         break;
1458 
1459                 size -= tocpy;
1460         }
1461 
1462         dmu_buf_rele_array(dbp, numbufs, FTAG);
1463         return (err);
1464 }
1465 
1466 /*
1467  * Write 'size' bytes from the uio buffer.
1468  * To object zdb->db_object.
1469  * Starting at offset uio->uio_loffset.
1470  *
1471  * If the caller already has a dbuf in the target object
1472  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1473  * because we don't have to find the dnode_t for the object.
1474  */
1475 int
1476 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1477     dmu_tx_t *tx)
1478 {
1479         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1480         dnode_t *dn;
1481         int err;
1482 
1483         if (size == 0)
1484                 return (0);
1485 
1486         DB_DNODE_ENTER(db);
1487         dn = DB_DNODE(db);
1488         err = dmu_write_uio_dnode(dn, uio, size, tx);
1489         DB_DNODE_EXIT(db);
1490 
1491         return (err);
1492 }
1493 
1494 /*
1495  * Write 'size' bytes from the uio buffer.
1496  * To the specified object.
1497  * Starting at offset uio->uio_loffset.
1498  */
1499 int
1500 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1501     dmu_tx_t *tx)
1502 {
1503         dnode_t *dn;
1504         int err;
1505 
1506         if (size == 0)
1507                 return (0);
1508 
1509         err = dnode_hold(os, object, FTAG, &dn);
1510         if (err)
1511                 return (err);
1512 
1513         err = dmu_write_uio_dnode(dn, uio, size, tx);
1514 
1515         dnode_rele(dn, FTAG);
1516 
1517         return (err);
1518 }
1519 
1520 int
1521 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1522     page_t *pp, dmu_tx_t *tx)
1523 {
1524         dmu_buf_t **dbp;
1525         int numbufs, i;
1526         int err;
1527 
1528         if (size == 0)
1529                 return (0);
1530 
1531         err = dmu_buf_hold_array(os, object, offset, size,
1532             FALSE, FTAG, &numbufs, &dbp);
1533         if (err)
1534                 return (err);
1535 
1536         for (i = 0; i < numbufs; i++) {
1537                 int tocpy, copied, thiscpy;
1538                 int bufoff;
1539                 dmu_buf_t *db = dbp[i];
1540                 caddr_t va;
1541 
1542                 ASSERT(size > 0);
1543                 ASSERT3U(db->db_size, >=, PAGESIZE);
1544 
1545                 bufoff = offset - db->db_offset;
1546                 tocpy = (int)MIN(db->db_size - bufoff, size);
1547 
1548                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1549 
1550                 if (tocpy == db->db_size)
1551                         dmu_buf_will_fill(db, tx);
1552                 else
1553                         dmu_buf_will_dirty(db, tx);
1554 
1555                 for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1556                         ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1557                         thiscpy = MIN(PAGESIZE, tocpy - copied);
1558                         va = zfs_map_page(pp, S_READ);
1559                         bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1560                         zfs_unmap_page(pp, va);
1561                         pp = pp->p_next;
1562                         bufoff += PAGESIZE;
1563                 }
1564 
1565                 if (tocpy == db->db_size)
1566                         dmu_buf_fill_done(db, tx);
1567 
1568                 offset += tocpy;
1569                 size -= tocpy;
1570         }
1571         dmu_buf_rele_array(dbp, numbufs, FTAG);
1572         return (err);
1573 }
1574 #endif
1575 
1576 /*
1577  * Allocate a loaned anonymous arc buffer.
1578  */
1579 arc_buf_t *
1580 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1581 {
1582         dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1583 
1584         return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1585 }
1586 
1587 /*
1588  * Free a loaned arc buffer.
1589  */
1590 void
1591 dmu_return_arcbuf(arc_buf_t *buf)
1592 {
1593         arc_return_buf(buf, FTAG);
1594         arc_buf_destroy(buf, FTAG);
1595 }
1596 
1597 /*
1598  * When possible directly assign passed loaned arc buffer to a dbuf.
1599  * If this is not possible copy the contents of passed arc buf via
1600  * dmu_write().
