1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2018, Joyent, Inc.
  24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
  27  */
  28 
  29 /*
  30  * DVA-based Adjustable Replacement Cache
  31  *
  32  * While much of the theory of operation used here is
  33  * based on the self-tuning, low overhead replacement cache
  34  * presented by Megiddo and Modha at FAST 2003, there are some
  35  * significant differences:
  36  *
  37  * 1. The Megiddo and Modha model assumes any page is evictable.
  38  * Pages in its cache cannot be "locked" into memory.  This makes
  39  * the eviction algorithm simple: evict the last page in the list.
  40  * This also make the performance characteristics easy to reason
  41  * about.  Our cache is not so simple.  At any given moment, some
  42  * subset of the blocks in the cache are un-evictable because we
  43  * have handed out a reference to them.  Blocks are only evictable
  44  * when there are no external references active.  This makes
  45  * eviction far more problematic:  we choose to evict the evictable
  46  * blocks that are the "lowest" in the list.
  47  *
  48  * There are times when it is not possible to evict the requested
  49  * space.  In these circumstances we are unable to adjust the cache
  50  * size.  To prevent the cache growing unbounded at these times we
  51  * implement a "cache throttle" that slows the flow of new data
  52  * into the cache until we can make space available.
  53  *
  54  * 2. The Megiddo and Modha model assumes a fixed cache size.
  55  * Pages are evicted when the cache is full and there is a cache
  56  * miss.  Our model has a variable sized cache.  It grows with
  57  * high use, but also tries to react to memory pressure from the
  58  * operating system: decreasing its size when system memory is
  59  * tight.
  60  *
  61  * 3. The Megiddo and Modha model assumes a fixed page size. All
  62  * elements of the cache are therefore exactly the same size.  So
  63  * when adjusting the cache size following a cache miss, its simply
  64  * a matter of choosing a single page to evict.  In our model, we
  65  * have variable sized cache blocks (rangeing from 512 bytes to
  66  * 128K bytes).  We therefore choose a set of blocks to evict to make
  67  * space for a cache miss that approximates as closely as possible
  68  * the space used by the new block.
  69  *
  70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  71  * by N. Megiddo & D. Modha, FAST 2003
  72  */
  73 
  74 /*
  75  * The locking model:
  76  *
  77  * A new reference to a cache buffer can be obtained in two
  78  * ways: 1) via a hash table lookup using the DVA as a key,
  79  * or 2) via one of the ARC lists.  The arc_read() interface
  80  * uses method 1, while the internal ARC algorithms for
  81  * adjusting the cache use method 2.  We therefore provide two
  82  * types of locks: 1) the hash table lock array, and 2) the
  83  * ARC list locks.
  84  *
  85  * Buffers do not have their own mutexes, rather they rely on the
  86  * hash table mutexes for the bulk of their protection (i.e. most
  87  * fields in the arc_buf_hdr_t are protected by these mutexes).
  88  *
  89  * buf_hash_find() returns the appropriate mutex (held) when it
  90  * locates the requested buffer in the hash table.  It returns
  91  * NULL for the mutex if the buffer was not in the table.
  92  *
  93  * buf_hash_remove() expects the appropriate hash mutex to be
  94  * already held before it is invoked.
  95  *
  96  * Each ARC state also has a mutex which is used to protect the
  97  * buffer list associated with the state.  When attempting to
  98  * obtain a hash table lock while holding an ARC list lock you
  99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
 100  * the active state mutex must be held before the ghost state mutex.
 101  *
 102  * Note that the majority of the performance stats are manipulated
 103  * with atomic operations.
 104  *
 105  * The L2ARC uses the l2ad_mtx on each vdev for the following:
 106  *
 107  *      - L2ARC buflist creation
 108  *      - L2ARC buflist eviction
 109  *      - L2ARC write completion, which walks L2ARC buflists
 110  *      - ARC header destruction, as it removes from L2ARC buflists
 111  *      - ARC header release, as it removes from L2ARC buflists
 112  */
 113 
 114 /*
 115  * ARC operation:
 116  *
 117  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
 118  * This structure can point either to a block that is still in the cache or to
 119  * one that is only accessible in an L2 ARC device, or it can provide
 120  * information about a block that was recently evicted. If a block is
 121  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
 122  * information to retrieve it from the L2ARC device. This information is
 123  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
 124  * that is in this state cannot access the data directly.
 125  *
 126  * Blocks that are actively being referenced or have not been evicted
 127  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
 128  * the arc_buf_hdr_t that will point to the data block in memory. A block can
 129  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
 130  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
 131  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
 132  *
 133  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
 134  * ability to store the physical data (b_pabd) associated with the DVA of the
 135  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
 136  * it will match its on-disk compression characteristics. This behavior can be
 137  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
 138  * compressed ARC functionality is disabled, the b_pabd will point to an
 139  * uncompressed version of the on-disk data.
 140  *
 141  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
 142  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
 143  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
 144  * consumer. The ARC will provide references to this data and will keep it
 145  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
 146  * data block and will evict any arc_buf_t that is no longer referenced. The
 147  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
 148  * "overhead_size" kstat.
 149  *
 150  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
 151  * compressed form. The typical case is that consumers will want uncompressed
 152  * data, and when that happens a new data buffer is allocated where the data is
 153  * decompressed for them to use. Currently the only consumer who wants
 154  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
 155  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
 156  * with the arc_buf_hdr_t.
 157  *
 158  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
 159  * first one is owned by a compressed send consumer (and therefore references
 160  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
 161  * used by any other consumer (and has its own uncompressed copy of the data
 162  * buffer).
 163  *
 164  *   arc_buf_hdr_t
 165  *   +-----------+
 166  *   | fields    |
 167  *   | common to |
 168  *   | L1- and   |
 169  *   | L2ARC     |
 170  *   +-----------+
 171  *   | l2arc_buf_hdr_t
 172  *   |           |
 173  *   +-----------+
 174  *   | l1arc_buf_hdr_t
 175  *   |           |              arc_buf_t
 176  *   | b_buf     +------------>+-----------+      arc_buf_t
 177  *   | b_pabd    +-+           |b_next     +---->+-----------+
 178  *   +-----------+ |           |-----------|     |b_next     +-->NULL
 179  *                 |           |b_comp = T |     +-----------+
 180  *                 |           |b_data     +-+   |b_comp = F |
 181  *                 |           +-----------+ |   |b_data     +-+
 182  *                 +->+------+               |   +-----------+ |
 183  *        compressed  |      |               |                 |
 184  *           data     |      |<--------------+                 | uncompressed
 185  *                    +------+          compressed,            |     data
 186  *                                        shared               +-->+------+
 187  *                                         data                    |      |
 188  *                                                                 |      |
 189  *                                                                 +------+
 190  *
 191  * When a consumer reads a block, the ARC must first look to see if the
 192  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
 193  * arc_buf_t and either copies uncompressed data into a new data buffer from an
 194  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
 195  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
 196  * hdr is compressed and the desired compression characteristics of the
 197  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
 198  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
 199  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
 200  * be anywhere in the hdr's list.
 201  *
 202  * The diagram below shows an example of an uncompressed ARC hdr that is
 203  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
 204  * the last element in the buf list):
 205  *
 206  *                arc_buf_hdr_t
 207  *                +-----------+
 208  *                |           |
 209  *                |           |
 210  *                |           |
 211  *                +-----------+
 212  * l2arc_buf_hdr_t|           |
 213  *                |           |
 214  *                +-----------+
 215  * l1arc_buf_hdr_t|           |
 216  *                |           |                 arc_buf_t    (shared)
 217  *                |    b_buf  +------------>+---------+      arc_buf_t
 218  *                |           |             |b_next   +---->+---------+
 219  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
 220  *                +-----------+ |           |         |     +---------+
 221  *                              |           |b_data   +-+   |         |
 222  *                              |           +---------+ |   |b_data   +-+
 223  *                              +->+------+             |   +---------+ |
 224  *                                 |      |             |               |
 225  *                   uncompressed  |      |             |               |
 226  *                        data     +------+             |               |
 227  *                                    ^                 +->+------+     |
 228  *                                    |       uncompressed |      |     |
 229  *                                    |           data     |      |     |
 230  *                                    |                    +------+     |
 231  *                                    +---------------------------------+
 232  *
 233  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
 234  * since the physical block is about to be rewritten. The new data contents
 235  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
 236  * it may compress the data before writing it to disk. The ARC will be called
 237  * with the transformed data and will bcopy the transformed on-disk block into
 238  * a newly allocated b_pabd. Writes are always done into buffers which have
 239  * either been loaned (and hence are new and don't have other readers) or
 240  * buffers which have been released (and hence have their own hdr, if there
 241  * were originally other readers of the buf's original hdr). This ensures that
 242  * the ARC only needs to update a single buf and its hdr after a write occurs.
 243  *
 244  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
 245  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
 246  * that when compressed ARC is enabled that the L2ARC blocks are identical
 247  * to the on-disk block in the main data pool. This provides a significant
 248  * advantage since the ARC can leverage the bp's checksum when reading from the
 249  * L2ARC to determine if the contents are valid. However, if the compressed
 250  * ARC is disabled, then the L2ARC's block must be transformed to look
 251  * like the physical block in the main data pool before comparing the
 252  * checksum and determining its validity.
 253  */
 254 
 255 #include <sys/spa.h>
 256 #include <sys/zio.h>
 257 #include <sys/spa_impl.h>
 258 #include <sys/zio_compress.h>
 259 #include <sys/zio_checksum.h>
 260 #include <sys/zfs_context.h>
 261 #include <sys/arc.h>
 262 #include <sys/refcount.h>
 263 #include <sys/vdev.h>
 264 #include <sys/vdev_impl.h>
 265 #include <sys/dsl_pool.h>
 266 #include <sys/zio_checksum.h>
 267 #include <sys/multilist.h>
 268 #include <sys/abd.h>
 269 #ifdef _KERNEL
 270 #include <sys/vmsystm.h>
 271 #include <vm/anon.h>
 272 #include <sys/fs/swapnode.h>
 273 #include <sys/dnlc.h>
 274 #endif
 275 #include <sys/callb.h>
 276 #include <sys/kstat.h>
 277 #include <zfs_fletcher.h>
 278 #include <sys/aggsum.h>
 279 #include <sys/cityhash.h>
 280 
 281 #ifndef _KERNEL
 282 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 283 boolean_t arc_watch = B_FALSE;
 284 int arc_procfd;
 285 #endif
 286 
 287 static kmutex_t         arc_reclaim_lock;
 288 static kcondvar_t       arc_reclaim_thread_cv;
 289 static boolean_t        arc_reclaim_thread_exit;
 290 static kcondvar_t       arc_reclaim_waiters_cv;
 291 
 292 uint_t arc_reduce_dnlc_percent = 3;
 293 
 294 /*
 295  * The number of headers to evict in arc_evict_state_impl() before
 296  * dropping the sublist lock and evicting from another sublist. A lower
 297  * value means we're more likely to evict the "correct" header (i.e. the
 298  * oldest header in the arc state), but comes with higher overhead
 299  * (i.e. more invocations of arc_evict_state_impl()).
 300  */
 301 int zfs_arc_evict_batch_limit = 10;
 302 
 303 /* number of seconds before growing cache again */
 304 static int              arc_grow_retry = 60;
 305 
 306 /* number of milliseconds before attempting a kmem-cache-reap */
 307 static int              arc_kmem_cache_reap_retry_ms = 1000;
 308 
 309 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
 310 int             zfs_arc_overflow_shift = 8;
 311 
 312 /* shift of arc_c for calculating both min and max arc_p */
 313 static int              arc_p_min_shift = 4;
 314 
 315 /* log2(fraction of arc to reclaim) */
 316 static int              arc_shrink_shift = 7;
 317 
 318 /*
 319  * log2(fraction of ARC which must be free to allow growing).
 320  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 321  * when reading a new block into the ARC, we will evict an equal-sized block
 322  * from the ARC.
 323  *
 324  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 325  * we will still not allow it to grow.
 326  */
 327 int                     arc_no_grow_shift = 5;
 328 
 329 
 330 /*
 331  * minimum lifespan of a prefetch block in clock ticks
 332  * (initialized in arc_init())
 333  */
 334 static int              arc_min_prefetch_lifespan;
 335 
 336 /*
 337  * If this percent of memory is free, don't throttle.
 338  */
 339 int arc_lotsfree_percent = 10;
 340 
 341 static int arc_dead;
 342 
 343 /*
 344  * The arc has filled available memory and has now warmed up.
 345  */
 346 static boolean_t arc_warm;
 347 
 348 /*
 349  * log2 fraction of the zio arena to keep free.
 350  */
 351 int arc_zio_arena_free_shift = 2;
 352 
 353 /*
 354  * These tunables are for performance analysis.
 355  */
 356 uint64_t zfs_arc_max;
 357 uint64_t zfs_arc_min;
 358 uint64_t zfs_arc_meta_limit = 0;
 359 uint64_t zfs_arc_meta_min = 0;
 360 int zfs_arc_grow_retry = 0;
 361 int zfs_arc_shrink_shift = 0;
 362 int zfs_arc_p_min_shift = 0;
 363 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 364 
 365 boolean_t zfs_compressed_arc_enabled = B_TRUE;
 366 
 367 /*
 368  * Note that buffers can be in one of 6 states:
 369  *      ARC_anon        - anonymous (discussed below)
 370  *      ARC_mru         - recently used, currently cached
 371  *      ARC_mru_ghost   - recentely used, no longer in cache
 372  *      ARC_mfu         - frequently used, currently cached
 373  *      ARC_mfu_ghost   - frequently used, no longer in cache
 374  *      ARC_l2c_only    - exists in L2ARC but not other states
 375  * When there are no active references to the buffer, they are
 376  * are linked onto a list in one of these arc states.  These are
 377  * the only buffers that can be evicted or deleted.  Within each
 378  * state there are multiple lists, one for meta-data and one for
 379  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
 380  * etc.) is tracked separately so that it can be managed more
 381  * explicitly: favored over data, limited explicitly.
 382  *
 383  * Anonymous buffers are buffers that are not associated with
 384  * a DVA.  These are buffers that hold dirty block copies
 385  * before they are written to stable storage.  By definition,
 386  * they are "ref'd" and are considered part of arc_mru
 387  * that cannot be freed.  Generally, they will aquire a DVA
 388  * as they are written and migrate onto the arc_mru list.
 389  *
 390  * The ARC_l2c_only state is for buffers that are in the second
 391  * level ARC but no longer in any of the ARC_m* lists.  The second
 392  * level ARC itself may also contain buffers that are in any of
 393  * the ARC_m* states - meaning that a buffer can exist in two
 394  * places.  The reason for the ARC_l2c_only state is to keep the
 395  * buffer header in the hash table, so that reads that hit the
 396  * second level ARC benefit from these fast lookups.
 397  */
 398 
 399 typedef struct arc_state {
 400         /*
 401          * list of evictable buffers
 402          */
 403         multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
 404         /*
 405          * total amount of evictable data in this state
 406          */
 407         refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
 408         /*
 409          * total amount of data in this state; this includes: evictable,
 410          * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
 411          */
 412         refcount_t arcs_size;
 413 } arc_state_t;
 414 
 415 /* The 6 states: */
 416 static arc_state_t ARC_anon;
 417 static arc_state_t ARC_mru;
 418 static arc_state_t ARC_mru_ghost;
 419 static arc_state_t ARC_mfu;
 420 static arc_state_t ARC_mfu_ghost;
 421 static arc_state_t ARC_l2c_only;
 422 
 423 typedef struct arc_stats {
 424         kstat_named_t arcstat_hits;
 425         kstat_named_t arcstat_misses;
 426         kstat_named_t arcstat_demand_data_hits;
 427         kstat_named_t arcstat_demand_data_misses;
 428         kstat_named_t arcstat_demand_metadata_hits;
 429         kstat_named_t arcstat_demand_metadata_misses;
 430         kstat_named_t arcstat_prefetch_data_hits;
 431         kstat_named_t arcstat_prefetch_data_misses;
 432         kstat_named_t arcstat_prefetch_metadata_hits;
 433         kstat_named_t arcstat_prefetch_metadata_misses;
 434         kstat_named_t arcstat_mru_hits;
 435         kstat_named_t arcstat_mru_ghost_hits;
 436         kstat_named_t arcstat_mfu_hits;
 437         kstat_named_t arcstat_mfu_ghost_hits;
 438         kstat_named_t arcstat_deleted;
 439         /*
 440          * Number of buffers that could not be evicted because the hash lock
 441          * was held by another thread.  The lock may not necessarily be held
 442          * by something using the same buffer, since hash locks are shared
 443          * by multiple buffers.
 444          */
 445         kstat_named_t arcstat_mutex_miss;
 446         /*
 447          * Number of buffers skipped because they have I/O in progress, are
 448          * indrect prefetch buffers that have not lived long enough, or are
 449          * not from the spa we're trying to evict from.
 450          */
 451         kstat_named_t arcstat_evict_skip;
 452         /*
 453          * Number of times arc_evict_state() was unable to evict enough
 454          * buffers to reach it's target amount.
 455          */
 456         kstat_named_t arcstat_evict_not_enough;
 457         kstat_named_t arcstat_evict_l2_cached;
 458         kstat_named_t arcstat_evict_l2_eligible;
 459         kstat_named_t arcstat_evict_l2_ineligible;
 460         kstat_named_t arcstat_evict_l2_skip;
 461         kstat_named_t arcstat_hash_elements;
 462         kstat_named_t arcstat_hash_elements_max;
 463         kstat_named_t arcstat_hash_collisions;
 464         kstat_named_t arcstat_hash_chains;
 465         kstat_named_t arcstat_hash_chain_max;
 466         kstat_named_t arcstat_p;
 467         kstat_named_t arcstat_c;
 468         kstat_named_t arcstat_c_min;
 469         kstat_named_t arcstat_c_max;
 470         /* Not updated directly; only synced in arc_kstat_update. */
 471         kstat_named_t arcstat_size;
 472         /*
 473          * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
 474          * Note that the compressed bytes may match the uncompressed bytes
 475          * if the block is either not compressed or compressed arc is disabled.
 476          */
 477         kstat_named_t arcstat_compressed_size;
 478         /*
 479          * Uncompressed size of the data stored in b_pabd. If compressed
 480          * arc is disabled then this value will be identical to the stat
 481          * above.
 482          */
 483         kstat_named_t arcstat_uncompressed_size;
 484         /*
 485          * Number of bytes stored in all the arc_buf_t's. This is classified
 486          * as "overhead" since this data is typically short-lived and will
 487          * be evicted from the arc when it becomes unreferenced unless the
 488          * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
 489          * values have been set (see comment in dbuf.c for more information).
 490          */
 491         kstat_named_t arcstat_overhead_size;
 492         /*
 493          * Number of bytes consumed by internal ARC structures necessary
 494          * for tracking purposes; these structures are not actually
 495          * backed by ARC buffers. This includes arc_buf_hdr_t structures
 496          * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
 497          * caches), and arc_buf_t structures (allocated via arc_buf_t
 498          * cache).
 499          * Not updated directly; only synced in arc_kstat_update.
 500          */
 501         kstat_named_t arcstat_hdr_size;
 502         /*
 503          * Number of bytes consumed by ARC buffers of type equal to
 504          * ARC_BUFC_DATA. This is generally consumed by buffers backing
 505          * on disk user data (e.g. plain file contents).
 506          * Not updated directly; only synced in arc_kstat_update.
 507          */
 508         kstat_named_t arcstat_data_size;
 509         /*
 510          * Number of bytes consumed by ARC buffers of type equal to
 511          * ARC_BUFC_METADATA. This is generally consumed by buffers
 512          * backing on disk data that is used for internal ZFS
 513          * structures (e.g. ZAP, dnode, indirect blocks, etc).
 514          * Not updated directly; only synced in arc_kstat_update.
 515          */
 516         kstat_named_t arcstat_metadata_size;
 517         /*
 518          * Number of bytes consumed by various buffers and structures
 519          * not actually backed with ARC buffers. This includes bonus
 520          * buffers (allocated directly via zio_buf_* functions),
 521          * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
 522          * cache), and dnode_t structures (allocated via dnode_t cache).
 523          * Not updated directly; only synced in arc_kstat_update.
 524          */
 525         kstat_named_t arcstat_other_size;
 526         /*
 527          * Total number of bytes consumed by ARC buffers residing in the
 528          * arc_anon state. This includes *all* buffers in the arc_anon
 529          * state; e.g. data, metadata, evictable, and unevictable buffers
 530          * are all included in this value.
 531          * Not updated directly; only synced in arc_kstat_update.
 532          */
 533         kstat_named_t arcstat_anon_size;
 534         /*
 535          * Number of bytes consumed by ARC buffers that meet the
 536          * following criteria: backing buffers of type ARC_BUFC_DATA,
 537          * residing in the arc_anon state, and are eligible for eviction
 538          * (e.g. have no outstanding holds on the buffer).
 539          * Not updated directly; only synced in arc_kstat_update.
 540          */
 541         kstat_named_t arcstat_anon_evictable_data;
 542         /*
 543          * Number of bytes consumed by ARC buffers that meet the
 544          * following criteria: backing buffers of type ARC_BUFC_METADATA,
 545          * residing in the arc_anon state, and are eligible for eviction
 546          * (e.g. have no outstanding holds on the buffer).
 547          * Not updated directly; only synced in arc_kstat_update.
 548          */
 549         kstat_named_t arcstat_anon_evictable_metadata;
 550         /*
 551          * Total number of bytes consumed by ARC buffers residing in the
 552          * arc_mru state. This includes *all* buffers in the arc_mru
 553          * state; e.g. data, metadata, evictable, and unevictable buffers
 554          * are all included in this value.
 555          * Not updated directly; only synced in arc_kstat_update.
 556          */
 557         kstat_named_t arcstat_mru_size;
 558         /*
 559          * Number of bytes consumed by ARC buffers that meet the
 560          * following criteria: backing buffers of type ARC_BUFC_DATA,
 561          * residing in the arc_mru state, and are eligible for eviction
 562          * (e.g. have no outstanding holds on the buffer).
 563          * Not updated directly; only synced in arc_kstat_update.
 564          */
 565         kstat_named_t arcstat_mru_evictable_data;
 566         /*
 567          * Number of bytes consumed by ARC buffers that meet the
 568          * following criteria: backing buffers of type ARC_BUFC_METADATA,
 569          * residing in the arc_mru state, and are eligible for eviction
 570          * (e.g. have no outstanding holds on the buffer).
 571          * Not updated directly; only synced in arc_kstat_update.
 572          */
 573         kstat_named_t arcstat_mru_evictable_metadata;
 574         /*
 575          * Total number of bytes that *would have been* consumed by ARC
 576          * buffers in the arc_mru_ghost state. The key thing to note
 577          * here, is the fact that this size doesn't actually indicate
 578          * RAM consumption. The ghost lists only consist of headers and
 579          * don't actually have ARC buffers linked off of these headers.
 580          * Thus, *if* the headers had associated ARC buffers, these
 581          * buffers *would have* consumed this number of bytes.
 582          * Not updated directly; only synced in arc_kstat_update.
 583          */
 584         kstat_named_t arcstat_mru_ghost_size;
 585         /*
 586          * Number of bytes that *would have been* consumed by ARC
 587          * buffers that are eligible for eviction, of type
 588          * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
 589          * Not updated directly; only synced in arc_kstat_update.
 590          */
 591         kstat_named_t arcstat_mru_ghost_evictable_data;
 592         /*
 593          * Number of bytes that *would have been* consumed by ARC
 594          * buffers that are eligible for eviction, of type
 595          * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
 596          * Not updated directly; only synced in arc_kstat_update.
 597          */
 598         kstat_named_t arcstat_mru_ghost_evictable_metadata;
 599         /*
 600          * Total number of bytes consumed by ARC buffers residing in the
 601          * arc_mfu state. This includes *all* buffers in the arc_mfu
 602          * state; e.g. data, metadata, evictable, and unevictable buffers
 603          * are all included in this value.
 604          * Not updated directly; only synced in arc_kstat_update.
 605          */
 606         kstat_named_t arcstat_mfu_size;
 607         /*
 608          * Number of bytes consumed by ARC buffers that are eligible for
 609          * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
 610          * state.
 611          * Not updated directly; only synced in arc_kstat_update.
 612          */
 613         kstat_named_t arcstat_mfu_evictable_data;
 614         /*
 615          * Number of bytes consumed by ARC buffers that are eligible for
 616          * eviction, of type ARC_BUFC_METADATA, and reside in the
 617          * arc_mfu state.
 618          * Not updated directly; only synced in arc_kstat_update.
 619          */
 620         kstat_named_t arcstat_mfu_evictable_metadata;
 621         /*
 622          * Total number of bytes that *would have been* consumed by ARC
 623          * buffers in the arc_mfu_ghost state. See the comment above
 624          * arcstat_mru_ghost_size for more details.
 625          * Not updated directly; only synced in arc_kstat_update.
 626          */
 627         kstat_named_t arcstat_mfu_ghost_size;
 628         /*
 629          * Number of bytes that *would have been* consumed by ARC
 630          * buffers that are eligible for eviction, of type
 631          * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
 632          * Not updated directly; only synced in arc_kstat_update.
 633          */
 634         kstat_named_t arcstat_mfu_ghost_evictable_data;
 635         /*
 636          * Number of bytes that *would have been* consumed by ARC
 637          * buffers that are eligible for eviction, of type
 638          * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
 639          * Not updated directly; only synced in arc_kstat_update.
 640          */
 641         kstat_named_t arcstat_mfu_ghost_evictable_metadata;
 642         kstat_named_t arcstat_l2_hits;
 643         kstat_named_t arcstat_l2_misses;
 644         kstat_named_t arcstat_l2_feeds;
 645         kstat_named_t arcstat_l2_rw_clash;
 646         kstat_named_t arcstat_l2_read_bytes;
 647         kstat_named_t arcstat_l2_write_bytes;
 648         kstat_named_t arcstat_l2_writes_sent;
 649         kstat_named_t arcstat_l2_writes_done;
 650         kstat_named_t arcstat_l2_writes_error;
 651         kstat_named_t arcstat_l2_writes_lock_retry;
 652         kstat_named_t arcstat_l2_evict_lock_retry;
 653         kstat_named_t arcstat_l2_evict_reading;
 654         kstat_named_t arcstat_l2_evict_l1cached;
 655         kstat_named_t arcstat_l2_free_on_write;
 656         kstat_named_t arcstat_l2_abort_lowmem;
 657         kstat_named_t arcstat_l2_cksum_bad;
 658         kstat_named_t arcstat_l2_io_error;
 659         kstat_named_t arcstat_l2_lsize;
 660         kstat_named_t arcstat_l2_psize;
 661         /* Not updated directly; only synced in arc_kstat_update. */
 662         kstat_named_t arcstat_l2_hdr_size;
 663         kstat_named_t arcstat_memory_throttle_count;
 664         /* Not updated directly; only synced in arc_kstat_update. */
 665         kstat_named_t arcstat_meta_used;
 666         kstat_named_t arcstat_meta_limit;
 667         kstat_named_t arcstat_meta_max;
 668         kstat_named_t arcstat_meta_min;
 669         kstat_named_t arcstat_sync_wait_for_async;
 670         kstat_named_t arcstat_demand_hit_predictive_prefetch;
 671 } arc_stats_t;
 672 
 673 static arc_stats_t arc_stats = {
 674         { "hits",                       KSTAT_DATA_UINT64 },
 675         { "misses",                     KSTAT_DATA_UINT64 },
 676         { "demand_data_hits",           KSTAT_DATA_UINT64 },
 677         { "demand_data_misses",         KSTAT_DATA_UINT64 },
 678         { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 679         { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 680         { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 681         { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 682         { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 683         { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 684         { "mru_hits",                   KSTAT_DATA_UINT64 },
 685         { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 686         { "mfu_hits",                   KSTAT_DATA_UINT64 },
 687         { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 688         { "deleted",                    KSTAT_DATA_UINT64 },
 689         { "mutex_miss",                 KSTAT_DATA_UINT64 },
 690         { "evict_skip",                 KSTAT_DATA_UINT64 },
 691         { "evict_not_enough",           KSTAT_DATA_UINT64 },
 692         { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 693         { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 694         { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 695         { "evict_l2_skip",              KSTAT_DATA_UINT64 },
 696         { "hash_elements",              KSTAT_DATA_UINT64 },
 697         { "hash_elements_max",          KSTAT_DATA_UINT64 },
 698         { "hash_collisions",            KSTAT_DATA_UINT64 },
 699         { "hash_chains",                KSTAT_DATA_UINT64 },
 700         { "hash_chain_max",             KSTAT_DATA_UINT64 },
 701         { "p",                          KSTAT_DATA_UINT64 },
 702         { "c",                          KSTAT_DATA_UINT64 },
 703         { "c_min",                      KSTAT_DATA_UINT64 },
 704         { "c_max",                      KSTAT_DATA_UINT64 },
 705         { "size",                       KSTAT_DATA_UINT64 },
 706         { "compressed_size",            KSTAT_DATA_UINT64 },
 707         { "uncompressed_size",          KSTAT_DATA_UINT64 },
 708         { "overhead_size",              KSTAT_DATA_UINT64 },
 709         { "hdr_size",                   KSTAT_DATA_UINT64 },
 710         { "data_size",                  KSTAT_DATA_UINT64 },
 711         { "metadata_size",              KSTAT_DATA_UINT64 },
 712         { "other_size",                 KSTAT_DATA_UINT64 },
 713         { "anon_size",                  KSTAT_DATA_UINT64 },
 714         { "anon_evictable_data",        KSTAT_DATA_UINT64 },
 715         { "anon_evictable_metadata",    KSTAT_DATA_UINT64 },
 716         { "mru_size",                   KSTAT_DATA_UINT64 },
 717         { "mru_evictable_data",         KSTAT_DATA_UINT64 },
 718         { "mru_evictable_metadata",     KSTAT_DATA_UINT64 },
 719         { "mru_ghost_size",             KSTAT_DATA_UINT64 },
 720         { "mru_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 721         { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 722         { "mfu_size",                   KSTAT_DATA_UINT64 },
 723         { "mfu_evictable_data",         KSTAT_DATA_UINT64 },
 724         { "mfu_evictable_metadata",     KSTAT_DATA_UINT64 },
 725         { "mfu_ghost_size",             KSTAT_DATA_UINT64 },
 726         { "mfu_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 727         { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 728         { "l2_hits",                    KSTAT_DATA_UINT64 },
 729         { "l2_misses",                  KSTAT_DATA_UINT64 },
 730         { "l2_feeds",                   KSTAT_DATA_UINT64 },
 731         { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 732         { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 733         { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 734         { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 735         { "l2_writes_done",             KSTAT_DATA_UINT64 },
 736         { "l2_writes_error",            KSTAT_DATA_UINT64 },
 737         { "l2_writes_lock_retry",       KSTAT_DATA_UINT64 },
 738         { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 739         { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 740         { "l2_evict_l1cached",          KSTAT_DATA_UINT64 },
 741         { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 742         { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 743         { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 744         { "l2_io_error",                KSTAT_DATA_UINT64 },
 745         { "l2_size",                    KSTAT_DATA_UINT64 },
 746         { "l2_asize",                   KSTAT_DATA_UINT64 },
 747         { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 748         { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 749         { "arc_meta_used",              KSTAT_DATA_UINT64 },
 750         { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 751         { "arc_meta_max",               KSTAT_DATA_UINT64 },
 752         { "arc_meta_min",               KSTAT_DATA_UINT64 },
 753         { "sync_wait_for_async",        KSTAT_DATA_UINT64 },
 754         { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
 755 };
 756 
 757 #define ARCSTAT(stat)   (arc_stats.stat.value.ui64)
 758 
 759 #define ARCSTAT_INCR(stat, val) \
 760         atomic_add_64(&arc_stats.stat.value.ui64, (val))
 761 
 762 #define ARCSTAT_BUMP(stat)      ARCSTAT_INCR(stat, 1)
 763 #define ARCSTAT_BUMPDOWN(stat)  ARCSTAT_INCR(stat, -1)
 764 
 765 #define ARCSTAT_MAX(stat, val) {                                        \
 766         uint64_t m;                                                     \
 767         while ((val) > (m = arc_stats.stat.value.ui64) &&            \
 768             (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))     \
 769                 continue;                                               \
 770 }
 771 
 772 #define ARCSTAT_MAXSTAT(stat) \
 773         ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 774 
 775 /*
 776  * We define a macro to allow ARC hits/misses to be easily broken down by
 777  * two separate conditions, giving a total of four different subtypes for
 778  * each of hits and misses (so eight statistics total).
