Print this page
NEX-19394 backport 9337 zfs get all is slow due to uncached metadata
Reviewed by: Joyce McIntosh <joyce.mcintosh@nexenta.com>
Reviewed by: Roman Strashkin <roman.strashkin@nexenta.com>
Reviewed by: Sanjay Nadkarni <sanjay.nadkarni@nexenta.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
Conflicts:
usr/src/uts/common/fs/zfs/dbuf.c
usr/src/uts/common/fs/zfs/dmu.c
usr/src/uts/common/fs/zfs/sys/dmu_objset.h
NEX-15468 panic - Deadlock: cycle in blocking chain with dbuf_destroy calling mutex_vector_enter
Reviewed by: Joyce McIntosh <joyce.mcintosh@nexenta.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
NEX-16904 Need to port Illumos Bug #9433 to fix ARC hit rate
Reviewed by: Roman Strashkin <roman.strashkin@nexenta.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
NEX-16146 9188 increase size of dbuf cache to reduce indirect block decompression
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Sanjay Nadkarni <sanjay.nadkarni@nexenta.com>
Reviewed by: Allan Jude <allanjude@freebsd.org>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Approved by: Garrett D'Amore <garrett@damore.org>
NEX-9752 backport illumos 6950 ARC should cache compressed data
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
6950 ARC should cache compressed data
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Don Brady <don.brady@intel.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
NEX-5366 Race between unique_insert() and unique_remove() causes ZFS fsid change
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Sanjay Nadkarni <sanjay.nadkarni@nexenta.com>
Reviewed by: Dan Vatca <dan.vatca@gmail.com>
NEX-5058 WBC: Race between the purging of window and opening new one
Reviewed by: Alek Pinchuk <alek.pinchuk@nexenta.com>
Reviewed by: Alex Aizman <alex.aizman@nexenta.com>
NEX-2830 ZFS smart compression
Reviewed by: Alek Pinchuk <alek.pinchuk@nexenta.com>
Reviewed by: Roman Strashkin <roman.strashkin@nexenta.com>
6267 dn_bonus evicted too early
Reviewed by: Richard Yao <ryao@gentoo.org>
Reviewed by: Xin LI <delphij@freebsd.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
6288 dmu_buf_will_dirty could be faster
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Justin Gibbs <gibbs@scsiguy.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Robert Mustacchi <rm@joyent.com>
5987 zfs prefetch code needs work
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Approved by: Gordon Ross <gordon.ross@nexenta.com>
6047 SPARC boot should support feature@embedded_data
Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com>
Approved by: Dan McDonald <danmcd@omniti.com>
5959 clean up per-dataset feature count code
Reviewed by: Toomas Soome <tsoome@me.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
NEX-4582 update wrc test cases for allow to use write back cache per tree of datasets
Reviewed by: Steve Peng <steve.peng@nexenta.com>
Reviewed by: Alex Aizman <alex.aizman@nexenta.com>
5960 zfs recv should prefetch indirect blocks
5925 zfs receive -o origin=
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
5911 ZFS "hangs" while deleting file
Reviewed by: Bayard Bell <buffer.g.overflow@gmail.com>
Reviewed by: Alek Pinchuk <alek@nexenta.com>
Reviewed by: Simon Klinkert <simon.klinkert@gmail.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
NEX-1823 Slow performance doing of a large dataset
5911 ZFS "hangs" while deleting file
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Bayard Bell <bayard.bell@nexenta.com>
NEX-3558 KRRP Integration
NEX-3266 5630 stale bonus buffer in recycled dnode_t leads to data corruption
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Will Andrews <will@freebsd.org>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Dan Fields <dan.fields@nexenta.com>
NEX-3165 segregate ddt in arc
4370 avoid transmitting holes during zfs send
4371 DMU code clean up
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Approved by: Garrett D'Amore <garrett@damore.org>
OS-80 support for vdev and CoS properties for the new I/O scheduler
OS-95 lint warning introduced by OS-61
Moved closed ZFS files to open repo, changed Makefiles accordingly
Removed unneeded weak symbols
Issue #7: add cacheability to the properties
Contributors: Boris Protopopov
DDT is placed either into special or to L2ARC but not in both
Support for secondarycache=data option
Align mutex tables in arc.c and dbuf.c to 64 bytes (cache line), place each kmutex_t on cache line by itself to avoid false sharing
re #12585 rb4049 ZFS++ work port - refactoring to improve separation of open/closed code, bug fixes, performance improvements - open code
Bug 11205: add missing libzfs_closed_stubs.c to fix opensource-only build.
ZFS plus work: special vdevs, cos, cos/vdev properties
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/zfs/dbuf.c
+++ new/usr/src/uts/common/fs/zfs/dbuf.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
|
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 - * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 + * Copyright 2018 Nexenta Systems, Inc. All rights reserved.
24 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 28 * Copyright (c) 2014 Integros [integros.com]
29 29 */
30 30
31 31 #include <sys/zfs_context.h>
32 32 #include <sys/dmu.h>
33 33 #include <sys/dmu_send.h>
34 34 #include <sys/dmu_impl.h>
35 35 #include <sys/dbuf.h>
36 36 #include <sys/dmu_objset.h>
37 37 #include <sys/dsl_dataset.h>
38 38 #include <sys/dsl_dir.h>
39 39 #include <sys/dmu_tx.h>
40 40 #include <sys/spa.h>
41 +#include <sys/spa_impl.h>
41 42 #include <sys/zio.h>
42 43 #include <sys/dmu_zfetch.h>
43 44 #include <sys/sa.h>
44 45 #include <sys/sa_impl.h>
45 46 #include <sys/zfeature.h>
46 47 #include <sys/blkptr.h>
47 48 #include <sys/range_tree.h>
48 49 #include <sys/callb.h>
49 50 #include <sys/abd.h>
50 -#include <sys/vdev.h>
51 -#include <sys/cityhash.h>
52 51
53 52 uint_t zfs_dbuf_evict_key;
54 53
55 54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
56 55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
57 56
58 57 #ifndef __lint
59 58 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
60 59 dmu_buf_evict_func_t *evict_func_sync,
61 60 dmu_buf_evict_func_t *evict_func_async,
62 61 dmu_buf_t **clear_on_evict_dbufp);
63 62 #endif /* ! __lint */
64 63
65 64 /*
66 65 * Global data structures and functions for the dbuf cache.
|
↓ open down ↓ |
5 lines elided |
↑ open up ↑ |
67 66 */
68 67 static kmem_cache_t *dbuf_kmem_cache;
69 68 static taskq_t *dbu_evict_taskq;
70 69
71 70 static kthread_t *dbuf_cache_evict_thread;
72 71 static kmutex_t dbuf_evict_lock;
73 72 static kcondvar_t dbuf_evict_cv;
74 73 static boolean_t dbuf_evict_thread_exit;
75 74
76 75 /*
77 - * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
78 - * are not currently held but have been recently released. These dbufs
79 - * are not eligible for arc eviction until they are aged out of the cache.
80 - * Dbufs are added to the dbuf cache once the last hold is released. If a
81 - * dbuf is later accessed and still exists in the dbuf cache, then it will
82 - * be removed from the cache and later re-added to the head of the cache.
83 - * Dbufs that are aged out of the cache will be immediately destroyed and
84 - * become eligible for arc eviction.
76 + * There are two dbuf caches; each dbuf can only be in one of them at a time.
77 + *
78 + * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
79 + * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
80 + * that represent the metadata that describes filesystems/snapshots/
81 + * bookmarks/properties/etc. We only evict from this cache when we export a
82 + * pool, to short-circuit as much I/O as possible for all administrative
83 + * commands that need the metadata. There is no eviction policy for this
84 + * cache, because we try to only include types in it which would occupy a
85 + * very small amount of space per object but create a large impact on the
86 + * performance of these commands. Instead, after it reaches a maximum size
87 + * (which should only happen on very small memory systems with a very large
88 + * number of filesystem objects), we stop taking new dbufs into the
89 + * metadata cache, instead putting them in the normal dbuf cache.
90 + *
91 + * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that
92 + * are not currently held but have been recently released. These dbufs
93 + * are not eligible for arc eviction until they are aged out of the cache.
94 + * Dbufs that are aged out of the cache will be immediately destroyed and
95 + * become eligible for arc eviction.
96 + *
97 + * Dbufs are added to these caches once the last hold is released. If a dbuf is
98 + * later accessed and still exists in the dbuf cache, then it will be removed
99 + * from the cache and later re-added to the head of the cache.
100 + *
101 + * If a given dbuf meets the requirements for the metadata cache, it will go
102 + * there, otherwise it will be considered for the generic LRU dbuf cache. The
103 + * caches and the refcounts tracking their sizes are stored in an array indexed
104 + * by those caches' matching enum values (from dbuf_cached_state_t).
85 105 */
86 -static multilist_t *dbuf_cache;
87 -static refcount_t dbuf_cache_size;
88 -uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
106 +typedef struct dbuf_cache {
107 + multilist_t *cache;
108 + refcount_t size;
109 +} dbuf_cache_t;
110 +dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
89 111
90 -/* Cap the size of the dbuf cache to log2 fraction of arc size. */
91 -int dbuf_cache_max_shift = 5;
112 +/* Size limits for the caches */
113 +uint64_t dbuf_cache_max_bytes = 0;
114 +uint64_t dbuf_metadata_cache_max_bytes = 0;
115 +/* Set the default sizes of the caches to log2 fraction of arc size */
116 +int dbuf_cache_shift = 5;
117 +int dbuf_metadata_cache_shift = 6;
92 118
93 119 /*
94 - * The dbuf cache uses a three-stage eviction policy:
120 + * For diagnostic purposes, this is incremented whenever we can't add
121 + * something to the metadata cache because it's full, and instead put
122 + * the data in the regular dbuf cache.
123 + */
124 +uint64_t dbuf_metadata_cache_overflow;
125 +
126 +/*
127 + * The LRU dbuf cache uses a three-stage eviction policy:
95 128 * - A low water marker designates when the dbuf eviction thread
96 129 * should stop evicting from the dbuf cache.
97 130 * - When we reach the maximum size (aka mid water mark), we
98 131 * signal the eviction thread to run.
99 132 * - The high water mark indicates when the eviction thread
100 133 * is unable to keep up with the incoming load and eviction must
101 134 * happen in the context of the calling thread.
102 135 *
103 136 * The dbuf cache:
104 137 * (max size)
105 138 * low water mid water hi water
106 139 * +----------------------------------------+----------+----------+
107 140 * | | | |
108 141 * | | | |
109 142 * | | | |
110 143 * | | | |
111 144 * +----------------------------------------+----------+----------+
112 145 * stop signal evict
113 146 * evicting eviction directly
114 147 * thread
115 148 *
116 149 * The high and low water marks indicate the operating range for the eviction
117 150 * thread. The low water mark is, by default, 90% of the total size of the
118 151 * cache and the high water mark is at 110% (both of these percentages can be
119 152 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
120 153 * respectively). The eviction thread will try to ensure that the cache remains
121 154 * within this range by waking up every second and checking if the cache is
122 155 * above the low water mark. The thread can also be woken up by callers adding
123 156 * elements into the cache if the cache is larger than the mid water (i.e max
124 157 * cache size). Once the eviction thread is woken up and eviction is required,
125 158 * it will continue evicting buffers until it's able to reduce the cache size
126 159 * to the low water mark. If the cache size continues to grow and hits the high
127 160 * water mark, then callers adding elments to the cache will begin to evict
128 161 * directly from the cache until the cache is no longer above the high water
129 162 * mark.
130 163 */
131 164
132 165 /*
133 166 * The percentage above and below the maximum cache size.
134 167 */
135 168 uint_t dbuf_cache_hiwater_pct = 10;
136 169 uint_t dbuf_cache_lowater_pct = 10;
137 170
138 171 /* ARGSUSED */
139 172 static int
140 173 dbuf_cons(void *vdb, void *unused, int kmflag)
141 174 {
142 175 dmu_buf_impl_t *db = vdb;
143 176 bzero(db, sizeof (dmu_buf_impl_t));
144 177
145 178 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
146 179 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
147 180 multilist_link_init(&db->db_cache_link);
148 181 refcount_create(&db->db_holds);
149 182
150 183 return (0);
151 184 }
152 185
153 186 /* ARGSUSED */
154 187 static void
155 188 dbuf_dest(void *vdb, void *unused)
156 189 {
|
↓ open down ↓ |
52 lines elided |
↑ open up ↑ |
157 190 dmu_buf_impl_t *db = vdb;
158 191 mutex_destroy(&db->db_mtx);
159 192 cv_destroy(&db->db_changed);
160 193 ASSERT(!multilist_link_active(&db->db_cache_link));
161 194 refcount_destroy(&db->db_holds);
162 195 }
163 196
164 197 /*
165 198 * dbuf hash table routines
166 199 */
200 +#pragma align 64(dbuf_hash_table)
167 201 static dbuf_hash_table_t dbuf_hash_table;
168 202
169 203 static uint64_t dbuf_hash_count;
170 204
171 -/*
172 - * We use Cityhash for this. It's fast, and has good hash properties without
173 - * requiring any large static buffers.
174 - */
175 205 static uint64_t
176 206 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
177 207 {
178 - return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
208 + uintptr_t osv = (uintptr_t)os;
209 + uint64_t crc = -1ULL;
210 +
211 + ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
212 + crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
213 + crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
214 + crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
215 + crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
216 + crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
217 + crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
218 +
219 + crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
220 +
221 + return (crc);
179 222 }
180 223
181 224 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
182 225 ((dbuf)->db.db_object == (obj) && \
183 226 (dbuf)->db_objset == (os) && \
184 227 (dbuf)->db_level == (level) && \
185 228 (dbuf)->db_blkid == (blkid))
186 229
187 230 dmu_buf_impl_t *
188 231 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
189 232 {
190 233 dbuf_hash_table_t *h = &dbuf_hash_table;
191 234 uint64_t hv = dbuf_hash(os, obj, level, blkid);
192 235 uint64_t idx = hv & h->hash_table_mask;
193 236 dmu_buf_impl_t *db;
194 237
195 238 mutex_enter(DBUF_HASH_MUTEX(h, idx));
196 239 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
197 240 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
198 241 mutex_enter(&db->db_mtx);
199 242 if (db->db_state != DB_EVICTING) {
200 243 mutex_exit(DBUF_HASH_MUTEX(h, idx));
201 244 return (db);
202 245 }
203 246 mutex_exit(&db->db_mtx);
204 247 }
205 248 }
206 249 mutex_exit(DBUF_HASH_MUTEX(h, idx));
207 250 return (NULL);
208 251 }
209 252
210 253 static dmu_buf_impl_t *
211 254 dbuf_find_bonus(objset_t *os, uint64_t object)
212 255 {
213 256 dnode_t *dn;
214 257 dmu_buf_impl_t *db = NULL;
215 258
216 259 if (dnode_hold(os, object, FTAG, &dn) == 0) {
217 260 rw_enter(&dn->dn_struct_rwlock, RW_READER);
218 261 if (dn->dn_bonus != NULL) {
219 262 db = dn->dn_bonus;
220 263 mutex_enter(&db->db_mtx);
221 264 }
222 265 rw_exit(&dn->dn_struct_rwlock);
223 266 dnode_rele(dn, FTAG);
224 267 }
225 268 return (db);
226 269 }
227 270
228 271 /*
229 272 * Insert an entry into the hash table. If there is already an element
230 273 * equal to elem in the hash table, then the already existing element
231 274 * will be returned and the new element will not be inserted.
232 275 * Otherwise returns NULL.
233 276 */
234 277 static dmu_buf_impl_t *
235 278 dbuf_hash_insert(dmu_buf_impl_t *db)
236 279 {
237 280 dbuf_hash_table_t *h = &dbuf_hash_table;
238 281 objset_t *os = db->db_objset;
239 282 uint64_t obj = db->db.db_object;
240 283 int level = db->db_level;
241 284 uint64_t blkid = db->db_blkid;
242 285 uint64_t hv = dbuf_hash(os, obj, level, blkid);
243 286 uint64_t idx = hv & h->hash_table_mask;
244 287 dmu_buf_impl_t *dbf;
245 288
246 289 mutex_enter(DBUF_HASH_MUTEX(h, idx));
247 290 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
248 291 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
249 292 mutex_enter(&dbf->db_mtx);
250 293 if (dbf->db_state != DB_EVICTING) {
251 294 mutex_exit(DBUF_HASH_MUTEX(h, idx));
252 295 return (dbf);
253 296 }
254 297 mutex_exit(&dbf->db_mtx);
255 298 }
256 299 }
257 300
258 301 mutex_enter(&db->db_mtx);
259 302 db->db_hash_next = h->hash_table[idx];
260 303 h->hash_table[idx] = db;
261 304 mutex_exit(DBUF_HASH_MUTEX(h, idx));
262 305 atomic_inc_64(&dbuf_hash_count);
263 306
264 307 return (NULL);
265 308 }
266 309
267 310 /*
268 311 * Remove an entry from the hash table. It must be in the EVICTING state.
269 312 */
270 313 static void
271 314 dbuf_hash_remove(dmu_buf_impl_t *db)
272 315 {
273 316 dbuf_hash_table_t *h = &dbuf_hash_table;
274 317 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
275 318 db->db_level, db->db_blkid);
276 319 uint64_t idx = hv & h->hash_table_mask;
277 320 dmu_buf_impl_t *dbf, **dbp;
278 321
279 322 /*
280 323 * We musn't hold db_mtx to maintain lock ordering:
281 324 * DBUF_HASH_MUTEX > db_mtx.
282 325 */
283 326 ASSERT(refcount_is_zero(&db->db_holds));
284 327 ASSERT(db->db_state == DB_EVICTING);
285 328 ASSERT(!MUTEX_HELD(&db->db_mtx));
286 329
287 330 mutex_enter(DBUF_HASH_MUTEX(h, idx));
288 331 dbp = &h->hash_table[idx];
289 332 while ((dbf = *dbp) != db) {
290 333 dbp = &dbf->db_hash_next;
291 334 ASSERT(dbf != NULL);
292 335 }
293 336 *dbp = db->db_hash_next;
294 337 db->db_hash_next = NULL;
295 338 mutex_exit(DBUF_HASH_MUTEX(h, idx));
296 339 atomic_dec_64(&dbuf_hash_count);
297 340 }
298 341
299 342 typedef enum {
300 343 DBVU_EVICTING,
301 344 DBVU_NOT_EVICTING
302 345 } dbvu_verify_type_t;
303 346
304 347 static void
305 348 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
306 349 {
307 350 #ifdef ZFS_DEBUG
308 351 int64_t holds;
309 352
310 353 if (db->db_user == NULL)
311 354 return;
312 355
313 356 /* Only data blocks support the attachment of user data. */
314 357 ASSERT(db->db_level == 0);
315 358
316 359 /* Clients must resolve a dbuf before attaching user data. */
317 360 ASSERT(db->db.db_data != NULL);
318 361 ASSERT3U(db->db_state, ==, DB_CACHED);
319 362
320 363 holds = refcount_count(&db->db_holds);
321 364 if (verify_type == DBVU_EVICTING) {
322 365 /*
323 366 * Immediate eviction occurs when holds == dirtycnt.
324 367 * For normal eviction buffers, holds is zero on
325 368 * eviction, except when dbuf_fix_old_data() calls
326 369 * dbuf_clear_data(). However, the hold count can grow
327 370 * during eviction even though db_mtx is held (see
328 371 * dmu_bonus_hold() for an example), so we can only
329 372 * test the generic invariant that holds >= dirtycnt.