1601  */
1602 void
1603 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1604     dmu_tx_t *tx)
1605 {
1606         dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1607         dnode_t *dn;
1608         dmu_buf_impl_t *db;
1609         uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1610         uint64_t blkid;
1611 
1612         DB_DNODE_ENTER(dbuf);
1613         dn = DB_DNODE(dbuf);
1614         rw_enter(&dn->dn_struct_rwlock, RW_READER);
1615         blkid = dbuf_whichblock(dn, 0, offset);
1616         VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1617         rw_exit(&dn->dn_struct_rwlock);
1618         DB_DNODE_EXIT(dbuf);
1619 
1620         /*
1621          * We can only assign if the offset is aligned, the arc buf is the
1622          * same size as the dbuf, and the dbuf is not metadata.
1623          */
1624         if (offset == db->db.db_offset && blksz == db->db.db_size) {
1625                 dbuf_assign_arcbuf(db, buf, tx);
1626                 dbuf_rele(db, FTAG);
1627         } else {
1628                 objset_t *os;
1629                 uint64_t object;
1630 
1631                 /* compressed bufs must always be assignable to their dbuf */
1632                 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1633                 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1634 
1635                 DB_DNODE_ENTER(dbuf);
1636                 dn = DB_DNODE(dbuf);
1637                 os = dn->dn_objset;
1638                 object = dn->dn_object;
1639                 DB_DNODE_EXIT(dbuf);
1640 
1641                 dbuf_rele(db, FTAG);
1642                 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1643                 dmu_return_arcbuf(buf);
1644                 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1645         }
1646 }
1647 
1648 typedef struct {
1649         dbuf_dirty_record_t     *dsa_dr;
1650         dmu_sync_cb_t           *dsa_done;
1651         zgd_t                   *dsa_zgd;
1652         dmu_tx_t                *dsa_tx;
1653 } dmu_sync_arg_t;
1654 
1655 /* ARGSUSED */
1656 static void
1657 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1658 {
1659         dmu_sync_arg_t *dsa = varg;
1660         dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1661         blkptr_t *bp = zio->io_bp;
1662 
1663         if (zio->io_error == 0) {
1664                 if (BP_IS_HOLE(bp)) {
1665                         /*
1666                          * A block of zeros may compress to a hole, but the
1667                          * block size still needs to be known for replay.
1668                          */
1669                         BP_SET_LSIZE(bp, db->db_size);
1670                 } else if (!BP_IS_EMBEDDED(bp)) {
1671                         ASSERT(BP_GET_LEVEL(bp) == 0);
1672                         bp->blk_fill = 1;
1673                 }
1674         }
1675 }
1676 
1677 static void
1678 dmu_sync_late_arrival_ready(zio_t *zio)
1679 {
1680         dmu_sync_ready(zio, NULL, zio->io_private);
1681 }
1682 
1683 /* ARGSUSED */
1684 static void
1685 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1686 {
1687         dmu_sync_arg_t *dsa = varg;
1688         dbuf_dirty_record_t *dr = dsa->dsa_dr;
1689         dmu_buf_impl_t *db = dr->dr_dbuf;
1690 
1691         mutex_enter(&db->db_mtx);
1692         ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1693         if (zio->io_error == 0) {
1694                 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1695                 if (dr->dt.dl.dr_nopwrite) {
1696                         blkptr_t *bp = zio->io_bp;
1697                         blkptr_t *bp_orig = &zio->io_bp_orig;
1698                         uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1699 
1700                         ASSERT(BP_EQUAL(bp, bp_orig));
1701                         VERIFY(BP_EQUAL(bp, db->db_blkptr));
1702                         ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1703                         ASSERT(zio_checksum_table[chksum].ci_flags &
1704                             ZCHECKSUM_FLAG_NOPWRITE);
1705                 }
1706                 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1707                 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1708                 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1709 
1710                 /*
1711                  * Old style holes are filled with all zeros, whereas
1712                  * new-style holes maintain their lsize, type, level,
1713                  * and birth time (see zio_write_compress). While we
1714                  * need to reset the BP_SET_LSIZE() call that happened
1715                  * in dmu_sync_ready for old style holes, we do *not*
1716                  * want to wipe out the information contained in new
1717                  * style holes. Thus, only zero out the block pointer if
1718                  * it's an old style hole.