 779  */
 780 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 781         if (cond1) {                                                    \
 782                 if (cond2) {                                            \
 783                         ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 784                 } else {                                                \
 785                         ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 786                 }                                                       \
 787         } else {                                                        \
 788                 if (cond2) {                                            \
 789                         ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 790                 } else {                                                \
 791                         ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 792                 }                                                       \
 793         }
 794 
 795 kstat_t                 *arc_ksp;
 796 static arc_state_t      *arc_anon;
 797 static arc_state_t      *arc_mru;
 798 static arc_state_t      *arc_mru_ghost;
 799 static arc_state_t      *arc_mfu;
 800 static arc_state_t      *arc_mfu_ghost;
 801 static arc_state_t      *arc_l2c_only;
 802 
 803 /*
 804  * There are several ARC variables that are critical to export as kstats --
 805  * but we don't want to have to grovel around in the kstat whenever we wish to
 806  * manipulate them.  For these variables, we therefore define them to be in
 807  * terms of the statistic variable.  This assures that we are not introducing
 808  * the possibility of inconsistency by having shadow copies of the variables,
 809  * while still allowing the code to be readable.
 810  */
 811 #define arc_p           ARCSTAT(arcstat_p)      /* target size of MRU */
 812 #define arc_c           ARCSTAT(arcstat_c)      /* target size of cache */
 813 #define arc_c_min       ARCSTAT(arcstat_c_min)  /* min target cache size */
 814 #define arc_c_max       ARCSTAT(arcstat_c_max)  /* max target cache size */
 815 #define arc_meta_limit  ARCSTAT(arcstat_meta_limit) /* max size for metadata */
 816 #define arc_meta_min    ARCSTAT(arcstat_meta_min) /* min size for metadata */
 817 #define arc_meta_max    ARCSTAT(arcstat_meta_max) /* max size of metadata */
 818 
 819 /* compressed size of entire arc */
 820 #define arc_compressed_size     ARCSTAT(arcstat_compressed_size)
 821 /* uncompressed size of entire arc */
 822 #define arc_uncompressed_size   ARCSTAT(arcstat_uncompressed_size)
 823 /* number of bytes in the arc from arc_buf_t's */
 824 #define arc_overhead_size       ARCSTAT(arcstat_overhead_size)
 825 
 826 /*
 827  * There are also some ARC variables that we want to export, but that are
 828  * updated so often that having the canonical representation be the statistic
 829  * variable causes a performance bottleneck. We want to use aggsum_t's for these
 830  * instead, but still be able to export the kstat in the same way as before.
 831  * The solution is to always use the aggsum version, except in the kstat update
 832  * callback.
 833  */
 834 aggsum_t arc_size;
 835 aggsum_t arc_meta_used;
 836 aggsum_t astat_data_size;
 837 aggsum_t astat_metadata_size;
 838 aggsum_t astat_hdr_size;
 839 aggsum_t astat_other_size;
 840 aggsum_t astat_l2_hdr_size;
 841 
 842 static int              arc_no_grow;    /* Don't try to grow cache size */
 843 static uint64_t         arc_tempreserve;
 844 static uint64_t         arc_loaned_bytes;
 845 
 846 typedef struct arc_callback arc_callback_t;
 847 
 848 struct arc_callback {
 849         void                    *acb_private;
 850         arc_done_func_t         *acb_done;
 851         arc_buf_t               *acb_buf;
 852         boolean_t               acb_compressed;
 853         zio_t                   *acb_zio_dummy;
 854         arc_callback_t          *acb_next;
 855 };
 856 
 857 typedef struct arc_write_callback arc_write_callback_t;
 858 
 859 struct arc_write_callback {
 860         void            *awcb_private;
 861         arc_done_func_t *awcb_ready;
 862         arc_done_func_t *awcb_children_ready;
 863         arc_done_func_t *awcb_physdone;
 864         arc_done_func_t *awcb_done;
 865         arc_buf_t       *awcb_buf;
 866 };
 867 
 868 /*
 869  * ARC buffers are separated into multiple structs as a memory saving measure:
 870  *   - Common fields struct, always defined, and embedded within it:
 871  *       - L2-only fields, always allocated but undefined when not in L2ARC
 872  *       - L1-only fields, only allocated when in L1ARC
 873  *
 874  *           Buffer in L1                     Buffer only in L2
 875  *    +------------------------+          +------------------------+
 876  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
 877  *    |                        |          |                        |
 878  *    |                        |          |                        |
 879  *    |                        |          |                        |
 880  *    +------------------------+          +------------------------+
 881  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
 882  *    | (undefined if L1-only) |          |                        |
 883  *    +------------------------+          +------------------------+
 884  *    | l1arc_buf_hdr_t        |
 885  *    |                        |
 886  *    |                        |
 887  *    |                        |
 888  *    |                        |
 889  *    +------------------------+
 890  *
 891  * Because it's possible for the L2ARC to become extremely large, we can wind
 892  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
 893  * is minimized by only allocating the fields necessary for an L1-cached buffer
 894  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
 895  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
 896  * words in pointers. arc_hdr_realloc() is used to switch a header between
 897  * these two allocation states.
 898  */
 899 typedef struct l1arc_buf_hdr {
 900         kmutex_t                b_freeze_lock;
 901         zio_cksum_t             *b_freeze_cksum;
 902 #ifdef ZFS_DEBUG
 903         /*
 904          * Used for debugging with kmem_flags - by allocating and freeing
 905          * b_thawed when the buffer is thawed, we get a record of the stack
 906          * trace that thawed it.
 907          */
 908         void                    *b_thawed;
 909 #endif
 910 
 911         arc_buf_t               *b_buf;
 912         uint32_t                b_bufcnt;
 913         /* for waiting on writes to complete */
 914         kcondvar_t              b_cv;
 915         uint8_t                 b_byteswap;
 916 
 917         /* protected by arc state mutex */
 918         arc_state_t             *b_state;
 919         multilist_node_t        b_arc_node;
 920 
 921         /* updated atomically */
 922         clock_t                 b_arc_access;
 923 
 924         /* self protecting */
 925         refcount_t              b_refcnt;
 926 
 927         arc_callback_t          *b_acb;
 928         abd_t                   *b_pabd;
 929 } l1arc_buf_hdr_t;
 930 
 931 typedef struct l2arc_dev l2arc_dev_t;
 932 
 933 typedef struct l2arc_buf_hdr {
 934         /* protected by arc_buf_hdr mutex */
 935         l2arc_dev_t             *b_dev;         /* L2ARC device */
 936         uint64_t                b_daddr;        /* disk address, offset byte */
 937 
 938         list_node_t             b_l2node;
 939 } l2arc_buf_hdr_t;
 940 
 941 struct arc_buf_hdr {
 942         /* protected by hash lock */
 943         dva_t                   b_dva;
 944         uint64_t                b_birth;
 945 
 946         arc_buf_contents_t      b_type;
 947         arc_buf_hdr_t           *b_hash_next;
 948         arc_flags_t             b_flags;
 949 
 950         /*
 951          * This field stores the size of the data buffer after
 952          * compression, and is set in the arc's zio completion handlers.
 953          * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
 954          *
 955          * While the block pointers can store up to 32MB in their psize
 956          * field, we can only store up to 32MB minus 512B. This is due
 957          * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
 958          * a field of zeros represents 512B in the bp). We can't use a
 959          * bias of 1 since we need to reserve a psize of zero, here, to
 960          * represent holes and embedded blocks.
 961          *
 962          * This isn't a problem in practice, since the maximum size of a
 963          * buffer is limited to 16MB, so we never need to store 32MB in
 964          * this field. Even in the upstream illumos code base, the
 965          * maximum size of a buffer is limited to 16MB.
 966          */
 967         uint16_t                b_psize;
 968 
 969         /*
 970          * This field stores the size of the data buffer before
 971          * compression, and cannot change once set. It is in units
 972          * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
 973          */
 974         uint16_t                b_lsize;        /* immutable */
 975         uint64_t                b_spa;          /* immutable */
 976 
 977         /* L2ARC fields. Undefined when not in L2ARC. */
 978         l2arc_buf_hdr_t         b_l2hdr;
 979         /* L1ARC fields. Undefined when in l2arc_only state */
 980         l1arc_buf_hdr_t         b_l1hdr;
 981 };
 982 
 983 #define GHOST_STATE(state)      \
 984         ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 985         (state) == arc_l2c_only)
 986 
 987 #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
 988 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
 989 #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
 990 #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_FLAG_PREFETCH)
 991 #define HDR_COMPRESSION_ENABLED(hdr)    \
 992         ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
 993 
 994 #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_FLAG_L2CACHE)
 995 #define HDR_L2_READING(hdr)     \
 996         (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&   \
 997         ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
 998 #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
 999 #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1000 #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1001 #define HDR_SHARED_DATA(hdr)    ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1002 
1003 #define HDR_ISTYPE_METADATA(hdr)        \
1004         ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1005 #define HDR_ISTYPE_DATA(hdr)    (!HDR_ISTYPE_METADATA(hdr))
1006 
1007 #define HDR_HAS_L1HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1008 #define HDR_HAS_L2HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1009 
1010 /* For storing compression mode in b_flags */
1011 #define HDR_COMPRESS_OFFSET     (highbit64(ARC_FLAG_COMPRESS_0) - 1)
1012 
1013 #define HDR_GET_COMPRESS(hdr)   ((enum zio_compress)BF32_GET((hdr)->b_flags, \
1014         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1015 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1016         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1017 
1018 #define ARC_BUF_LAST(buf)       ((buf)->b_next == NULL)
1019 #define ARC_BUF_SHARED(buf)     ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1020 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1021 
1022 /*
1023  * Other sizes
1024  */
1025 
1026 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1027 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1028 
1029 /*
1030  * Hash table routines
1031  */
1032 
1033 #define HT_LOCK_PAD     64
1034 
1035 struct ht_lock {
1036         kmutex_t        ht_lock;
1037 #ifdef _KERNEL
1038         unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1039 #endif
1040 };
1041 
1042 #define BUF_LOCKS 256
1043 typedef struct buf_hash_table {
1044         uint64_t ht_mask;
1045         arc_buf_hdr_t **ht_table;
1046         struct ht_lock ht_locks[BUF_LOCKS];
1047 } buf_hash_table_t;
1048 
1049 static buf_hash_table_t buf_hash_table;
1050 
1051 #define BUF_HASH_INDEX(spa, dva, birth) \
1052         (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1053 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1054 #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1055 #define HDR_LOCK(hdr) \
1056         (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1057 
1058 uint64_t zfs_crc64_table[256];
1059 
1060 /*
1061  * Level 2 ARC
1062  */
1063 
1064 #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
1065 #define L2ARC_HEADROOM          2                       /* num of writes */
1066 /*
1067  * If we discover during ARC scan any buffers to be compressed, we boost
1068  * our headroom for the next scanning cycle by this percentage multiple.
1069  */
1070 #define L2ARC_HEADROOM_BOOST    200
1071 #define L2ARC_FEED_SECS         1               /* caching interval secs */
1072 #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
1073 
1074 #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
1075 #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
1076 
1077 /* L2ARC Performance Tunables */
1078 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
1079 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
1080 uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
1081 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1082 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
1083 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
1084 boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
1085 boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
1086 boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
1087 
1088 /*
1089  * L2ARC Internals
1090  */
1091 struct l2arc_dev {
1092         vdev_t                  *l2ad_vdev;     /* vdev */
1093         spa_t                   *l2ad_spa;      /* spa */
1094         uint64_t                l2ad_hand;      /* next write location */
1095         uint64_t                l2ad_start;     /* first addr on device */
1096         uint64_t                l2ad_end;       /* last addr on device */
1097         boolean_t               l2ad_first;     /* first sweep through */
1098         boolean_t               l2ad_writing;   /* currently writing */
1099         kmutex_t                l2ad_mtx;       /* lock for buffer list */
1100         list_t                  l2ad_buflist;   /* buffer list */
1101         list_node_t             l2ad_node;      /* device list node */
1102         refcount_t              l2ad_alloc;     /* allocated bytes */
1103 };
1104 
1105 static list_t L2ARC_dev_list;                   /* device list */
1106 static list_t *l2arc_dev_list;                  /* device list pointer */
1107 static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
1108 static l2arc_dev_t *l2arc_dev_last;             /* last device used */
1109 static list_t L2ARC_free_on_write;              /* free after write buf list */
1110 static list_t *l2arc_free_on_write;             /* free after write list ptr */
1111 static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
1112 static uint64_t l2arc_ndev;                     /* number of devices */
1113 
1114 typedef struct l2arc_read_callback {
1115         arc_buf_hdr_t           *l2rcb_hdr;             /* read header */
1116         blkptr_t                l2rcb_bp;               /* original blkptr */
1117         zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
1118         int                     l2rcb_flags;            /* original flags */
1119         abd_t                   *l2rcb_abd;             /* temporary buffer */
1120 } l2arc_read_callback_t;
1121 
1122 typedef struct l2arc_write_callback {
1123         l2arc_dev_t     *l2wcb_dev;             /* device info */
1124         arc_buf_hdr_t   *l2wcb_head;            /* head of write buflist */
1125 } l2arc_write_callback_t;
1126 
1127 typedef struct l2arc_data_free {
1128         /* protected by l2arc_free_on_write_mtx */
1129         abd_t           *l2df_abd;
1130         size_t          l2df_size;
1131         arc_buf_contents_t l2df_type;
1132         list_node_t     l2df_list_node;
1133 } l2arc_data_free_t;
1134 
1135 static kmutex_t l2arc_feed_thr_lock;
1136 static kcondvar_t l2arc_feed_thr_cv;
1137 static uint8_t l2arc_thread_exit;
1138 
1139 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1140 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1141 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1142 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1143 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1144 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1145 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1146 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1147 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1148 static boolean_t arc_is_overflowing();
1149 static void arc_buf_watch(arc_buf_t *);
1150 
1151 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1152 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1153 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1154 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1155 
1156 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1157 static void l2arc_read_done(zio_t *);
1158 
1159 
1160 /*
1161  * We use Cityhash for this. It's fast, and has good hash properties without
1162  * requiring any large static buffers.
1163  */
1164 static uint64_t
1165 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1166 {
1167         return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1168 }
1169 
1170 #define HDR_EMPTY(hdr)                                          \
1171         ((hdr)->b_dva.dva_word[0] == 0 &&                    \
1172         (hdr)->b_dva.dva_word[1] == 0)
1173 
1174 #define HDR_EQUAL(spa, dva, birth, hdr)                         \
1175         ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&       \
1176         ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&       \
1177         ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1178 
1179 static void
1180 buf_discard_identity(arc_buf_hdr_t *hdr)
1181 {
1182         hdr->b_dva.dva_word[0] = 0;
1183         hdr->b_dva.dva_word[1] = 0;
1184         hdr->b_birth = 0;
1185 }
1186 
1187 static arc_buf_hdr_t *
1188 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1189 {
1190         const dva_t *dva = BP_IDENTITY(bp);
1191         uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1192         uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1193         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1194         arc_buf_hdr_t *hdr;
1195 
1196         mutex_enter(hash_lock);
1197         for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1198             hdr = hdr->b_hash_next) {
1199                 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1200                         *lockp = hash_lock;
1201                         return (hdr);
1202                 }
1203         }
1204         mutex_exit(hash_lock);
1205         *lockp = NULL;
1206         return (NULL);
1207 }
1208 
1209 /*
1210  * Insert an entry into the hash table.  If there is already an element
1211  * equal to elem in the hash table, then the already existing element
1212  * will be returned and the new element will not be inserted.
1213  * Otherwise returns NULL.
1214  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1215  */
1216 static arc_buf_hdr_t *
1217 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1218 {
1219         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1220         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1221         arc_buf_hdr_t *fhdr;
1222         uint32_t i;
1223 
1224         ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1225         ASSERT(hdr->b_birth != 0);
1226         ASSERT(!HDR_IN_HASH_TABLE(hdr));
1227 
1228         if (lockp != NULL) {
1229                 *lockp = hash_lock;
1230                 mutex_enter(hash_lock);
1231         } else {
1232                 ASSERT(MUTEX_HELD(hash_lock));
1233         }
1234 
1235         for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1236             fhdr = fhdr->b_hash_next, i++) {
1237                 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1238                         return (fhdr);
1239         }
1240 
1241         hdr->b_hash_next = buf_hash_table.ht_table[idx];
1242         buf_hash_table.ht_table[idx] = hdr;
1243         arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1244 
1245         /* collect some hash table performance data */
1246         if (i > 0) {
1247                 ARCSTAT_BUMP(arcstat_hash_collisions);
1248                 if (i == 1)
1249                         ARCSTAT_BUMP(arcstat_hash_chains);
1250 
1251                 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1252         }
1253 
1254         ARCSTAT_BUMP(arcstat_hash_elements);
1255         ARCSTAT_MAXSTAT(arcstat_hash_elements);
1256 
1257         return (NULL);
1258 }
1259 
1260 static void
1261 buf_hash_remove(arc_buf_hdr_t *hdr)
1262 {
1263         arc_buf_hdr_t *fhdr, **hdrp;
1264         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1265 
1266         ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1267         ASSERT(HDR_IN_HASH_TABLE(hdr));
1268 
1269         hdrp = &buf_hash_table.ht_table[idx];
1270         while ((fhdr = *hdrp) != hdr) {
1271                 ASSERT3P(fhdr, !=, NULL);
1272                 hdrp = &fhdr->b_hash_next;
1273         }
1274         *hdrp = hdr->b_hash_next;
1275         hdr->b_hash_next = NULL;
1276         arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1277 
1278         /* collect some hash table performance data */
1279         ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1280 
1281         if (buf_hash_table.ht_table[idx] &&
1282             buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1283                 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1284 }
1285 
1286 /*
1287  * Global data structures and functions for the buf kmem cache.
1288  */
1289 static kmem_cache_t *hdr_full_cache;
1290 static kmem_cache_t *hdr_l2only_cache;
1291 static kmem_cache_t *buf_cache;
1292 
1293 static void
1294 buf_fini(void)
1295 {
1296         int i;
1297 
1298         kmem_free(buf_hash_table.ht_table,
1299             (buf_hash_table.ht_mask + 1) * sizeof (void *));
1300         for (i = 0; i < BUF_LOCKS; i++)
1301                 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1302         kmem_cache_destroy(hdr_full_cache);
1303         kmem_cache_destroy(hdr_l2only_cache);
1304         kmem_cache_destroy(buf_cache);
1305 }
1306 
1307 /*
1308  * Constructor callback - called when the cache is empty
1309  * and a new buf is requested.
1310  */
1311 /* ARGSUSED */
1312 static int
1313 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1314 {
1315         arc_buf_hdr_t *hdr = vbuf;
1316 
1317         bzero(hdr, HDR_FULL_SIZE);
1318         cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1319         refcount_create(&hdr->b_l1hdr.b_refcnt);
1320         mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1321         multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1322         arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1323 
1324         return (0);
1325 }
1326 
1327 /* ARGSUSED */
1328 static int
1329 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1330 {
1331         arc_buf_hdr_t *hdr = vbuf;
1332 
1333         bzero(hdr, HDR_L2ONLY_SIZE);
1334         arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1335 
1336         return (0);
1337 }
1338 
1339 /* ARGSUSED */
1340 static int
1341 buf_cons(void *vbuf, void *unused, int kmflag)
1342 {
1343         arc_buf_t *buf = vbuf;
1344 
1345         bzero(buf, sizeof (arc_buf_t));
1346         mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1347         arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1348 
1349         return (0);
1350 }
1351 
1352 /*
1353  * Destructor callback - called when a cached buf is
1354  * no longer required.
1355  */
1356 /* ARGSUSED */
1357 static void
1358 hdr_full_dest(void *vbuf, void *unused)
1359 {
1360         arc_buf_hdr_t *hdr = vbuf;
1361 
1362         ASSERT(HDR_EMPTY(hdr));
1363         cv_destroy(&hdr->b_l1hdr.b_cv);
1364         refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1365         mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1366         ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1367         arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1368 }
1369 
1370 /* ARGSUSED */
1371 static void
1372 hdr_l2only_dest(void *vbuf, void *unused)
1373 {
1374         arc_buf_hdr_t *hdr = vbuf;
1375 
1376         ASSERT(HDR_EMPTY(hdr));
1377         arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1378 }
1379 
1380 /* ARGSUSED */
1381 static void
1382 buf_dest(void *vbuf, void *unused)
1383 {
1384         arc_buf_t *buf = vbuf;
1385 
1386         mutex_destroy(&buf->b_evict_lock);
1387         arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1388 }
1389 
1390 /*
1391  * Reclaim callback -- invoked when memory is low.
1392  */
1393 /* ARGSUSED */
1394 static void
1395 hdr_recl(void *unused)
1396 {
1397         dprintf("hdr_recl called\n");
1398         /*
1399          * umem calls the reclaim func when we destroy the buf cache,
1400          * which is after we do arc_fini().
1401          */
1402         if (!arc_dead)
1403                 cv_signal(&arc_reclaim_thread_cv);
1404 }
1405 
1406 static void
1407 buf_init(void)
1408 {
1409         uint64_t *ct;
1410         uint64_t hsize = 1ULL << 12;
1411         int i, j;
1412 
1413         /*
1414          * The hash table is big enough to fill all of physical memory
1415          * with an average block size of zfs_arc_average_blocksize (default 8K).
1416          * By default, the table will take up
1417          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1418          */
1419         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1420                 hsize <<= 1;
1421 retry:
1422         buf_hash_table.ht_mask = hsize - 1;
1423         buf_hash_table.ht_table =
1424             kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1425         if (buf_hash_table.ht_table == NULL) {
1426                 ASSERT(hsize > (1ULL << 8));
1427                 hsize >>= 1;
1428                 goto retry;
1429         }
1430 
1431         hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1432             0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1433         hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1434             HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1435             NULL, NULL, 0);
1436         buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1437             0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1438 
1439         for (i = 0; i < 256; i++)
1440                 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1441                         *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1442 
1443         for (i = 0; i < BUF_LOCKS; i++) {
1444                 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1445                     NULL, MUTEX_DEFAULT, NULL);
1446         }
1447 }
1448 
1449 /*
1450  * This is the size that the buf occupies in memory. If the buf is compressed,
1451  * it will correspond to the compressed size. You should use this method of
1452  * getting the buf size unless you explicitly need the logical size.
1453  */
1454 int32_t
1455 arc_buf_size(arc_buf_t *buf)
1456 {
1457         return (ARC_BUF_COMPRESSED(buf) ?
1458             HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1459 }
1460 
1461 int32_t
1462 arc_buf_lsize(arc_buf_t *buf)
1463 {
1464         return (HDR_GET_LSIZE(buf->b_hdr));
1465 }
1466 
1467 enum zio_compress
1468 arc_get_compression(arc_buf_t *buf)
1469 {
1470         return (ARC_BUF_COMPRESSED(buf) ?
1471             HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1472 }
1473 
1474 #define ARC_MINTIME     (hz>>4) /* 62 ms */
1475 
1476 static inline boolean_t
1477 arc_buf_is_shared(arc_buf_t *buf)
1478 {
1479         boolean_t shared = (buf->b_data != NULL &&
1480             buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1481             abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1482             buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1483         IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1484         IMPLY(shared, ARC_BUF_SHARED(buf));
1485         IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1486 
1487         /*
1488          * It would be nice to assert arc_can_share() too, but the "hdr isn't
1489          * already being shared" requirement prevents us from doing that.
1490          */
1491 
1492         return (shared);
1493 }
1494 
1495 /*
1496  * Free the checksum associated with this header. If there is no checksum, this
1497  * is a no-op.
1498  */
1499 static inline void
1500 arc_cksum_free(arc_buf_hdr_t *hdr)
1501 {
1502         ASSERT(HDR_HAS_L1HDR(hdr));
1503         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1504         if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1505                 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1506                 hdr->b_l1hdr.b_freeze_cksum = NULL;
1507         }
1508         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1509 }
1510 
1511 /*
1512  * Return true iff at least one of the bufs on hdr is not compressed.
1513  */
1514 static boolean_t
1515 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1516 {
1517         for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1518                 if (!ARC_BUF_COMPRESSED(b)) {
1519                         return (B_TRUE);
1520                 }
1521         }
1522         return (B_FALSE);
1523 }
1524 
1525 /*
1526  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1527  * matches the checksum that is stored in the hdr. If there is no checksum,
1528  * or if the buf is compressed, this is a no-op.
1529  */
1530 static void
1531 arc_cksum_verify(arc_buf_t *buf)
1532 {
1533         arc_buf_hdr_t *hdr = buf->b_hdr;
1534         zio_cksum_t zc;
1535 
1536         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1537                 return;
1538 
1539         if (ARC_BUF_COMPRESSED(buf)) {
1540                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1541                     arc_hdr_has_uncompressed_buf(hdr));
1542                 return;
1543         }
1544 
1545         ASSERT(HDR_HAS_L1HDR(hdr));
1546 
1547         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1548         if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1549                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1550                 return;
1551         }
1552 
1553         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1554         if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1555                 panic("buffer modified while frozen!");
1556         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1557 }
1558 
1559 static boolean_t
1560 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1561 {
1562         enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1563         boolean_t valid_cksum;
1564 
1565         ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1566         VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1567 
1568         /*
1569          * We rely on the blkptr's checksum to determine if the block
1570          * is valid or not. When compressed arc is enabled, the l2arc
1571          * writes the block to the l2arc just as it appears in the pool.
1572          * This allows us to use the blkptr's checksum to validate the
1573          * data that we just read off of the l2arc without having to store
1574          * a separate checksum in the arc_buf_hdr_t. However, if compressed
1575          * arc is disabled, then the data written to the l2arc is always
1576          * uncompressed and won't match the block as it exists in the main
1577          * pool. When this is the case, we must first compress it if it is
1578          * compressed on the main pool before we can validate the checksum.
1579          */
1580         if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1581                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1582                 uint64_t lsize = HDR_GET_LSIZE(hdr);
1583                 uint64_t csize;
1584 
1585                 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1586                 csize = zio_compress_data(compress, zio->io_abd,
1587                     abd_to_buf(cdata), lsize);
1588 
1589                 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1590                 if (csize < HDR_GET_PSIZE(hdr)) {
1591                         /*
1592                          * Compressed blocks are always a multiple of the
1593                          * smallest ashift in the pool. Ideally, we would
1594                          * like to round up the csize to the next
1595                          * spa_min_ashift but that value may have changed
1596                          * since the block was last written. Instead,
1597                          * we rely on the fact that the hdr's psize
1598                          * was set to the psize of the block when it was
1599                          * last written. We set the csize to that value
1600                          * and zero out any part that should not contain
1601                          * data.
1602                          */
1603                         abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1604                         csize = HDR_GET_PSIZE(hdr);
1605                 }
1606                 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1607         }
1608 
1609         /*
1610          * Block pointers always store the checksum for the logical data.
1611          * If the block pointer has the gang bit set, then the checksum
1612          * it represents is for the reconstituted data and not for an
1613          * individual gang member. The zio pipeline, however, must be able to
1614          * determine the checksum of each of the gang constituents so it
1615          * treats the checksum comparison differently than what we need
1616          * for l2arc blocks. This prevents us from using the
1617          * zio_checksum_error() interface directly. Instead we must call the
1618          * zio_checksum_error_impl() so that we can ensure the checksum is
1619          * generated using the correct checksum algorithm and accounts for the
1620          * logical I/O size and not just a gang fragment.
1621          */
1622         valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1623             BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1624             zio->io_offset, NULL) == 0);
1625         zio_pop_transforms(zio);
1626         return (valid_cksum);
1627 }
1628 
1629 /*
1630  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1631  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1632  * isn't modified later on. If buf is compressed or there is already a checksum
1633  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1634  */
1635 static void
1636 arc_cksum_compute(arc_buf_t *buf)
1637 {
1638         arc_buf_hdr_t *hdr = buf->b_hdr;
1639 
1640         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1641                 return;
1642 
1643         ASSERT(HDR_HAS_L1HDR(hdr));
1644 
1645         mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1646         if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1647                 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1648                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1649                 return;
1650         } else if (ARC_BUF_COMPRESSED(buf)) {
1651                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1652                 return;
1653         }
1654 
1655         ASSERT(!ARC_BUF_COMPRESSED(buf));
1656         hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1657             KM_SLEEP);
1658         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1659             hdr->b_l1hdr.b_freeze_cksum);
1660         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1661         arc_buf_watch(buf);
1662 }
1663 
1664 #ifndef _KERNEL
1665 typedef struct procctl {
1666         long cmd;
1667         prwatch_t prwatch;
1668 } procctl_t;
1669 #endif
1670 
1671 /* ARGSUSED */
1672 static void
1673 arc_buf_unwatch(arc_buf_t *buf)
1674 {
1675 #ifndef _KERNEL
1676         if (arc_watch) {
1677                 int result;
1678                 procctl_t ctl;
1679                 ctl.cmd = PCWATCH;
1680                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1681                 ctl.prwatch.pr_size = 0;
1682                 ctl.prwatch.pr_wflags = 0;
1683                 result = write(arc_procfd, &ctl, sizeof (ctl));
1684                 ASSERT3U(result, ==, sizeof (ctl));
1685         }
1686 #endif
1687 }
1688 
1689 /* ARGSUSED */
1690 static void
1691 arc_buf_watch(arc_buf_t *buf)
1692 {
1693 #ifndef _KERNEL
1694         if (arc_watch) {
1695                 int result;
1696                 procctl_t ctl;
1697                 ctl.cmd = PCWATCH;
1698                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1699                 ctl.prwatch.pr_size = arc_buf_size(buf);
1700                 ctl.prwatch.pr_wflags = WA_WRITE;
1701                 result = write(arc_procfd, &ctl, sizeof (ctl));
1702                 ASSERT3U(result, ==, sizeof (ctl));
1703         }
1704 #endif
1705 }
1706 
1707 static arc_buf_contents_t
1708 arc_buf_type(arc_buf_hdr_t *hdr)
1709 {
1710         arc_buf_contents_t type;
1711         if (HDR_ISTYPE_METADATA(hdr)) {
1712                 type = ARC_BUFC_METADATA;
1713         } else {
1714                 type = ARC_BUFC_DATA;
1715         }
1716         VERIFY3U(hdr->b_type, ==, type);
1717         return (type);
1718 }
1719 
1720 boolean_t
1721 arc_is_metadata(arc_buf_t *buf)
1722 {
1723         return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1724 }
1725 
1726 static uint32_t
1727 arc_bufc_to_flags(arc_buf_contents_t type)
1728 {
1729         switch (type) {
1730         case ARC_BUFC_DATA:
1731                 /* metadata field is 0 if buffer contains normal data */
1732                 return (0);
1733         case ARC_BUFC_METADATA:
1734                 return (ARC_FLAG_BUFC_METADATA);
1735         default:
1736                 break;
1737         }
1738         panic("undefined ARC buffer type!");
1739         return ((uint32_t)-1);
1740 }
1741 
1742 void
1743 arc_buf_thaw(arc_buf_t *buf)
1744 {
1745         arc_buf_hdr_t *hdr = buf->b_hdr;
1746 
1747         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1748         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1749 
1750         arc_cksum_verify(buf);
1751 
1752         /*
1753          * Compressed buffers do not manipulate the b_freeze_cksum or
1754          * allocate b_thawed.