330 373 */
331 374 ASSERT3U(holds, >=, db->db_dirtycnt);
332 375 } else {
333 376 if (db->db_user_immediate_evict == TRUE)
334 377 ASSERT3U(holds, >=, db->db_dirtycnt);
335 378 else
336 379 ASSERT3U(holds, >, 0);
337 380 }
338 381 #endif
339 382 }
340 383
341 384 static void
342 385 dbuf_evict_user(dmu_buf_impl_t *db)
343 386 {
344 387 dmu_buf_user_t *dbu = db->db_user;
345 388
346 389 ASSERT(MUTEX_HELD(&db->db_mtx));
347 390
348 391 if (dbu == NULL)
349 392 return;
350 393
351 394 dbuf_verify_user(db, DBVU_EVICTING);
352 395 db->db_user = NULL;
353 396
354 397 #ifdef ZFS_DEBUG
355 398 if (dbu->dbu_clear_on_evict_dbufp != NULL)
356 399 *dbu->dbu_clear_on_evict_dbufp = NULL;
357 400 #endif
358 401
359 402 /*
360 403 * There are two eviction callbacks - one that we call synchronously
361 404 * and one that we invoke via a taskq. The async one is useful for
362 405 * avoiding lock order reversals and limiting stack depth.
363 406 *
364 407 * Note that if we have a sync callback but no async callback,
365 408 * it's likely that the sync callback will free the structure
366 409 * containing the dbu. In that case we need to take care to not
367 410 * dereference dbu after calling the sync evict func.
368 411 */
369 412 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
370 413
371 414 if (dbu->dbu_evict_func_sync != NULL)
372 415 dbu->dbu_evict_func_sync(dbu);
373 416
374 417 if (has_async) {
375 418 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
376 419 dbu, 0, &dbu->dbu_tqent);
377 420 }
378 421 }
379 422
380 423 boolean_t
381 424 dbuf_is_metadata(dmu_buf_impl_t *db)
382 425 {
383 426 if (db->db_level > 0) {
384 427 return (B_TRUE);
385 428 } else {
|
↓ open down ↓ |
197 lines elided |
↑ open up ↑ |
386 429 boolean_t is_metadata;
387 430
388 431 DB_DNODE_ENTER(db);
389 432 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
390 433 DB_DNODE_EXIT(db);
391 434
392 435 return (is_metadata);
393 436 }
394 437 }
395 438
439 +boolean_t
440 +dbuf_is_ddt(dmu_buf_impl_t *db)
441 +{
442 + boolean_t is_ddt;
443 +
444 + DB_DNODE_ENTER(db);
445 + is_ddt = (DB_DNODE(db)->dn_type == DMU_OT_DDT_ZAP) ||
446 + (DB_DNODE(db)->dn_type == DMU_OT_DDT_STATS);
447 + DB_DNODE_EXIT(db);
448 +
449 + return (is_ddt);
450 +}
451 +
396 452 /*
453 + * This returns whether this dbuf should be stored in the metadata cache, which
454 + * is based on whether it's from one of the dnode types that store data related
455 + * to traversing dataset hierarchies.
456 + */
457 +static boolean_t
458 +dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
459 +{
460 + DB_DNODE_ENTER(db);
461 + dmu_object_type_t type = DB_DNODE(db)->dn_type;
462 + DB_DNODE_EXIT(db);
463 +
464 + /* Check if this dbuf is one of the types we care about */
465 + if (DMU_OT_IS_METADATA_CACHED(type)) {
466 + /* If we hit this, then we set something up wrong in dmu_ot */
467 + ASSERT(DMU_OT_IS_METADATA(type));
468 +
469 + /*
470 + * Sanity check for small-memory systems: don't allocate too
471 + * much memory for this purpose.
472 + */
473 + if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
474 + dbuf_metadata_cache_max_bytes) {
475 + dbuf_metadata_cache_overflow++;
476 + DTRACE_PROBE1(dbuf__metadata__cache__overflow,
477 + dmu_buf_impl_t *, db);
478 + return (B_FALSE);
479 + }
480 +
481 + return (B_TRUE);
482 + }
483 +
484 + return (B_FALSE);
485 +}
486 +
487 +/*
397 488 * This function *must* return indices evenly distributed between all
398 489 * sublists of the multilist. This is needed due to how the dbuf eviction
399 490 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
400 491 * distributed between all sublists and uses this assumption when
401 492 * deciding which sublist to evict from and how much to evict from it.
402 493 */
403 494 unsigned int
404 495 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
405 496 {
406 497 dmu_buf_impl_t *db = obj;
407 498
408 499 /*
409 500 * The assumption here, is the hash value for a given
410 501 * dmu_buf_impl_t will remain constant throughout it's lifetime
411 502 * (i.e. it's objset, object, level and blkid fields don't change).
412 503 * Thus, we don't need to store the dbuf's sublist index
413 504 * on insertion, as this index can be recalculated on removal.
414 505 *
415 506 * Also, the low order bits of the hash value are thought to be
416 507 * distributed evenly. Otherwise, in the case that the multilist
417 508 * has a power of two number of sublists, each sublists' usage
418 509 * would not be evenly distributed.
419 510 */
420 511 return (dbuf_hash(db->db_objset, db->db.db_object,
|
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
421 512 db->db_level, db->db_blkid) %
422 513 multilist_get_num_sublists(ml));
423 514 }
424 515
425 516 static inline boolean_t
426 517 dbuf_cache_above_hiwater(void)
427 518 {
428 519 uint64_t dbuf_cache_hiwater_bytes =
429 520 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
430 521
431 - return (refcount_count(&dbuf_cache_size) >
522 + return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
432 523 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
433 524 }
434 525
435 526 static inline boolean_t
436 527 dbuf_cache_above_lowater(void)
437 528 {
438 529 uint64_t dbuf_cache_lowater_bytes =
439 530 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
440 531
441 - return (refcount_count(&dbuf_cache_size) >
532 + return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
442 533 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
443 534 }
444 535
445 536 /*
446 537 * Evict the oldest eligible dbuf from the dbuf cache.
447 538 */
448 539 static void
449 540 dbuf_evict_one(void)
450 541 {
451 - int idx = multilist_get_random_index(dbuf_cache);
452 - multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
542 + int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
543 + multilist_sublist_t *mls = multilist_sublist_lock(
544 + dbuf_caches[DB_DBUF_CACHE].cache, idx);
453 545
454 546 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
455 547
456 548 /*
457 549 * Set the thread's tsd to indicate that it's processing evictions.
458 550 * Once a thread stops evicting from the dbuf cache it will
459 551 * reset its tsd to NULL.
460 552 */
461 553 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
462 554 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
463 555
464 556 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
|
↓ open down ↓ |
2 lines elided |
↑ open up ↑ |
465 557 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
466 558 db = multilist_sublist_prev(mls, db);
467 559 }
468 560
469 561 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
470 562 multilist_sublist_t *, mls);
471 563
472 564 if (db != NULL) {
473 565 multilist_sublist_remove(mls, db);
474 566 multilist_sublist_unlock(mls);
475 - (void) refcount_remove_many(&dbuf_cache_size,
567 + (void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size,
476 568 db->db.db_size, db);
569 + ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
570 + db->db_caching_status = DB_NO_CACHE;
477 571 dbuf_destroy(db);
478 572 } else {
479 573 multilist_sublist_unlock(mls);
480 574 }
481 575 (void) tsd_set(zfs_dbuf_evict_key, NULL);
482 576 }
483 577
484 578 /*
485 579 * The dbuf evict thread is responsible for aging out dbufs from the
486 580 * cache. Once the cache has reached it's maximum size, dbufs are removed
487 581 * and destroyed. The eviction thread will continue running until the size
488 582 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
489 583 * out of the cache it is destroyed and becomes eligible for arc eviction.
490 584 */
491 585 /* ARGSUSED */
492 586 static void
493 587 dbuf_evict_thread(void *unused)
494 588 {
495 589 callb_cpr_t cpr;
496 590
497 591 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
498 592
499 593 mutex_enter(&dbuf_evict_lock);
500 594 while (!dbuf_evict_thread_exit) {
501 595 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
502 596 CALLB_CPR_SAFE_BEGIN(&cpr);
503 597 (void) cv_timedwait_hires(&dbuf_evict_cv,
504 598 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
505 599 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
506 600 }
507 601 mutex_exit(&dbuf_evict_lock);
508 602
509 603 /*
510 604 * Keep evicting as long as we're above the low water mark
511 605 * for the cache. We do this without holding the locks to
512 606 * minimize lock contention.
513 607 */
514 608 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
515 609 dbuf_evict_one();
516 610 }
517 611
518 612 mutex_enter(&dbuf_evict_lock);
|
↓ open down ↓ |
32 lines elided |
↑ open up ↑ |
519 613 }
520 614
521 615 dbuf_evict_thread_exit = B_FALSE;
522 616 cv_broadcast(&dbuf_evict_cv);
523 617 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
524 618 thread_exit();
525 619 }
526 620
527 621 /*
528 622 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
529 - * If the dbuf cache is at its high water mark, then evict a dbuf from the
530 - * dbuf cache using the callers context.
623 + *
624 + * Direct eviction (dbuf_evict_one()) is not called here, because
625 + * the function doesn't care about the selected dbuf, so the following
626 + * case is possible which will cause a deadlock-panic:
627 + *
628 + * Thread A is evicting dbufs that are related to dnodeA
629 + * dnode_evict_dbufs(dnoneA) enters dn_dbufs_mtx and after that walks
630 + * its own AVL of dbufs and calls dbuf_destroy():
631 + * dbuf_destroy() ->...-> dbuf_evict_notify() -> dbuf_evict_one() ->
632 + * -> select a dbuf from cache -> dbuf_destroy() ->
633 + * -> mutex_enter(dn_dbufs_mtx of dnoneB)
634 + *
635 + * Thread B is evicting dbufs that are related to dnodeB
636 + * dnode_evict_dbufs(dnoneB) enters dn_dbufs_mtx and after that walks
637 + * its own AVL of dbufs and calls dbuf_destroy():
638 + * dbuf_destroy() ->...-> dbuf_evict_notify() -> dbuf_evict_one() ->
639 + * -> select a dbuf from cache -> dbuf_destroy() ->
640 + * -> mutex_enter(dn_dbufs_mtx of dnoneA)
531 641 */
532 642 static void
533 643 dbuf_evict_notify(void)
534 644 {
535 645
536 646 /*
537 647 * We use thread specific data to track when a thread has
538 648 * started processing evictions. This allows us to avoid deeply
539 649 * nested stacks that would have a call flow similar to this:
540 650 *
541 651 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
542 652 * ^ |
543 653 * | |
544 654 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
545 655 *
546 656 * The dbuf_eviction_thread will always have its tsd set until
547 657 * that thread exits. All other threads will only set their tsd
548 658 * if they are participating in the eviction process. This only
549 659 * happens if the eviction thread is unable to process evictions
550 660 * fast enough. To keep the dbuf cache size in check, other threads
551 661 * can evict from the dbuf cache directly. Those threads will set
552 662 * their tsd values so that we ensure that they only evict one dbuf
|
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
553 663 * from the dbuf cache.
554 664 */
555 665 if (tsd_get(zfs_dbuf_evict_key) != NULL)
556 666 return;
557 667
558 668 /*
559 669 * We check if we should evict without holding the dbuf_evict_lock,
560 670 * because it's OK to occasionally make the wrong decision here,
561 671 * and grabbing the lock results in massive lock contention.
562 672 */
563 - if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
673 + if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
674 + dbuf_cache_max_bytes) {
564 675 if (dbuf_cache_above_hiwater())
565 676 dbuf_evict_one();
566 677 cv_signal(&dbuf_evict_cv);
567 678 }
568 679 }
569 680
570 681 void
571 682 dbuf_init(void)
572 683 {
573 684 uint64_t hsize = 1ULL << 16;
574 685 dbuf_hash_table_t *h = &dbuf_hash_table;
575 686 int i;
576 687
577 688 /*
578 689 * The hash table is big enough to fill all of physical memory
579 690 * with an average 4K block size. The table will take up
580 691 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
581 692 */
582 693 while (hsize * 4096 < physmem * PAGESIZE)
583 694 hsize <<= 1;
584 695
585 696 retry:
586 697 h->hash_table_mask = hsize - 1;
587 698 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
588 699 if (h->hash_table == NULL) {
589 700 /* XXX - we should really return an error instead of assert */
|
↓ open down ↓ |
16 lines elided |
↑ open up ↑ |
590 701 ASSERT(hsize > (1ULL << 10));
591 702 hsize >>= 1;
592 703 goto retry;
593 704 }
594 705
595 706 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
596 707 sizeof (dmu_buf_impl_t),
597 708 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
598 709
599 710 for (i = 0; i < DBUF_MUTEXES; i++)
600 - mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
711 + mutex_init(DBUF_HASH_MUTEX(h, i), NULL, MUTEX_DEFAULT, NULL);
601 712
713 +
602 714 /*
603 - * Setup the parameters for the dbuf cache. We cap the size of the
604 - * dbuf cache to 1/32nd (default) of the size of the ARC.
715 + * Setup the parameters for the dbuf caches. We set the sizes of the
716 + * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
717 + * of the size of the ARC, respectively.
605 718 */
606 - dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
607 - arc_max_bytes() >> dbuf_cache_max_shift);
719 + if (dbuf_cache_max_bytes == 0 ||
720 + dbuf_cache_max_bytes >= arc_max_bytes()) {
721 + dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift;
722 + }
723 + if (dbuf_metadata_cache_max_bytes == 0 ||
724 + dbuf_metadata_cache_max_bytes >= arc_max_bytes()) {
725 + dbuf_metadata_cache_max_bytes =
726 + arc_max_bytes() >> dbuf_metadata_cache_shift;
727 + }
608 728
609 729 /*
730 + * The combined size of both caches should be less
731 + * the size of ARC, otherwise need to set them to
732 + * the default values.
733 + *
734 + * divide by 2 is a simple overflow protection
735 + */
736 + if (((dbuf_cache_max_bytes / 2) +
737 + (dbuf_metadata_cache_max_bytes / 2)) >= (arc_max_bytes() / 2)) {
738 + dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift;
739 + dbuf_metadata_cache_max_bytes =
740 + arc_max_bytes() >> dbuf_metadata_cache_shift;
741 + }
742 +
743 +
744 + /*
610 745 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
611 746 * configuration is not required.
612 747 */
613 748 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
614 749
615 - dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
616 - offsetof(dmu_buf_impl_t, db_cache_link),
617 - dbuf_cache_multilist_index_func);
618 - refcount_create(&dbuf_cache_size);
750 + for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
751 + dbuf_caches[dcs].cache =
752 + multilist_create(sizeof (dmu_buf_impl_t),
753 + offsetof(dmu_buf_impl_t, db_cache_link),
754 + dbuf_cache_multilist_index_func);
755 + refcount_create(&dbuf_caches[dcs].size);
756 + }
619 757
620 758 tsd_create(&zfs_dbuf_evict_key, NULL);
621 759 dbuf_evict_thread_exit = B_FALSE;
622 760 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
623 761 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
624 762 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
625 763 NULL, 0, &p0, TS_RUN, minclsyspri);
626 764 }
627 765
628 766 void
629 767 dbuf_fini(void)
630 768 {
631 769 dbuf_hash_table_t *h = &dbuf_hash_table;
632 770 int i;
633 771
634 772 for (i = 0; i < DBUF_MUTEXES; i++)
635 - mutex_destroy(&h->hash_mutexes[i]);
773 + mutex_destroy(DBUF_HASH_MUTEX(h, i));
636 774 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
637 775 kmem_cache_destroy(dbuf_kmem_cache);
638 776 taskq_destroy(dbu_evict_taskq);
639 777
640 778 mutex_enter(&dbuf_evict_lock);
641 779 dbuf_evict_thread_exit = B_TRUE;
642 780 while (dbuf_evict_thread_exit) {
643 781 cv_signal(&dbuf_evict_cv);
644 782 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
645 783 }
646 784 mutex_exit(&dbuf_evict_lock);
647 785 tsd_destroy(&zfs_dbuf_evict_key);
648 786
649 787 mutex_destroy(&dbuf_evict_lock);
650 788 cv_destroy(&dbuf_evict_cv);
651 789
652 - refcount_destroy(&dbuf_cache_size);
653 - multilist_destroy(dbuf_cache);
790 + for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
791 + refcount_destroy(&dbuf_caches[dcs].size);
792 + multilist_destroy(dbuf_caches[dcs].cache);
793 + }
654 794 }
655 795
656 796 /*
657 797 * Other stuff.
658 798 */
659 799
660 800 #ifdef ZFS_DEBUG
661 801 static void
662 802 dbuf_verify(dmu_buf_impl_t *db)
663 803 {
664 804 dnode_t *dn;
665 805 dbuf_dirty_record_t *dr;
666 806
667 807 ASSERT(MUTEX_HELD(&db->db_mtx));
668 808
669 809 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
670 810 return;
671 811
672 812 ASSERT(db->db_objset != NULL);
673 813 DB_DNODE_ENTER(db);
674 814 dn = DB_DNODE(db);
675 815 if (dn == NULL) {
676 816 ASSERT(db->db_parent == NULL);
677 817 ASSERT(db->db_blkptr == NULL);
678 818 } else {
679 819 ASSERT3U(db->db.db_object, ==, dn->dn_object);
680 820 ASSERT3P(db->db_objset, ==, dn->dn_objset);
681 821 ASSERT3U(db->db_level, <, dn->dn_nlevels);
682 822 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
683 823 db->db_blkid == DMU_SPILL_BLKID ||
684 824 !avl_is_empty(&dn->dn_dbufs));
685 825 }
686 826 if (db->db_blkid == DMU_BONUS_BLKID) {
687 827 ASSERT(dn != NULL);
688 828 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
689 829 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
690 830 } else if (db->db_blkid == DMU_SPILL_BLKID) {
691 831 ASSERT(dn != NULL);
692 832 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
693 833 ASSERT0(db->db.db_offset);
694 834 } else {
695 835 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
696 836 }
697 837
698 838 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
699 839 ASSERT(dr->dr_dbuf == db);
700 840
701 841 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
702 842 ASSERT(dr->dr_dbuf == db);
703 843
704 844 /*
705 845 * We can't assert that db_size matches dn_datablksz because it
706 846 * can be momentarily different when another thread is doing
707 847 * dnode_set_blksz().
708 848 */
709 849 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
710 850 dr = db->db_data_pending;
711 851 /*
712 852 * It should only be modified in syncing context, so
713 853 * make sure we only have one copy of the data.
714 854 */
715 855 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
716 856 }
717 857
718 858 /* verify db->db_blkptr */
719 859 if (db->db_blkptr) {
720 860 if (db->db_parent == dn->dn_dbuf) {
721 861 /* db is pointed to by the dnode */
722 862 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
723 863 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
724 864 ASSERT(db->db_parent == NULL);
725 865 else
726 866 ASSERT(db->db_parent != NULL);
727 867 if (db->db_blkid != DMU_SPILL_BLKID)
728 868 ASSERT3P(db->db_blkptr, ==,
729 869 &dn->dn_phys->dn_blkptr[db->db_blkid]);
730 870 } else {
731 871 /* db is pointed to by an indirect block */
732 872 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
733 873 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
734 874 ASSERT3U(db->db_parent->db.db_object, ==,
735 875 db->db.db_object);
736 876 /*
737 877 * dnode_grow_indblksz() can make this fail if we don't
738 878 * have the struct_rwlock. XXX indblksz no longer
739 879 * grows. safe to do this now?
740 880 */
741 881 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
742 882 ASSERT3P(db->db_blkptr, ==,
743 883 ((blkptr_t *)db->db_parent->db.db_data +
744 884 db->db_blkid % epb));
745 885 }
746 886 }
747 887 }
748 888 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
749 889 (db->db_buf == NULL || db->db_buf->b_data) &&
750 890 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
751 891 db->db_state != DB_FILL && !dn->dn_free_txg) {
752 892 /*
753 893 * If the blkptr isn't set but they have nonzero data,
754 894 * it had better be dirty, otherwise we'll lose that
755 895 * data when we evict this buffer.