1719                  */
1720                 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1721                     dr->dt.dl.dr_overridden_by.blk_birth == 0)
1722                         BP_ZERO(&dr->dt.dl.dr_overridden_by);
1723         } else {
1724                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1725         }
1726         cv_broadcast(&db->db_changed);
1727         mutex_exit(&db->db_mtx);
1728 
1729         dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1730 
1731         kmem_free(dsa, sizeof (*dsa));
1732 }
1733 
1734 static void
1735 dmu_sync_late_arrival_done(zio_t *zio)
1736 {
1737         blkptr_t *bp = zio->io_bp;
1738         dmu_sync_arg_t *dsa = zio->io_private;
1739         blkptr_t *bp_orig = &zio->io_bp_orig;
1740 
1741         if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1742                 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1743                 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1744                 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1745                 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1746                 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1747         }
1748 
1749         dmu_tx_commit(dsa->dsa_tx);
1750 
1751         dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1752 
1753         abd_put(zio->io_abd);
1754         kmem_free(dsa, sizeof (*dsa));
1755 }
1756 
1757 static int
1758 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1759     zio_prop_t *zp, zbookmark_phys_t *zb)
1760 {
1761         dmu_sync_arg_t *dsa;
1762         dmu_tx_t *tx;
1763 
1764         tx = dmu_tx_create(os);
1765         dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1766         if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1767                 dmu_tx_abort(tx);
1768                 /* Make zl_get_data do txg_waited_synced() */
1769                 return (SET_ERROR(EIO));
1770         }
1771 
1772         /*
1773          * In order to prevent the zgd's lwb from being free'd prior to
1774          * dmu_sync_late_arrival_done() being called, we have to ensure
1775          * the lwb's "max txg" takes this tx's txg into account.
1776          */
1777         zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1778 
1779         dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1780         dsa->dsa_dr = NULL;
1781         dsa->dsa_done = done;
1782         dsa->dsa_zgd = zgd;
1783         dsa->dsa_tx = tx;
1784 
1785         /*
1786          * Since we are currently syncing this txg, it's nontrivial to
1787          * determine what BP to nopwrite against, so we disable nopwrite.
1788          *
1789          * When syncing, the db_blkptr is initially the BP of the previous
1790          * txg.  We can not nopwrite against it because it will be changed
1791          * (this is similar to the non-late-arrival case where the dbuf is
1792          * dirty in a future txg).
1793          *
1794          * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1795          * We can not nopwrite against it because although the BP will not
1796          * (typically) be changed, the data has not yet been persisted to this
1797          * location.
1798          *
1799          * Finally, when dbuf_write_done() is called, it is theoretically
1800          * possible to always nopwrite, because the data that was written in
1801          * this txg is the same data that we are trying to write.  However we
1802          * would need to check that this dbuf is not dirty in any future
1803          * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1804          * don't nopwrite in this case.
1805          */
1806         zp->zp_nopwrite = B_FALSE;
1807 
1808         zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1809             abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1810             zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1811             dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1812             dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1813 
1814         return (0);
1815 }
1816 
1817 /*
1818  * Intent log support: sync the block associated with db to disk.
1819  * N.B. and XXX: the caller is responsible for making sure that the
1820  * data isn't changing while dmu_sync() is writing it.
1821  *
1822  * Return values:
1823  *
1824  *      EEXIST: this txg has already been synced, so there's nothing to do.
1825  *              The caller should not log the write.
1826  *
1827  *      ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1828  *              The caller should not log the write.
1829  *
1830  *      EALREADY: this block is already in the process of being synced.
1831  *              The caller should track its progress (somehow).
1832  *
1833  *      EIO: could not do the I/O.
1834  *              The caller should do a txg_wait_synced().
1835  *
1836  *      0: the I/O has been initiated.
1837  *              The caller should log this blkptr in the done callback.
1838  *              It is possible that the I/O will fail, in which case
1839  *              the error will be reported to the done callback and
1840  *              propagated to pio from zio_done().