1755          */
1756         if (ARC_BUF_COMPRESSED(buf)) {
1757                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1758                     arc_hdr_has_uncompressed_buf(hdr));
1759                 return;
1760         }
1761 
1762         ASSERT(HDR_HAS_L1HDR(hdr));
1763         arc_cksum_free(hdr);
1764 
1765         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1766 #ifdef ZFS_DEBUG
1767         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1768                 if (hdr->b_l1hdr.b_thawed != NULL)
1769                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
1770                 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1771         }
1772 #endif
1773 
1774         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1775 
1776         arc_buf_unwatch(buf);
1777 }
1778 
1779 void
1780 arc_buf_freeze(arc_buf_t *buf)
1781 {
1782         arc_buf_hdr_t *hdr = buf->b_hdr;
1783         kmutex_t *hash_lock;
1784 
1785         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1786                 return;
1787 
1788         if (ARC_BUF_COMPRESSED(buf)) {
1789                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1790                     arc_hdr_has_uncompressed_buf(hdr));
1791                 return;
1792         }
1793 
1794         hash_lock = HDR_LOCK(hdr);
1795         mutex_enter(hash_lock);
1796 
1797         ASSERT(HDR_HAS_L1HDR(hdr));
1798         ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1799             hdr->b_l1hdr.b_state == arc_anon);
1800         arc_cksum_compute(buf);
1801         mutex_exit(hash_lock);
1802 }
1803 
1804 /*
1805  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1806  * the following functions should be used to ensure that the flags are
1807  * updated in a thread-safe way. When manipulating the flags either
1808  * the hash_lock must be held or the hdr must be undiscoverable. This
1809  * ensures that we're not racing with any other threads when updating
1810  * the flags.
1811  */
1812 static inline void
1813 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1814 {
1815         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1816         hdr->b_flags |= flags;
1817 }
1818 
1819 static inline void
1820 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1821 {
1822         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1823         hdr->b_flags &= ~flags;
1824 }
1825 
1826 /*
1827  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1828  * done in a special way since we have to clear and set bits
1829  * at the same time. Consumers that wish to set the compression bits
1830  * must use this function to ensure that the flags are updated in
1831  * thread-safe manner.
1832  */
1833 static void
1834 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1835 {
1836         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1837 
1838         /*
1839          * Holes and embedded blocks will always have a psize = 0 so
1840          * we ignore the compression of the blkptr and set the
1841          * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1842          * Holes and embedded blocks remain anonymous so we don't
1843          * want to uncompress them. Mark them as uncompressed.
1844          */
1845         if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1846                 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1847                 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1848                 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1849                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1850         } else {
1851                 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1852                 HDR_SET_COMPRESS(hdr, cmp);
1853                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1854                 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1855         }
1856 }
1857 
1858 /*
1859  * Looks for another buf on the same hdr which has the data decompressed, copies
1860  * from it, and returns true. If no such buf exists, returns false.
1861  */
1862 static boolean_t
1863 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1864 {
1865         arc_buf_hdr_t *hdr = buf->b_hdr;
1866         boolean_t copied = B_FALSE;
1867 
1868         ASSERT(HDR_HAS_L1HDR(hdr));
1869         ASSERT3P(buf->b_data, !=, NULL);
1870         ASSERT(!ARC_BUF_COMPRESSED(buf));
1871 
1872         for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1873             from = from->b_next) {
1874                 /* can't use our own data buffer */
1875                 if (from == buf) {
1876                         continue;
1877                 }
1878 
1879                 if (!ARC_BUF_COMPRESSED(from)) {
1880                         bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1881                         copied = B_TRUE;
1882                         break;
1883                 }
1884         }
1885 
1886         /*
1887          * There were no decompressed bufs, so there should not be a
1888          * checksum on the hdr either.
1889          */
1890         EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1891 
1892         return (copied);
1893 }
1894 
1895 /*
1896  * Given a buf that has a data buffer attached to it, this function will
1897  * efficiently fill the buf with data of the specified compression setting from
1898  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1899  * are already sharing a data buf, no copy is performed.
1900  *
1901  * If the buf is marked as compressed but uncompressed data was requested, this
1902  * will allocate a new data buffer for the buf, remove that flag, and fill the
1903  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1904  * uncompressed data, and (since we haven't added support for it yet) if you
1905  * want compressed data your buf must already be marked as compressed and have
1906  * the correct-sized data buffer.
1907  */
1908 static int
1909 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1910 {
1911         arc_buf_hdr_t *hdr = buf->b_hdr;
1912         boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1913         dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1914 
1915         ASSERT3P(buf->b_data, !=, NULL);
1916         IMPLY(compressed, hdr_compressed);
1917         IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1918 
1919         if (hdr_compressed == compressed) {
1920                 if (!arc_buf_is_shared(buf)) {
1921                         abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1922                             arc_buf_size(buf));
1923                 }
1924         } else {
1925                 ASSERT(hdr_compressed);
1926                 ASSERT(!compressed);
1927                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1928 
1929                 /*
1930                  * If the buf is sharing its data with the hdr, unlink it and
1931                  * allocate a new data buffer for the buf.
1932                  */
1933                 if (arc_buf_is_shared(buf)) {
1934                         ASSERT(ARC_BUF_COMPRESSED(buf));
1935 
1936                         /* We need to give the buf it's own b_data */
1937                         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1938                         buf->b_data =
1939                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1940                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1941 
1942                         /* Previously overhead was 0; just add new overhead */
1943                         ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1944                 } else if (ARC_BUF_COMPRESSED(buf)) {
1945                         /* We need to reallocate the buf's b_data */
1946                         arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1947                             buf);
1948                         buf->b_data =
1949                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1950 
1951                         /* We increased the size of b_data; update overhead */
1952                         ARCSTAT_INCR(arcstat_overhead_size,
1953                             HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1954                 }
1955 
1956                 /*
1957                  * Regardless of the buf's previous compression settings, it
1958                  * should not be compressed at the end of this function.
1959                  */
1960                 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1961 
1962                 /*
1963                  * Try copying the data from another buf which already has a
1964                  * decompressed version. If that's not possible, it's time to
1965                  * bite the bullet and decompress the data from the hdr.
1966                  */
1967                 if (arc_buf_try_copy_decompressed_data(buf)) {
1968                         /* Skip byteswapping and checksumming (already done) */
1969                         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1970                         return (0);
1971                 } else {
1972                         int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1973                             hdr->b_l1hdr.b_pabd, buf->b_data,
1974                             HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1975 
1976                         /*
1977                          * Absent hardware errors or software bugs, this should
1978                          * be impossible, but log it anyway so we can debug it.
1979                          */
1980                         if (error != 0) {
1981                                 zfs_dbgmsg(
1982                                     "hdr %p, compress %d, psize %d, lsize %d",
1983                                     hdr, HDR_GET_COMPRESS(hdr),
1984                                     HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1985                                 return (SET_ERROR(EIO));
1986                         }
1987                 }
1988         }
1989 
1990         /* Byteswap the buf's data if necessary */
1991         if (bswap != DMU_BSWAP_NUMFUNCS) {
1992                 ASSERT(!HDR_SHARED_DATA(hdr));
1993                 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1994                 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1995         }
1996 
1997         /* Compute the hdr's checksum if necessary */
1998         arc_cksum_compute(buf);
1999 
2000         return (0);
2001 }
2002 
2003 int
2004 arc_decompress(arc_buf_t *buf)
2005 {
2006         return (arc_buf_fill(buf, B_FALSE));
2007 }
2008 
2009 /*
2010  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2011  */
2012 static uint64_t
2013 arc_hdr_size(arc_buf_hdr_t *hdr)
2014 {
2015         uint64_t size;
2016 
2017         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2018             HDR_GET_PSIZE(hdr) > 0) {
2019                 size = HDR_GET_PSIZE(hdr);
2020         } else {
2021                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2022                 size = HDR_GET_LSIZE(hdr);
2023         }
2024         return (size);
2025 }
2026 
2027 /*
2028  * Increment the amount of evictable space in the arc_state_t's refcount.
2029  * We account for the space used by the hdr and the arc buf individually
2030  * so that we can add and remove them from the refcount individually.
2031  */
2032 static void
2033 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2034 {
2035         arc_buf_contents_t type = arc_buf_type(hdr);
2036 
2037         ASSERT(HDR_HAS_L1HDR(hdr));
2038 
2039         if (GHOST_STATE(state)) {
2040                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2041                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2042                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2043                 (void) refcount_add_many(&state->arcs_esize[type],
2044                     HDR_GET_LSIZE(hdr), hdr);
2045                 return;
2046         }
2047 
2048         ASSERT(!GHOST_STATE(state));
2049         if (hdr->b_l1hdr.b_pabd != NULL) {
2050                 (void) refcount_add_many(&state->arcs_esize[type],
2051                     arc_hdr_size(hdr), hdr);
2052         }
2053         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2054             buf = buf->b_next) {
2055                 if (arc_buf_is_shared(buf))
2056                         continue;
2057                 (void) refcount_add_many(&state->arcs_esize[type],
2058                     arc_buf_size(buf), buf);
2059         }
2060 }
2061 
2062 /*
2063  * Decrement the amount of evictable space in the arc_state_t's refcount.
2064  * We account for the space used by the hdr and the arc buf individually
2065  * so that we can add and remove them from the refcount individually.
2066  */
2067 static void
2068 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2069 {
2070         arc_buf_contents_t type = arc_buf_type(hdr);
2071 
2072         ASSERT(HDR_HAS_L1HDR(hdr));
2073 
2074         if (GHOST_STATE(state)) {
2075                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2076                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2077                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2078                 (void) refcount_remove_many(&state->arcs_esize[type],
2079                     HDR_GET_LSIZE(hdr), hdr);
2080                 return;
2081         }
2082 
2083         ASSERT(!GHOST_STATE(state));
2084         if (hdr->b_l1hdr.b_pabd != NULL) {
2085                 (void) refcount_remove_many(&state->arcs_esize[type],
2086                     arc_hdr_size(hdr), hdr);
2087         }
2088         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2089             buf = buf->b_next) {
2090                 if (arc_buf_is_shared(buf))
2091                         continue;
2092                 (void) refcount_remove_many(&state->arcs_esize[type],
2093                     arc_buf_size(buf), buf);
2094         }
2095 }
2096 
2097 /*
2098  * Add a reference to this hdr indicating that someone is actively
2099  * referencing that memory. When the refcount transitions from 0 to 1,
2100  * we remove it from the respective arc_state_t list to indicate that
2101  * it is not evictable.
2102  */
2103 static void
2104 add_reference(arc_buf_hdr_t *hdr, void *tag)
2105 {
2106         ASSERT(HDR_HAS_L1HDR(hdr));
2107         if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2108                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2109                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2110                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2111         }
2112 
2113         arc_state_t *state = hdr->b_l1hdr.b_state;
2114 
2115         if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2116             (state != arc_anon)) {
2117                 /* We don't use the L2-only state list. */
2118                 if (state != arc_l2c_only) {
2119                         multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2120                             hdr);
2121                         arc_evictable_space_decrement(hdr, state);
2122                 }
2123                 /* remove the prefetch flag if we get a reference */
2124                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2125         }
2126 }
2127 
2128 /*
2129  * Remove a reference from this hdr. When the reference transitions from
2130  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2131  * list making it eligible for eviction.
2132  */
2133 static int
2134 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2135 {
2136         int cnt;
2137         arc_state_t *state = hdr->b_l1hdr.b_state;
2138 
2139         ASSERT(HDR_HAS_L1HDR(hdr));
2140         ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2141         ASSERT(!GHOST_STATE(state));
2142 
2143         /*
2144          * arc_l2c_only counts as a ghost state so we don't need to explicitly
2145          * check to prevent usage of the arc_l2c_only list.
2146          */
2147         if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2148             (state != arc_anon)) {
2149                 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2150                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2151                 arc_evictable_space_increment(hdr, state);
2152         }
2153         return (cnt);
2154 }
2155 
2156 /*
2157  * Move the supplied buffer to the indicated state. The hash lock
2158  * for the buffer must be held by the caller.
2159  */
2160 static void
2161 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2162     kmutex_t *hash_lock)
2163 {
2164         arc_state_t *old_state;
2165         int64_t refcnt;
2166         uint32_t bufcnt;
2167         boolean_t update_old, update_new;
2168         arc_buf_contents_t buftype = arc_buf_type(hdr);
2169 
2170         /*
2171          * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2172          * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2173          * L1 hdr doesn't always exist when we change state to arc_anon before
2174          * destroying a header, in which case reallocating to add the L1 hdr is
2175          * pointless.
2176          */
2177         if (HDR_HAS_L1HDR(hdr)) {
2178                 old_state = hdr->b_l1hdr.b_state;
2179                 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2180                 bufcnt = hdr->b_l1hdr.b_bufcnt;
2181                 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2182         } else {
2183                 old_state = arc_l2c_only;
2184                 refcnt = 0;
2185                 bufcnt = 0;
2186                 update_old = B_FALSE;
2187         }
2188         update_new = update_old;
2189 
2190         ASSERT(MUTEX_HELD(hash_lock));
2191         ASSERT3P(new_state, !=, old_state);
2192         ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2193         ASSERT(old_state != arc_anon || bufcnt <= 1);
2194 
2195         /*
2196          * If this buffer is evictable, transfer it from the
2197          * old state list to the new state list.
2198          */
2199         if (refcnt == 0) {
2200                 if (old_state != arc_anon && old_state != arc_l2c_only) {
2201                         ASSERT(HDR_HAS_L1HDR(hdr));
2202                         multilist_remove(old_state->arcs_list[buftype], hdr);
2203 
2204                         if (GHOST_STATE(old_state)) {
2205                                 ASSERT0(bufcnt);
2206                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2207                                 update_old = B_TRUE;
2208                         }
2209                         arc_evictable_space_decrement(hdr, old_state);
2210                 }
2211                 if (new_state != arc_anon && new_state != arc_l2c_only) {
2212 
2213                         /*
2214                          * An L1 header always exists here, since if we're
2215                          * moving to some L1-cached state (i.e. not l2c_only or
2216                          * anonymous), we realloc the header to add an L1hdr
2217                          * beforehand.
2218                          */
2219                         ASSERT(HDR_HAS_L1HDR(hdr));
2220                         multilist_insert(new_state->arcs_list[buftype], hdr);
2221 
2222                         if (GHOST_STATE(new_state)) {
2223                                 ASSERT0(bufcnt);
2224                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2225                                 update_new = B_TRUE;
2226                         }
2227                         arc_evictable_space_increment(hdr, new_state);
2228                 }
2229         }
2230 
2231         ASSERT(!HDR_EMPTY(hdr));
2232         if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2233                 buf_hash_remove(hdr);
2234 
2235         /* adjust state sizes (ignore arc_l2c_only) */
2236 
2237         if (update_new && new_state != arc_l2c_only) {
2238                 ASSERT(HDR_HAS_L1HDR(hdr));
2239                 if (GHOST_STATE(new_state)) {
2240                         ASSERT0(bufcnt);
2241 
2242                         /*
2243                          * When moving a header to a ghost state, we first
2244                          * remove all arc buffers. Thus, we'll have a
2245                          * bufcnt of zero, and no arc buffer to use for
2246                          * the reference. As a result, we use the arc
2247                          * header pointer for the reference.
2248                          */
2249                         (void) refcount_add_many(&new_state->arcs_size,
2250                             HDR_GET_LSIZE(hdr), hdr);
2251                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2252                 } else {
2253                         uint32_t buffers = 0;
2254 
2255                         /*
2256                          * Each individual buffer holds a unique reference,
2257                          * thus we must remove each of these references one
2258                          * at a time.
2259                          */
2260                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2261                             buf = buf->b_next) {
2262                                 ASSERT3U(bufcnt, !=, 0);
2263                                 buffers++;
2264 
2265                                 /*
2266                                  * When the arc_buf_t is sharing the data
2267                                  * block with the hdr, the owner of the
2268                                  * reference belongs to the hdr. Only
2269                                  * add to the refcount if the arc_buf_t is
2270                                  * not shared.
2271                                  */
2272                                 if (arc_buf_is_shared(buf))
2273                                         continue;
2274 
2275                                 (void) refcount_add_many(&new_state->arcs_size,
2276                                     arc_buf_size(buf), buf);
2277                         }
2278                         ASSERT3U(bufcnt, ==, buffers);
2279 
2280                         if (hdr->b_l1hdr.b_pabd != NULL) {
2281                                 (void) refcount_add_many(&new_state->arcs_size,
2282                                     arc_hdr_size(hdr), hdr);
2283                         } else {
2284                                 ASSERT(GHOST_STATE(old_state));
2285                         }
2286                 }
2287         }
2288 
2289         if (update_old && old_state != arc_l2c_only) {
2290                 ASSERT(HDR_HAS_L1HDR(hdr));
2291                 if (GHOST_STATE(old_state)) {
2292                         ASSERT0(bufcnt);
2293                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2294 
2295                         /*
2296                          * When moving a header off of a ghost state,
2297                          * the header will not contain any arc buffers.
2298                          * We use the arc header pointer for the reference
2299                          * which is exactly what we did when we put the
2300                          * header on the ghost state.
2301                          */
2302 
2303                         (void) refcount_remove_many(&old_state->arcs_size,
2304                             HDR_GET_LSIZE(hdr), hdr);
2305                 } else {
2306                         uint32_t buffers = 0;
2307 
2308                         /*
2309                          * Each individual buffer holds a unique reference,
2310                          * thus we must remove each of these references one
2311                          * at a time.
2312                          */
2313                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2314                             buf = buf->b_next) {
2315                                 ASSERT3U(bufcnt, !=, 0);
2316                                 buffers++;
2317 
2318                                 /*
2319                                  * When the arc_buf_t is sharing the data
2320                                  * block with the hdr, the owner of the
2321                                  * reference belongs to the hdr. Only
2322                                  * add to the refcount if the arc_buf_t is
2323                                  * not shared.
2324                                  */
2325                                 if (arc_buf_is_shared(buf))
2326                                         continue;
2327 
2328                                 (void) refcount_remove_many(
2329                                     &old_state->arcs_size, arc_buf_size(buf),
2330                                     buf);
2331                         }
2332                         ASSERT3U(bufcnt, ==, buffers);
2333                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2334                         (void) refcount_remove_many(
2335                             &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2336                 }
2337         }
2338 
2339         if (HDR_HAS_L1HDR(hdr))
2340                 hdr->b_l1hdr.b_state = new_state;
2341 
2342         /*
2343          * L2 headers should never be on the L2 state list since they don't
2344          * have L1 headers allocated.
2345          */
2346         ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2347             multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2348 }
2349 
2350 void
2351 arc_space_consume(uint64_t space, arc_space_type_t type)
2352 {
2353         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2354 
2355         switch (type) {
2356         case ARC_SPACE_DATA:
2357                 aggsum_add(&astat_data_size, space);
2358                 break;
2359         case ARC_SPACE_META:
2360                 aggsum_add(&astat_metadata_size, space);
2361                 break;
2362         case ARC_SPACE_OTHER:
2363                 aggsum_add(&astat_other_size, space);
2364                 break;
2365         case ARC_SPACE_HDRS:
2366                 aggsum_add(&astat_hdr_size, space);
2367                 break;
2368         case ARC_SPACE_L2HDRS:
2369                 aggsum_add(&astat_l2_hdr_size, space);
2370                 break;
2371         }
2372 
2373         if (type != ARC_SPACE_DATA)
2374                 aggsum_add(&arc_meta_used, space);
2375 
2376         aggsum_add(&arc_size, space);
2377 }
2378 
2379 void
2380 arc_space_return(uint64_t space, arc_space_type_t type)
2381 {
2382         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2383 
2384         switch (type) {
2385         case ARC_SPACE_DATA:
2386                 aggsum_add(&astat_data_size, -space);
2387                 break;
2388         case ARC_SPACE_META:
2389                 aggsum_add(&astat_metadata_size, -space);
2390                 break;
2391         case ARC_SPACE_OTHER:
2392                 aggsum_add(&astat_other_size, -space);
2393                 break;
2394         case ARC_SPACE_HDRS:
2395                 aggsum_add(&astat_hdr_size, -space);
2396                 break;
2397         case ARC_SPACE_L2HDRS:
2398                 aggsum_add(&astat_l2_hdr_size, -space);
2399                 break;
2400         }
2401 
2402         if (type != ARC_SPACE_DATA) {
2403                 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2404                 /*
2405                  * We use the upper bound here rather than the precise value
2406                  * because the arc_meta_max value doesn't need to be
2407                  * precise. It's only consumed by humans via arcstats.
2408                  */
2409                 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2410                         arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2411                 aggsum_add(&arc_meta_used, -space);
2412         }
2413 
2414         ASSERT(aggsum_compare(&arc_size, space) >= 0);
2415         aggsum_add(&arc_size, -space);
2416 }
2417 
2418 /*
2419  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2420  * with the hdr's b_pabd.
2421  */
2422 static boolean_t
2423 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2424 {
2425         /*
2426          * The criteria for sharing a hdr's data are:
2427          * 1. the hdr's compression matches the buf's compression
2428          * 2. the hdr doesn't need to be byteswapped
2429          * 3. the hdr isn't already being shared
2430          * 4. the buf is either compressed or it is the last buf in the hdr list
2431          *
2432          * Criterion #4 maintains the invariant that shared uncompressed
2433          * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2434          * might ask, "if a compressed buf is allocated first, won't that be the
2435          * last thing in the list?", but in that case it's impossible to create
2436          * a shared uncompressed buf anyway (because the hdr must be compressed
2437          * to have the compressed buf). You might also think that #3 is
2438          * sufficient to make this guarantee, however it's possible
2439          * (specifically in the rare L2ARC write race mentioned in
2440          * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2441          * is sharable, but wasn't at the time of its allocation. Rather than
2442          * allow a new shared uncompressed buf to be created and then shuffle
2443          * the list around to make it the last element, this simply disallows
2444          * sharing if the new buf isn't the first to be added.
2445          */
2446         ASSERT3P(buf->b_hdr, ==, hdr);
2447         boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2448         boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2449         return (buf_compressed == hdr_compressed &&
2450             hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2451             !HDR_SHARED_DATA(hdr) &&
2452             (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2453 }
2454 
2455 /*
2456  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2457  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2458  * copy was made successfully, or an error code otherwise.
2459  */
2460 static int
2461 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2462     boolean_t fill, arc_buf_t **ret)
2463 {
2464         arc_buf_t *buf;
2465 
2466         ASSERT(HDR_HAS_L1HDR(hdr));
2467         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2468         VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2469             hdr->b_type == ARC_BUFC_METADATA);
2470         ASSERT3P(ret, !=, NULL);
2471         ASSERT3P(*ret, ==, NULL);
2472 
2473         buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2474         buf->b_hdr = hdr;
2475         buf->b_data = NULL;
2476         buf->b_next = hdr->b_l1hdr.b_buf;
2477         buf->b_flags = 0;
2478 
2479         add_reference(hdr, tag);
2480 
2481         /*
2482          * We're about to change the hdr's b_flags. We must either
2483          * hold the hash_lock or be undiscoverable.
2484          */
2485         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2486 
2487         /*
2488          * Only honor requests for compressed bufs if the hdr is actually
2489          * compressed.
2490          */
2491         if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2492                 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2493 
2494         /*
2495          * If the hdr's data can be shared then we share the data buffer and
2496          * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2497          * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2498          * buffer to store the buf's data.
2499          *
2500          * There are two additional restrictions here because we're sharing
2501          * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2502          * actively involved in an L2ARC write, because if this buf is used by
2503          * an arc_write() then the hdr's data buffer will be released when the
2504          * write completes, even though the L2ARC write might still be using it.
2505          * Second, the hdr's ABD must be linear so that the buf's user doesn't
2506          * need to be ABD-aware.
2507          */
2508         boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2509             abd_is_linear(hdr->b_l1hdr.b_pabd);
2510 
2511         /* Set up b_data and sharing */
2512         if (can_share) {
2513                 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2514                 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2515                 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2516         } else {
2517                 buf->b_data =
2518                     arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2519                 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2520         }
2521         VERIFY3P(buf->b_data, !=, NULL);
2522 
2523         hdr->b_l1hdr.b_buf = buf;
2524         hdr->b_l1hdr.b_bufcnt += 1;
2525 
2526         /*
2527          * If the user wants the data from the hdr, we need to either copy or
2528          * decompress the data.
2529          */
2530         if (fill) {
2531                 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2532         }
2533 
2534         return (0);
2535 }
2536 
2537 static char *arc_onloan_tag = "onloan";
2538 
2539 static inline void
2540 arc_loaned_bytes_update(int64_t delta)
2541 {
2542         atomic_add_64(&arc_loaned_bytes, delta);
2543 
2544         /* assert that it did not wrap around */
2545         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2546 }
2547 
2548 /*
2549  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2550  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2551  * buffers must be returned to the arc before they can be used by the DMU or
2552  * freed.
2553  */
2554 arc_buf_t *
2555 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2556 {
2557         arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2558             is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2559 
2560         arc_loaned_bytes_update(size);
2561 
2562         return (buf);
2563 }
2564 
2565 arc_buf_t *
2566 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2567     enum zio_compress compression_type)
2568 {
2569         arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2570             psize, lsize, compression_type);
2571 
2572         arc_loaned_bytes_update(psize);
2573 
2574         return (buf);
2575 }
2576 
2577 
2578 /*
2579  * Return a loaned arc buffer to the arc.
2580  */
2581 void
2582 arc_return_buf(arc_buf_t *buf, void *tag)
2583 {
2584         arc_buf_hdr_t *hdr = buf->b_hdr;
2585 
2586         ASSERT3P(buf->b_data, !=, NULL);
2587         ASSERT(HDR_HAS_L1HDR(hdr));
2588         (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2589         (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2590 
2591         arc_loaned_bytes_update(-arc_buf_size(buf));
2592 }
2593 
2594 /* Detach an arc_buf from a dbuf (tag) */
2595 void
2596 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2597 {
2598         arc_buf_hdr_t *hdr = buf->b_hdr;
2599 
2600         ASSERT3P(buf->b_data, !=, NULL);
2601         ASSERT(HDR_HAS_L1HDR(hdr));
2602         (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2603         (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2604 
2605         arc_loaned_bytes_update(arc_buf_size(buf));
2606 }
2607 
2608 static void
2609 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2610 {
2611         l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2612 
2613         df->l2df_abd = abd;
2614         df->l2df_size = size;
2615         df->l2df_type = type;
2616         mutex_enter(&l2arc_free_on_write_mtx);
2617         list_insert_head(l2arc_free_on_write, df);
2618         mutex_exit(&l2arc_free_on_write_mtx);
2619 }
2620 
2621 static void
2622 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2623 {
2624         arc_state_t *state = hdr->b_l1hdr.b_state;
2625         arc_buf_contents_t type = arc_buf_type(hdr);
2626         uint64_t size = arc_hdr_size(hdr);
2627 
2628         /* protected by hash lock, if in the hash table */
2629         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2630                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2631                 ASSERT(state != arc_anon && state != arc_l2c_only);
2632 
2633                 (void) refcount_remove_many(&state->arcs_esize[type],
2634                     size, hdr);
2635         }
2636         (void) refcount_remove_many(&state->arcs_size, size, hdr);
2637         if (type == ARC_BUFC_METADATA) {
2638                 arc_space_return(size, ARC_SPACE_META);
2639         } else {
2640                 ASSERT(type == ARC_BUFC_DATA);
2641                 arc_space_return(size, ARC_SPACE_DATA);
2642         }
2643 
2644         l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2645 }
2646 
2647 /*
2648  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2649  * data buffer, we transfer the refcount ownership to the hdr and update
2650  * the appropriate kstats.
2651  */
2652 static void
2653 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2654 {
2655         arc_state_t *state = hdr->b_l1hdr.b_state;
2656 
2657         ASSERT(arc_can_share(hdr, buf));
2658         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2659         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2660 
2661         /*
2662          * Start sharing the data buffer. We transfer the
2663          * refcount ownership to the hdr since it always owns
2664          * the refcount whenever an arc_buf_t is shared.
2665          */
2666         refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2667         hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2668         abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2669             HDR_ISTYPE_METADATA(hdr));
2670         arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2671         buf->b_flags |= ARC_BUF_FLAG_SHARED;
2672 
2673         /*
2674          * Since we've transferred ownership to the hdr we need
2675          * to increment its compressed and uncompressed kstats and
2676          * decrement the overhead size.
2677          */
2678         ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2679         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2680         ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2681 }
2682 
2683 static void
2684 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2685 {
2686         arc_state_t *state = hdr->b_l1hdr.b_state;
2687 
2688         ASSERT(arc_buf_is_shared(buf));
2689         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2690         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2691 
2692         /*
2693          * We are no longer sharing this buffer so we need
2694          * to transfer its ownership to the rightful owner.
2695          */
2696         refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2697         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2698         abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2699         abd_put(hdr->b_l1hdr.b_pabd);
2700         hdr->b_l1hdr.b_pabd = NULL;
2701         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2702 
2703         /*
2704          * Since the buffer is no longer shared between
2705          * the arc buf and the hdr, count it as overhead.
2706          */
2707         ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2708         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2709         ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2710 }
2711 
2712 /*
2713  * Remove an arc_buf_t from the hdr's buf list and return the last
2714  * arc_buf_t on the list. If no buffers remain on the list then return
2715  * NULL.
2716  */
2717 static arc_buf_t *
2718 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2719 {
2720         ASSERT(HDR_HAS_L1HDR(hdr));
2721         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2722 
2723         arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2724         arc_buf_t *lastbuf = NULL;
2725 
2726         /*
2727          * Remove the buf from the hdr list and locate the last
2728          * remaining buffer on the list.