756 896 *
757 897 * There is an exception to this rule for indirect blocks; in
758 898 * this case, if the indirect block is a hole, we fill in a few
759 899 * fields on each of the child blocks (importantly, birth time)
760 900 * to prevent hole birth times from being lost when you
761 901 * partially fill in a hole.
762 902 */
763 903 if (db->db_dirtycnt == 0) {
764 904 if (db->db_level == 0) {
765 905 uint64_t *buf = db->db.db_data;
766 906 int i;
767 907
768 908 for (i = 0; i < db->db.db_size >> 3; i++) {
769 909 ASSERT(buf[i] == 0);
770 910 }
771 911 } else {
772 912 blkptr_t *bps = db->db.db_data;
773 913 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
774 914 db->db.db_size);
775 915 /*
776 916 * We want to verify that all the blkptrs in the
777 917 * indirect block are holes, but we may have
778 918 * automatically set up a few fields for them.
779 919 * We iterate through each blkptr and verify
780 920 * they only have those fields set.
781 921 */
782 922 for (int i = 0;
783 923 i < db->db.db_size / sizeof (blkptr_t);
784 924 i++) {
785 925 blkptr_t *bp = &bps[i];
786 926 ASSERT(ZIO_CHECKSUM_IS_ZERO(
787 927 &bp->blk_cksum));
788 928 ASSERT(
789 929 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
790 930 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
791 931 DVA_IS_EMPTY(&bp->blk_dva[2]));
792 932 ASSERT0(bp->blk_fill);
793 933 ASSERT0(bp->blk_pad[0]);
794 934 ASSERT0(bp->blk_pad[1]);
795 935 ASSERT(!BP_IS_EMBEDDED(bp));
796 936 ASSERT(BP_IS_HOLE(bp));
797 937 ASSERT0(bp->blk_phys_birth);
798 938 }
799 939 }
800 940 }
801 941 }
802 942 DB_DNODE_EXIT(db);
803 943 }
804 944 #endif
805 945
806 946 static void
807 947 dbuf_clear_data(dmu_buf_impl_t *db)
808 948 {
809 949 ASSERT(MUTEX_HELD(&db->db_mtx));
810 950 dbuf_evict_user(db);
811 951 ASSERT3P(db->db_buf, ==, NULL);
812 952 db->db.db_data = NULL;
813 953 if (db->db_state != DB_NOFILL)
814 954 db->db_state = DB_UNCACHED;
815 955 }
816 956
817 957 static void
818 958 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
819 959 {
820 960 ASSERT(MUTEX_HELD(&db->db_mtx));
821 961 ASSERT(buf != NULL);
822 962
823 963 db->db_buf = buf;
824 964 ASSERT(buf->b_data != NULL);
825 965 db->db.db_data = buf->b_data;
826 966 }
827 967
828 968 /*
829 969 * Loan out an arc_buf for read. Return the loaned arc_buf.
830 970 */
831 971 arc_buf_t *
832 972 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
833 973 {
834 974 arc_buf_t *abuf;
835 975
836 976 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
837 977 mutex_enter(&db->db_mtx);
838 978 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
839 979 int blksz = db->db.db_size;
840 980 spa_t *spa = db->db_objset->os_spa;
841 981
842 982 mutex_exit(&db->db_mtx);
843 983 abuf = arc_loan_buf(spa, B_FALSE, blksz);
844 984 bcopy(db->db.db_data, abuf->b_data, blksz);
845 985 } else {
846 986 abuf = db->db_buf;
847 987 arc_loan_inuse_buf(abuf, db);
848 988 db->db_buf = NULL;
849 989 dbuf_clear_data(db);
850 990 mutex_exit(&db->db_mtx);
851 991 }
852 992 return (abuf);
853 993 }
854 994
855 995 /*
856 996 * Calculate which level n block references the data at the level 0 offset
857 997 * provided.
858 998 */
859 999 uint64_t
860 1000 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
861 1001 {
862 1002 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
863 1003 /*
864 1004 * The level n blkid is equal to the level 0 blkid divided by
865 1005 * the number of level 0s in a level n block.
866 1006 *
867 1007 * The level 0 blkid is offset >> datablkshift =
868 1008 * offset / 2^datablkshift.
869 1009 *
870 1010 * The number of level 0s in a level n is the number of block
871 1011 * pointers in an indirect block, raised to the power of level.
872 1012 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
873 1013 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
874 1014 *
875 1015 * Thus, the level n blkid is: offset /
876 1016 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
877 1017 * = offset / 2^(datablkshift + level *
878 1018 * (indblkshift - SPA_BLKPTRSHIFT))
879 1019 * = offset >> (datablkshift + level *
880 1020 * (indblkshift - SPA_BLKPTRSHIFT))
881 1021 */
882 1022 return (offset >> (dn->dn_datablkshift + level *
883 1023 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
884 1024 } else {
885 1025 ASSERT3U(offset, <, dn->dn_datablksz);
886 1026 return (0);
887 1027 }
888 1028 }
889 1029
890 1030 static void
891 1031 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
892 1032 {
893 1033 dmu_buf_impl_t *db = vdb;
894 1034
895 1035 mutex_enter(&db->db_mtx);
896 1036 ASSERT3U(db->db_state, ==, DB_READ);
897 1037 /*
898 1038 * All reads are synchronous, so we must have a hold on the dbuf
899 1039 */
900 1040 ASSERT(refcount_count(&db->db_holds) > 0);
901 1041 ASSERT(db->db_buf == NULL);
902 1042 ASSERT(db->db.db_data == NULL);
903 1043 if (db->db_level == 0 && db->db_freed_in_flight) {
904 1044 /* we were freed in flight; disregard any error */
905 1045 arc_release(buf, db);
906 1046 bzero(buf->b_data, db->db.db_size);
907 1047 arc_buf_freeze(buf);
908 1048 db->db_freed_in_flight = FALSE;
909 1049 dbuf_set_data(db, buf);
910 1050 db->db_state = DB_CACHED;
911 1051 } else if (zio == NULL || zio->io_error == 0) {
912 1052 dbuf_set_data(db, buf);
913 1053 db->db_state = DB_CACHED;
914 1054 } else {
915 1055 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
916 1056 ASSERT3P(db->db_buf, ==, NULL);
917 1057 arc_buf_destroy(buf, db);
918 1058 db->db_state = DB_UNCACHED;
919 1059 }
920 1060 cv_broadcast(&db->db_changed);
921 1061 dbuf_rele_and_unlock(db, NULL);
922 1062 }
923 1063
924 1064 static void
925 1065 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
926 1066 {
927 1067 dnode_t *dn;
928 1068 zbookmark_phys_t zb;
929 1069 arc_flags_t aflags = ARC_FLAG_NOWAIT;
930 1070
931 1071 DB_DNODE_ENTER(db);
932 1072 dn = DB_DNODE(db);
933 1073 ASSERT(!refcount_is_zero(&db->db_holds));
934 1074 /* We need the struct_rwlock to prevent db_blkptr from changing. */
935 1075 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
936 1076 ASSERT(MUTEX_HELD(&db->db_mtx));
937 1077 ASSERT(db->db_state == DB_UNCACHED);
938 1078 ASSERT(db->db_buf == NULL);
939 1079
940 1080 if (db->db_blkid == DMU_BONUS_BLKID) {
941 1081 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
942 1082
943 1083 ASSERT3U(bonuslen, <=, db->db.db_size);
944 1084 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
945 1085 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
946 1086 if (bonuslen < DN_MAX_BONUSLEN)
947 1087 bzero(db->db.db_data, DN_MAX_BONUSLEN);
948 1088 if (bonuslen)
949 1089 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
950 1090 DB_DNODE_EXIT(db);
951 1091 db->db_state = DB_CACHED;
952 1092 mutex_exit(&db->db_mtx);
953 1093 return;
954 1094 }
955 1095
956 1096 /*
957 1097 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
958 1098 * processes the delete record and clears the bp while we are waiting
959 1099 * for the dn_mtx (resulting in a "no" from block_freed).
960 1100 */
961 1101 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
962 1102 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
963 1103 BP_IS_HOLE(db->db_blkptr)))) {
964 1104 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
965 1105
966 1106 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
967 1107 db->db.db_size));
968 1108 bzero(db->db.db_data, db->db.db_size);
969 1109
970 1110 if (db->db_blkptr != NULL && db->db_level > 0 &&
971 1111 BP_IS_HOLE(db->db_blkptr) &&
972 1112 db->db_blkptr->blk_birth != 0) {
973 1113 blkptr_t *bps = db->db.db_data;
974 1114 for (int i = 0; i < ((1 <<
975 1115 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
976 1116 i++) {
977 1117 blkptr_t *bp = &bps[i];
978 1118 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
979 1119 1 << dn->dn_indblkshift);
980 1120 BP_SET_LSIZE(bp,
981 1121 BP_GET_LEVEL(db->db_blkptr) == 1 ?
982 1122 dn->dn_datablksz :
983 1123 BP_GET_LSIZE(db->db_blkptr));
984 1124 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
985 1125 BP_SET_LEVEL(bp,
986 1126 BP_GET_LEVEL(db->db_blkptr) - 1);
987 1127 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
988 1128 }
989 1129 }
990 1130 DB_DNODE_EXIT(db);
991 1131 db->db_state = DB_CACHED;
992 1132 mutex_exit(&db->db_mtx);
993 1133 return;
994 1134 }
995 1135
996 1136 DB_DNODE_EXIT(db);
997 1137
998 1138 db->db_state = DB_READ;
999 1139 mutex_exit(&db->db_mtx);
1000 1140
1001 1141 if (DBUF_IS_L2CACHEABLE(db))
1002 1142 aflags |= ARC_FLAG_L2CACHE;
1003 1143
1004 1144 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1005 1145 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1006 1146 db->db.db_object, db->db_level, db->db_blkid);
1007 1147
1008 1148 dbuf_add_ref(db, NULL);
1009 1149
1010 1150 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1011 1151 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1012 1152 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1013 1153 &aflags, &zb);
1014 1154 }
1015 1155
1016 1156 /*
1017 1157 * This is our just-in-time copy function. It makes a copy of buffers that
1018 1158 * have been modified in a previous transaction group before we access them in
1019 1159 * the current active group.
1020 1160 *
1021 1161 * This function is used in three places: when we are dirtying a buffer for the
1022 1162 * first time in a txg, when we are freeing a range in a dnode that includes
1023 1163 * this buffer, and when we are accessing a buffer which was received compressed
1024 1164 * and later referenced in a WRITE_BYREF record.
1025 1165 *
1026 1166 * Note that when we are called from dbuf_free_range() we do not put a hold on
1027 1167 * the buffer, we just traverse the active dbuf list for the dnode.
1028 1168 */
1029 1169 static void
1030 1170 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1031 1171 {
1032 1172 dbuf_dirty_record_t *dr = db->db_last_dirty;
1033 1173
1034 1174 ASSERT(MUTEX_HELD(&db->db_mtx));
1035 1175 ASSERT(db->db.db_data != NULL);
1036 1176 ASSERT(db->db_level == 0);
1037 1177 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1038 1178
1039 1179 if (dr == NULL ||
1040 1180 (dr->dt.dl.dr_data !=
1041 1181 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1042 1182 return;
1043 1183
1044 1184 /*
1045 1185 * If the last dirty record for this dbuf has not yet synced
1046 1186 * and its referencing the dbuf data, either:
1047 1187 * reset the reference to point to a new copy,
1048 1188 * or (if there a no active holders)
1049 1189 * just null out the current db_data pointer.
1050 1190 */
1051 1191 ASSERT(dr->dr_txg >= txg - 2);
1052 1192 if (db->db_blkid == DMU_BONUS_BLKID) {
1053 1193 /* Note that the data bufs here are zio_bufs */
1054 1194 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1055 1195 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1056 1196 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1057 1197 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1058 1198 int size = arc_buf_size(db->db_buf);
1059 1199 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1060 1200 spa_t *spa = db->db_objset->os_spa;
1061 1201 enum zio_compress compress_type =
1062 1202 arc_get_compression(db->db_buf);
1063 1203
1064 1204 if (compress_type == ZIO_COMPRESS_OFF) {
1065 1205 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1066 1206 } else {
1067 1207 ASSERT3U(type, ==, ARC_BUFC_DATA);
1068 1208 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1069 1209 size, arc_buf_lsize(db->db_buf), compress_type);
1070 1210 }
1071 1211 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1072 1212 } else {
1073 1213 db->db_buf = NULL;
1074 1214 dbuf_clear_data(db);
1075 1215 }
1076 1216 }
1077 1217
1078 1218 int
1079 1219 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1080 1220 {
1081 1221 int err = 0;
1082 1222 boolean_t prefetch;
1083 1223 dnode_t *dn;
1084 1224
1085 1225 /*
1086 1226 * We don't have to hold the mutex to check db_state because it
1087 1227 * can't be freed while we have a hold on the buffer.
1088 1228 */
1089 1229 ASSERT(!refcount_is_zero(&db->db_holds));
1090 1230
1091 1231 if (db->db_state == DB_NOFILL)
1092 1232 return (SET_ERROR(EIO));
1093 1233
1094 1234 DB_DNODE_ENTER(db);
1095 1235 dn = DB_DNODE(db);
1096 1236 if ((flags & DB_RF_HAVESTRUCT) == 0)
1097 1237 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1098 1238
1099 1239 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1100 1240 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1101 1241 DBUF_IS_CACHEABLE(db);
1102 1242
1103 1243 mutex_enter(&db->db_mtx);
1104 1244 if (db->db_state == DB_CACHED) {
1105 1245 /*
1106 1246 * If the arc buf is compressed, we need to decompress it to
1107 1247 * read the data. This could happen during the "zfs receive" of
1108 1248 * a stream which is compressed and deduplicated.
1109 1249 */
1110 1250 if (db->db_buf != NULL &&
1111 1251 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1112 1252 dbuf_fix_old_data(db,
1113 1253 spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1114 1254 err = arc_decompress(db->db_buf);
1115 1255 dbuf_set_data(db, db->db_buf);
1116 1256 }
1117 1257 mutex_exit(&db->db_mtx);
1118 1258 if (prefetch)
1119 1259 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1120 1260 if ((flags & DB_RF_HAVESTRUCT) == 0)
1121 1261 rw_exit(&dn->dn_struct_rwlock);
1122 1262 DB_DNODE_EXIT(db);
1123 1263 } else if (db->db_state == DB_UNCACHED) {
1124 1264 spa_t *spa = dn->dn_objset->os_spa;
1125 1265 boolean_t need_wait = B_FALSE;
1126 1266
1127 1267 if (zio == NULL &&
1128 1268 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1129 1269 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1130 1270 need_wait = B_TRUE;
1131 1271 }
1132 1272 dbuf_read_impl(db, zio, flags);
1133 1273
1134 1274 /* dbuf_read_impl has dropped db_mtx for us */
1135 1275
1136 1276 if (prefetch)
1137 1277 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1138 1278
1139 1279 if ((flags & DB_RF_HAVESTRUCT) == 0)
1140 1280 rw_exit(&dn->dn_struct_rwlock);
1141 1281 DB_DNODE_EXIT(db);
1142 1282
1143 1283 if (need_wait)
1144 1284 err = zio_wait(zio);
1145 1285 } else {
1146 1286 /*
1147 1287 * Another reader came in while the dbuf was in flight
1148 1288 * between UNCACHED and CACHED. Either a writer will finish
1149 1289 * writing the buffer (sending the dbuf to CACHED) or the
1150 1290 * first reader's request will reach the read_done callback
1151 1291 * and send the dbuf to CACHED. Otherwise, a failure
1152 1292 * occurred and the dbuf went to UNCACHED.
1153 1293 */
1154 1294 mutex_exit(&db->db_mtx);
1155 1295 if (prefetch)
1156 1296 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1157 1297 if ((flags & DB_RF_HAVESTRUCT) == 0)
1158 1298 rw_exit(&dn->dn_struct_rwlock);
1159 1299 DB_DNODE_EXIT(db);
1160 1300
1161 1301 /* Skip the wait per the caller's request. */
1162 1302 mutex_enter(&db->db_mtx);
1163 1303 if ((flags & DB_RF_NEVERWAIT) == 0) {
1164 1304 while (db->db_state == DB_READ ||
1165 1305 db->db_state == DB_FILL) {
1166 1306 ASSERT(db->db_state == DB_READ ||
1167 1307 (flags & DB_RF_HAVESTRUCT) == 0);
1168 1308 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1169 1309 db, zio_t *, zio);
1170 1310 cv_wait(&db->db_changed, &db->db_mtx);
1171 1311 }
1172 1312 if (db->db_state == DB_UNCACHED)
1173 1313 err = SET_ERROR(EIO);
1174 1314 }
1175 1315 mutex_exit(&db->db_mtx);
1176 1316 }
1177 1317
1178 1318 return (err);
1179 1319 }
1180 1320
1181 1321 static void
1182 1322 dbuf_noread(dmu_buf_impl_t *db)
1183 1323 {
1184 1324 ASSERT(!refcount_is_zero(&db->db_holds));
1185 1325 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1186 1326 mutex_enter(&db->db_mtx);
1187 1327 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1188 1328 cv_wait(&db->db_changed, &db->db_mtx);
1189 1329 if (db->db_state == DB_UNCACHED) {
1190 1330 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1191 1331 spa_t *spa = db->db_objset->os_spa;
1192 1332
1193 1333 ASSERT(db->db_buf == NULL);
1194 1334 ASSERT(db->db.db_data == NULL);
1195 1335 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1196 1336 db->db_state = DB_FILL;
1197 1337 } else if (db->db_state == DB_NOFILL) {
1198 1338 dbuf_clear_data(db);
1199 1339 } else {
1200 1340 ASSERT3U(db->db_state, ==, DB_CACHED);
1201 1341 }
1202 1342 mutex_exit(&db->db_mtx);
1203 1343 }
1204 1344
1205 1345 void
1206 1346 dbuf_unoverride(dbuf_dirty_record_t *dr)
1207 1347 {
1208 1348 dmu_buf_impl_t *db = dr->dr_dbuf;
1209 1349 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1210 1350 uint64_t txg = dr->dr_txg;
1211 1351
1212 1352 ASSERT(MUTEX_HELD(&db->db_mtx));
1213 1353 /*
1214 1354 * This assert is valid because dmu_sync() expects to be called by
1215 1355 * a zilog's get_data while holding a range lock. This call only
1216 1356 * comes from dbuf_dirty() callers who must also hold a range lock.
1217 1357 */
1218 1358 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1219 1359 ASSERT(db->db_level == 0);
1220 1360
1221 1361 if (db->db_blkid == DMU_BONUS_BLKID ||
1222 1362 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1223 1363 return;
1224 1364
1225 1365 ASSERT(db->db_data_pending != dr);
1226 1366
1227 1367 /* free this block */
1228 1368 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1229 1369 zio_free(db->db_objset->os_spa, txg, bp);
1230 1370
1231 1371 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1232 1372 dr->dt.dl.dr_nopwrite = B_FALSE;
1233 1373
1234 1374 /*
1235 1375 * Release the already-written buffer, so we leave it in
1236 1376 * a consistent dirty state. Note that all callers are
1237 1377 * modifying the buffer, so they will immediately do
1238 1378 * another (redundant) arc_release(). Therefore, leave
1239 1379 * the buf thawed to save the effort of freezing &
1240 1380 * immediately re-thawing it.
1241 1381 */
1242 1382 arc_release(dr->dt.dl.dr_data, db);
1243 1383 }
1244 1384
1245 1385 /*
1246 1386 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1247 1387 * data blocks in the free range, so that any future readers will find
1248 1388 * empty blocks.