1841  */
1842 int
1843 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1844 {
1845         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1846         objset_t *os = db->db_objset;
1847         dsl_dataset_t *ds = os->os_dsl_dataset;
1848         dbuf_dirty_record_t *dr;
1849         dmu_sync_arg_t *dsa;
1850         zbookmark_phys_t zb;
1851         zio_prop_t zp;
1852         dnode_t *dn;
1853 
1854         ASSERT(pio != NULL);
1855         ASSERT(txg != 0);
1856 
1857         SET_BOOKMARK(&zb, ds->ds_object,
1858             db->db.db_object, db->db_level, db->db_blkid);
1859 
1860         DB_DNODE_ENTER(db);
1861         dn = DB_DNODE(db);
1862         dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1863         DB_DNODE_EXIT(db);
1864 
1865         /*
1866          * If we're frozen (running ziltest), we always need to generate a bp.
1867          */
1868         if (txg > spa_freeze_txg(os->os_spa))
1869                 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1870 
1871         /*
1872          * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1873          * and us.  If we determine that this txg is not yet syncing,
1874          * but it begins to sync a moment later, that's OK because the
1875          * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1876          */
1877         mutex_enter(&db->db_mtx);
1878 
1879         if (txg <= spa_last_synced_txg(os->os_spa)) {
1880                 /*
1881                  * This txg has already synced.  There's nothing to do.
1882                  */
1883                 mutex_exit(&db->db_mtx);
1884                 return (SET_ERROR(EEXIST));
1885         }
1886 
1887         if (txg <= spa_syncing_txg(os->os_spa)) {
1888                 /*
1889                  * This txg is currently syncing, so we can't mess with
1890                  * the dirty record anymore; just write a new log block.
1891                  */
1892                 mutex_exit(&db->db_mtx);
1893                 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1894         }
1895 
1896         dr = db->db_last_dirty;
1897         while (dr && dr->dr_txg != txg)
1898                 dr = dr->dr_next;
1899 
1900         if (dr == NULL) {
1901                 /*
1902                  * There's no dr for this dbuf, so it must have been freed.
1903                  * There's no need to log writes to freed blocks, so we're done.
1904                  */
1905                 mutex_exit(&db->db_mtx);
1906                 return (SET_ERROR(ENOENT));
1907         }
1908 
1909         ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1910 
1911         if (db->db_blkptr != NULL) {
1912                 /*
1913                  * We need to fill in zgd_bp with the current blkptr so that
1914                  * the nopwrite code can check if we're writing the same
1915                  * data that's already on disk.  We can only nopwrite if we
1916                  * are sure that after making the copy, db_blkptr will not
1917                  * change until our i/o completes.  We ensure this by
1918                  * holding the db_mtx, and only allowing nopwrite if the
1919                  * block is not already dirty (see below).  This is verified
1920                  * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1921                  * not changed.
1922                  */
1923                 *zgd->zgd_bp = *db->db_blkptr;
1924         }
1925 
1926         /*
1927          * Assume the on-disk data is X, the current syncing data (in
1928          * txg - 1) is Y, and the current in-memory data is Z (currently
1929          * in dmu_sync).
1930          *
1931          * We usually want to perform a nopwrite if X and Z are the
1932          * same.  However, if Y is different (i.e. the BP is going to
1933          * change before this write takes effect), then a nopwrite will
1934          * be incorrect - we would override with X, which could have
1935          * been freed when Y was written.
1936          *
1937          * (Note that this is not a concern when we are nop-writing from
1938          * syncing context, because X and Y must be identical, because
1939          * all previous txgs have been synced.)
1940          *
1941          * Therefore, we disable nopwrite if the current BP could change
1942          * before this TXG.  There are two ways it could change: by
1943          * being dirty (dr_next is non-NULL), or by being freed
1944          * (dnode_block_freed()).  This behavior is verified by
1945          * zio_done(), which VERIFYs that the override BP is identical
1946          * to the on-disk BP.
1947          */
1948         DB_DNODE_ENTER(db);
1949         dn = DB_DNODE(db);
1950         if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1951                 zp.zp_nopwrite = B_FALSE;
1952         DB_DNODE_EXIT(db);
1953 
1954         ASSERT(dr->dr_txg == txg);
1955         if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1956             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1957                 /*
1958                  * We have already issued a sync write for this buffer,
1959                  * or this buffer has already been synced.  It could not
1960                  * have been dirtied since, or we would have cleared the state.