2729          */
2730         while (*bufp != NULL) {
2731                 if (*bufp == buf)
2732                         *bufp = buf->b_next;
2733 
2734                 /*
2735                  * If we've removed a buffer in the middle of
2736                  * the list then update the lastbuf and update
2737                  * bufp.
2738                  */
2739                 if (*bufp != NULL) {
2740                         lastbuf = *bufp;
2741                         bufp = &(*bufp)->b_next;
2742                 }
2743         }
2744         buf->b_next = NULL;
2745         ASSERT3P(lastbuf, !=, buf);
2746         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2747         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2748         IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2749 
2750         return (lastbuf);
2751 }
2752 
2753 /*
2754  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2755  * list and free it.
2756  */
2757 static void
2758 arc_buf_destroy_impl(arc_buf_t *buf)
2759 {
2760         arc_buf_hdr_t *hdr = buf->b_hdr;
2761 
2762         /*
2763          * Free up the data associated with the buf but only if we're not
2764          * sharing this with the hdr. If we are sharing it with the hdr, the
2765          * hdr is responsible for doing the free.
2766          */
2767         if (buf->b_data != NULL) {
2768                 /*
2769                  * We're about to change the hdr's b_flags. We must either
2770                  * hold the hash_lock or be undiscoverable.
2771                  */
2772                 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2773 
2774                 arc_cksum_verify(buf);
2775                 arc_buf_unwatch(buf);
2776 
2777                 if (arc_buf_is_shared(buf)) {
2778                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2779                 } else {
2780                         uint64_t size = arc_buf_size(buf);
2781                         arc_free_data_buf(hdr, buf->b_data, size, buf);
2782                         ARCSTAT_INCR(arcstat_overhead_size, -size);
2783                 }
2784                 buf->b_data = NULL;
2785 
2786                 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2787                 hdr->b_l1hdr.b_bufcnt -= 1;
2788         }
2789 
2790         arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2791 
2792         if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2793                 /*
2794                  * If the current arc_buf_t is sharing its data buffer with the
2795                  * hdr, then reassign the hdr's b_pabd to share it with the new
2796                  * buffer at the end of the list. The shared buffer is always
2797                  * the last one on the hdr's buffer list.
2798                  *
2799                  * There is an equivalent case for compressed bufs, but since
2800                  * they aren't guaranteed to be the last buf in the list and
2801                  * that is an exceedingly rare case, we just allow that space be
2802                  * wasted temporarily.
2803                  */
2804                 if (lastbuf != NULL) {
2805                         /* Only one buf can be shared at once */
2806                         VERIFY(!arc_buf_is_shared(lastbuf));
2807                         /* hdr is uncompressed so can't have compressed buf */
2808                         VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2809 
2810                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2811                         arc_hdr_free_pabd(hdr);
2812 
2813                         /*
2814                          * We must setup a new shared block between the
2815                          * last buffer and the hdr. The data would have
2816                          * been allocated by the arc buf so we need to transfer
2817                          * ownership to the hdr since it's now being shared.
2818                          */
2819                         arc_share_buf(hdr, lastbuf);
2820                 }
2821         } else if (HDR_SHARED_DATA(hdr)) {
2822                 /*
2823                  * Uncompressed shared buffers are always at the end
2824                  * of the list. Compressed buffers don't have the
2825                  * same requirements. This makes it hard to
2826                  * simply assert that the lastbuf is shared so
2827                  * we rely on the hdr's compression flags to determine
2828                  * if we have a compressed, shared buffer.
2829                  */
2830                 ASSERT3P(lastbuf, !=, NULL);
2831                 ASSERT(arc_buf_is_shared(lastbuf) ||
2832                     HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2833         }
2834 
2835         /*
2836          * Free the checksum if we're removing the last uncompressed buf from
2837          * this hdr.
2838          */
2839         if (!arc_hdr_has_uncompressed_buf(hdr)) {
2840                 arc_cksum_free(hdr);
2841         }
2842 
2843         /* clean up the buf */
2844         buf->b_hdr = NULL;
2845         kmem_cache_free(buf_cache, buf);
2846 }
2847 
2848 static void
2849 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2850 {
2851         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2852         ASSERT(HDR_HAS_L1HDR(hdr));
2853         ASSERT(!HDR_SHARED_DATA(hdr));
2854 
2855         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2856         hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2857         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2858         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2859 
2860         ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2861         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2862 }
2863 
2864 static void
2865 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2866 {
2867         ASSERT(HDR_HAS_L1HDR(hdr));
2868         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2869 
2870         /*
2871          * If the hdr is currently being written to the l2arc then
2872          * we defer freeing the data by adding it to the l2arc_free_on_write
2873          * list. The l2arc will free the data once it's finished
2874          * writing it to the l2arc device.
2875          */
2876         if (HDR_L2_WRITING(hdr)) {
2877                 arc_hdr_free_on_write(hdr);
2878                 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2879         } else {
2880                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2881                     arc_hdr_size(hdr), hdr);
2882         }
2883         hdr->b_l1hdr.b_pabd = NULL;
2884         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2885 
2886         ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2887         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2888 }
2889 
2890 static arc_buf_hdr_t *
2891 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2892     enum zio_compress compression_type, arc_buf_contents_t type)
2893 {
2894         arc_buf_hdr_t *hdr;
2895 
2896         VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2897 
2898         hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2899         ASSERT(HDR_EMPTY(hdr));
2900         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2901         ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2902         HDR_SET_PSIZE(hdr, psize);
2903         HDR_SET_LSIZE(hdr, lsize);
2904         hdr->b_spa = spa;
2905         hdr->b_type = type;
2906         hdr->b_flags = 0;
2907         arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2908         arc_hdr_set_compress(hdr, compression_type);
2909 
2910         hdr->b_l1hdr.b_state = arc_anon;
2911         hdr->b_l1hdr.b_arc_access = 0;
2912         hdr->b_l1hdr.b_bufcnt = 0;
2913         hdr->b_l1hdr.b_buf = NULL;
2914 
2915         /*
2916          * Allocate the hdr's buffer. This will contain either
2917          * the compressed or uncompressed data depending on the block
2918          * it references and compressed arc enablement.
2919          */
2920         arc_hdr_alloc_pabd(hdr);
2921         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2922 
2923         return (hdr);
2924 }
2925 
2926 /*
2927  * Transition between the two allocation states for the arc_buf_hdr struct.
2928  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2929  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2930  * version is used when a cache buffer is only in the L2ARC in order to reduce
2931  * memory usage.
2932  */
2933 static arc_buf_hdr_t *
2934 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2935 {
2936         ASSERT(HDR_HAS_L2HDR(hdr));
2937 
2938         arc_buf_hdr_t *nhdr;
2939         l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2940 
2941         ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2942             (old == hdr_l2only_cache && new == hdr_full_cache));
2943 
2944         nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2945 
2946         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2947         buf_hash_remove(hdr);
2948 
2949         bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2950 
2951         if (new == hdr_full_cache) {
2952                 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2953                 /*
2954                  * arc_access and arc_change_state need to be aware that a
2955                  * header has just come out of L2ARC, so we set its state to
2956                  * l2c_only even though it's about to change.
2957                  */
2958                 nhdr->b_l1hdr.b_state = arc_l2c_only;
2959 
2960                 /* Verify previous threads set to NULL before freeing */
2961                 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2962         } else {
2963                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2964                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2965                 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2966 
2967                 /*
2968                  * If we've reached here, We must have been called from
2969                  * arc_evict_hdr(), as such we should have already been
2970                  * removed from any ghost list we were previously on
2971                  * (which protects us from racing with arc_evict_state),
2972                  * thus no locking is needed during this check.
2973                  */
2974                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2975 
2976                 /*
2977                  * A buffer must not be moved into the arc_l2c_only
2978                  * state if it's not finished being written out to the
2979                  * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2980                  * might try to be accessed, even though it was removed.
2981                  */
2982                 VERIFY(!HDR_L2_WRITING(hdr));
2983                 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2984 
2985 #ifdef ZFS_DEBUG
2986                 if (hdr->b_l1hdr.b_thawed != NULL) {
2987                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
2988                         hdr->b_l1hdr.b_thawed = NULL;
2989                 }
2990 #endif
2991 
2992                 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2993         }
2994         /*
2995          * The header has been reallocated so we need to re-insert it into any
2996          * lists it was on.
2997          */
2998         (void) buf_hash_insert(nhdr, NULL);
2999 
3000         ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3001 
3002         mutex_enter(&dev->l2ad_mtx);
3003 
3004         /*
3005          * We must place the realloc'ed header back into the list at
3006          * the same spot. Otherwise, if it's placed earlier in the list,
3007          * l2arc_write_buffers() could find it during the function's
3008          * write phase, and try to write it out to the l2arc.
3009          */
3010         list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3011         list_remove(&dev->l2ad_buflist, hdr);
3012 
3013         mutex_exit(&dev->l2ad_mtx);
3014 
3015         /*
3016          * Since we're using the pointer address as the tag when
3017          * incrementing and decrementing the l2ad_alloc refcount, we
3018          * must remove the old pointer (that we're about to destroy) and
3019          * add the new pointer to the refcount. Otherwise we'd remove
3020          * the wrong pointer address when calling arc_hdr_destroy() later.
3021          */
3022 
3023         (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3024         (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3025 
3026         buf_discard_identity(hdr);
3027         kmem_cache_free(old, hdr);
3028 
3029         return (nhdr);
3030 }
3031 
3032 /*
3033  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3034  * The buf is returned thawed since we expect the consumer to modify it.
3035  */
3036 arc_buf_t *
3037 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3038 {
3039         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3040             ZIO_COMPRESS_OFF, type);
3041         ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3042 
3043         arc_buf_t *buf = NULL;
3044         VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3045         arc_buf_thaw(buf);
3046 
3047         return (buf);
3048 }
3049 
3050 /*
3051  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3052  * for bufs containing metadata.
3053  */
3054 arc_buf_t *
3055 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3056     enum zio_compress compression_type)
3057 {
3058         ASSERT3U(lsize, >, 0);
3059         ASSERT3U(lsize, >=, psize);
3060         ASSERT(compression_type > ZIO_COMPRESS_OFF);
3061         ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3062 
3063         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3064             compression_type, ARC_BUFC_DATA);
3065         ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3066 
3067         arc_buf_t *buf = NULL;
3068         VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3069         arc_buf_thaw(buf);
3070         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3071 
3072         if (!arc_buf_is_shared(buf)) {
3073                 /*
3074                  * To ensure that the hdr has the correct data in it if we call
3075                  * arc_decompress() on this buf before it's been written to
3076                  * disk, it's easiest if we just set up sharing between the
3077                  * buf and the hdr.
3078                  */
3079                 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3080                 arc_hdr_free_pabd(hdr);
3081                 arc_share_buf(hdr, buf);
3082         }
3083 
3084         return (buf);
3085 }
3086 
3087 static void
3088 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3089 {
3090         l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3091         l2arc_dev_t *dev = l2hdr->b_dev;
3092         uint64_t psize = arc_hdr_size(hdr);
3093 
3094         ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3095         ASSERT(HDR_HAS_L2HDR(hdr));
3096 
3097         list_remove(&dev->l2ad_buflist, hdr);
3098 
3099         ARCSTAT_INCR(arcstat_l2_psize, -psize);
3100         ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3101 
3102         vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3103 
3104         (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3105         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3106 }
3107 
3108 static void
3109 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3110 {
3111         if (HDR_HAS_L1HDR(hdr)) {
3112                 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3113                     hdr->b_l1hdr.b_bufcnt > 0);
3114                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3115                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3116         }
3117         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3118         ASSERT(!HDR_IN_HASH_TABLE(hdr));
3119 
3120         if (!HDR_EMPTY(hdr))
3121                 buf_discard_identity(hdr);
3122 
3123         if (HDR_HAS_L2HDR(hdr)) {
3124                 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3125                 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3126 
3127                 if (!buflist_held)
3128                         mutex_enter(&dev->l2ad_mtx);
3129 
3130                 /*
3131                  * Even though we checked this conditional above, we
3132                  * need to check this again now that we have the
3133                  * l2ad_mtx. This is because we could be racing with
3134                  * another thread calling l2arc_evict() which might have
3135                  * destroyed this header's L2 portion as we were waiting
3136                  * to acquire the l2ad_mtx. If that happens, we don't
3137                  * want to re-destroy the header's L2 portion.
3138                  */
3139                 if (HDR_HAS_L2HDR(hdr))
3140                         arc_hdr_l2hdr_destroy(hdr);
3141 
3142                 if (!buflist_held)
3143                         mutex_exit(&dev->l2ad_mtx);
3144         }
3145 
3146         if (HDR_HAS_L1HDR(hdr)) {
3147                 arc_cksum_free(hdr);
3148 
3149                 while (hdr->b_l1hdr.b_buf != NULL)
3150                         arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3151 
3152 #ifdef ZFS_DEBUG
3153                 if (hdr->b_l1hdr.b_thawed != NULL) {
3154                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
3155                         hdr->b_l1hdr.b_thawed = NULL;
3156                 }
3157 #endif
3158 
3159                 if (hdr->b_l1hdr.b_pabd != NULL) {
3160                         arc_hdr_free_pabd(hdr);
3161                 }
3162         }
3163 
3164         ASSERT3P(hdr->b_hash_next, ==, NULL);
3165         if (HDR_HAS_L1HDR(hdr)) {
3166                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3167                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3168                 kmem_cache_free(hdr_full_cache, hdr);
3169         } else {
3170                 kmem_cache_free(hdr_l2only_cache, hdr);
3171         }
3172 }
3173 
3174 void
3175 arc_buf_destroy(arc_buf_t *buf, void* tag)
3176 {
3177         arc_buf_hdr_t *hdr = buf->b_hdr;
3178         kmutex_t *hash_lock = HDR_LOCK(hdr);
3179 
3180         if (hdr->b_l1hdr.b_state == arc_anon) {
3181                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3182                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3183                 VERIFY0(remove_reference(hdr, NULL, tag));
3184                 arc_hdr_destroy(hdr);
3185                 return;
3186         }
3187 
3188         mutex_enter(hash_lock);
3189         ASSERT3P(hdr, ==, buf->b_hdr);
3190         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3191         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3192         ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3193         ASSERT3P(buf->b_data, !=, NULL);
3194 
3195         (void) remove_reference(hdr, hash_lock, tag);
3196         arc_buf_destroy_impl(buf);
3197         mutex_exit(hash_lock);
3198 }
3199 
3200 /*
3201  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3202  * state of the header is dependent on it's state prior to entering this
3203  * function. The following transitions are possible:
3204  *
3205  *    - arc_mru -> arc_mru_ghost
3206  *    - arc_mfu -> arc_mfu_ghost
3207  *    - arc_mru_ghost -> arc_l2c_only
3208  *    - arc_mru_ghost -> deleted
3209  *    - arc_mfu_ghost -> arc_l2c_only
3210  *    - arc_mfu_ghost -> deleted
3211  */
3212 static int64_t
3213 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3214 {
3215         arc_state_t *evicted_state, *state;
3216         int64_t bytes_evicted = 0;
3217 
3218         ASSERT(MUTEX_HELD(hash_lock));
3219         ASSERT(HDR_HAS_L1HDR(hdr));
3220 
3221         state = hdr->b_l1hdr.b_state;
3222         if (GHOST_STATE(state)) {
3223                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3224                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3225 
3226                 /*
3227                  * l2arc_write_buffers() relies on a header's L1 portion
3228                  * (i.e. its b_pabd field) during it's write phase.
3229                  * Thus, we cannot push a header onto the arc_l2c_only
3230                  * state (removing it's L1 piece) until the header is
3231                  * done being written to the l2arc.
3232                  */
3233                 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3234                         ARCSTAT_BUMP(arcstat_evict_l2_skip);
3235                         return (bytes_evicted);
3236                 }
3237 
3238                 ARCSTAT_BUMP(arcstat_deleted);
3239                 bytes_evicted += HDR_GET_LSIZE(hdr);
3240 
3241                 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3242 
3243                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3244                 if (HDR_HAS_L2HDR(hdr)) {
3245                         /*
3246                          * This buffer is cached on the 2nd Level ARC;
3247                          * don't destroy the header.
3248                          */
3249                         arc_change_state(arc_l2c_only, hdr, hash_lock);
3250                         /*
3251                          * dropping from L1+L2 cached to L2-only,
3252                          * realloc to remove the L1 header.
3253                          */
3254                         hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3255                             hdr_l2only_cache);
3256                 } else {
3257                         arc_change_state(arc_anon, hdr, hash_lock);
3258                         arc_hdr_destroy(hdr);
3259                 }
3260                 return (bytes_evicted);
3261         }
3262 
3263         ASSERT(state == arc_mru || state == arc_mfu);
3264         evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3265 
3266         /* prefetch buffers have a minimum lifespan */
3267         if (HDR_IO_IN_PROGRESS(hdr) ||
3268             ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3269             ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3270             arc_min_prefetch_lifespan)) {
3271                 ARCSTAT_BUMP(arcstat_evict_skip);
3272                 return (bytes_evicted);
3273         }
3274 
3275         ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3276         while (hdr->b_l1hdr.b_buf) {
3277                 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3278                 if (!mutex_tryenter(&buf->b_evict_lock)) {
3279                         ARCSTAT_BUMP(arcstat_mutex_miss);
3280                         break;
3281                 }
3282                 if (buf->b_data != NULL)
3283                         bytes_evicted += HDR_GET_LSIZE(hdr);
3284                 mutex_exit(&buf->b_evict_lock);
3285                 arc_buf_destroy_impl(buf);
3286         }
3287 
3288         if (HDR_HAS_L2HDR(hdr)) {
3289                 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3290         } else {
3291                 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3292                         ARCSTAT_INCR(arcstat_evict_l2_eligible,
3293                             HDR_GET_LSIZE(hdr));
3294                 } else {
3295                         ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3296                             HDR_GET_LSIZE(hdr));
3297                 }
3298         }
3299 
3300         if (hdr->b_l1hdr.b_bufcnt == 0) {
3301                 arc_cksum_free(hdr);
3302 
3303                 bytes_evicted += arc_hdr_size(hdr);
3304 
3305                 /*
3306                  * If this hdr is being evicted and has a compressed
3307                  * buffer then we discard it here before we change states.
3308                  * This ensures that the accounting is updated correctly
3309                  * in arc_free_data_impl().
3310                  */
3311                 arc_hdr_free_pabd(hdr);
3312 
3313                 arc_change_state(evicted_state, hdr, hash_lock);
3314                 ASSERT(HDR_IN_HASH_TABLE(hdr));
3315                 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3316                 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3317         }
3318 
3319         return (bytes_evicted);
3320 }
3321 
3322 static uint64_t
3323 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3324     uint64_t spa, int64_t bytes)
3325 {
3326         multilist_sublist_t *mls;
3327         uint64_t bytes_evicted = 0;
3328         arc_buf_hdr_t *hdr;
3329         kmutex_t *hash_lock;
3330         int evict_count = 0;
3331 
3332         ASSERT3P(marker, !=, NULL);
3333         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3334 
3335         mls = multilist_sublist_lock(ml, idx);
3336 
3337         for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3338             hdr = multilist_sublist_prev(mls, marker)) {
3339                 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3340                     (evict_count >= zfs_arc_evict_batch_limit))
3341                         break;
3342 
3343                 /*
3344                  * To keep our iteration location, move the marker
3345                  * forward. Since we're not holding hdr's hash lock, we
3346                  * must be very careful and not remove 'hdr' from the
3347                  * sublist. Otherwise, other consumers might mistake the
3348                  * 'hdr' as not being on a sublist when they call the
3349                  * multilist_link_active() function (they all rely on
3350                  * the hash lock protecting concurrent insertions and
3351                  * removals). multilist_sublist_move_forward() was
3352                  * specifically implemented to ensure this is the case
3353                  * (only 'marker' will be removed and re-inserted).
3354                  */
3355                 multilist_sublist_move_forward(mls, marker);
3356 
3357                 /*
3358                  * The only case where the b_spa field should ever be
3359                  * zero, is the marker headers inserted by
3360                  * arc_evict_state(). It's possible for multiple threads
3361                  * to be calling arc_evict_state() concurrently (e.g.
3362                  * dsl_pool_close() and zio_inject_fault()), so we must
3363                  * skip any markers we see from these other threads.
3364                  */
3365                 if (hdr->b_spa == 0)
3366                         continue;
3367 
3368                 /* we're only interested in evicting buffers of a certain spa */
3369                 if (spa != 0 && hdr->b_spa != spa) {
3370                         ARCSTAT_BUMP(arcstat_evict_skip);
3371                         continue;
3372                 }
3373 
3374                 hash_lock = HDR_LOCK(hdr);
3375 
3376                 /*
3377                  * We aren't calling this function from any code path
3378                  * that would already be holding a hash lock, so we're
3379                  * asserting on this assumption to be defensive in case
3380                  * this ever changes. Without this check, it would be
3381                  * possible to incorrectly increment arcstat_mutex_miss
3382                  * below (e.g. if the code changed such that we called
3383                  * this function with a hash lock held).
3384                  */
3385                 ASSERT(!MUTEX_HELD(hash_lock));
3386 
3387                 if (mutex_tryenter(hash_lock)) {
3388                         uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3389                         mutex_exit(hash_lock);
3390 
3391                         bytes_evicted += evicted;
3392 
3393                         /*
3394                          * If evicted is zero, arc_evict_hdr() must have
3395                          * decided to skip this header, don't increment
3396                          * evict_count in this case.
3397                          */
3398                         if (evicted != 0)
3399                                 evict_count++;
3400 
3401                         /*
3402                          * If arc_size isn't overflowing, signal any
3403                          * threads that might happen to be waiting.
3404                          *
3405                          * For each header evicted, we wake up a single
3406                          * thread. If we used cv_broadcast, we could
3407                          * wake up "too many" threads causing arc_size
3408                          * to significantly overflow arc_c; since
3409                          * arc_get_data_impl() doesn't check for overflow
3410                          * when it's woken up (it doesn't because it's
3411                          * possible for the ARC to be overflowing while
3412                          * full of un-evictable buffers, and the
3413                          * function should proceed in this case).
3414                          *
3415                          * If threads are left sleeping, due to not
3416                          * using cv_broadcast, they will be woken up
3417                          * just before arc_reclaim_thread() sleeps.
3418                          */
3419                         mutex_enter(&arc_reclaim_lock);
3420                         if (!arc_is_overflowing())
3421                                 cv_signal(&arc_reclaim_waiters_cv);
3422                         mutex_exit(&arc_reclaim_lock);
3423                 } else {
3424                         ARCSTAT_BUMP(arcstat_mutex_miss);
3425                 }
3426         }
3427 
3428         multilist_sublist_unlock(mls);
3429 
3430         return (bytes_evicted);
3431 }
3432 
3433 /*
3434  * Evict buffers from the given arc state, until we've removed the
3435  * specified number of bytes. Move the removed buffers to the
3436  * appropriate evict state.
3437  *
3438  * This function makes a "best effort". It skips over any buffers
3439  * it can't get a hash_lock on, and so, may not catch all candidates.
3440  * It may also return without evicting as much space as requested.
3441  *
3442  * If bytes is specified using the special value ARC_EVICT_ALL, this
3443  * will evict all available (i.e. unlocked and evictable) buffers from
3444  * the given arc state; which is used by arc_flush().
3445  */
3446 static uint64_t
3447 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3448     arc_buf_contents_t type)
3449 {
3450         uint64_t total_evicted = 0;
3451         multilist_t *ml = state->arcs_list[type];
3452         int num_sublists;
3453         arc_buf_hdr_t **markers;
3454 
3455         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3456 
3457         num_sublists = multilist_get_num_sublists(ml);
3458 
3459         /*
3460          * If we've tried to evict from each sublist, made some
3461          * progress, but still have not hit the target number of bytes
3462          * to evict, we want to keep trying. The markers allow us to
3463          * pick up where we left off for each individual sublist, rather
3464          * than starting from the tail each time.
3465          */
3466         markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3467         for (int i = 0; i < num_sublists; i++) {
3468                 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3469 
3470                 /*
3471                  * A b_spa of 0 is used to indicate that this header is
3472                  * a marker. This fact is used in arc_adjust_type() and
3473                  * arc_evict_state_impl().
3474                  */
3475                 markers[i]->b_spa = 0;
3476 
3477                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3478                 multilist_sublist_insert_tail(mls, markers[i]);
3479                 multilist_sublist_unlock(mls);
3480         }
3481 
3482         /*
3483          * While we haven't hit our target number of bytes to evict, or
3484          * we're evicting all available buffers.
3485          */
3486         while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3487                 /*
3488                  * Start eviction using a randomly selected sublist,
3489                  * this is to try and evenly balance eviction across all
3490                  * sublists. Always starting at the same sublist
3491                  * (e.g. index 0) would cause evictions to favor certain
3492                  * sublists over others.
3493                  */
3494                 int sublist_idx = multilist_get_random_index(ml);
3495                 uint64_t scan_evicted = 0;
3496 
3497                 for (int i = 0; i < num_sublists; i++) {
3498                         uint64_t bytes_remaining;
3499                         uint64_t bytes_evicted;
3500 
3501                         if (bytes == ARC_EVICT_ALL)
3502                                 bytes_remaining = ARC_EVICT_ALL;
3503                         else if (total_evicted < bytes)
3504                                 bytes_remaining = bytes - total_evicted;
3505                         else
3506                                 break;
3507 
3508                         bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3509                             markers[sublist_idx], spa, bytes_remaining);
3510 
3511                         scan_evicted += bytes_evicted;
3512                         total_evicted += bytes_evicted;
3513 
3514                         /* we've reached the end, wrap to the beginning */
3515                         if (++sublist_idx >= num_sublists)
3516                                 sublist_idx = 0;
3517                 }
3518 
3519                 /*
3520                  * If we didn't evict anything during this scan, we have
3521                  * no reason to believe we'll evict more during another
3522                  * scan, so break the loop.
3523                  */
3524                 if (scan_evicted == 0) {
3525                         /* This isn't possible, let's make that obvious */
3526                         ASSERT3S(bytes, !=, 0);
3527 
3528                         /*
3529                          * When bytes is ARC_EVICT_ALL, the only way to
3530                          * break the loop is when scan_evicted is zero.
3531                          * In that case, we actually have evicted enough,
3532                          * so we don't want to increment the kstat.
3533                          */
3534                         if (bytes != ARC_EVICT_ALL) {
3535                                 ASSERT3S(total_evicted, <, bytes);
3536                                 ARCSTAT_BUMP(arcstat_evict_not_enough);
3537                         }
3538 
3539                         break;
3540                 }
3541         }
3542 
3543         for (int i = 0; i < num_sublists; i++) {
3544                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3545                 multilist_sublist_remove(mls, markers[i]);
3546                 multilist_sublist_unlock(mls);
3547 
3548                 kmem_cache_free(hdr_full_cache, markers[i]);
3549         }
3550         kmem_free(markers, sizeof (*markers) * num_sublists);
3551 
3552         return (total_evicted);
3553 }
3554 
3555 /*
3556  * Flush all "evictable" data of the given type from the arc state
3557  * specified. This will not evict any "active" buffers (i.e. referenced).
3558  *
3559  * When 'retry' is set to B_FALSE, the function will make a single pass
3560  * over the state and evict any buffers that it can. Since it doesn't
3561  * continually retry the eviction, it might end up leaving some buffers
3562  * in the ARC due to lock misses.
3563  *
3564  * When 'retry' is set to B_TRUE, the function will continually retry the
3565  * eviction until *all* evictable buffers have been removed from the
3566  * state. As a result, if concurrent insertions into the state are
3567  * allowed (e.g. if the ARC isn't shutting down), this function might
3568  * wind up in an infinite loop, continually trying to evict buffers.
3569  */
3570 static uint64_t
3571 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3572     boolean_t retry)
3573 {
3574         uint64_t evicted = 0;
3575 
3576         while (refcount_count(&state->arcs_esize[type]) != 0) {
3577                 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3578 
3579                 if (!retry)
3580                         break;
3581         }
3582 
3583         return (evicted);
3584 }
3585 
3586 /*
3587  * Evict the specified number of bytes from the state specified,
3588  * restricting eviction to the spa and type given. This function
3589  * prevents us from trying to evict more from a state's list than
3590  * is "evictable", and to skip evicting altogether when passed a
3591  * negative value for "bytes". In contrast, arc_evict_state() will
3592  * evict everything it can, when passed a negative value for "bytes".
3593  */
3594 static uint64_t
3595 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3596     arc_buf_contents_t type)
3597 {
3598         int64_t delta;
3599 
3600         if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3601                 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3602                 return (arc_evict_state(state, spa, delta, type));
3603         }
3604 
3605         return (0);
3606 }
3607 
3608 /*
3609  * Evict metadata buffers from the cache, such that arc_meta_used is
3610  * capped by the arc_meta_limit tunable.
3611  */
3612 static uint64_t
3613 arc_adjust_meta(uint64_t meta_used)
3614 {
3615         uint64_t total_evicted = 0;
3616         int64_t target;
3617 
3618         /*
3619          * If we're over the meta limit, we want to evict enough
3620          * metadata to get back under the meta limit. We don't want to
3621          * evict so much that we drop the MRU below arc_p, though. If
3622          * we're over the meta limit more than we're over arc_p, we
3623          * evict some from the MRU here, and some from the MFU below.
3624          */
3625         target = MIN((int64_t)(meta_used - arc_meta_limit),
3626             (int64_t)(refcount_count(&arc_anon->arcs_size) +
3627             refcount_count(&arc_mru->arcs_size) - arc_p));
3628 
3629         total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3630 
3631         /*
3632          * Similar to the above, we want to evict enough bytes to get us
3633          * below the meta limit, but not so much as to drop us below the
3634          * space allotted to the MFU (which is defined as arc_c - arc_p).
3635          */
3636         target = MIN((int64_t)(meta_used - arc_meta_limit),
3637             (int64_t)(refcount_count(&arc_mfu->arcs_size) -
3638             (arc_c - arc_p)));
3639 
3640         total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3641 
3642         return (total_evicted);
3643 }
3644 
3645 /*
3646  * Return the type of the oldest buffer in the given arc state
3647  *
3648  * This function will select a random sublist of type ARC_BUFC_DATA and
3649  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3650  * is compared, and the type which contains the "older" buffer will be
3651  * returned.
3652  */
3653 static arc_buf_contents_t
3654 arc_adjust_type(arc_state_t *state)
3655 {
3656         multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3657         multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3658         int data_idx = multilist_get_random_index(data_ml);
3659         int meta_idx = multilist_get_random_index(meta_ml);
3660         multilist_sublist_t *data_mls;
3661         multilist_sublist_t *meta_mls;
3662         arc_buf_contents_t type;
3663         arc_buf_hdr_t *data_hdr;
3664         arc_buf_hdr_t *meta_hdr;
3665 
3666         /*
3667          * We keep the sublist lock until we're finished, to prevent
3668          * the headers from being destroyed via arc_evict_state().
3669          */
3670         data_mls = multilist_sublist_lock(data_ml, data_idx);
3671         meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3672 
3673         /*
3674          * These two loops are to ensure we skip any markers that
3675          * might be at the tail of the lists due to arc_evict_state().