1249 1389 */
1250 1390 void
1251 1391 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1252 1392 dmu_tx_t *tx)
1253 1393 {
1254 1394 dmu_buf_impl_t db_search;
1255 1395 dmu_buf_impl_t *db, *db_next;
1256 1396 uint64_t txg = tx->tx_txg;
1257 1397 avl_index_t where;
1258 1398
1259 1399 if (end_blkid > dn->dn_maxblkid &&
1260 1400 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1261 1401 end_blkid = dn->dn_maxblkid;
1262 1402 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1263 1403
1264 1404 db_search.db_level = 0;
1265 1405 db_search.db_blkid = start_blkid;
1266 1406 db_search.db_state = DB_SEARCH;
1267 1407
1268 1408 mutex_enter(&dn->dn_dbufs_mtx);
1269 1409 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1270 1410 ASSERT3P(db, ==, NULL);
1271 1411
1272 1412 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1273 1413
1274 1414 for (; db != NULL; db = db_next) {
1275 1415 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1276 1416 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1277 1417
1278 1418 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1279 1419 break;
1280 1420 }
1281 1421 ASSERT3U(db->db_blkid, >=, start_blkid);
1282 1422
1283 1423 /* found a level 0 buffer in the range */
1284 1424 mutex_enter(&db->db_mtx);
1285 1425 if (dbuf_undirty(db, tx)) {
1286 1426 /* mutex has been dropped and dbuf destroyed */
1287 1427 continue;
1288 1428 }
1289 1429
1290 1430 if (db->db_state == DB_UNCACHED ||
1291 1431 db->db_state == DB_NOFILL ||
1292 1432 db->db_state == DB_EVICTING) {
1293 1433 ASSERT(db->db.db_data == NULL);
1294 1434 mutex_exit(&db->db_mtx);
1295 1435 continue;
1296 1436 }
1297 1437 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1298 1438 /* will be handled in dbuf_read_done or dbuf_rele */
1299 1439 db->db_freed_in_flight = TRUE;
1300 1440 mutex_exit(&db->db_mtx);
1301 1441 continue;
1302 1442 }
1303 1443 if (refcount_count(&db->db_holds) == 0) {
1304 1444 ASSERT(db->db_buf);
1305 1445 dbuf_destroy(db);
1306 1446 continue;
1307 1447 }
1308 1448 /* The dbuf is referenced */
1309 1449
1310 1450 if (db->db_last_dirty != NULL) {
1311 1451 dbuf_dirty_record_t *dr = db->db_last_dirty;
1312 1452
1313 1453 if (dr->dr_txg == txg) {
1314 1454 /*
1315 1455 * This buffer is "in-use", re-adjust the file
1316 1456 * size to reflect that this buffer may
1317 1457 * contain new data when we sync.
1318 1458 */
1319 1459 if (db->db_blkid != DMU_SPILL_BLKID &&
1320 1460 db->db_blkid > dn->dn_maxblkid)
1321 1461 dn->dn_maxblkid = db->db_blkid;
1322 1462 dbuf_unoverride(dr);
1323 1463 } else {
1324 1464 /*
1325 1465 * This dbuf is not dirty in the open context.
1326 1466 * Either uncache it (if its not referenced in
1327 1467 * the open context) or reset its contents to
1328 1468 * empty.
1329 1469 */
1330 1470 dbuf_fix_old_data(db, txg);
1331 1471 }
1332 1472 }
1333 1473 /* clear the contents if its cached */
1334 1474 if (db->db_state == DB_CACHED) {
1335 1475 ASSERT(db->db.db_data != NULL);
1336 1476 arc_release(db->db_buf, db);
1337 1477 bzero(db->db.db_data, db->db.db_size);
1338 1478 arc_buf_freeze(db->db_buf);
1339 1479 }
1340 1480
1341 1481 mutex_exit(&db->db_mtx);
1342 1482 }
1343 1483 mutex_exit(&dn->dn_dbufs_mtx);
1344 1484 }
1345 1485
1346 1486 void
1347 1487 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1348 1488 {
1349 1489 arc_buf_t *buf, *obuf;
1350 1490 int osize = db->db.db_size;
1351 1491 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1352 1492 dnode_t *dn;
1353 1493
1354 1494 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1355 1495
1356 1496 DB_DNODE_ENTER(db);
1357 1497 dn = DB_DNODE(db);
1358 1498
1359 1499 /* XXX does *this* func really need the lock? */
1360 1500 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1361 1501
1362 1502 /*
1363 1503 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1364 1504 * is OK, because there can be no other references to the db
1365 1505 * when we are changing its size, so no concurrent DB_FILL can
1366 1506 * be happening.
1367 1507 */
1368 1508 /*
1369 1509 * XXX we should be doing a dbuf_read, checking the return
1370 1510 * value and returning that up to our callers
1371 1511 */
1372 1512 dmu_buf_will_dirty(&db->db, tx);
1373 1513
1374 1514 /* create the data buffer for the new block */
1375 1515 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1376 1516
1377 1517 /* copy old block data to the new block */
1378 1518 obuf = db->db_buf;
1379 1519 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1380 1520 /* zero the remainder */
1381 1521 if (size > osize)
1382 1522 bzero((uint8_t *)buf->b_data + osize, size - osize);
1383 1523
1384 1524 mutex_enter(&db->db_mtx);
1385 1525 dbuf_set_data(db, buf);
1386 1526 arc_buf_destroy(obuf, db);
1387 1527 db->db.db_size = size;
1388 1528
1389 1529 if (db->db_level == 0) {
1390 1530 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1391 1531 db->db_last_dirty->dt.dl.dr_data = buf;
1392 1532 }
1393 1533 mutex_exit(&db->db_mtx);
1394 1534
1395 1535 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1396 1536 DB_DNODE_EXIT(db);
1397 1537 }
1398 1538
1399 1539 void
1400 1540 dbuf_release_bp(dmu_buf_impl_t *db)
1401 1541 {
1402 1542 objset_t *os = db->db_objset;
1403 1543
1404 1544 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1405 1545 ASSERT(arc_released(os->os_phys_buf) ||
1406 1546 list_link_active(&os->os_dsl_dataset->ds_synced_link));
|
↓ open down ↓ |
743 lines elided |
↑ open up ↑ |
1407 1547 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1408 1548
1409 1549 (void) arc_release(db->db_buf, db);
1410 1550 }
1411 1551
1412 1552 /*
1413 1553 * We already have a dirty record for this TXG, and we are being
1414 1554 * dirtied again.
1415 1555 */
1416 1556 static void
1417 -dbuf_redirty(dbuf_dirty_record_t *dr)
1557 +dbuf_redirty(dbuf_dirty_record_t *dr, boolean_t usesc)
1418 1558 {
1419 1559 dmu_buf_impl_t *db = dr->dr_dbuf;
1420 1560
1421 1561 ASSERT(MUTEX_HELD(&db->db_mtx));
1422 1562
1423 1563 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1424 1564 /*
1425 1565 * If this buffer has already been written out,
1426 1566 * we now need to reset its state.
1427 1567 */
1428 1568 dbuf_unoverride(dr);
1429 1569 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1430 1570 db->db_state != DB_NOFILL) {
1431 1571 /* Already released on initial dirty, so just thaw. */
1432 1572 ASSERT(arc_released(db->db_buf));
1433 1573 arc_buf_thaw(db->db_buf);
1434 1574 }
1435 1575 }
1576 + /*
1577 + * Special class usage of dirty dbuf could be changed,
1578 + * update the dirty entry.
1579 + */
1580 + dr->dr_usesc = usesc;
1436 1581 }
1437 1582
1438 1583 dbuf_dirty_record_t *
1439 -dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1584 +dbuf_dirty_sc(dmu_buf_impl_t *db, dmu_tx_t *tx, boolean_t usesc)
1440 1585 {
1441 1586 dnode_t *dn;
1442 1587 objset_t *os;
1443 1588 dbuf_dirty_record_t **drp, *dr;
1444 1589 int drop_struct_lock = FALSE;
1445 1590 int txgoff = tx->tx_txg & TXG_MASK;
1446 1591
1447 1592 ASSERT(tx->tx_txg != 0);
1448 1593 ASSERT(!refcount_is_zero(&db->db_holds));
1449 1594 DMU_TX_DIRTY_BUF(tx, db);
1450 1595
1451 1596 DB_DNODE_ENTER(db);
1452 1597 dn = DB_DNODE(db);
1453 1598 /*
1454 1599 * Shouldn't dirty a regular buffer in syncing context. Private
1455 1600 * objects may be dirtied in syncing context, but only if they
1456 1601 * were already pre-dirtied in open context.
1457 1602 */
1458 1603 #ifdef DEBUG
1459 1604 if (dn->dn_objset->os_dsl_dataset != NULL) {
1460 1605 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1461 1606 RW_READER, FTAG);
1462 1607 }
1463 1608 ASSERT(!dmu_tx_is_syncing(tx) ||
1464 1609 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1465 1610 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1466 1611 dn->dn_objset->os_dsl_dataset == NULL);
1467 1612 if (dn->dn_objset->os_dsl_dataset != NULL)
1468 1613 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1469 1614 #endif
1470 1615 /*
1471 1616 * We make this assert for private objects as well, but after we
1472 1617 * check if we're already dirty. They are allowed to re-dirty
1473 1618 * in syncing context.
1474 1619 */
1475 1620 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1476 1621 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1477 1622 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1478 1623
1479 1624 mutex_enter(&db->db_mtx);
1480 1625 /*
1481 1626 * XXX make this true for indirects too? The problem is that
1482 1627 * transactions created with dmu_tx_create_assigned() from
1483 1628 * syncing context don't bother holding ahead.
1484 1629 */
1485 1630 ASSERT(db->db_level != 0 ||
1486 1631 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1487 1632 db->db_state == DB_NOFILL);
1488 1633
1489 1634 mutex_enter(&dn->dn_mtx);
1490 1635 /*
1491 1636 * Don't set dirtyctx to SYNC if we're just modifying this as we
1492 1637 * initialize the objset.
1493 1638 */
1494 1639 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1495 1640 if (dn->dn_objset->os_dsl_dataset != NULL) {
1496 1641 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1497 1642 RW_READER, FTAG);
1498 1643 }
1499 1644 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1500 1645 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1501 1646 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1502 1647 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1503 1648 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1504 1649 }
1505 1650 if (dn->dn_objset->os_dsl_dataset != NULL) {
1506 1651 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1507 1652 FTAG);
1508 1653 }
1509 1654 }
1510 1655 mutex_exit(&dn->dn_mtx);
1511 1656
1512 1657 if (db->db_blkid == DMU_SPILL_BLKID)
1513 1658 dn->dn_have_spill = B_TRUE;
1514 1659
1515 1660 /*
|
↓ open down ↓ |
66 lines elided |
↑ open up ↑ |
1516 1661 * If this buffer is already dirty, we're done.
1517 1662 */
1518 1663 drp = &db->db_last_dirty;
1519 1664 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1520 1665 db->db.db_object == DMU_META_DNODE_OBJECT);
1521 1666 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1522 1667 drp = &dr->dr_next;
1523 1668 if (dr && dr->dr_txg == tx->tx_txg) {
1524 1669 DB_DNODE_EXIT(db);
1525 1670
1526 - dbuf_redirty(dr);
1671 + dbuf_redirty(dr, usesc);
1527 1672 mutex_exit(&db->db_mtx);
1528 1673 return (dr);
1529 1674 }
1530 1675
1531 1676 /*
1532 1677 * Only valid if not already dirty.
1533 1678 */
1534 1679 ASSERT(dn->dn_object == 0 ||
1535 1680 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1536 1681 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1537 1682
1538 1683 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1539 1684
1540 1685 /*
1541 1686 * We should only be dirtying in syncing context if it's the
1542 1687 * mos or we're initializing the os or it's a special object.
1543 1688 * However, we are allowed to dirty in syncing context provided
1544 1689 * we already dirtied it in open context. Hence we must make
1545 1690 * this assertion only if we're not already dirty.
1546 1691 */
1547 1692 os = dn->dn_objset;
1548 1693 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1549 1694 #ifdef DEBUG
1550 1695 if (dn->dn_objset->os_dsl_dataset != NULL)
1551 1696 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1552 1697 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1553 1698 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1554 1699 if (dn->dn_objset->os_dsl_dataset != NULL)
1555 1700 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1556 1701 #endif
1557 1702 ASSERT(db->db.db_size != 0);
1558 1703
1559 1704 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1560 1705
1561 1706 if (db->db_blkid != DMU_BONUS_BLKID) {
1562 1707 dmu_objset_willuse_space(os, db->db.db_size, tx);
1563 1708 }
1564 1709
1565 1710 /*
1566 1711 * If this buffer is dirty in an old transaction group we need
1567 1712 * to make a copy of it so that the changes we make in this
1568 1713 * transaction group won't leak out when we sync the older txg.
1569 1714 */
1570 1715 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1571 1716 if (db->db_level == 0) {
1572 1717 void *data_old = db->db_buf;
1573 1718
1574 1719 if (db->db_state != DB_NOFILL) {
1575 1720 if (db->db_blkid == DMU_BONUS_BLKID) {
1576 1721 dbuf_fix_old_data(db, tx->tx_txg);
1577 1722 data_old = db->db.db_data;
1578 1723 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1579 1724 /*
1580 1725 * Release the data buffer from the cache so
1581 1726 * that we can modify it without impacting
1582 1727 * possible other users of this cached data
1583 1728 * block. Note that indirect blocks and
1584 1729 * private objects are not released until the
1585 1730 * syncing state (since they are only modified
1586 1731 * then).
1587 1732 */
1588 1733 arc_release(db->db_buf, db);
1589 1734 dbuf_fix_old_data(db, tx->tx_txg);
1590 1735 data_old = db->db_buf;
1591 1736 }
1592 1737 ASSERT(data_old != NULL);
1593 1738 }
1594 1739 dr->dt.dl.dr_data = data_old;
1595 1740 } else {
|
↓ open down ↓ |
59 lines elided |
↑ open up ↑ |
1596 1741 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1597 1742 list_create(&dr->dt.di.dr_children,
1598 1743 sizeof (dbuf_dirty_record_t),
1599 1744 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1600 1745 }
1601 1746 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1602 1747 dr->dr_accounted = db->db.db_size;
1603 1748 dr->dr_dbuf = db;
1604 1749 dr->dr_txg = tx->tx_txg;
1605 1750 dr->dr_next = *drp;
1751 + dr->dr_usesc = usesc;
1606 1752 *drp = dr;
1607 1753
1608 1754 /*
1609 1755 * We could have been freed_in_flight between the dbuf_noread
1610 1756 * and dbuf_dirty. We win, as though the dbuf_noread() had
1611 1757 * happened after the free.
1612 1758 */
1613 1759 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1614 1760 db->db_blkid != DMU_SPILL_BLKID) {
1615 1761 mutex_enter(&dn->dn_mtx);
1616 1762 if (dn->dn_free_ranges[txgoff] != NULL) {
1617 1763 range_tree_clear(dn->dn_free_ranges[txgoff],
1618 1764 db->db_blkid, 1);
1619 1765 }
1620 1766 mutex_exit(&dn->dn_mtx);
1621 1767 db->db_freed_in_flight = FALSE;
1622 1768 }
1623 1769
1624 1770 /*
1625 1771 * This buffer is now part of this txg
1626 1772 */
1627 1773 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1628 1774 db->db_dirtycnt += 1;
|
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
1629 1775 ASSERT3U(db->db_dirtycnt, <=, 3);
1630 1776
1631 1777 mutex_exit(&db->db_mtx);
1632 1778
1633 1779 if (db->db_blkid == DMU_BONUS_BLKID ||
1634 1780 db->db_blkid == DMU_SPILL_BLKID) {
1635 1781 mutex_enter(&dn->dn_mtx);
1636 1782 ASSERT(!list_link_active(&dr->dr_dirty_node));
1637 1783 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1638 1784 mutex_exit(&dn->dn_mtx);
1639 - dnode_setdirty(dn, tx);
1785 + dnode_setdirty_sc(dn, tx, usesc);
1640 1786 DB_DNODE_EXIT(db);
1641 1787 return (dr);
1642 1788 }
1643 1789
1644 1790 /*
1645 1791 * The dn_struct_rwlock prevents db_blkptr from changing
1646 1792 * due to a write from syncing context completing
1647 1793 * while we are running, so we want to acquire it before
1648 1794 * looking at db_blkptr.
1649 1795 */
1650 1796 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1651 1797 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1652 1798 drop_struct_lock = TRUE;
1653 1799 }
1654 1800
1655 1801 /*
1656 1802 * We need to hold the dn_struct_rwlock to make this assertion,
1657 1803 * because it protects dn_phys / dn_next_nlevels from changing.
1658 1804 */
1659 1805 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1660 1806 dn->dn_phys->dn_nlevels > db->db_level ||
1661 1807 dn->dn_next_nlevels[txgoff] > db->db_level ||
1662 1808 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1663 1809 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
|
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
1664 1810
1665 1811 /*
1666 1812 * If we are overwriting a dedup BP, then unless it is snapshotted,
1667 1813 * when we get to syncing context we will need to decrement its
1668 1814 * refcount in the DDT. Prefetch the relevant DDT block so that
1669 1815 * syncing context won't have to wait for the i/o.
1670 1816 */
1671 1817 ddt_prefetch(os->os_spa, db->db_blkptr);
1672 1818
1673 1819 if (db->db_level == 0) {
1674 - dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1820 + dnode_new_blkid(dn, db->db_blkid, tx, usesc, drop_struct_lock);
1675 1821 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1676 1822 }
1677 1823
1678 1824 if (db->db_level+1 < dn->dn_nlevels) {
1679 1825 dmu_buf_impl_t *parent = db->db_parent;
1680 1826 dbuf_dirty_record_t *di;
1681 1827 int parent_held = FALSE;
1682 1828
1683 1829 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1684 1830 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1685 1831
1686 1832 parent = dbuf_hold_level(dn, db->db_level+1,
1687 1833 db->db_blkid >> epbs, FTAG);
1688 1834 ASSERT(parent != NULL);
1689 1835 parent_held = TRUE;
1690 1836 }
1691 1837 if (drop_struct_lock)
1692 1838 rw_exit(&dn->dn_struct_rwlock);
1693 1839 ASSERT3U(db->db_level+1, ==, parent->db_level);
1694 - di = dbuf_dirty(parent, tx);
1840 + di = dbuf_dirty_sc(parent, tx, usesc);
1695 1841 if (parent_held)
1696 1842 dbuf_rele(parent, FTAG);
1697 1843
1698 1844 mutex_enter(&db->db_mtx);
1699 1845 /*
1700 1846 * Since we've dropped the mutex, it's possible that
1701 1847 * dbuf_undirty() might have changed this out from under us.
1702 1848 */
1703 1849 if (db->db_last_dirty == dr ||
1704 1850 dn->dn_object == DMU_META_DNODE_OBJECT) {
1705 1851 mutex_enter(&di->dt.di.dr_mtx);
1706 1852 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1707 1853 ASSERT(!list_link_active(&dr->dr_dirty_node));
1708 1854 list_insert_tail(&di->dt.di.dr_children, dr);
1709 1855 mutex_exit(&di->dt.di.dr_mtx);
1710 1856 dr->dr_parent = di;
1711 1857 }
1858 +
1859 + /*
1860 + * Special class usage of dirty dbuf could be changed,
1861 + * update the dirty entry.