1961                  */
1962                 mutex_exit(&db->db_mtx);
1963                 return (SET_ERROR(EALREADY));
1964         }
1965 
1966         ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1967         dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1968         mutex_exit(&db->db_mtx);
1969 
1970         dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1971         dsa->dsa_dr = dr;
1972         dsa->dsa_done = done;
1973         dsa->dsa_zgd = zgd;
1974         dsa->dsa_tx = NULL;
1975 
1976         zio_nowait(arc_write(pio, os->os_spa, txg,
1977             zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1978             &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1979             ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1980 
1981         return (0);
1982 }
1983 
1984 int
1985 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1986     dmu_tx_t *tx)
1987 {
1988         dnode_t *dn;
1989         int err;
1990 
1991         err = dnode_hold(os, object, FTAG, &dn);
1992         if (err)
1993                 return (err);
1994         err = dnode_set_blksz(dn, size, ibs, tx);
1995         dnode_rele(dn, FTAG);
1996         return (err);
1997 }
1998 
1999 void
2000 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2001     dmu_tx_t *tx)
2002 {
2003         dnode_t *dn;
2004 
2005         /*
2006          * Send streams include each object's checksum function.  This
2007          * check ensures that the receiving system can understand the
2008          * checksum function transmitted.
2009          */
2010         ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2011 
2012         VERIFY0(dnode_hold(os, object, FTAG, &dn));
2013         ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2014         dn->dn_checksum = checksum;
2015         dnode_setdirty(dn, tx);
2016         dnode_rele(dn, FTAG);
2017 }
2018 
2019 void
2020 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2021     dmu_tx_t *tx)
2022 {
2023         dnode_t *dn;
2024 
2025         /*
2026          * Send streams include each object's compression function.  This
2027          * check ensures that the receiving system can understand the
2028          * compression function transmitted.
2029          */
2030         ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2031 
2032         VERIFY0(dnode_hold(os, object, FTAG, &dn));
2033         dn->dn_compress = compress;
2034         dnode_setdirty(dn, tx);
2035         dnode_rele(dn, FTAG);
2036 }
2037 
2038 int zfs_mdcomp_disable = 0;
2039 
2040 /*
2041  * When the "redundant_metadata" property is set to "most", only indirect
2042  * blocks of this level and higher will have an additional ditto block.
2043  */
2044 int zfs_redundant_metadata_most_ditto_level = 2;
2045 
2046 void
2047 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2048 {
2049         dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2050         boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2051             (wp & WP_SPILL));
2052         enum zio_checksum checksum = os->os_checksum;
2053         enum zio_compress compress = os->os_compress;
2054         enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2055         boolean_t dedup = B_FALSE;
2056         boolean_t nopwrite = B_FALSE;
2057         boolean_t dedup_verify = os->os_dedup_verify;
2058         int copies = os->os_copies;
2059 
2060         /*
2061          * We maintain different write policies for each of the following
2062          * types of data:
2063          *       1. metadata
2064          *       2. preallocated blocks (i.e. level-0 blocks of a dump device)
2065          *       3. all other level 0 blocks
2066          */
2067         if (ismd) {
2068                 if (zfs_mdcomp_disable) {
2069                         compress = ZIO_COMPRESS_EMPTY;
2070                 } else {
2071                         /*
2072                          * XXX -- we should design a compression algorithm
2073                          * that specializes in arrays of bps.
2074                          */
2075                         compress = zio_compress_select(os->os_spa,
2076                             ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2077                 }
2078 
2079                 /*
2080                  * Metadata always gets checksummed.  If the data
2081                  * checksum is multi-bit correctable, and it's not a
2082                  * ZBT-style checksum, then it's suitable for metadata
2083                  * as well.  Otherwise, the metadata checksum defaults
2084                  * to fletcher4.
2085                  */
2086                 if (!(zio_checksum_table[checksum].ci_flags &
2087                     ZCHECKSUM_FLAG_METADATA) ||
2088                     (zio_checksum_table[checksum].ci_flags &
2089                     ZCHECKSUM_FLAG_EMBEDDED))
2090                         checksum = ZIO_CHECKSUM_FLETCHER_4;
2091 
2092                 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2093                     (os->os_redundant_metadata ==
2094                     ZFS_REDUNDANT_METADATA_MOST &&
2095                     (level >= zfs_redundant_metadata_most_ditto_level ||
2096                     DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2097                         copies++;
2098         } else if (wp & WP_NOFILL) {
2099                 ASSERT(level == 0);
2100 
2101                 /*
2102                  * If we're writing preallocated blocks, we aren't actually
2103                  * writing them so don't set any policy properties.  These
2104                  * blocks are currently only used by an external subsystem
2105                  * outside of zfs (i.e. dump) and not written by the zio
2106                  * pipeline.
2107                  */
2108                 compress = ZIO_COMPRESS_OFF;
2109                 checksum = ZIO_CHECKSUM_NOPARITY;
2110         } else {
2111                 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2112                     compress);
2113 
2114                 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2115                     zio_checksum_select(dn->dn_checksum, checksum) :
2116                     dedup_checksum;
2117 
2118                 /*
2119                  * Determine dedup setting.  If we are in dmu_sync(),
2120                  * we won't actually dedup now because that's all
2121                  * done in syncing context; but we do want to use the
2122                  * dedup checkum.  If the checksum is not strong
2123                  * enough to ensure unique signatures, force
2124                  * dedup_verify.
2125                  */
2126                 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2127                         dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2128                         if (!(zio_checksum_table[checksum].ci_flags &
2129                             ZCHECKSUM_FLAG_DEDUP))
2130                                 dedup_verify = B_TRUE;
2131                 }
2132 
2133                 /*
2134                  * Enable nopwrite if we have secure enough checksum
2135                  * algorithm (see comment in zio_nop_write) and
2136                  * compression is enabled.  We don't enable nopwrite if
2137                  * dedup is enabled as the two features are mutually
2138                  * exclusive.
2139                  */
2140                 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2141                     ZCHECKSUM_FLAG_NOPWRITE) &&
2142                     compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2143         }
2144 
2145         zp->zp_checksum = checksum;
2146         zp->zp_compress = compress;
2147         ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2148 
2149         zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2150         zp->zp_level = level;
2151         zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2152         zp->zp_dedup = dedup;
2153         zp->zp_dedup_verify = dedup && dedup_verify;
2154         zp->zp_nopwrite = nopwrite;
2155 }
2156 
2157 int
2158 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2159 {
2160         dnode_t *dn;
2161         int err;
2162 
2163         /*
2164          * Sync any current changes before
2165          * we go trundling through the block pointers.
2166          */
2167         err = dmu_object_wait_synced(os, object);
2168         if (err) {
2169                 return (err);
2170         }
2171 
2172         err = dnode_hold(os, object, FTAG, &dn);
2173         if (err) {
2174                 return (err);
2175         }
2176 
2177         err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2178         dnode_rele(dn, FTAG);
2179 
2180         return (err);
2181 }
2182 
2183 /*
2184  * Given the ZFS object, if it contains any dirty nodes
2185  * this function flushes all dirty blocks to disk. This
2186  * ensures the DMU object info is updated. A more efficient
2187  * future version might just find the TXG with the maximum
2188  * ID and wait for that to be synced.
2189  */
2190 int
2191 dmu_object_wait_synced(objset_t *os, uint64_t object)
2192 {
2193         dnode_t *dn;
2194         int error, i;
2195 
2196         error = dnode_hold(os, object, FTAG, &dn);
2197         if (error) {
2198                 return (error);
2199         }
2200 
2201         for (i = 0; i < TXG_SIZE; i++) {
2202                 if (list_link_active(&dn->dn_dirty_link[i])) {
2203                         break;
2204                 }
2205         }
2206         dnode_rele(dn, FTAG);
2207         if (i != TXG_SIZE) {
2208                 txg_wait_synced(dmu_objset_pool(os), 0);
2209         }
2210 
2211         return (0);
2212 }
2213 
2214 void
2215 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2216 {
2217         dnode_phys_t *dnp;
2218 
2219         rw_enter(&dn->dn_struct_rwlock, RW_READER);
2220         mutex_enter(&dn->dn_mtx);
2221 
2222         dnp = dn->dn_phys;
2223 
2224         doi->doi_data_block_size = dn->dn_datablksz;
2225         doi->doi_metadata_block_size = dn->dn_indblkshift ?
2226             1ULL << dn->dn_indblkshift : 0;
2227         doi->doi_type = dn->dn_type;
2228         doi->doi_bonus_type = dn->dn_bonustype;
2229         doi->doi_bonus_size = dn->dn_bonuslen;
2230         doi->doi_indirection = dn->dn_nlevels;
2231         doi->doi_checksum = dn->dn_checksum;
2232         doi->doi_compress = dn->dn_compress;
2233         doi->doi_nblkptr = dn->dn_nblkptr;
2234         doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2235         doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2236         doi->doi_fill_count = 0;
2237         for (int i = 0; i < dnp->dn_nblkptr; i++)
2238                 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2239 
2240         mutex_exit(&dn->dn_mtx);
2241         rw_exit(&dn->dn_struct_rwlock);
2242 }
2243 
2244 /*
2245  * Get information on a DMU object.
2246  * If doi is NULL, just indicates whether the object exists.
2247  */
2248 int
2249 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2250 {
2251         dnode_t *dn;
2252         int err = dnode_hold(os, object, FTAG, &dn);
2253 
2254         if (err)
2255                 return (err);
2256 
2257         if (doi != NULL)
2258                 dmu_object_info_from_dnode(dn, doi);
2259 
2260         dnode_rele(dn, FTAG);
2261         return (0);
2262 }
2263 
2264 /*
2265  * As above, but faster; can be used when you have a held dbuf in hand.
2266  */
2267 void
2268 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2269 {
2270         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2271 
2272         DB_DNODE_ENTER(db);
2273         dmu_object_info_from_dnode(DB_DNODE(db), doi);
2274         DB_DNODE_EXIT(db);
2275 }
2276 
2277 /*
2278  * Faster still when you only care about the size.
2279  * This is specifically optimized for zfs_getattr().
2280  */
2281 void
2282 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2283     u_longlong_t *nblk512)
2284 {
2285         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2286         dnode_t *dn;
2287 
2288         DB_DNODE_ENTER(db);
2289         dn = DB_DNODE(db);
2290 
2291         *blksize = dn->dn_datablksz;
2292         /* add 1 for dnode space */
2293         *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2294             SPA_MINBLOCKSHIFT) + 1;
2295         DB_DNODE_EXIT(db);
2296 }
2297 
2298 void
2299 byteswap_uint64_array(void *vbuf, size_t size)
2300 {
2301         uint64_t *buf = vbuf;
2302         size_t count = size >> 3;
2303         int i;
2304 
2305         ASSERT((size & 7) == 0);
2306 
2307         for (i = 0; i < count; i++)
2308                 buf[i] = BSWAP_64(buf[i]);
2309 }
2310 
2311 void
2312 byteswap_uint32_array(void *vbuf, size_t size)
2313 {
2314         uint32_t *buf = vbuf;
2315         size_t count = size >> 2;
2316         int i;
2317 
2318         ASSERT((size & 3) == 0);
2319 
2320         for (i = 0; i < count; i++)
2321                 buf[i] = BSWAP_32(buf[i]);
2322 }
2323 
2324 void
2325 byteswap_uint16_array(void *vbuf, size_t size)
2326 {
2327         uint16_t *buf = vbuf;
2328         size_t count = size >> 1;
2329         int i;
2330 
2331         ASSERT((size & 1) == 0);
2332 
2333         for (i = 0; i < count; i++)
2334                 buf[i] = BSWAP_16(buf[i]);
2335 }
2336 
2337 /* ARGSUSED */
2338 void
2339 byteswap_uint8_array(void *vbuf, size_t size)
2340 {
2341 }
2342 
2343 void
2344 dmu_init(void)
2345 {
2346         abd_init();
2347         zfs_dbgmsg_init();
2348         sa_cache_init();
2349         xuio_stat_init();
2350         dmu_objset_init();
2351         dnode_init();
2352         zfetch_init();
2353         l2arc_init();
2354         arc_init();
2355         dbuf_init();
2356 }
2357 
2358 void
2359 dmu_fini(void)
2360 {
2361         arc_fini(); /* arc depends on l2arc, so arc must go first */
2362         l2arc_fini();
2363         zfetch_fini();
2364         dbuf_fini();
2365         dnode_fini();
2366         dmu_objset_fini();
2367         xuio_stat_fini();
2368         sa_cache_fini();
2369         zfs_dbgmsg_fini();
2370         abd_fini();
2371 }