3676          */
3677 
3678         for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3679             data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3680                 if (data_hdr->b_spa != 0)
3681                         break;
3682         }
3683 
3684         for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3685             meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3686                 if (meta_hdr->b_spa != 0)
3687                         break;
3688         }
3689 
3690         if (data_hdr == NULL && meta_hdr == NULL) {
3691                 type = ARC_BUFC_DATA;
3692         } else if (data_hdr == NULL) {
3693                 ASSERT3P(meta_hdr, !=, NULL);
3694                 type = ARC_BUFC_METADATA;
3695         } else if (meta_hdr == NULL) {
3696                 ASSERT3P(data_hdr, !=, NULL);
3697                 type = ARC_BUFC_DATA;
3698         } else {
3699                 ASSERT3P(data_hdr, !=, NULL);
3700                 ASSERT3P(meta_hdr, !=, NULL);
3701 
3702                 /* The headers can't be on the sublist without an L1 header */
3703                 ASSERT(HDR_HAS_L1HDR(data_hdr));
3704                 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3705 
3706                 if (data_hdr->b_l1hdr.b_arc_access <
3707                     meta_hdr->b_l1hdr.b_arc_access) {
3708                         type = ARC_BUFC_DATA;
3709                 } else {
3710                         type = ARC_BUFC_METADATA;
3711                 }
3712         }
3713 
3714         multilist_sublist_unlock(meta_mls);
3715         multilist_sublist_unlock(data_mls);
3716 
3717         return (type);
3718 }
3719 
3720 /*
3721  * Evict buffers from the cache, such that arc_size is capped by arc_c.
3722  */
3723 static uint64_t
3724 arc_adjust(void)
3725 {
3726         uint64_t total_evicted = 0;
3727         uint64_t bytes;
3728         int64_t target;
3729         uint64_t asize = aggsum_value(&arc_size);
3730         uint64_t ameta = aggsum_value(&arc_meta_used);
3731 
3732         /*
3733          * If we're over arc_meta_limit, we want to correct that before
3734          * potentially evicting data buffers below.
3735          */
3736         total_evicted += arc_adjust_meta(ameta);
3737 
3738         /*
3739          * Adjust MRU size
3740          *
3741          * If we're over the target cache size, we want to evict enough
3742          * from the list to get back to our target size. We don't want
3743          * to evict too much from the MRU, such that it drops below
3744          * arc_p. So, if we're over our target cache size more than
3745          * the MRU is over arc_p, we'll evict enough to get back to
3746          * arc_p here, and then evict more from the MFU below.
3747          */
3748         target = MIN((int64_t)(asize - arc_c),
3749             (int64_t)(refcount_count(&arc_anon->arcs_size) +
3750             refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
3751 
3752         /*
3753          * If we're below arc_meta_min, always prefer to evict data.
3754          * Otherwise, try to satisfy the requested number of bytes to
3755          * evict from the type which contains older buffers; in an
3756          * effort to keep newer buffers in the cache regardless of their
3757          * type. If we cannot satisfy the number of bytes from this
3758          * type, spill over into the next type.
3759          */
3760         if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3761             ameta > arc_meta_min) {
3762                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3763                 total_evicted += bytes;
3764 
3765                 /*
3766                  * If we couldn't evict our target number of bytes from
3767                  * metadata, we try to get the rest from data.
3768                  */
3769                 target -= bytes;
3770 
3771                 total_evicted +=
3772                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3773         } else {
3774                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3775                 total_evicted += bytes;
3776 
3777                 /*
3778                  * If we couldn't evict our target number of bytes from
3779                  * data, we try to get the rest from metadata.
3780                  */
3781                 target -= bytes;
3782 
3783                 total_evicted +=
3784                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3785         }
3786 
3787         /*
3788          * Adjust MFU size
3789          *
3790          * Now that we've tried to evict enough from the MRU to get its
3791          * size back to arc_p, if we're still above the target cache
3792          * size, we evict the rest from the MFU.
3793          */
3794         target = asize - arc_c;
3795 
3796         if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3797             ameta > arc_meta_min) {
3798                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3799                 total_evicted += bytes;
3800 
3801                 /*
3802                  * If we couldn't evict our target number of bytes from
3803                  * metadata, we try to get the rest from data.
3804                  */
3805                 target -= bytes;
3806 
3807                 total_evicted +=
3808                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3809         } else {
3810                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3811                 total_evicted += bytes;
3812 
3813                 /*
3814                  * If we couldn't evict our target number of bytes from
3815                  * data, we try to get the rest from data.
3816                  */
3817                 target -= bytes;
3818 
3819                 total_evicted +=
3820                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3821         }
3822 
3823         /*
3824          * Adjust ghost lists
3825          *
3826          * In addition to the above, the ARC also defines target values
3827          * for the ghost lists. The sum of the mru list and mru ghost
3828          * list should never exceed the target size of the cache, and
3829          * the sum of the mru list, mfu list, mru ghost list, and mfu
3830          * ghost list should never exceed twice the target size of the
3831          * cache. The following logic enforces these limits on the ghost
3832          * caches, and evicts from them as needed.
3833          */
3834         target = refcount_count(&arc_mru->arcs_size) +
3835             refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3836 
3837         bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3838         total_evicted += bytes;
3839 
3840         target -= bytes;
3841 
3842         total_evicted +=
3843             arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3844 
3845         /*
3846          * We assume the sum of the mru list and mfu list is less than
3847          * or equal to arc_c (we enforced this above), which means we
3848          * can use the simpler of the two equations below:
3849          *
3850          *      mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3851          *                  mru ghost + mfu ghost <= arc_c
3852          */
3853         target = refcount_count(&arc_mru_ghost->arcs_size) +
3854             refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3855 
3856         bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3857         total_evicted += bytes;
3858 
3859         target -= bytes;
3860 
3861         total_evicted +=
3862             arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3863 
3864         return (total_evicted);
3865 }
3866 
3867 void
3868 arc_flush(spa_t *spa, boolean_t retry)
3869 {
3870         uint64_t guid = 0;
3871 
3872         /*
3873          * If retry is B_TRUE, a spa must not be specified since we have
3874          * no good way to determine if all of a spa's buffers have been
3875          * evicted from an arc state.
3876          */
3877         ASSERT(!retry || spa == 0);
3878 
3879         if (spa != NULL)
3880                 guid = spa_load_guid(spa);
3881 
3882         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3883         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3884 
3885         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3886         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3887 
3888         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3889         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3890 
3891         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3892         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3893 }
3894 
3895 void
3896 arc_shrink(int64_t to_free)
3897 {
3898         uint64_t asize = aggsum_value(&arc_size);
3899         if (arc_c > arc_c_min) {
3900 
3901                 if (arc_c > arc_c_min + to_free)
3902                         atomic_add_64(&arc_c, -to_free);
3903                 else
3904                         arc_c = arc_c_min;
3905 
3906                 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3907                 if (asize < arc_c)
3908                         arc_c = MAX(asize, arc_c_min);
3909                 if (arc_p > arc_c)
3910                         arc_p = (arc_c >> 1);
3911                 ASSERT(arc_c >= arc_c_min);
3912                 ASSERT((int64_t)arc_p >= 0);
3913         }
3914 
3915         if (asize > arc_c)
3916                 (void) arc_adjust();
3917 }
3918 
3919 typedef enum free_memory_reason_t {
3920         FMR_UNKNOWN,
3921         FMR_NEEDFREE,
3922         FMR_LOTSFREE,
3923         FMR_SWAPFS_MINFREE,
3924         FMR_PAGES_PP_MAXIMUM,
3925         FMR_HEAP_ARENA,
3926         FMR_ZIO_ARENA,
3927 } free_memory_reason_t;
3928 
3929 int64_t last_free_memory;
3930 free_memory_reason_t last_free_reason;
3931 
3932 /*
3933  * Additional reserve of pages for pp_reserve.
3934  */
3935 int64_t arc_pages_pp_reserve = 64;
3936 
3937 /*
3938  * Additional reserve of pages for swapfs.
3939  */
3940 int64_t arc_swapfs_reserve = 64;
3941 
3942 /*
3943  * Return the amount of memory that can be consumed before reclaim will be
3944  * needed.  Positive if there is sufficient free memory, negative indicates
3945  * the amount of memory that needs to be freed up.
3946  */
3947 static int64_t
3948 arc_available_memory(void)
3949 {
3950         int64_t lowest = INT64_MAX;
3951         int64_t n;
3952         free_memory_reason_t r = FMR_UNKNOWN;
3953 
3954 #ifdef _KERNEL
3955         if (needfree > 0) {
3956                 n = PAGESIZE * (-needfree);
3957                 if (n < lowest) {
3958                         lowest = n;
3959                         r = FMR_NEEDFREE;
3960                 }
3961         }
3962 
3963         /*
3964          * check that we're out of range of the pageout scanner.  It starts to
3965          * schedule paging if freemem is less than lotsfree and needfree.
3966          * lotsfree is the high-water mark for pageout, and needfree is the
3967          * number of needed free pages.  We add extra pages here to make sure
3968          * the scanner doesn't start up while we're freeing memory.
3969          */
3970         n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3971         if (n < lowest) {
3972                 lowest = n;
3973                 r = FMR_LOTSFREE;
3974         }
3975 
3976         /*
3977          * check to make sure that swapfs has enough space so that anon
3978          * reservations can still succeed. anon_resvmem() checks that the
3979          * availrmem is greater than swapfs_minfree, and the number of reserved
3980          * swap pages.  We also add a bit of extra here just to prevent
3981          * circumstances from getting really dire.
3982          */
3983         n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3984             desfree - arc_swapfs_reserve);
3985         if (n < lowest) {
3986                 lowest = n;
3987                 r = FMR_SWAPFS_MINFREE;
3988         }
3989 
3990 
3991         /*
3992          * Check that we have enough availrmem that memory locking (e.g., via
3993          * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3994          * stores the number of pages that cannot be locked; when availrmem
3995          * drops below pages_pp_maximum, page locking mechanisms such as
3996          * page_pp_lock() will fail.)
3997          */
3998         n = PAGESIZE * (availrmem - pages_pp_maximum -
3999             arc_pages_pp_reserve);
4000         if (n < lowest) {
4001                 lowest = n;
4002                 r = FMR_PAGES_PP_MAXIMUM;
4003         }
4004 
4005 #if defined(__i386)
4006         /*
4007          * If we're on an i386 platform, it's possible that we'll exhaust the
4008          * kernel heap space before we ever run out of available physical
4009          * memory.  Most checks of the size of the heap_area compare against
4010          * tune.t_minarmem, which is the minimum available real memory that we
4011          * can have in the system.  However, this is generally fixed at 25 pages
4012          * which is so low that it's useless.  In this comparison, we seek to
4013          * calculate the total heap-size, and reclaim if more than 3/4ths of the
4014          * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4015          * free)
4016          */
4017         n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4018             (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4019         if (n < lowest) {
4020                 lowest = n;
4021                 r = FMR_HEAP_ARENA;
4022         }
4023 #endif
4024 
4025         /*
4026          * If zio data pages are being allocated out of a separate heap segment,
4027          * then enforce that the size of available vmem for this arena remains
4028          * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4029          *
4030          * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4031          * memory (in the zio_arena) free, which can avoid memory
4032          * fragmentation issues.
4033          */
4034         if (zio_arena != NULL) {
4035                 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4036                     (vmem_size(zio_arena, VMEM_ALLOC) >>
4037                     arc_zio_arena_free_shift);
4038                 if (n < lowest) {
4039                         lowest = n;
4040                         r = FMR_ZIO_ARENA;
4041                 }
4042         }
4043 #else
4044         /* Every 100 calls, free a small amount */
4045         if (spa_get_random(100) == 0)
4046                 lowest = -1024;
4047 #endif
4048 
4049         last_free_memory = lowest;
4050         last_free_reason = r;
4051 
4052         return (lowest);
4053 }
4054 
4055 
4056 /*
4057  * Determine if the system is under memory pressure and is asking
4058  * to reclaim memory. A return value of B_TRUE indicates that the system
4059  * is under memory pressure and that the arc should adjust accordingly.
4060  */
4061 static boolean_t
4062 arc_reclaim_needed(void)
4063 {
4064         return (arc_available_memory() < 0);
4065 }
4066 
4067 static void
4068 arc_kmem_reap_now(void)
4069 {
4070         size_t                  i;
4071         kmem_cache_t            *prev_cache = NULL;
4072         kmem_cache_t            *prev_data_cache = NULL;
4073         extern kmem_cache_t     *zio_buf_cache[];
4074         extern kmem_cache_t     *zio_data_buf_cache[];
4075         extern kmem_cache_t     *range_seg_cache;
4076         extern kmem_cache_t     *abd_chunk_cache;
4077 
4078 #ifdef _KERNEL
4079         if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4080                 /*
4081                  * We are exceeding our meta-data cache limit.
4082                  * Purge some DNLC entries to release holds on meta-data.
4083                  */
4084                 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4085         }
4086 #if defined(__i386)
4087         /*
4088          * Reclaim unused memory from all kmem caches.
4089          */
4090         kmem_reap();
4091 #endif
4092 #endif
4093 
4094         /*
4095          * If a kmem reap is already active, don't schedule more.  We must
4096          * check for this because kmem_cache_reap_soon() won't actually
4097          * block on the cache being reaped (this is to prevent callers from
4098          * becoming implicitly blocked by a system-wide kmem reap -- which,
4099          * on a system with many, many full magazines, can take minutes).
4100          */
4101         if (kmem_cache_reap_active())
4102                 return;
4103 
4104         for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4105                 if (zio_buf_cache[i] != prev_cache) {
4106                         prev_cache = zio_buf_cache[i];
4107                         kmem_cache_reap_soon(zio_buf_cache[i]);
4108                 }
4109                 if (zio_data_buf_cache[i] != prev_data_cache) {
4110                         prev_data_cache = zio_data_buf_cache[i];
4111                         kmem_cache_reap_soon(zio_data_buf_cache[i]);
4112                 }
4113         }
4114         kmem_cache_reap_soon(abd_chunk_cache);
4115         kmem_cache_reap_soon(buf_cache);
4116         kmem_cache_reap_soon(hdr_full_cache);
4117         kmem_cache_reap_soon(hdr_l2only_cache);
4118         kmem_cache_reap_soon(range_seg_cache);
4119 
4120         if (zio_arena != NULL) {
4121                 /*
4122                  * Ask the vmem arena to reclaim unused memory from its
4123                  * quantum caches.
4124                  */
4125                 vmem_qcache_reap(zio_arena);
4126         }
4127 }
4128 
4129 /*
4130  * Threads can block in arc_get_data_impl() waiting for this thread to evict
4131  * enough data and signal them to proceed. When this happens, the threads in
4132  * arc_get_data_impl() are sleeping while holding the hash lock for their
4133  * particular arc header. Thus, we must be careful to never sleep on a
4134  * hash lock in this thread. This is to prevent the following deadlock:
4135  *
4136  *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4137  *    waiting for the reclaim thread to signal it.
4138  *
4139  *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4140  *    fails, and goes to sleep forever.
4141  *
4142  * This possible deadlock is avoided by always acquiring a hash lock
4143  * using mutex_tryenter() from arc_reclaim_thread().
4144  */
4145 /* ARGSUSED */
4146 static void
4147 arc_reclaim_thread(void *unused)
4148 {
4149         hrtime_t                growtime = 0;
4150         hrtime_t                kmem_reap_time = 0;
4151         callb_cpr_t             cpr;
4152 
4153         CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4154 
4155         mutex_enter(&arc_reclaim_lock);
4156         while (!arc_reclaim_thread_exit) {
4157                 uint64_t evicted = 0;
4158 
4159                 /*
4160                  * This is necessary in order for the mdb ::arc dcmd to
4161                  * show up to date information. Since the ::arc command
4162                  * does not call the kstat's update function, without
4163                  * this call, the command may show stale stats for the
4164                  * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4165                  * with this change, the data might be up to 1 second
4166                  * out of date; but that should suffice. The arc_state_t
4167                  * structures can be queried directly if more accurate
4168                  * information is needed.
4169                  */
4170                 if (arc_ksp != NULL)
4171                         arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4172 
4173                 mutex_exit(&arc_reclaim_lock);
4174 
4175                 /*
4176                  * We call arc_adjust() before (possibly) calling
4177                  * arc_kmem_reap_now(), so that we can wake up
4178                  * arc_get_data_impl() sooner.
4179                  */
4180                 evicted = arc_adjust();
4181 
4182                 int64_t free_memory = arc_available_memory();
4183                 if (free_memory < 0) {
4184                         hrtime_t curtime = gethrtime();
4185                         arc_no_grow = B_TRUE;
4186                         arc_warm = B_TRUE;
4187 
4188                         /*
4189                          * Wait at least zfs_grow_retry (default 60) seconds
4190                          * before considering growing.
4191                          */
4192                         growtime = curtime + SEC2NSEC(arc_grow_retry);
4193 
4194                         /*
4195                          * Wait at least arc_kmem_cache_reap_retry_ms
4196                          * between arc_kmem_reap_now() calls. Without
4197                          * this check it is possible to end up in a
4198                          * situation where we spend lots of time
4199                          * reaping caches, while we're near arc_c_min.
4200                          */
4201                         if (curtime >= kmem_reap_time) {
4202                                 arc_kmem_reap_now();
4203                                 kmem_reap_time = gethrtime() +
4204                                     MSEC2NSEC(arc_kmem_cache_reap_retry_ms);
4205                         }
4206 
4207                         /*
4208                          * If we are still low on memory, shrink the ARC
4209                          * so that we have arc_shrink_min free space.
4210                          */
4211                         free_memory = arc_available_memory();
4212 
4213                         int64_t to_free =
4214                             (arc_c >> arc_shrink_shift) - free_memory;
4215                         if (to_free > 0) {
4216 #ifdef _KERNEL
4217                                 to_free = MAX(to_free, ptob(needfree));
4218 #endif
4219                                 arc_shrink(to_free);
4220                         }
4221                 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4222                         arc_no_grow = B_TRUE;
4223                 } else if (gethrtime() >= growtime) {
4224                         arc_no_grow = B_FALSE;
4225                 }
4226 
4227                 mutex_enter(&arc_reclaim_lock);
4228 
4229                 /*
4230                  * If evicted is zero, we couldn't evict anything via
4231                  * arc_adjust(). This could be due to hash lock
4232                  * collisions, but more likely due to the majority of
4233                  * arc buffers being unevictable. Therefore, even if
4234                  * arc_size is above arc_c, another pass is unlikely to
4235                  * be helpful and could potentially cause us to enter an
4236                  * infinite loop.
4237                  */
4238                 if (aggsum_compare(&arc_size, arc_c) <= 0|| evicted == 0) {
4239                         /*
4240                          * We're either no longer overflowing, or we
4241                          * can't evict anything more, so we should wake
4242                          * up any threads before we go to sleep.
4243                          */
4244                         cv_broadcast(&arc_reclaim_waiters_cv);
4245 
4246                         /*
4247                          * Block until signaled, or after one second (we
4248                          * might need to perform arc_kmem_reap_now()
4249                          * even if we aren't being signalled)
4250                          */
4251                         CALLB_CPR_SAFE_BEGIN(&cpr);
4252                         (void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4253                             &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4254                         CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4255                 }
4256         }
4257 
4258         arc_reclaim_thread_exit = B_FALSE;
4259         cv_broadcast(&arc_reclaim_thread_cv);
4260         CALLB_CPR_EXIT(&cpr);               /* drops arc_reclaim_lock */
4261         thread_exit();
4262 }
4263 
4264 /*
4265  * Adapt arc info given the number of bytes we are trying to add and
4266  * the state that we are comming from.  This function is only called
4267  * when we are adding new content to the cache.
4268  */
4269 static void
4270 arc_adapt(int bytes, arc_state_t *state)
4271 {
4272         int mult;
4273         uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4274         int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4275         int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4276 
4277         if (state == arc_l2c_only)
4278                 return;
4279 
4280         ASSERT(bytes > 0);
4281         /*
4282          * Adapt the target size of the MRU list:
4283          *      - if we just hit in the MRU ghost list, then increase
4284          *        the target size of the MRU list.
4285          *      - if we just hit in the MFU ghost list, then increase
4286          *        the target size of the MFU list by decreasing the
4287          *        target size of the MRU list.
4288          */
4289         if (state == arc_mru_ghost) {
4290                 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4291                 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4292 
4293                 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4294         } else if (state == arc_mfu_ghost) {
4295                 uint64_t delta;
4296 
4297                 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4298                 mult = MIN(mult, 10);
4299 
4300                 delta = MIN(bytes * mult, arc_p);
4301                 arc_p = MAX(arc_p_min, arc_p - delta);
4302         }
4303         ASSERT((int64_t)arc_p >= 0);
4304 
4305         if (arc_reclaim_needed()) {
4306                 cv_signal(&arc_reclaim_thread_cv);
4307                 return;
4308         }
4309 
4310         if (arc_no_grow)
4311                 return;
4312 
4313         if (arc_c >= arc_c_max)
4314                 return;
4315 
4316         /*
4317          * If we're within (2 * maxblocksize) bytes of the target
4318          * cache size, increment the target cache size
4319          */
4320         if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4321             0) {
4322                 atomic_add_64(&arc_c, (int64_t)bytes);
4323                 if (arc_c > arc_c_max)
4324                         arc_c = arc_c_max;
4325                 else if (state == arc_anon)
4326                         atomic_add_64(&arc_p, (int64_t)bytes);
4327                 if (arc_p > arc_c)
4328                         arc_p = arc_c;
4329         }
4330         ASSERT((int64_t)arc_p >= 0);
4331 }
4332 
4333 /*
4334  * Check if arc_size has grown past our upper threshold, determined by
4335  * zfs_arc_overflow_shift.
4336  */
4337 static boolean_t
4338 arc_is_overflowing(void)
4339 {
4340         /* Always allow at least one block of overflow */
4341         uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4342             arc_c >> zfs_arc_overflow_shift);
4343 
4344         /*
4345          * We just compare the lower bound here for performance reasons. Our
4346          * primary goals are to make sure that the arc never grows without
4347          * bound, and that it can reach its maximum size. This check
4348          * accomplishes both goals. The maximum amount we could run over by is
4349          * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4350          * in the ARC. In practice, that's in the tens of MB, which is low
4351          * enough to be safe.
4352          */
4353         return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4354 }
4355 
4356 static abd_t *
4357 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4358 {
4359         arc_buf_contents_t type = arc_buf_type(hdr);
4360 
4361         arc_get_data_impl(hdr, size, tag);
4362         if (type == ARC_BUFC_METADATA) {
4363                 return (abd_alloc(size, B_TRUE));
4364         } else {
4365                 ASSERT(type == ARC_BUFC_DATA);
4366                 return (abd_alloc(size, B_FALSE));
4367         }
4368 }
4369 
4370 static void *
4371 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4372 {
4373         arc_buf_contents_t type = arc_buf_type(hdr);
4374 
4375         arc_get_data_impl(hdr, size, tag);
4376         if (type == ARC_BUFC_METADATA) {
4377                 return (zio_buf_alloc(size));
4378         } else {
4379                 ASSERT(type == ARC_BUFC_DATA);
4380                 return (zio_data_buf_alloc(size));
4381         }
4382 }
4383 
4384 /*
4385  * Allocate a block and return it to the caller. If we are hitting the
4386  * hard limit for the cache size, we must sleep, waiting for the eviction
4387  * thread to catch up. If we're past the target size but below the hard
4388  * limit, we'll only signal the reclaim thread and continue on.
4389  */
4390 static void
4391 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4392 {
4393         arc_state_t *state = hdr->b_l1hdr.b_state;
4394         arc_buf_contents_t type = arc_buf_type(hdr);
4395 
4396         arc_adapt(size, state);
4397 
4398         /*
4399          * If arc_size is currently overflowing, and has grown past our
4400          * upper limit, we must be adding data faster than the evict
4401          * thread can evict. Thus, to ensure we don't compound the
4402          * problem by adding more data and forcing arc_size to grow even
4403          * further past it's target size, we halt and wait for the
4404          * eviction thread to catch up.
4405          *
4406          * It's also possible that the reclaim thread is unable to evict
4407          * enough buffers to get arc_size below the overflow limit (e.g.
4408          * due to buffers being un-evictable, or hash lock collisions).
4409          * In this case, we want to proceed regardless if we're
4410          * overflowing; thus we don't use a while loop here.
4411          */
4412         if (arc_is_overflowing()) {
4413                 mutex_enter(&arc_reclaim_lock);
4414 
4415                 /*
4416                  * Now that we've acquired the lock, we may no longer be
4417                  * over the overflow limit, lets check.
4418                  *
4419                  * We're ignoring the case of spurious wake ups. If that
4420                  * were to happen, it'd let this thread consume an ARC
4421                  * buffer before it should have (i.e. before we're under
4422                  * the overflow limit and were signalled by the reclaim
4423                  * thread). As long as that is a rare occurrence, it
4424                  * shouldn't cause any harm.
4425                  */
4426                 if (arc_is_overflowing()) {
4427                         cv_signal(&arc_reclaim_thread_cv);
4428                         cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4429                 }
4430 
4431                 mutex_exit(&arc_reclaim_lock);
4432         }
4433 
4434         VERIFY3U(hdr->b_type, ==, type);
4435         if (type == ARC_BUFC_METADATA) {
4436                 arc_space_consume(size, ARC_SPACE_META);
4437         } else {
4438                 arc_space_consume(size, ARC_SPACE_DATA);
4439         }
4440 
4441         /*
4442          * Update the state size.  Note that ghost states have a
4443          * "ghost size" and so don't need to be updated.
4444          */
4445         if (!GHOST_STATE(state)) {
4446 
4447                 (void) refcount_add_many(&state->arcs_size, size, tag);
4448 
4449                 /*
4450                  * If this is reached via arc_read, the link is
4451                  * protected by the hash lock. If reached via
4452                  * arc_buf_alloc, the header should not be accessed by
4453                  * any other thread. And, if reached via arc_read_done,
4454                  * the hash lock will protect it if it's found in the
4455                  * hash table; otherwise no other thread should be
4456                  * trying to [add|remove]_reference it.
4457                  */
4458                 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4459                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4460                         (void) refcount_add_many(&state->arcs_esize[type],
4461                             size, tag);
4462                 }
4463 
4464                 /*
4465                  * If we are growing the cache, and we are adding anonymous
4466                  * data, and we have outgrown arc_p, update arc_p
4467                  */
4468                 if (aggsum_compare(&arc_size, arc_c) < 0 &&
4469                     hdr->b_l1hdr.b_state == arc_anon &&
4470                     (refcount_count(&arc_anon->arcs_size) +
4471                     refcount_count(&arc_mru->arcs_size) > arc_p))
4472                         arc_p = MIN(arc_c, arc_p + size);
4473         }
4474 }
4475 
4476 static void
4477 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4478 {
4479         arc_free_data_impl(hdr, size, tag);
4480         abd_free(abd);
4481 }
4482 
4483 static void
4484 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4485 {
4486         arc_buf_contents_t type = arc_buf_type(hdr);
4487 
4488         arc_free_data_impl(hdr, size, tag);
4489         if (type == ARC_BUFC_METADATA) {
4490                 zio_buf_free(buf, size);
4491         } else {
4492                 ASSERT(type == ARC_BUFC_DATA);
4493                 zio_data_buf_free(buf, size);
4494         }
4495 }
4496 
4497 /*
4498  * Free the arc data buffer.
4499  */
4500 static void
4501 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4502 {
4503         arc_state_t *state = hdr->b_l1hdr.b_state;
4504         arc_buf_contents_t type = arc_buf_type(hdr);
4505 
4506         /* protected by hash lock, if in the hash table */
4507         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4508                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4509                 ASSERT(state != arc_anon && state != arc_l2c_only);
4510 
4511                 (void) refcount_remove_many(&state->arcs_esize[type],
4512                     size, tag);
4513         }
4514         (void) refcount_remove_many(&state->arcs_size, size, tag);
4515 
4516         VERIFY3U(hdr->b_type, ==, type);
4517         if (type == ARC_BUFC_METADATA) {
4518                 arc_space_return(size, ARC_SPACE_META);
4519         } else {
4520                 ASSERT(type == ARC_BUFC_DATA);
4521                 arc_space_return(size, ARC_SPACE_DATA);
4522         }
4523 }
4524 
4525 /*
4526  * This routine is called whenever a buffer is accessed.
4527  * NOTE: the hash lock is dropped in this function.
4528  */
4529 static void
4530 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4531 {
4532         clock_t now;
4533 
4534         ASSERT(MUTEX_HELD(hash_lock));
4535         ASSERT(HDR_HAS_L1HDR(hdr));
4536 
4537         if (hdr->b_l1hdr.b_state == arc_anon) {
4538                 /*
4539                  * This buffer is not in the cache, and does not
4540                  * appear in our "ghost" list.  Add the new buffer
4541                  * to the MRU state.
4542                  */
4543 
4544                 ASSERT0(hdr->b_l1hdr.b_arc_access);
4545                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4546                 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4547                 arc_change_state(arc_mru, hdr, hash_lock);
4548 
4549         } else if (hdr->b_l1hdr.b_state == arc_mru) {
4550                 now = ddi_get_lbolt();
4551 
4552                 /*
4553                  * If this buffer is here because of a prefetch, then either:
4554                  * - clear the flag if this is a "referencing" read
4555                  *   (any subsequent access will bump this into the MFU state).
4556                  * or
4557                  * - move the buffer to the head of the list if this is
4558                  *   another prefetch (to make it less likely to be evicted).
4559                  */
4560                 if (HDR_PREFETCH(hdr)) {
4561                         if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4562                                 /* link protected by hash lock */
4563                                 ASSERT(multilist_link_active(
4564                                     &hdr->b_l1hdr.b_arc_node));
4565                         } else {
4566                                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4567                                 ARCSTAT_BUMP(arcstat_mru_hits);
4568                         }
4569                         hdr->b_l1hdr.b_arc_access = now;
4570                         return;
4571                 }
4572 
4573                 /*
4574                  * This buffer has been "accessed" only once so far,
4575                  * but it is still in the cache. Move it to the MFU
4576                  * state.
4577                  */
4578                 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4579                         /*
4580                          * More than 125ms have passed since we
4581                          * instantiated this buffer.  Move it to the
4582                          * most frequently used state.
4583                          */
4584                         hdr->b_l1hdr.b_arc_access = now;
4585                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4586                         arc_change_state(arc_mfu, hdr, hash_lock);
4587                 }
4588                 ARCSTAT_BUMP(arcstat_mru_hits);
4589         } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4590                 arc_state_t     *new_state;
4591                 /*
4592                  * This buffer has been "accessed" recently, but
4593                  * was evicted from the cache.  Move it to the
4594                  * MFU state.
4595                  */
4596 
4597                 if (HDR_PREFETCH(hdr)) {
4598                         new_state = arc_mru;
4599                         if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4600                                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4601                         DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4602                 } else {
4603                         new_state = arc_mfu;
4604                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4605                 }
4606 
4607                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4608                 arc_change_state(new_state, hdr, hash_lock);
4609 
4610                 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4611         } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4612                 /*
4613                  * This buffer has been accessed more than once and is
4614                  * still in the cache.  Keep it in the MFU state.