1862 + */
1863 + dr->dr_usesc = usesc;
1712 1864 mutex_exit(&db->db_mtx);
1713 1865 } else {
1714 1866 ASSERT(db->db_level+1 == dn->dn_nlevels);
1715 1867 ASSERT(db->db_blkid < dn->dn_nblkptr);
1716 1868 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1717 1869 mutex_enter(&dn->dn_mtx);
1718 1870 ASSERT(!list_link_active(&dr->dr_dirty_node));
1719 1871 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1720 1872 mutex_exit(&dn->dn_mtx);
1721 1873 if (drop_struct_lock)
1722 1874 rw_exit(&dn->dn_struct_rwlock);
1723 1875 }
1724 1876
1725 - dnode_setdirty(dn, tx);
1877 + dnode_setdirty_sc(dn, tx, usesc);
1726 1878 DB_DNODE_EXIT(db);
1727 1879 return (dr);
1728 1880 }
1729 1881
1882 +dbuf_dirty_record_t *
1883 +dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1884 +{
1885 + spa_t *spa;
1886 +
1887 + ASSERT(db->db_objset != NULL);
1888 + spa = db->db_objset->os_spa;
1889 +
1890 + return (dbuf_dirty_sc(db, tx, spa->spa_usesc));
1891 +}
1892 +
1730 1893 /*
1731 1894 * Undirty a buffer in the transaction group referenced by the given
1732 1895 * transaction. Return whether this evicted the dbuf.
1733 1896 */
1734 1897 static boolean_t
1735 1898 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1736 1899 {
1737 1900 dnode_t *dn;
1738 1901 uint64_t txg = tx->tx_txg;
1739 1902 dbuf_dirty_record_t *dr, **drp;
1740 1903
1741 1904 ASSERT(txg != 0);
1742 1905
1743 1906 /*
1744 1907 * Due to our use of dn_nlevels below, this can only be called
1745 1908 * in open context, unless we are operating on the MOS.
1746 1909 * From syncing context, dn_nlevels may be different from the
1747 1910 * dn_nlevels used when dbuf was dirtied.
1748 1911 */
1749 1912 ASSERT(db->db_objset ==
1750 1913 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1751 1914 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1752 1915 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1753 1916 ASSERT0(db->db_level);
1754 1917 ASSERT(MUTEX_HELD(&db->db_mtx));
1755 1918
1756 1919 /*
1757 1920 * If this buffer is not dirty, we're done.
1758 1921 */
1759 1922 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1760 1923 if (dr->dr_txg <= txg)
1761 1924 break;
1762 1925 if (dr == NULL || dr->dr_txg < txg)
1763 1926 return (B_FALSE);
1764 1927 ASSERT(dr->dr_txg == txg);
1765 1928 ASSERT(dr->dr_dbuf == db);
1766 1929
1767 1930 DB_DNODE_ENTER(db);
1768 1931 dn = DB_DNODE(db);
1769 1932
1770 1933 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1771 1934
1772 1935 ASSERT(db->db.db_size != 0);
1773 1936
1774 1937 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1775 1938 dr->dr_accounted, txg);
1776 1939
1777 1940 *drp = dr->dr_next;
1778 1941
1779 1942 /*
1780 1943 * Note that there are three places in dbuf_dirty()
1781 1944 * where this dirty record may be put on a list.
1782 1945 * Make sure to do a list_remove corresponding to
1783 1946 * every one of those list_insert calls.
1784 1947 */
1785 1948 if (dr->dr_parent) {
1786 1949 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1787 1950 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1788 1951 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1789 1952 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1790 1953 db->db_level + 1 == dn->dn_nlevels) {
1791 1954 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1792 1955 mutex_enter(&dn->dn_mtx);
1793 1956 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1794 1957 mutex_exit(&dn->dn_mtx);
1795 1958 }
1796 1959 DB_DNODE_EXIT(db);
1797 1960
1798 1961 if (db->db_state != DB_NOFILL) {
1799 1962 dbuf_unoverride(dr);
1800 1963
1801 1964 ASSERT(db->db_buf != NULL);
1802 1965 ASSERT(dr->dt.dl.dr_data != NULL);
1803 1966 if (dr->dt.dl.dr_data != db->db_buf)
1804 1967 arc_buf_destroy(dr->dt.dl.dr_data, db);
1805 1968 }
1806 1969
1807 1970 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1808 1971
1809 1972 ASSERT(db->db_dirtycnt > 0);
1810 1973 db->db_dirtycnt -= 1;
1811 1974
1812 1975 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1813 1976 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1814 1977 dbuf_destroy(db);
|
↓ open down ↓ |
75 lines elided |
↑ open up ↑ |
1815 1978 return (B_TRUE);
1816 1979 }
1817 1980
1818 1981 return (B_FALSE);
1819 1982 }
1820 1983
1821 1984 void
1822 1985 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1823 1986 {
1824 1987 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1988 + spa_t *spa = db->db_objset->os_spa;
1989 + dmu_buf_will_dirty_sc(db_fake, tx, spa->spa_usesc);
1990 +}
1991 +
1992 +void
1993 +dmu_buf_will_dirty_sc(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t usesc)
1994 +{
1995 + dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1825 1996 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1826 1997
1827 1998 ASSERT(tx->tx_txg != 0);
1828 1999 ASSERT(!refcount_is_zero(&db->db_holds));
1829 2000
1830 2001 /*
1831 2002 * Quick check for dirtyness. For already dirty blocks, this
1832 2003 * reduces runtime of this function by >90%, and overall performance
1833 2004 * by 50% for some workloads (e.g. file deletion with indirect blocks
1834 2005 * cached).
1835 2006 */
1836 2007 mutex_enter(&db->db_mtx);
|
↓ open down ↓ |
2 lines elided |
↑ open up ↑ |
1837 2008 dbuf_dirty_record_t *dr;
1838 2009 for (dr = db->db_last_dirty;
1839 2010 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1840 2011 /*
1841 2012 * It's possible that it is already dirty but not cached,
1842 2013 * because there are some calls to dbuf_dirty() that don't
1843 2014 * go through dmu_buf_will_dirty().
1844 2015 */
1845 2016 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1846 2017 /* This dbuf is already dirty and cached. */
1847 - dbuf_redirty(dr);
2018 + dbuf_redirty(dr, usesc);
1848 2019 mutex_exit(&db->db_mtx);
1849 2020 return;
1850 2021 }
1851 2022 }
1852 2023 mutex_exit(&db->db_mtx);
1853 2024
1854 2025 DB_DNODE_ENTER(db);
1855 2026 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1856 2027 rf |= DB_RF_HAVESTRUCT;
1857 2028 DB_DNODE_EXIT(db);
1858 2029 (void) dbuf_read(db, NULL, rf);
1859 - (void) dbuf_dirty(db, tx);
2030 + (void) dbuf_dirty_sc(db, tx, usesc);
1860 2031 }
1861 2032
2033 +
1862 2034 void
1863 2035 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1864 2036 {
1865 2037 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1866 2038
1867 2039 db->db_state = DB_NOFILL;
1868 2040
1869 2041 dmu_buf_will_fill(db_fake, tx);
1870 2042 }
1871 2043
1872 2044 void
1873 2045 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1874 2046 {
1875 2047 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1876 2048
1877 2049 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1878 2050 ASSERT(tx->tx_txg != 0);
1879 2051 ASSERT(db->db_level == 0);
1880 2052 ASSERT(!refcount_is_zero(&db->db_holds));
1881 2053
1882 2054 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1883 2055 dmu_tx_private_ok(tx));
1884 2056
1885 2057 dbuf_noread(db);
1886 2058 (void) dbuf_dirty(db, tx);
1887 2059 }
1888 2060
1889 2061 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1890 2062 /* ARGSUSED */
1891 2063 void
1892 2064 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1893 2065 {
1894 2066 mutex_enter(&db->db_mtx);
1895 2067 DBUF_VERIFY(db);
1896 2068
1897 2069 if (db->db_state == DB_FILL) {
1898 2070 if (db->db_level == 0 && db->db_freed_in_flight) {
1899 2071 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1900 2072 /* we were freed while filling */
1901 2073 /* XXX dbuf_undirty? */
1902 2074 bzero(db->db.db_data, db->db.db_size);
1903 2075 db->db_freed_in_flight = FALSE;
1904 2076 }
1905 2077 db->db_state = DB_CACHED;
1906 2078 cv_broadcast(&db->db_changed);
1907 2079 }
1908 2080 mutex_exit(&db->db_mtx);
1909 2081 }
1910 2082
1911 2083 void
1912 2084 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1913 2085 bp_embedded_type_t etype, enum zio_compress comp,
1914 2086 int uncompressed_size, int compressed_size, int byteorder,
1915 2087 dmu_tx_t *tx)
1916 2088 {
1917 2089 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1918 2090 struct dirty_leaf *dl;
1919 2091 dmu_object_type_t type;
1920 2092
1921 2093 if (etype == BP_EMBEDDED_TYPE_DATA) {
1922 2094 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1923 2095 SPA_FEATURE_EMBEDDED_DATA));
1924 2096 }
1925 2097
1926 2098 DB_DNODE_ENTER(db);
1927 2099 type = DB_DNODE(db)->dn_type;
1928 2100 DB_DNODE_EXIT(db);
1929 2101
1930 2102 ASSERT0(db->db_level);
1931 2103 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1932 2104
1933 2105 dmu_buf_will_not_fill(dbuf, tx);
1934 2106
1935 2107 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1936 2108 dl = &db->db_last_dirty->dt.dl;
1937 2109 encode_embedded_bp_compressed(&dl->dr_overridden_by,
1938 2110 data, comp, uncompressed_size, compressed_size);
1939 2111 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1940 2112 BP_SET_TYPE(&dl->dr_overridden_by, type);
1941 2113 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1942 2114 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1943 2115
1944 2116 dl->dr_override_state = DR_OVERRIDDEN;
1945 2117 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1946 2118 }
1947 2119
1948 2120 /*
1949 2121 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1950 2122 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1951 2123 */
1952 2124 void
1953 2125 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1954 2126 {
1955 2127 ASSERT(!refcount_is_zero(&db->db_holds));
1956 2128 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1957 2129 ASSERT(db->db_level == 0);
1958 2130 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
1959 2131 ASSERT(buf != NULL);
1960 2132 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
1961 2133 ASSERT(tx->tx_txg != 0);
1962 2134
1963 2135 arc_return_buf(buf, db);
1964 2136 ASSERT(arc_released(buf));
1965 2137
1966 2138 mutex_enter(&db->db_mtx);
1967 2139
1968 2140 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1969 2141 cv_wait(&db->db_changed, &db->db_mtx);
1970 2142
1971 2143 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1972 2144
1973 2145 if (db->db_state == DB_CACHED &&
1974 2146 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1975 2147 mutex_exit(&db->db_mtx);
1976 2148 (void) dbuf_dirty(db, tx);
1977 2149 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1978 2150 arc_buf_destroy(buf, db);
1979 2151 xuio_stat_wbuf_copied();
1980 2152 return;
1981 2153 }
1982 2154
1983 2155 xuio_stat_wbuf_nocopy();
1984 2156 if (db->db_state == DB_CACHED) {
1985 2157 dbuf_dirty_record_t *dr = db->db_last_dirty;
1986 2158
1987 2159 ASSERT(db->db_buf != NULL);
1988 2160 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1989 2161 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1990 2162 if (!arc_released(db->db_buf)) {
1991 2163 ASSERT(dr->dt.dl.dr_override_state ==
1992 2164 DR_OVERRIDDEN);
1993 2165 arc_release(db->db_buf, db);
1994 2166 }
1995 2167 dr->dt.dl.dr_data = buf;
1996 2168 arc_buf_destroy(db->db_buf, db);
1997 2169 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1998 2170 arc_release(db->db_buf, db);
1999 2171 arc_buf_destroy(db->db_buf, db);
2000 2172 }
2001 2173 db->db_buf = NULL;
2002 2174 }
2003 2175 ASSERT(db->db_buf == NULL);
2004 2176 dbuf_set_data(db, buf);
2005 2177 db->db_state = DB_FILL;
2006 2178 mutex_exit(&db->db_mtx);
2007 2179 (void) dbuf_dirty(db, tx);
2008 2180 dmu_buf_fill_done(&db->db, tx);
2009 2181 }
2010 2182
2011 2183 void
2012 2184 dbuf_destroy(dmu_buf_impl_t *db)
2013 2185 {
2014 2186 dnode_t *dn;
2015 2187 dmu_buf_impl_t *parent = db->db_parent;
2016 2188 dmu_buf_impl_t *dndb;
2017 2189
2018 2190 ASSERT(MUTEX_HELD(&db->db_mtx));
2019 2191 ASSERT(refcount_is_zero(&db->db_holds));
2020 2192
2021 2193 if (db->db_buf != NULL) {
2022 2194 arc_buf_destroy(db->db_buf, db);
2023 2195 db->db_buf = NULL;
2024 2196 }
2025 2197
|
↓ open down ↓ |
154 lines elided |
↑ open up ↑ |
2026 2198 if (db->db_blkid == DMU_BONUS_BLKID) {
2027 2199 ASSERT(db->db.db_data != NULL);
2028 2200 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2029 2201 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2030 2202 db->db_state = DB_UNCACHED;
2031 2203 }
2032 2204
2033 2205 dbuf_clear_data(db);
2034 2206
2035 2207 if (multilist_link_active(&db->db_cache_link)) {
2036 - multilist_remove(dbuf_cache, db);
2037 - (void) refcount_remove_many(&dbuf_cache_size,
2208 + ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2209 + db->db_caching_status == DB_DBUF_METADATA_CACHE);
2210 +
2211 + multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2212 + (void) refcount_remove_many(
2213 + &dbuf_caches[db->db_caching_status].size,
2038 2214 db->db.db_size, db);
2215 +
2216 + db->db_caching_status = DB_NO_CACHE;
2039 2217 }
2040 2218
2041 2219 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2042 2220 ASSERT(db->db_data_pending == NULL);
2043 2221
2044 2222 db->db_state = DB_EVICTING;
2045 2223 db->db_blkptr = NULL;
2046 2224
2047 2225 /*
2048 2226 * Now that db_state is DB_EVICTING, nobody else can find this via
2049 2227 * the hash table. We can now drop db_mtx, which allows us to
2050 2228 * acquire the dn_dbufs_mtx.
2051 2229 */
2052 2230 mutex_exit(&db->db_mtx);
2053 2231
2054 2232 DB_DNODE_ENTER(db);
2055 2233 dn = DB_DNODE(db);
2056 2234 dndb = dn->dn_dbuf;
2057 2235 if (db->db_blkid != DMU_BONUS_BLKID) {
2058 2236 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2059 2237 if (needlock)
2060 2238 mutex_enter(&dn->dn_dbufs_mtx);
2061 2239 avl_remove(&dn->dn_dbufs, db);
2062 2240 atomic_dec_32(&dn->dn_dbufs_count);
2063 2241 membar_producer();
2064 2242 DB_DNODE_EXIT(db);
2065 2243 if (needlock)
2066 2244 mutex_exit(&dn->dn_dbufs_mtx);
2067 2245 /*
2068 2246 * Decrementing the dbuf count means that the hold corresponding
2069 2247 * to the removed dbuf is no longer discounted in dnode_move(),
2070 2248 * so the dnode cannot be moved until after we release the hold.
2071 2249 * The membar_producer() ensures visibility of the decremented
2072 2250 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2073 2251 * release any lock.
2074 2252 */
2075 2253 dnode_rele(dn, db);
2076 2254 db->db_dnode_handle = NULL;
2077 2255
2078 2256 dbuf_hash_remove(db);
2079 2257 } else {
2080 2258 DB_DNODE_EXIT(db);
2081 2259 }
|
↓ open down ↓ |
33 lines elided |
↑ open up ↑ |
2082 2260
2083 2261 ASSERT(refcount_is_zero(&db->db_holds));
2084 2262
2085 2263 db->db_parent = NULL;
2086 2264
2087 2265 ASSERT(db->db_buf == NULL);
2088 2266 ASSERT(db->db.db_data == NULL);
2089 2267 ASSERT(db->db_hash_next == NULL);
2090 2268 ASSERT(db->db_blkptr == NULL);
2091 2269 ASSERT(db->db_data_pending == NULL);
2270 + ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2092 2271 ASSERT(!multilist_link_active(&db->db_cache_link));
2093 2272
2094 2273 kmem_cache_free(dbuf_kmem_cache, db);
2095 2274 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2096 2275
2097 2276 /*
2098 2277 * If this dbuf is referenced from an indirect dbuf,
2099 2278 * decrement the ref count on the indirect dbuf.
2100 2279 */
2101 2280 if (parent && parent != dndb)
2102 2281 dbuf_rele(parent, db);
2103 2282 }
2104 2283
2105 2284 /*
2106 2285 * Note: While bpp will always be updated if the function returns success,
2107 2286 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2108 2287 * this happens when the dnode is the meta-dnode, or a userused or groupused
2109 2288 * object.
2110 2289 */
2111 2290 static int
2112 2291 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2113 2292 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2114 2293 {
2115 2294 *parentp = NULL;
2116 2295 *bpp = NULL;
2117 2296
2118 2297 ASSERT(blkid != DMU_BONUS_BLKID);
2119 2298
2120 2299 if (blkid == DMU_SPILL_BLKID) {
2121 2300 mutex_enter(&dn->dn_mtx);
2122 2301 if (dn->dn_have_spill &&
2123 2302 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2124 2303 *bpp = &dn->dn_phys->dn_spill;
2125 2304 else
2126 2305 *bpp = NULL;
2127 2306 dbuf_add_ref(dn->dn_dbuf, NULL);
2128 2307 *parentp = dn->dn_dbuf;
2129 2308 mutex_exit(&dn->dn_mtx);
2130 2309 return (0);
2131 2310 }
2132 2311
2133 2312 int nlevels =
2134 2313 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2135 2314 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2136 2315
2137 2316 ASSERT3U(level * epbs, <, 64);
2138 2317 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2139 2318 /*
2140 2319 * This assertion shouldn't trip as long as the max indirect block size
2141 2320 * is less than 1M. The reason for this is that up to that point,
2142 2321 * the number of levels required to address an entire object with blocks
2143 2322 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2144 2323 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2145 2324 * (i.e. we can address the entire object), objects will all use at most
2146 2325 * N-1 levels and the assertion won't overflow. However, once epbs is
2147 2326 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2148 2327 * enough to address an entire object, so objects will have 5 levels,
2149 2328 * but then this assertion will overflow.
2150 2329 *
2151 2330 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2152 2331 * need to redo this logic to handle overflows.
2153 2332 */
2154 2333 ASSERT(level >= nlevels ||
2155 2334 ((nlevels - level - 1) * epbs) +
2156 2335 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2157 2336 if (level >= nlevels ||
2158 2337 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2159 2338 ((nlevels - level - 1) * epbs)) ||
2160 2339 (fail_sparse &&
2161 2340 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2162 2341 /* the buffer has no parent yet */
2163 2342 return (SET_ERROR(ENOENT));
2164 2343 } else if (level < nlevels-1) {
2165 2344 /* this block is referenced from an indirect block */
2166 2345 int err = dbuf_hold_impl(dn, level+1,
2167 2346 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2168 2347 if (err)
2169 2348 return (err);
2170 2349 err = dbuf_read(*parentp, NULL,
2171 2350 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2172 2351 if (err) {
2173 2352 dbuf_rele(*parentp, NULL);
2174 2353 *parentp = NULL;
2175 2354 return (err);
2176 2355 }
2177 2356 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2178 2357 (blkid & ((1ULL << epbs) - 1));
2179 2358 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2180 2359 ASSERT(BP_IS_HOLE(*bpp));
2181 2360 return (0);
2182 2361 } else {
2183 2362 /* the block is referenced from the dnode */
2184 2363 ASSERT3U(level, ==, nlevels-1);
2185 2364 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2186 2365 blkid < dn->dn_phys->dn_nblkptr);
2187 2366 if (dn->dn_dbuf) {
2188 2367 dbuf_add_ref(dn->dn_dbuf, NULL);
2189 2368 *parentp = dn->dn_dbuf;
2190 2369 }
2191 2370 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2192 2371 return (0);
2193 2372 }
2194 2373 }
2195 2374
2196 2375 static dmu_buf_impl_t *
2197 2376 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2198 2377 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2199 2378 {
2200 2379 objset_t *os = dn->dn_objset;
2201 2380 dmu_buf_impl_t *db, *odb;
2202 2381
2203 2382 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2204 2383 ASSERT(dn->dn_type != DMU_OT_NONE);
2205 2384
2206 2385 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2207 2386
2208 2387 db->db_objset = os;
2209 2388 db->db.db_object = dn->dn_object;
2210 2389 db->db_level = level;
2211 2390 db->db_blkid = blkid;
2212 2391 db->db_last_dirty = NULL;
2213 2392 db->db_dirtycnt = 0;
2214 2393 db->db_dnode_handle = dn->dn_handle;
2215 2394 db->db_parent = parent;
2216 2395 db->db_blkptr = blkptr;
2217 2396
2218 2397 db->db_user = NULL;
2219 2398 db->db_user_immediate_evict = FALSE;
|
↓ open down ↓ |
118 lines elided |
↑ open up ↑ |
2220 2399 db->db_freed_in_flight = FALSE;
2221 2400 db->db_pending_evict = FALSE;
2222 2401
2223 2402 if (blkid == DMU_BONUS_BLKID) {
2224 2403 ASSERT3P(parent, ==, dn->dn_dbuf);
2225 2404 db->db.db_size = DN_MAX_BONUSLEN -
2226 2405 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2227 2406 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2228 2407 db->db.db_offset = DMU_BONUS_BLKID;
2229 2408 db->db_state = DB_UNCACHED;
2409 + db->db_caching_status = DB_NO_CACHE;
2230 2410 /* the bonus dbuf is not placed in the hash table */
2231 2411 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2232 2412 return (db);
2233 2413 } else if (blkid == DMU_SPILL_BLKID) {
2234 2414 db->db.db_size = (blkptr != NULL) ?