4615                  *
4616                  * NOTE: an add_reference() that occurred when we did
4617                  * the arc_read() will have kicked this off the list.
4618                  * If it was a prefetch, we will explicitly move it to
4619                  * the head of the list now.
4620                  */
4621                 if ((HDR_PREFETCH(hdr)) != 0) {
4622                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4623                         /* link protected by hash_lock */
4624                         ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4625                 }
4626                 ARCSTAT_BUMP(arcstat_mfu_hits);
4627                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4628         } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4629                 arc_state_t     *new_state = arc_mfu;
4630                 /*
4631                  * This buffer has been accessed more than once but has
4632                  * been evicted from the cache.  Move it back to the
4633                  * MFU state.
4634                  */
4635 
4636                 if (HDR_PREFETCH(hdr)) {
4637                         /*
4638                          * This is a prefetch access...
4639                          * move this block back to the MRU state.
4640                          */
4641                         ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4642                         new_state = arc_mru;
4643                 }
4644 
4645                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4646                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4647                 arc_change_state(new_state, hdr, hash_lock);
4648 
4649                 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4650         } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4651                 /*
4652                  * This buffer is on the 2nd Level ARC.
4653                  */
4654 
4655                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4656                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4657                 arc_change_state(arc_mfu, hdr, hash_lock);
4658         } else {
4659                 ASSERT(!"invalid arc state");
4660         }
4661 }
4662 
4663 /* a generic arc_done_func_t which you can use */
4664 /* ARGSUSED */
4665 void
4666 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4667 {
4668         if (zio == NULL || zio->io_error == 0)
4669                 bcopy(buf->b_data, arg, arc_buf_size(buf));
4670         arc_buf_destroy(buf, arg);
4671 }
4672 
4673 /* a generic arc_done_func_t */
4674 void
4675 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4676 {
4677         arc_buf_t **bufp = arg;
4678         if (zio && zio->io_error) {
4679                 arc_buf_destroy(buf, arg);
4680                 *bufp = NULL;
4681         } else {
4682                 *bufp = buf;
4683                 ASSERT(buf->b_data);
4684         }
4685 }
4686 
4687 static void
4688 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4689 {
4690         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4691                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4692                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4693         } else {
4694                 if (HDR_COMPRESSION_ENABLED(hdr)) {
4695                         ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4696                             BP_GET_COMPRESS(bp));
4697                 }
4698                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4699                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4700         }
4701 }
4702 
4703 static void
4704 arc_read_done(zio_t *zio)
4705 {
4706         arc_buf_hdr_t   *hdr = zio->io_private;
4707         kmutex_t        *hash_lock = NULL;
4708         arc_callback_t  *callback_list;
4709         arc_callback_t  *acb;
4710         boolean_t       freeable = B_FALSE;
4711         boolean_t       no_zio_error = (zio->io_error == 0);
4712 
4713         /*
4714          * The hdr was inserted into hash-table and removed from lists
4715          * prior to starting I/O.  We should find this header, since
4716          * it's in the hash table, and it should be legit since it's
4717          * not possible to evict it during the I/O.  The only possible
4718          * reason for it not to be found is if we were freed during the
4719          * read.
4720          */
4721         if (HDR_IN_HASH_TABLE(hdr)) {
4722                 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4723                 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4724                     BP_IDENTITY(zio->io_bp)->dva_word[0]);
4725                 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4726                     BP_IDENTITY(zio->io_bp)->dva_word[1]);
4727 
4728                 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4729                     &hash_lock);
4730 
4731                 ASSERT((found == hdr &&
4732                     DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4733                     (found == hdr && HDR_L2_READING(hdr)));
4734                 ASSERT3P(hash_lock, !=, NULL);
4735         }
4736 
4737         if (no_zio_error) {
4738                 /* byteswap if necessary */
4739                 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4740                         if (BP_GET_LEVEL(zio->io_bp) > 0) {
4741                                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4742                         } else {
4743                                 hdr->b_l1hdr.b_byteswap =
4744                                     DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4745                         }
4746                 } else {
4747                         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4748                 }
4749         }
4750 
4751         arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4752         if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4753                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4754 
4755         callback_list = hdr->b_l1hdr.b_acb;
4756         ASSERT3P(callback_list, !=, NULL);
4757 
4758         if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4759                 /*
4760                  * Only call arc_access on anonymous buffers.  This is because
4761                  * if we've issued an I/O for an evicted buffer, we've already
4762                  * called arc_access (to prevent any simultaneous readers from
4763                  * getting confused).
4764                  */
4765                 arc_access(hdr, hash_lock);
4766         }
4767 
4768         /*
4769          * If a read request has a callback (i.e. acb_done is not NULL), then we
4770          * make a buf containing the data according to the parameters which were
4771          * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4772          * aren't needlessly decompressing the data multiple times.
4773          */
4774         int callback_cnt = 0;
4775         for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4776                 if (!acb->acb_done)
4777                         continue;
4778 
4779                 /* This is a demand read since prefetches don't use callbacks */
4780                 callback_cnt++;
4781 
4782                 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4783                     acb->acb_compressed, no_zio_error, &acb->acb_buf);
4784                 if (no_zio_error) {
4785                         zio->io_error = error;
4786                 }
4787         }
4788         hdr->b_l1hdr.b_acb = NULL;
4789         arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4790         if (callback_cnt == 0) {
4791                 ASSERT(HDR_PREFETCH(hdr));
4792                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
4793                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4794         }
4795 
4796         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4797             callback_list != NULL);
4798 
4799         if (no_zio_error) {
4800                 arc_hdr_verify(hdr, zio->io_bp);
4801         } else {
4802                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4803                 if (hdr->b_l1hdr.b_state != arc_anon)
4804                         arc_change_state(arc_anon, hdr, hash_lock);
4805                 if (HDR_IN_HASH_TABLE(hdr))
4806                         buf_hash_remove(hdr);
4807                 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4808         }
4809 
4810         /*
4811          * Broadcast before we drop the hash_lock to avoid the possibility
4812          * that the hdr (and hence the cv) might be freed before we get to
4813          * the cv_broadcast().
4814          */
4815         cv_broadcast(&hdr->b_l1hdr.b_cv);
4816 
4817         if (hash_lock != NULL) {
4818                 mutex_exit(hash_lock);
4819         } else {
4820                 /*
4821                  * This block was freed while we waited for the read to
4822                  * complete.  It has been removed from the hash table and
4823                  * moved to the anonymous state (so that it won't show up
4824                  * in the cache).
4825                  */
4826                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4827                 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4828         }
4829 
4830         /* execute each callback and free its structure */
4831         while ((acb = callback_list) != NULL) {
4832                 if (acb->acb_done)
4833                         acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4834 
4835                 if (acb->acb_zio_dummy != NULL) {
4836                         acb->acb_zio_dummy->io_error = zio->io_error;
4837                         zio_nowait(acb->acb_zio_dummy);
4838                 }
4839 
4840                 callback_list = acb->acb_next;
4841                 kmem_free(acb, sizeof (arc_callback_t));
4842         }
4843 
4844         if (freeable)
4845                 arc_hdr_destroy(hdr);
4846 }
4847 
4848 /*
4849  * "Read" the block at the specified DVA (in bp) via the
4850  * cache.  If the block is found in the cache, invoke the provided
4851  * callback immediately and return.  Note that the `zio' parameter
4852  * in the callback will be NULL in this case, since no IO was
4853  * required.  If the block is not in the cache pass the read request
4854  * on to the spa with a substitute callback function, so that the
4855  * requested block will be added to the cache.
4856  *
4857  * If a read request arrives for a block that has a read in-progress,
4858  * either wait for the in-progress read to complete (and return the
4859  * results); or, if this is a read with a "done" func, add a record
4860  * to the read to invoke the "done" func when the read completes,
4861  * and return; or just return.
4862  *
4863  * arc_read_done() will invoke all the requested "done" functions
4864  * for readers of this block.
4865  */
4866 int
4867 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4868     void *private, zio_priority_t priority, int zio_flags,
4869     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4870 {
4871         arc_buf_hdr_t *hdr = NULL;
4872         kmutex_t *hash_lock = NULL;
4873         zio_t *rzio;
4874         uint64_t guid = spa_load_guid(spa);
4875         boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4876 
4877         ASSERT(!BP_IS_EMBEDDED(bp) ||
4878             BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4879 
4880 top:
4881         if (!BP_IS_EMBEDDED(bp)) {
4882                 /*
4883                  * Embedded BP's have no DVA and require no I/O to "read".
4884                  * Create an anonymous arc buf to back it.
4885                  */
4886                 hdr = buf_hash_find(guid, bp, &hash_lock);
4887         }
4888 
4889         if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
4890                 arc_buf_t *buf = NULL;
4891                 *arc_flags |= ARC_FLAG_CACHED;
4892 
4893                 if (HDR_IO_IN_PROGRESS(hdr)) {
4894 
4895                         if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4896                             priority == ZIO_PRIORITY_SYNC_READ) {
4897                                 /*
4898                                  * This sync read must wait for an
4899                                  * in-progress async read (e.g. a predictive
4900                                  * prefetch).  Async reads are queued
4901                                  * separately at the vdev_queue layer, so
4902                                  * this is a form of priority inversion.
4903                                  * Ideally, we would "inherit" the demand
4904                                  * i/o's priority by moving the i/o from
4905                                  * the async queue to the synchronous queue,
4906                                  * but there is currently no mechanism to do
4907                                  * so.  Track this so that we can evaluate
4908                                  * the magnitude of this potential performance
4909                                  * problem.
4910                                  *
4911                                  * Note that if the prefetch i/o is already
4912                                  * active (has been issued to the device),
4913                                  * the prefetch improved performance, because
4914                                  * we issued it sooner than we would have
4915                                  * without the prefetch.
4916                                  */
4917                                 DTRACE_PROBE1(arc__sync__wait__for__async,
4918                                     arc_buf_hdr_t *, hdr);
4919                                 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4920                         }
4921                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4922                                 arc_hdr_clear_flags(hdr,
4923                                     ARC_FLAG_PREDICTIVE_PREFETCH);
4924                         }
4925 
4926                         if (*arc_flags & ARC_FLAG_WAIT) {
4927                                 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4928                                 mutex_exit(hash_lock);
4929                                 goto top;
4930                         }
4931                         ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4932 
4933                         if (done) {
4934                                 arc_callback_t *acb = NULL;
4935 
4936                                 acb = kmem_zalloc(sizeof (arc_callback_t),
4937                                     KM_SLEEP);
4938                                 acb->acb_done = done;
4939                                 acb->acb_private = private;
4940                                 acb->acb_compressed = compressed_read;
4941                                 if (pio != NULL)
4942                                         acb->acb_zio_dummy = zio_null(pio,
4943                                             spa, NULL, NULL, NULL, zio_flags);
4944 
4945                                 ASSERT3P(acb->acb_done, !=, NULL);
4946                                 acb->acb_next = hdr->b_l1hdr.b_acb;
4947                                 hdr->b_l1hdr.b_acb = acb;
4948                                 mutex_exit(hash_lock);
4949                                 return (0);
4950                         }
4951                         mutex_exit(hash_lock);
4952                         return (0);
4953                 }
4954 
4955                 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4956                     hdr->b_l1hdr.b_state == arc_mfu);
4957 
4958                 if (done) {
4959                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4960                                 /*
4961                                  * This is a demand read which does not have to
4962                                  * wait for i/o because we did a predictive
4963                                  * prefetch i/o for it, which has completed.
4964                                  */
4965                                 DTRACE_PROBE1(
4966                                     arc__demand__hit__predictive__prefetch,
4967                                     arc_buf_hdr_t *, hdr);
4968                                 ARCSTAT_BUMP(
4969                                     arcstat_demand_hit_predictive_prefetch);
4970                                 arc_hdr_clear_flags(hdr,
4971                                     ARC_FLAG_PREDICTIVE_PREFETCH);
4972                         }
4973                         ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4974 
4975                         /* Get a buf with the desired data in it. */
4976                         VERIFY0(arc_buf_alloc_impl(hdr, private,
4977                             compressed_read, B_TRUE, &buf));
4978                 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4979                     refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4980                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4981                 }
4982                 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4983                 arc_access(hdr, hash_lock);
4984                 if (*arc_flags & ARC_FLAG_L2CACHE)
4985                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4986                 mutex_exit(hash_lock);
4987                 ARCSTAT_BUMP(arcstat_hits);
4988                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4989                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4990                     data, metadata, hits);
4991 
4992                 if (done)
4993                         done(NULL, buf, private);
4994         } else {
4995                 uint64_t lsize = BP_GET_LSIZE(bp);
4996                 uint64_t psize = BP_GET_PSIZE(bp);
4997                 arc_callback_t *acb;
4998                 vdev_t *vd = NULL;
4999                 uint64_t addr = 0;
5000                 boolean_t devw = B_FALSE;
5001                 uint64_t size;
5002 
5003                 if (hdr == NULL) {
5004                         /* this block is not in the cache */
5005                         arc_buf_hdr_t *exists = NULL;
5006                         arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5007                         hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5008                             BP_GET_COMPRESS(bp), type);
5009 
5010                         if (!BP_IS_EMBEDDED(bp)) {
5011                                 hdr->b_dva = *BP_IDENTITY(bp);
5012                                 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5013                                 exists = buf_hash_insert(hdr, &hash_lock);
5014                         }
5015                         if (exists != NULL) {
5016                                 /* somebody beat us to the hash insert */
5017                                 mutex_exit(hash_lock);
5018                                 buf_discard_identity(hdr);
5019                                 arc_hdr_destroy(hdr);
5020                                 goto top; /* restart the IO request */
5021                         }
5022                 } else {
5023                         /*
5024                          * This block is in the ghost cache. If it was L2-only
5025                          * (and thus didn't have an L1 hdr), we realloc the
5026                          * header to add an L1 hdr.
5027                          */
5028                         if (!HDR_HAS_L1HDR(hdr)) {
5029                                 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5030                                     hdr_full_cache);
5031                         }
5032                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5033                         ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5034                         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5035                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5036                         ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5037                         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5038 
5039                         /*
5040                          * This is a delicate dance that we play here.
5041                          * This hdr is in the ghost list so we access it
5042                          * to move it out of the ghost list before we
5043                          * initiate the read. If it's a prefetch then
5044                          * it won't have a callback so we'll remove the
5045                          * reference that arc_buf_alloc_impl() created. We
5046                          * do this after we've called arc_access() to
5047                          * avoid hitting an assert in remove_reference().
5048                          */
5049                         arc_access(hdr, hash_lock);
5050                         arc_hdr_alloc_pabd(hdr);
5051                 }
5052                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5053                 size = arc_hdr_size(hdr);
5054 
5055                 /*
5056                  * If compression is enabled on the hdr, then will do
5057                  * RAW I/O and will store the compressed data in the hdr's
5058                  * data block. Otherwise, the hdr's data block will contain
5059                  * the uncompressed data.
5060                  */
5061                 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5062                         zio_flags |= ZIO_FLAG_RAW;
5063                 }
5064 
5065                 if (*arc_flags & ARC_FLAG_PREFETCH)
5066                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5067                 if (*arc_flags & ARC_FLAG_L2CACHE)
5068                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5069                 if (BP_GET_LEVEL(bp) > 0)
5070                         arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5071                 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5072                         arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5073                 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5074 
5075                 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5076                 acb->acb_done = done;
5077                 acb->acb_private = private;
5078                 acb->acb_compressed = compressed_read;
5079 
5080                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5081                 hdr->b_l1hdr.b_acb = acb;
5082                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5083 
5084                 if (HDR_HAS_L2HDR(hdr) &&
5085                     (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5086                         devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5087                         addr = hdr->b_l2hdr.b_daddr;
5088                         /*
5089                          * Lock out L2ARC device removal.
5090                          */
5091                         if (vdev_is_dead(vd) ||
5092                             !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5093                                 vd = NULL;
5094                 }
5095 
5096                 if (priority == ZIO_PRIORITY_ASYNC_READ)
5097                         arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5098                 else
5099                         arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5100 
5101                 if (hash_lock != NULL)
5102                         mutex_exit(hash_lock);
5103 
5104                 /*
5105                  * At this point, we have a level 1 cache miss.  Try again in
5106                  * L2ARC if possible.
5107                  */
5108                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5109 
5110                 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5111                     uint64_t, lsize, zbookmark_phys_t *, zb);
5112                 ARCSTAT_BUMP(arcstat_misses);
5113                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5114                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5115                     data, metadata, misses);
5116 
5117                 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5118                         /*
5119                          * Read from the L2ARC if the following are true:
5120                          * 1. The L2ARC vdev was previously cached.
5121                          * 2. This buffer still has L2ARC metadata.
5122                          * 3. This buffer isn't currently writing to the L2ARC.
5123                          * 4. The L2ARC entry wasn't evicted, which may
5124                          *    also have invalidated the vdev.
5125                          * 5. This isn't prefetch and l2arc_noprefetch is set.
5126                          */
5127                         if (HDR_HAS_L2HDR(hdr) &&
5128                             !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5129                             !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5130                                 l2arc_read_callback_t *cb;
5131                                 abd_t *abd;
5132                                 uint64_t asize;
5133 
5134                                 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5135                                 ARCSTAT_BUMP(arcstat_l2_hits);
5136 
5137                                 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5138                                     KM_SLEEP);
5139                                 cb->l2rcb_hdr = hdr;
5140                                 cb->l2rcb_bp = *bp;
5141                                 cb->l2rcb_zb = *zb;
5142                                 cb->l2rcb_flags = zio_flags;
5143 
5144                                 asize = vdev_psize_to_asize(vd, size);
5145                                 if (asize != size) {
5146                                         abd = abd_alloc_for_io(asize,
5147                                             HDR_ISTYPE_METADATA(hdr));
5148                                         cb->l2rcb_abd = abd;
5149                                 } else {
5150                                         abd = hdr->b_l1hdr.b_pabd;
5151                                 }
5152 
5153                                 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5154                                     addr + asize <= vd->vdev_psize -
5155                                     VDEV_LABEL_END_SIZE);
5156 
5157                                 /*
5158                                  * l2arc read.  The SCL_L2ARC lock will be
5159                                  * released by l2arc_read_done().
5160                                  * Issue a null zio if the underlying buffer
5161                                  * was squashed to zero size by compression.
5162                                  */
5163                                 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5164                                     ZIO_COMPRESS_EMPTY);
5165                                 rzio = zio_read_phys(pio, vd, addr,
5166                                     asize, abd,
5167                                     ZIO_CHECKSUM_OFF,
5168                                     l2arc_read_done, cb, priority,
5169                                     zio_flags | ZIO_FLAG_DONT_CACHE |
5170                                     ZIO_FLAG_CANFAIL |
5171                                     ZIO_FLAG_DONT_PROPAGATE |
5172                                     ZIO_FLAG_DONT_RETRY, B_FALSE);
5173                                 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5174                                     zio_t *, rzio);
5175                                 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5176 
5177                                 if (*arc_flags & ARC_FLAG_NOWAIT) {
5178                                         zio_nowait(rzio);
5179                                         return (0);
5180                                 }
5181 
5182                                 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5183                                 if (zio_wait(rzio) == 0)
5184                                         return (0);
5185 
5186                                 /* l2arc read error; goto zio_read() */
5187                         } else {
5188                                 DTRACE_PROBE1(l2arc__miss,
5189                                     arc_buf_hdr_t *, hdr);
5190                                 ARCSTAT_BUMP(arcstat_l2_misses);
5191                                 if (HDR_L2_WRITING(hdr))
5192                                         ARCSTAT_BUMP(arcstat_l2_rw_clash);
5193                                 spa_config_exit(spa, SCL_L2ARC, vd);
5194                         }
5195                 } else {
5196                         if (vd != NULL)
5197                                 spa_config_exit(spa, SCL_L2ARC, vd);
5198                         if (l2arc_ndev != 0) {
5199                                 DTRACE_PROBE1(l2arc__miss,
5200                                     arc_buf_hdr_t *, hdr);
5201                                 ARCSTAT_BUMP(arcstat_l2_misses);
5202                         }
5203                 }
5204 
5205                 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5206                     arc_read_done, hdr, priority, zio_flags, zb);
5207 
5208                 if (*arc_flags & ARC_FLAG_WAIT)
5209                         return (zio_wait(rzio));
5210 
5211                 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5212                 zio_nowait(rzio);
5213         }
5214         return (0);
5215 }
5216 
5217 /*
5218  * Notify the arc that a block was freed, and thus will never be used again.
5219  */
5220 void
5221 arc_freed(spa_t *spa, const blkptr_t *bp)
5222 {
5223         arc_buf_hdr_t *hdr;
5224         kmutex_t *hash_lock;
5225         uint64_t guid = spa_load_guid(spa);
5226 
5227         ASSERT(!BP_IS_EMBEDDED(bp));
5228 
5229         hdr = buf_hash_find(guid, bp, &hash_lock);
5230         if (hdr == NULL)
5231                 return;
5232 
5233         /*
5234          * We might be trying to free a block that is still doing I/O
5235          * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5236          * dmu_sync-ed block). If this block is being prefetched, then it
5237          * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5238          * until the I/O completes. A block may also have a reference if it is
5239          * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5240          * have written the new block to its final resting place on disk but
5241          * without the dedup flag set. This would have left the hdr in the MRU
5242          * state and discoverable. When the txg finally syncs it detects that
5243          * the block was overridden in open context and issues an override I/O.
5244          * Since this is a dedup block, the override I/O will determine if the
5245          * block is already in the DDT. If so, then it will replace the io_bp
5246          * with the bp from the DDT and allow the I/O to finish. When the I/O
5247          * reaches the done callback, dbuf_write_override_done, it will
5248          * check to see if the io_bp and io_bp_override are identical.
5249          * If they are not, then it indicates that the bp was replaced with
5250          * the bp in the DDT and the override bp is freed. This allows
5251          * us to arrive here with a reference on a block that is being
5252          * freed. So if we have an I/O in progress, or a reference to
5253          * this hdr, then we don't destroy the hdr.
5254          */
5255         if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5256             refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5257                 arc_change_state(arc_anon, hdr, hash_lock);
5258                 arc_hdr_destroy(hdr);
5259                 mutex_exit(hash_lock);
5260         } else {
5261                 mutex_exit(hash_lock);
5262         }
5263 
5264 }
5265 
5266 /*
5267  * Release this buffer from the cache, making it an anonymous buffer.  This
5268  * must be done after a read and prior to modifying the buffer contents.
5269  * If the buffer has more than one reference, we must make
5270  * a new hdr for the buffer.
5271  */
5272 void
5273 arc_release(arc_buf_t *buf, void *tag)
5274 {
5275         arc_buf_hdr_t *hdr = buf->b_hdr;
5276 
5277         /*
5278          * It would be nice to assert that if it's DMU metadata (level >
5279          * 0 || it's the dnode file), then it must be syncing context.
5280          * But we don't know that information at this level.
5281          */
5282 
5283         mutex_enter(&buf->b_evict_lock);
5284 
5285         ASSERT(HDR_HAS_L1HDR(hdr));
5286 
5287         /*
5288          * We don't grab the hash lock prior to this check, because if
5289          * the buffer's header is in the arc_anon state, it won't be
5290          * linked into the hash table.
5291          */
5292         if (hdr->b_l1hdr.b_state == arc_anon) {
5293                 mutex_exit(&buf->b_evict_lock);
5294                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5295                 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5296                 ASSERT(!HDR_HAS_L2HDR(hdr));
5297                 ASSERT(HDR_EMPTY(hdr));
5298 
5299                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5300                 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5301                 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5302 
5303                 hdr->b_l1hdr.b_arc_access = 0;
5304 
5305                 /*
5306                  * If the buf is being overridden then it may already
5307                  * have a hdr that is not empty.
5308                  */
5309                 buf_discard_identity(hdr);
5310                 arc_buf_thaw(buf);
5311 
5312                 return;
5313         }
5314 
5315         kmutex_t *hash_lock = HDR_LOCK(hdr);
5316         mutex_enter(hash_lock);
5317 
5318         /*
5319          * This assignment is only valid as long as the hash_lock is
5320          * held, we must be careful not to reference state or the
5321          * b_state field after dropping the lock.
5322          */
5323         arc_state_t *state = hdr->b_l1hdr.b_state;
5324         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5325         ASSERT3P(state, !=, arc_anon);
5326 
5327         /* this buffer is not on any list */
5328         ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5329 
5330         if (HDR_HAS_L2HDR(hdr)) {
5331                 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5332 
5333                 /*
5334                  * We have to recheck this conditional again now that
5335                  * we're holding the l2ad_mtx to prevent a race with
5336                  * another thread which might be concurrently calling
5337                  * l2arc_evict(). In that case, l2arc_evict() might have
5338                  * destroyed the header's L2 portion as we were waiting
5339                  * to acquire the l2ad_mtx.
5340                  */
5341                 if (HDR_HAS_L2HDR(hdr))
5342                         arc_hdr_l2hdr_destroy(hdr);
5343 
5344                 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5345         }
5346 
5347         /*
5348          * Do we have more than one buf?
5349          */
5350         if (hdr->b_l1hdr.b_bufcnt > 1) {
5351                 arc_buf_hdr_t *nhdr;
5352                 uint64_t spa = hdr->b_spa;
5353                 uint64_t psize = HDR_GET_PSIZE(hdr);
5354                 uint64_t lsize = HDR_GET_LSIZE(hdr);
5355                 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5356                 arc_buf_contents_t type = arc_buf_type(hdr);
5357                 VERIFY3U(hdr->b_type, ==, type);
5358 
5359                 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5360                 (void) remove_reference(hdr, hash_lock, tag);
5361 
5362                 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5363                         ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5364                         ASSERT(ARC_BUF_LAST(buf));
5365                 }
5366 
5367                 /*
5368                  * Pull the data off of this hdr and attach it to
5369                  * a new anonymous hdr. Also find the last buffer
5370                  * in the hdr's buffer list.
5371                  */
5372                 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5373                 ASSERT3P(lastbuf, !=, NULL);
5374 
5375                 /*
5376                  * If the current arc_buf_t and the hdr are sharing their data
5377                  * buffer, then we must stop sharing that block.
5378                  */
5379                 if (arc_buf_is_shared(buf)) {
5380                         VERIFY(!arc_buf_is_shared(lastbuf));
5381 
5382                         /*
5383                          * First, sever the block sharing relationship between
5384                          * buf and the arc_buf_hdr_t.
5385                          */
5386                         arc_unshare_buf(hdr, buf);
5387 
5388                         /*
5389                          * Now we need to recreate the hdr's b_pabd. Since we
5390                          * have lastbuf handy, we try to share with it, but if
5391                          * we can't then we allocate a new b_pabd and copy the
5392                          * data from buf into it.
5393                          */
5394                         if (arc_can_share(hdr, lastbuf)) {
5395                                 arc_share_buf(hdr, lastbuf);
5396                         } else {
5397                                 arc_hdr_alloc_pabd(hdr);
5398                                 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5399                                     buf->b_data, psize);
5400                         }
5401                         VERIFY3P(lastbuf->b_data, !=, NULL);
5402                 } else if (HDR_SHARED_DATA(hdr)) {
5403                         /*
5404                          * Uncompressed shared buffers are always at the end
5405                          * of the list. Compressed buffers don't have the
5406                          * same requirements. This makes it hard to
5407                          * simply assert that the lastbuf is shared so
5408                          * we rely on the hdr's compression flags to determine
5409                          * if we have a compressed, shared buffer.
5410                          */
5411                         ASSERT(arc_buf_is_shared(lastbuf) ||
5412                             HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5413                         ASSERT(!ARC_BUF_SHARED(buf));
5414                 }
5415                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5416                 ASSERT3P(state, !=, arc_l2c_only);
5417 
5418                 (void) refcount_remove_many(&state->arcs_size,
5419                     arc_buf_size(buf), buf);
5420 
5421                 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5422                         ASSERT3P(state, !=, arc_l2c_only);
5423                         (void) refcount_remove_many(&state->arcs_esize[type],
5424                             arc_buf_size(buf), buf);
5425                 }
5426 
5427                 hdr->b_l1hdr.b_bufcnt -= 1;
5428                 arc_cksum_verify(buf);
5429                 arc_buf_unwatch(buf);
5430 
5431                 mutex_exit(hash_lock);
5432 
5433                 /*
5434                  * Allocate a new hdr. The new hdr will contain a b_pabd
5435                  * buffer which will be freed in arc_write().
5436                  */
5437                 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5438                 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5439                 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5440                 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5441                 VERIFY3U(nhdr->b_type, ==, type);
5442                 ASSERT(!HDR_SHARED_DATA(nhdr));
5443 
5444                 nhdr->b_l1hdr.b_buf = buf;
5445                 nhdr->b_l1hdr.b_bufcnt = 1;
5446                 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5447                 buf->b_hdr = nhdr;
5448 
5449                 mutex_exit(&buf->b_evict_lock);
5450                 (void) refcount_add_many(&arc_anon->arcs_size,
5451                     arc_buf_size(buf), buf);
5452         } else {
5453                 mutex_exit(&buf->b_evict_lock);
5454                 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5455                 /* protected by hash lock, or hdr is on arc_anon */
5456                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5457                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5458                 arc_change_state(arc_anon, hdr, hash_lock);
5459                 hdr->b_l1hdr.b_arc_access = 0;
5460                 mutex_exit(hash_lock);
5461 
5462                 buf_discard_identity(hdr);
5463                 arc_buf_thaw(buf);
5464         }
5465 }
5466 
5467 int
5468 arc_released(arc_buf_t *buf)
5469 {
5470         int released;
5471 
5472         mutex_enter(&buf->b_evict_lock);
5473         released = (buf->b_data != NULL &&
5474             buf->b_hdr->b_l1hdr.b_state == arc_anon);
5475         mutex_exit(&buf->b_evict_lock);
5476         return (released);
5477 }
5478 
5479 #ifdef ZFS_DEBUG
5480 int
5481 arc_referenced(arc_buf_t *buf)
5482 {
5483         int referenced;
5484 
5485         mutex_enter(&buf->b_evict_lock);
5486         referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5487         mutex_exit(&buf->b_evict_lock);
5488         return (referenced);
5489 }
5490 #endif
5491 
5492 static void
5493 arc_write_ready(zio_t *zio)
5494 {
5495         arc_write_callback_t *callback = zio->io_private;
5496         arc_buf_t *buf = callback->awcb_buf;
5497         arc_buf_hdr_t *hdr = buf->b_hdr;
5498         uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5499 
5500         ASSERT(HDR_HAS_L1HDR(hdr));
5501         ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5502         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5503 
5504         /*
5505          * If we're reexecuting this zio because the pool suspended, then
5506          * cleanup any state that was previously set the first time the
5507          * callback was invoked.