2235 2415 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2236 2416 db->db.db_offset = 0;
2237 2417 } else {
2238 2418 int blocksize =
2239 2419 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2240 2420 db->db.db_size = blocksize;
2241 2421 db->db.db_offset = db->db_blkid * blocksize;
2242 2422 }
2243 2423
2244 2424 /*
2245 2425 * Hold the dn_dbufs_mtx while we get the new dbuf
2246 2426 * in the hash table *and* added to the dbufs list.
2247 2427 * This prevents a possible deadlock with someone
2248 2428 * trying to look up this dbuf before its added to the
2249 2429 * dn_dbufs list.
2250 2430 */
2251 2431 mutex_enter(&dn->dn_dbufs_mtx);
|
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
2252 2432 db->db_state = DB_EVICTING;
2253 2433 if ((odb = dbuf_hash_insert(db)) != NULL) {
2254 2434 /* someone else inserted it first */
2255 2435 kmem_cache_free(dbuf_kmem_cache, db);
2256 2436 mutex_exit(&dn->dn_dbufs_mtx);
2257 2437 return (odb);
2258 2438 }
2259 2439 avl_add(&dn->dn_dbufs, db);
2260 2440
2261 2441 db->db_state = DB_UNCACHED;
2442 + db->db_caching_status = DB_NO_CACHE;
2262 2443 mutex_exit(&dn->dn_dbufs_mtx);
2263 2444 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2264 2445
2265 2446 if (parent && parent != dn->dn_dbuf)
2266 2447 dbuf_add_ref(parent, db);
2267 2448
2268 2449 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2269 2450 refcount_count(&dn->dn_holds) > 0);
2270 2451 (void) refcount_add(&dn->dn_holds, db);
2271 2452 atomic_inc_32(&dn->dn_dbufs_count);
2272 2453
2273 2454 dprintf_dbuf(db, "db=%p\n", db);
2274 2455
2275 2456 return (db);
2276 2457 }
2277 2458
2278 2459 typedef struct dbuf_prefetch_arg {
2279 2460 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2280 2461 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2281 2462 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2282 2463 int dpa_curlevel; /* The current level that we're reading */
2283 2464 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2284 2465 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2285 2466 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2286 2467 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2287 2468 } dbuf_prefetch_arg_t;
2288 2469
2289 2470 /*
2290 2471 * Actually issue the prefetch read for the block given.
2291 2472 */
2292 2473 static void
2293 2474 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2294 2475 {
2295 2476 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2296 2477 return;
2297 2478
2298 2479 arc_flags_t aflags =
2299 2480 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2300 2481
2301 2482 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2302 2483 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2303 2484 ASSERT(dpa->dpa_zio != NULL);
2304 2485 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2305 2486 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2306 2487 &aflags, &dpa->dpa_zb);
2307 2488 }
2308 2489
2309 2490 /*
2310 2491 * Called when an indirect block above our prefetch target is read in. This
2311 2492 * will either read in the next indirect block down the tree or issue the actual
2312 2493 * prefetch if the next block down is our target.
2313 2494 */
2314 2495 static void
2315 2496 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2316 2497 {
2317 2498 dbuf_prefetch_arg_t *dpa = private;
2318 2499
2319 2500 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2320 2501 ASSERT3S(dpa->dpa_curlevel, >, 0);
2321 2502
2322 2503 /*
2323 2504 * The dpa_dnode is only valid if we are called with a NULL
2324 2505 * zio. This indicates that the arc_read() returned without
2325 2506 * first calling zio_read() to issue a physical read. Once
2326 2507 * a physical read is made the dpa_dnode must be invalidated
2327 2508 * as the locks guarding it may have been dropped. If the
2328 2509 * dpa_dnode is still valid, then we want to add it to the dbuf
2329 2510 * cache. To do so, we must hold the dbuf associated with the block
2330 2511 * we just prefetched, read its contents so that we associate it
2331 2512 * with an arc_buf_t, and then release it.
2332 2513 */
2333 2514 if (zio != NULL) {
2334 2515 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2335 2516 if (zio->io_flags & ZIO_FLAG_RAW) {
2336 2517 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2337 2518 } else {
2338 2519 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2339 2520 }
2340 2521 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2341 2522
2342 2523 dpa->dpa_dnode = NULL;
2343 2524 } else if (dpa->dpa_dnode != NULL) {
2344 2525 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2345 2526 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2346 2527 dpa->dpa_zb.zb_level));
2347 2528 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2348 2529 dpa->dpa_curlevel, curblkid, FTAG);
2349 2530 (void) dbuf_read(db, NULL,
2350 2531 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2351 2532 dbuf_rele(db, FTAG);
2352 2533 }
2353 2534
2354 2535 dpa->dpa_curlevel--;
2355 2536
2356 2537 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2357 2538 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2358 2539 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2359 2540 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2360 2541 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2361 2542 kmem_free(dpa, sizeof (*dpa));
2362 2543 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2363 2544 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2364 2545 dbuf_issue_final_prefetch(dpa, bp);
2365 2546 kmem_free(dpa, sizeof (*dpa));
2366 2547 } else {
2367 2548 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2368 2549 zbookmark_phys_t zb;
2369 2550
2370 2551 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2371 2552 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2372 2553 iter_aflags |= ARC_FLAG_L2CACHE;
2373 2554
2374 2555 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2375 2556
2376 2557 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2377 2558 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2378 2559
2379 2560 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2380 2561 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2381 2562 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2382 2563 &iter_aflags, &zb);
2383 2564 }
2384 2565
2385 2566 arc_buf_destroy(abuf, private);
2386 2567 }
2387 2568
2388 2569 /*
2389 2570 * Issue prefetch reads for the given block on the given level. If the indirect
2390 2571 * blocks above that block are not in memory, we will read them in
2391 2572 * asynchronously. As a result, this call never blocks waiting for a read to
2392 2573 * complete.
2393 2574 */
2394 2575 void
2395 2576 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2396 2577 arc_flags_t aflags)
2397 2578 {
2398 2579 blkptr_t bp;
2399 2580 int epbs, nlevels, curlevel;
2400 2581 uint64_t curblkid;
2401 2582
2402 2583 ASSERT(blkid != DMU_BONUS_BLKID);
2403 2584 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2404 2585
2405 2586 if (blkid > dn->dn_maxblkid)
2406 2587 return;
2407 2588
2408 2589 if (dnode_block_freed(dn, blkid))
2409 2590 return;
2410 2591
2411 2592 /*
2412 2593 * This dnode hasn't been written to disk yet, so there's nothing to
2413 2594 * prefetch.
2414 2595 */
2415 2596 nlevels = dn->dn_phys->dn_nlevels;
2416 2597 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2417 2598 return;
2418 2599
2419 2600 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2420 2601 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2421 2602 return;
2422 2603
2423 2604 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2424 2605 level, blkid);
2425 2606 if (db != NULL) {
2426 2607 mutex_exit(&db->db_mtx);
2427 2608 /*
2428 2609 * This dbuf already exists. It is either CACHED, or
2429 2610 * (we assume) about to be read or filled.
2430 2611 */
2431 2612 return;
2432 2613 }
2433 2614
2434 2615 /*
2435 2616 * Find the closest ancestor (indirect block) of the target block
2436 2617 * that is present in the cache. In this indirect block, we will
2437 2618 * find the bp that is at curlevel, curblkid.
2438 2619 */
2439 2620 curlevel = level;
2440 2621 curblkid = blkid;
2441 2622 while (curlevel < nlevels - 1) {
2442 2623 int parent_level = curlevel + 1;
2443 2624 uint64_t parent_blkid = curblkid >> epbs;
2444 2625 dmu_buf_impl_t *db;
2445 2626
2446 2627 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2447 2628 FALSE, TRUE, FTAG, &db) == 0) {
2448 2629 blkptr_t *bpp = db->db_buf->b_data;
2449 2630 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2450 2631 dbuf_rele(db, FTAG);
2451 2632 break;
2452 2633 }
2453 2634
2454 2635 curlevel = parent_level;
2455 2636 curblkid = parent_blkid;
2456 2637 }
2457 2638
2458 2639 if (curlevel == nlevels - 1) {
2459 2640 /* No cached indirect blocks found. */
2460 2641 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2461 2642 bp = dn->dn_phys->dn_blkptr[curblkid];
2462 2643 }
2463 2644 if (BP_IS_HOLE(&bp))
2464 2645 return;
2465 2646
2466 2647 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2467 2648
2468 2649 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2469 2650 ZIO_FLAG_CANFAIL);
2470 2651
2471 2652 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2472 2653 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2473 2654 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2474 2655 dn->dn_object, level, blkid);
2475 2656 dpa->dpa_curlevel = curlevel;
2476 2657 dpa->dpa_prio = prio;
2477 2658 dpa->dpa_aflags = aflags;
2478 2659 dpa->dpa_spa = dn->dn_objset->os_spa;
2479 2660 dpa->dpa_dnode = dn;
2480 2661 dpa->dpa_epbs = epbs;
2481 2662 dpa->dpa_zio = pio;
2482 2663
2483 2664 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2484 2665 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2485 2666 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2486 2667
2487 2668 /*
2488 2669 * If we have the indirect just above us, no need to do the asynchronous
2489 2670 * prefetch chain; we'll just run the last step ourselves. If we're at
2490 2671 * a higher level, though, we want to issue the prefetches for all the
2491 2672 * indirect blocks asynchronously, so we can go on with whatever we were
2492 2673 * doing.
2493 2674 */
2494 2675 if (curlevel == level) {
2495 2676 ASSERT3U(curblkid, ==, blkid);
2496 2677 dbuf_issue_final_prefetch(dpa, &bp);
2497 2678 kmem_free(dpa, sizeof (*dpa));
2498 2679 } else {
2499 2680 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2500 2681 zbookmark_phys_t zb;
2501 2682
2502 2683 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2503 2684 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2504 2685 iter_aflags |= ARC_FLAG_L2CACHE;
2505 2686
2506 2687 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2507 2688 dn->dn_object, curlevel, curblkid);
2508 2689 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2509 2690 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2510 2691 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2511 2692 &iter_aflags, &zb);
2512 2693 }
2513 2694 /*
2514 2695 * We use pio here instead of dpa_zio since it's possible that
2515 2696 * dpa may have already been freed.
2516 2697 */
2517 2698 zio_nowait(pio);
2518 2699 }
2519 2700
2520 2701 /*
2521 2702 * Returns with db_holds incremented, and db_mtx not held.
2522 2703 * Note: dn_struct_rwlock must be held.
2523 2704 */
2524 2705 int
2525 2706 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2526 2707 boolean_t fail_sparse, boolean_t fail_uncached,
2527 2708 void *tag, dmu_buf_impl_t **dbp)
2528 2709 {
2529 2710 dmu_buf_impl_t *db, *parent = NULL;
2530 2711
2531 2712 ASSERT(blkid != DMU_BONUS_BLKID);
2532 2713 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2533 2714 ASSERT3U(dn->dn_nlevels, >, level);
2534 2715
2535 2716 *dbp = NULL;
2536 2717 top:
2537 2718 /* dbuf_find() returns with db_mtx held */
2538 2719 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2539 2720
2540 2721 if (db == NULL) {
2541 2722 blkptr_t *bp = NULL;
2542 2723 int err;
2543 2724
2544 2725 if (fail_uncached)
2545 2726 return (SET_ERROR(ENOENT));
2546 2727
2547 2728 ASSERT3P(parent, ==, NULL);
2548 2729 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2549 2730 if (fail_sparse) {
2550 2731 if (err == 0 && bp && BP_IS_HOLE(bp))
2551 2732 err = SET_ERROR(ENOENT);
2552 2733 if (err) {
2553 2734 if (parent)
2554 2735 dbuf_rele(parent, NULL);
2555 2736 return (err);
2556 2737 }
2557 2738 }
|
↓ open down ↓ |
286 lines elided |
↑ open up ↑ |
2558 2739 if (err && err != ENOENT)
2559 2740 return (err);
2560 2741 db = dbuf_create(dn, level, blkid, parent, bp);
2561 2742 }
2562 2743
2563 2744 if (fail_uncached && db->db_state != DB_CACHED) {
2564 2745 mutex_exit(&db->db_mtx);
2565 2746 return (SET_ERROR(ENOENT));
2566 2747 }
2567 2748
2568 - if (db->db_buf != NULL)
2749 + if (db->db_buf != NULL) {
2750 + arc_buf_access(db->db_buf);
2569 2751 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2752 + }
2570 2753
2571 2754 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2572 2755
2573 2756 /*
2574 2757 * If this buffer is currently syncing out, and we are are
2575 2758 * still referencing it from db_data, we need to make a copy
2576 2759 * of it in case we decide we want to dirty it again in this txg.
2577 2760 */
2578 2761 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2579 2762 dn->dn_object != DMU_META_DNODE_OBJECT &&
2580 2763 db->db_state == DB_CACHED && db->db_data_pending) {
2581 2764 dbuf_dirty_record_t *dr = db->db_data_pending;
2582 2765
2583 2766 if (dr->dt.dl.dr_data == db->db_buf) {
2584 2767 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2585 2768
|
↓ open down ↓ |
6 lines elided |
↑ open up ↑ |
2586 2769 dbuf_set_data(db,
2587 2770 arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2588 2771 db->db.db_size));
2589 2772 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2590 2773 db->db.db_size);
2591 2774 }
2592 2775 }
2593 2776
2594 2777 if (multilist_link_active(&db->db_cache_link)) {
2595 2778 ASSERT(refcount_is_zero(&db->db_holds));
2596 - multilist_remove(dbuf_cache, db);
2597 - (void) refcount_remove_many(&dbuf_cache_size,
2779 + ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2780 + db->db_caching_status == DB_DBUF_METADATA_CACHE);
2781 +
2782 + multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2783 + (void) refcount_remove_many(
2784 + &dbuf_caches[db->db_caching_status].size,
2598 2785 db->db.db_size, db);
2786 +
2787 + db->db_caching_status = DB_NO_CACHE;
2599 2788 }
2600 2789 (void) refcount_add(&db->db_holds, tag);
2601 2790 DBUF_VERIFY(db);
2602 2791 mutex_exit(&db->db_mtx);
2603 2792
2604 2793 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2605 2794 if (parent)
2606 2795 dbuf_rele(parent, NULL);
2607 2796
2608 2797 ASSERT3P(DB_DNODE(db), ==, dn);
2609 2798 ASSERT3U(db->db_blkid, ==, blkid);
2610 2799 ASSERT3U(db->db_level, ==, level);
2611 2800 *dbp = db;
2612 2801
2613 2802 return (0);
2614 2803 }
2615 2804
2616 2805 dmu_buf_impl_t *
2617 2806 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2618 2807 {
2619 2808 return (dbuf_hold_level(dn, 0, blkid, tag));
2620 2809 }
2621 2810
2622 2811 dmu_buf_impl_t *
2623 2812 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2624 2813 {
2625 2814 dmu_buf_impl_t *db;
2626 2815 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2627 2816 return (err ? NULL : db);
2628 2817 }
2629 2818
2630 2819 void
2631 2820 dbuf_create_bonus(dnode_t *dn)
2632 2821 {
2633 2822 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2634 2823
2635 2824 ASSERT(dn->dn_bonus == NULL);
2636 2825 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2637 2826 }
2638 2827
2639 2828 int
2640 2829 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2641 2830 {
2642 2831 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2643 2832 dnode_t *dn;
2644 2833
2645 2834 if (db->db_blkid != DMU_SPILL_BLKID)
2646 2835 return (SET_ERROR(ENOTSUP));
2647 2836 if (blksz == 0)
2648 2837 blksz = SPA_MINBLOCKSIZE;
2649 2838 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2650 2839 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2651 2840
2652 2841 DB_DNODE_ENTER(db);
2653 2842 dn = DB_DNODE(db);
2654 2843 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2655 2844 dbuf_new_size(db, blksz, tx);
2656 2845 rw_exit(&dn->dn_struct_rwlock);
2657 2846 DB_DNODE_EXIT(db);
2658 2847
2659 2848 return (0);
2660 2849 }
2661 2850
2662 2851 void
2663 2852 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2664 2853 {
2665 2854 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2666 2855 }
2667 2856
2668 2857 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2669 2858 void
2670 2859 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2671 2860 {
2672 2861 int64_t holds = refcount_add(&db->db_holds, tag);
2673 2862 ASSERT3S(holds, >, 1);
2674 2863 }
2675 2864
2676 2865 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2677 2866 boolean_t
2678 2867 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2679 2868 void *tag)
2680 2869 {
2681 2870 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2682 2871 dmu_buf_impl_t *found_db;
2683 2872 boolean_t result = B_FALSE;
2684 2873
2685 2874 if (db->db_blkid == DMU_BONUS_BLKID)
2686 2875 found_db = dbuf_find_bonus(os, obj);
2687 2876 else
2688 2877 found_db = dbuf_find(os, obj, 0, blkid);
2689 2878
2690 2879 if (found_db != NULL) {
2691 2880 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2692 2881 (void) refcount_add(&db->db_holds, tag);
2693 2882 result = B_TRUE;
2694 2883 }
2695 2884 mutex_exit(&db->db_mtx);
2696 2885 }
2697 2886 return (result);
2698 2887 }
2699 2888
2700 2889 /*
2701 2890 * If you call dbuf_rele() you had better not be referencing the dnode handle
2702 2891 * unless you have some other direct or indirect hold on the dnode. (An indirect
2703 2892 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2704 2893 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2705 2894 * dnode's parent dbuf evicting its dnode handles.
2706 2895 */
2707 2896 void
2708 2897 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2709 2898 {
2710 2899 mutex_enter(&db->db_mtx);
2711 2900 dbuf_rele_and_unlock(db, tag);
2712 2901 }
2713 2902
2714 2903 void
2715 2904 dmu_buf_rele(dmu_buf_t *db, void *tag)
2716 2905 {
2717 2906 dbuf_rele((dmu_buf_impl_t *)db, tag);
2718 2907 }
2719 2908
2720 2909 /*
2721 2910 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2722 2911 * db_dirtycnt and db_holds to be updated atomically.
2723 2912 */
2724 2913 void
2725 2914 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2726 2915 {
2727 2916 int64_t holds;
2728 2917
2729 2918 ASSERT(MUTEX_HELD(&db->db_mtx));
2730 2919 DBUF_VERIFY(db);
2731 2920
2732 2921 /*
2733 2922 * Remove the reference to the dbuf before removing its hold on the
2734 2923 * dnode so we can guarantee in dnode_move() that a referenced bonus
2735 2924 * buffer has a corresponding dnode hold.
2736 2925 */
2737 2926 holds = refcount_remove(&db->db_holds, tag);
2738 2927 ASSERT(holds >= 0);
2739 2928
2740 2929 /*
2741 2930 * We can't freeze indirects if there is a possibility that they
2742 2931 * may be modified in the current syncing context.
2743 2932 */
2744 2933 if (db->db_buf != NULL &&
2745 2934 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2746 2935 arc_buf_freeze(db->db_buf);
2747 2936 }
2748 2937
2749 2938 if (holds == db->db_dirtycnt &&
2750 2939 db->db_level == 0 && db->db_user_immediate_evict)
2751 2940 dbuf_evict_user(db);
2752 2941
2753 2942 if (holds == 0) {
2754 2943 if (db->db_blkid == DMU_BONUS_BLKID) {
2755 2944 dnode_t *dn;
2756 2945 boolean_t evict_dbuf = db->db_pending_evict;
2757 2946
2758 2947 /*
2759 2948 * If the dnode moves here, we cannot cross this
2760 2949 * barrier until the move completes.
2761 2950 */
2762 2951 DB_DNODE_ENTER(db);
2763 2952
2764 2953 dn = DB_DNODE(db);
2765 2954 atomic_dec_32(&dn->dn_dbufs_count);
2766 2955
2767 2956 /*
2768 2957 * Decrementing the dbuf count means that the bonus
2769 2958 * buffer's dnode hold is no longer discounted in
2770 2959 * dnode_move(). The dnode cannot move until after
2771 2960 * the dnode_rele() below.
2772 2961 */
2773 2962 DB_DNODE_EXIT(db);
2774 2963
2775 2964 /*
2776 2965 * Do not reference db after its lock is dropped.
2777 2966 * Another thread may evict it.
2778 2967 */
2779 2968 mutex_exit(&db->db_mtx);
2780 2969
2781 2970 if (evict_dbuf)
2782 2971 dnode_evict_bonus(dn);
2783 2972
2784 2973 dnode_rele(dn, db);
2785 2974 } else if (db->db_buf == NULL) {
2786 2975 /*
2787 2976 * This is a special case: we never associated this
2788 2977 * dbuf with any data allocated from the ARC.
2789 2978 */
2790 2979 ASSERT(db->db_state == DB_UNCACHED ||
2791 2980 db->db_state == DB_NOFILL);
2792 2981 dbuf_destroy(db);
2793 2982 } else if (arc_released(db->db_buf)) {
2794 2983 /*
2795 2984 * This dbuf has anonymous data associated with it.
2796 2985 */
2797 2986 dbuf_destroy(db);
2798 2987 } else {
2799 2988 boolean_t do_arc_evict = B_FALSE;
2800 2989 blkptr_t bp;
2801 2990 spa_t *spa = dmu_objset_spa(db->db_objset);
2802 2991
2803 2992 if (!DBUF_IS_CACHEABLE(db) &&
2804 2993 db->db_blkptr != NULL &&
|
↓ open down ↓ |
196 lines elided |
↑ open up ↑ |
2805 2994 !BP_IS_HOLE(db->db_blkptr) &&
2806 2995 !BP_IS_EMBEDDED(db->db_blkptr)) {
2807 2996 do_arc_evict = B_TRUE;
2808 2997 bp = *db->db_blkptr;
2809 2998 }
2810 2999
2811 3000 if (!DBUF_IS_CACHEABLE(db) ||
2812 3001 db->db_pending_evict) {
2813 3002 dbuf_destroy(db);
2814 3003 } else if (!multilist_link_active(&db->db_cache_link)) {
2815 - multilist_insert(dbuf_cache, db);
2816 - (void) refcount_add_many(&dbuf_cache_size,
3004 + ASSERT3U(db->db_caching_status, ==,
3005 + DB_NO_CACHE);
3006 +
3007 + dbuf_cached_state_t dcs =
3008 + dbuf_include_in_metadata_cache(db) ?
3009 + DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3010 + db->db_caching_status = dcs;
3011 +
3012 + multilist_insert(dbuf_caches[dcs].cache, db);
3013 + (void) refcount_add_many(&dbuf_caches[dcs].size,
2817 3014 db->db.db_size, db);
2818 3015 mutex_exit(&db->db_mtx);
2819 3016
2820 - dbuf_evict_notify();
3017 + if (db->db_caching_status == DB_DBUF_CACHE) {
3018 + dbuf_evict_notify();
3019 + }
2821 3020 }
2822 3021
2823 3022 if (do_arc_evict)
2824 3023 arc_freed(spa, &bp);
2825 3024 }
2826 3025 } else {
2827 3026 mutex_exit(&db->db_mtx);
2828 3027 }
2829 3028
2830 3029 }
2831 3030
2832 3031 #pragma weak dmu_buf_refcount = dbuf_refcount
2833 3032 uint64_t
2834 3033 dbuf_refcount(dmu_buf_impl_t *db)
2835 3034 {
2836 3035 return (refcount_count(&db->db_holds));
2837 3036 }
2838 3037
2839 3038 void *
2840 3039 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2841 3040 dmu_buf_user_t *new_user)
2842 3041 {
2843 3042 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2844 3043
2845 3044 mutex_enter(&db->db_mtx);
2846 3045 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2847 3046 if (db->db_user == old_user)
2848 3047 db->db_user = new_user;
2849 3048 else
2850 3049 old_user = db->db_user;
2851 3050 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2852 3051 mutex_exit(&db->db_mtx);
2853 3052
2854 3053 return (old_user);
2855 3054 }
2856 3055
2857 3056 void *
2858 3057 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2859 3058 {
2860 3059 return (dmu_buf_replace_user(db_fake, NULL, user));
2861 3060 }
2862 3061
2863 3062 void *
2864 3063 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2865 3064 {
2866 3065 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2867 3066
2868 3067 db->db_user_immediate_evict = TRUE;
2869 3068 return (dmu_buf_set_user(db_fake, user));
2870 3069 }
2871 3070
2872 3071 void *
2873 3072 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2874 3073 {
2875 3074 return (dmu_buf_replace_user(db_fake, user, NULL));
2876 3075 }
2877 3076
2878 3077 void *
2879 3078 dmu_buf_get_user(dmu_buf_t *db_fake)
2880 3079 {
2881 3080 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2882 3081
2883 3082 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2884 3083 return (db->db_user);
2885 3084 }
2886 3085
2887 3086 void
2888 3087 dmu_buf_user_evict_wait()
2889 3088 {
2890 3089 taskq_wait(dbu_evict_taskq);
2891 3090 }
2892 3091
2893 3092 blkptr_t *
2894 3093 dmu_buf_get_blkptr(dmu_buf_t *db)
2895 3094 {
2896 3095 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2897 3096 return (dbi->db_blkptr);
2898 3097 }
2899 3098
2900 3099 objset_t *
2901 3100 dmu_buf_get_objset(dmu_buf_t *db)
2902 3101 {
2903 3102 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2904 3103 return (dbi->db_objset);
2905 3104 }
2906 3105
2907 3106 dnode_t *
2908 3107 dmu_buf_dnode_enter(dmu_buf_t *db)
2909 3108 {
2910 3109 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2911 3110 DB_DNODE_ENTER(dbi);
2912 3111 return (DB_DNODE(dbi));
2913 3112 }
2914 3113
2915 3114 void
2916 3115 dmu_buf_dnode_exit(dmu_buf_t *db)
2917 3116 {
2918 3117 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2919 3118 DB_DNODE_EXIT(dbi);
2920 3119 }
2921 3120
2922 3121 static void
2923 3122 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2924 3123 {
2925 3124 /* ASSERT(dmu_tx_is_syncing(tx) */
2926 3125 ASSERT(MUTEX_HELD(&db->db_mtx));
2927 3126
2928 3127 if (db->db_blkptr != NULL)
2929 3128 return;
2930 3129
2931 3130 if (db->db_blkid == DMU_SPILL_BLKID) {
2932 3131 db->db_blkptr = &dn->dn_phys->dn_spill;
2933 3132 BP_ZERO(db->db_blkptr);
2934 3133 return;
2935 3134 }
2936 3135 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2937 3136 /*
2938 3137 * This buffer was allocated at a time when there was
2939 3138 * no available blkptrs from the dnode, or it was
2940 3139 * inappropriate to hook it in (i.e., nlevels mis-match).
2941 3140 */
2942 3141 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2943 3142 ASSERT(db->db_parent == NULL);
2944 3143 db->db_parent = dn->dn_dbuf;
2945 3144 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2946 3145 DBUF_VERIFY(db);
2947 3146 } else {
2948 3147 dmu_buf_impl_t *parent = db->db_parent;
2949 3148 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2950 3149
2951 3150 ASSERT(dn->dn_phys->dn_nlevels > 1);
2952 3151 if (parent == NULL) {
2953 3152 mutex_exit(&db->db_mtx);
2954 3153 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2955 3154 parent = dbuf_hold_level(dn, db->db_level + 1,
2956 3155 db->db_blkid >> epbs, db);
2957 3156 rw_exit(&dn->dn_struct_rwlock);
2958 3157 mutex_enter(&db->db_mtx);
2959 3158 db->db_parent = parent;
2960 3159 }
2961 3160 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2962 3161 (db->db_blkid & ((1ULL << epbs) - 1));
2963 3162 DBUF_VERIFY(db);
2964 3163 }
2965 3164 }
2966 3165
2967 3166 static void
2968 3167 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2969 3168 {
2970 3169 dmu_buf_impl_t *db = dr->dr_dbuf;
2971 3170 dnode_t *dn;
2972 3171 zio_t *zio;
2973 3172
2974 3173 ASSERT(dmu_tx_is_syncing(tx));
2975 3174
2976 3175 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2977 3176
2978 3177 mutex_enter(&db->db_mtx);
2979 3178
2980 3179 ASSERT(db->db_level > 0);
2981 3180 DBUF_VERIFY(db);
2982 3181
2983 3182 /* Read the block if it hasn't been read yet. */
2984 3183 if (db->db_buf == NULL) {
2985 3184 mutex_exit(&db->db_mtx);
2986 3185 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2987 3186 mutex_enter(&db->db_mtx);
2988 3187 }
2989 3188 ASSERT3U(db->db_state, ==, DB_CACHED);
2990 3189 ASSERT(db->db_buf != NULL);
2991 3190
2992 3191 DB_DNODE_ENTER(db);
|
↓ open down ↓ |
162 lines elided |
↑ open up ↑ |
2993 3192 dn = DB_DNODE(db);
2994 3193 /* Indirect block size must match what the dnode thinks it is. */
2995 3194 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2996 3195 dbuf_check_blkptr(dn, db);
2997 3196 DB_DNODE_EXIT(db);
2998 3197
2999 3198 /* Provide the pending dirty record to child dbufs */
3000 3199 db->db_data_pending = dr;
3001 3200
3002 3201 mutex_exit(&db->db_mtx);
3003 -
3004 3202 dbuf_write(dr, db->db_buf, tx);
3005 3203
3006 3204 zio = dr->dr_zio;
3007 3205 mutex_enter(&dr->dt.di.dr_mtx);
3008 3206 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3009 3207 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3010 3208 mutex_exit(&dr->dt.di.dr_mtx);
3011 3209 zio_nowait(zio);
3012 3210 }
3013 3211
3014 3212 static void
3015 3213 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3016 3214 {
3017 3215 arc_buf_t **datap = &dr->dt.dl.dr_data;
3018 3216 dmu_buf_impl_t *db = dr->dr_dbuf;
3019 3217 dnode_t *dn;
3020 3218 objset_t *os;
3021 3219 uint64_t txg = tx->tx_txg;
3022 3220
3023 3221 ASSERT(dmu_tx_is_syncing(tx));
3024 3222
3025 3223 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3026 3224
3027 3225 mutex_enter(&db->db_mtx);
3028 3226 /*
3029 3227 * To be synced, we must be dirtied. But we
3030 3228 * might have been freed after the dirty.
3031 3229 */
3032 3230 if (db->db_state == DB_UNCACHED) {
3033 3231 /* This buffer has been freed since it was dirtied */
3034 3232 ASSERT(db->db.db_data == NULL);
3035 3233 } else if (db->db_state == DB_FILL) {
3036 3234 /* This buffer was freed and is now being re-filled */
3037 3235 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3038 3236 } else {
3039 3237 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3040 3238 }
3041 3239 DBUF_VERIFY(db);
3042 3240
3043 3241 DB_DNODE_ENTER(db);
3044 3242 dn = DB_DNODE(db);
3045 3243
3046 3244 if (db->db_blkid == DMU_SPILL_BLKID) {
3047 3245 mutex_enter(&dn->dn_mtx);
3048 3246 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3049 3247 mutex_exit(&dn->dn_mtx);
3050 3248 }
3051 3249
3052 3250 /*
3053 3251 * If this is a bonus buffer, simply copy the bonus data into the
3054 3252 * dnode. It will be written out when the dnode is synced (and it
3055 3253 * will be synced, since it must have been dirty for dbuf_sync to
3056 3254 * be called).
3057 3255 */
3058 3256 if (db->db_blkid == DMU_BONUS_BLKID) {
3059 3257 dbuf_dirty_record_t **drp;
3060 3258
3061 3259 ASSERT(*datap != NULL);
3062 3260 ASSERT0(db->db_level);
3063 3261 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3064 3262 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3065 3263 DB_DNODE_EXIT(db);
3066 3264
3067 3265 if (*datap != db->db.db_data) {
3068 3266 zio_buf_free(*datap, DN_MAX_BONUSLEN);
3069 3267 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3070 3268 }
3071 3269 db->db_data_pending = NULL;
3072 3270 drp = &db->db_last_dirty;
3073 3271 while (*drp != dr)
3074 3272 drp = &(*drp)->dr_next;
3075 3273 ASSERT(dr->dr_next == NULL);
3076 3274 ASSERT(dr->dr_dbuf == db);
3077 3275 *drp = dr->dr_next;
3078 3276 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3079 3277 ASSERT(db->db_dirtycnt > 0);
3080 3278 db->db_dirtycnt -= 1;
3081 3279 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3082 3280 return;
3083 3281 }
3084 3282
3085 3283 os = dn->dn_objset;
3086 3284
3087 3285 /*
3088 3286 * This function may have dropped the db_mtx lock allowing a dmu_sync
3089 3287 * operation to sneak in. As a result, we need to ensure that we
3090 3288 * don't check the dr_override_state until we have returned from
3091 3289 * dbuf_check_blkptr.
3092 3290 */
3093 3291 dbuf_check_blkptr(dn, db);
3094 3292
3095 3293 /*
3096 3294 * If this buffer is in the middle of an immediate write,
3097 3295 * wait for the synchronous IO to complete.
3098 3296 */
3099 3297 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3100 3298 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3101 3299 cv_wait(&db->db_changed, &db->db_mtx);
3102 3300 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3103 3301 }
3104 3302
3105 3303 if (db->db_state != DB_NOFILL &&
3106 3304 dn->dn_object != DMU_META_DNODE_OBJECT &&
3107 3305 refcount_count(&db->db_holds) > 1 &&
3108 3306 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3109 3307 *datap == db->db_buf) {
3110 3308 /*
3111 3309 * If this buffer is currently "in use" (i.e., there
3112 3310 * are active holds and db_data still references it),
3113 3311 * then make a copy before we start the write so that
3114 3312 * any modifications from the open txg will not leak
3115 3313 * into this write.
3116 3314 *
3117 3315 * NOTE: this copy does not need to be made for
3118 3316 * objects only modified in the syncing context (e.g.
3119 3317 * DNONE_DNODE blocks).
3120 3318 */
3121 3319 int psize = arc_buf_size(*datap);
3122 3320 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3123 3321 enum zio_compress compress_type = arc_get_compression(*datap);
3124 3322
3125 3323 if (compress_type == ZIO_COMPRESS_OFF) {
3126 3324 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3127 3325 } else {
3128 3326 ASSERT3U(type, ==, ARC_BUFC_DATA);
3129 3327 int lsize = arc_buf_lsize(*datap);
3130 3328 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3131 3329 psize, lsize, compress_type);
3132 3330 }
3133 3331 bcopy(db->db.db_data, (*datap)->b_data, psize);
3134 3332 }
3135 3333 db->db_data_pending = dr;
3136 3334
3137 3335 mutex_exit(&db->db_mtx);
3138 3336
3139 3337 dbuf_write(dr, *datap, tx);
3140 3338
3141 3339 ASSERT(!list_link_active(&dr->dr_dirty_node));
3142 3340 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3143 3341 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3144 3342 DB_DNODE_EXIT(db);
3145 3343 } else {
3146 3344 /*
3147 3345 * Although zio_nowait() does not "wait for an IO", it does
3148 3346 * initiate the IO. If this is an empty write it seems plausible
3149 3347 * that the IO could actually be completed before the nowait
3150 3348 * returns. We need to DB_DNODE_EXIT() first in case
3151 3349 * zio_nowait() invalidates the dbuf.
3152 3350 */
3153 3351 DB_DNODE_EXIT(db);
3154 3352 zio_nowait(dr->dr_zio);
3155 3353 }
3156 3354 }
3157 3355
3158 3356 void
3159 3357 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3160 3358 {
3161 3359 dbuf_dirty_record_t *dr;
3162 3360
3163 3361 while (dr = list_head(list)) {
3164 3362 if (dr->dr_zio != NULL) {
3165 3363 /*
3166 3364 * If we find an already initialized zio then we
3167 3365 * are processing the meta-dnode, and we have finished.
3168 3366 * The dbufs for all dnodes are put back on the list
3169 3367 * during processing, so that we can zio_wait()
3170 3368 * these IOs after initiating all child IOs.