5508          */
5509         if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5510                 arc_cksum_free(hdr);
5511                 arc_buf_unwatch(buf);
5512                 if (hdr->b_l1hdr.b_pabd != NULL) {
5513                         if (arc_buf_is_shared(buf)) {
5514                                 arc_unshare_buf(hdr, buf);
5515                         } else {
5516                                 arc_hdr_free_pabd(hdr);
5517                         }
5518                 }
5519         }
5520         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5521         ASSERT(!HDR_SHARED_DATA(hdr));
5522         ASSERT(!arc_buf_is_shared(buf));
5523 
5524         callback->awcb_ready(zio, buf, callback->awcb_private);
5525 
5526         if (HDR_IO_IN_PROGRESS(hdr))
5527                 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5528 
5529         arc_cksum_compute(buf);
5530         arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5531 
5532         enum zio_compress compress;
5533         if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5534                 compress = ZIO_COMPRESS_OFF;
5535         } else {
5536                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5537                 compress = BP_GET_COMPRESS(zio->io_bp);
5538         }
5539         HDR_SET_PSIZE(hdr, psize);
5540         arc_hdr_set_compress(hdr, compress);
5541 
5542 
5543         /*
5544          * Fill the hdr with data. If the hdr is compressed, the data we want
5545          * is available from the zio, otherwise we can take it from the buf.
5546          *
5547          * We might be able to share the buf's data with the hdr here. However,
5548          * doing so would cause the ARC to be full of linear ABDs if we write a
5549          * lot of shareable data. As a compromise, we check whether scattered
5550          * ABDs are allowed, and assume that if they are then the user wants
5551          * the ARC to be primarily filled with them regardless of the data being
5552          * written. Therefore, if they're allowed then we allocate one and copy
5553          * the data into it; otherwise, we share the data directly if we can.
5554          */
5555         if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5556                 arc_hdr_alloc_pabd(hdr);
5557 
5558                 /*
5559                  * Ideally, we would always copy the io_abd into b_pabd, but the
5560                  * user may have disabled compressed ARC, thus we must check the
5561                  * hdr's compression setting rather than the io_bp's.
5562                  */
5563                 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5564                         ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5565                             ZIO_COMPRESS_OFF);
5566                         ASSERT3U(psize, >, 0);
5567 
5568                         abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5569                 } else {
5570                         ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5571 
5572                         abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5573                             arc_buf_size(buf));
5574                 }
5575         } else {
5576                 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5577                 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5578                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5579 
5580                 arc_share_buf(hdr, buf);
5581         }
5582 
5583         arc_hdr_verify(hdr, zio->io_bp);
5584 }
5585 
5586 static void
5587 arc_write_children_ready(zio_t *zio)
5588 {
5589         arc_write_callback_t *callback = zio->io_private;
5590         arc_buf_t *buf = callback->awcb_buf;
5591 
5592         callback->awcb_children_ready(zio, buf, callback->awcb_private);
5593 }
5594 
5595 /*
5596  * The SPA calls this callback for each physical write that happens on behalf
5597  * of a logical write.  See the comment in dbuf_write_physdone() for details.
5598  */
5599 static void
5600 arc_write_physdone(zio_t *zio)
5601 {
5602         arc_write_callback_t *cb = zio->io_private;
5603         if (cb->awcb_physdone != NULL)
5604                 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5605 }
5606 
5607 static void
5608 arc_write_done(zio_t *zio)
5609 {
5610         arc_write_callback_t *callback = zio->io_private;
5611         arc_buf_t *buf = callback->awcb_buf;
5612         arc_buf_hdr_t *hdr = buf->b_hdr;
5613 
5614         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5615 
5616         if (zio->io_error == 0) {
5617                 arc_hdr_verify(hdr, zio->io_bp);
5618 
5619                 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5620                         buf_discard_identity(hdr);
5621                 } else {
5622                         hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5623                         hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5624                 }
5625         } else {
5626                 ASSERT(HDR_EMPTY(hdr));
5627         }
5628 
5629         /*
5630          * If the block to be written was all-zero or compressed enough to be
5631          * embedded in the BP, no write was performed so there will be no
5632          * dva/birth/checksum.  The buffer must therefore remain anonymous
5633          * (and uncached).
5634          */
5635         if (!HDR_EMPTY(hdr)) {
5636                 arc_buf_hdr_t *exists;
5637                 kmutex_t *hash_lock;
5638 
5639                 ASSERT3U(zio->io_error, ==, 0);
5640 
5641                 arc_cksum_verify(buf);
5642 
5643                 exists = buf_hash_insert(hdr, &hash_lock);
5644                 if (exists != NULL) {
5645                         /*
5646                          * This can only happen if we overwrite for
5647                          * sync-to-convergence, because we remove
5648                          * buffers from the hash table when we arc_free().
5649                          */
5650                         if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5651                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5652                                         panic("bad overwrite, hdr=%p exists=%p",
5653                                             (void *)hdr, (void *)exists);
5654                                 ASSERT(refcount_is_zero(
5655                                     &exists->b_l1hdr.b_refcnt));
5656                                 arc_change_state(arc_anon, exists, hash_lock);
5657                                 mutex_exit(hash_lock);
5658                                 arc_hdr_destroy(exists);
5659                                 exists = buf_hash_insert(hdr, &hash_lock);
5660                                 ASSERT3P(exists, ==, NULL);
5661                         } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5662                                 /* nopwrite */
5663                                 ASSERT(zio->io_prop.zp_nopwrite);
5664                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5665                                         panic("bad nopwrite, hdr=%p exists=%p",
5666                                             (void *)hdr, (void *)exists);
5667                         } else {
5668                                 /* Dedup */
5669                                 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5670                                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5671                                 ASSERT(BP_GET_DEDUP(zio->io_bp));
5672                                 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5673                         }
5674                 }
5675                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5676                 /* if it's not anon, we are doing a scrub */
5677                 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5678                         arc_access(hdr, hash_lock);
5679                 mutex_exit(hash_lock);
5680         } else {
5681                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5682         }
5683 
5684         ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5685         callback->awcb_done(zio, buf, callback->awcb_private);
5686 
5687         abd_put(zio->io_abd);
5688         kmem_free(callback, sizeof (arc_write_callback_t));
5689 }
5690 
5691 zio_t *
5692 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5693     boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5694     arc_done_func_t *children_ready, arc_done_func_t *physdone,
5695     arc_done_func_t *done, void *private, zio_priority_t priority,
5696     int zio_flags, const zbookmark_phys_t *zb)
5697 {
5698         arc_buf_hdr_t *hdr = buf->b_hdr;
5699         arc_write_callback_t *callback;
5700         zio_t *zio;
5701         zio_prop_t localprop = *zp;
5702 
5703         ASSERT3P(ready, !=, NULL);
5704         ASSERT3P(done, !=, NULL);
5705         ASSERT(!HDR_IO_ERROR(hdr));
5706         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5707         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5708         ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5709         if (l2arc)
5710                 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5711         if (ARC_BUF_COMPRESSED(buf)) {
5712                 /*
5713                  * We're writing a pre-compressed buffer.  Make the
5714                  * compression algorithm requested by the zio_prop_t match
5715                  * the pre-compressed buffer's compression algorithm.
5716                  */
5717                 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5718 
5719                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5720                 zio_flags |= ZIO_FLAG_RAW;
5721         }
5722         callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5723         callback->awcb_ready = ready;
5724         callback->awcb_children_ready = children_ready;
5725         callback->awcb_physdone = physdone;
5726         callback->awcb_done = done;
5727         callback->awcb_private = private;
5728         callback->awcb_buf = buf;
5729 
5730         /*
5731          * The hdr's b_pabd is now stale, free it now. A new data block
5732          * will be allocated when the zio pipeline calls arc_write_ready().
5733          */
5734         if (hdr->b_l1hdr.b_pabd != NULL) {
5735                 /*
5736                  * If the buf is currently sharing the data block with
5737                  * the hdr then we need to break that relationship here.
5738                  * The hdr will remain with a NULL data pointer and the
5739                  * buf will take sole ownership of the block.
5740                  */
5741                 if (arc_buf_is_shared(buf)) {
5742                         arc_unshare_buf(hdr, buf);
5743                 } else {
5744                         arc_hdr_free_pabd(hdr);
5745                 }
5746                 VERIFY3P(buf->b_data, !=, NULL);
5747                 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5748         }
5749         ASSERT(!arc_buf_is_shared(buf));
5750         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5751 
5752         zio = zio_write(pio, spa, txg, bp,
5753             abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5754             HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5755             (children_ready != NULL) ? arc_write_children_ready : NULL,
5756             arc_write_physdone, arc_write_done, callback,
5757             priority, zio_flags, zb);
5758 
5759         return (zio);
5760 }
5761 
5762 static int
5763 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5764 {
5765 #ifdef _KERNEL
5766         uint64_t available_memory = ptob(freemem);
5767         static uint64_t page_load = 0;
5768         static uint64_t last_txg = 0;
5769 
5770 #if defined(__i386)
5771         available_memory =
5772             MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5773 #endif
5774 
5775         if (freemem > physmem * arc_lotsfree_percent / 100)
5776                 return (0);
5777 
5778         if (txg > last_txg) {
5779                 last_txg = txg;
5780                 page_load = 0;
5781         }
5782         /*
5783          * If we are in pageout, we know that memory is already tight,
5784          * the arc is already going to be evicting, so we just want to
5785          * continue to let page writes occur as quickly as possible.
5786          */
5787         if (curproc == proc_pageout) {
5788                 if (page_load > MAX(ptob(minfree), available_memory) / 4)
5789                         return (SET_ERROR(ERESTART));
5790                 /* Note: reserve is inflated, so we deflate */
5791                 page_load += reserve / 8;
5792                 return (0);
5793         } else if (page_load > 0 && arc_reclaim_needed()) {
5794                 /* memory is low, delay before restarting */
5795                 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5796                 return (SET_ERROR(EAGAIN));
5797         }
5798         page_load = 0;
5799 #endif
5800         return (0);
5801 }
5802 
5803 void
5804 arc_tempreserve_clear(uint64_t reserve)
5805 {
5806         atomic_add_64(&arc_tempreserve, -reserve);
5807         ASSERT((int64_t)arc_tempreserve >= 0);
5808 }
5809 
5810 int
5811 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5812 {
5813         int error;
5814         uint64_t anon_size;
5815 
5816         if (reserve > arc_c/4 && !arc_no_grow)
5817                 arc_c = MIN(arc_c_max, reserve * 4);
5818         if (reserve > arc_c)
5819                 return (SET_ERROR(ENOMEM));
5820 
5821         /*
5822          * Don't count loaned bufs as in flight dirty data to prevent long
5823          * network delays from blocking transactions that are ready to be
5824          * assigned to a txg.
5825          */
5826 
5827         /* assert that it has not wrapped around */
5828         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
5829 
5830         anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5831             arc_loaned_bytes), 0);
5832 
5833         /*
5834          * Writes will, almost always, require additional memory allocations
5835          * in order to compress/encrypt/etc the data.  We therefore need to
5836          * make sure that there is sufficient available memory for this.
5837          */
5838         error = arc_memory_throttle(reserve, txg);
5839         if (error != 0)
5840                 return (error);
5841 
5842         /*
5843          * Throttle writes when the amount of dirty data in the cache
5844          * gets too large.  We try to keep the cache less than half full
5845          * of dirty blocks so that our sync times don't grow too large.
5846          * Note: if two requests come in concurrently, we might let them
5847          * both succeed, when one of them should fail.  Not a huge deal.
5848          */
5849 
5850         if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5851             anon_size > arc_c / 4) {
5852                 uint64_t meta_esize =
5853                     refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5854                 uint64_t data_esize =
5855                     refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5856                 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5857                     "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5858                     arc_tempreserve >> 10, meta_esize >> 10,
5859                     data_esize >> 10, reserve >> 10, arc_c >> 10);
5860                 return (SET_ERROR(ERESTART));
5861         }
5862         atomic_add_64(&arc_tempreserve, reserve);
5863         return (0);
5864 }
5865 
5866 static void
5867 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5868     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5869 {
5870         size->value.ui64 = refcount_count(&state->arcs_size);
5871         evict_data->value.ui64 =
5872             refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5873         evict_metadata->value.ui64 =
5874             refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5875 }
5876 
5877 static int
5878 arc_kstat_update(kstat_t *ksp, int rw)
5879 {
5880         arc_stats_t *as = ksp->ks_data;
5881 
5882         if (rw == KSTAT_WRITE) {
5883                 return (EACCES);
5884         } else {
5885                 arc_kstat_update_state(arc_anon,
5886                     &as->arcstat_anon_size,
5887                     &as->arcstat_anon_evictable_data,
5888                     &as->arcstat_anon_evictable_metadata);
5889                 arc_kstat_update_state(arc_mru,
5890                     &as->arcstat_mru_size,
5891                     &as->arcstat_mru_evictable_data,
5892                     &as->arcstat_mru_evictable_metadata);
5893                 arc_kstat_update_state(arc_mru_ghost,
5894                     &as->arcstat_mru_ghost_size,
5895                     &as->arcstat_mru_ghost_evictable_data,
5896                     &as->arcstat_mru_ghost_evictable_metadata);
5897                 arc_kstat_update_state(arc_mfu,
5898                     &as->arcstat_mfu_size,
5899                     &as->arcstat_mfu_evictable_data,
5900                     &as->arcstat_mfu_evictable_metadata);
5901                 arc_kstat_update_state(arc_mfu_ghost,
5902                     &as->arcstat_mfu_ghost_size,
5903                     &as->arcstat_mfu_ghost_evictable_data,
5904                     &as->arcstat_mfu_ghost_evictable_metadata);
5905 
5906                 ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
5907                 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
5908                 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
5909                 ARCSTAT(arcstat_metadata_size) =
5910                     aggsum_value(&astat_metadata_size);
5911                 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
5912                 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
5913                 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
5914         }
5915 
5916         return (0);
5917 }
5918 
5919 /*
5920  * This function *must* return indices evenly distributed between all
5921  * sublists of the multilist. This is needed due to how the ARC eviction
5922  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5923  * distributed between all sublists and uses this assumption when
5924  * deciding which sublist to evict from and how much to evict from it.
5925  */
5926 unsigned int
5927 arc_state_multilist_index_func(multilist_t *ml, void *obj)
5928 {
5929         arc_buf_hdr_t *hdr = obj;
5930 
5931         /*
5932          * We rely on b_dva to generate evenly distributed index
5933          * numbers using buf_hash below. So, as an added precaution,
5934          * let's make sure we never add empty buffers to the arc lists.
5935          */
5936         ASSERT(!HDR_EMPTY(hdr));
5937 
5938         /*
5939          * The assumption here, is the hash value for a given
5940          * arc_buf_hdr_t will remain constant throughout it's lifetime
5941          * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5942          * Thus, we don't need to store the header's sublist index
5943          * on insertion, as this index can be recalculated on removal.
5944          *
5945          * Also, the low order bits of the hash value are thought to be
5946          * distributed evenly. Otherwise, in the case that the multilist
5947          * has a power of two number of sublists, each sublists' usage
5948          * would not be evenly distributed.
5949          */
5950         return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5951             multilist_get_num_sublists(ml));
5952 }
5953 
5954 static void
5955 arc_state_init(void)
5956 {
5957         arc_anon = &ARC_anon;
5958         arc_mru = &ARC_mru;
5959         arc_mru_ghost = &ARC_mru_ghost;
5960         arc_mfu = &ARC_mfu;
5961         arc_mfu_ghost = &ARC_mfu_ghost;
5962         arc_l2c_only = &ARC_l2c_only;
5963 
5964         arc_mru->arcs_list[ARC_BUFC_METADATA] =
5965             multilist_create(sizeof (arc_buf_hdr_t),
5966             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5967             arc_state_multilist_index_func);
5968         arc_mru->arcs_list[ARC_BUFC_DATA] =
5969             multilist_create(sizeof (arc_buf_hdr_t),
5970             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5971             arc_state_multilist_index_func);
5972         arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
5973             multilist_create(sizeof (arc_buf_hdr_t),
5974             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5975             arc_state_multilist_index_func);
5976         arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
5977             multilist_create(sizeof (arc_buf_hdr_t),
5978             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5979             arc_state_multilist_index_func);
5980         arc_mfu->arcs_list[ARC_BUFC_METADATA] =
5981             multilist_create(sizeof (arc_buf_hdr_t),
5982             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5983             arc_state_multilist_index_func);
5984         arc_mfu->arcs_list[ARC_BUFC_DATA] =
5985             multilist_create(sizeof (arc_buf_hdr_t),
5986             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5987             arc_state_multilist_index_func);
5988         arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
5989             multilist_create(sizeof (arc_buf_hdr_t),
5990             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5991             arc_state_multilist_index_func);
5992         arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
5993             multilist_create(sizeof (arc_buf_hdr_t),
5994             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5995             arc_state_multilist_index_func);
5996         arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
5997             multilist_create(sizeof (arc_buf_hdr_t),
5998             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5999             arc_state_multilist_index_func);
6000         arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6001             multilist_create(sizeof (arc_buf_hdr_t),
6002             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6003             arc_state_multilist_index_func);
6004 
6005         refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6006         refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6007         refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6008         refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6009         refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6010         refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6011         refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6012         refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6013         refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6014         refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6015         refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6016         refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6017 
6018         refcount_create(&arc_anon->arcs_size);
6019         refcount_create(&arc_mru->arcs_size);
6020         refcount_create(&arc_mru_ghost->arcs_size);
6021         refcount_create(&arc_mfu->arcs_size);
6022         refcount_create(&arc_mfu_ghost->arcs_size);
6023         refcount_create(&arc_l2c_only->arcs_size);
6024 
6025         aggsum_init(&arc_meta_used, 0);
6026         aggsum_init(&arc_size, 0);
6027         aggsum_init(&astat_data_size, 0);
6028         aggsum_init(&astat_metadata_size, 0);
6029         aggsum_init(&astat_hdr_size, 0);
6030         aggsum_init(&astat_other_size, 0);
6031         aggsum_init(&astat_l2_hdr_size, 0);
6032 }
6033 
6034 static void
6035 arc_state_fini(void)
6036 {
6037         refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6038         refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6039         refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6040         refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6041         refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6042         refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6043         refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6044         refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6045         refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6046         refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6047         refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6048         refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6049 
6050         refcount_destroy(&arc_anon->arcs_size);
6051         refcount_destroy(&arc_mru->arcs_size);
6052         refcount_destroy(&arc_mru_ghost->arcs_size);
6053         refcount_destroy(&arc_mfu->arcs_size);
6054         refcount_destroy(&arc_mfu_ghost->arcs_size);
6055         refcount_destroy(&arc_l2c_only->arcs_size);
6056 
6057         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6058         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6059         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6060         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6061         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6062         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6063         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6064         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6065 }
6066 
6067 uint64_t
6068 arc_max_bytes(void)
6069 {
6070         return (arc_c_max);
6071 }
6072 
6073 void
6074 arc_init(void)
6075 {
6076         /*
6077          * allmem is "all memory that we could possibly use".
6078          */
6079 #ifdef _KERNEL
6080         uint64_t allmem = ptob(physmem - swapfs_minfree);
6081 #else
6082         uint64_t allmem = (physmem * PAGESIZE) / 2;
6083 #endif
6084 
6085         mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6086         cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6087         cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6088 
6089         /* Convert seconds to clock ticks */
6090         arc_min_prefetch_lifespan = 1 * hz;
6091 
6092         /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
6093         arc_c_min = MAX(allmem / 32, 64 << 20);
6094         /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6095         if (allmem >= 1 << 30)
6096                 arc_c_max = allmem - (1 << 30);
6097         else
6098                 arc_c_max = arc_c_min;
6099         arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6100 
6101         /*
6102          * In userland, there's only the memory pressure that we artificially
6103          * create (see arc_available_memory()).  Don't let arc_c get too
6104          * small, because it can cause transactions to be larger than
6105          * arc_c, causing arc_tempreserve_space() to fail.
6106          */
6107 #ifndef _KERNEL
6108         arc_c_min = arc_c_max / 2;
6109 #endif
6110 
6111         /*
6112          * Allow the tunables to override our calculations if they are
6113          * reasonable (ie. over 64MB)
6114          */
6115         if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6116                 arc_c_max = zfs_arc_max;
6117                 arc_c_min = MIN(arc_c_min, arc_c_max);
6118         }
6119         if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6120                 arc_c_min = zfs_arc_min;
6121 
6122         arc_c = arc_c_max;
6123         arc_p = (arc_c >> 1);
6124 
6125         /* limit meta-data to 1/4 of the arc capacity */
6126         arc_meta_limit = arc_c_max / 4;
6127 
6128 #ifdef _KERNEL
6129         /*
6130          * Metadata is stored in the kernel's heap.  Don't let us
6131          * use more than half the heap for the ARC.
6132          */
6133         arc_meta_limit = MIN(arc_meta_limit,
6134             vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6135 #endif
6136 
6137         /* Allow the tunable to override if it is reasonable */
6138         if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6139                 arc_meta_limit = zfs_arc_meta_limit;
6140 
6141         if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6142                 arc_c_min = arc_meta_limit / 2;
6143 
6144         if (zfs_arc_meta_min > 0) {
6145                 arc_meta_min = zfs_arc_meta_min;
6146         } else {
6147                 arc_meta_min = arc_c_min / 2;
6148         }
6149 
6150         if (zfs_arc_grow_retry > 0)
6151                 arc_grow_retry = zfs_arc_grow_retry;
6152 
6153         if (zfs_arc_shrink_shift > 0)
6154                 arc_shrink_shift = zfs_arc_shrink_shift;
6155 
6156         /*
6157          * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6158          */
6159         if (arc_no_grow_shift >= arc_shrink_shift)
6160                 arc_no_grow_shift = arc_shrink_shift - 1;
6161 
6162         if (zfs_arc_p_min_shift > 0)
6163                 arc_p_min_shift = zfs_arc_p_min_shift;
6164 
6165         /* if kmem_flags are set, lets try to use less memory */
6166         if (kmem_debugging())
6167                 arc_c = arc_c / 2;
6168         if (arc_c < arc_c_min)
6169                 arc_c = arc_c_min;
6170 
6171         arc_state_init();
6172         buf_init();
6173 
6174         arc_reclaim_thread_exit = B_FALSE;
6175 
6176         arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6177             sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6178 
6179         if (arc_ksp != NULL) {
6180                 arc_ksp->ks_data = &arc_stats;
6181                 arc_ksp->ks_update = arc_kstat_update;
6182                 kstat_install(arc_ksp);
6183         }
6184 
6185         (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6186             TS_RUN, minclsyspri);
6187 
6188         arc_dead = B_FALSE;
6189         arc_warm = B_FALSE;
6190 
6191         /*
6192          * Calculate maximum amount of dirty data per pool.
6193          *
6194          * If it has been set by /etc/system, take that.
6195          * Otherwise, use a percentage of physical memory defined by
6196          * zfs_dirty_data_max_percent (default 10%) with a cap at
6197          * zfs_dirty_data_max_max (default 4GB).
6198          */
6199         if (zfs_dirty_data_max == 0) {
6200                 zfs_dirty_data_max = physmem * PAGESIZE *
6201                     zfs_dirty_data_max_percent / 100;
6202                 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6203                     zfs_dirty_data_max_max);
6204         }
6205 }
6206 
6207 void
6208 arc_fini(void)
6209 {
6210         mutex_enter(&arc_reclaim_lock);
6211         arc_reclaim_thread_exit = B_TRUE;
6212         /*
6213          * The reclaim thread will set arc_reclaim_thread_exit back to
6214          * B_FALSE when it is finished exiting; we're waiting for that.
6215          */
6216         while (arc_reclaim_thread_exit) {
6217                 cv_signal(&arc_reclaim_thread_cv);
6218                 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6219         }
6220         mutex_exit(&arc_reclaim_lock);
6221 
6222         /* Use B_TRUE to ensure *all* buffers are evicted */
6223         arc_flush(NULL, B_TRUE);
6224 
6225         arc_dead = B_TRUE;
6226 
6227         if (arc_ksp != NULL) {
6228                 kstat_delete(arc_ksp);
6229                 arc_ksp = NULL;
6230         }
6231 
6232         mutex_destroy(&arc_reclaim_lock);
6233         cv_destroy(&arc_reclaim_thread_cv);
6234         cv_destroy(&arc_reclaim_waiters_cv);
6235 
6236         arc_state_fini();
6237         buf_fini();
6238 
6239         ASSERT0(arc_loaned_bytes);
6240 }
6241 
6242 /*
6243  * Level 2 ARC
6244  *
6245  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6246  * It uses dedicated storage devices to hold cached data, which are populated
6247  * using large infrequent writes.  The main role of this cache is to boost
6248  * the performance of random read workloads.  The intended L2ARC devices
6249  * include short-stroked disks, solid state disks, and other media with
6250  * substantially faster read latency than disk.
6251  *
6252  *                 +-----------------------+
6253  *                 |         ARC           |
6254  *                 +-----------------------+
6255  *                    |         ^     ^
6256  *                    |         |     |
6257  *      l2arc_feed_thread()    arc_read()
6258  *                    |         |     |
6259  *                    |  l2arc read   |
6260  *                    V         |     |
6261  *               +---------------+    |
6262  *               |     L2ARC     |    |
6263  *               +---------------+    |
6264  *                   |    ^           |
6265  *          l2arc_write() |           |
6266  *                   |    |           |
6267  *                   V    |           |
6268  *                 +-------+      +-------+
6269  *                 | vdev  |      | vdev  |
6270  *                 | cache |      | cache |
6271  *                 +-------+      +-------+
6272  *                 +=========+     .-----.
6273  *                 :  L2ARC  :    |-_____-|
6274  *                 : devices :    | Disks |
6275  *                 +=========+    `-_____-'
6276  *
6277  * Read requests are satisfied from the following sources, in order:
6278  *
6279  *      1) ARC
6280  *      2) vdev cache of L2ARC devices
6281  *      3) L2ARC devices
6282  *      4) vdev cache of disks
6283  *      5) disks
6284  *
6285  * Some L2ARC device types exhibit extremely slow write performance.
6286  * To accommodate for this there are some significant differences between
6287  * the L2ARC and traditional cache design:
6288  *
6289  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6290  * the ARC behave as usual, freeing buffers and placing headers on ghost
6291  * lists.  The ARC does not send buffers to the L2ARC during eviction as
6292  * this would add inflated write latencies for all ARC memory pressure.
6293  *
6294  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6295  * It does this by periodically scanning buffers from the eviction-end of
6296  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6297  * not already there. It scans until a headroom of buffers is satisfied,
6298  * which itself is a buffer for ARC eviction. If a compressible buffer is
6299  * found during scanning and selected for writing to an L2ARC device, we
6300  * temporarily boost scanning headroom during the next scan cycle to make
6301  * sure we adapt to compression effects (which might significantly reduce
6302  * the data volume we write to L2ARC). The thread that does this is
6303  * l2arc_feed_thread(), illustrated below; example sizes are included to
6304  * provide a better sense of ratio than this diagram:
6305  *
6306  *             head -->                        tail
6307  *              +---------------------+----------+
6308  *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6309  *              +---------------------+----------+   |   o L2ARC eligible
6310  *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6311  *              +---------------------+----------+   |
6312  *                   15.9 Gbytes      ^ 32 Mbytes    |
6313  *                                 headroom          |
6314  *                                            l2arc_feed_thread()
6315  *                                                   |
6316  *                       l2arc write hand <--[oooo]--'
6317  *                               |           8 Mbyte
6318  *                               |          write max
6319  *                               V
6320  *                +==============================+
6321  *      L2ARC dev |####|#|###|###|    |####| ... |
6322  *                +==============================+
6323  *                           32 Gbytes
6324  *
6325  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6326  * evicted, then the L2ARC has cached a buffer much sooner than it probably
6327  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6328  * safe to say that this is an uncommon case, since buffers at the end of
6329  * the ARC lists have moved there due to inactivity.
6330  *
6331  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6332  * then the L2ARC simply misses copying some buffers.  This serves as a
6333  * pressure valve to prevent heavy read workloads from both stalling the ARC
6334  * with waits and clogging the L2ARC with writes.  This also helps prevent
6335  * the potential for the L2ARC to churn if it attempts to cache content too
6336  * quickly, such as during backups of the entire pool.
6337  *
6338  * 5. After system boot and before the ARC has filled main memory, there are
6339  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6340  * lists can remain mostly static.  Instead of searching from tail of these
6341  * lists as pictured, the l2arc_feed_thread() will search from the list heads
6342  * for eligible buffers, greatly increasing its chance of finding them.
6343  *
6344  * The L2ARC device write speed is also boosted during this time so that
6345  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6346  * there are no L2ARC reads, and no fear of degrading read performance
6347  * through increased writes.
6348  *
6349  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6350  * the vdev queue can aggregate them into larger and fewer writes.  Each
6351  * device is written to in a rotor fashion, sweeping writes through
6352  * available space then repeating.
6353  *
6354  * 7. The L2ARC does not store dirty content.  It never needs to flush
6355  * write buffers back to disk based storage.
6356  *
6357  * 8. If an ARC buffer is written (and dirtied) which also exists in the
6358  * L2ARC, the now stale L2ARC buffer is immediately dropped.
6359  *
6360  * The performance of the L2ARC can be tweaked by a number of tunables, which
6361  * may be necessary for different workloads:
6362  *
6363  *      l2arc_write_max         max write bytes per interval
6364  *      l2arc_write_boost       extra write bytes during device warmup
6365  *      l2arc_noprefetch        skip caching prefetched buffers
6366  *      l2arc_headroom          number of max device writes to precache
6367  *      l2arc_headroom_boost    when we find compressed buffers during ARC
6368  *                              scanning, we multiply headroom by this
6369  *                              percentage factor for the next scan cycle,
6370  *                              since more compressed buffers are likely to
6371  *                              be present
6372  *      l2arc_feed_secs         seconds between L2ARC writing
6373  *
6374  * Tunables may be removed or added as future performance improvements are
6375  * integrated, and also may become zpool properties.
6376  *
6377  * There are three key functions that control how the L2ARC warms up:
6378  *
6379  *      l2arc_write_eligible()  check if a buffer is eligible to cache
6380  *      l2arc_write_size()      calculate how much to write
6381  *      l2arc_write_interval()  calculate sleep delay between writes
6382  *
6383  * These three functions determine what to write, how much, and how quickly
6384  * to send writes.
6385  */
6386 
6387 static boolean_t
6388 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6389 {
6390         /*
6391          * A buffer is *not* eligible for the L2ARC if it:
6392          * 1. belongs to a different spa.
6393          * 2. is already cached on the L2ARC.
6394          * 3. has an I/O in progress (it may be an incomplete read).
6395          * 4. is flagged not eligible (zfs property).
6396          */
6397         if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6398             HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6399                 return (B_FALSE);
6400 
6401         return (B_TRUE);
6402 }
6403 
6404 static uint64_t
6405 l2arc_write_size(void)
6406 {
6407         uint64_t size;
6408 
6409         /*
6410          * Make sure our globals have meaningful values in case the user
6411          * altered them.
6412          */
6413         size = l2arc_write_max;
6414         if (size == 0) {
6415                 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6416                     "be greater than zero, resetting it to the default (%d)",
6417                     L2ARC_WRITE_SIZE);
6418                 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6419         }
6420 
6421         if (arc_warm == B_FALSE)
6422                 size += l2arc_write_boost;
6423 
6424         return (size);
6425 
6426 }
6427 
6428 static clock_t
6429 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6430 {
6431         clock_t interval, next, now;
6432 
6433         /*
6434          * If the ARC lists are busy, increase our write rate; if the
6435          * lists are stale, idle back.  This is achieved by checking
6436          * how much we previously wrote - if it was more than half of
6437          * what we wanted, schedule the next write much sooner.
6438          */
6439         if (l2arc_feed_again && wrote > (wanted / 2))
6440                 interval = (hz * l2arc_feed_min_ms) / 1000;
6441         else
6442                 interval = hz * l2arc_feed_secs;
6443 
6444         now = ddi_get_lbolt();
6445         next = MAX(now, MIN(now + interval, began + interval));
6446 
6447         return (next);
6448 }
6449 
6450 /*
6451  * Cycle through L2ARC devices.  This is how L2ARC load balances.
6452  * If a device is returned, this also returns holding the spa config lock.
6453  */
6454 static l2arc_dev_t *
6455 l2arc_dev_get_next(void)
6456 {
6457         l2arc_dev_t *first, *next = NULL;
6458 
6459         /*
6460          * Lock out the removal of spas (spa_namespace_lock), then removal
6461          * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6462          * both locks will be dropped and a spa config lock held instead.
6463          */
6464         mutex_enter(&spa_namespace_lock);
6465         mutex_enter(&l2arc_dev_mtx);
6466 
6467         /* if there are no vdevs, there is nothing to do */
6468         if (l2arc_ndev == 0)
6469                 goto out;
6470 
6471         first = NULL;
6472         next = l2arc_dev_last;
6473         do {
6474                 /* loop around the list looking for a non-faulted vdev */
6475                 if (next == NULL) {
6476                         next = list_head(l2arc_dev_list);
6477                 } else {
6478                         next = list_next(l2arc_dev_list, next);
6479                         if (next == NULL)
6480                                 next = list_head(l2arc_dev_list);
6481                 }
6482 
6483                 /* if we have come back to the start, bail out */
6484                 if (first == NULL)
6485                         first = next;
6486                 else if (next == first)
6487                         break;
6488 
6489         } while (vdev_is_dead(next->l2ad_vdev));
6490 
6491         /* if we were unable to find any usable vdevs, return NULL */
6492         if (vdev_is_dead(next->l2ad_vdev))
6493                 next = NULL;
6494 
6495         l2arc_dev_last = next;
6496 
6497 out:
6498         mutex_exit(&l2arc_dev_mtx);
6499 
6500         /*
6501          * Grab the config lock to prevent the 'next' device from being
6502          * removed while we are writing to it.
6503          */
6504         if (next != NULL)
6505                 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6506         mutex_exit(&spa_namespace_lock);
6507 
6508         return (next);
6509 }
6510 
6511 /*
6512  * Free buffers that were tagged for destruction.
6513  */
6514 static void
6515 l2arc_do_free_on_write()
6516 {
6517         list_t *buflist;
6518         l2arc_data_free_t *df, *df_prev;
6519 
6520         mutex_enter(&l2arc_free_on_write_mtx);
6521         buflist = l2arc_free_on_write;
6522 
6523         for (df = list_tail(buflist); df; df = df_prev) {
6524                 df_prev = list_prev(buflist, df);
6525                 ASSERT3P(df->l2df_abd, !=, NULL);
6526                 abd_free(df->l2df_abd);
6527                 list_remove(buflist, df);
6528                 kmem_free(df, sizeof (l2arc_data_free_t));
6529         }
6530 
6531         mutex_exit(&l2arc_free_on_write_mtx);
6532 }
6533 
6534 /*
6535  * A write to a cache device has completed.  Update all headers to allow
6536  * reads from these buffers to begin.
6537  */
6538 static void
6539 l2arc_write_done(zio_t *zio)
6540 {
6541         l2arc_write_callback_t *cb;
6542         l2arc_dev_t *dev;
6543         list_t *buflist;
6544         arc_buf_hdr_t *head, *hdr, *hdr_prev;
6545         kmutex_t *hash_lock;
6546         int64_t bytes_dropped = 0;
6547 
6548         cb = zio->io_private;
6549         ASSERT3P(cb, !=, NULL);
6550         dev = cb->l2wcb_dev;
6551         ASSERT3P(dev, !=, NULL);
6552         head = cb->l2wcb_head;
6553         ASSERT3P(head, !=, NULL);
6554         buflist = &dev->l2ad_buflist;
6555         ASSERT3P(buflist, !=, NULL);
6556         DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6557             l2arc_write_callback_t *, cb);
6558 
6559         if (zio->io_error != 0)
6560                 ARCSTAT_BUMP(arcstat_l2_writes_error);
6561 
6562         /*
6563          * All writes completed, or an error was hit.
6564          */
6565 top:
6566         mutex_enter(&dev->l2ad_mtx);
6567         for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6568                 hdr_prev = list_prev(buflist, hdr);
6569 
6570                 hash_lock = HDR_LOCK(hdr);
6571 
6572                 /*
6573                  * We cannot use mutex_enter or else we can deadlock
6574                  * with l2arc_write_buffers (due to swapping the order
6575                  * the hash lock and l2ad_mtx are taken).
6576                  */
6577                 if (!mutex_tryenter(hash_lock)) {
6578                         /*
6579                          * Missed the hash lock. We must retry so we
6580                          * don't leave the ARC_FLAG_L2_WRITING bit set.
6581                          */
6582                         ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6583 
6584                         /*
6585                          * We don't want to rescan the headers we've
6586                          * already marked as having been written out, so
6587                          * we reinsert the head node so we can pick up
6588                          * where we left off.
6589                          */
6590                         list_remove(buflist, head);
6591                         list_insert_after(buflist, hdr, head);
6592 
6593                         mutex_exit(&dev->l2ad_mtx);
6594 
6595                         /*
6596                          * We wait for the hash lock to become available
6597                          * to try and prevent busy waiting, and increase
6598                          * the chance we'll be able to acquire the lock
6599                          * the next time around.
6600                          */
6601                         mutex_enter(hash_lock);
6602                         mutex_exit(hash_lock);
6603                         goto top;
6604                 }
6605 
6606                 /*
6607                  * We could not have been moved into the arc_l2c_only
6608                  * state while in-flight due to our ARC_FLAG_L2_WRITING
6609                  * bit being set. Let's just ensure that's being enforced.
6610                  */
6611                 ASSERT(HDR_HAS_L1HDR(hdr));
6612 
6613                 if (zio->io_error != 0) {
6614                         /*
6615                          * Error - drop L2ARC entry.
6616                          */
6617                         list_remove(buflist, hdr);
6618                         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6619 
6620                         ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6621                         ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6622 
6623                         bytes_dropped += arc_hdr_size(hdr);
6624                         (void) refcount_remove_many(&dev->l2ad_alloc,
6625                             arc_hdr_size(hdr), hdr);
6626                 }
6627 
6628                 /*
6629                  * Allow ARC to begin reads and ghost list evictions to
6630                  * this L2ARC entry.
6631                  */
6632                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6633 
6634                 mutex_exit(hash_lock);
6635         }
6636 
6637         atomic_inc_64(&l2arc_writes_done);
6638         list_remove(buflist, head);
6639         ASSERT(!HDR_HAS_L1HDR(head));
6640         kmem_cache_free(hdr_l2only_cache, head);
6641         mutex_exit(&dev->l2ad_mtx);
6642 
6643         vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6644 
6645         l2arc_do_free_on_write();
6646 
6647         kmem_free(cb, sizeof (l2arc_write_callback_t));
6648 }
6649 
6650 /*
6651  * A read to a cache device completed.  Validate buffer contents before
6652  * handing over to the regular ARC routines.
6653  */
6654 static void
6655 l2arc_read_done(zio_t *zio)
6656 {
6657         l2arc_read_callback_t *cb;
6658         arc_buf_hdr_t *hdr;
6659         kmutex_t *hash_lock;
6660         boolean_t valid_cksum;
6661 
6662         ASSERT3P(zio->io_vd, !=, NULL);
6663         ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6664 
6665         spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6666 
6667         cb = zio->io_private;
6668         ASSERT3P(cb, !=, NULL);
6669         hdr = cb->l2rcb_hdr;
6670         ASSERT3P(hdr, !=, NULL);
6671 
6672         hash_lock = HDR_LOCK(hdr);
6673         mutex_enter(hash_lock);
6674         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6675 
6676         /*
6677          * If the data was read into a temporary buffer,
6678          * move it and free the buffer.
6679          */
6680         if (cb->l2rcb_abd != NULL) {
6681                 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6682                 if (zio->io_error == 0) {
6683                         abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6684                             arc_hdr_size(hdr));
6685                 }
6686 
6687                 /*
6688                  * The following must be done regardless of whether
6689                  * there was an error:
6690                  * - free the temporary buffer
6691                  * - point zio to the real ARC buffer
6692                  * - set zio size accordingly
6693                  * These are required because zio is either re-used for
6694                  * an I/O of the block in the case of the error
6695                  * or the zio is passed to arc_read_done() and it
6696                  * needs real data.
6697                  */
6698                 abd_free(cb->l2rcb_abd);
6699                 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6700                 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6701         }
6702 
6703         ASSERT3P(zio->io_abd, !=, NULL);
6704 
6705         /*
6706          * Check this survived the L2ARC journey.
6707          */
6708         ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6709         zio->io_bp_copy = cb->l2rcb_bp;   /* XXX fix in L2ARC 2.0 */
6710         zio->io_bp = &zio->io_bp_copy;        /* XXX fix in L2ARC 2.0 */
6711 
6712         valid_cksum = arc_cksum_is_equal(hdr, zio);
6713         if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6714                 mutex_exit(hash_lock);
6715                 zio->io_private = hdr;
6716                 arc_read_done(zio);
6717         } else {
6718                 mutex_exit(hash_lock);
6719                 /*
6720                  * Buffer didn't survive caching.  Increment stats and
6721                  * reissue to the original storage device.
6722                  */
6723                 if (zio->io_error != 0) {
6724                         ARCSTAT_BUMP(arcstat_l2_io_error);
6725                 } else {
6726                         zio->io_error = SET_ERROR(EIO);
6727                 }
6728                 if (!valid_cksum)
6729                         ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6730 
6731                 /*
6732                  * If there's no waiter, issue an async i/o to the primary
6733                  * storage now.  If there *is* a waiter, the caller must
6734                  * issue the i/o in a context where it's OK to block.
6735                  */
6736                 if (zio->io_waiter == NULL) {
6737                         zio_t *pio = zio_unique_parent(zio);
6738 
6739                         ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6740 
6741                         zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6742                             hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6743                             hdr, zio->io_priority, cb->l2rcb_flags,
6744                             &cb->l2rcb_zb));
6745                 }
6746         }
6747 
6748         kmem_free(cb, sizeof (l2arc_read_callback_t));
6749 }
6750 
6751 /*
6752  * This is the list priority from which the L2ARC will search for pages to
6753  * cache.  This is used within loops (0..3) to cycle through lists in the
6754  * desired order.  This order can have a significant effect on cache
6755  * performance.
6756  *
6757  * Currently the metadata lists are hit first, MFU then MRU, followed by
6758  * the data lists.  This function returns a locked list, and also returns
6759  * the lock pointer.
6760  */
6761 static multilist_sublist_t *
6762 l2arc_sublist_lock(int list_num)
6763 {
6764         multilist_t *ml = NULL;
6765         unsigned int idx;
6766 
6767         ASSERT(list_num >= 0 && list_num <= 3);
6768 
6769         switch (list_num) {
6770         case 0:
6771                 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6772                 break;
6773         case 1:
6774                 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6775                 break;
6776         case 2:
6777                 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6778                 break;
6779         case 3:
6780                 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6781                 break;
6782         }
6783 
6784         /*
6785          * Return a randomly-selected sublist. This is acceptable
6786          * because the caller feeds only a little bit of data for each
6787          * call (8MB). Subsequent calls will result in different
6788          * sublists being selected.
6789          */
6790         idx = multilist_get_random_index(ml);
6791         return (multilist_sublist_lock(ml, idx));
6792 }
6793 
6794 /*
6795  * Evict buffers from the device write hand to the distance specified in
6796  * bytes.  This distance may span populated buffers, it may span nothing.
6797  * This is clearing a region on the L2ARC device ready for writing.
6798  * If the 'all' boolean is set, every buffer is evicted.
6799  */
6800 static void
6801 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6802 {
6803         list_t *buflist;
6804         arc_buf_hdr_t *hdr, *hdr_prev;
6805         kmutex_t *hash_lock;
6806         uint64_t taddr;
6807 
6808         buflist = &dev->l2ad_buflist;
6809 
6810         if (!all && dev->l2ad_first) {
6811                 /*
6812                  * This is the first sweep through the device.  There is
6813                  * nothing to evict.
6814                  */
6815                 return;
6816         }
6817 
6818         if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6819                 /*
6820                  * When nearing the end of the device, evict to the end
6821                  * before the device write hand jumps to the start.
6822                  */
6823                 taddr = dev->l2ad_end;
6824         } else {
6825                 taddr = dev->l2ad_hand + distance;
6826         }
6827         DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6828             uint64_t, taddr, boolean_t, all);
6829 
6830 top:
6831         mutex_enter(&dev->l2ad_mtx);
6832         for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6833                 hdr_prev = list_prev(buflist, hdr);
6834 
6835                 hash_lock = HDR_LOCK(hdr);
6836 
6837                 /*
6838                  * We cannot use mutex_enter or else we can deadlock
6839                  * with l2arc_write_buffers (due to swapping the order
6840                  * the hash lock and l2ad_mtx are taken).
6841                  */
6842                 if (!mutex_tryenter(hash_lock)) {
6843                         /*
6844                          * Missed the hash lock.  Retry.
6845                          */
6846                         ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6847                         mutex_exit(&dev->l2ad_mtx);
6848                         mutex_enter(hash_lock);
6849                         mutex_exit(hash_lock);
6850                         goto top;
6851                 }
6852 
6853                 /*
6854                  * A header can't be on this list if it doesn't have L2 header.
6855                  */
6856                 ASSERT(HDR_HAS_L2HDR(hdr));
6857 
6858                 /* Ensure this header has finished being written. */
6859                 ASSERT(!HDR_L2_WRITING(hdr));
6860                 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
6861 
6862                 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
6863                     hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6864                         /*
6865                          * We've evicted to the target address,
6866                          * or the end of the device.
6867                          */
6868                         mutex_exit(hash_lock);
6869                         break;
6870                 }
6871 
6872                 if (!HDR_HAS_L1HDR(hdr)) {
6873                         ASSERT(!HDR_L2_READING(hdr));
6874                         /*
6875                          * This doesn't exist in the ARC.  Destroy.
6876                          * arc_hdr_destroy() will call list_remove()
6877                          * and decrement arcstat_l2_lsize.
6878                          */
6879                         arc_change_state(arc_anon, hdr, hash_lock);
6880                         arc_hdr_destroy(hdr);
6881                 } else {
6882                         ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6883                         ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6884                         /*
6885                          * Invalidate issued or about to be issued
6886                          * reads, since we may be about to write
6887                          * over this location.
6888                          */
6889                         if (HDR_L2_READING(hdr)) {
6890                                 ARCSTAT_BUMP(arcstat_l2_evict_reading);
6891                                 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6892                         }
6893 
6894                         arc_hdr_l2hdr_destroy(hdr);
6895                 }
6896                 mutex_exit(hash_lock);
6897         }
6898         mutex_exit(&dev->l2ad_mtx);
6899 }
6900 
6901 /*
6902  * Find and write ARC buffers to the L2ARC device.
6903  *
6904  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6905  * for reading until they have completed writing.
6906  * The headroom_boost is an in-out parameter used to maintain headroom boost
6907  * state between calls to this function.
6908  *
6909  * Returns the number of bytes actually written (which may be smaller than
6910  * the delta by which the device hand has changed due to alignment).
6911  */
6912 static uint64_t
6913 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6914 {
6915         arc_buf_hdr_t *hdr, *hdr_prev, *head;
6916         uint64_t write_asize, write_psize, write_lsize, headroom;
6917         boolean_t full;
6918         l2arc_write_callback_t *cb;
6919         zio_t *pio, *wzio;
6920         uint64_t guid = spa_load_guid(spa);
6921 
6922         ASSERT3P(dev->l2ad_vdev, !=, NULL);
6923 
6924         pio = NULL;
6925         write_lsize = write_asize = write_psize = 0;
6926         full = B_FALSE;
6927         head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6928         arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6929 
6930         /*
6931          * Copy buffers for L2ARC writing.
6932          */
6933         for (int try = 0; try <= 3; try++) {
6934                 multilist_sublist_t *mls = l2arc_sublist_lock(try);
6935                 uint64_t passed_sz = 0;
6936 
6937                 /*
6938                  * L2ARC fast warmup.
6939                  *
6940                  * Until the ARC is warm and starts to evict, read from the
6941                  * head of the ARC lists rather than the tail.
6942                  */
6943                 if (arc_warm == B_FALSE)
6944                         hdr = multilist_sublist_head(mls);
6945                 else
6946                         hdr = multilist_sublist_tail(mls);
6947 
6948                 headroom = target_sz * l2arc_headroom;
6949                 if (zfs_compressed_arc_enabled)
6950                         headroom = (headroom * l2arc_headroom_boost) / 100;
6951 
6952                 for (; hdr; hdr = hdr_prev) {
6953                         kmutex_t *hash_lock;
6954 
6955                         if (arc_warm == B_FALSE)
6956                                 hdr_prev = multilist_sublist_next(mls, hdr);
6957                         else
6958                                 hdr_prev = multilist_sublist_prev(mls, hdr);
6959 
6960                         hash_lock = HDR_LOCK(hdr);
6961                         if (!mutex_tryenter(hash_lock)) {
6962                                 /*
6963                                  * Skip this buffer rather than waiting.
6964                                  */
6965                                 continue;
6966                         }
6967 
6968                         passed_sz += HDR_GET_LSIZE(hdr);
6969                         if (passed_sz > headroom) {
6970                                 /*
6971                                  * Searched too far.
6972                                  */
6973                                 mutex_exit(hash_lock);
6974                                 break;
6975                         }
6976 
6977                         if (!l2arc_write_eligible(guid, hdr)) {
6978                                 mutex_exit(hash_lock);
6979                                 continue;
6980                         }
6981 
6982                         /*
6983                          * We rely on the L1 portion of the header below, so
6984                          * it's invalid for this header to have been evicted out
6985                          * of the ghost cache, prior to being written out. The
6986                          * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6987                          */
6988                         ASSERT(HDR_HAS_L1HDR(hdr));
6989 
6990                         ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6991                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6992                         ASSERT3U(arc_hdr_size(hdr), >, 0);
6993                         uint64_t psize = arc_hdr_size(hdr);
6994                         uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6995                             psize);
6996 
6997                         if ((write_asize + asize) > target_sz) {
6998                                 full = B_TRUE;
6999                                 mutex_exit(hash_lock);
7000                                 break;
7001                         }
7002 
7003                         if (pio == NULL) {
7004                                 /*
7005                                  * Insert a dummy header on the buflist so
7006                                  * l2arc_write_done() can find where the
7007                                  * write buffers begin without searching.
7008                                  */
7009                                 mutex_enter(&dev->l2ad_mtx);
7010                                 list_insert_head(&dev->l2ad_buflist, head);
7011                                 mutex_exit(&dev->l2ad_mtx);
7012 
7013                                 cb = kmem_alloc(
7014                                     sizeof (l2arc_write_callback_t), KM_SLEEP);
7015                                 cb->l2wcb_dev = dev;
7016                                 cb->l2wcb_head = head;
7017                                 pio = zio_root(spa, l2arc_write_done, cb,
7018                                     ZIO_FLAG_CANFAIL);
7019                         }
7020 
7021                         hdr->b_l2hdr.b_dev = dev;
7022                         hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7023                         arc_hdr_set_flags(hdr,
7024                             ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7025 
7026                         mutex_enter(&dev->l2ad_mtx);
7027                         list_insert_head(&dev->l2ad_buflist, hdr);
7028                         mutex_exit(&dev->l2ad_mtx);
7029 
7030                         (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7031 
7032                         /*
7033                          * Normally the L2ARC can use the hdr's data, but if
7034                          * we're sharing data between the hdr and one of its
7035                          * bufs, L2ARC needs its own copy of the data so that
7036                          * the ZIO below can't race with the buf consumer.
7037                          * Another case where we need to create a copy of the
7038                          * data is when the buffer size is not device-aligned
7039                          * and we need to pad the block to make it such.
7040                          * That also keeps the clock hand suitably aligned.
7041                          *
7042                          * To ensure that the copy will be available for the
7043                          * lifetime of the ZIO and be cleaned up afterwards, we
7044                          * add it to the l2arc_free_on_write queue.
7045                          */
7046                         abd_t *to_write;
7047                         if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7048                                 to_write = hdr->b_l1hdr.b_pabd;
7049                         } else {
7050                                 to_write = abd_alloc_for_io(asize,
7051                                     HDR_ISTYPE_METADATA(hdr));
7052                                 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7053                                 if (asize != psize) {
7054                                         abd_zero_off(to_write, psize,
7055                                             asize - psize);
7056                                 }
7057                                 l2arc_free_abd_on_write(to_write, asize,
7058                                     arc_buf_type(hdr));
7059                         }
7060                         wzio = zio_write_phys(pio, dev->l2ad_vdev,
7061                             hdr->b_l2hdr.b_daddr, asize, to_write,
7062                             ZIO_CHECKSUM_OFF, NULL, hdr,
7063                             ZIO_PRIORITY_ASYNC_WRITE,
7064                             ZIO_FLAG_CANFAIL, B_FALSE);
7065 
7066                         write_lsize += HDR_GET_LSIZE(hdr);
7067                         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7068                             zio_t *, wzio);
7069 
7070                         write_psize += psize;
7071                         write_asize += asize;
7072                         dev->l2ad_hand += asize;
7073 
7074                         mutex_exit(hash_lock);
7075 
7076                         (void) zio_nowait(wzio);
7077                 }
7078 
7079                 multilist_sublist_unlock(mls);
7080 
7081                 if (full == B_TRUE)
7082                         break;
7083         }
7084 
7085         /* No buffers selected for writing? */
7086         if (pio == NULL) {
7087                 ASSERT0(write_lsize);
7088                 ASSERT(!HDR_HAS_L1HDR(head));
7089                 kmem_cache_free(hdr_l2only_cache, head);
7090                 return (0);
7091         }
7092 
7093         ASSERT3U(write_asize, <=, target_sz);
7094         ARCSTAT_BUMP(arcstat_l2_writes_sent);
7095         ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7096         ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7097         ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7098         vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7099 
7100         /*
7101          * Bump device hand to the device start if it is approaching the end.
7102          * l2arc_evict() will already have evicted ahead for this case.
7103          */
7104         if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7105                 dev->l2ad_hand = dev->l2ad_start;
7106                 dev->l2ad_first = B_FALSE;
7107         }
7108 
7109         dev->l2ad_writing = B_TRUE;
7110         (void) zio_wait(pio);
7111         dev->l2ad_writing = B_FALSE;
7112 
7113         return (write_asize);
7114 }
7115 
7116 /*
7117  * This thread feeds the L2ARC at regular intervals.  This is the beating
7118  * heart of the L2ARC.
7119  */
7120 /* ARGSUSED */
7121 static void
7122 l2arc_feed_thread(void *unused)
7123 {
7124         callb_cpr_t cpr;
7125         l2arc_dev_t *dev;
7126         spa_t *spa;
7127         uint64_t size, wrote;
7128         clock_t begin, next = ddi_get_lbolt();
7129 
7130         CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7131 
7132         mutex_enter(&l2arc_feed_thr_lock);
7133 
7134         while (l2arc_thread_exit == 0) {
7135                 CALLB_CPR_SAFE_BEGIN(&cpr);
7136                 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7137                     next);
7138                 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7139                 next = ddi_get_lbolt() + hz;
7140 
7141                 /*
7142                  * Quick check for L2ARC devices.
7143                  */
7144                 mutex_enter(&l2arc_dev_mtx);
7145                 if (l2arc_ndev == 0) {
7146                         mutex_exit(&l2arc_dev_mtx);
7147                         continue;
7148                 }
7149                 mutex_exit(&l2arc_dev_mtx);
7150                 begin = ddi_get_lbolt();
7151 
7152                 /*
7153                  * This selects the next l2arc device to write to, and in
7154                  * doing so the next spa to feed from: dev->l2ad_spa.   This
7155                  * will return NULL if there are now no l2arc devices or if
7156                  * they are all faulted.
7157                  *
7158                  * If a device is returned, its spa's config lock is also
7159                  * held to prevent device removal.  l2arc_dev_get_next()
7160                  * will grab and release l2arc_dev_mtx.
7161                  */
7162                 if ((dev = l2arc_dev_get_next()) == NULL)
7163                         continue;
7164 
7165                 spa = dev->l2ad_spa;
7166                 ASSERT3P(spa, !=, NULL);
7167 
7168                 /*
7169                  * If the pool is read-only then force the feed thread to
7170                  * sleep a little longer.
7171                  */
7172                 if (!spa_writeable(spa)) {
7173                         next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7174                         spa_config_exit(spa, SCL_L2ARC, dev);
7175                         continue;
7176                 }
7177 
7178                 /*
7179                  * Avoid contributing to memory pressure.
7180                  */
7181                 if (arc_reclaim_needed()) {
7182                         ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7183                         spa_config_exit(spa, SCL_L2ARC, dev);
7184                         continue;
7185                 }
7186 
7187                 ARCSTAT_BUMP(arcstat_l2_feeds);
7188 
7189                 size = l2arc_write_size();
7190 
7191                 /*
7192                  * Evict L2ARC buffers that will be overwritten.
7193                  */
7194                 l2arc_evict(dev, size, B_FALSE);
7195 
7196                 /*
7197                  * Write ARC buffers.
7198                  */
7199                 wrote = l2arc_write_buffers(spa, dev, size);
7200 
7201                 /*
7202                  * Calculate interval between writes.
7203                  */
7204                 next = l2arc_write_interval(begin, size, wrote);
7205                 spa_config_exit(spa, SCL_L2ARC, dev);
7206         }
7207 
7208         l2arc_thread_exit = 0;
7209         cv_broadcast(&l2arc_feed_thr_cv);
7210         CALLB_CPR_EXIT(&cpr);               /* drops l2arc_feed_thr_lock */
7211         thread_exit();
7212 }
7213 
7214 boolean_t
7215 l2arc_vdev_present(vdev_t *vd)
7216 {
7217         l2arc_dev_t *dev;
7218 
7219         mutex_enter(&l2arc_dev_mtx);
7220         for (dev = list_head(l2arc_dev_list); dev != NULL;
7221             dev = list_next(l2arc_dev_list, dev)) {
7222                 if (dev->l2ad_vdev == vd)
7223                         break;
7224         }
7225         mutex_exit(&l2arc_dev_mtx);
7226 
7227         return (dev != NULL);
7228 }
7229 
7230 /*
7231  * Add a vdev for use by the L2ARC.  By this point the spa has already
7232  * validated the vdev and opened it.
7233  */
7234 void
7235 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7236 {
7237         l2arc_dev_t *adddev;
7238 
7239         ASSERT(!l2arc_vdev_present(vd));
7240 
7241         /*
7242          * Create a new l2arc device entry.
7243          */
7244         adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7245         adddev->l2ad_spa = spa;
7246         adddev->l2ad_vdev = vd;
7247         adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7248         adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7249         adddev->l2ad_hand = adddev->l2ad_start;
7250         adddev->l2ad_first = B_TRUE;
7251         adddev->l2ad_writing = B_FALSE;
7252 
7253         mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7254         /*
7255          * This is a list of all ARC buffers that are still valid on the
7256          * device.
7257          */
7258         list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7259             offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7260 
7261         vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7262         refcount_create(&adddev->l2ad_alloc);
7263 
7264         /*
7265          * Add device to global list
7266          */
7267         mutex_enter(&l2arc_dev_mtx);
7268         list_insert_head(l2arc_dev_list, adddev);
7269         atomic_inc_64(&l2arc_ndev);
7270         mutex_exit(&l2arc_dev_mtx);
7271 }
7272 
7273 /*
7274  * Remove a vdev from the L2ARC.
7275  */
7276 void
7277 l2arc_remove_vdev(vdev_t *vd)
7278 {
7279         l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7280 
7281         /*
7282          * Find the device by vdev
7283          */
7284         mutex_enter(&l2arc_dev_mtx);
7285         for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7286                 nextdev = list_next(l2arc_dev_list, dev);
7287                 if (vd == dev->l2ad_vdev) {
7288                         remdev = dev;
7289                         break;
7290                 }
7291         }
7292         ASSERT3P(remdev, !=, NULL);
7293 
7294         /*
7295          * Remove device from global list
7296          */
7297         list_remove(l2arc_dev_list, remdev);
7298         l2arc_dev_last = NULL;          /* may have been invalidated */
7299         atomic_dec_64(&l2arc_ndev);
7300         mutex_exit(&l2arc_dev_mtx);
7301 
7302         /*
7303          * Clear all buflists and ARC references.  L2ARC device flush.
7304          */
7305         l2arc_evict(remdev, 0, B_TRUE);
7306         list_destroy(&remdev->l2ad_buflist);
7307         mutex_destroy(&remdev->l2ad_mtx);
7308         refcount_destroy(&remdev->l2ad_alloc);
7309         kmem_free(remdev, sizeof (l2arc_dev_t));
7310 }
7311 
7312 void
7313 l2arc_init(void)
7314 {
7315         l2arc_thread_exit = 0;
7316         l2arc_ndev = 0;
7317         l2arc_writes_sent = 0;
7318         l2arc_writes_done = 0;
7319 
7320         mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7321         cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7322         mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7323         mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7324 
7325         l2arc_dev_list = &L2ARC_dev_list;
7326         l2arc_free_on_write = &L2ARC_free_on_write;
7327         list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7328             offsetof(l2arc_dev_t, l2ad_node));
7329         list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7330             offsetof(l2arc_data_free_t, l2df_list_node));
7331 }
7332 
7333 void
7334 l2arc_fini(void)
7335 {
7336         /*
7337          * This is called from dmu_fini(), which is called from spa_fini();
7338          * Because of this, we can assume that all l2arc devices have
7339          * already been removed when the pools themselves were removed.
7340          */
7341 
7342         l2arc_do_free_on_write();
7343 
7344         mutex_destroy(&l2arc_feed_thr_lock);
7345         cv_destroy(&l2arc_feed_thr_cv);
7346         mutex_destroy(&l2arc_dev_mtx);
7347         mutex_destroy(&l2arc_free_on_write_mtx);
7348 
7349         list_destroy(l2arc_dev_list);
7350         list_destroy(l2arc_free_on_write);
7351 }
7352 
7353 void
7354 l2arc_start(void)
7355 {
7356         if (!(spa_mode_global & FWRITE))
7357                 return;
7358 
7359         (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7360             TS_RUN, minclsyspri);
7361 }
7362 
7363 void
7364 l2arc_stop(void)
7365 {
7366         if (!(spa_mode_global & FWRITE))
7367                 return;
7368 
7369         mutex_enter(&l2arc_feed_thr_lock);
7370         cv_signal(&l2arc_feed_thr_cv);      /* kick thread out of startup */
7371         l2arc_thread_exit = 1;
7372         while (l2arc_thread_exit != 0)
7373                 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7374         mutex_exit(&l2arc_feed_thr_lock);
7375 }