3171 3369 */
3172 3370 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3173 3371 DMU_META_DNODE_OBJECT);
3174 3372 break;
3175 3373 }
3176 3374 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3177 3375 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3178 3376 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3179 3377 }
3180 3378 list_remove(list, dr);
3181 3379 if (dr->dr_dbuf->db_level > 0)
3182 3380 dbuf_sync_indirect(dr, tx);
3183 3381 else
3184 3382 dbuf_sync_leaf(dr, tx);
3185 3383 }
3186 3384 }
3187 3385
3188 3386 /* ARGSUSED */
3189 3387 static void
3190 3388 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3191 3389 {
3192 3390 dmu_buf_impl_t *db = vdb;
3193 3391 dnode_t *dn;
3194 3392 blkptr_t *bp = zio->io_bp;
3195 3393 blkptr_t *bp_orig = &zio->io_bp_orig;
3196 3394 spa_t *spa = zio->io_spa;
3197 3395 int64_t delta;
3198 3396 uint64_t fill = 0;
3199 3397 int i;
3200 3398
3201 3399 ASSERT3P(db->db_blkptr, !=, NULL);
3202 3400 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3203 3401
3204 3402 DB_DNODE_ENTER(db);
3205 3403 dn = DB_DNODE(db);
3206 3404 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3207 3405 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3208 3406 zio->io_prev_space_delta = delta;
3209 3407
3210 3408 if (bp->blk_birth != 0) {
3211 3409 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3212 3410 BP_GET_TYPE(bp) == dn->dn_type) ||
3213 3411 (db->db_blkid == DMU_SPILL_BLKID &&
3214 3412 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3215 3413 BP_IS_EMBEDDED(bp));
3216 3414 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3217 3415 }
3218 3416
3219 3417 mutex_enter(&db->db_mtx);
3220 3418
3221 3419 #ifdef ZFS_DEBUG
3222 3420 if (db->db_blkid == DMU_SPILL_BLKID) {
3223 3421 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3224 3422 ASSERT(!(BP_IS_HOLE(bp)) &&
3225 3423 db->db_blkptr == &dn->dn_phys->dn_spill);
3226 3424 }
3227 3425 #endif
3228 3426
3229 3427 if (db->db_level == 0) {
3230 3428 mutex_enter(&dn->dn_mtx);
3231 3429 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3232 3430 db->db_blkid != DMU_SPILL_BLKID)
3233 3431 dn->dn_phys->dn_maxblkid = db->db_blkid;
3234 3432 mutex_exit(&dn->dn_mtx);
3235 3433
3236 3434 if (dn->dn_type == DMU_OT_DNODE) {
3237 3435 dnode_phys_t *dnp = db->db.db_data;
3238 3436 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3239 3437 i--, dnp++) {
3240 3438 if (dnp->dn_type != DMU_OT_NONE)
3241 3439 fill++;
3242 3440 }
3243 3441 } else {
3244 3442 if (BP_IS_HOLE(bp)) {
3245 3443 fill = 0;
3246 3444 } else {
3247 3445 fill = 1;
3248 3446 }
3249 3447 }
3250 3448 } else {
3251 3449 blkptr_t *ibp = db->db.db_data;
3252 3450 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3253 3451 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3254 3452 if (BP_IS_HOLE(ibp))
3255 3453 continue;
3256 3454 fill += BP_GET_FILL(ibp);
3257 3455 }
3258 3456 }
3259 3457 DB_DNODE_EXIT(db);
3260 3458
3261 3459 if (!BP_IS_EMBEDDED(bp))
3262 3460 bp->blk_fill = fill;
3263 3461
3264 3462 mutex_exit(&db->db_mtx);
3265 3463
3266 3464 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3267 3465 *db->db_blkptr = *bp;
3268 3466 rw_exit(&dn->dn_struct_rwlock);
3269 3467 }
3270 3468
3271 3469 /* ARGSUSED */
3272 3470 /*
3273 3471 * This function gets called just prior to running through the compression
3274 3472 * stage of the zio pipeline. If we're an indirect block comprised of only
3275 3473 * holes, then we want this indirect to be compressed away to a hole. In
3276 3474 * order to do that we must zero out any information about the holes that
3277 3475 * this indirect points to prior to before we try to compress it.
3278 3476 */
3279 3477 static void
3280 3478 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3281 3479 {
3282 3480 dmu_buf_impl_t *db = vdb;
3283 3481 dnode_t *dn;
3284 3482 blkptr_t *bp;
3285 3483 unsigned int epbs, i;
3286 3484
3287 3485 ASSERT3U(db->db_level, >, 0);
3288 3486 DB_DNODE_ENTER(db);
3289 3487 dn = DB_DNODE(db);
3290 3488 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3291 3489 ASSERT3U(epbs, <, 31);
3292 3490
3293 3491 /* Determine if all our children are holes */
3294 3492 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3295 3493 if (!BP_IS_HOLE(bp))
3296 3494 break;
3297 3495 }
3298 3496
3299 3497 /*
3300 3498 * If all the children are holes, then zero them all out so that
3301 3499 * we may get compressed away.
3302 3500 */
3303 3501 if (i == 1 << epbs) {
3304 3502 /*
3305 3503 * We only found holes. Grab the rwlock to prevent
3306 3504 * anybody from reading the blocks we're about to
3307 3505 * zero out.
3308 3506 */
3309 3507 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3310 3508 bzero(db->db.db_data, db->db.db_size);
3311 3509 rw_exit(&dn->dn_struct_rwlock);
3312 3510 }
3313 3511 DB_DNODE_EXIT(db);
3314 3512 }
3315 3513
3316 3514 /*
3317 3515 * The SPA will call this callback several times for each zio - once
3318 3516 * for every physical child i/o (zio->io_phys_children times). This
3319 3517 * allows the DMU to monitor the progress of each logical i/o. For example,
3320 3518 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3321 3519 * block. There may be a long delay before all copies/fragments are completed,
3322 3520 * so this callback allows us to retire dirty space gradually, as the physical
3323 3521 * i/os complete.
3324 3522 */
3325 3523 /* ARGSUSED */
3326 3524 static void
3327 3525 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3328 3526 {
3329 3527 dmu_buf_impl_t *db = arg;
3330 3528 objset_t *os = db->db_objset;
3331 3529 dsl_pool_t *dp = dmu_objset_pool(os);
3332 3530 dbuf_dirty_record_t *dr;
3333 3531 int delta = 0;
3334 3532
3335 3533 dr = db->db_data_pending;
3336 3534 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3337 3535
3338 3536 /*
3339 3537 * The callback will be called io_phys_children times. Retire one
3340 3538 * portion of our dirty space each time we are called. Any rounding
3341 3539 * error will be cleaned up by dsl_pool_sync()'s call to
3342 3540 * dsl_pool_undirty_space().
3343 3541 */
3344 3542 delta = dr->dr_accounted / zio->io_phys_children;
3345 3543 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3346 3544 }
3347 3545
3348 3546 /* ARGSUSED */
3349 3547 static void
3350 3548 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3351 3549 {
3352 3550 dmu_buf_impl_t *db = vdb;
3353 3551 blkptr_t *bp_orig = &zio->io_bp_orig;
3354 3552 blkptr_t *bp = db->db_blkptr;
3355 3553 objset_t *os = db->db_objset;
3356 3554 dmu_tx_t *tx = os->os_synctx;
3357 3555 dbuf_dirty_record_t **drp, *dr;
3358 3556
3359 3557 ASSERT0(zio->io_error);
3360 3558 ASSERT(db->db_blkptr == bp);
3361 3559
3362 3560 /*
3363 3561 * For nopwrites and rewrites we ensure that the bp matches our
3364 3562 * original and bypass all the accounting.
3365 3563 */
3366 3564 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3367 3565 ASSERT(BP_EQUAL(bp, bp_orig));
3368 3566 } else {
3369 3567 dsl_dataset_t *ds = os->os_dsl_dataset;
3370 3568 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3371 3569 dsl_dataset_block_born(ds, bp, tx);
3372 3570 }
3373 3571
3374 3572 mutex_enter(&db->db_mtx);
3375 3573
3376 3574 DBUF_VERIFY(db);
3377 3575
3378 3576 drp = &db->db_last_dirty;
3379 3577 while ((dr = *drp) != db->db_data_pending)
3380 3578 drp = &dr->dr_next;
3381 3579 ASSERT(!list_link_active(&dr->dr_dirty_node));
3382 3580 ASSERT(dr->dr_dbuf == db);
3383 3581 ASSERT(dr->dr_next == NULL);
3384 3582 *drp = dr->dr_next;
3385 3583
3386 3584 #ifdef ZFS_DEBUG
3387 3585 if (db->db_blkid == DMU_SPILL_BLKID) {
3388 3586 dnode_t *dn;
3389 3587
3390 3588 DB_DNODE_ENTER(db);
3391 3589 dn = DB_DNODE(db);
3392 3590 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3393 3591 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3394 3592 db->db_blkptr == &dn->dn_phys->dn_spill);
3395 3593 DB_DNODE_EXIT(db);
3396 3594 }
3397 3595 #endif
3398 3596
3399 3597 if (db->db_level == 0) {
3400 3598 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3401 3599 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3402 3600 if (db->db_state != DB_NOFILL) {
3403 3601 if (dr->dt.dl.dr_data != db->db_buf)
3404 3602 arc_buf_destroy(dr->dt.dl.dr_data, db);
3405 3603 }
3406 3604 } else {
3407 3605 dnode_t *dn;
3408 3606
3409 3607 DB_DNODE_ENTER(db);
3410 3608 dn = DB_DNODE(db);
3411 3609 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3412 3610 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3413 3611 if (!BP_IS_HOLE(db->db_blkptr)) {
3414 3612 int epbs =
3415 3613 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3416 3614 ASSERT3U(db->db_blkid, <=,
3417 3615 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3418 3616 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3419 3617 db->db.db_size);
3420 3618 }
3421 3619 DB_DNODE_EXIT(db);
3422 3620 mutex_destroy(&dr->dt.di.dr_mtx);
3423 3621 list_destroy(&dr->dt.di.dr_children);
3424 3622 }
3425 3623 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3426 3624
3427 3625 cv_broadcast(&db->db_changed);
3428 3626 ASSERT(db->db_dirtycnt > 0);
3429 3627 db->db_dirtycnt -= 1;
3430 3628 db->db_data_pending = NULL;
3431 3629 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3432 3630 }
3433 3631
3434 3632 static void
3435 3633 dbuf_write_nofill_ready(zio_t *zio)
3436 3634 {
3437 3635 dbuf_write_ready(zio, NULL, zio->io_private);
3438 3636 }
3439 3637
3440 3638 static void
3441 3639 dbuf_write_nofill_done(zio_t *zio)
3442 3640 {
3443 3641 dbuf_write_done(zio, NULL, zio->io_private);
3444 3642 }
3445 3643
3446 3644 static void
3447 3645 dbuf_write_override_ready(zio_t *zio)
3448 3646 {
3449 3647 dbuf_dirty_record_t *dr = zio->io_private;
3450 3648 dmu_buf_impl_t *db = dr->dr_dbuf;
3451 3649
3452 3650 dbuf_write_ready(zio, NULL, db);
3453 3651 }
3454 3652
3455 3653 static void
3456 3654 dbuf_write_override_done(zio_t *zio)
3457 3655 {
3458 3656 dbuf_dirty_record_t *dr = zio->io_private;
3459 3657 dmu_buf_impl_t *db = dr->dr_dbuf;
3460 3658 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3461 3659
3462 3660 mutex_enter(&db->db_mtx);
3463 3661 if (!BP_EQUAL(zio->io_bp, obp)) {
3464 3662 if (!BP_IS_HOLE(obp))
|
↓ open down ↓ |
451 lines elided |
↑ open up ↑ |
3465 3663 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3466 3664 arc_release(dr->dt.dl.dr_data, db);
3467 3665 }
3468 3666 mutex_exit(&db->db_mtx);
3469 3667 dbuf_write_done(zio, NULL, db);
3470 3668
3471 3669 if (zio->io_abd != NULL)
3472 3670 abd_put(zio->io_abd);
3473 3671 }
3474 3672
3475 -typedef struct dbuf_remap_impl_callback_arg {
3476 - objset_t *drica_os;
3477 - uint64_t drica_blk_birth;
3478 - dmu_tx_t *drica_tx;
3479 -} dbuf_remap_impl_callback_arg_t;
3480 -
3481 -static void
3482 -dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
3483 - void *arg)
3484 -{
3485 - dbuf_remap_impl_callback_arg_t *drica = arg;
3486 - objset_t *os = drica->drica_os;
3487 - spa_t *spa = dmu_objset_spa(os);
3488 - dmu_tx_t *tx = drica->drica_tx;
3489 -
3490 - ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3491 -
3492 - if (os == spa_meta_objset(spa)) {
3493 - spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
3494 - } else {
3495 - dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
3496 - size, drica->drica_blk_birth, tx);
3497 - }
3498 -}
3499 -
3500 -static void
3501 -dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
3502 -{
3503 - blkptr_t bp_copy = *bp;
3504 - spa_t *spa = dmu_objset_spa(dn->dn_objset);
3505 - dbuf_remap_impl_callback_arg_t drica;
3506 -
3507 - ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3508 -
3509 - drica.drica_os = dn->dn_objset;
3510 - drica.drica_blk_birth = bp->blk_birth;
3511 - drica.drica_tx = tx;
3512 - if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
3513 - &drica)) {
3514 - /*
3515 - * The struct_rwlock prevents dbuf_read_impl() from
3516 - * dereferencing the BP while we are changing it. To
3517 - * avoid lock contention, only grab it when we are actually
3518 - * changing the BP.
3519 - */
3520 - rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3521 - *bp = bp_copy;
3522 - rw_exit(&dn->dn_struct_rwlock);
3523 - }
3524 -}
3525 -
3526 -/*
3527 - * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
3528 - * to remap a copy of every bp in the dbuf.
3529 - */
3530 -boolean_t
3531 -dbuf_can_remap(const dmu_buf_impl_t *db)
3532 -{
3533 - spa_t *spa = dmu_objset_spa(db->db_objset);
3534 - blkptr_t *bp = db->db.db_data;
3535 - boolean_t ret = B_FALSE;
3536 -
3537 - ASSERT3U(db->db_level, >, 0);
3538 - ASSERT3S(db->db_state, ==, DB_CACHED);
3539 -
3540 - ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
3541 -
3542 - spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3543 - for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
3544 - blkptr_t bp_copy = bp[i];
3545 - if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
3546 - ret = B_TRUE;
3547 - break;
3548 - }
3549 - }
3550 - spa_config_exit(spa, SCL_VDEV, FTAG);
3551 -
3552 - return (ret);
3553 -}
3554 -
3555 -boolean_t
3556 -dnode_needs_remap(const dnode_t *dn)
3557 -{
3558 - spa_t *spa = dmu_objset_spa(dn->dn_objset);
3559 - boolean_t ret = B_FALSE;
3560 -
3561 - if (dn->dn_phys->dn_nlevels == 0) {
3562 - return (B_FALSE);
3563 - }
3564 -
3565 - ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
3566 -
3567 - spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3568 - for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
3569 - blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
3570 - if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
3571 - ret = B_TRUE;
3572 - break;
3573 - }
3574 - }
3575 - spa_config_exit(spa, SCL_VDEV, FTAG);
3576 -
3577 - return (ret);
3578 -}
3579 -
3580 -/*
3581 - * Remap any existing BP's to concrete vdevs, if possible.
3582 - */
3583 -static void
3584 -dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
3585 -{
3586 - spa_t *spa = dmu_objset_spa(db->db_objset);
3587 - ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3588 -
3589 - if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
3590 - return;
3591 -
3592 - if (db->db_level > 0) {
3593 - blkptr_t *bp = db->db.db_data;
3594 - for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
3595 - dbuf_remap_impl(dn, &bp[i], tx);
3596 - }
3597 - } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
3598 - dnode_phys_t *dnp = db->db.db_data;
3599 - ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
3600 - DMU_OT_DNODE);
3601 - for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) {
3602 - for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
3603 - dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
3604 - }
3605 - }
3606 - }
3607 -}
3608 -
3609 -
3610 3673 /* Issue I/O to commit a dirty buffer to disk. */
3611 3674 static void
3612 3675 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3613 3676 {
3614 3677 dmu_buf_impl_t *db = dr->dr_dbuf;
3615 3678 dnode_t *dn;
3616 3679 objset_t *os;
3617 3680 dmu_buf_impl_t *parent = db->db_parent;
3618 3681 uint64_t txg = tx->tx_txg;
3619 3682 zbookmark_phys_t zb;
3620 3683 zio_prop_t zp;
3621 3684 zio_t *zio;
3622 3685 int wp_flag = 0;
3686 + zio_smartcomp_info_t sc;
3623 3687
3624 3688 ASSERT(dmu_tx_is_syncing(tx));
3625 3689
3626 3690 DB_DNODE_ENTER(db);
3627 3691 dn = DB_DNODE(db);
3628 3692 os = dn->dn_objset;
3629 3693
3694 + dnode_setup_zio_smartcomp(db, &sc);
3695 +
3630 3696 if (db->db_state != DB_NOFILL) {
3631 3697 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3632 3698 /*
3633 3699 * Private object buffers are released here rather
3634 3700 * than in dbuf_dirty() since they are only modified
3635 3701 * in the syncing context and we don't want the
3636 3702 * overhead of making multiple copies of the data.
3637 3703 */
3638 3704 if (BP_IS_HOLE(db->db_blkptr)) {
3639 3705 arc_buf_thaw(data);
3640 3706 } else {
3641 3707 dbuf_release_bp(db);
3642 3708 }
3643 - dbuf_remap(dn, db, tx);
3644 3709 }
3645 3710 }
3646 3711
3647 3712 if (parent != dn->dn_dbuf) {
3648 3713 /* Our parent is an indirect block. */
3649 3714 /* We have a dirty parent that has been scheduled for write. */
3650 3715 ASSERT(parent && parent->db_data_pending);
3651 3716 /* Our parent's buffer is one level closer to the dnode. */
3652 3717 ASSERT(db->db_level == parent->db_level-1);
3653 3718 /*
3654 3719 * We're about to modify our parent's db_data by modifying
3655 3720 * our block pointer, so the parent must be released.
3656 3721 */
3657 3722 ASSERT(arc_released(parent->db_buf));
3658 3723 zio = parent->db_data_pending->dr_zio;
3659 3724 } else {
3660 3725 /* Our parent is the dnode itself. */
3661 3726 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3662 3727 db->db_blkid != DMU_SPILL_BLKID) ||
3663 3728 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3664 3729 if (db->db_blkid != DMU_SPILL_BLKID)
3665 3730 ASSERT3P(db->db_blkptr, ==,
3666 3731 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3667 3732 zio = dn->dn_zio;
3668 3733 }
3669 3734
3670 3735 ASSERT(db->db_level == 0 || data == db->db_buf);
|
↓ open down ↓ |
17 lines elided |
↑ open up ↑ |
3671 3736 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3672 3737 ASSERT(zio);
3673 3738
3674 3739 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3675 3740 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3676 3741 db->db.db_object, db->db_level, db->db_blkid);
3677 3742
3678 3743 if (db->db_blkid == DMU_SPILL_BLKID)
3679 3744 wp_flag = WP_SPILL;
3680 3745 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3746 + WP_SET_SPECIALCLASS(wp_flag, dr->dr_usesc);
3681 3747
3682 3748 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3683 3749 DB_DNODE_EXIT(db);
3684 3750
3685 3751 /*
3686 3752 * We copy the blkptr now (rather than when we instantiate the dirty
3687 3753 * record), because its value can change between open context and
3688 3754 * syncing context. We do not need to hold dn_struct_rwlock to read
3689 3755 * db_blkptr because we are in syncing context.
3690 3756 */
3691 3757 dr->dr_bp_copy = *db->db_blkptr;
3692 3758
3693 3759 if (db->db_level == 0 &&
3694 3760 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3695 3761 /*
|
↓ open down ↓ |
5 lines elided |
↑ open up ↑ |
3696 3762 * The BP for this block has been provided by open context
3697 3763 * (by dmu_sync() or dmu_buf_write_embedded()).
3698 3764 */
3699 3765 abd_t *contents = (data != NULL) ?
3700 3766 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3701 3767
3702 3768 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3703 3769 contents, db->db.db_size, db->db.db_size, &zp,
3704 3770 dbuf_write_override_ready, NULL, NULL,
3705 3771 dbuf_write_override_done,
3706 - dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3772 + dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb,
3773 + &sc);
3707 3774 mutex_enter(&db->db_mtx);
3708 3775 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3709 3776 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3710 3777 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3711 3778 mutex_exit(&db->db_mtx);
3712 3779 } else if (db->db_state == DB_NOFILL) {
3713 3780 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3714 3781 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3715 3782 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3716 3783 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3717 3784 dbuf_write_nofill_ready, NULL, NULL,
3718 3785 dbuf_write_nofill_done, db,
3719 3786 ZIO_PRIORITY_ASYNC_WRITE,
3720 - ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3787 + ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb, &sc);
3721 3788 } else {
3722 3789 ASSERT(arc_released(data));
3723 3790
3724 3791 /*
3725 3792 * For indirect blocks, we want to setup the children
3726 3793 * ready callback so that we can properly handle an indirect
3727 3794 * block that only contains holes.
3728 3795 */
3729 3796 arc_done_func_t *children_ready_cb = NULL;
3730 3797 if (db->db_level != 0)
3731 3798 children_ready_cb = dbuf_write_children_ready;
3732 3799
3733 3800 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3734 3801 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3735 3802 &zp, dbuf_write_ready, children_ready_cb,
3736 3803 dbuf_write_physdone, dbuf_write_done, db,
3737 - ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3804 + ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb, &sc);
3738 3805 }
3739 3806 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX