Print this page
NEX-5164 backport illumos 6514 AS_* lock macros simplification
Reviewed by: Kevin Crowe <kevin.crowe@nexenta.com>
6514 AS_* lock macros simplification
Reviewed by: Piotr Jasiukajtis <estibi@me.com>
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Reviewed by: Albert Lee <trisk@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
re #13613 rb4516 Tunables needs volatile keyword
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/ufs/ufs_vnops.c
+++ new/usr/src/uts/common/fs/ufs/ufs_vnops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
|
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved.
24 + * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
24 25 * Copyright 2017 Joyent, Inc.
25 26 * Copyright (c) 2016 by Delphix. All rights reserved.
26 27 */
27 28
28 29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
29 30 /* All Rights Reserved */
30 31
31 32 /*
32 33 * Portions of this source code were derived from Berkeley 4.3 BSD
33 34 * under license from the Regents of the University of California.
34 35 */
35 36
36 37 #include <sys/types.h>
37 38 #include <sys/t_lock.h>
38 39 #include <sys/ksynch.h>
39 40 #include <sys/param.h>
40 41 #include <sys/time.h>
41 42 #include <sys/systm.h>
42 43 #include <sys/sysmacros.h>
43 44 #include <sys/resource.h>
44 45 #include <sys/signal.h>
45 46 #include <sys/cred.h>
46 47 #include <sys/user.h>
47 48 #include <sys/buf.h>
48 49 #include <sys/vfs.h>
49 50 #include <sys/vfs_opreg.h>
50 51 #include <sys/vnode.h>
51 52 #include <sys/proc.h>
52 53 #include <sys/disp.h>
53 54 #include <sys/file.h>
54 55 #include <sys/fcntl.h>
55 56 #include <sys/flock.h>
56 57 #include <sys/atomic.h>
57 58 #include <sys/kmem.h>
58 59 #include <sys/uio.h>
59 60 #include <sys/dnlc.h>
60 61 #include <sys/conf.h>
61 62 #include <sys/mman.h>
62 63 #include <sys/pathname.h>
63 64 #include <sys/debug.h>
64 65 #include <sys/vmsystm.h>
65 66 #include <sys/cmn_err.h>
66 67 #include <sys/filio.h>
67 68 #include <sys/policy.h>
68 69
69 70 #include <sys/fs/ufs_fs.h>
70 71 #include <sys/fs/ufs_lockfs.h>
71 72 #include <sys/fs/ufs_filio.h>
72 73 #include <sys/fs/ufs_inode.h>
73 74 #include <sys/fs/ufs_fsdir.h>
74 75 #include <sys/fs/ufs_quota.h>
75 76 #include <sys/fs/ufs_log.h>
76 77 #include <sys/fs/ufs_snap.h>
77 78 #include <sys/fs/ufs_trans.h>
78 79 #include <sys/fs/ufs_panic.h>
79 80 #include <sys/fs/ufs_bio.h>
80 81 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */
81 82 #include <sys/errno.h>
82 83 #include <sys/fssnap_if.h>
83 84 #include <sys/unistd.h>
84 85 #include <sys/sunddi.h>
85 86
86 87 #include <sys/filio.h> /* _FIOIO */
87 88
88 89 #include <vm/hat.h>
89 90 #include <vm/page.h>
90 91 #include <vm/pvn.h>
91 92 #include <vm/as.h>
92 93 #include <vm/seg.h>
93 94 #include <vm/seg_map.h>
94 95 #include <vm/seg_vn.h>
95 96 #include <vm/seg_kmem.h>
96 97 #include <vm/rm.h>
97 98 #include <sys/swap.h>
98 99
99 100 #include <fs/fs_subr.h>
100 101
101 102 #include <sys/fs/decomp.h>
102 103
103 104 static struct instats ins;
104 105
105 106 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
106 107 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *,
107 108 caddr_t, struct page **, size_t, enum seg_rw, int);
108 109 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *);
109 110 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *,
110 111 caller_context_t *);
111 112 static int ufs_read(struct vnode *, struct uio *, int, struct cred *,
112 113 struct caller_context *);
113 114 static int ufs_write(struct vnode *, struct uio *, int, struct cred *,
114 115 struct caller_context *);
115 116 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *,
116 117 int *, caller_context_t *);
117 118 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *,
118 119 caller_context_t *);
119 120 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *,
120 121 caller_context_t *);
121 122 static int ufs_access(struct vnode *, int, int, struct cred *,
122 123 caller_context_t *);
123 124 static int ufs_lookup(struct vnode *, char *, struct vnode **,
124 125 struct pathname *, int, struct vnode *, struct cred *,
125 126 caller_context_t *, int *, pathname_t *);
126 127 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl,
127 128 int, struct vnode **, struct cred *, int,
128 129 caller_context_t *, vsecattr_t *);
129 130 static int ufs_remove(struct vnode *, char *, struct cred *,
130 131 caller_context_t *, int);
131 132 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *,
132 133 caller_context_t *, int);
133 134 static int ufs_rename(struct vnode *, char *, struct vnode *, char *,
134 135 struct cred *, caller_context_t *, int);
135 136 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **,
136 137 struct cred *, caller_context_t *, int, vsecattr_t *);
137 138 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *,
138 139 caller_context_t *, int);
139 140 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *,
140 141 caller_context_t *, int);
141 142 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *,
142 143 struct cred *, caller_context_t *, int);
143 144 static int ufs_readlink(struct vnode *, struct uio *, struct cred *,
144 145 caller_context_t *);
145 146 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *);
146 147 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *);
147 148 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *);
148 149 static int ufs_rwlock(struct vnode *, int, caller_context_t *);
149 150 static void ufs_rwunlock(struct vnode *, int, caller_context_t *);
150 151 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
151 152 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
152 153 struct flk_callback *, struct cred *,
153 154 caller_context_t *);
154 155 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t,
155 156 cred_t *, caller_context_t *);
156 157 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *,
157 158 struct page **, size_t, struct seg *, caddr_t,
158 159 enum seg_rw, struct cred *, caller_context_t *);
159 160 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *,
160 161 caller_context_t *);
161 162 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *);
162 163 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
163 164 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
164 165 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
165 166 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
166 167 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
167 168 uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
168 169 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **,
169 170 caller_context_t *);
170 171 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t,
171 172 caller_context_t *);
172 173 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *,
173 174 caller_context_t *);
174 175 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int,
175 176 struct cred *, caller_context_t *);
176 177 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *);
177 178 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *,
178 179 daddr32_t *, int, int);
179 180 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
180 181 caller_context_t *);
181 182 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
182 183 caller_context_t *);
183 184 static int ufs_priv_access(void *, int, struct cred *);
184 185 static int ufs_eventlookup(struct vnode *, char *, struct cred *,
185 186 struct vnode **);
186 187 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
187 188
188 189 /*
189 190 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions.
190 191 *
191 192 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet.
192 193 */
193 194 struct vnodeops *ufs_vnodeops;
194 195
195 196 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */
196 197 const fs_operation_def_t ufs_vnodeops_template[] = {
197 198 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */
198 199 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */
199 200 VOPNAME_READ, { .vop_read = ufs_read },
200 201 VOPNAME_WRITE, { .vop_write = ufs_write },
201 202 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl },
202 203 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr },
203 204 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr },
204 205 VOPNAME_ACCESS, { .vop_access = ufs_access },
205 206 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup },
206 207 VOPNAME_CREATE, { .vop_create = ufs_create },
207 208 VOPNAME_REMOVE, { .vop_remove = ufs_remove },
208 209 VOPNAME_LINK, { .vop_link = ufs_link },
209 210 VOPNAME_RENAME, { .vop_rename = ufs_rename },
210 211 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir },
211 212 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir },
212 213 VOPNAME_READDIR, { .vop_readdir = ufs_readdir },
213 214 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink },
214 215 VOPNAME_READLINK, { .vop_readlink = ufs_readlink },
215 216 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync },
216 217 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */
217 218 VOPNAME_FID, { .vop_fid = ufs_fid },
218 219 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */
219 220 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */
220 221 VOPNAME_SEEK, { .vop_seek = ufs_seek },
221 222 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock },
222 223 VOPNAME_SPACE, { .vop_space = ufs_space },
223 224 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage },
224 225 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage },
225 226 VOPNAME_MAP, { .vop_map = ufs_map },
226 227 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */
227 228 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */
228 229 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */
229 230 VOPNAME_DUMP, { .vop_dump = ufs_dump },
230 231 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf },
231 232 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio },
232 233 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl },
233 234 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr },
234 235 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr },
235 236 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
236 237 NULL, NULL
237 238 };
238 239
239 240 #define MAX_BACKFILE_COUNT 9999
240 241
241 242 /*
242 243 * Created by ufs_dumpctl() to store a file's disk block info into memory.
243 244 * Used by ufs_dump() to dump data to disk directly.
244 245 */
245 246 struct dump {
246 247 struct inode *ip; /* the file we contain */
247 248 daddr_t fsbs; /* number of blocks stored */
248 249 struct timeval32 time; /* time stamp for the struct */
249 250 daddr32_t dblk[1]; /* place holder for block info */
250 251 };
251 252
252 253 static struct dump *dump_info = NULL;
253 254
254 255 /*
255 256 * Previously there was no special action required for ordinary files.
256 257 * (Devices are handled through the device file system.)
257 258 * Now we support Large Files and Large File API requires open to
258 259 * fail if file is large.
259 260 * We could take care to prevent data corruption
260 261 * by doing an atomic check of size and truncate if file is opened with
261 262 * FTRUNC flag set but traditionally this is being done by the vfs/vnode
262 263 * layers. So taking care of truncation here is a change in the existing
263 264 * semantics of VOP_OPEN and therefore we chose not to implement any thing
264 265 * here. The check for the size of the file > 2GB is being done at the
265 266 * vfs layer in routine vn_open().
266 267 */
267 268
268 269 /* ARGSUSED */
269 270 static int
270 271 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct)
271 272 {
272 273 return (0);
273 274 }
274 275
275 276 /*ARGSUSED*/
276 277 static int
277 278 ufs_close(struct vnode *vp, int flag, int count, offset_t offset,
278 279 struct cred *cr, caller_context_t *ct)
279 280 {
280 281 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
281 282 cleanshares(vp, ttoproc(curthread)->p_pid);
282 283
283 284 /*
284 285 * Push partially filled cluster at last close.
285 286 * ``last close'' is approximated because the dnlc
286 287 * may have a hold on the vnode.
287 288 * Checking for VBAD here will also act as a forced umount check.
288 289 */
289 290 if (vp->v_count <= 2 && vp->v_type != VBAD) {
290 291 struct inode *ip = VTOI(vp);
291 292 if (ip->i_delaylen) {
292 293 ins.in_poc.value.ul++;
293 294 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen,
294 295 B_ASYNC | B_FREE, cr);
295 296 ip->i_delaylen = 0;
296 297 }
297 298 }
298 299
299 300 return (0);
300 301 }
301 302
302 303 /*ARGSUSED*/
303 304 static int
304 305 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr,
305 306 struct caller_context *ct)
306 307 {
307 308 struct inode *ip = VTOI(vp);
308 309 struct ufsvfs *ufsvfsp;
309 310 struct ulockfs *ulp = NULL;
310 311 int error = 0;
311 312 int intrans = 0;
312 313
313 314 ASSERT(RW_READ_HELD(&ip->i_rwlock));
314 315
315 316 /*
316 317 * Mandatory locking needs to be done before ufs_lockfs_begin()
317 318 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep.
318 319 */
319 320 if (MANDLOCK(vp, ip->i_mode)) {
320 321 /*
321 322 * ufs_getattr ends up being called by chklock
322 323 */
323 324 error = chklock(vp, FREAD, uiop->uio_loffset,
324 325 uiop->uio_resid, uiop->uio_fmode, ct);
325 326 if (error)
326 327 goto out;
327 328 }
328 329
329 330 ufsvfsp = ip->i_ufsvfs;
330 331 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK);
331 332 if (error)
332 333 goto out;
333 334
334 335 /*
335 336 * In the case that a directory is opened for reading as a file
336 337 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set.
337 338 * The locking order had to be changed to avoid a deadlock with
338 339 * an update taking place on that directory at the same time.
339 340 */
340 341 if ((ip->i_mode & IFMT) == IFDIR) {
341 342
342 343 rw_enter(&ip->i_contents, RW_READER);
343 344 error = rdip(ip, uiop, ioflag, cr);
344 345 rw_exit(&ip->i_contents);
345 346
346 347 if (error) {
347 348 if (ulp)
348 349 ufs_lockfs_end(ulp);
349 350 goto out;
350 351 }
351 352
352 353 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
353 354 TRANS_ISTRANS(ufsvfsp)) {
354 355 rw_exit(&ip->i_rwlock);
355 356 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
356 357 error);
357 358 ASSERT(!error);
358 359 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
359 360 TOP_READ_SIZE);
360 361 rw_enter(&ip->i_rwlock, RW_READER);
361 362 }
362 363 } else {
363 364 /*
364 365 * Only transact reads to files opened for sync-read and
365 366 * sync-write on a file system that is not write locked.
366 367 *
367 368 * The ``not write locked'' check prevents problems with
368 369 * enabling/disabling logging on a busy file system. E.g.,
369 370 * logging exists at the beginning of the read but does not
370 371 * at the end.
371 372 *
372 373 */
373 374 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
374 375 TRANS_ISTRANS(ufsvfsp)) {
375 376 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
376 377 error);
377 378 ASSERT(!error);
378 379 intrans = 1;
379 380 }
380 381
381 382 rw_enter(&ip->i_contents, RW_READER);
382 383 error = rdip(ip, uiop, ioflag, cr);
383 384 rw_exit(&ip->i_contents);
384 385
385 386 if (intrans) {
386 387 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
387 388 TOP_READ_SIZE);
388 389 }
|
↓ open down ↓ |
355 lines elided |
↑ open up ↑ |
389 390 }
390 391
391 392 if (ulp) {
392 393 ufs_lockfs_end(ulp);
393 394 }
394 395 out:
395 396
396 397 return (error);
397 398 }
398 399
399 -extern int ufs_HW; /* high water mark */
400 -extern int ufs_LW; /* low water mark */
401 -int ufs_WRITES = 1; /* XXX - enable/disable */
400 +extern volatile int ufs_HW; /* high water mark */
401 +extern volatile int ufs_LW; /* low water mark */
402 +volatile int ufs_WRITES = 1; /* XXX - enable/disable */
402 403 int ufs_throttles = 0; /* throttling count */
403 404 int ufs_allow_shared_writes = 1; /* directio shared writes */
404 405
405 406 static int
406 407 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag)
407 408 {
408 409 int shared_write;
409 410
410 411 /*
411 412 * If the FDSYNC flag is set then ignore the global
412 413 * ufs_allow_shared_writes in this case.
413 414 */
414 415 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes;
415 416
416 417 /*
417 418 * Filter to determine if this request is suitable as a
418 419 * concurrent rewrite. This write must not allocate blocks
419 420 * by extending the file or filling in holes. No use trying
420 421 * through FSYNC descriptors as the inode will be synchronously
421 422 * updated after the write. The uio structure has not yet been
422 423 * checked for sanity, so assume nothing.
423 424 */
424 425 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) &&
425 426 (uiop->uio_loffset >= (offset_t)0) &&
426 427 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) &&
427 428 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) &&
428 429 !(ioflag & FSYNC) && !bmap_has_holes(ip) &&
429 430 shared_write);
430 431 }
431 432
432 433 /*ARGSUSED*/
433 434 static int
434 435 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr,
435 436 caller_context_t *ct)
436 437 {
437 438 struct inode *ip = VTOI(vp);
438 439 struct ufsvfs *ufsvfsp;
439 440 struct ulockfs *ulp;
440 441 int retry = 1;
441 442 int error, resv, resid = 0;
442 443 int directio_status;
443 444 int exclusive;
444 445 int rewriteflg;
445 446 long start_resid = uiop->uio_resid;
446 447
447 448 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
448 449
449 450 retry_mandlock:
450 451 /*
451 452 * Mandatory locking needs to be done before ufs_lockfs_begin()
452 453 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep.
453 454 * Check for forced unmounts normally done in ufs_lockfs_begin().
454 455 */
455 456 if ((ufsvfsp = ip->i_ufsvfs) == NULL) {
456 457 error = EIO;
457 458 goto out;
458 459 }
459 460 if (MANDLOCK(vp, ip->i_mode)) {
460 461
461 462 ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
462 463
463 464 /*
464 465 * ufs_getattr ends up being called by chklock
465 466 */
466 467 error = chklock(vp, FWRITE, uiop->uio_loffset,
467 468 uiop->uio_resid, uiop->uio_fmode, ct);
468 469 if (error)
469 470 goto out;
470 471 }
471 472
472 473 /* i_rwlock can change in chklock */
473 474 exclusive = rw_write_held(&ip->i_rwlock);
474 475 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag);
475 476
476 477 /*
477 478 * Check for fast-path special case of directio re-writes.
478 479 */
479 480 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) &&
480 481 !exclusive && rewriteflg) {
481 482
482 483 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
483 484 if (error)
484 485 goto out;
485 486
486 487 rw_enter(&ip->i_contents, RW_READER);
487 488 error = ufs_directio_write(ip, uiop, ioflag, 1, cr,
488 489 &directio_status);
489 490 if (directio_status == DIRECTIO_SUCCESS) {
490 491 uint_t i_flag_save;
491 492
492 493 if (start_resid != uiop->uio_resid)
493 494 error = 0;
494 495 /*
495 496 * Special treatment of access times for re-writes.
496 497 * If IMOD is not already set, then convert it
497 498 * to IMODACC for this operation. This defers
498 499 * entering a delta into the log until the inode
499 500 * is flushed. This mimics what is done for read
500 501 * operations and inode access time.
501 502 */
502 503 mutex_enter(&ip->i_tlock);
503 504 i_flag_save = ip->i_flag;
504 505 ip->i_flag |= IUPD | ICHG;
505 506 ip->i_seq++;
506 507 ITIMES_NOLOCK(ip);
507 508 if ((i_flag_save & IMOD) == 0) {
508 509 ip->i_flag &= ~IMOD;
509 510 ip->i_flag |= IMODACC;
510 511 }
511 512 mutex_exit(&ip->i_tlock);
512 513 rw_exit(&ip->i_contents);
513 514 if (ulp)
514 515 ufs_lockfs_end(ulp);
515 516 goto out;
516 517 }
517 518 rw_exit(&ip->i_contents);
518 519 if (ulp)
519 520 ufs_lockfs_end(ulp);
520 521 }
521 522
522 523 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) {
523 524 rw_exit(&ip->i_rwlock);
524 525 rw_enter(&ip->i_rwlock, RW_WRITER);
525 526 /*
526 527 * Mandatory locking could have been enabled
527 528 * after dropping the i_rwlock.
528 529 */
529 530 if (MANDLOCK(vp, ip->i_mode))
530 531 goto retry_mandlock;
531 532 }
532 533
533 534 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
534 535 if (error)
535 536 goto out;
536 537
537 538 /*
538 539 * Amount of log space needed for this write
539 540 */
540 541 if (!rewriteflg || !(ioflag & FDSYNC))
541 542 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid);
542 543
543 544 /*
544 545 * Throttle writes.
545 546 */
546 547 if (ufs_WRITES && (ip->i_writes > ufs_HW)) {
547 548 mutex_enter(&ip->i_tlock);
548 549 while (ip->i_writes > ufs_HW) {
549 550 ufs_throttles++;
550 551 cv_wait(&ip->i_wrcv, &ip->i_tlock);
551 552 }
552 553 mutex_exit(&ip->i_tlock);
553 554 }
554 555
555 556 /*
556 557 * Enter Transaction
557 558 *
558 559 * If the write is a rewrite there is no need to open a transaction
559 560 * if the FDSYNC flag is set and not the FSYNC. In this case just
560 561 * set the IMODACC flag to modify do the update at a later time
561 562 * thus avoiding the overhead of the logging transaction that is
562 563 * not required.
563 564 */
564 565 if (ioflag & (FSYNC|FDSYNC)) {
565 566 if (ulp) {
566 567 if (rewriteflg) {
567 568 uint_t i_flag_save;
568 569
569 570 rw_enter(&ip->i_contents, RW_READER);
570 571 mutex_enter(&ip->i_tlock);
571 572 i_flag_save = ip->i_flag;
572 573 ip->i_flag |= IUPD | ICHG;
573 574 ip->i_seq++;
574 575 ITIMES_NOLOCK(ip);
575 576 if ((i_flag_save & IMOD) == 0) {
576 577 ip->i_flag &= ~IMOD;
577 578 ip->i_flag |= IMODACC;
578 579 }
579 580 mutex_exit(&ip->i_tlock);
580 581 rw_exit(&ip->i_contents);
581 582 } else {
582 583 int terr = 0;
583 584 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv,
584 585 terr);
585 586 ASSERT(!terr);
586 587 }
587 588 }
588 589 } else {
589 590 if (ulp)
590 591 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv);
591 592 }
592 593
593 594 /*
594 595 * Write the file
595 596 */
596 597 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
597 598 rw_enter(&ip->i_contents, RW_WRITER);
598 599 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) {
599 600 /*
600 601 * In append mode start at end of file.
601 602 */
602 603 uiop->uio_loffset = ip->i_size;
603 604 }
604 605
605 606 /*
606 607 * Mild optimisation, don't call ufs_trans_write() unless we have to
607 608 * Also, suppress file system full messages if we will retry.
608 609 */
609 610 if (retry)
610 611 ip->i_flag |= IQUIET;
611 612 if (resid) {
612 613 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid);
613 614 } else {
614 615 error = wrip(ip, uiop, ioflag, cr);
615 616 }
616 617 ip->i_flag &= ~IQUIET;
617 618
618 619 rw_exit(&ip->i_contents);
619 620 rw_exit(&ufsvfsp->vfs_dqrwlock);
620 621
621 622 /*
622 623 * Leave Transaction
623 624 */
624 625 if (ulp) {
625 626 if (ioflag & (FSYNC|FDSYNC)) {
626 627 if (!rewriteflg) {
627 628 int terr = 0;
628 629
629 630 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC,
630 631 resv);
631 632 if (error == 0)
632 633 error = terr;
633 634 }
634 635 } else {
635 636 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv);
636 637 }
637 638 ufs_lockfs_end(ulp);
638 639 }
639 640 out:
640 641 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
641 642 /*
642 643 * Any blocks tied up in pending deletes?
643 644 */
644 645 ufs_delete_drain_wait(ufsvfsp, 1);
645 646 retry = 0;
646 647 goto retry_mandlock;
647 648 }
648 649
649 650 if (error == ENOSPC && (start_resid != uiop->uio_resid))
650 651 error = 0;
651 652
652 653 return (error);
653 654 }
654 655
655 656 /*
|
↓ open down ↓ |
244 lines elided |
↑ open up ↑ |
656 657 * Don't cache write blocks to files with the sticky bit set.
657 658 * Used to keep swap files from blowing the page cache on a server.
658 659 */
659 660 int stickyhack = 1;
660 661
661 662 /*
662 663 * Free behind hacks. The pager is busted.
663 664 * XXX - need to pass the information down to writedone() in a flag like B_SEQ
664 665 * or B_FREE_IF_TIGHT_ON_MEMORY.
665 666 */
666 -int freebehind = 1;
667 -int smallfile = 0;
667 +volatile int freebehind = 1;
668 +volatile int smallfile = 0;
668 669 u_offset_t smallfile64 = 32 * 1024;
669 670
670 671 /*
671 672 * While we should, in most cases, cache the pages for write, we
672 673 * may also want to cache the pages for read as long as they are
673 674 * frequently re-usable.
674 675 *
675 676 * If cache_read_ahead = 1, the pages for read will go to the tail
676 677 * of the cache list when they are released, otherwise go to the head.
677 678 */
678 679 int cache_read_ahead = 0;
679 680
680 681 /*
681 682 * Freebehind exists so that as we read large files sequentially we
682 683 * don't consume most of memory with pages from a few files. It takes
683 684 * longer to re-read from disk multiple small files as it does reading
684 685 * one large one sequentially. As system memory grows customers need
685 686 * to retain bigger chunks of files in memory. The advent of the
686 687 * cachelist opens up of the possibility freeing pages to the head or
687 688 * tail of the list.
688 689 *
689 690 * Not freeing a page is a bet that the page will be read again before
690 691 * it's segmap slot is needed for something else. If we loose the bet,
691 692 * it means some other thread is burdened with the page free we did
692 693 * not do. If we win we save a free and reclaim.
693 694 *
694 695 * Freeing it at the tail vs the head of cachelist is a bet that the
695 696 * page will survive until the next read. It's also saying that this
696 697 * page is more likely to be re-used than a page freed some time ago
697 698 * and never reclaimed.
698 699 *
699 700 * Freebehind maintains a range of file offset [smallfile1; smallfile2]
700 701 *
701 702 * 0 < offset < smallfile1 : pages are not freed.
702 703 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist.
703 704 * smallfile2 < offset : pages freed to head of cachelist.
704 705 *
705 706 * The range is computed at most once per second and depends on
706 707 * freemem and ncpus_online. Both parameters are bounded to be
707 708 * >= smallfile && >= smallfile64.
708 709 *
709 710 * smallfile1 = (free memory / ncpu) / 1000
710 711 * smallfile2 = (free memory / ncpu) / 10
711 712 *
712 713 * A few examples values:
713 714 *
714 715 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2]
715 716 * ncpus_online = 4 ncpus_online = 64
716 717 * ------------------ ----------------------- -----------------------
717 718 * 1G [256K; 25M] [32K; 1.5M]
718 719 * 10G [2.5M; 250M] [156K; 15M]
719 720 * 100G [25M; 2.5G] [1.5M; 150M]
720 721 *
721 722 */
722 723
723 724 #define SMALLFILE1_D 1000
724 725 #define SMALLFILE2_D 10
725 726 static u_offset_t smallfile1 = 32 * 1024;
726 727 static u_offset_t smallfile2 = 32 * 1024;
727 728 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */
728 729 uint_t smallfile1_d = SMALLFILE1_D;
729 730 uint_t smallfile2_d = SMALLFILE2_D;
730 731
731 732 /*
732 733 * wrip does the real work of write requests for ufs.
733 734 */
734 735 int
735 736 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr)
736 737 {
737 738 rlim64_t limit = uio->uio_llimit;
738 739 u_offset_t off;
739 740 u_offset_t old_i_size;
740 741 struct fs *fs;
741 742 struct vnode *vp;
742 743 struct ufsvfs *ufsvfsp;
743 744 caddr_t base;
744 745 long start_resid = uio->uio_resid; /* save starting resid */
745 746 long premove_resid; /* resid before uiomove() */
746 747 uint_t flags;
747 748 int newpage;
748 749 int iupdat_flag, directio_status;
749 750 int n, on, mapon;
750 751 int error, pagecreate;
751 752 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */
752 753 int32_t iblocks;
753 754 int new_iblocks;
754 755
755 756 /*
756 757 * ip->i_size is incremented before the uiomove
757 758 * is done on a write. If the move fails (bad user
758 759 * address) reset ip->i_size.
759 760 * The better way would be to increment ip->i_size
760 761 * only if the uiomove succeeds.
761 762 */
762 763 int i_size_changed = 0;
763 764 o_mode_t type;
764 765 int i_seq_needed = 0;
765 766
766 767 vp = ITOV(ip);
767 768
768 769 /*
769 770 * check for forced unmount - should not happen as
770 771 * the request passed the lockfs checks.
771 772 */
772 773 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
773 774 return (EIO);
774 775
775 776 fs = ip->i_fs;
776 777
777 778 ASSERT(RW_WRITE_HELD(&ip->i_contents));
778 779
779 780 /* check for valid filetype */
780 781 type = ip->i_mode & IFMT;
781 782 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
782 783 (type != IFLNK) && (type != IFSHAD)) {
783 784 return (EIO);
784 785 }
785 786
786 787 /*
787 788 * the actual limit of UFS file size
788 789 * is UFS_MAXOFFSET_T
789 790 */
790 791 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
791 792 limit = MAXOFFSET_T;
792 793
793 794 if (uio->uio_loffset >= limit) {
794 795 proc_t *p = ttoproc(curthread);
795 796
796 797 mutex_enter(&p->p_lock);
797 798 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
798 799 p, RCA_UNSAFE_SIGINFO);
799 800 mutex_exit(&p->p_lock);
800 801 return (EFBIG);
801 802 }
802 803
803 804 /*
804 805 * if largefiles are disallowed, the limit is
805 806 * the pre-largefiles value of 2GB
806 807 */
807 808 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
808 809 limit = MIN(UFS_MAXOFFSET_T, limit);
809 810 else
810 811 limit = MIN(MAXOFF32_T, limit);
811 812
812 813 if (uio->uio_loffset < (offset_t)0) {
813 814 return (EINVAL);
814 815 }
815 816 if (uio->uio_resid == 0) {
816 817 return (0);
817 818 }
818 819
819 820 if (uio->uio_loffset >= limit)
820 821 return (EFBIG);
821 822
822 823 ip->i_flag |= INOACC; /* don't update ref time in getpage */
823 824
824 825 if (ioflag & (FSYNC|FDSYNC)) {
825 826 ip->i_flag |= ISYNC;
826 827 iupdat_flag = 1;
827 828 }
828 829 /*
829 830 * Try to go direct
830 831 */
831 832 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
832 833 uio->uio_llimit = limit;
833 834 error = ufs_directio_write(ip, uio, ioflag, 0, cr,
834 835 &directio_status);
835 836 /*
836 837 * If ufs_directio wrote to the file or set the flags,
837 838 * we need to update i_seq, but it may be deferred.
838 839 */
839 840 if (start_resid != uio->uio_resid ||
840 841 (ip->i_flag & (ICHG|IUPD))) {
841 842 i_seq_needed = 1;
842 843 ip->i_flag |= ISEQ;
843 844 }
844 845 if (directio_status == DIRECTIO_SUCCESS)
845 846 goto out;
846 847 }
847 848
848 849 /*
849 850 * Behavior with respect to dropping/reacquiring vfs_dqrwlock:
850 851 *
851 852 * o shadow inodes: vfs_dqrwlock is not held at all
852 853 * o quota updates: vfs_dqrwlock is read or write held
853 854 * o other updates: vfs_dqrwlock is read held
854 855 *
855 856 * The first case is the only one where we do not hold
856 857 * vfs_dqrwlock at all while entering wrip().
857 858 * We must make sure not to downgrade/drop vfs_dqrwlock if we
858 859 * have it as writer, i.e. if we are updating the quota inode.
859 860 * There is no potential deadlock scenario in this case as
860 861 * ufs_getpage() takes care of this and avoids reacquiring
861 862 * vfs_dqrwlock in that case.
862 863 *
863 864 * This check is done here since the above conditions do not change
864 865 * and we possibly loop below, so save a few cycles.
865 866 */
866 867 if ((type == IFSHAD) ||
867 868 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) {
868 869 do_dqrwlock = 0;
869 870 } else {
870 871 do_dqrwlock = 1;
871 872 }
872 873
873 874 /*
874 875 * Large Files: We cast MAXBMASK to offset_t
875 876 * inorder to mask out the higher bits. Since offset_t
876 877 * is a signed value, the high order bit set in MAXBMASK
877 878 * value makes it do the right thing by having all bits 1
878 879 * in the higher word. May be removed for _SOLARIS64_.
879 880 */
880 881
881 882 fs = ip->i_fs;
882 883 do {
883 884 u_offset_t uoff = uio->uio_loffset;
884 885 off = uoff & (offset_t)MAXBMASK;
885 886 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
886 887 on = (int)blkoff(fs, uoff);
887 888 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid);
888 889 new_iblocks = 1;
889 890
890 891 if (type == IFREG && uoff + n >= limit) {
891 892 if (uoff >= limit) {
892 893 error = EFBIG;
893 894 goto out;
894 895 }
895 896 /*
896 897 * since uoff + n >= limit,
897 898 * therefore n >= limit - uoff, and n is an int
898 899 * so it is safe to cast it to an int
899 900 */
900 901 n = (int)(limit - (rlim64_t)uoff);
901 902 }
902 903 if (uoff + n > ip->i_size) {
903 904 /*
904 905 * We are extending the length of the file.
905 906 * bmap is used so that we are sure that
906 907 * if we need to allocate new blocks, that it
907 908 * is done here before we up the file size.
908 909 */
909 910 error = bmap_write(ip, uoff, (int)(on + n),
910 911 mapon == 0, NULL, cr);
911 912 /*
912 913 * bmap_write never drops i_contents so if
913 914 * the flags are set it changed the file.
914 915 */
915 916 if (ip->i_flag & (ICHG|IUPD)) {
916 917 i_seq_needed = 1;
917 918 ip->i_flag |= ISEQ;
918 919 }
919 920 if (error)
920 921 break;
921 922 /*
922 923 * There is a window of vulnerability here.
923 924 * The sequence of operations: allocate file
924 925 * system blocks, uiomove the data into pages,
925 926 * and then update the size of the file in the
926 927 * inode, must happen atomically. However, due
927 928 * to current locking constraints, this can not
928 929 * be done.
929 930 */
930 931 ASSERT(ip->i_writer == NULL);
931 932 ip->i_writer = curthread;
932 933 i_size_changed = 1;
933 934 /*
934 935 * If we are writing from the beginning of
935 936 * the mapping, we can just create the
936 937 * pages without having to read them.
937 938 */
938 939 pagecreate = (mapon == 0);
939 940 } else if (n == MAXBSIZE) {
940 941 /*
941 942 * Going to do a whole mappings worth,
942 943 * so we can just create the pages w/o
943 944 * having to read them in. But before
944 945 * we do that, we need to make sure any
945 946 * needed blocks are allocated first.
946 947 */
947 948 iblocks = ip->i_blocks;
948 949 error = bmap_write(ip, uoff, (int)(on + n),
949 950 BI_ALLOC_ONLY, NULL, cr);
950 951 /*
951 952 * bmap_write never drops i_contents so if
952 953 * the flags are set it changed the file.
953 954 */
954 955 if (ip->i_flag & (ICHG|IUPD)) {
955 956 i_seq_needed = 1;
956 957 ip->i_flag |= ISEQ;
957 958 }
958 959 if (error)
959 960 break;
960 961 pagecreate = 1;
961 962 /*
962 963 * check if the new created page needed the
963 964 * allocation of new disk blocks.
964 965 */
965 966 if (iblocks == ip->i_blocks)
966 967 new_iblocks = 0; /* no new blocks allocated */
967 968 } else {
968 969 pagecreate = 0;
969 970 /*
970 971 * In sync mode flush the indirect blocks which
971 972 * may have been allocated and not written on
972 973 * disk. In above cases bmap_write will allocate
973 974 * in sync mode.
974 975 */
975 976 if (ioflag & (FSYNC|FDSYNC)) {
976 977 error = ufs_indirblk_sync(ip, uoff);
977 978 if (error)
978 979 break;
979 980 }
980 981 }
981 982
982 983 /*
983 984 * At this point we can enter ufs_getpage() in one
984 985 * of two ways:
985 986 * 1) segmap_getmapflt() calls ufs_getpage() when the
986 987 * forcefault parameter is true (pagecreate == 0)
987 988 * 2) uiomove() causes a page fault.
988 989 *
989 990 * We have to drop the contents lock to prevent the VM
990 991 * system from trying to reacquire it in ufs_getpage()
991 992 * should the uiomove cause a pagefault.
992 993 *
993 994 * We have to drop the reader vfs_dqrwlock here as well.
994 995 */
995 996 rw_exit(&ip->i_contents);
996 997 if (do_dqrwlock) {
997 998 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
998 999 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock)));
999 1000 rw_exit(&ufsvfsp->vfs_dqrwlock);
1000 1001 }
1001 1002
1002 1003 newpage = 0;
1003 1004 premove_resid = uio->uio_resid;
1004 1005
1005 1006 /*
1006 1007 * Touch the page and fault it in if it is not in core
1007 1008 * before segmap_getmapflt or vpm_data_copy can lock it.
1008 1009 * This is to avoid the deadlock if the buffer is mapped
1009 1010 * to the same file through mmap which we want to write.
1010 1011 */
1011 1012 uio_prefaultpages((long)n, uio);
1012 1013
1013 1014 if (vpm_enable) {
1014 1015 /*
1015 1016 * Copy data. If new pages are created, part of
1016 1017 * the page that is not written will be initizliazed
1017 1018 * with zeros.
1018 1019 */
1019 1020 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1020 1021 uio, !pagecreate, &newpage, 0, S_WRITE);
1021 1022 } else {
1022 1023
1023 1024 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1024 1025 (uint_t)n, !pagecreate, S_WRITE);
1025 1026
1026 1027 /*
1027 1028 * segmap_pagecreate() returns 1 if it calls
1028 1029 * page_create_va() to allocate any pages.
1029 1030 */
1030 1031
1031 1032 if (pagecreate)
1032 1033 newpage = segmap_pagecreate(segkmap, base,
1033 1034 (size_t)n, 0);
1034 1035
1035 1036 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
1036 1037 }
1037 1038
1038 1039 /*
1039 1040 * If "newpage" is set, then a new page was created and it
1040 1041 * does not contain valid data, so it needs to be initialized
1041 1042 * at this point.
1042 1043 * Otherwise the page contains old data, which was overwritten
1043 1044 * partially or as a whole in uiomove.
1044 1045 * If there is only one iovec structure within uio, then
1045 1046 * on error uiomove will not be able to update uio->uio_loffset
1046 1047 * and we would zero the whole page here!
1047 1048 *
1048 1049 * If uiomove fails because of an error, the old valid data
1049 1050 * is kept instead of filling the rest of the page with zero's.
1050 1051 */
1051 1052 if (!vpm_enable && newpage &&
1052 1053 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
1053 1054 /*
1054 1055 * We created pages w/o initializing them completely,
1055 1056 * thus we need to zero the part that wasn't set up.
1056 1057 * This happens on most EOF write cases and if
1057 1058 * we had some sort of error during the uiomove.
1058 1059 */
1059 1060 int nzero, nmoved;
1060 1061
1061 1062 nmoved = (int)(uio->uio_loffset - (off + mapon));
1062 1063 ASSERT(nmoved >= 0 && nmoved <= n);
1063 1064 nzero = roundup(on + n, PAGESIZE) - nmoved;
1064 1065 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
1065 1066 (void) kzero(base + mapon + nmoved, (uint_t)nzero);
1066 1067 }
1067 1068
1068 1069 /*
1069 1070 * Unlock the pages allocated by page_create_va()
1070 1071 * in segmap_pagecreate()
1071 1072 */
1072 1073 if (!vpm_enable && newpage)
1073 1074 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
1074 1075
1075 1076 /*
1076 1077 * If the size of the file changed, then update the
1077 1078 * size field in the inode now. This can't be done
1078 1079 * before the call to segmap_pageunlock or there is
1079 1080 * a potential deadlock with callers to ufs_putpage().
1080 1081 * They will be holding i_contents and trying to lock
1081 1082 * a page, while this thread is holding a page locked
1082 1083 * and trying to acquire i_contents.
1083 1084 */
1084 1085 if (i_size_changed) {
1085 1086 rw_enter(&ip->i_contents, RW_WRITER);
1086 1087 old_i_size = ip->i_size;
1087 1088 UFS_SET_ISIZE(uoff + n, ip);
1088 1089 TRANS_INODE(ufsvfsp, ip);
1089 1090 /*
1090 1091 * file has grown larger than 2GB. Set flag
1091 1092 * in superblock to indicate this, if it
1092 1093 * is not already set.
1093 1094 */
1094 1095 if ((ip->i_size > MAXOFF32_T) &&
1095 1096 !(fs->fs_flags & FSLARGEFILES)) {
1096 1097 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1097 1098 mutex_enter(&ufsvfsp->vfs_lock);
1098 1099 fs->fs_flags |= FSLARGEFILES;
1099 1100 ufs_sbwrite(ufsvfsp);
1100 1101 mutex_exit(&ufsvfsp->vfs_lock);
1101 1102 }
1102 1103 mutex_enter(&ip->i_tlock);
1103 1104 ip->i_writer = NULL;
1104 1105 cv_broadcast(&ip->i_wrcv);
1105 1106 mutex_exit(&ip->i_tlock);
1106 1107 rw_exit(&ip->i_contents);
1107 1108 }
1108 1109
1109 1110 if (error) {
1110 1111 /*
1111 1112 * If we failed on a write, we may have already
1112 1113 * allocated file blocks as well as pages. It's
1113 1114 * hard to undo the block allocation, but we must
1114 1115 * be sure to invalidate any pages that may have
1115 1116 * been allocated.
1116 1117 *
1117 1118 * If the page was created without initialization
1118 1119 * then we must check if it should be possible
1119 1120 * to destroy the new page and to keep the old data
1120 1121 * on the disk.
1121 1122 *
1122 1123 * It is possible to destroy the page without
1123 1124 * having to write back its contents only when
1124 1125 * - the size of the file keeps unchanged
1125 1126 * - bmap_write() did not allocate new disk blocks
1126 1127 * it is possible to create big files using "seek" and
1127 1128 * write to the end of the file. A "write" to a
1128 1129 * position before the end of the file would not
1129 1130 * change the size of the file but it would allocate
1130 1131 * new disk blocks.
1131 1132 * - uiomove intended to overwrite the whole page.
1132 1133 * - a new page was created (newpage == 1).
1133 1134 */
1134 1135
1135 1136 if (i_size_changed == 0 && new_iblocks == 0 &&
1136 1137 newpage) {
1137 1138
1138 1139 /* unwind what uiomove eventually last did */
1139 1140 uio->uio_resid = premove_resid;
1140 1141
1141 1142 /*
1142 1143 * destroy the page, do not write ambiguous
1143 1144 * data to the disk.
1144 1145 */
1145 1146 flags = SM_DESTROY;
1146 1147 } else {
1147 1148 /*
1148 1149 * write the page back to the disk, if dirty,
1149 1150 * and remove the page from the cache.
1150 1151 */
1151 1152 flags = SM_INVAL;
1152 1153 }
1153 1154
1154 1155 if (vpm_enable) {
1155 1156 /*
1156 1157 * Flush pages.
1157 1158 */
1158 1159 (void) vpm_sync_pages(vp, off, n, flags);
1159 1160 } else {
1160 1161 (void) segmap_release(segkmap, base, flags);
1161 1162 }
1162 1163 } else {
1163 1164 flags = 0;
1164 1165 /*
1165 1166 * Force write back for synchronous write cases.
1166 1167 */
1167 1168 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) {
1168 1169 /*
1169 1170 * If the sticky bit is set but the
1170 1171 * execute bit is not set, we do a
1171 1172 * synchronous write back and free
1172 1173 * the page when done. We set up swap
1173 1174 * files to be handled this way to
1174 1175 * prevent servers from keeping around
1175 1176 * the client's swap pages too long.
1176 1177 * XXX - there ought to be a better way.
1177 1178 */
1178 1179 if (IS_SWAPVP(vp)) {
1179 1180 flags = SM_WRITE | SM_FREE |
1180 1181 SM_DONTNEED;
1181 1182 iupdat_flag = 0;
1182 1183 } else {
1183 1184 flags = SM_WRITE;
1184 1185 }
1185 1186 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
1186 1187 /*
1187 1188 * Have written a whole block.
1188 1189 * Start an asynchronous write and
1189 1190 * mark the buffer to indicate that
1190 1191 * it won't be needed again soon.
1191 1192 */
1192 1193 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
1193 1194 }
1194 1195 if (vpm_enable) {
1195 1196 /*
1196 1197 * Flush pages.
1197 1198 */
1198 1199 error = vpm_sync_pages(vp, off, n, flags);
1199 1200 } else {
1200 1201 error = segmap_release(segkmap, base, flags);
1201 1202 }
1202 1203 /*
1203 1204 * If the operation failed and is synchronous,
1204 1205 * then we need to unwind what uiomove() last
1205 1206 * did so we can potentially return an error to
1206 1207 * the caller. If this write operation was
1207 1208 * done in two pieces and the first succeeded,
1208 1209 * then we won't return an error for the second
1209 1210 * piece that failed. However, we only want to
1210 1211 * return a resid value that reflects what was
1211 1212 * really done.
1212 1213 *
1213 1214 * Failures for non-synchronous operations can
1214 1215 * be ignored since the page subsystem will
1215 1216 * retry the operation until it succeeds or the
1216 1217 * file system is unmounted.
1217 1218 */
1218 1219 if (error) {
1219 1220 if ((ioflag & (FSYNC | FDSYNC)) ||
1220 1221 type == IFDIR) {
1221 1222 uio->uio_resid = premove_resid;
1222 1223 } else {
1223 1224 error = 0;
1224 1225 }
1225 1226 }
1226 1227 }
1227 1228
1228 1229 /*
1229 1230 * Re-acquire contents lock.
1230 1231 * If it was dropped, reacquire reader vfs_dqrwlock as well.
1231 1232 */
1232 1233 if (do_dqrwlock)
1233 1234 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1234 1235 rw_enter(&ip->i_contents, RW_WRITER);
1235 1236
1236 1237 /*
1237 1238 * If the uiomove() failed or if a synchronous
1238 1239 * page push failed, fix up i_size.
1239 1240 */
1240 1241 if (error) {
1241 1242 if (i_size_changed) {
1242 1243 /*
1243 1244 * The uiomove failed, and we
1244 1245 * allocated blocks,so get rid
1245 1246 * of them.
1246 1247 */
1247 1248 (void) ufs_itrunc(ip, old_i_size, 0, cr);
1248 1249 }
1249 1250 } else {
1250 1251 /*
1251 1252 * XXX - Can this be out of the loop?
1252 1253 */
1253 1254 ip->i_flag |= IUPD | ICHG;
1254 1255 /*
1255 1256 * Only do one increase of i_seq for multiple
1256 1257 * pieces. Because we drop locks, record
1257 1258 * the fact that we changed the timestamp and
1258 1259 * are deferring the increase in case another thread
1259 1260 * pushes our timestamp update.
1260 1261 */
1261 1262 i_seq_needed = 1;
1262 1263 ip->i_flag |= ISEQ;
1263 1264 if (i_size_changed)
1264 1265 ip->i_flag |= IATTCHG;
1265 1266 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) |
1266 1267 (IEXEC >> 6))) != 0 &&
1267 1268 (ip->i_mode & (ISUID | ISGID)) != 0 &&
1268 1269 secpolicy_vnode_setid_retain(cr,
1269 1270 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) {
1270 1271 /*
1271 1272 * Clear Set-UID & Set-GID bits on
1272 1273 * successful write if not privileged
1273 1274 * and at least one of the execute bits
1274 1275 * is set. If we always clear Set-GID,
1275 1276 * mandatory file and record locking is
1276 1277 * unuseable.
1277 1278 */
1278 1279 ip->i_mode &= ~(ISUID | ISGID);
1279 1280 }
1280 1281 }
1281 1282 /*
1282 1283 * In the case the FDSYNC flag is set and this is a
1283 1284 * "rewrite" we won't log a delta.
1284 1285 * The FSYNC flag overrides all cases.
1285 1286 */
1286 1287 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) {
1287 1288 TRANS_INODE(ufsvfsp, ip);
1288 1289 }
1289 1290 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1290 1291
1291 1292 out:
1292 1293 /*
1293 1294 * Make sure i_seq is increased at least once per write
1294 1295 */
1295 1296 if (i_seq_needed) {
1296 1297 ip->i_seq++;
1297 1298 ip->i_flag &= ~ISEQ; /* no longer deferred */
1298 1299 }
1299 1300
1300 1301 /*
1301 1302 * Inode is updated according to this table -
1302 1303 *
1303 1304 * FSYNC FDSYNC(posix.4)
1304 1305 * --------------------------
1305 1306 * always@ IATTCHG|IBDWRITE
1306 1307 *
1307 1308 * @ - If we are doing synchronous write the only time we should
1308 1309 * not be sync'ing the ip here is if we have the stickyhack
1309 1310 * activated, the file is marked with the sticky bit and
1310 1311 * no exec bit, the file length has not been changed and
1311 1312 * no new blocks have been allocated during this write.
1312 1313 */
1313 1314
1314 1315 if ((ip->i_flag & ISYNC) != 0) {
1315 1316 /*
1316 1317 * we have eliminated nosync
1317 1318 */
1318 1319 if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
1319 1320 ((ioflag & FSYNC) && iupdat_flag)) {
1320 1321 ufs_iupdat(ip, 1);
1321 1322 }
1322 1323 }
1323 1324
1324 1325 /*
1325 1326 * If we've already done a partial-write, terminate
1326 1327 * the write but return no error unless the error is ENOSPC
1327 1328 * because the caller can detect this and free resources and
1328 1329 * try again.
1329 1330 */
1330 1331 if ((start_resid != uio->uio_resid) && (error != ENOSPC))
1331 1332 error = 0;
1332 1333
1333 1334 ip->i_flag &= ~(INOACC | ISYNC);
1334 1335 ITIMES_NOLOCK(ip);
1335 1336 return (error);
1336 1337 }
1337 1338
1338 1339 /*
1339 1340 * rdip does the real work of read requests for ufs.
1340 1341 */
1341 1342 int
1342 1343 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr)
1343 1344 {
1344 1345 u_offset_t off;
1345 1346 caddr_t base;
1346 1347 struct fs *fs;
1347 1348 struct ufsvfs *ufsvfsp;
1348 1349 struct vnode *vp;
1349 1350 long oresid = uio->uio_resid;
1350 1351 u_offset_t n, on, mapon;
1351 1352 int error = 0;
1352 1353 int doupdate = 1;
1353 1354 uint_t flags;
1354 1355 int dofree, directio_status;
1355 1356 krw_t rwtype;
1356 1357 o_mode_t type;
1357 1358 clock_t now;
1358 1359
1359 1360 vp = ITOV(ip);
1360 1361
1361 1362 ASSERT(RW_LOCK_HELD(&ip->i_contents));
1362 1363
1363 1364 ufsvfsp = ip->i_ufsvfs;
1364 1365
1365 1366 if (ufsvfsp == NULL)
1366 1367 return (EIO);
1367 1368
1368 1369 fs = ufsvfsp->vfs_fs;
1369 1370
1370 1371 /* check for valid filetype */
1371 1372 type = ip->i_mode & IFMT;
1372 1373 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
1373 1374 (type != IFLNK) && (type != IFSHAD)) {
1374 1375 return (EIO);
1375 1376 }
1376 1377
1377 1378 if (uio->uio_loffset > UFS_MAXOFFSET_T) {
1378 1379 error = 0;
1379 1380 goto out;
1380 1381 }
1381 1382 if (uio->uio_loffset < (offset_t)0) {
1382 1383 return (EINVAL);
1383 1384 }
1384 1385 if (uio->uio_resid == 0) {
1385 1386 return (0);
1386 1387 }
1387 1388
1388 1389 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) &&
1389 1390 (!ufsvfsp->vfs_noatime)) {
1390 1391 mutex_enter(&ip->i_tlock);
1391 1392 ip->i_flag |= IACC;
1392 1393 mutex_exit(&ip->i_tlock);
1393 1394 }
1394 1395 /*
1395 1396 * Try to go direct
1396 1397 */
1397 1398 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
1398 1399 error = ufs_directio_read(ip, uio, cr, &directio_status);
1399 1400 if (directio_status == DIRECTIO_SUCCESS)
1400 1401 goto out;
1401 1402 }
1402 1403
1403 1404 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
1404 1405
1405 1406 do {
1406 1407 offset_t diff;
1407 1408 u_offset_t uoff = uio->uio_loffset;
1408 1409 off = uoff & (offset_t)MAXBMASK;
1409 1410 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET);
1410 1411 on = (u_offset_t)blkoff(fs, uoff);
1411 1412 n = MIN((u_offset_t)fs->fs_bsize - on,
1412 1413 (u_offset_t)uio->uio_resid);
1413 1414
1414 1415 diff = ip->i_size - uoff;
1415 1416
1416 1417 if (diff <= (offset_t)0) {
1417 1418 error = 0;
1418 1419 goto out;
1419 1420 }
1420 1421 if (diff < (offset_t)n)
1421 1422 n = (int)diff;
1422 1423
1423 1424 /*
1424 1425 * We update smallfile2 and smallfile1 at most every second.
1425 1426 */
1426 1427 now = ddi_get_lbolt();
1427 1428 if (now >= smallfile_update) {
1428 1429 uint64_t percpufreeb;
1429 1430 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
1430 1431 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
1431 1432 percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
1432 1433 smallfile1 = percpufreeb / smallfile1_d;
1433 1434 smallfile2 = percpufreeb / smallfile2_d;
1434 1435 smallfile1 = MAX(smallfile1, smallfile);
1435 1436 smallfile1 = MAX(smallfile1, smallfile64);
1436 1437 smallfile2 = MAX(smallfile1, smallfile2);
1437 1438 smallfile_update = now + hz;
1438 1439 }
1439 1440
1440 1441 dofree = freebehind &&
1441 1442 ip->i_nextr == (off & PAGEMASK) && off > smallfile1;
1442 1443
1443 1444 /*
1444 1445 * At this point we can enter ufs_getpage() in one of two
1445 1446 * ways:
1446 1447 * 1) segmap_getmapflt() calls ufs_getpage() when the
1447 1448 * forcefault parameter is true (value of 1 is passed)
1448 1449 * 2) uiomove() causes a page fault.
1449 1450 *
1450 1451 * We cannot hold onto an i_contents reader lock without
1451 1452 * risking deadlock in ufs_getpage() so drop a reader lock.
1452 1453 * The ufs_getpage() dolock logic already allows for a
1453 1454 * thread holding i_contents as writer to work properly
1454 1455 * so we keep a writer lock.
1455 1456 */
1456 1457 if (rwtype == RW_READER)
1457 1458 rw_exit(&ip->i_contents);
1458 1459
1459 1460 if (vpm_enable) {
1460 1461 /*
1461 1462 * Copy data.
1462 1463 */
1463 1464 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1464 1465 uio, 1, NULL, 0, S_READ);
1465 1466 } else {
1466 1467 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1467 1468 (uint_t)n, 1, S_READ);
1468 1469 error = uiomove(base + mapon, (long)n, UIO_READ, uio);
1469 1470 }
1470 1471
1471 1472 flags = 0;
1472 1473 if (!error) {
1473 1474 /*
1474 1475 * If reading sequential we won't need this
1475 1476 * buffer again soon. For offsets in range
1476 1477 * [smallfile1, smallfile2] release the pages
1477 1478 * at the tail of the cache list, larger
1478 1479 * offsets are released at the head.
1479 1480 */
1480 1481 if (dofree) {
1481 1482 flags = SM_FREE | SM_ASYNC;
1482 1483 if ((cache_read_ahead == 0) &&
1483 1484 (off > smallfile2))
1484 1485 flags |= SM_DONTNEED;
1485 1486 }
1486 1487 /*
1487 1488 * In POSIX SYNC (FSYNC and FDSYNC) read mode,
1488 1489 * we want to make sure that the page which has
1489 1490 * been read, is written on disk if it is dirty.
1490 1491 * And corresponding indirect blocks should also
1491 1492 * be flushed out.
1492 1493 */
1493 1494 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
1494 1495 flags &= ~SM_ASYNC;
1495 1496 flags |= SM_WRITE;
1496 1497 }
1497 1498 if (vpm_enable) {
1498 1499 error = vpm_sync_pages(vp, off, n, flags);
1499 1500 } else {
1500 1501 error = segmap_release(segkmap, base, flags);
1501 1502 }
1502 1503 } else {
1503 1504 if (vpm_enable) {
1504 1505 (void) vpm_sync_pages(vp, off, n, flags);
1505 1506 } else {
1506 1507 (void) segmap_release(segkmap, base, flags);
1507 1508 }
1508 1509 }
1509 1510
1510 1511 if (rwtype == RW_READER)
1511 1512 rw_enter(&ip->i_contents, rwtype);
1512 1513 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1513 1514 out:
1514 1515 /*
1515 1516 * Inode is updated according to this table if FRSYNC is set.
1516 1517 *
1517 1518 * FSYNC FDSYNC(posix.4)
1518 1519 * --------------------------
1519 1520 * always IATTCHG|IBDWRITE
1520 1521 */
1521 1522 /*
1522 1523 * The inode is not updated if we're logging and the inode is a
1523 1524 * directory with FRSYNC, FSYNC and FDSYNC flags set.
1524 1525 */
1525 1526 if (ioflag & FRSYNC) {
1526 1527 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) {
1527 1528 doupdate = 0;
1528 1529 }
1529 1530 if (doupdate) {
1530 1531 if ((ioflag & FSYNC) ||
1531 1532 ((ioflag & FDSYNC) &&
1532 1533 (ip->i_flag & (IATTCHG|IBDWRITE)))) {
1533 1534 ufs_iupdat(ip, 1);
1534 1535 }
1535 1536 }
1536 1537 }
1537 1538 /*
1538 1539 * If we've already done a partial read, terminate
1539 1540 * the read but return no error.
1540 1541 */
1541 1542 if (oresid != uio->uio_resid)
1542 1543 error = 0;
1543 1544 ITIMES(ip);
1544 1545
1545 1546 return (error);
1546 1547 }
1547 1548
1548 1549 /* ARGSUSED */
1549 1550 static int
1550 1551 ufs_ioctl(
1551 1552 struct vnode *vp,
1552 1553 int cmd,
1553 1554 intptr_t arg,
1554 1555 int flag,
|
↓ open down ↓ |
877 lines elided |
↑ open up ↑ |
1555 1556 struct cred *cr,
1556 1557 int *rvalp,
1557 1558 caller_context_t *ct)
1558 1559 {
1559 1560 struct lockfs lockfs, lockfs_out;
1560 1561 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
1561 1562 char *comment, *original_comment;
1562 1563 struct fs *fs;
1563 1564 struct ulockfs *ulp;
1564 1565 offset_t off;
1565 - extern int maxphys;
1566 1566 int error;
1567 1567 int issync;
1568 1568 int trans_size;
1569 1569
1570 1570
1571 1571 /*
1572 1572 * forcibly unmounted
1573 1573 */
1574 1574 if (ufsvfsp == NULL || vp->v_vfsp == NULL ||
1575 1575 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1576 1576 return (EIO);
1577 1577 fs = ufsvfsp->vfs_fs;
1578 1578
1579 1579 if (cmd == Q_QUOTACTL) {
1580 1580 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK);
1581 1581 if (error)
1582 1582 return (error);
1583 1583
1584 1584 if (ulp) {
1585 1585 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA,
1586 1586 TOP_SETQUOTA_SIZE(fs));
1587 1587 }
1588 1588
1589 1589 error = quotactl(vp, arg, flag, cr);
1590 1590
1591 1591 if (ulp) {
1592 1592 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA,
1593 1593 TOP_SETQUOTA_SIZE(fs));
1594 1594 ufs_lockfs_end(ulp);
1595 1595 }
1596 1596 return (error);
1597 1597 }
1598 1598
1599 1599 switch (cmd) {
1600 1600 case _FIOLFS:
1601 1601 /*
1602 1602 * file system locking
1603 1603 */
1604 1604 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1605 1605 return (EPERM);
1606 1606
1607 1607 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1608 1608 if (copyin((caddr_t)arg, &lockfs,
1609 1609 sizeof (struct lockfs)))
1610 1610 return (EFAULT);
1611 1611 }
1612 1612 #ifdef _SYSCALL32_IMPL
1613 1613 else {
1614 1614 struct lockfs32 lockfs32;
1615 1615 /* Translate ILP32 lockfs to LP64 lockfs */
1616 1616 if (copyin((caddr_t)arg, &lockfs32,
1617 1617 sizeof (struct lockfs32)))
1618 1618 return (EFAULT);
1619 1619 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1620 1620 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1621 1621 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1622 1622 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1623 1623 lockfs.lf_comment =
1624 1624 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1625 1625 }
1626 1626 #endif /* _SYSCALL32_IMPL */
1627 1627
1628 1628 if (lockfs.lf_comlen) {
1629 1629 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN)
1630 1630 return (ENAMETOOLONG);
1631 1631 comment =
1632 1632 kmem_alloc(lockfs.lf_comlen, KM_SLEEP);
1633 1633 if (copyin(lockfs.lf_comment, comment,
1634 1634 lockfs.lf_comlen)) {
1635 1635 kmem_free(comment, lockfs.lf_comlen);
1636 1636 return (EFAULT);
1637 1637 }
1638 1638 original_comment = lockfs.lf_comment;
1639 1639 lockfs.lf_comment = comment;
1640 1640 }
1641 1641 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) {
1642 1642 lockfs.lf_comment = original_comment;
1643 1643
1644 1644 if ((flag & DATAMODEL_MASK) ==
1645 1645 DATAMODEL_NATIVE) {
1646 1646 (void) copyout(&lockfs, (caddr_t)arg,
1647 1647 sizeof (struct lockfs));
1648 1648 }
1649 1649 #ifdef _SYSCALL32_IMPL
1650 1650 else {
1651 1651 struct lockfs32 lockfs32;
1652 1652 /* Translate LP64 to ILP32 lockfs */
1653 1653 lockfs32.lf_lock =
1654 1654 (uint32_t)lockfs.lf_lock;
1655 1655 lockfs32.lf_flags =
1656 1656 (uint32_t)lockfs.lf_flags;
1657 1657 lockfs32.lf_key =
1658 1658 (uint32_t)lockfs.lf_key;
1659 1659 lockfs32.lf_comlen =
1660 1660 (uint32_t)lockfs.lf_comlen;
1661 1661 lockfs32.lf_comment =
1662 1662 (uint32_t)(uintptr_t)
1663 1663 lockfs.lf_comment;
1664 1664 (void) copyout(&lockfs32, (caddr_t)arg,
1665 1665 sizeof (struct lockfs32));
1666 1666 }
1667 1667 #endif /* _SYSCALL32_IMPL */
1668 1668
1669 1669 } else {
1670 1670 if (lockfs.lf_comlen)
1671 1671 kmem_free(comment, lockfs.lf_comlen);
1672 1672 }
1673 1673 return (error);
1674 1674
1675 1675 case _FIOLFSS:
1676 1676 /*
1677 1677 * get file system locking status
1678 1678 */
1679 1679
1680 1680 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1681 1681 if (copyin((caddr_t)arg, &lockfs,
1682 1682 sizeof (struct lockfs)))
1683 1683 return (EFAULT);
1684 1684 }
1685 1685 #ifdef _SYSCALL32_IMPL
1686 1686 else {
1687 1687 struct lockfs32 lockfs32;
1688 1688 /* Translate ILP32 lockfs to LP64 lockfs */
1689 1689 if (copyin((caddr_t)arg, &lockfs32,
1690 1690 sizeof (struct lockfs32)))
1691 1691 return (EFAULT);
1692 1692 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1693 1693 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1694 1694 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1695 1695 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1696 1696 lockfs.lf_comment =
1697 1697 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1698 1698 }
1699 1699 #endif /* _SYSCALL32_IMPL */
1700 1700
1701 1701 if (error = ufs_fiolfss(vp, &lockfs_out))
1702 1702 return (error);
1703 1703 lockfs.lf_lock = lockfs_out.lf_lock;
1704 1704 lockfs.lf_key = lockfs_out.lf_key;
1705 1705 lockfs.lf_flags = lockfs_out.lf_flags;
1706 1706 lockfs.lf_comlen = MIN(lockfs.lf_comlen,
1707 1707 lockfs_out.lf_comlen);
1708 1708
1709 1709 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1710 1710 if (copyout(&lockfs, (caddr_t)arg,
1711 1711 sizeof (struct lockfs)))
1712 1712 return (EFAULT);
1713 1713 }
1714 1714 #ifdef _SYSCALL32_IMPL
1715 1715 else {
1716 1716 /* Translate LP64 to ILP32 lockfs */
1717 1717 struct lockfs32 lockfs32;
1718 1718 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock;
1719 1719 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags;
1720 1720 lockfs32.lf_key = (uint32_t)lockfs.lf_key;
1721 1721 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen;
1722 1722 lockfs32.lf_comment =
1723 1723 (uint32_t)(uintptr_t)lockfs.lf_comment;
1724 1724 if (copyout(&lockfs32, (caddr_t)arg,
1725 1725 sizeof (struct lockfs32)))
1726 1726 return (EFAULT);
1727 1727 }
1728 1728 #endif /* _SYSCALL32_IMPL */
1729 1729
1730 1730 if (lockfs.lf_comlen &&
1731 1731 lockfs.lf_comment && lockfs_out.lf_comment)
1732 1732 if (copyout(lockfs_out.lf_comment,
1733 1733 lockfs.lf_comment, lockfs.lf_comlen))
1734 1734 return (EFAULT);
1735 1735 return (0);
1736 1736
1737 1737 case _FIOSATIME:
1738 1738 /*
1739 1739 * set access time
1740 1740 */
1741 1741
1742 1742 /*
1743 1743 * if mounted w/o atime, return quietly.
1744 1744 * I briefly thought about returning ENOSYS, but
1745 1745 * figured that most apps would consider this fatal
1746 1746 * but the idea is to make this as seamless as poss.
1747 1747 */
1748 1748 if (ufsvfsp->vfs_noatime)
1749 1749 return (0);
1750 1750
1751 1751 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1752 1752 ULOCKFS_SETATTR_MASK);
1753 1753 if (error)
1754 1754 return (error);
1755 1755
1756 1756 if (ulp) {
1757 1757 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp));
1758 1758 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
1759 1759 TOP_SETATTR, trans_size);
1760 1760 }
1761 1761
1762 1762 error = ufs_fiosatime(vp, (struct timeval *)arg,
1763 1763 flag, cr);
1764 1764
1765 1765 if (ulp) {
1766 1766 TRANS_END_CSYNC(ufsvfsp, error, issync,
1767 1767 TOP_SETATTR, trans_size);
1768 1768 ufs_lockfs_end(ulp);
1769 1769 }
1770 1770 return (error);
1771 1771
1772 1772 case _FIOSDIO:
1773 1773 /*
1774 1774 * set delayed-io
1775 1775 */
1776 1776 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr));
1777 1777
1778 1778 case _FIOGDIO:
1779 1779 /*
1780 1780 * get delayed-io
1781 1781 */
1782 1782 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr));
1783 1783
1784 1784 case _FIOIO:
1785 1785 /*
1786 1786 * inode open
1787 1787 */
1788 1788 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1789 1789 ULOCKFS_VGET_MASK);
1790 1790 if (error)
1791 1791 return (error);
1792 1792
1793 1793 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr);
1794 1794
1795 1795 if (ulp) {
1796 1796 ufs_lockfs_end(ulp);
1797 1797 }
1798 1798 return (error);
1799 1799
1800 1800 case _FIOFFS:
1801 1801 /*
1802 1802 * file system flush (push w/invalidate)
1803 1803 */
1804 1804 if ((caddr_t)arg != NULL)
1805 1805 return (EINVAL);
1806 1806 return (ufs_fioffs(vp, NULL, cr));
1807 1807
1808 1808 case _FIOISBUSY:
1809 1809 /*
1810 1810 * Contract-private interface for Legato
1811 1811 * Purge this vnode from the DNLC and decide
1812 1812 * if this vnode is busy (*arg == 1) or not
1813 1813 * (*arg == 0)
1814 1814 */
1815 1815 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1816 1816 return (EPERM);
1817 1817 error = ufs_fioisbusy(vp, (int *)arg, cr);
1818 1818 return (error);
1819 1819
1820 1820 case _FIODIRECTIO:
1821 1821 return (ufs_fiodirectio(vp, (int)arg, cr));
1822 1822
1823 1823 case _FIOTUNE:
1824 1824 /*
1825 1825 * Tune the file system (aka setting fs attributes)
1826 1826 */
1827 1827 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1828 1828 ULOCKFS_SETATTR_MASK);
1829 1829 if (error)
1830 1830 return (error);
1831 1831
1832 1832 error = ufs_fiotune(vp, (struct fiotune *)arg, cr);
1833 1833
1834 1834 if (ulp)
1835 1835 ufs_lockfs_end(ulp);
1836 1836 return (error);
1837 1837
1838 1838 case _FIOLOGENABLE:
1839 1839 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1840 1840 return (EPERM);
1841 1841 return (ufs_fiologenable(vp, (void *)arg, cr, flag));
1842 1842
1843 1843 case _FIOLOGDISABLE:
1844 1844 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1845 1845 return (EPERM);
1846 1846 return (ufs_fiologdisable(vp, (void *)arg, cr, flag));
1847 1847
1848 1848 case _FIOISLOG:
1849 1849 return (ufs_fioislog(vp, (void *)arg, cr, flag));
1850 1850
1851 1851 case _FIOSNAPSHOTCREATE_MULTI:
1852 1852 {
1853 1853 struct fiosnapcreate_multi fc, *fcp;
1854 1854 size_t fcm_size;
1855 1855
1856 1856 if (copyin((void *)arg, &fc, sizeof (fc)))
1857 1857 return (EFAULT);
1858 1858 if (fc.backfilecount > MAX_BACKFILE_COUNT)
1859 1859 return (EINVAL);
1860 1860 fcm_size = sizeof (struct fiosnapcreate_multi) +
1861 1861 (fc.backfilecount - 1) * sizeof (int);
1862 1862 fcp = (struct fiosnapcreate_multi *)
1863 1863 kmem_alloc(fcm_size, KM_SLEEP);
1864 1864 if (copyin((void *)arg, fcp, fcm_size)) {
1865 1865 kmem_free(fcp, fcm_size);
1866 1866 return (EFAULT);
1867 1867 }
1868 1868 error = ufs_snap_create(vp, fcp, cr);
1869 1869 /*
1870 1870 * Do copyout even if there is an error because
1871 1871 * the details of error is stored in fcp.
1872 1872 */
1873 1873 if (copyout(fcp, (void *)arg, fcm_size))
1874 1874 error = EFAULT;
1875 1875 kmem_free(fcp, fcm_size);
1876 1876 return (error);
1877 1877 }
1878 1878
1879 1879 case _FIOSNAPSHOTDELETE:
1880 1880 {
1881 1881 struct fiosnapdelete fc;
1882 1882
1883 1883 if (copyin((void *)arg, &fc, sizeof (fc)))
1884 1884 return (EFAULT);
1885 1885 error = ufs_snap_delete(vp, &fc, cr);
1886 1886 if (!error && copyout(&fc, (void *)arg, sizeof (fc)))
|
↓ open down ↓ |
311 lines elided |
↑ open up ↑ |
1887 1887 error = EFAULT;
1888 1888 return (error);
1889 1889 }
1890 1890
1891 1891 case _FIOGETSUPERBLOCK:
1892 1892 if (copyout(fs, (void *)arg, SBSIZE))
1893 1893 return (EFAULT);
1894 1894 return (0);
1895 1895
1896 1896 case _FIOGETMAXPHYS:
1897 - if (copyout(&maxphys, (void *)arg, sizeof (maxphys)))
1897 + if (copyout((void *)&maxphys, (void *)arg,
1898 + sizeof (maxphys)))
1898 1899 return (EFAULT);
1899 1900 return (0);
1900 1901
1901 1902 /*
1902 1903 * The following 3 ioctls are for TSufs support
1903 1904 * although could potentially be used elsewhere
1904 1905 */
1905 1906 case _FIO_SET_LUFS_DEBUG:
1906 1907 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1907 1908 return (EPERM);
1908 1909 lufs_debug = (uint32_t)arg;
1909 1910 return (0);
1910 1911
1911 1912 case _FIO_SET_LUFS_ERROR:
1912 1913 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1913 1914 return (EPERM);
1914 1915 TRANS_SETERROR(ufsvfsp);
1915 1916 return (0);
1916 1917
1917 1918 case _FIO_GET_TOP_STATS:
1918 1919 {
1919 1920 fio_lufs_stats_t *ls;
1920 1921 ml_unit_t *ul = ufsvfsp->vfs_log;
1921 1922
1922 1923 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP);
1923 1924 ls->ls_debug = ul->un_debug; /* return debug value */
1924 1925 /* Copy stucture if statistics are being kept */
1925 1926 if (ul->un_logmap->mtm_tops) {
1926 1927 ls->ls_topstats = *(ul->un_logmap->mtm_tops);
1927 1928 }
1928 1929 error = 0;
1929 1930 if (copyout(ls, (void *)arg, sizeof (*ls)))
1930 1931 error = EFAULT;
1931 1932 kmem_free(ls, sizeof (*ls));
1932 1933 return (error);
1933 1934 }
1934 1935
1935 1936 case _FIO_SEEK_DATA:
1936 1937 case _FIO_SEEK_HOLE:
1937 1938 if (ddi_copyin((void *)arg, &off, sizeof (off), flag))
1938 1939 return (EFAULT);
1939 1940 /* offset paramater is in/out */
1940 1941 error = ufs_fio_holey(vp, cmd, &off);
1941 1942 if (error)
1942 1943 return (error);
1943 1944 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag))
1944 1945 return (EFAULT);
1945 1946 return (0);
1946 1947
1947 1948 case _FIO_COMPRESSED:
1948 1949 {
1949 1950 /*
1950 1951 * This is a project private ufs ioctl() to mark
1951 1952 * the inode as that belonging to a compressed
1952 1953 * file. This is used to mark individual
1953 1954 * compressed files in a miniroot archive.
1954 1955 * The files compressed in this manner are
1955 1956 * automatically decompressed by the dcfs filesystem
1956 1957 * (via an interception in ufs_lookup - see decompvp())
1957 1958 * which is layered on top of ufs on a system running
1958 1959 * from the archive. See uts/common/fs/dcfs for details.
1959 1960 * This ioctl only marks the file as compressed - the
1960 1961 * actual compression is done by fiocompress (a
1961 1962 * userland utility) which invokes this ioctl().
1962 1963 */
1963 1964 struct inode *ip = VTOI(vp);
1964 1965
1965 1966 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1966 1967 ULOCKFS_SETATTR_MASK);
1967 1968 if (error)
1968 1969 return (error);
1969 1970
1970 1971 if (ulp) {
1971 1972 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT,
1972 1973 TOP_IUPDAT_SIZE(ip));
1973 1974 }
1974 1975
1975 1976 error = ufs_mark_compressed(vp);
1976 1977
1977 1978 if (ulp) {
1978 1979 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT,
1979 1980 TOP_IUPDAT_SIZE(ip));
1980 1981 ufs_lockfs_end(ulp);
1981 1982 }
1982 1983
1983 1984 return (error);
1984 1985
1985 1986 }
1986 1987
1987 1988 default:
1988 1989 return (ENOTTY);
1989 1990 }
1990 1991 }
1991 1992
1992 1993
1993 1994 /* ARGSUSED */
1994 1995 static int
1995 1996 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags,
1996 1997 struct cred *cr, caller_context_t *ct)
1997 1998 {
1998 1999 struct inode *ip = VTOI(vp);
1999 2000 struct ufsvfs *ufsvfsp;
2000 2001 int err;
2001 2002
2002 2003 if (vap->va_mask == AT_SIZE) {
2003 2004 /*
2004 2005 * for performance, if only the size is requested don't bother
2005 2006 * with anything else.
2006 2007 */
2007 2008 UFS_GET_ISIZE(&vap->va_size, ip);
2008 2009 return (0);
2009 2010 }
2010 2011
2011 2012 /*
2012 2013 * inlined lockfs checks
2013 2014 */
2014 2015 ufsvfsp = ip->i_ufsvfs;
2015 2016 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) {
2016 2017 err = EIO;
2017 2018 goto out;
2018 2019 }
2019 2020
2020 2021 rw_enter(&ip->i_contents, RW_READER);
2021 2022 /*
2022 2023 * Return all the attributes. This should be refined so
2023 2024 * that it only returns what's asked for.
2024 2025 */
2025 2026
2026 2027 /*
2027 2028 * Copy from inode table.
2028 2029 */
2029 2030 vap->va_type = vp->v_type;
2030 2031 vap->va_mode = ip->i_mode & MODEMASK;
2031 2032 /*
2032 2033 * If there is an ACL and there is a mask entry, then do the
2033 2034 * extra work that completes the equivalent of an acltomode(3)
2034 2035 * call. According to POSIX P1003.1e, the acl mask should be
2035 2036 * returned in the group permissions field.
2036 2037 *
2037 2038 * - start with the original permission and mode bits (from above)
2038 2039 * - clear the group owner bits
2039 2040 * - add in the mask bits.
2040 2041 */
2041 2042 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) {
2042 2043 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3);
2043 2044 vap->va_mode |=
2044 2045 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3;
2045 2046 }
2046 2047 vap->va_uid = ip->i_uid;
2047 2048 vap->va_gid = ip->i_gid;
2048 2049 vap->va_fsid = ip->i_dev;
2049 2050 vap->va_nodeid = (ino64_t)ip->i_number;
2050 2051 vap->va_nlink = ip->i_nlink;
2051 2052 vap->va_size = ip->i_size;
2052 2053 if (vp->v_type == VCHR || vp->v_type == VBLK)
2053 2054 vap->va_rdev = ip->i_rdev;
2054 2055 else
2055 2056 vap->va_rdev = 0; /* not a b/c spec. */
2056 2057 mutex_enter(&ip->i_tlock);
2057 2058 ITIMES_NOLOCK(ip); /* mark correct time in inode */
2058 2059 vap->va_seq = ip->i_seq;
2059 2060 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
2060 2061 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000;
2061 2062 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
2062 2063 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000;
2063 2064 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
2064 2065 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000;
2065 2066 mutex_exit(&ip->i_tlock);
2066 2067
2067 2068 switch (ip->i_mode & IFMT) {
2068 2069
2069 2070 case IFBLK:
2070 2071 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */
2071 2072 break;
2072 2073
2073 2074 case IFCHR:
2074 2075 vap->va_blksize = MAXBSIZE;
2075 2076 break;
2076 2077
2077 2078 default:
2078 2079 vap->va_blksize = ip->i_fs->fs_bsize;
2079 2080 break;
2080 2081 }
2081 2082 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks;
2082 2083 rw_exit(&ip->i_contents);
2083 2084 err = 0;
2084 2085
2085 2086 out:
2086 2087 return (err);
2087 2088 }
2088 2089
2089 2090 /*
2090 2091 * Special wrapper to provide a callback for secpolicy_vnode_setattr().
2091 2092 * The i_contents lock is already held by the caller and we need to
2092 2093 * declare the inode as 'void *' argument.
2093 2094 */
2094 2095 static int
2095 2096 ufs_priv_access(void *vip, int mode, struct cred *cr)
2096 2097 {
2097 2098 struct inode *ip = vip;
2098 2099
2099 2100 return (ufs_iaccess(ip, mode, cr, 0));
2100 2101 }
2101 2102
2102 2103 /*ARGSUSED4*/
2103 2104 static int
2104 2105 ufs_setattr(struct vnode *vp, struct vattr *vap, int flags, struct cred *cr,
2105 2106 caller_context_t *ct)
2106 2107 {
2107 2108 struct inode *ip = VTOI(vp);
2108 2109 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2109 2110 struct fs *fs;
2110 2111 struct ulockfs *ulp;
2111 2112 char *errmsg1;
2112 2113 char *errmsg2;
2113 2114 long blocks;
2114 2115 long int mask = vap->va_mask;
2115 2116 size_t len1, len2;
2116 2117 int issync;
2117 2118 int trans_size;
2118 2119 int dotrans;
2119 2120 int dorwlock;
2120 2121 int error;
2121 2122 int owner_change;
2122 2123 int dodqlock;
2123 2124 timestruc_t now;
2124 2125 vattr_t oldva;
2125 2126 int retry = 1;
2126 2127 int indeadlock;
2127 2128
2128 2129 /*
2129 2130 * Cannot set these attributes.
2130 2131 */
2131 2132 if ((mask & AT_NOSET) || (mask & AT_XVATTR))
2132 2133 return (EINVAL);
2133 2134
2134 2135 /*
2135 2136 * check for forced unmount
2136 2137 */
2137 2138 if (ufsvfsp == NULL)
2138 2139 return (EIO);
2139 2140
2140 2141 fs = ufsvfsp->vfs_fs;
2141 2142 if (fs->fs_ronly != 0)
2142 2143 return (EROFS);
2143 2144
2144 2145 again:
2145 2146 errmsg1 = NULL;
2146 2147 errmsg2 = NULL;
2147 2148 dotrans = 0;
2148 2149 dorwlock = 0;
2149 2150 dodqlock = 0;
2150 2151
2151 2152 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK);
2152 2153 if (error)
2153 2154 goto out;
2154 2155
2155 2156 /*
2156 2157 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file.
2157 2158 * This follows the protocol for read()/write().
2158 2159 */
2159 2160 if (vp->v_type != VDIR) {
2160 2161 /*
2161 2162 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to
2162 2163 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2163 2164 * possible, retries the operation.
2164 2165 */
2165 2166 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file);
2166 2167 if (indeadlock) {
2167 2168 if (ulp)
2168 2169 ufs_lockfs_end(ulp);
2169 2170 goto again;
2170 2171 }
2171 2172 dorwlock = 1;
2172 2173 }
2173 2174
2174 2175 /*
2175 2176 * Truncate file. Must have write permission and not be a directory.
2176 2177 */
2177 2178 if (mask & AT_SIZE) {
2178 2179 rw_enter(&ip->i_contents, RW_WRITER);
2179 2180 if (vp->v_type == VDIR) {
2180 2181 error = EISDIR;
2181 2182 goto update_inode;
2182 2183 }
2183 2184 if (error = ufs_iaccess(ip, IWRITE, cr, 0))
2184 2185 goto update_inode;
2185 2186
2186 2187 rw_exit(&ip->i_contents);
2187 2188 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr);
2188 2189 if (error) {
2189 2190 rw_enter(&ip->i_contents, RW_WRITER);
2190 2191 goto update_inode;
2191 2192 }
2192 2193
2193 2194 if (error == 0 && vap->va_size)
2194 2195 vnevent_truncate(vp, ct);
2195 2196 }
2196 2197
2197 2198 if (ulp) {
2198 2199 trans_size = (int)TOP_SETATTR_SIZE(ip);
2199 2200 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size);
2200 2201 ++dotrans;
2201 2202 }
2202 2203
2203 2204 /*
2204 2205 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory.
2205 2206 * This follows the protocol established by
2206 2207 * ufs_link/create/remove/rename/mkdir/rmdir/symlink.
2207 2208 */
2208 2209 if (vp->v_type == VDIR) {
2209 2210 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR,
2210 2211 retry_dir);
2211 2212 if (indeadlock)
2212 2213 goto again;
2213 2214 dorwlock = 1;
2214 2215 }
2215 2216
2216 2217 /*
2217 2218 * Grab quota lock if we are changing the file's owner.
2218 2219 */
2219 2220 if (mask & AT_UID) {
2220 2221 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2221 2222 dodqlock = 1;
2222 2223 }
2223 2224 rw_enter(&ip->i_contents, RW_WRITER);
2224 2225
2225 2226 oldva.va_mode = ip->i_mode;
2226 2227 oldva.va_uid = ip->i_uid;
2227 2228 oldva.va_gid = ip->i_gid;
2228 2229
2229 2230 vap->va_mask &= ~AT_SIZE;
2230 2231
2231 2232 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2232 2233 ufs_priv_access, ip);
2233 2234 if (error)
2234 2235 goto update_inode;
2235 2236
2236 2237 mask = vap->va_mask;
2237 2238
2238 2239 /*
2239 2240 * Change file access modes.
2240 2241 */
2241 2242 if (mask & AT_MODE) {
2242 2243 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT);
2243 2244 TRANS_INODE(ufsvfsp, ip);
2244 2245 ip->i_flag |= ICHG;
2245 2246 if (stickyhack) {
2246 2247 mutex_enter(&vp->v_lock);
2247 2248 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
2248 2249 vp->v_flag |= VSWAPLIKE;
2249 2250 else
2250 2251 vp->v_flag &= ~VSWAPLIKE;
2251 2252 mutex_exit(&vp->v_lock);
2252 2253 }
2253 2254 }
2254 2255 if (mask & (AT_UID|AT_GID)) {
2255 2256 if (mask & AT_UID) {
2256 2257 /*
2257 2258 * Don't change ownership of the quota inode.
2258 2259 */
2259 2260 if (ufsvfsp->vfs_qinod == ip) {
2260 2261 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED);
2261 2262 error = EINVAL;
2262 2263 goto update_inode;
2263 2264 }
2264 2265
2265 2266 /*
2266 2267 * No real ownership change.
2267 2268 */
2268 2269 if (ip->i_uid == vap->va_uid) {
2269 2270 blocks = 0;
2270 2271 owner_change = 0;
2271 2272 }
2272 2273 /*
2273 2274 * Remove the blocks and the file, from the old user's
2274 2275 * quota.
2275 2276 */
2276 2277 else {
2277 2278 blocks = ip->i_blocks;
2278 2279 owner_change = 1;
2279 2280
2280 2281 (void) chkdq(ip, -blocks, /* force */ 1, cr,
2281 2282 (char **)NULL, (size_t *)NULL);
2282 2283 (void) chkiq(ufsvfsp, /* change */ -1, ip,
2283 2284 (uid_t)ip->i_uid, /* force */ 1, cr,
2284 2285 (char **)NULL, (size_t *)NULL);
2285 2286 dqrele(ip->i_dquot);
2286 2287 }
2287 2288
2288 2289 ip->i_uid = vap->va_uid;
2289 2290
2290 2291 /*
2291 2292 * There is a real ownership change.
2292 2293 */
2293 2294 if (owner_change) {
2294 2295 /*
2295 2296 * Add the blocks and the file to the new
2296 2297 * user's quota.
2297 2298 */
2298 2299 ip->i_dquot = getinoquota(ip);
2299 2300 (void) chkdq(ip, blocks, /* force */ 1, cr,
2300 2301 &errmsg1, &len1);
2301 2302 (void) chkiq(ufsvfsp, /* change */ 1,
2302 2303 (struct inode *)NULL, (uid_t)ip->i_uid,
2303 2304 /* force */ 1, cr, &errmsg2, &len2);
2304 2305 }
2305 2306 }
2306 2307 if (mask & AT_GID) {
2307 2308 ip->i_gid = vap->va_gid;
2308 2309 }
2309 2310 TRANS_INODE(ufsvfsp, ip);
2310 2311 ip->i_flag |= ICHG;
2311 2312 }
2312 2313 /*
2313 2314 * Change file access or modified times.
2314 2315 */
2315 2316 if (mask & (AT_ATIME|AT_MTIME)) {
2316 2317 /* Check that the time value is within ufs range */
2317 2318 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2318 2319 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2319 2320 error = EOVERFLOW;
2320 2321 goto update_inode;
2321 2322 }
2322 2323
2323 2324 /*
2324 2325 * if the "noaccess" mount option is set and only atime
2325 2326 * update is requested, do nothing. No error is returned.
2326 2327 */
2327 2328 if ((ufsvfsp->vfs_noatime) &&
2328 2329 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME))
2329 2330 goto skip_atime;
2330 2331
2331 2332 if (mask & AT_ATIME) {
2332 2333 ip->i_atime.tv_sec = vap->va_atime.tv_sec;
2333 2334 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
2334 2335 ip->i_flag &= ~IACC;
2335 2336 }
2336 2337 if (mask & AT_MTIME) {
2337 2338 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
2338 2339 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
2339 2340 gethrestime(&now);
2340 2341 if (now.tv_sec > TIME32_MAX) {
2341 2342 /*
2342 2343 * In 2038, ctime sticks forever..
2343 2344 */
2344 2345 ip->i_ctime.tv_sec = TIME32_MAX;
2345 2346 ip->i_ctime.tv_usec = 0;
2346 2347 } else {
2347 2348 ip->i_ctime.tv_sec = now.tv_sec;
2348 2349 ip->i_ctime.tv_usec = now.tv_nsec / 1000;
2349 2350 }
2350 2351 ip->i_flag &= ~(IUPD|ICHG);
2351 2352 ip->i_flag |= IMODTIME;
2352 2353 }
2353 2354 TRANS_INODE(ufsvfsp, ip);
2354 2355 ip->i_flag |= IMOD;
2355 2356 }
2356 2357
2357 2358 skip_atime:
2358 2359 /*
2359 2360 * The presence of a shadow inode may indicate an ACL, but does
2360 2361 * not imply an ACL. Future FSD types should be handled here too
2361 2362 * and check for the presence of the attribute-specific data
2362 2363 * before referencing it.
2363 2364 */
2364 2365 if (ip->i_shadow) {
2365 2366 /*
2366 2367 * XXX if ufs_iupdat is changed to sandbagged write fix
2367 2368 * ufs_acl_setattr to push ip to keep acls consistent
2368 2369 *
2369 2370 * Suppress out of inodes messages if we will retry.
2370 2371 */
2371 2372 if (retry)
2372 2373 ip->i_flag |= IQUIET;
2373 2374 error = ufs_acl_setattr(ip, vap, cr);
2374 2375 ip->i_flag &= ~IQUIET;
2375 2376 }
2376 2377
2377 2378 update_inode:
2378 2379 /*
2379 2380 * Setattr always increases the sequence number
2380 2381 */
2381 2382 ip->i_seq++;
2382 2383
2383 2384 /*
2384 2385 * if nfsd and not logging; push synchronously
2385 2386 */
2386 2387 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) {
2387 2388 ufs_iupdat(ip, 1);
2388 2389 } else {
2389 2390 ITIMES_NOLOCK(ip);
2390 2391 }
2391 2392
2392 2393 rw_exit(&ip->i_contents);
2393 2394 if (dodqlock) {
2394 2395 rw_exit(&ufsvfsp->vfs_dqrwlock);
2395 2396 }
2396 2397 if (dorwlock)
2397 2398 rw_exit(&ip->i_rwlock);
2398 2399
2399 2400 if (ulp) {
2400 2401 if (dotrans) {
2401 2402 int terr = 0;
2402 2403 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR,
2403 2404 trans_size);
2404 2405 if (error == 0)
2405 2406 error = terr;
2406 2407 }
2407 2408 ufs_lockfs_end(ulp);
2408 2409 }
2409 2410 out:
2410 2411 /*
2411 2412 * If out of inodes or blocks, see if we can free something
2412 2413 * up from the delete queue.
2413 2414 */
2414 2415 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
2415 2416 ufs_delete_drain_wait(ufsvfsp, 1);
2416 2417 retry = 0;
2417 2418 if (errmsg1 != NULL)
2418 2419 kmem_free(errmsg1, len1);
2419 2420 if (errmsg2 != NULL)
2420 2421 kmem_free(errmsg2, len2);
2421 2422 goto again;
2422 2423 }
2423 2424 if (errmsg1 != NULL) {
2424 2425 uprintf(errmsg1);
2425 2426 kmem_free(errmsg1, len1);
2426 2427 }
2427 2428 if (errmsg2 != NULL) {
2428 2429 uprintf(errmsg2);
2429 2430 kmem_free(errmsg2, len2);
2430 2431 }
2431 2432 return (error);
2432 2433 }
2433 2434
2434 2435 /*ARGSUSED*/
2435 2436 static int
2436 2437 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr,
2437 2438 caller_context_t *ct)
2438 2439 {
2439 2440 struct inode *ip = VTOI(vp);
2440 2441
2441 2442 if (ip->i_ufsvfs == NULL)
2442 2443 return (EIO);
2443 2444
2444 2445 /*
2445 2446 * The ufs_iaccess function wants to be called with
2446 2447 * mode bits expressed as "ufs specific" bits.
2447 2448 * I.e., VWRITE|VREAD|VEXEC do not make sense to
2448 2449 * ufs_iaccess() but IWRITE|IREAD|IEXEC do.
2449 2450 * But since they're the same we just pass the vnode mode
2450 2451 * bit but just verify that assumption at compile time.
2451 2452 */
2452 2453 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC
2453 2454 #error "ufs_access needs to map Vmodes to Imodes"
2454 2455 #endif
2455 2456 return (ufs_iaccess(ip, mode, cr, 1));
2456 2457 }
2457 2458
2458 2459 /* ARGSUSED */
2459 2460 static int
2460 2461 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr,
2461 2462 caller_context_t *ct)
2462 2463 {
2463 2464 struct inode *ip = VTOI(vp);
2464 2465 struct ufsvfs *ufsvfsp;
2465 2466 struct ulockfs *ulp;
2466 2467 int error;
2467 2468 int fastsymlink;
2468 2469
2469 2470 if (vp->v_type != VLNK) {
2470 2471 error = EINVAL;
2471 2472 goto nolockout;
2472 2473 }
2473 2474
2474 2475 /*
2475 2476 * If the symbolic link is empty there is nothing to read.
2476 2477 * Fast-track these empty symbolic links
2477 2478 */
2478 2479 if (ip->i_size == 0) {
2479 2480 error = 0;
2480 2481 goto nolockout;
2481 2482 }
2482 2483
2483 2484 ufsvfsp = ip->i_ufsvfs;
2484 2485 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK);
2485 2486 if (error)
2486 2487 goto nolockout;
2487 2488 /*
2488 2489 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK
2489 2490 */
2490 2491 again:
2491 2492 fastsymlink = 0;
2492 2493 if (ip->i_flag & IFASTSYMLNK) {
2493 2494 rw_enter(&ip->i_rwlock, RW_READER);
2494 2495 rw_enter(&ip->i_contents, RW_READER);
2495 2496 if (ip->i_flag & IFASTSYMLNK) {
2496 2497 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
2497 2498 (ip->i_fs->fs_ronly == 0) &&
2498 2499 (!ufsvfsp->vfs_noatime)) {
2499 2500 mutex_enter(&ip->i_tlock);
2500 2501 ip->i_flag |= IACC;
2501 2502 mutex_exit(&ip->i_tlock);
2502 2503 }
2503 2504 error = uiomove((caddr_t)&ip->i_db[1],
2504 2505 MIN(ip->i_size, uiop->uio_resid),
2505 2506 UIO_READ, uiop);
2506 2507 ITIMES(ip);
2507 2508 ++fastsymlink;
2508 2509 }
2509 2510 rw_exit(&ip->i_contents);
2510 2511 rw_exit(&ip->i_rwlock);
2511 2512 }
2512 2513 if (!fastsymlink) {
2513 2514 ssize_t size; /* number of bytes read */
2514 2515 caddr_t basep; /* pointer to input data */
2515 2516 ino_t ino;
2516 2517 long igen;
2517 2518 struct uio tuio; /* temp uio struct */
2518 2519 struct uio *tuiop;
2519 2520 iovec_t tiov; /* temp iovec struct */
2520 2521 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */
2521 2522 int tflag = 0; /* flag to indicate temp vars used */
2522 2523
2523 2524 ino = ip->i_number;
2524 2525 igen = ip->i_gen;
2525 2526 size = uiop->uio_resid;
2526 2527 basep = uiop->uio_iov->iov_base;
2527 2528 tuiop = uiop;
2528 2529
2529 2530 rw_enter(&ip->i_rwlock, RW_WRITER);
2530 2531 rw_enter(&ip->i_contents, RW_WRITER);
2531 2532 if (ip->i_flag & IFASTSYMLNK) {
2532 2533 rw_exit(&ip->i_contents);
2533 2534 rw_exit(&ip->i_rwlock);
2534 2535 goto again;
2535 2536 }
2536 2537
2537 2538 /* can this be a fast symlink and is it a user buffer? */
2538 2539 if (ip->i_size <= FSL_SIZE &&
2539 2540 (uiop->uio_segflg == UIO_USERSPACE ||
2540 2541 uiop->uio_segflg == UIO_USERISPACE)) {
2541 2542
2542 2543 bzero(&tuio, sizeof (struct uio));
2543 2544 /*
2544 2545 * setup a kernel buffer to read link into. this
2545 2546 * is to fix a race condition where the user buffer
2546 2547 * got corrupted before copying it into the inode.
2547 2548 */
2548 2549 size = ip->i_size;
2549 2550 tiov.iov_len = size;
2550 2551 tiov.iov_base = kbuf;
2551 2552 tuio.uio_iov = &tiov;
2552 2553 tuio.uio_iovcnt = 1;
2553 2554 tuio.uio_offset = uiop->uio_offset;
2554 2555 tuio.uio_segflg = UIO_SYSSPACE;
2555 2556 tuio.uio_fmode = uiop->uio_fmode;
2556 2557 tuio.uio_extflg = uiop->uio_extflg;
2557 2558 tuio.uio_limit = uiop->uio_limit;
2558 2559 tuio.uio_resid = size;
2559 2560
2560 2561 basep = tuio.uio_iov->iov_base;
2561 2562 tuiop = &tuio;
2562 2563 tflag = 1;
2563 2564 }
2564 2565
2565 2566 error = rdip(ip, tuiop, 0, cr);
2566 2567 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) {
2567 2568 rw_exit(&ip->i_contents);
2568 2569 rw_exit(&ip->i_rwlock);
2569 2570 goto out;
2570 2571 }
2571 2572
2572 2573 if (tflag == 0)
2573 2574 size -= uiop->uio_resid;
2574 2575
2575 2576 if ((tflag == 0 && ip->i_size <= FSL_SIZE &&
2576 2577 ip->i_size == size) || (tflag == 1 &&
2577 2578 tuio.uio_resid == 0)) {
2578 2579 error = kcopy(basep, &ip->i_db[1], ip->i_size);
2579 2580 if (error == 0) {
2580 2581 ip->i_flag |= IFASTSYMLNK;
2581 2582 /*
2582 2583 * free page
2583 2584 */
2584 2585 (void) VOP_PUTPAGE(ITOV(ip),
2585 2586 (offset_t)0, PAGESIZE,
2586 2587 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC),
2587 2588 cr, ct);
2588 2589 } else {
2589 2590 int i;
2590 2591 /* error, clear garbage left behind */
2591 2592 for (i = 1; i < NDADDR; i++)
2592 2593 ip->i_db[i] = 0;
2593 2594 for (i = 0; i < NIADDR; i++)
2594 2595 ip->i_ib[i] = 0;
2595 2596 }
2596 2597 }
2597 2598 if (tflag == 1) {
2598 2599 /* now, copy it into the user buffer */
2599 2600 error = uiomove((caddr_t)kbuf,
2600 2601 MIN(size, uiop->uio_resid),
2601 2602 UIO_READ, uiop);
2602 2603 }
2603 2604 rw_exit(&ip->i_contents);
2604 2605 rw_exit(&ip->i_rwlock);
2605 2606 }
2606 2607 out:
2607 2608 if (ulp) {
2608 2609 ufs_lockfs_end(ulp);
2609 2610 }
2610 2611 nolockout:
2611 2612 return (error);
2612 2613 }
2613 2614
2614 2615 /* ARGSUSED */
2615 2616 static int
2616 2617 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, caller_context_t *ct)
2617 2618 {
2618 2619 struct inode *ip = VTOI(vp);
2619 2620 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2620 2621 struct ulockfs *ulp;
2621 2622 int error;
2622 2623
2623 2624 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK);
2624 2625 if (error)
2625 2626 return (error);
2626 2627
2627 2628 if (TRANS_ISTRANS(ufsvfsp)) {
2628 2629 /*
2629 2630 * First push out any data pages
2630 2631 */
2631 2632 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2632 2633 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) {
2633 2634 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
2634 2635 0, CRED(), ct);
2635 2636 if (error)
2636 2637 goto out;
2637 2638 }
2638 2639
2639 2640 /*
2640 2641 * Delta any delayed inode times updates
2641 2642 * and push inode to log.
2642 2643 * All other inode deltas will have already been delta'd
2643 2644 * and will be pushed during the commit.
2644 2645 */
2645 2646 if (!(syncflag & FDSYNC) &&
2646 2647 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) {
2647 2648 if (ulp) {
2648 2649 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC,
2649 2650 TOP_SYNCIP_SIZE);
2650 2651 }
2651 2652 rw_enter(&ip->i_contents, RW_READER);
2652 2653 mutex_enter(&ip->i_tlock);
2653 2654 ip->i_flag &= ~IMODTIME;
2654 2655 mutex_exit(&ip->i_tlock);
2655 2656 ufs_iupdat(ip, I_SYNC);
2656 2657 rw_exit(&ip->i_contents);
2657 2658 if (ulp) {
2658 2659 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC,
2659 2660 TOP_SYNCIP_SIZE);
2660 2661 }
2661 2662 }
2662 2663
2663 2664 /*
2664 2665 * Commit the Moby transaction
2665 2666 *
2666 2667 * Deltas have already been made so we just need to
2667 2668 * commit them with a synchronous transaction.
2668 2669 * TRANS_BEGIN_SYNC() will return an error
2669 2670 * if there are no deltas to commit, for an
2670 2671 * empty transaction.
2671 2672 */
2672 2673 if (ulp) {
2673 2674 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE,
2674 2675 error);
2675 2676 if (error) {
2676 2677 error = 0; /* commit wasn't needed */
2677 2678 goto out;
2678 2679 }
2679 2680 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC,
2680 2681 TOP_COMMIT_SIZE);
2681 2682 }
2682 2683 } else { /* not logging */
2683 2684 if (!(IS_SWAPVP(vp)))
2684 2685 if (syncflag & FNODSYNC) {
2685 2686 /* Just update the inode only */
2686 2687 TRANS_IUPDAT(ip, 1);
2687 2688 error = 0;
2688 2689 } else if (syncflag & FDSYNC)
2689 2690 /* Do data-synchronous writes */
2690 2691 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC);
2691 2692 else
2692 2693 /* Do synchronous writes */
2693 2694 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC);
2694 2695
2695 2696 rw_enter(&ip->i_contents, RW_WRITER);
2696 2697 if (!error)
2697 2698 error = ufs_sync_indir(ip);
2698 2699 rw_exit(&ip->i_contents);
2699 2700 }
2700 2701 out:
2701 2702 if (ulp) {
2702 2703 ufs_lockfs_end(ulp);
2703 2704 }
2704 2705 return (error);
2705 2706 }
2706 2707
2707 2708 /*ARGSUSED*/
2708 2709 static void
2709 2710 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
2710 2711 {
2711 2712 ufs_iinactive(VTOI(vp));
2712 2713 }
2713 2714
2714 2715 /*
2715 2716 * Unix file system operations having to do with directory manipulation.
2716 2717 */
2717 2718 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */
2718 2719 /* ARGSUSED */
2719 2720 static int
2720 2721 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
2721 2722 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr,
2722 2723 caller_context_t *ct, int *direntflags, pathname_t *realpnp)
2723 2724 {
2724 2725 struct inode *ip;
2725 2726 struct inode *sip;
2726 2727 struct inode *xip;
2727 2728 struct ufsvfs *ufsvfsp;
2728 2729 struct ulockfs *ulp;
2729 2730 struct vnode *vp;
2730 2731 int error;
2731 2732
2732 2733 /*
2733 2734 * Check flags for type of lookup (regular file or attribute file)
2734 2735 */
2735 2736
2736 2737 ip = VTOI(dvp);
2737 2738
2738 2739 if (flags & LOOKUP_XATTR) {
2739 2740
2740 2741 /*
2741 2742 * If not mounted with XATTR support then return EINVAL
2742 2743 */
2743 2744
2744 2745 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR))
2745 2746 return (EINVAL);
2746 2747 /*
2747 2748 * We don't allow recursive attributes...
2748 2749 * Maybe someday we will.
2749 2750 */
2750 2751 if ((ip->i_cflags & IXATTR)) {
2751 2752 return (EINVAL);
2752 2753 }
2753 2754
2754 2755 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) {
2755 2756 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr);
2756 2757 if (error) {
2757 2758 *vpp = NULL;
2758 2759 goto out;
2759 2760 }
2760 2761
2761 2762 vp = ITOV(sip);
2762 2763 dnlc_update(dvp, XATTR_DIR_NAME, vp);
2763 2764 }
2764 2765
2765 2766 /*
2766 2767 * Check accessibility of directory.
2767 2768 */
2768 2769 if (vp == DNLC_NO_VNODE) {
2769 2770 VN_RELE(vp);
2770 2771 error = ENOENT;
2771 2772 goto out;
2772 2773 }
2773 2774 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) {
2774 2775 VN_RELE(vp);
2775 2776 goto out;
2776 2777 }
2777 2778
2778 2779 *vpp = vp;
2779 2780 return (0);
2780 2781 }
2781 2782
2782 2783 /*
2783 2784 * Check for a null component, which we should treat as
2784 2785 * looking at dvp from within it's parent, so we don't
2785 2786 * need a call to ufs_iaccess(), as it has already been
2786 2787 * done.
2787 2788 */
2788 2789 if (nm[0] == 0) {
2789 2790 VN_HOLD(dvp);
2790 2791 error = 0;
2791 2792 *vpp = dvp;
2792 2793 goto out;
2793 2794 }
2794 2795
2795 2796 /*
2796 2797 * Check for "." ie itself. this is a quick check and
2797 2798 * avoids adding "." into the dnlc (which have been seen
2798 2799 * to occupy >10% of the cache).
2799 2800 */
2800 2801 if ((nm[0] == '.') && (nm[1] == 0)) {
2801 2802 /*
2802 2803 * Don't return without checking accessibility
2803 2804 * of the directory. We only need the lock if
2804 2805 * we are going to return it.
2805 2806 */
2806 2807 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) {
2807 2808 VN_HOLD(dvp);
2808 2809 *vpp = dvp;
2809 2810 }
2810 2811 goto out;
2811 2812 }
2812 2813
2813 2814 /*
2814 2815 * Fast path: Check the directory name lookup cache.
2815 2816 */
2816 2817 if (vp = dnlc_lookup(dvp, nm)) {
2817 2818 /*
2818 2819 * Check accessibility of directory.
2819 2820 */
2820 2821 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) {
2821 2822 VN_RELE(vp);
2822 2823 goto out;
2823 2824 }
2824 2825 if (vp == DNLC_NO_VNODE) {
2825 2826 VN_RELE(vp);
2826 2827 error = ENOENT;
2827 2828 goto out;
2828 2829 }
2829 2830 xip = VTOI(vp);
2830 2831 ulp = NULL;
2831 2832 goto fastpath;
2832 2833 }
2833 2834
2834 2835 /*
2835 2836 * Keep the idle queue from getting too long by
2836 2837 * idling two inodes before attempting to allocate another.
2837 2838 * This operation must be performed before entering
2838 2839 * lockfs or a transaction.
2839 2840 */
2840 2841 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2841 2842 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2842 2843 ins.in_lidles.value.ul += ufs_lookup_idle_count;
2843 2844 ufs_idle_some(ufs_lookup_idle_count);
2844 2845 }
2845 2846
2846 2847 retry_lookup:
2847 2848 /*
2848 2849 * Check accessibility of directory.
2849 2850 */
2850 2851 if (error = ufs_diraccess(ip, IEXEC, cr))
2851 2852 goto out;
2852 2853
2853 2854 ufsvfsp = ip->i_ufsvfs;
2854 2855 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK);
2855 2856 if (error)
2856 2857 goto out;
2857 2858
2858 2859 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0);
2859 2860
2860 2861 fastpath:
2861 2862 if (error == 0) {
2862 2863 ip = xip;
2863 2864 *vpp = ITOV(ip);
2864 2865
2865 2866 /*
2866 2867 * If vnode is a device return special vnode instead.
2867 2868 */
2868 2869 if (IS_DEVVP(*vpp)) {
2869 2870 struct vnode *newvp;
2870 2871
2871 2872 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type,
2872 2873 cr);
2873 2874 VN_RELE(*vpp);
2874 2875 if (newvp == NULL)
2875 2876 error = ENOSYS;
2876 2877 else
2877 2878 *vpp = newvp;
2878 2879 } else if (ip->i_cflags & ICOMPRESS) {
2879 2880 struct vnode *newvp;
2880 2881
2881 2882 /*
2882 2883 * Compressed file, substitute dcfs vnode
2883 2884 */
2884 2885 newvp = decompvp(*vpp, cr, ct);
2885 2886 VN_RELE(*vpp);
2886 2887 if (newvp == NULL)
2887 2888 error = ENOSYS;
2888 2889 else
2889 2890 *vpp = newvp;
2890 2891 }
2891 2892 }
2892 2893 if (ulp) {
2893 2894 ufs_lockfs_end(ulp);
2894 2895 }
2895 2896
2896 2897 if (error == EAGAIN)
2897 2898 goto retry_lookup;
2898 2899
2899 2900 out:
2900 2901 return (error);
2901 2902 }
2902 2903
2903 2904 /*ARGSUSED*/
2904 2905 static int
2905 2906 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl,
2906 2907 int mode, struct vnode **vpp, struct cred *cr, int flag,
2907 2908 caller_context_t *ct, vsecattr_t *vsecp)
2908 2909 {
2909 2910 struct inode *ip;
2910 2911 struct inode *xip;
2911 2912 struct inode *dip;
2912 2913 struct vnode *xvp;
2913 2914 struct ufsvfs *ufsvfsp;
2914 2915 struct ulockfs *ulp;
2915 2916 int error;
2916 2917 int issync;
2917 2918 int truncflag;
2918 2919 int trans_size;
2919 2920 int noentry;
2920 2921 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */
2921 2922 int retry = 1;
2922 2923 int indeadlock;
2923 2924
2924 2925 again:
2925 2926 ip = VTOI(dvp);
2926 2927 ufsvfsp = ip->i_ufsvfs;
2927 2928 truncflag = 0;
2928 2929
2929 2930 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK);
2930 2931 if (error)
2931 2932 goto out;
2932 2933
2933 2934 if (ulp) {
2934 2935 trans_size = (int)TOP_CREATE_SIZE(ip);
2935 2936 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size);
2936 2937 }
2937 2938
2938 2939 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
2939 2940 vap->va_mode &= ~VSVTX;
2940 2941
2941 2942 if (*name == '\0') {
2942 2943 /*
2943 2944 * Null component name refers to the directory itself.
2944 2945 */
2945 2946 VN_HOLD(dvp);
2946 2947 /*
2947 2948 * Even though this is an error case, we need to grab the
2948 2949 * quota lock since the error handling code below is common.
2949 2950 */
2950 2951 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2951 2952 rw_enter(&ip->i_contents, RW_WRITER);
2952 2953 error = EEXIST;
2953 2954 } else {
2954 2955 xip = NULL;
2955 2956 noentry = 0;
2956 2957 /*
2957 2958 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
2958 2959 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2959 2960 * possible, retries the operation.
2960 2961 */
2961 2962 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE,
2962 2963 retry_dir);
2963 2964 if (indeadlock)
2964 2965 goto again;
2965 2966
2966 2967 xvp = dnlc_lookup(dvp, name);
2967 2968 if (xvp == DNLC_NO_VNODE) {
2968 2969 noentry = 1;
2969 2970 VN_RELE(xvp);
2970 2971 xvp = NULL;
2971 2972 }
2972 2973 if (xvp) {
2973 2974 rw_exit(&ip->i_rwlock);
2974 2975 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) {
2975 2976 VN_RELE(xvp);
2976 2977 } else {
2977 2978 error = EEXIST;
2978 2979 xip = VTOI(xvp);
2979 2980 }
2980 2981 } else {
2981 2982 /*
2982 2983 * Suppress file system full message if we will retry
2983 2984 */
2984 2985 error = ufs_direnter_cm(ip, name, DE_CREATE,
2985 2986 vap, &xip, cr, (noentry | (retry ? IQUIET : 0)));
2986 2987 if (error == EAGAIN) {
2987 2988 if (ulp) {
2988 2989 TRANS_END_CSYNC(ufsvfsp, error, issync,
2989 2990 TOP_CREATE, trans_size);
2990 2991 ufs_lockfs_end(ulp);
2991 2992 }
2992 2993 goto again;
2993 2994 }
2994 2995 rw_exit(&ip->i_rwlock);
2995 2996 }
2996 2997 ip = xip;
2997 2998 if (ip != NULL) {
2998 2999 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2999 3000 rw_enter(&ip->i_contents, RW_WRITER);
3000 3001 }
3001 3002 }
3002 3003
3003 3004 /*
3004 3005 * If the file already exists and this is a non-exclusive create,
3005 3006 * check permissions and allow access for non-directories.
3006 3007 * Read-only create of an existing directory is also allowed.
3007 3008 * We fail an exclusive create of anything which already exists.
3008 3009 */
3009 3010 if (error == EEXIST) {
3010 3011 dip = VTOI(dvp);
3011 3012 if (excl == NONEXCL) {
3012 3013 if ((((ip->i_mode & IFMT) == IFDIR) ||
3013 3014 ((ip->i_mode & IFMT) == IFATTRDIR)) &&
3014 3015 (mode & IWRITE))
3015 3016 error = EISDIR;
3016 3017 else if (mode)
3017 3018 error = ufs_iaccess(ip, mode, cr, 0);
3018 3019 else
3019 3020 error = 0;
3020 3021 }
3021 3022 if (error) {
3022 3023 rw_exit(&ip->i_contents);
3023 3024 rw_exit(&ufsvfsp->vfs_dqrwlock);
3024 3025 VN_RELE(ITOV(ip));
3025 3026 goto unlock;
3026 3027 }
3027 3028 /*
3028 3029 * If the error EEXIST was set, then i_seq can not
3029 3030 * have been updated. The sequence number interface
3030 3031 * is defined such that a non-error VOP_CREATE must
3031 3032 * increase the dir va_seq it by at least one. If we
3032 3033 * have cleared the error, increase i_seq. Note that
3033 3034 * we are increasing the dir i_seq and in rare cases
3034 3035 * ip may actually be from the dvp, so we already have
3035 3036 * the locks and it will not be subject to truncation.
3036 3037 * In case we have to update i_seq of the parent
3037 3038 * directory dip, we have to defer it till we have
3038 3039 * released our locks on ip due to lock ordering requirements.
3039 3040 */
3040 3041 if (ip != dip)
3041 3042 defer_dip_seq_update = 1;
3042 3043 else
3043 3044 ip->i_seq++;
3044 3045
3045 3046 if (((ip->i_mode & IFMT) == IFREG) &&
3046 3047 (vap->va_mask & AT_SIZE) && vap->va_size == 0) {
3047 3048 /*
3048 3049 * Truncate regular files, if requested by caller.
3049 3050 * Grab i_rwlock to make sure no one else is
3050 3051 * currently writing to the file (we promised
3051 3052 * bmap we would do this).
3052 3053 * Must get the locks in the correct order.
3053 3054 */
3054 3055 if (ip->i_size == 0) {
3055 3056 ip->i_flag |= ICHG | IUPD;
3056 3057 ip->i_seq++;
3057 3058 TRANS_INODE(ufsvfsp, ip);
3058 3059 } else {
3059 3060 /*
3060 3061 * Large Files: Why this check here?
3061 3062 * Though we do it in vn_create() we really
3062 3063 * want to guarantee that we do not destroy
3063 3064 * Large file data by atomically checking
3064 3065 * the size while holding the contents
3065 3066 * lock.
3066 3067 */
3067 3068 if (flag && !(flag & FOFFMAX) &&
3068 3069 ((ip->i_mode & IFMT) == IFREG) &&
3069 3070 (ip->i_size > (offset_t)MAXOFF32_T)) {
3070 3071 rw_exit(&ip->i_contents);
3071 3072 rw_exit(&ufsvfsp->vfs_dqrwlock);
3072 3073 error = EOVERFLOW;
3073 3074 goto unlock;
3074 3075 }
3075 3076 if (TRANS_ISTRANS(ufsvfsp))
3076 3077 truncflag++;
3077 3078 else {
3078 3079 rw_exit(&ip->i_contents);
3079 3080 rw_exit(&ufsvfsp->vfs_dqrwlock);
3080 3081 ufs_tryirwlock_trans(&ip->i_rwlock,
3081 3082 RW_WRITER, TOP_CREATE,
3082 3083 retry_file);
3083 3084 if (indeadlock) {
3084 3085 VN_RELE(ITOV(ip));
3085 3086 goto again;
3086 3087 }
3087 3088 rw_enter(&ufsvfsp->vfs_dqrwlock,
3088 3089 RW_READER);
3089 3090 rw_enter(&ip->i_contents, RW_WRITER);
3090 3091 (void) ufs_itrunc(ip, (u_offset_t)0, 0,
3091 3092 cr);
3092 3093 rw_exit(&ip->i_rwlock);
3093 3094 }
3094 3095
3095 3096 }
3096 3097 if (error == 0) {
3097 3098 vnevent_create(ITOV(ip), ct);
3098 3099 }
3099 3100 }
3100 3101 }
3101 3102
3102 3103 if (error) {
3103 3104 if (ip != NULL) {
3104 3105 rw_exit(&ufsvfsp->vfs_dqrwlock);
3105 3106 rw_exit(&ip->i_contents);
3106 3107 }
3107 3108 goto unlock;
3108 3109 }
3109 3110
3110 3111 *vpp = ITOV(ip);
3111 3112 ITIMES(ip);
3112 3113 rw_exit(&ip->i_contents);
3113 3114 rw_exit(&ufsvfsp->vfs_dqrwlock);
3114 3115
3115 3116 /*
3116 3117 * If vnode is a device return special vnode instead.
3117 3118 */
3118 3119 if (!error && IS_DEVVP(*vpp)) {
3119 3120 struct vnode *newvp;
3120 3121
3121 3122 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
3122 3123 VN_RELE(*vpp);
3123 3124 if (newvp == NULL) {
3124 3125 error = ENOSYS;
3125 3126 goto unlock;
3126 3127 }
3127 3128 truncflag = 0;
3128 3129 *vpp = newvp;
3129 3130 }
3130 3131 unlock:
3131 3132
3132 3133 /*
3133 3134 * Do the deferred update of the parent directory's sequence
3134 3135 * number now.
3135 3136 */
3136 3137 if (defer_dip_seq_update == 1) {
3137 3138 rw_enter(&dip->i_contents, RW_READER);
3138 3139 mutex_enter(&dip->i_tlock);
3139 3140 dip->i_seq++;
3140 3141 mutex_exit(&dip->i_tlock);
3141 3142 rw_exit(&dip->i_contents);
3142 3143 }
3143 3144
3144 3145 if (ulp) {
3145 3146 int terr = 0;
3146 3147
3147 3148 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE,
3148 3149 trans_size);
3149 3150
3150 3151 /*
3151 3152 * If we haven't had a more interesting failure
3152 3153 * already, then anything that might've happened
3153 3154 * here should be reported.
3154 3155 */
3155 3156 if (error == 0)
3156 3157 error = terr;
3157 3158 }
3158 3159
3159 3160 if (!error && truncflag) {
3160 3161 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc);
3161 3162 if (indeadlock) {
3162 3163 if (ulp)
3163 3164 ufs_lockfs_end(ulp);
3164 3165 VN_RELE(ITOV(ip));
3165 3166 goto again;
3166 3167 }
3167 3168 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr);
3168 3169 rw_exit(&ip->i_rwlock);
3169 3170 }
3170 3171
3171 3172 if (ulp)
3172 3173 ufs_lockfs_end(ulp);
3173 3174
3174 3175 /*
3175 3176 * If no inodes available, try to free one up out of the
3176 3177 * pending delete queue.
3177 3178 */
3178 3179 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3179 3180 ufs_delete_drain_wait(ufsvfsp, 1);
3180 3181 retry = 0;
3181 3182 goto again;
3182 3183 }
3183 3184
3184 3185 out:
3185 3186 return (error);
3186 3187 }
3187 3188
3188 3189 extern int ufs_idle_max;
3189 3190 /*ARGSUSED*/
3190 3191 static int
3191 3192 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, caller_context_t *ct,
3192 3193 int flags)
3193 3194 {
3194 3195 struct inode *ip = VTOI(vp);
3195 3196 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3196 3197 struct ulockfs *ulp;
3197 3198 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */
3198 3199 int indeadlock;
3199 3200 int error;
3200 3201 int issync;
3201 3202 int trans_size;
3202 3203
3203 3204 /*
3204 3205 * don't let the delete queue get too long
3205 3206 */
3206 3207 if (ufsvfsp == NULL) {
3207 3208 error = EIO;
3208 3209 goto out;
3209 3210 }
3210 3211 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3211 3212 ufs_delete_drain(vp->v_vfsp, 1, 1);
3212 3213
3213 3214 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3214 3215 if (rmvp != NULL) {
3215 3216 /* Only send the event if there were no errors */
3216 3217 if (error == 0)
3217 3218 vnevent_remove(rmvp, vp, nm, ct);
3218 3219 VN_RELE(rmvp);
3219 3220 }
3220 3221
3221 3222 retry_remove:
3222 3223 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK);
3223 3224 if (error)
3224 3225 goto out;
3225 3226
3226 3227 if (ulp)
3227 3228 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
3228 3229 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp)));
3229 3230
3230 3231 /*
3231 3232 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3232 3233 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3233 3234 * possible, retries the operation.
3234 3235 */
3235 3236 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry);
3236 3237 if (indeadlock)
3237 3238 goto retry_remove;
3238 3239 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0,
3239 3240 DR_REMOVE, cr);
3240 3241 rw_exit(&ip->i_rwlock);
3241 3242
3242 3243 if (ulp) {
3243 3244 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size);
3244 3245 ufs_lockfs_end(ulp);
3245 3246 }
3246 3247
3247 3248 out:
3248 3249 return (error);
3249 3250 }
3250 3251
3251 3252 /*
3252 3253 * Link a file or a directory. Only privileged processes are allowed to
3253 3254 * make links to directories.
3254 3255 */
3255 3256 /*ARGSUSED*/
3256 3257 static int
3257 3258 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr,
3258 3259 caller_context_t *ct, int flags)
3259 3260 {
3260 3261 struct inode *sip;
3261 3262 struct inode *tdp = VTOI(tdvp);
3262 3263 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs;
3263 3264 struct ulockfs *ulp;
3264 3265 struct vnode *realvp;
3265 3266 int error;
3266 3267 int issync;
3267 3268 int trans_size;
3268 3269 int isdev;
3269 3270 int indeadlock;
3270 3271
3271 3272 retry_link:
3272 3273 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK);
3273 3274 if (error)
3274 3275 goto out;
3275 3276
3276 3277 if (ulp)
3277 3278 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK,
3278 3279 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp)));
3279 3280
3280 3281 if (VOP_REALVP(svp, &realvp, ct) == 0)
3281 3282 svp = realvp;
3282 3283
3283 3284 /*
3284 3285 * Make sure link for extended attributes is valid
3285 3286 * We only support hard linking of attr in ATTRDIR to ATTRDIR
3286 3287 *
3287 3288 * Make certain we don't attempt to look at a device node as
3288 3289 * a ufs inode.
3289 3290 */
3290 3291
3291 3292 isdev = IS_DEVVP(svp);
3292 3293 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) &&
3293 3294 ((tdp->i_mode & IFMT) == IFATTRDIR)) ||
3294 3295 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) &&
3295 3296 ((tdp->i_mode & IFMT) == IFDIR))) {
3296 3297 error = EINVAL;
3297 3298 goto unlock;
3298 3299 }
3299 3300
3300 3301 sip = VTOI(svp);
3301 3302 if ((svp->v_type == VDIR &&
3302 3303 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) ||
3303 3304 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) {
3304 3305 error = EPERM;
3305 3306 goto unlock;
3306 3307 }
3307 3308
3308 3309 /*
3309 3310 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3310 3311 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3311 3312 * possible, retries the operation.
3312 3313 */
3313 3314 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry);
3314 3315 if (indeadlock)
3315 3316 goto retry_link;
3316 3317 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0,
3317 3318 sip, cr);
3318 3319 rw_exit(&tdp->i_rwlock);
3319 3320
3320 3321 unlock:
3321 3322 if (ulp) {
3322 3323 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size);
3323 3324 ufs_lockfs_end(ulp);
3324 3325 }
3325 3326
3326 3327 if (!error) {
3327 3328 vnevent_link(svp, ct);
3328 3329 }
3329 3330 out:
3330 3331 return (error);
3331 3332 }
3332 3333
3333 3334 uint64_t ufs_rename_retry_cnt;
3334 3335 uint64_t ufs_rename_upgrade_retry_cnt;
3335 3336 uint64_t ufs_rename_dircheck_retry_cnt;
3336 3337 clock_t ufs_rename_backoff_delay = 1;
3337 3338
3338 3339 /*
3339 3340 * Rename a file or directory.
3340 3341 * We are given the vnode and entry string of the source and the
3341 3342 * vnode and entry string of the place we want to move the source
3342 3343 * to (the target). The essential operation is:
3343 3344 * unlink(target);
3344 3345 * link(source, target);
3345 3346 * unlink(source);
3346 3347 * but "atomically". Can't do full commit without saving state in
3347 3348 * the inode on disk, which isn't feasible at this time. Best we
3348 3349 * can do is always guarantee that the TARGET exists.
3349 3350 */
3350 3351
3351 3352 /*ARGSUSED*/
3352 3353 static int
3353 3354 ufs_rename(struct vnode *sdvp, char *snm, struct vnode *tdvp, char *tnm,
3354 3355 struct cred *cr, caller_context_t *ct, int flags)
3355 3356 {
3356 3357 struct inode *sip = NULL; /* source inode */
3357 3358 struct inode *ip = NULL; /* check inode */
3358 3359 struct inode *sdp; /* old (source) parent inode */
3359 3360 struct inode *tdp; /* new (target) parent inode */
3360 3361 struct vnode *svp = NULL; /* source vnode */
3361 3362 struct vnode *tvp = NULL; /* target vnode, if it exists */
3362 3363 struct vnode *realvp;
3363 3364 struct ufsvfs *ufsvfsp;
3364 3365 struct ulockfs *ulp = NULL;
3365 3366 struct ufs_slot slot;
3366 3367 timestruc_t now;
3367 3368 int error;
3368 3369 int issync;
3369 3370 int trans_size;
3370 3371 krwlock_t *first_lock;
3371 3372 krwlock_t *second_lock;
3372 3373 krwlock_t *reverse_lock;
3373 3374 int serr, terr;
3374 3375
3375 3376 sdp = VTOI(sdvp);
3376 3377 slot.fbp = NULL;
3377 3378 ufsvfsp = sdp->i_ufsvfs;
3378 3379
3379 3380 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3380 3381 tdvp = realvp;
3381 3382
3382 3383 /* Must do this before taking locks in case of DNLC miss */
3383 3384 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp);
3384 3385 serr = ufs_eventlookup(sdvp, snm, cr, &svp);
3385 3386
3386 3387 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) {
3387 3388 if (tvp != NULL)
3388 3389 vnevent_pre_rename_dest(tvp, tdvp, tnm, ct);
3389 3390
3390 3391 /*
3391 3392 * Notify the target directory of the rename event
3392 3393 * if source and target directories are not the same.
3393 3394 */
3394 3395 if (sdvp != tdvp)
3395 3396 vnevent_pre_rename_dest_dir(tdvp, svp, tnm, ct);
3396 3397
3397 3398 if (svp != NULL)
3398 3399 vnevent_pre_rename_src(svp, sdvp, snm, ct);
3399 3400 }
3400 3401
3401 3402 if (svp != NULL)
3402 3403 VN_RELE(svp);
3403 3404
3404 3405 retry_rename:
3405 3406 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK);
3406 3407 if (error)
3407 3408 goto unlock;
3408 3409
3409 3410 if (ulp)
3410 3411 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME,
3411 3412 trans_size = (int)TOP_RENAME_SIZE(sdp));
3412 3413
3413 3414 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3414 3415 tdvp = realvp;
3415 3416
3416 3417 tdp = VTOI(tdvp);
3417 3418
3418 3419 /*
3419 3420 * We only allow renaming of attributes from ATTRDIR to ATTRDIR.
3420 3421 */
3421 3422 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) {
3422 3423 error = EINVAL;
3423 3424 goto unlock;
3424 3425 }
3425 3426
3426 3427 /*
3427 3428 * Check accessibility of directory.
3428 3429 */
3429 3430 if (error = ufs_diraccess(sdp, IEXEC, cr))
3430 3431 goto unlock;
3431 3432
3432 3433 /*
3433 3434 * Look up inode of file we're supposed to rename.
3434 3435 */
3435 3436 gethrestime(&now);
3436 3437 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) {
3437 3438 if (error == EAGAIN) {
3438 3439 if (ulp) {
3439 3440 TRANS_END_CSYNC(ufsvfsp, error, issync,
3440 3441 TOP_RENAME, trans_size);
3441 3442 ufs_lockfs_end(ulp);
3442 3443 }
3443 3444 goto retry_rename;
3444 3445 }
3445 3446
3446 3447 goto unlock;
3447 3448 }
3448 3449
3449 3450 /*
3450 3451 * Lock both the source and target directories (they may be
3451 3452 * the same) to provide the atomicity semantics that was
3452 3453 * previously provided by the per file system vfs_rename_lock
3453 3454 *
3454 3455 * with vfs_rename_lock removed to allow simultaneous renames
3455 3456 * within a file system, ufs_dircheckpath can deadlock while
3456 3457 * traversing back to ensure that source is not a parent directory
3457 3458 * of target parent directory. This is because we get into
3458 3459 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER.
3459 3460 * If the tdp and sdp of the simultaneous renames happen to be
3460 3461 * in the path of each other, it can lead to a deadlock. This
3461 3462 * can be avoided by getting the locks as RW_READER here and then
3462 3463 * upgrading to RW_WRITER after completing the ufs_dircheckpath.
3463 3464 *
3464 3465 * We hold the target directory's i_rwlock after calling
3465 3466 * ufs_lockfs_begin but in many other operations (like ufs_readdir)
3466 3467 * VOP_RWLOCK is explicitly called by the filesystem independent code
3467 3468 * before calling the file system operation. In these cases the order
3468 3469 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin
3469 3470 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP
3470 3471 * counter but with ufs_quiesce setting the SLOCK bit this becomes a
3471 3472 * synchronizing object which might lead to a deadlock. So we use
3472 3473 * rw_tryenter instead of rw_enter. If we fail to get this lock and
3473 3474 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the
3474 3475 * operation.
3475 3476 */
3476 3477 retry:
3477 3478 first_lock = &tdp->i_rwlock;
3478 3479 second_lock = &sdp->i_rwlock;
3479 3480 retry_firstlock:
3480 3481 if (!rw_tryenter(first_lock, RW_READER)) {
3481 3482 /*
3482 3483 * We didn't get the lock. Check if the SLOCK is set in the
3483 3484 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3484 3485 * and wait for SLOCK to be cleared.
3485 3486 */
3486 3487
3487 3488 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3488 3489 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3489 3490 trans_size);
3490 3491 ufs_lockfs_end(ulp);
3491 3492 goto retry_rename;
3492 3493
3493 3494 } else {
3494 3495 /*
3495 3496 * SLOCK isn't set so this is a genuine synchronization
3496 3497 * case. Let's try again after giving them a breather.
3497 3498 */
3498 3499 delay(RETRY_LOCK_DELAY);
3499 3500 goto retry_firstlock;
3500 3501 }
3501 3502 }
3502 3503 /*
3503 3504 * Need to check if the tdp and sdp are same !!!
3504 3505 */
3505 3506 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) {
3506 3507 /*
3507 3508 * We didn't get the lock. Check if the SLOCK is set in the
3508 3509 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3509 3510 * and wait for SLOCK to be cleared.
3510 3511 */
3511 3512
3512 3513 rw_exit(first_lock);
3513 3514 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3514 3515 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3515 3516 trans_size);
3516 3517 ufs_lockfs_end(ulp);
3517 3518 goto retry_rename;
3518 3519
3519 3520 } else {
3520 3521 /*
3521 3522 * So we couldn't get the second level peer lock *and*
3522 3523 * the SLOCK bit isn't set. Too bad we can be
3523 3524 * contentding with someone wanting these locks otherway
3524 3525 * round. Reverse the locks in case there is a heavy
3525 3526 * contention for the second level lock.
3526 3527 */
3527 3528 reverse_lock = first_lock;
3528 3529 first_lock = second_lock;
3529 3530 second_lock = reverse_lock;
3530 3531 ufs_rename_retry_cnt++;
3531 3532 goto retry_firstlock;
3532 3533 }
3533 3534 }
3534 3535
3535 3536 if (sip == tdp) {
3536 3537 error = EINVAL;
3537 3538 goto errout;
3538 3539 }
3539 3540 /*
3540 3541 * Make sure we can delete the source entry. This requires
3541 3542 * write permission on the containing directory.
3542 3543 * Check for sticky directories.
3543 3544 */
3544 3545 rw_enter(&sdp->i_contents, RW_READER);
3545 3546 rw_enter(&sip->i_contents, RW_READER);
3546 3547 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 ||
3547 3548 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) {
3548 3549 rw_exit(&sip->i_contents);
3549 3550 rw_exit(&sdp->i_contents);
3550 3551 goto errout;
3551 3552 }
3552 3553
3553 3554 /*
3554 3555 * If this is a rename of a directory and the parent is
3555 3556 * different (".." must be changed), then the source
3556 3557 * directory must not be in the directory hierarchy
3557 3558 * above the target, as this would orphan everything
3558 3559 * below the source directory. Also the user must have
3559 3560 * write permission in the source so as to be able to
3560 3561 * change "..".
3561 3562 */
3562 3563 if ((((sip->i_mode & IFMT) == IFDIR) ||
3563 3564 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) {
3564 3565 ino_t inum;
3565 3566
3566 3567 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) {
3567 3568 rw_exit(&sip->i_contents);
3568 3569 rw_exit(&sdp->i_contents);
3569 3570 goto errout;
3570 3571 }
3571 3572 inum = sip->i_number;
3572 3573 rw_exit(&sip->i_contents);
3573 3574 rw_exit(&sdp->i_contents);
3574 3575 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) {
3575 3576 /*
3576 3577 * If we got EAGAIN ufs_dircheckpath detected a
3577 3578 * potential deadlock and backed out. We need
3578 3579 * to retry the operation since sdp and tdp have
3579 3580 * to be released to avoid the deadlock.
3580 3581 */
3581 3582 if (error == EAGAIN) {
3582 3583 rw_exit(&tdp->i_rwlock);
3583 3584 if (tdp != sdp)
3584 3585 rw_exit(&sdp->i_rwlock);
3585 3586 delay(ufs_rename_backoff_delay);
3586 3587 ufs_rename_dircheck_retry_cnt++;
3587 3588 goto retry;
3588 3589 }
3589 3590 goto errout;
3590 3591 }
3591 3592 } else {
3592 3593 rw_exit(&sip->i_contents);
3593 3594 rw_exit(&sdp->i_contents);
3594 3595 }
3595 3596
3596 3597
3597 3598 /*
3598 3599 * Check for renaming '.' or '..' or alias of '.'
3599 3600 */
3600 3601 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) {
3601 3602 error = EINVAL;
3602 3603 goto errout;
3603 3604 }
3604 3605
3605 3606 /*
3606 3607 * Simultaneous renames can deadlock in ufs_dircheckpath since it
3607 3608 * tries to traverse back the file tree with both tdp and sdp held
3608 3609 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks
3609 3610 * as RW_READERS till ufs_dircheckpath is done.
3610 3611 * Now that ufs_dircheckpath is done with, we can upgrade the locks
3611 3612 * to RW_WRITER.
3612 3613 */
3613 3614 if (!rw_tryupgrade(&tdp->i_rwlock)) {
3614 3615 /*
3615 3616 * The upgrade failed. We got to give away the lock
3616 3617 * as to avoid deadlocking with someone else who is
3617 3618 * waiting for writer lock. With the lock gone, we
3618 3619 * cannot be sure the checks done above will hold
3619 3620 * good when we eventually get them back as writer.
3620 3621 * So if we can't upgrade we drop the locks and retry
3621 3622 * everything again.
3622 3623 */
3623 3624 rw_exit(&tdp->i_rwlock);
3624 3625 if (tdp != sdp)
3625 3626 rw_exit(&sdp->i_rwlock);
3626 3627 delay(ufs_rename_backoff_delay);
3627 3628 ufs_rename_upgrade_retry_cnt++;
3628 3629 goto retry;
3629 3630 }
3630 3631 if (tdp != sdp) {
3631 3632 if (!rw_tryupgrade(&sdp->i_rwlock)) {
3632 3633 /*
3633 3634 * The upgrade failed. We got to give away the lock
3634 3635 * as to avoid deadlocking with someone else who is
3635 3636 * waiting for writer lock. With the lock gone, we
3636 3637 * cannot be sure the checks done above will hold
3637 3638 * good when we eventually get them back as writer.
3638 3639 * So if we can't upgrade we drop the locks and retry
3639 3640 * everything again.
3640 3641 */
3641 3642 rw_exit(&tdp->i_rwlock);
3642 3643 rw_exit(&sdp->i_rwlock);
3643 3644 delay(ufs_rename_backoff_delay);
3644 3645 ufs_rename_upgrade_retry_cnt++;
3645 3646 goto retry;
3646 3647 }
3647 3648 }
3648 3649
3649 3650 /*
3650 3651 * Now that all the locks are held check to make sure another thread
3651 3652 * didn't slip in and take out the sip.
3652 3653 */
3653 3654 slot.status = NONE;
3654 3655 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec ||
3655 3656 sip->i_ctime.tv_sec > now.tv_sec) {
3656 3657 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER);
3657 3658 rw_enter(&sdp->i_contents, RW_WRITER);
3658 3659 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot,
3659 3660 &ip, cr, 0);
3660 3661 rw_exit(&sdp->i_contents);
3661 3662 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock);
3662 3663 if (error) {
3663 3664 goto errout;
3664 3665 }
3665 3666 if (ip == NULL) {
3666 3667 error = ENOENT;
3667 3668 goto errout;
3668 3669 } else {
3669 3670 /*
3670 3671 * If the inode was found need to drop the v_count
3671 3672 * so as not to keep the filesystem from being
3672 3673 * unmounted at a later time.
3673 3674 */
3674 3675 VN_RELE(ITOV(ip));
3675 3676 }
3676 3677
3677 3678 /*
3678 3679 * Release the slot.fbp that has the page mapped and
3679 3680 * locked SE_SHARED, and could be used in in
3680 3681 * ufs_direnter_lr() which needs to get the SE_EXCL lock
3681 3682 * on said page.
3682 3683 */
3683 3684 if (slot.fbp) {
3684 3685 fbrelse(slot.fbp, S_OTHER);
3685 3686 slot.fbp = NULL;
3686 3687 }
3687 3688 }
3688 3689
3689 3690 /*
3690 3691 * Link source to the target.
3691 3692 */
3692 3693 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) {
3693 3694 /*
3694 3695 * ESAME isn't really an error; it indicates that the
3695 3696 * operation should not be done because the source and target
3696 3697 * are the same file, but that no error should be reported.
3697 3698 */
3698 3699 if (error == ESAME)
3699 3700 error = 0;
3700 3701 goto errout;
3701 3702 }
3702 3703
3703 3704 if (error == 0 && tvp != NULL)
3704 3705 vnevent_rename_dest(tvp, tdvp, tnm, ct);
3705 3706
3706 3707 /*
3707 3708 * Unlink the source.
3708 3709 * Remove the source entry. ufs_dirremove() checks that the entry
3709 3710 * still reflects sip, and returns an error if it doesn't.
3710 3711 * If the entry has changed just forget about it. Release
3711 3712 * the source inode.
3712 3713 */
3713 3714 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0,
3714 3715 DR_RENAME, cr)) == ENOENT)
3715 3716 error = 0;
3716 3717
3717 3718 if (error == 0) {
3718 3719 vnevent_rename_src(ITOV(sip), sdvp, snm, ct);
3719 3720 /*
3720 3721 * Notify the target directory of the rename event
3721 3722 * if source and target directories are not the same.
3722 3723 */
3723 3724 if (sdvp != tdvp)
3724 3725 vnevent_rename_dest_dir(tdvp, ct);
3725 3726 }
3726 3727
3727 3728 errout:
3728 3729 if (slot.fbp)
3729 3730 fbrelse(slot.fbp, S_OTHER);
3730 3731
3731 3732 rw_exit(&tdp->i_rwlock);
3732 3733 if (sdp != tdp) {
3733 3734 rw_exit(&sdp->i_rwlock);
3734 3735 }
3735 3736
3736 3737 unlock:
3737 3738 if (tvp != NULL)
3738 3739 VN_RELE(tvp);
3739 3740 if (sip != NULL)
3740 3741 VN_RELE(ITOV(sip));
3741 3742
3742 3743 if (ulp) {
3743 3744 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size);
3744 3745 ufs_lockfs_end(ulp);
3745 3746 }
3746 3747
3747 3748 return (error);
3748 3749 }
3749 3750
3750 3751 /*ARGSUSED*/
3751 3752 static int
3752 3753 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap,
3753 3754 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags,
3754 3755 vsecattr_t *vsecp)
3755 3756 {
3756 3757 struct inode *ip;
3757 3758 struct inode *xip;
3758 3759 struct ufsvfs *ufsvfsp;
3759 3760 struct ulockfs *ulp;
3760 3761 int error;
3761 3762 int issync;
3762 3763 int trans_size;
3763 3764 int indeadlock;
3764 3765 int retry = 1;
3765 3766
3766 3767 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
3767 3768
3768 3769 /*
3769 3770 * Can't make directory in attr hidden dir
3770 3771 */
3771 3772 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
3772 3773 return (EINVAL);
3773 3774
3774 3775 again:
3775 3776 ip = VTOI(dvp);
3776 3777 ufsvfsp = ip->i_ufsvfs;
3777 3778 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK);
3778 3779 if (error)
3779 3780 goto out;
3780 3781 if (ulp)
3781 3782 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR,
3782 3783 trans_size = (int)TOP_MKDIR_SIZE(ip));
3783 3784
3784 3785 /*
3785 3786 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3786 3787 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3787 3788 * possible, retries the operation.
3788 3789 */
3789 3790 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry);
3790 3791 if (indeadlock)
3791 3792 goto again;
3792 3793
3793 3794 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr,
3794 3795 (retry ? IQUIET : 0));
3795 3796 if (error == EAGAIN) {
3796 3797 if (ulp) {
3797 3798 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR,
3798 3799 trans_size);
3799 3800 ufs_lockfs_end(ulp);
3800 3801 }
3801 3802 goto again;
3802 3803 }
3803 3804
3804 3805 rw_exit(&ip->i_rwlock);
3805 3806 if (error == 0) {
3806 3807 ip = xip;
3807 3808 *vpp = ITOV(ip);
3808 3809 } else if (error == EEXIST)
3809 3810 VN_RELE(ITOV(xip));
3810 3811
3811 3812 if (ulp) {
3812 3813 int terr = 0;
3813 3814 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size);
3814 3815 ufs_lockfs_end(ulp);
3815 3816 if (error == 0)
3816 3817 error = terr;
3817 3818 }
3818 3819 out:
3819 3820 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3820 3821 ufs_delete_drain_wait(ufsvfsp, 1);
3821 3822 retry = 0;
3822 3823 goto again;
3823 3824 }
3824 3825
3825 3826 return (error);
3826 3827 }
3827 3828
3828 3829 /*ARGSUSED*/
3829 3830 static int
3830 3831 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr,
3831 3832 caller_context_t *ct, int flags)
3832 3833 {
3833 3834 struct inode *ip = VTOI(vp);
3834 3835 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3835 3836 struct ulockfs *ulp;
3836 3837 vnode_t *rmvp = NULL; /* Vnode of removed directory */
3837 3838 int error;
3838 3839 int issync;
3839 3840 int trans_size;
3840 3841 int indeadlock;
3841 3842
3842 3843 /*
3843 3844 * don't let the delete queue get too long
3844 3845 */
3845 3846 if (ufsvfsp == NULL) {
3846 3847 error = EIO;
3847 3848 goto out;
3848 3849 }
3849 3850 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3850 3851 ufs_delete_drain(vp->v_vfsp, 1, 1);
3851 3852
3852 3853 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3853 3854 if (rmvp != NULL) {
3854 3855 /* Only send the event if there were no errors */
3855 3856 if (error == 0)
3856 3857 vnevent_rmdir(rmvp, vp, nm, ct);
3857 3858 VN_RELE(rmvp);
3858 3859 }
3859 3860
3860 3861 retry_rmdir:
3861 3862 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK);
3862 3863 if (error)
3863 3864 goto out;
3864 3865
3865 3866 if (ulp)
3866 3867 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR,
3867 3868 trans_size = TOP_RMDIR_SIZE);
3868 3869
3869 3870 /*
3870 3871 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3871 3872 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3872 3873 * possible, retries the operation.
3873 3874 */
3874 3875 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry);
3875 3876 if (indeadlock)
3876 3877 goto retry_rmdir;
3877 3878 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr);
3878 3879
3879 3880 rw_exit(&ip->i_rwlock);
3880 3881
3881 3882 if (ulp) {
3882 3883 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR,
3883 3884 trans_size);
3884 3885 ufs_lockfs_end(ulp);
3885 3886 }
3886 3887
3887 3888 out:
3888 3889 return (error);
3889 3890 }
3890 3891
3891 3892 /* ARGSUSED */
3892 3893 static int
3893 3894 ufs_readdir(struct vnode *vp, struct uio *uiop, struct cred *cr, int *eofp,
3894 3895 caller_context_t *ct, int flags)
3895 3896 {
3896 3897 struct iovec *iovp;
3897 3898 struct inode *ip;
3898 3899 struct direct *idp;
3899 3900 struct dirent64 *odp;
3900 3901 struct fbuf *fbp;
3901 3902 struct ufsvfs *ufsvfsp;
3902 3903 struct ulockfs *ulp;
3903 3904 caddr_t outbuf;
3904 3905 size_t bufsize;
3905 3906 uint_t offset;
3906 3907 uint_t bytes_wanted, total_bytes_wanted;
3907 3908 int incount = 0;
3908 3909 int outcount = 0;
3909 3910 int error;
3910 3911
3911 3912 ip = VTOI(vp);
3912 3913 ASSERT(RW_READ_HELD(&ip->i_rwlock));
3913 3914
3914 3915 if (uiop->uio_loffset >= MAXOFF32_T) {
3915 3916 if (eofp)
3916 3917 *eofp = 1;
3917 3918 return (0);
3918 3919 }
3919 3920
3920 3921 /*
3921 3922 * Check if we have been called with a valid iov_len
3922 3923 * and bail out if not, otherwise we may potentially loop
3923 3924 * forever further down.
3924 3925 */
3925 3926 if (uiop->uio_iov->iov_len <= 0) {
3926 3927 error = EINVAL;
3927 3928 goto out;
3928 3929 }
3929 3930
3930 3931 /*
3931 3932 * Large Files: When we come here we are guaranteed that
3932 3933 * uio_offset can be used safely. The high word is zero.
3933 3934 */
3934 3935
3935 3936 ufsvfsp = ip->i_ufsvfs;
3936 3937 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK);
3937 3938 if (error)
3938 3939 goto out;
3939 3940
3940 3941 iovp = uiop->uio_iov;
3941 3942 total_bytes_wanted = iovp->iov_len;
3942 3943
3943 3944 /* Large Files: directory files should not be "large" */
3944 3945
3945 3946 ASSERT(ip->i_size <= MAXOFF32_T);
3946 3947
3947 3948 /* Force offset to be valid (to guard against bogus lseek() values) */
3948 3949 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1);
3949 3950
3950 3951 /* Quit if at end of file or link count of zero (posix) */
3951 3952 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) {
3952 3953 if (eofp)
3953 3954 *eofp = 1;
3954 3955 error = 0;
3955 3956 goto unlock;
3956 3957 }
3957 3958
3958 3959 /*
3959 3960 * Get space to change directory entries into fs independent format.
3960 3961 * Do fast alloc for the most commonly used-request size (filesystem
3961 3962 * block size).
3962 3963 */
3963 3964 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) {
3964 3965 bufsize = total_bytes_wanted;
3965 3966 outbuf = kmem_alloc(bufsize, KM_SLEEP);
3966 3967 odp = (struct dirent64 *)outbuf;
3967 3968 } else {
3968 3969 bufsize = total_bytes_wanted;
3969 3970 odp = (struct dirent64 *)iovp->iov_base;
3970 3971 }
3971 3972
3972 3973 nextblk:
3973 3974 bytes_wanted = total_bytes_wanted;
3974 3975
3975 3976 /* Truncate request to file size */
3976 3977 if (offset + bytes_wanted > (int)ip->i_size)
3977 3978 bytes_wanted = (int)(ip->i_size - offset);
3978 3979
3979 3980 /* Comply with MAXBSIZE boundary restrictions of fbread() */
3980 3981 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE)
3981 3982 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET);
3982 3983
3983 3984 /*
3984 3985 * Read in the next chunk.
3985 3986 * We are still holding the i_rwlock.
3986 3987 */
3987 3988 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp);
3988 3989
3989 3990 if (error)
3990 3991 goto update_inode;
3991 3992 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) &&
3992 3993 (!ufsvfsp->vfs_noatime)) {
3993 3994 ip->i_flag |= IACC;
3994 3995 }
3995 3996 incount = 0;
3996 3997 idp = (struct direct *)fbp->fb_addr;
3997 3998 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) {
3998 3999 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, "
3999 4000 "fs = %s\n",
4000 4001 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt);
4001 4002 fbrelse(fbp, S_OTHER);
4002 4003 error = ENXIO;
4003 4004 goto update_inode;
4004 4005 }
4005 4006 /* Transform to file-system independent format */
4006 4007 while (incount < bytes_wanted) {
4007 4008 /*
4008 4009 * If the current directory entry is mangled, then skip
4009 4010 * to the next block. It would be nice to set the FSBAD
4010 4011 * flag in the super-block so that a fsck is forced on
4011 4012 * next reboot, but locking is a problem.
4012 4013 */
4013 4014 if (idp->d_reclen & 0x3) {
4014 4015 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4015 4016 break;
4016 4017 }
4017 4018
4018 4019 /* Skip to requested offset and skip empty entries */
4019 4020 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) {
4020 4021 ushort_t this_reclen =
4021 4022 DIRENT64_RECLEN(idp->d_namlen);
4022 4023 /* Buffer too small for any entries */
4023 4024 if (!outcount && this_reclen > bufsize) {
4024 4025 fbrelse(fbp, S_OTHER);
4025 4026 error = EINVAL;
4026 4027 goto update_inode;
4027 4028 }
4028 4029 /* If would overrun the buffer, quit */
4029 4030 if (outcount + this_reclen > bufsize) {
4030 4031 break;
4031 4032 }
4032 4033 /* Take this entry */
4033 4034 odp->d_ino = (ino64_t)idp->d_ino;
4034 4035 odp->d_reclen = (ushort_t)this_reclen;
4035 4036 odp->d_off = (offset_t)(offset + idp->d_reclen);
4036 4037
4037 4038 /* use strncpy(9f) to zero out uninitialized bytes */
4038 4039
4039 4040 ASSERT(strlen(idp->d_name) + 1 <=
4040 4041 DIRENT64_NAMELEN(this_reclen));
4041 4042 (void) strncpy(odp->d_name, idp->d_name,
4042 4043 DIRENT64_NAMELEN(this_reclen));
4043 4044 outcount += odp->d_reclen;
4044 4045 odp = (struct dirent64 *)
4045 4046 ((intptr_t)odp + odp->d_reclen);
4046 4047 ASSERT(outcount <= bufsize);
4047 4048 }
4048 4049 if (idp->d_reclen) {
4049 4050 incount += idp->d_reclen;
4050 4051 offset += idp->d_reclen;
4051 4052 idp = (struct direct *)((intptr_t)idp + idp->d_reclen);
4052 4053 } else {
4053 4054 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4054 4055 break;
4055 4056 }
4056 4057 }
4057 4058 /* Release the chunk */
4058 4059 fbrelse(fbp, S_OTHER);
4059 4060
4060 4061 /* Read whole block, but got no entries, read another if not eof */
4061 4062
4062 4063 /*
4063 4064 * Large Files: casting i_size to int here is not a problem
4064 4065 * because directory sizes are always less than MAXOFF32_T.
4065 4066 * See assertion above.
4066 4067 */
4067 4068
4068 4069 if (offset < (int)ip->i_size && !outcount)
4069 4070 goto nextblk;
4070 4071
4071 4072 /* Copy out the entry data */
4072 4073 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) {
4073 4074 iovp->iov_base += outcount;
4074 4075 iovp->iov_len -= outcount;
4075 4076 uiop->uio_resid -= outcount;
4076 4077 uiop->uio_offset = offset;
4077 4078 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ,
4078 4079 uiop)) == 0)
4079 4080 uiop->uio_offset = offset;
4080 4081 update_inode:
4081 4082 ITIMES(ip);
4082 4083 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1)
4083 4084 kmem_free(outbuf, bufsize);
4084 4085
4085 4086 if (eofp && error == 0)
4086 4087 *eofp = (uiop->uio_offset >= (int)ip->i_size);
4087 4088 unlock:
4088 4089 if (ulp) {
4089 4090 ufs_lockfs_end(ulp);
4090 4091 }
4091 4092 out:
4092 4093 return (error);
4093 4094 }
4094 4095
4095 4096 /*ARGSUSED*/
4096 4097 static int
4097 4098 ufs_symlink(struct vnode *dvp, char *linkname, struct vattr *vap, char *target,
4098 4099 struct cred *cr, caller_context_t *ct, int flags)
4099 4100 {
4100 4101 struct inode *ip, *dip = VTOI(dvp);
4101 4102 struct ufsvfs *ufsvfsp = dip->i_ufsvfs;
4102 4103 struct ulockfs *ulp;
4103 4104 int error;
4104 4105 int issync;
4105 4106 int trans_size;
4106 4107 int residual;
4107 4108 int ioflag;
4108 4109 int retry = 1;
4109 4110
4110 4111 /*
4111 4112 * No symlinks in attrdirs at this time
4112 4113 */
4113 4114 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
4114 4115 return (EINVAL);
4115 4116
4116 4117 again:
4117 4118 ip = (struct inode *)NULL;
4118 4119 vap->va_type = VLNK;
4119 4120 vap->va_rdev = 0;
4120 4121
4121 4122 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK);
4122 4123 if (error)
4123 4124 goto out;
4124 4125
4125 4126 if (ulp)
4126 4127 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK,
4127 4128 trans_size = (int)TOP_SYMLINK_SIZE(dip));
4128 4129
4129 4130 /*
4130 4131 * We must create the inode before the directory entry, to avoid
4131 4132 * racing with readlink(). ufs_dirmakeinode requires that we
4132 4133 * hold the quota lock as reader, and directory locks as writer.
4133 4134 */
4134 4135
4135 4136 rw_enter(&dip->i_rwlock, RW_WRITER);
4136 4137 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4137 4138 rw_enter(&dip->i_contents, RW_WRITER);
4138 4139
4139 4140 /*
4140 4141 * Suppress any out of inodes messages if we will retry on
4141 4142 * ENOSP
4142 4143 */
4143 4144 if (retry)
4144 4145 dip->i_flag |= IQUIET;
4145 4146
4146 4147 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr);
4147 4148
4148 4149 dip->i_flag &= ~IQUIET;
4149 4150
4150 4151 rw_exit(&dip->i_contents);
4151 4152 rw_exit(&ufsvfsp->vfs_dqrwlock);
4152 4153 rw_exit(&dip->i_rwlock);
4153 4154
4154 4155 if (error)
4155 4156 goto unlock;
4156 4157
4157 4158 /*
4158 4159 * OK. The inode has been created. Write out the data of the
4159 4160 * symbolic link. Since symbolic links are metadata, and should
4160 4161 * remain consistent across a system crash, we need to force the
4161 4162 * data out synchronously.
4162 4163 *
4163 4164 * (This is a change from the semantics in earlier releases, which
4164 4165 * only created symbolic links synchronously if the semi-documented
4165 4166 * 'syncdir' option was set, or if we were being invoked by the NFS
4166 4167 * server, which requires symbolic links to be created synchronously.)
4167 4168 *
4168 4169 * We need to pass in a pointer for the residual length; otherwise
4169 4170 * ufs_rdwri() will always return EIO if it can't write the data,
4170 4171 * even if the error was really ENOSPC or EDQUOT.
4171 4172 */
4172 4173
4173 4174 ioflag = FWRITE | FDSYNC;
4174 4175 residual = 0;
4175 4176
4176 4177 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4177 4178 rw_enter(&ip->i_contents, RW_WRITER);
4178 4179
4179 4180 /*
4180 4181 * Suppress file system full messages if we will retry
4181 4182 */
4182 4183 if (retry)
4183 4184 ip->i_flag |= IQUIET;
4184 4185
4185 4186 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target),
4186 4187 (offset_t)0, UIO_SYSSPACE, &residual, cr);
4187 4188
4188 4189 ip->i_flag &= ~IQUIET;
4189 4190
4190 4191 if (error) {
4191 4192 rw_exit(&ip->i_contents);
4192 4193 rw_exit(&ufsvfsp->vfs_dqrwlock);
4193 4194 goto remove;
4194 4195 }
4195 4196
4196 4197 /*
4197 4198 * If the link's data is small enough, we can cache it in the inode.
4198 4199 * This is a "fast symbolic link". We don't use the first direct
4199 4200 * block because that's actually used to point at the symbolic link's
4200 4201 * contents on disk; but we know that none of the other direct or
4201 4202 * indirect blocks can be used because symbolic links are restricted
4202 4203 * to be smaller than a file system block.
4203 4204 */
4204 4205
4205 4206 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip)));
4206 4207
4207 4208 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) {
4208 4209 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) {
4209 4210 ip->i_flag |= IFASTSYMLNK;
4210 4211 } else {
4211 4212 int i;
4212 4213 /* error, clear garbage left behind */
4213 4214 for (i = 1; i < NDADDR; i++)
4214 4215 ip->i_db[i] = 0;
4215 4216 for (i = 0; i < NIADDR; i++)
4216 4217 ip->i_ib[i] = 0;
4217 4218 }
4218 4219 }
4219 4220
4220 4221 rw_exit(&ip->i_contents);
4221 4222 rw_exit(&ufsvfsp->vfs_dqrwlock);
4222 4223
4223 4224 /*
4224 4225 * OK. We've successfully created the symbolic link. All that
4225 4226 * remains is to insert it into the appropriate directory.
4226 4227 */
4227 4228
4228 4229 rw_enter(&dip->i_rwlock, RW_WRITER);
4229 4230 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr);
4230 4231 rw_exit(&dip->i_rwlock);
4231 4232
4232 4233 /*
4233 4234 * Fall through into remove-on-error code. We're either done, or we
4234 4235 * need to remove the inode (if we couldn't insert it).
4235 4236 */
4236 4237
4237 4238 remove:
4238 4239 if (error && (ip != NULL)) {
4239 4240 rw_enter(&ip->i_contents, RW_WRITER);
4240 4241 ip->i_nlink--;
4241 4242 ip->i_flag |= ICHG;
4242 4243 ip->i_seq++;
4243 4244 ufs_setreclaim(ip);
4244 4245 rw_exit(&ip->i_contents);
4245 4246 }
4246 4247
4247 4248 unlock:
4248 4249 if (ip != NULL)
4249 4250 VN_RELE(ITOV(ip));
4250 4251
4251 4252 if (ulp) {
4252 4253 int terr = 0;
4253 4254
4254 4255 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK,
4255 4256 trans_size);
4256 4257 ufs_lockfs_end(ulp);
4257 4258 if (error == 0)
4258 4259 error = terr;
4259 4260 }
4260 4261
4261 4262 /*
4262 4263 * We may have failed due to lack of an inode or of a block to
4263 4264 * store the target in. Try flushing the delete queue to free
4264 4265 * logically-available things up and try again.
4265 4266 */
4266 4267 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
4267 4268 ufs_delete_drain_wait(ufsvfsp, 1);
4268 4269 retry = 0;
4269 4270 goto again;
4270 4271 }
4271 4272
4272 4273 out:
4273 4274 return (error);
4274 4275 }
4275 4276
4276 4277 /*
4277 4278 * Ufs specific routine used to do ufs io.
4278 4279 */
4279 4280 int
4280 4281 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base,
4281 4282 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid,
4282 4283 struct cred *cr)
4283 4284 {
4284 4285 struct uio auio;
4285 4286 struct iovec aiov;
4286 4287 int error;
4287 4288
4288 4289 ASSERT(RW_LOCK_HELD(&ip->i_contents));
4289 4290
4290 4291 bzero((caddr_t)&auio, sizeof (uio_t));
4291 4292 bzero((caddr_t)&aiov, sizeof (iovec_t));
4292 4293
4293 4294 aiov.iov_base = base;
4294 4295 aiov.iov_len = len;
4295 4296 auio.uio_iov = &aiov;
4296 4297 auio.uio_iovcnt = 1;
4297 4298 auio.uio_loffset = offset;
4298 4299 auio.uio_segflg = (short)seg;
4299 4300 auio.uio_resid = len;
4300 4301
4301 4302 if (rw == UIO_WRITE) {
4302 4303 auio.uio_fmode = FWRITE;
4303 4304 auio.uio_extflg = UIO_COPY_DEFAULT;
4304 4305 auio.uio_llimit = curproc->p_fsz_ctl;
4305 4306 error = wrip(ip, &auio, ioflag, cr);
4306 4307 } else {
4307 4308 auio.uio_fmode = FREAD;
4308 4309 auio.uio_extflg = UIO_COPY_CACHED;
4309 4310 auio.uio_llimit = MAXOFFSET_T;
4310 4311 error = rdip(ip, &auio, ioflag, cr);
4311 4312 }
4312 4313
4313 4314 if (aresid) {
4314 4315 *aresid = auio.uio_resid;
4315 4316 } else if (auio.uio_resid) {
4316 4317 error = EIO;
4317 4318 }
4318 4319 return (error);
4319 4320 }
4320 4321
4321 4322 /*ARGSUSED*/
4322 4323 static int
4323 4324 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
4324 4325 {
4325 4326 struct ufid *ufid;
4326 4327 struct inode *ip = VTOI(vp);
4327 4328
4328 4329 if (ip->i_ufsvfs == NULL)
4329 4330 return (EIO);
4330 4331
4331 4332 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) {
4332 4333 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t);
4333 4334 return (ENOSPC);
4334 4335 }
4335 4336
4336 4337 ufid = (struct ufid *)fidp;
4337 4338 bzero((char *)ufid, sizeof (struct ufid));
4338 4339 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t);
4339 4340 ufid->ufid_ino = ip->i_number;
4340 4341 ufid->ufid_gen = ip->i_gen;
4341 4342
4342 4343 return (0);
4343 4344 }
4344 4345
4345 4346 /* ARGSUSED2 */
4346 4347 static int
4347 4348 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4348 4349 {
4349 4350 struct inode *ip = VTOI(vp);
4350 4351 struct ufsvfs *ufsvfsp;
4351 4352 int forcedirectio;
4352 4353
4353 4354 /*
4354 4355 * Read case is easy.
4355 4356 */
4356 4357 if (!write_lock) {
4357 4358 rw_enter(&ip->i_rwlock, RW_READER);
4358 4359 return (V_WRITELOCK_FALSE);
4359 4360 }
4360 4361
4361 4362 /*
4362 4363 * Caller has requested a writer lock, but that inhibits any
4363 4364 * concurrency in the VOPs that follow. Acquire the lock shared
4364 4365 * and defer exclusive access until it is known to be needed in
4365 4366 * other VOP handlers. Some cases can be determined here.
4366 4367 */
4367 4368
4368 4369 /*
4369 4370 * If directio is not set, there is no chance of concurrency,
4370 4371 * so just acquire the lock exclusive. Beware of a forced
4371 4372 * unmount before looking at the mount option.
4372 4373 */
4373 4374 ufsvfsp = ip->i_ufsvfs;
4374 4375 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0;
4375 4376 if (!(ip->i_flag & IDIRECTIO || forcedirectio) ||
4376 4377 !ufs_allow_shared_writes) {
4377 4378 rw_enter(&ip->i_rwlock, RW_WRITER);
4378 4379 return (V_WRITELOCK_TRUE);
4379 4380 }
4380 4381
4381 4382 /*
4382 4383 * Mandatory locking forces acquiring i_rwlock exclusive.
4383 4384 */
4384 4385 if (MANDLOCK(vp, ip->i_mode)) {
4385 4386 rw_enter(&ip->i_rwlock, RW_WRITER);
4386 4387 return (V_WRITELOCK_TRUE);
4387 4388 }
4388 4389
4389 4390 /*
4390 4391 * Acquire the lock shared in case a concurrent write follows.
4391 4392 * Mandatory locking could have become enabled before the lock
4392 4393 * was acquired. Re-check and upgrade if needed.
4393 4394 */
4394 4395 rw_enter(&ip->i_rwlock, RW_READER);
4395 4396 if (MANDLOCK(vp, ip->i_mode)) {
4396 4397 rw_exit(&ip->i_rwlock);
4397 4398 rw_enter(&ip->i_rwlock, RW_WRITER);
4398 4399 return (V_WRITELOCK_TRUE);
4399 4400 }
4400 4401 return (V_WRITELOCK_FALSE);
4401 4402 }
4402 4403
4403 4404 /*ARGSUSED*/
4404 4405 static void
4405 4406 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4406 4407 {
4407 4408 struct inode *ip = VTOI(vp);
4408 4409
4409 4410 rw_exit(&ip->i_rwlock);
4410 4411 }
4411 4412
4412 4413 /* ARGSUSED */
4413 4414 static int
4414 4415 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
4415 4416 {
4416 4417 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4417 4418 }
4418 4419
4419 4420 /* ARGSUSED */
4420 4421 static int
4421 4422 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4422 4423 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr,
4423 4424 caller_context_t *ct)
4424 4425 {
4425 4426 struct inode *ip = VTOI(vp);
4426 4427
4427 4428 if (ip->i_ufsvfs == NULL)
4428 4429 return (EIO);
4429 4430
4430 4431 /*
4431 4432 * If file is being mapped, disallow frlock.
4432 4433 * XXX I am not holding tlock while checking i_mapcnt because the
4433 4434 * current locking strategy drops all locks before calling fs_frlock.
4434 4435 * So, mapcnt could change before we enter fs_frlock making is
4435 4436 * meaningless to have held tlock in the first place.
4436 4437 */
4437 4438 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode))
4438 4439 return (EAGAIN);
4439 4440 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4440 4441 }
4441 4442
4442 4443 /* ARGSUSED */
4443 4444 static int
4444 4445 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4445 4446 offset_t offset, cred_t *cr, caller_context_t *ct)
4446 4447 {
4447 4448 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
4448 4449 struct ulockfs *ulp;
4449 4450 int error;
4450 4451
4451 4452 if ((error = convoff(vp, bfp, 0, offset)) == 0) {
4452 4453 if (cmd == F_FREESP) {
4453 4454 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4454 4455 ULOCKFS_SPACE_MASK);
4455 4456 if (error)
4456 4457 return (error);
4457 4458 error = ufs_freesp(vp, bfp, flag, cr);
4458 4459
4459 4460 if (error == 0 && bfp->l_start == 0)
4460 4461 vnevent_truncate(vp, ct);
4461 4462 } else if (cmd == F_ALLOCSP) {
4462 4463 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4463 4464 ULOCKFS_FALLOCATE_MASK);
4464 4465 if (error)
4465 4466 return (error);
4466 4467 error = ufs_allocsp(vp, bfp, cr);
4467 4468 } else
4468 4469 return (EINVAL); /* Command not handled here */
4469 4470
4470 4471 if (ulp)
4471 4472 ufs_lockfs_end(ulp);
4472 4473
4473 4474 }
4474 4475 return (error);
4475 4476 }
4476 4477
4477 4478 /*
4478 4479 * Used to determine if read ahead should be done. Also used to
4479 4480 * to determine when write back occurs.
4480 4481 */
4481 4482 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz)
4482 4483
4483 4484 /*
4484 4485 * A faster version of ufs_getpage.
4485 4486 *
4486 4487 * We optimize by inlining the pvn_getpages iterator, eliminating
4487 4488 * calls to bmap_read if file doesn't have UFS holes, and avoiding
4488 4489 * the overhead of page_exists().
4489 4490 *
4490 4491 * When files has UFS_HOLES and ufs_getpage is called with S_READ,
4491 4492 * we set *protp to PROT_READ to avoid calling bmap_read. This approach
4492 4493 * victimizes performance when a file with UFS holes is faulted
4493 4494 * first in the S_READ mode, and then in the S_WRITE mode. We will get
4494 4495 * two MMU faults in this case.
4495 4496 *
4496 4497 * XXX - the inode fields which control the sequential mode are not
4497 4498 * protected by any mutex. The read ahead will act wild if
4498 4499 * multiple processes will access the file concurrently and
4499 4500 * some of them in sequential mode. One particulary bad case
4500 4501 * is if another thread will change the value of i_nextrio between
4501 4502 * the time this thread tests the i_nextrio value and then reads it
4502 4503 * again to use it as the offset for the read ahead.
4503 4504 */
4504 4505 /*ARGSUSED*/
4505 4506 static int
4506 4507 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
4507 4508 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr,
4508 4509 enum seg_rw rw, struct cred *cr, caller_context_t *ct)
4509 4510 {
4510 4511 u_offset_t uoff = (u_offset_t)off; /* type conversion */
4511 4512 u_offset_t pgoff;
4512 4513 u_offset_t eoff;
4513 4514 struct inode *ip = VTOI(vp);
4514 4515 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
4515 4516 struct fs *fs;
4516 4517 struct ulockfs *ulp;
4517 4518 page_t **pl;
4518 4519 caddr_t pgaddr;
4519 4520 krw_t rwtype;
4520 4521 int err;
4521 4522 int has_holes;
4522 4523 int beyond_eof;
4523 4524 int seqmode;
4524 4525 int pgsize = PAGESIZE;
4525 4526 int dolock;
4526 4527 int do_qlock;
4527 4528 int trans_size;
4528 4529
4529 4530 ASSERT((uoff & PAGEOFFSET) == 0);
4530 4531
4531 4532 if (protp)
4532 4533 *protp = PROT_ALL;
4533 4534
4534 4535 /*
4535 4536 * Obey the lockfs protocol
4536 4537 */
4537 4538 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg,
4538 4539 rw == S_READ || rw == S_EXEC, protp);
4539 4540 if (err)
4540 4541 goto out;
4541 4542
4542 4543 fs = ufsvfsp->vfs_fs;
4543 4544
4544 4545 if (ulp && (rw == S_CREATE || rw == S_WRITE) &&
4545 4546 !(vp->v_flag & VISSWAP)) {
4546 4547 /*
4547 4548 * Try to start a transaction, will return if blocking is
4548 4549 * expected to occur and the address space is not the
4549 4550 * kernel address space.
4550 4551 */
4551 4552 trans_size = TOP_GETPAGE_SIZE(ip);
4552 4553 if (seg->s_as != &kas) {
4553 4554 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE,
4554 4555 trans_size, err)
4555 4556 if (err == EWOULDBLOCK) {
4556 4557 /*
4557 4558 * Use EDEADLK here because the VM code
4558 4559 * can normally never see this error.
4559 4560 */
4560 4561 err = EDEADLK;
4561 4562 ufs_lockfs_end(ulp);
4562 4563 goto out;
4563 4564 }
4564 4565 } else {
4565 4566 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4566 4567 }
4567 4568 }
4568 4569
4569 4570 if (vp->v_flag & VNOMAP) {
4570 4571 err = ENOSYS;
4571 4572 goto unlock;
4572 4573 }
4573 4574
4574 4575 seqmode = ip->i_nextr == uoff && rw != S_CREATE;
4575 4576
4576 4577 rwtype = RW_READER; /* start as a reader */
4577 4578 dolock = (rw_owner(&ip->i_contents) != curthread);
4578 4579 /*
4579 4580 * If this thread owns the lock, i.e., this thread grabbed it
4580 4581 * as writer somewhere above, then we don't need to grab the
4581 4582 * lock as reader in this routine.
4582 4583 */
4583 4584 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread);
4584 4585
4585 4586 retrylock:
4586 4587 if (dolock) {
4587 4588 /*
4588 4589 * Grab the quota lock if we need to call
4589 4590 * bmap_write() below (with i_contents as writer).
4590 4591 */
4591 4592 if (do_qlock && rwtype == RW_WRITER)
4592 4593 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4593 4594 rw_enter(&ip->i_contents, rwtype);
4594 4595 }
4595 4596
4596 4597 /*
4597 4598 * We may be getting called as a side effect of a bmap using
4598 4599 * fbread() when the blocks might be being allocated and the
4599 4600 * size has not yet been up'ed. In this case we want to be
4600 4601 * able to return zero pages if we get back UFS_HOLE from
4601 4602 * calling bmap for a non write case here. We also might have
4602 4603 * to read some frags from the disk into a page if we are
4603 4604 * extending the number of frags for a given lbn in bmap().
4604 4605 * Large Files: The read of i_size here is atomic because
4605 4606 * i_contents is held here. If dolock is zero, the lock
4606 4607 * is held in bmap routines.
4607 4608 */
4608 4609 beyond_eof = uoff + len >
4609 4610 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t);
4610 4611 if (beyond_eof && seg != segkmap) {
4611 4612 if (dolock) {
4612 4613 rw_exit(&ip->i_contents);
4613 4614 if (do_qlock && rwtype == RW_WRITER)
4614 4615 rw_exit(&ufsvfsp->vfs_dqrwlock);
4615 4616 }
4616 4617 err = EFAULT;
4617 4618 goto unlock;
4618 4619 }
4619 4620
4620 4621 /*
4621 4622 * Must hold i_contents lock throughout the call to pvn_getpages
4622 4623 * since locked pages are returned from each call to ufs_getapage.
4623 4624 * Must *not* return locked pages and then try for contents lock
4624 4625 * due to lock ordering requirements (inode > page)
4625 4626 */
4626 4627
4627 4628 has_holes = bmap_has_holes(ip);
4628 4629
4629 4630 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) {
4630 4631 int blk_size;
4631 4632 u_offset_t offset;
4632 4633
4633 4634 /*
4634 4635 * We must acquire the RW_WRITER lock in order to
4635 4636 * call bmap_write().
4636 4637 */
4637 4638 if (dolock && rwtype == RW_READER) {
4638 4639 rwtype = RW_WRITER;
4639 4640
4640 4641 /*
4641 4642 * Grab the quota lock before
4642 4643 * upgrading i_contents, but if we can't grab it
4643 4644 * don't wait here due to lock order:
4644 4645 * vfs_dqrwlock > i_contents.
4645 4646 */
4646 4647 if (do_qlock &&
4647 4648 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER)
4648 4649 == 0) {
4649 4650 rw_exit(&ip->i_contents);
4650 4651 goto retrylock;
4651 4652 }
4652 4653 if (!rw_tryupgrade(&ip->i_contents)) {
4653 4654 rw_exit(&ip->i_contents);
4654 4655 if (do_qlock)
4655 4656 rw_exit(&ufsvfsp->vfs_dqrwlock);
4656 4657 goto retrylock;
4657 4658 }
4658 4659 }
4659 4660
4660 4661 /*
4661 4662 * May be allocating disk blocks for holes here as
4662 4663 * a result of mmap faults. write(2) does the bmap_write
4663 4664 * in rdip/wrip, not here. We are not dealing with frags
4664 4665 * in this case.
4665 4666 */
4666 4667 /*
4667 4668 * Large Files: We cast fs_bmask field to offset_t
4668 4669 * just as we do for MAXBMASK because uoff is a 64-bit
4669 4670 * data type. fs_bmask will still be a 32-bit type
4670 4671 * as we cannot change any ondisk data structures.
4671 4672 */
4672 4673
4673 4674 offset = uoff & (offset_t)fs->fs_bmask;
4674 4675 while (offset < uoff + len) {
4675 4676 blk_size = (int)blksize(fs, ip, lblkno(fs, offset));
4676 4677 err = bmap_write(ip, offset, blk_size,
4677 4678 BI_NORMAL, NULL, cr);
4678 4679 if (ip->i_flag & (ICHG|IUPD))
4679 4680 ip->i_seq++;
4680 4681 if (err)
4681 4682 goto update_inode;
4682 4683 offset += blk_size; /* XXX - make this contig */
4683 4684 }
4684 4685 }
4685 4686
4686 4687 /*
4687 4688 * Can be a reader from now on.
4688 4689 */
4689 4690 if (dolock && rwtype == RW_WRITER) {
4690 4691 rw_downgrade(&ip->i_contents);
4691 4692 /*
4692 4693 * We can release vfs_dqrwlock early so do it, but make
4693 4694 * sure we don't try to release it again at the bottom.
4694 4695 */
4695 4696 if (do_qlock) {
4696 4697 rw_exit(&ufsvfsp->vfs_dqrwlock);
4697 4698 do_qlock = 0;
4698 4699 }
4699 4700 }
4700 4701
4701 4702 /*
4702 4703 * We remove PROT_WRITE in cases when the file has UFS holes
4703 4704 * because we don't want to call bmap_read() to check each
4704 4705 * page if it is backed with a disk block.
4705 4706 */
4706 4707 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE)
4707 4708 *protp &= ~PROT_WRITE;
4708 4709
4709 4710 err = 0;
4710 4711
4711 4712 /*
4712 4713 * The loop looks up pages in the range [off, off + len).
4713 4714 * For each page, we first check if we should initiate an asynchronous
4714 4715 * read ahead before we call page_lookup (we may sleep in page_lookup
4715 4716 * for a previously initiated disk read).
4716 4717 */
4717 4718 eoff = (uoff + len);
4718 4719 for (pgoff = uoff, pgaddr = addr, pl = plarr;
4719 4720 pgoff < eoff; /* empty */) {
4720 4721 page_t *pp;
4721 4722 u_offset_t nextrio;
4722 4723 se_t se;
4723 4724 int retval;
4724 4725
4725 4726 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED);
4726 4727
4727 4728 /* Handle async getpage (faultahead) */
4728 4729 if (plarr == NULL) {
4729 4730 ip->i_nextrio = pgoff;
4730 4731 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4731 4732 pgoff += pgsize;
4732 4733 pgaddr += pgsize;
4733 4734 continue;
4734 4735 }
4735 4736 /*
4736 4737 * Check if we should initiate read ahead of next cluster.
4737 4738 * We call page_exists only when we need to confirm that
4738 4739 * we have the current page before we initiate the read ahead.
4739 4740 */
4740 4741 nextrio = ip->i_nextrio;
4741 4742 if (seqmode &&
4742 4743 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
4743 4744 nextrio < ip->i_size && page_exists(vp, pgoff)) {
4744 4745 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4745 4746 /*
4746 4747 * We always read ahead the next cluster of data
4747 4748 * starting from i_nextrio. If the page (vp,nextrio)
4748 4749 * is actually in core at this point, the routine
4749 4750 * ufs_getpage_ra() will stop pre-fetching data
4750 4751 * until we read that page in a synchronized manner
4751 4752 * through ufs_getpage_miss(). So, we should increase
4752 4753 * i_nextrio if the page (vp, nextrio) exists.
4753 4754 */
4754 4755 if ((retval == 0) && page_exists(vp, nextrio)) {
4755 4756 ip->i_nextrio = nextrio + pgsize;
4756 4757 }
4757 4758 }
4758 4759
4759 4760 if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
4760 4761 /*
4761 4762 * We found the page in the page cache.
4762 4763 */
4763 4764 *pl++ = pp;
4764 4765 pgoff += pgsize;
4765 4766 pgaddr += pgsize;
4766 4767 len -= pgsize;
4767 4768 plsz -= pgsize;
4768 4769 } else {
4769 4770 /*
4770 4771 * We have to create the page, or read it from disk.
4771 4772 */
4772 4773 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr,
4773 4774 pl, plsz, rw, seqmode))
4774 4775 goto error;
4775 4776
4776 4777 while (*pl != NULL) {
4777 4778 pl++;
4778 4779 pgoff += pgsize;
4779 4780 pgaddr += pgsize;
4780 4781 len -= pgsize;
4781 4782 plsz -= pgsize;
4782 4783 }
4783 4784 }
4784 4785 }
4785 4786
4786 4787 /*
4787 4788 * Return pages up to plsz if they are in the page cache.
4788 4789 * We cannot return pages if there is a chance that they are
4789 4790 * backed with a UFS hole and rw is S_WRITE or S_CREATE.
4790 4791 */
4791 4792 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
4792 4793
4793 4794 ASSERT((protp == NULL) ||
4794 4795 !(has_holes && (*protp & PROT_WRITE)));
4795 4796
4796 4797 eoff = pgoff + plsz;
4797 4798 while (pgoff < eoff) {
4798 4799 page_t *pp;
4799 4800
4800 4801 if ((pp = page_lookup_nowait(vp, pgoff,
4801 4802 SE_SHARED)) == NULL)
4802 4803 break;
4803 4804
4804 4805 *pl++ = pp;
4805 4806 pgoff += pgsize;
4806 4807 plsz -= pgsize;
4807 4808 }
4808 4809 }
4809 4810
4810 4811 if (plarr)
4811 4812 *pl = NULL; /* Terminate page list */
4812 4813 ip->i_nextr = pgoff;
4813 4814
4814 4815 error:
4815 4816 if (err && plarr) {
4816 4817 /*
4817 4818 * Release any pages we have locked.
4818 4819 */
4819 4820 while (pl > &plarr[0])
4820 4821 page_unlock(*--pl);
4821 4822
4822 4823 plarr[0] = NULL;
4823 4824 }
4824 4825
4825 4826 update_inode:
4826 4827 /*
4827 4828 * If the inode is not already marked for IACC (in rdip() for read)
4828 4829 * and the inode is not marked for no access time update (in wrip()
4829 4830 * for write) then update the inode access time and mod time now.
4830 4831 */
4831 4832 if ((ip->i_flag & (IACC | INOACC)) == 0) {
4832 4833 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) {
4833 4834 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
4834 4835 (fs->fs_ronly == 0) &&
4835 4836 (!ufsvfsp->vfs_noatime)) {
4836 4837 mutex_enter(&ip->i_tlock);
4837 4838 ip->i_flag |= IACC;
4838 4839 ITIMES_NOLOCK(ip);
4839 4840 mutex_exit(&ip->i_tlock);
4840 4841 }
4841 4842 }
4842 4843 }
4843 4844
4844 4845 if (dolock) {
4845 4846 rw_exit(&ip->i_contents);
4846 4847 if (do_qlock && rwtype == RW_WRITER)
4847 4848 rw_exit(&ufsvfsp->vfs_dqrwlock);
4848 4849 }
4849 4850
4850 4851 unlock:
4851 4852 if (ulp) {
4852 4853 if ((rw == S_CREATE || rw == S_WRITE) &&
4853 4854 !(vp->v_flag & VISSWAP)) {
4854 4855 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4855 4856 }
4856 4857 ufs_lockfs_end(ulp);
4857 4858 }
4858 4859 out:
4859 4860 return (err);
4860 4861 }
4861 4862
4862 4863 /*
4863 4864 * ufs_getpage_miss is called when ufs_getpage missed the page in the page
4864 4865 * cache. The page is either read from the disk, or it's created.
4865 4866 * A page is created (without disk read) if rw == S_CREATE, or if
4866 4867 * the page is not backed with a real disk block (UFS hole).
4867 4868 */
4868 4869 /* ARGSUSED */
4869 4870 static int
4870 4871 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg,
4871 4872 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq)
4872 4873 {
4873 4874 struct inode *ip = VTOI(vp);
4874 4875 page_t *pp;
4875 4876 daddr_t bn;
4876 4877 size_t io_len;
4877 4878 int crpage = 0;
4878 4879 int err;
4879 4880 int contig;
4880 4881 int bsize = ip->i_fs->fs_bsize;
4881 4882
4882 4883 /*
4883 4884 * Figure out whether the page can be created, or must be
4884 4885 * must be read from the disk.
4885 4886 */
4886 4887 if (rw == S_CREATE)
4887 4888 crpage = 1;
4888 4889 else {
4889 4890 contig = 0;
4890 4891 if (err = bmap_read(ip, off, &bn, &contig))
4891 4892 return (err);
4892 4893
4893 4894 crpage = (bn == UFS_HOLE);
4894 4895
4895 4896 /*
4896 4897 * If its also a fallocated block that hasn't been written to
4897 4898 * yet, we will treat it just like a UFS_HOLE and create
4898 4899 * a zero page for it
4899 4900 */
4900 4901 if (ISFALLOCBLK(ip, bn))
4901 4902 crpage = 1;
4902 4903 }
4903 4904
4904 4905 if (crpage) {
4905 4906 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg,
4906 4907 addr)) == NULL) {
4907 4908 return (ufs_fault(vp,
4908 4909 "ufs_getpage_miss: page_create == NULL"));
4909 4910 }
4910 4911
4911 4912 if (rw != S_CREATE)
4912 4913 pagezero(pp, 0, PAGESIZE);
4913 4914
4914 4915 io_len = PAGESIZE;
4915 4916 } else {
4916 4917 u_offset_t io_off;
4917 4918 uint_t xlen;
4918 4919 struct buf *bp;
4919 4920 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
4920 4921
4921 4922 /*
4922 4923 * If access is not in sequential order, we read from disk
4923 4924 * in bsize units.
4924 4925 *
4925 4926 * We limit the size of the transfer to bsize if we are reading
4926 4927 * from the beginning of the file. Note in this situation we
4927 4928 * will hedge our bets and initiate an async read ahead of
4928 4929 * the second block.
4929 4930 */
4930 4931 if (!seq || off == 0)
4931 4932 contig = MIN(contig, bsize);
4932 4933
4933 4934 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4934 4935 &io_len, off, contig, 0);
4935 4936
4936 4937 /*
4937 4938 * Some other thread has entered the page.
4938 4939 * ufs_getpage will retry page_lookup.
4939 4940 */
4940 4941 if (pp == NULL) {
4941 4942 pl[0] = NULL;
4942 4943 return (0);
4943 4944 }
4944 4945
4945 4946 /*
4946 4947 * Zero part of the page which we are not
4947 4948 * going to read from the disk.
4948 4949 */
4949 4950 xlen = io_len & PAGEOFFSET;
4950 4951 if (xlen != 0)
4951 4952 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
4952 4953
4953 4954 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ);
4954 4955 bp->b_edev = ip->i_dev;
4955 4956 bp->b_dev = cmpdev(ip->i_dev);
4956 4957 bp->b_blkno = bn;
4957 4958 bp->b_un.b_addr = (caddr_t)0;
4958 4959 bp->b_file = ip->i_vnode;
4959 4960 bp->b_offset = off;
4960 4961
4961 4962 if (ufsvfsp->vfs_log) {
4962 4963 lufs_read_strategy(ufsvfsp->vfs_log, bp);
4963 4964 } else if (ufsvfsp->vfs_snapshot) {
4964 4965 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
4965 4966 } else {
4966 4967 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
4967 4968 ub.ub_getpages.value.ul++;
4968 4969 (void) bdev_strategy(bp);
4969 4970 lwp_stat_update(LWP_STAT_INBLK, 1);
4970 4971 }
4971 4972
4972 4973 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK);
4973 4974
4974 4975 /*
4975 4976 * If the file access is sequential, initiate read ahead
4976 4977 * of the next cluster.
4977 4978 */
4978 4979 if (seq && ip->i_nextrio < ip->i_size)
4979 4980 (void) ufs_getpage_ra(vp, off, seg, addr);
4980 4981 err = biowait(bp);
4981 4982 pageio_done(bp);
4982 4983
4983 4984 if (err) {
4984 4985 pvn_read_done(pp, B_ERROR);
4985 4986 return (err);
4986 4987 }
4987 4988 }
4988 4989
4989 4990 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4990 4991 return (0);
4991 4992 }
4992 4993
4993 4994 /*
4994 4995 * Read ahead a cluster from the disk. Returns the length in bytes.
4995 4996 */
4996 4997 static int
4997 4998 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr)
4998 4999 {
4999 5000 struct inode *ip = VTOI(vp);
5000 5001 page_t *pp;
5001 5002 u_offset_t io_off = ip->i_nextrio;
5002 5003 ufsvfs_t *ufsvfsp;
5003 5004 caddr_t addr2 = addr + (io_off - off);
5004 5005 struct buf *bp;
5005 5006 daddr_t bn;
5006 5007 size_t io_len;
5007 5008 int err;
5008 5009 int contig;
5009 5010 int xlen;
5010 5011 int bsize = ip->i_fs->fs_bsize;
5011 5012
5012 5013 /*
5013 5014 * If the directio advisory is in effect on this file,
5014 5015 * then do not do buffered read ahead. Read ahead makes
5015 5016 * it more difficult on threads using directio as they
5016 5017 * will be forced to flush the pages from this vnode.
5017 5018 */
5018 5019 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5019 5020 return (0);
5020 5021 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio)
5021 5022 return (0);
5022 5023
5023 5024 /*
5024 5025 * Is this test needed?
5025 5026 */
5026 5027 if (addr2 >= seg->s_base + seg->s_size)
5027 5028 return (0);
5028 5029
5029 5030 contig = 0;
5030 5031 err = bmap_read(ip, io_off, &bn, &contig);
5031 5032 /*
5032 5033 * If its a UFS_HOLE or a fallocated block, do not perform
5033 5034 * any read ahead's since there probably is nothing to read ahead
5034 5035 */
5035 5036 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn))
5036 5037 return (0);
5037 5038
5038 5039 /*
5039 5040 * Limit the transfer size to bsize if this is the 2nd block.
5040 5041 */
5041 5042 if (io_off == (u_offset_t)bsize)
5042 5043 contig = MIN(contig, bsize);
5043 5044
5044 5045 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off,
5045 5046 &io_len, io_off, contig, 1)) == NULL)
5046 5047 return (0);
5047 5048
5048 5049 /*
5049 5050 * Zero part of page which we are not going to read from disk
5050 5051 */
5051 5052 if ((xlen = (io_len & PAGEOFFSET)) > 0)
5052 5053 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
5053 5054
5054 5055 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK;
5055 5056
5056 5057 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC);
5057 5058 bp->b_edev = ip->i_dev;
5058 5059 bp->b_dev = cmpdev(ip->i_dev);
5059 5060 bp->b_blkno = bn;
5060 5061 bp->b_un.b_addr = (caddr_t)0;
5061 5062 bp->b_file = ip->i_vnode;
5062 5063 bp->b_offset = off;
5063 5064
5064 5065 if (ufsvfsp->vfs_log) {
5065 5066 lufs_read_strategy(ufsvfsp->vfs_log, bp);
5066 5067 } else if (ufsvfsp->vfs_snapshot) {
5067 5068 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5068 5069 } else {
5069 5070 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5070 5071 ub.ub_getras.value.ul++;
5071 5072 (void) bdev_strategy(bp);
5072 5073 lwp_stat_update(LWP_STAT_INBLK, 1);
5073 5074 }
5074 5075
5075 5076 return (io_len);
5076 5077 }
5077 5078
5078 5079 int ufs_delay = 1;
5079 5080 /*
5080 5081 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC}
5081 5082 *
5082 5083 * LMXXX - the inode really ought to contain a pointer to one of these
5083 5084 * async args. Stuff gunk in there and just hand the whole mess off.
5084 5085 * This would replace i_delaylen, i_delayoff.
5085 5086 */
5086 5087 /*ARGSUSED*/
5087 5088 static int
5088 5089 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
5089 5090 struct cred *cr, caller_context_t *ct)
5090 5091 {
5091 5092 struct inode *ip = VTOI(vp);
5092 5093 int err = 0;
5093 5094
5094 5095 if (vp->v_count == 0) {
5095 5096 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0"));
5096 5097 }
5097 5098
5098 5099 /*
5099 5100 * XXX - Why should this check be made here?
5100 5101 */
5101 5102 if (vp->v_flag & VNOMAP) {
5102 5103 err = ENOSYS;
5103 5104 goto errout;
5104 5105 }
5105 5106
5106 5107 if (ip->i_ufsvfs == NULL) {
5107 5108 err = EIO;
5108 5109 goto errout;
5109 5110 }
5110 5111
5111 5112 if (flags & B_ASYNC) {
5112 5113 if (ufs_delay && len &&
5113 5114 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
5114 5115 mutex_enter(&ip->i_tlock);
5115 5116 /*
5116 5117 * If nobody stalled, start a new cluster.
5117 5118 */
5118 5119 if (ip->i_delaylen == 0) {
5119 5120 ip->i_delayoff = off;
5120 5121 ip->i_delaylen = len;
5121 5122 mutex_exit(&ip->i_tlock);
5122 5123 goto errout;
5123 5124 }
5124 5125 /*
5125 5126 * If we have a full cluster or they are not contig,
5126 5127 * then push last cluster and start over.
5127 5128 */
5128 5129 if (ip->i_delaylen >= CLUSTSZ(ip) ||
5129 5130 ip->i_delayoff + ip->i_delaylen != off) {
5130 5131 u_offset_t doff;
5131 5132 size_t dlen;
5132 5133
5133 5134 doff = ip->i_delayoff;
5134 5135 dlen = ip->i_delaylen;
5135 5136 ip->i_delayoff = off;
5136 5137 ip->i_delaylen = len;
5137 5138 mutex_exit(&ip->i_tlock);
5138 5139 err = ufs_putpages(vp, doff, dlen,
5139 5140 flags, cr);
5140 5141 /* LMXXX - flags are new val, not old */
5141 5142 goto errout;
5142 5143 }
5143 5144 /*
5144 5145 * There is something there, it's not full, and
5145 5146 * it is contig.
5146 5147 */
5147 5148 ip->i_delaylen += len;
5148 5149 mutex_exit(&ip->i_tlock);
5149 5150 goto errout;
5150 5151 }
5151 5152 /*
5152 5153 * Must have weird flags or we are not clustering.
5153 5154 */
5154 5155 }
5155 5156
5156 5157 err = ufs_putpages(vp, off, len, flags, cr);
5157 5158
5158 5159 errout:
5159 5160 return (err);
5160 5161 }
5161 5162
5162 5163 /*
5163 5164 * If len == 0, do from off to EOF.
5164 5165 *
5165 5166 * The normal cases should be len == 0 & off == 0 (entire vp list),
5166 5167 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
5167 5168 * (from pageout).
5168 5169 */
5169 5170 /*ARGSUSED*/
5170 5171 static int
5171 5172 ufs_putpages(struct vnode *vp, offset_t off, size_t len, int flags,
5172 5173 struct cred *cr)
5173 5174 {
5174 5175 u_offset_t io_off;
5175 5176 u_offset_t eoff;
5176 5177 struct inode *ip = VTOI(vp);
5177 5178 page_t *pp;
5178 5179 size_t io_len;
5179 5180 int err = 0;
5180 5181 int dolock;
5181 5182
5182 5183 if (vp->v_count == 0)
5183 5184 return (ufs_fault(vp, "ufs_putpages: v_count == 0"));
5184 5185 /*
5185 5186 * Acquire the readers/write inode lock before locking
5186 5187 * any pages in this inode.
5187 5188 * The inode lock is held during i/o.
5188 5189 */
5189 5190 if (len == 0) {
5190 5191 mutex_enter(&ip->i_tlock);
5191 5192 ip->i_delayoff = ip->i_delaylen = 0;
5192 5193 mutex_exit(&ip->i_tlock);
5193 5194 }
5194 5195 dolock = (rw_owner(&ip->i_contents) != curthread);
5195 5196 if (dolock) {
5196 5197 /*
5197 5198 * Must synchronize this thread and any possible thread
5198 5199 * operating in the window of vulnerability in wrip().
5199 5200 * It is dangerous to allow both a thread doing a putpage
5200 5201 * and a thread writing, so serialize them. The exception
5201 5202 * is when the thread in wrip() does something which causes
5202 5203 * a putpage operation. Then, the thread must be allowed
5203 5204 * to continue. It may encounter a bmap_read problem in
5204 5205 * ufs_putapage, but that is handled in ufs_putapage.
5205 5206 * Allow async writers to proceed, we don't want to block
5206 5207 * the pageout daemon.
5207 5208 */
5208 5209 if (ip->i_writer == curthread)
5209 5210 rw_enter(&ip->i_contents, RW_READER);
5210 5211 else {
5211 5212 for (;;) {
5212 5213 rw_enter(&ip->i_contents, RW_READER);
5213 5214 mutex_enter(&ip->i_tlock);
5214 5215 /*
5215 5216 * If there is no thread in the critical
5216 5217 * section of wrip(), then proceed.
5217 5218 * Otherwise, wait until there isn't one.
5218 5219 */
5219 5220 if (ip->i_writer == NULL) {
5220 5221 mutex_exit(&ip->i_tlock);
5221 5222 break;
5222 5223 }
5223 5224 rw_exit(&ip->i_contents);
5224 5225 /*
5225 5226 * Bounce async writers when we have a writer
5226 5227 * working on this file so we don't deadlock
5227 5228 * the pageout daemon.
5228 5229 */
5229 5230 if (flags & B_ASYNC) {
5230 5231 mutex_exit(&ip->i_tlock);
5231 5232 return (0);
5232 5233 }
5233 5234 cv_wait(&ip->i_wrcv, &ip->i_tlock);
5234 5235 mutex_exit(&ip->i_tlock);
5235 5236 }
5236 5237 }
5237 5238 }
5238 5239
5239 5240 if (!vn_has_cached_data(vp)) {
5240 5241 if (dolock)
5241 5242 rw_exit(&ip->i_contents);
5242 5243 return (0);
5243 5244 }
5244 5245
5245 5246 if (len == 0) {
5246 5247 /*
5247 5248 * Search the entire vp list for pages >= off.
5248 5249 */
5249 5250 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage,
5250 5251 flags, cr);
5251 5252 } else {
5252 5253 /*
5253 5254 * Loop over all offsets in the range looking for
5254 5255 * pages to deal with.
5255 5256 */
5256 5257 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0)
5257 5258 eoff = MIN(off + len, eoff);
5258 5259 else
5259 5260 eoff = off + len;
5260 5261
5261 5262 for (io_off = off; io_off < eoff; io_off += io_len) {
5262 5263 /*
5263 5264 * If we are not invalidating, synchronously
5264 5265 * freeing or writing pages, use the routine
5265 5266 * page_lookup_nowait() to prevent reclaiming
5266 5267 * them from the free list.
5267 5268 */
5268 5269 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
5269 5270 pp = page_lookup(vp, io_off,
5270 5271 (flags & (B_INVAL | B_FREE)) ?
5271 5272 SE_EXCL : SE_SHARED);
5272 5273 } else {
5273 5274 pp = page_lookup_nowait(vp, io_off,
5274 5275 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
5275 5276 }
5276 5277
5277 5278 if (pp == NULL || pvn_getdirty(pp, flags) == 0)
5278 5279 io_len = PAGESIZE;
5279 5280 else {
5280 5281 u_offset_t *io_offp = &io_off;
5281 5282
5282 5283 err = ufs_putapage(vp, pp, io_offp, &io_len,
5283 5284 flags, cr);
5284 5285 if (err != 0)
5285 5286 break;
5286 5287 /*
5287 5288 * "io_off" and "io_len" are returned as
5288 5289 * the range of pages we actually wrote.
5289 5290 * This allows us to skip ahead more quickly
5290 5291 * since several pages may've been dealt
5291 5292 * with by this iteration of the loop.
5292 5293 */
5293 5294 }
5294 5295 }
5295 5296 }
5296 5297 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
5297 5298 /*
5298 5299 * We have just sync'ed back all the pages on
5299 5300 * the inode, turn off the IMODTIME flag.
5300 5301 */
5301 5302 mutex_enter(&ip->i_tlock);
5302 5303 ip->i_flag &= ~IMODTIME;
5303 5304 mutex_exit(&ip->i_tlock);
5304 5305 }
5305 5306 if (dolock)
5306 5307 rw_exit(&ip->i_contents);
5307 5308 return (err);
5308 5309 }
5309 5310
5310 5311 static void
5311 5312 ufs_iodone(buf_t *bp)
5312 5313 {
5313 5314 struct inode *ip;
5314 5315
5315 5316 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
5316 5317
5317 5318 bp->b_iodone = NULL;
5318 5319
5319 5320 ip = VTOI(bp->b_pages->p_vnode);
5320 5321
5321 5322 mutex_enter(&ip->i_tlock);
5322 5323 if (ip->i_writes >= ufs_LW) {
5323 5324 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW)
5324 5325 if (ufs_WRITES)
5325 5326 cv_broadcast(&ip->i_wrcv); /* wake all up */
5326 5327 } else {
5327 5328 ip->i_writes -= bp->b_bcount;
5328 5329 }
5329 5330
5330 5331 mutex_exit(&ip->i_tlock);
5331 5332 iodone(bp);
5332 5333 }
5333 5334
5334 5335 /*
5335 5336 * Write out a single page, possibly klustering adjacent
5336 5337 * dirty pages. The inode lock must be held.
5337 5338 *
5338 5339 * LMXXX - bsize < pagesize not done.
5339 5340 */
5340 5341 /*ARGSUSED*/
5341 5342 int
5342 5343 ufs_putapage(struct vnode *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
5343 5344 int flags, struct cred *cr)
5344 5345 {
5345 5346 u_offset_t io_off;
5346 5347 u_offset_t off;
5347 5348 struct inode *ip = VTOI(vp);
5348 5349 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
5349 5350 struct fs *fs;
5350 5351 struct buf *bp;
5351 5352 size_t io_len;
5352 5353 daddr_t bn;
5353 5354 int err;
5354 5355 int contig;
5355 5356 int dotrans;
5356 5357
5357 5358 ASSERT(RW_LOCK_HELD(&ip->i_contents));
5358 5359
5359 5360 if (ufsvfsp == NULL) {
5360 5361 err = EIO;
5361 5362 goto out_trace;
5362 5363 }
5363 5364
5364 5365 fs = ip->i_fs;
5365 5366 ASSERT(fs->fs_ronly == 0);
5366 5367
5367 5368 /*
5368 5369 * If the modified time on the inode has not already been
5369 5370 * set elsewhere (e.g. for write/setattr) we set the time now.
5370 5371 * This gives us approximate modified times for mmap'ed files
5371 5372 * which are modified via stores in the user address space.
5372 5373 */
5373 5374 if ((ip->i_flag & IMODTIME) == 0) {
5374 5375 mutex_enter(&ip->i_tlock);
5375 5376 ip->i_flag |= IUPD;
5376 5377 ip->i_seq++;
5377 5378 ITIMES_NOLOCK(ip);
5378 5379 mutex_exit(&ip->i_tlock);
5379 5380 }
5380 5381
5381 5382 /*
5382 5383 * Align the request to a block boundry (for old file systems),
5383 5384 * and go ask bmap() how contiguous things are for this file.
5384 5385 */
5385 5386 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */
5386 5387 contig = 0;
5387 5388 err = bmap_read(ip, off, &bn, &contig);
5388 5389 if (err)
5389 5390 goto out;
5390 5391 if (bn == UFS_HOLE) { /* putpage never allocates */
5391 5392 /*
5392 5393 * logging device is in error mode; simply return EIO
5393 5394 */
5394 5395 if (TRANS_ISERROR(ufsvfsp)) {
5395 5396 err = EIO;
5396 5397 goto out;
5397 5398 }
5398 5399 /*
5399 5400 * Oops, the thread in the window in wrip() did some
5400 5401 * sort of operation which caused a putpage in the bad
5401 5402 * range. In this case, just return an error which will
5402 5403 * cause the software modified bit on the page to set
5403 5404 * and the page will get written out again later.
5404 5405 */
5405 5406 if (ip->i_writer == curthread) {
5406 5407 err = EIO;
5407 5408 goto out;
5408 5409 }
5409 5410 /*
5410 5411 * If the pager is trying to push a page in the bad range
5411 5412 * just tell it to try again later when things are better.
5412 5413 */
5413 5414 if (flags & B_ASYNC) {
5414 5415 err = EAGAIN;
5415 5416 goto out;
5416 5417 }
5417 5418 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE");
5418 5419 goto out;
5419 5420 }
5420 5421
5421 5422 /*
5422 5423 * If it is an fallocate'd block, reverse the negativity since
5423 5424 * we are now writing to it
5424 5425 */
5425 5426 if (ISFALLOCBLK(ip, bn)) {
5426 5427 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn));
5427 5428 if (err)
5428 5429 goto out;
5429 5430
5430 5431 bn = -bn;
5431 5432 }
5432 5433
5433 5434 /*
5434 5435 * Take the length (of contiguous bytes) passed back from bmap()
5435 5436 * and _try_ and get a set of pages covering that extent.
5436 5437 */
5437 5438 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags);
5438 5439
5439 5440 /*
5440 5441 * May have run out of memory and not clustered backwards.
5441 5442 * off p_offset
5442 5443 * [ pp - 1 ][ pp ]
5443 5444 * [ block ]
5444 5445 * We told bmap off, so we have to adjust the bn accordingly.
5445 5446 */
5446 5447 if (io_off > off) {
5447 5448 bn += btod(io_off - off);
5448 5449 contig -= (io_off - off);
5449 5450 }
5450 5451
5451 5452 /*
5452 5453 * bmap was carefull to tell us the right size so use that.
5453 5454 * There might be unallocated frags at the end.
5454 5455 * LMXXX - bzero the end of the page? We must be writing after EOF.
5455 5456 */
5456 5457 if (io_len > contig) {
5457 5458 ASSERT(io_len - contig < fs->fs_bsize);
5458 5459 io_len -= (io_len - contig);
5459 5460 }
5460 5461
5461 5462 /*
5462 5463 * Handle the case where we are writing the last page after EOF.
5463 5464 *
5464 5465 * XXX - just a patch for i-mt3.
5465 5466 */
5466 5467 if (io_len == 0) {
5467 5468 ASSERT(pp->p_offset >=
5468 5469 (u_offset_t)(roundup(ip->i_size, PAGESIZE)));
5469 5470 io_len = PAGESIZE;
5470 5471 }
5471 5472
5472 5473 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags);
5473 5474
5474 5475 ULOCKFS_SET_MOD(ITOUL(ip));
5475 5476
5476 5477 bp->b_edev = ip->i_dev;
5477 5478 bp->b_dev = cmpdev(ip->i_dev);
5478 5479 bp->b_blkno = bn;
5479 5480 bp->b_un.b_addr = (caddr_t)0;
5480 5481 bp->b_file = ip->i_vnode;
5481 5482
5482 5483 /*
5483 5484 * File contents of shadow or quota inodes are metadata, and updates
5484 5485 * to these need to be put into a logging transaction. All direct
5485 5486 * callers in UFS do that, but fsflush can come here _before_ the
5486 5487 * normal codepath. An example would be updating ACL information, for
5487 5488 * which the normal codepath would be:
5488 5489 * ufs_si_store()
5489 5490 * ufs_rdwri()
5490 5491 * wrip()
5491 5492 * segmap_release()
5492 5493 * VOP_PUTPAGE()
5493 5494 * Here, fsflush can pick up the dirty page before segmap_release()
5494 5495 * forces it out. If that happens, there's no transaction.
5495 5496 * We therefore need to test whether a transaction exists, and if not
5496 5497 * create one - for fsflush.
5497 5498 */
5498 5499 dotrans =
5499 5500 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) &&
5500 5501 ((curthread->t_flag & T_DONTBLOCK) == 0) &&
5501 5502 (TRANS_ISTRANS(ufsvfsp)));
5502 5503
5503 5504 if (dotrans) {
5504 5505 curthread->t_flag |= T_DONTBLOCK;
5505 5506 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5506 5507 }
5507 5508 if (TRANS_ISTRANS(ufsvfsp)) {
5508 5509 if ((ip->i_mode & IFMT) == IFSHAD) {
5509 5510 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD);
5510 5511 } else if (ufsvfsp->vfs_qinod == ip) {
5511 5512 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR,
5512 5513 0, 0);
5513 5514 }
5514 5515 }
5515 5516 if (dotrans) {
5516 5517 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5517 5518 curthread->t_flag &= ~T_DONTBLOCK;
5518 5519 }
5519 5520
5520 5521 /* write throttle */
5521 5522
5522 5523 ASSERT(bp->b_iodone == NULL);
5523 5524 bp->b_iodone = (int (*)())ufs_iodone;
5524 5525 mutex_enter(&ip->i_tlock);
5525 5526 ip->i_writes += bp->b_bcount;
5526 5527 mutex_exit(&ip->i_tlock);
5527 5528
5528 5529 if (bp->b_flags & B_ASYNC) {
5529 5530 if (ufsvfsp->vfs_log) {
5530 5531 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5531 5532 } else if (ufsvfsp->vfs_snapshot) {
5532 5533 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5533 5534 } else {
5534 5535 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5535 5536 ub.ub_putasyncs.value.ul++;
5536 5537 (void) bdev_strategy(bp);
5537 5538 lwp_stat_update(LWP_STAT_OUBLK, 1);
5538 5539 }
5539 5540 } else {
5540 5541 if (ufsvfsp->vfs_log) {
5541 5542 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5542 5543 } else if (ufsvfsp->vfs_snapshot) {
5543 5544 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5544 5545 } else {
5545 5546 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5546 5547 ub.ub_putsyncs.value.ul++;
5547 5548 (void) bdev_strategy(bp);
5548 5549 lwp_stat_update(LWP_STAT_OUBLK, 1);
5549 5550 }
5550 5551 err = biowait(bp);
5551 5552 pageio_done(bp);
5552 5553 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
5553 5554 }
5554 5555
5555 5556 pp = NULL;
5556 5557
5557 5558 out:
5558 5559 if (err != 0 && pp != NULL)
5559 5560 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
5560 5561
5561 5562 if (offp)
5562 5563 *offp = io_off;
5563 5564 if (lenp)
5564 5565 *lenp = io_len;
5565 5566 out_trace:
5566 5567 return (err);
5567 5568 }
5568 5569
5569 5570 uint64_t ufs_map_alock_retry_cnt;
5570 5571 uint64_t ufs_map_lockfs_retry_cnt;
5571 5572
5572 5573 /* ARGSUSED */
5573 5574 static int
5574 5575 ufs_map(struct vnode *vp, offset_t off, struct as *as, caddr_t *addrp,
5575 5576 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cr,
5576 5577 caller_context_t *ct)
5577 5578 {
5578 5579 struct segvn_crargs vn_a;
5579 5580 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5580 5581 struct ulockfs *ulp;
5581 5582 int error, sig;
5582 5583 k_sigset_t smask;
5583 5584 caddr_t hint = *addrp;
5584 5585
5585 5586 if (vp->v_flag & VNOMAP) {
5586 5587 error = ENOSYS;
5587 5588 goto out;
5588 5589 }
5589 5590
5590 5591 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) {
5591 5592 error = ENXIO;
5592 5593 goto out;
5593 5594 }
5594 5595
5595 5596 if (vp->v_type != VREG) {
5596 5597 error = ENODEV;
5597 5598 goto out;
5598 5599 }
5599 5600
5600 5601 retry_map:
5601 5602 *addrp = hint;
5602 5603 /*
5603 5604 * If file is being locked, disallow mapping.
5604 5605 */
5605 5606 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) {
5606 5607 error = EAGAIN;
5607 5608 goto out;
5608 5609 }
5609 5610
5610 5611 as_rangelock(as);
5611 5612 /*
5612 5613 * Note that if we are retrying (because ufs_lockfs_trybegin failed in
5613 5614 * the previous attempt), some other thread could have grabbed
5614 5615 * the same VA range if MAP_FIXED is set. In that case, choose_addr
5615 5616 * would unmap the valid VA range, that is ok.
5616 5617 */
5617 5618 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5618 5619 if (error != 0) {
5619 5620 as_rangeunlock(as);
5620 5621 goto out;
5621 5622 }
5622 5623
5623 5624 /*
5624 5625 * a_lock has to be acquired before entering the lockfs protocol
5625 5626 * because that is the order in which pagefault works. Also we cannot
5626 5627 * block on a_lock here because this waiting writer will prevent
5627 5628 * further readers like ufs_read from progressing and could cause
5628 5629 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is
5629 5630 * pending.
5630 5631 */
5631 5632 while (!AS_LOCK_TRYENTER(as, RW_WRITER)) {
5632 5633 ufs_map_alock_retry_cnt++;
5633 5634 delay(RETRY_LOCK_DELAY);
5634 5635 }
5635 5636
5636 5637 /*
5637 5638 * We can't hold as->a_lock and wait for lockfs to succeed because
5638 5639 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin()
5639 5640 * instead.
5640 5641 */
5641 5642 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) {
5642 5643 /*
5643 5644 * ufs_lockfs_trybegin() did not succeed. It is safer to give up
5644 5645 * as->a_lock and wait for ulp->ul_fs_lock status to change.
5645 5646 */
5646 5647 ufs_map_lockfs_retry_cnt++;
5647 5648 AS_LOCK_EXIT(as);
5648 5649 as_rangeunlock(as);
5649 5650 if (error == EIO)
5650 5651 goto out;
5651 5652
5652 5653 mutex_enter(&ulp->ul_lock);
5653 5654 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) {
5654 5655 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) {
5655 5656 cv_wait(&ulp->ul_cv, &ulp->ul_lock);
5656 5657 } else {
5657 5658 sigintr(&smask, 1);
5658 5659 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock);
5659 5660 sigunintr(&smask);
5660 5661 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) &&
5661 5662 !sig) || ufsvfsp->vfs_dontblock) {
5662 5663 mutex_exit(&ulp->ul_lock);
5663 5664 return (EINTR);
5664 5665 }
5665 5666 }
5666 5667 }
5667 5668 mutex_exit(&ulp->ul_lock);
5668 5669 goto retry_map;
5669 5670 }
5670 5671
5671 5672 vn_a.vp = vp;
5672 5673 vn_a.offset = (u_offset_t)off;
5673 5674 vn_a.type = flags & MAP_TYPE;
5674 5675 vn_a.prot = prot;
5675 5676 vn_a.maxprot = maxprot;
5676 5677 vn_a.cred = cr;
5677 5678 vn_a.amp = NULL;
5678 5679 vn_a.flags = flags & ~MAP_TYPE;
5679 5680 vn_a.szc = 0;
5680 5681 vn_a.lgrp_mem_policy_flags = 0;
5681 5682
5682 5683 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a);
5683 5684 if (ulp)
5684 5685 ufs_lockfs_end(ulp);
5685 5686 as_rangeunlock(as);
5686 5687 out:
5687 5688 return (error);
5688 5689 }
5689 5690
5690 5691 /* ARGSUSED */
5691 5692 static int
5692 5693 ufs_addmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5693 5694 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5694 5695 struct cred *cr, caller_context_t *ct)
5695 5696 {
5696 5697 struct inode *ip = VTOI(vp);
5697 5698
5698 5699 if (vp->v_flag & VNOMAP) {
5699 5700 return (ENOSYS);
5700 5701 }
5701 5702
5702 5703 mutex_enter(&ip->i_tlock);
5703 5704 ip->i_mapcnt += btopr(len);
5704 5705 mutex_exit(&ip->i_tlock);
5705 5706 return (0);
5706 5707 }
5707 5708
5708 5709 /*ARGSUSED*/
5709 5710 static int
5710 5711 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5711 5712 size_t len, uint_t prot, uint_t maxprot, uint_t flags, struct cred *cr,
5712 5713 caller_context_t *ct)
5713 5714 {
5714 5715 struct inode *ip = VTOI(vp);
5715 5716
5716 5717 if (vp->v_flag & VNOMAP) {
5717 5718 return (ENOSYS);
5718 5719 }
5719 5720
5720 5721 mutex_enter(&ip->i_tlock);
5721 5722 ip->i_mapcnt -= btopr(len); /* Count released mappings */
5722 5723 ASSERT(ip->i_mapcnt >= 0);
5723 5724 mutex_exit(&ip->i_tlock);
5724 5725 return (0);
5725 5726 }
5726 5727 /*
5727 5728 * Return the answer requested to poll() for non-device files
5728 5729 */
5729 5730 struct pollhead ufs_pollhd;
5730 5731
5731 5732 /* ARGSUSED */
5732 5733 int
5733 5734 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp,
5734 5735 caller_context_t *ct)
5735 5736 {
5736 5737 struct ufsvfs *ufsvfsp;
5737 5738
5738 5739 /*
5739 5740 * Regular files reject edge-triggered pollers.
5740 5741 * See the comment in fs_poll() for a more detailed explanation.
5741 5742 */
5742 5743 if (ev & POLLET) {
5743 5744 return (EPERM);
5744 5745 }
5745 5746
5746 5747 *revp = 0;
5747 5748 ufsvfsp = VTOI(vp)->i_ufsvfs;
5748 5749
5749 5750 if (!ufsvfsp) {
5750 5751 *revp = POLLHUP;
5751 5752 goto out;
5752 5753 }
5753 5754
5754 5755 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) ||
5755 5756 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) {
5756 5757 *revp |= POLLERR;
5757 5758
5758 5759 } else {
5759 5760 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly &&
5760 5761 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5761 5762 *revp |= POLLOUT;
5762 5763
5763 5764 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly &&
5764 5765 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5765 5766 *revp |= POLLWRBAND;
5766 5767
5767 5768 if (ev & POLLIN)
5768 5769 *revp |= POLLIN;
5769 5770
5770 5771 if (ev & POLLRDNORM)
5771 5772 *revp |= POLLRDNORM;
5772 5773
5773 5774 if (ev & POLLRDBAND)
5774 5775 *revp |= POLLRDBAND;
5775 5776 }
5776 5777
5777 5778 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP)))
5778 5779 *revp |= POLLPRI;
5779 5780 out:
5780 5781 if (*revp == 0 && ! any) {
5781 5782 *phpp = &ufs_pollhd;
5782 5783 }
5783 5784
5784 5785 return (0);
5785 5786 }
5786 5787
5787 5788 /* ARGSUSED */
5788 5789 static int
5789 5790 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
5790 5791 caller_context_t *ct)
5791 5792 {
5792 5793 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5793 5794 struct ulockfs *ulp = NULL;
5794 5795 struct inode *sip = NULL;
5795 5796 int error;
5796 5797 struct inode *ip = VTOI(vp);
5797 5798 int issync;
5798 5799
5799 5800 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK);
5800 5801 if (error)
5801 5802 return (error);
5802 5803
5803 5804 switch (cmd) {
5804 5805 /*
5805 5806 * Have to handle _PC_NAME_MAX here, because the normal way
5806 5807 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()]
5807 5808 * results in a lock ordering reversal between
5808 5809 * ufs_lockfs_{begin,end}() and
5809 5810 * ufs_thread_{suspend,continue}().
5810 5811 *
5811 5812 * Keep in sync with ufs_statvfs().
5812 5813 */
5813 5814 case _PC_NAME_MAX:
5814 5815 *valp = MAXNAMLEN;
5815 5816 break;
5816 5817
5817 5818 case _PC_FILESIZEBITS:
5818 5819 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
5819 5820 *valp = UFS_FILESIZE_BITS;
5820 5821 else
5821 5822 *valp = 32;
5822 5823 break;
5823 5824
5824 5825 case _PC_XATTR_EXISTS:
5825 5826 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5826 5827
5827 5828 error =
5828 5829 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr);
5829 5830 if (error == 0 && sip != NULL) {
5830 5831 /* Start transaction */
5831 5832 if (ulp) {
5832 5833 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
5833 5834 TOP_RMDIR, TOP_RMDIR_SIZE);
5834 5835 }
5835 5836 /*
5836 5837 * Is directory empty
5837 5838 */
5838 5839 rw_enter(&sip->i_rwlock, RW_WRITER);
5839 5840 rw_enter(&sip->i_contents, RW_WRITER);
5840 5841 if (ufs_xattrdirempty(sip,
5841 5842 sip->i_number, CRED())) {
5842 5843 rw_enter(&ip->i_contents, RW_WRITER);
5843 5844 ufs_unhook_shadow(ip, sip);
5844 5845 rw_exit(&ip->i_contents);
5845 5846
5846 5847 *valp = 0;
5847 5848
5848 5849 } else
5849 5850 *valp = 1;
5850 5851 rw_exit(&sip->i_contents);
5851 5852 rw_exit(&sip->i_rwlock);
5852 5853 if (ulp) {
5853 5854 TRANS_END_CSYNC(ufsvfsp, error, issync,
5854 5855 TOP_RMDIR, TOP_RMDIR_SIZE);
5855 5856 }
5856 5857 VN_RELE(ITOV(sip));
5857 5858 } else if (error == ENOENT) {
5858 5859 *valp = 0;
5859 5860 error = 0;
5860 5861 }
5861 5862 } else {
5862 5863 error = fs_pathconf(vp, cmd, valp, cr, ct);
5863 5864 }
5864 5865 break;
5865 5866
5866 5867 case _PC_ACL_ENABLED:
5867 5868 *valp = _ACL_ACLENT_ENABLED;
5868 5869 break;
5869 5870
5870 5871 case _PC_MIN_HOLE_SIZE:
5871 5872 *valp = (ulong_t)ip->i_fs->fs_bsize;
5872 5873 break;
5873 5874
5874 5875 case _PC_SATTR_ENABLED:
5875 5876 case _PC_SATTR_EXISTS:
5876 5877 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5877 5878 (vp->v_type == VREG || vp->v_type == VDIR);
5878 5879 break;
5879 5880
5880 5881 case _PC_TIMESTAMP_RESOLUTION:
5881 5882 /*
5882 5883 * UFS keeps only microsecond timestamp resolution.
5883 5884 * This is historical and will probably never change.
5884 5885 */
5885 5886 *valp = 1000L;
5886 5887 break;
5887 5888
5888 5889 default:
5889 5890 error = fs_pathconf(vp, cmd, valp, cr, ct);
5890 5891 break;
5891 5892 }
5892 5893
5893 5894 if (ulp != NULL) {
5894 5895 ufs_lockfs_end(ulp);
5895 5896 }
5896 5897 return (error);
5897 5898 }
5898 5899
5899 5900 int ufs_pageio_writes, ufs_pageio_reads;
5900 5901
5901 5902 /*ARGSUSED*/
5902 5903 static int
5903 5904 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5904 5905 int flags, struct cred *cr, caller_context_t *ct)
5905 5906 {
5906 5907 struct inode *ip = VTOI(vp);
5907 5908 struct ufsvfs *ufsvfsp;
5908 5909 page_t *npp = NULL, *opp = NULL, *cpp = pp;
5909 5910 struct buf *bp;
5910 5911 daddr_t bn;
5911 5912 size_t done_len = 0, cur_len = 0;
5912 5913 int err = 0;
5913 5914 int contig = 0;
5914 5915 int dolock;
5915 5916 int vmpss = 0;
5916 5917 struct ulockfs *ulp;
5917 5918
5918 5919 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp &&
5919 5920 vp->v_mpssdata != NULL) {
5920 5921 vmpss = 1;
5921 5922 }
5922 5923
5923 5924 dolock = (rw_owner(&ip->i_contents) != curthread);
5924 5925 /*
5925 5926 * We need a better check. Ideally, we would use another
5926 5927 * vnodeops so that hlocked and forcibly unmounted file
5927 5928 * systems would return EIO where appropriate and w/o the
5928 5929 * need for these checks.
5929 5930 */
5930 5931 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5931 5932 return (EIO);
5932 5933
5933 5934 /*
5934 5935 * For vmpss (pp can be NULL) case respect the quiesce protocol.
5935 5936 * ul_lock must be taken before locking pages so we can't use it here
5936 5937 * if pp is non NULL because segvn already locked pages
5937 5938 * SE_EXCL. Instead we rely on the fact that a forced umount or
5938 5939 * applying a filesystem lock via ufs_fiolfs() will block in the
5939 5940 * implicit call to ufs_flush() until we unlock the pages after the
5940 5941 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend
5941 5942 * above 0 until they are done. We have to be careful not to increment
5942 5943 * ul_vnops_cnt here after forceful unmount hlocks the file system.
5943 5944 *
5944 5945 * If pp is NULL use ul_lock to make sure we don't increment
5945 5946 * ul_vnops_cnt after forceful unmount hlocks the file system.
5946 5947 */
5947 5948 if (vmpss || pp == NULL) {
5948 5949 ulp = &ufsvfsp->vfs_ulockfs;
5949 5950 if (pp == NULL)
5950 5951 mutex_enter(&ulp->ul_lock);
5951 5952 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) {
5952 5953 if (pp == NULL) {
5953 5954 mutex_exit(&ulp->ul_lock);
5954 5955 }
5955 5956 return (vmpss ? EIO : EINVAL);
5956 5957 }
5957 5958 atomic_inc_ulong(&ulp->ul_vnops_cnt);
5958 5959 if (pp == NULL)
5959 5960 mutex_exit(&ulp->ul_lock);
5960 5961 if (ufs_quiesce_pend) {
5961 5962 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5962 5963 cv_broadcast(&ulp->ul_cv);
5963 5964 return (vmpss ? EIO : EINVAL);
5964 5965 }
5965 5966 }
5966 5967
5967 5968 if (dolock) {
5968 5969 /*
5969 5970 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to
5970 5971 * handle a fault against a segment that maps vnode pages with
5971 5972 * large mappings. Segvn creates pages and holds them locked
5972 5973 * SE_EXCL during VOP_PAGEIO() call. In this case we have to
5973 5974 * use rw_tryenter() to avoid a potential deadlock since in
5974 5975 * lock order i_contents needs to be taken first.
5975 5976 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails.
5976 5977 */
5977 5978 if (!vmpss) {
5978 5979 rw_enter(&ip->i_contents, RW_READER);
5979 5980 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) {
5980 5981 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5981 5982 cv_broadcast(&ulp->ul_cv);
5982 5983 return (EDEADLK);
5983 5984 }
5984 5985 }
5985 5986
5986 5987 /*
5987 5988 * Return an error to segvn because the pagefault request is beyond
5988 5989 * PAGESIZE rounded EOF.
5989 5990 */
5990 5991 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) {
5991 5992 if (dolock)
5992 5993 rw_exit(&ip->i_contents);
5993 5994 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5994 5995 cv_broadcast(&ulp->ul_cv);
5995 5996 return (EFAULT);
5996 5997 }
5997 5998
5998 5999 if (pp == NULL) {
5999 6000 if (bmap_has_holes(ip)) {
6000 6001 err = ENOSYS;
6001 6002 } else {
6002 6003 err = EINVAL;
6003 6004 }
6004 6005 if (dolock)
6005 6006 rw_exit(&ip->i_contents);
6006 6007 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6007 6008 cv_broadcast(&ulp->ul_cv);
6008 6009 return (err);
6009 6010 }
6010 6011
6011 6012 /*
6012 6013 * Break the io request into chunks, one for each contiguous
6013 6014 * stretch of disk blocks in the target file.
6014 6015 */
6015 6016 while (done_len < io_len) {
6016 6017 ASSERT(cpp);
6017 6018 contig = 0;
6018 6019 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len),
6019 6020 &bn, &contig))
6020 6021 break;
6021 6022
6022 6023 if (bn == UFS_HOLE) { /* No holey swapfiles */
6023 6024 if (vmpss) {
6024 6025 err = EFAULT;
6025 6026 break;
6026 6027 }
6027 6028 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE");
6028 6029 break;
6029 6030 }
6030 6031
6031 6032 cur_len = MIN(io_len - done_len, contig);
6032 6033 /*
6033 6034 * Zero out a page beyond EOF, when the last block of
6034 6035 * a file is a UFS fragment so that ufs_pageio() can be used
6035 6036 * instead of ufs_getpage() to handle faults against
6036 6037 * segvn segments that use large pages.
6037 6038 */
6038 6039 page_list_break(&cpp, &npp, btopr(cur_len));
6039 6040 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) {
6040 6041 size_t xlen = cur_len & PAGEOFFSET;
6041 6042 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen);
6042 6043 }
6043 6044
6044 6045 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
6045 6046 ASSERT(bp != NULL);
6046 6047
6047 6048 bp->b_edev = ip->i_dev;
6048 6049 bp->b_dev = cmpdev(ip->i_dev);
6049 6050 bp->b_blkno = bn;
6050 6051 bp->b_un.b_addr = (caddr_t)0;
6051 6052 bp->b_file = ip->i_vnode;
6052 6053
6053 6054 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
6054 6055 ub.ub_pageios.value.ul++;
6055 6056 if (ufsvfsp->vfs_snapshot)
6056 6057 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp);
6057 6058 else
6058 6059 (void) bdev_strategy(bp);
6059 6060
6060 6061 if (flags & B_READ)
6061 6062 ufs_pageio_reads++;
6062 6063 else
6063 6064 ufs_pageio_writes++;
6064 6065 if (flags & B_READ)
6065 6066 lwp_stat_update(LWP_STAT_INBLK, 1);
6066 6067 else
6067 6068 lwp_stat_update(LWP_STAT_OUBLK, 1);
6068 6069 /*
6069 6070 * If the request is not B_ASYNC, wait for i/o to complete
6070 6071 * and re-assemble the page list to return to the caller.
6071 6072 * If it is B_ASYNC we leave the page list in pieces and
6072 6073 * cleanup() will dispose of them.
6073 6074 */
6074 6075 if ((flags & B_ASYNC) == 0) {
6075 6076 err = biowait(bp);
6076 6077 pageio_done(bp);
6077 6078 if (err)
6078 6079 break;
6079 6080 page_list_concat(&opp, &cpp);
6080 6081 }
6081 6082 cpp = npp;
6082 6083 npp = NULL;
6083 6084 if (flags & B_READ)
6084 6085 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t);
6085 6086 done_len += cur_len;
6086 6087 }
6087 6088 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len));
6088 6089 if (err) {
6089 6090 if (flags & B_ASYNC) {
6090 6091 /* Cleanup unprocessed parts of list */
6091 6092 page_list_concat(&cpp, &npp);
6092 6093 if (flags & B_READ)
6093 6094 pvn_read_done(cpp, B_ERROR);
6094 6095 else
6095 6096 pvn_write_done(cpp, B_ERROR);
6096 6097 } else {
6097 6098 /* Re-assemble list and let caller clean up */
6098 6099 page_list_concat(&opp, &cpp);
6099 6100 page_list_concat(&opp, &npp);
6100 6101 }
6101 6102 }
6102 6103
6103 6104 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) &&
6104 6105 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) {
6105 6106 mutex_enter(&ip->i_tlock);
6106 6107 ip->i_flag |= IACC;
6107 6108 ITIMES_NOLOCK(ip);
6108 6109 mutex_exit(&ip->i_tlock);
6109 6110 }
6110 6111
6111 6112 if (dolock)
6112 6113 rw_exit(&ip->i_contents);
6113 6114 if (vmpss && !atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6114 6115 cv_broadcast(&ulp->ul_cv);
6115 6116 return (err);
6116 6117 }
6117 6118
6118 6119 /*
6119 6120 * Called when the kernel is in a frozen state to dump data
6120 6121 * directly to the device. It uses a private dump data structure,
6121 6122 * set up by dump_ctl, to locate the correct disk block to which to dump.
6122 6123 */
6123 6124 /*ARGSUSED*/
6124 6125 static int
6125 6126 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks,
6126 6127 caller_context_t *ct)
6127 6128 {
6128 6129 u_offset_t file_size;
6129 6130 struct inode *ip = VTOI(vp);
6130 6131 struct fs *fs = ip->i_fs;
6131 6132 daddr_t dbn, lfsbn;
6132 6133 int disk_blks = fs->fs_bsize >> DEV_BSHIFT;
6133 6134 int error = 0;
6134 6135 int ndbs, nfsbs;
6135 6136
6136 6137 /*
6137 6138 * forced unmount case
6138 6139 */
6139 6140 if (ip->i_ufsvfs == NULL)
6140 6141 return (EIO);
6141 6142 /*
6142 6143 * Validate the inode that it has not been modified since
6143 6144 * the dump structure is allocated.
6144 6145 */
6145 6146 mutex_enter(&ip->i_tlock);
6146 6147 if ((dump_info == NULL) ||
6147 6148 (dump_info->ip != ip) ||
6148 6149 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) ||
6149 6150 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) {
6150 6151 mutex_exit(&ip->i_tlock);
6151 6152 return (-1);
6152 6153 }
6153 6154 mutex_exit(&ip->i_tlock);
6154 6155
6155 6156 /*
6156 6157 * See that the file has room for this write
6157 6158 */
6158 6159 UFS_GET_ISIZE(&file_size, ip);
6159 6160
6160 6161 if (ldbtob(ldbn + dblks) > file_size)
6161 6162 return (ENOSPC);
6162 6163
6163 6164 /*
6164 6165 * Find the physical disk block numbers from the dump
6165 6166 * private data structure directly and write out the data
6166 6167 * in contiguous block lumps
6167 6168 */
6168 6169 while (dblks > 0 && !error) {
6169 6170 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn));
6170 6171 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks;
6171 6172 nfsbs = 1;
6172 6173 ndbs = disk_blks - ldbn % disk_blks;
6173 6174 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn +
6174 6175 nfsbs]) == dbn + ndbs) {
6175 6176 nfsbs++;
6176 6177 ndbs += disk_blks;
6177 6178 }
6178 6179 if (ndbs > dblks)
6179 6180 ndbs = dblks;
6180 6181 error = bdev_dump(ip->i_dev, addr, dbn, ndbs);
6181 6182 addr += ldbtob((offset_t)ndbs);
6182 6183 dblks -= ndbs;
6183 6184 ldbn += ndbs;
6184 6185 }
6185 6186 return (error);
6186 6187
6187 6188 }
6188 6189
6189 6190 /*
6190 6191 * Prepare the file system before and after the dump operation.
6191 6192 *
6192 6193 * action = DUMP_ALLOC:
6193 6194 * Preparation before dump, allocate dump private data structure
6194 6195 * to hold all the direct and indirect block info for dump.
6195 6196 *
6196 6197 * action = DUMP_FREE:
6197 6198 * Clean up after dump, deallocate the dump private data structure.
6198 6199 *
6199 6200 * action = DUMP_SCAN:
6200 6201 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space;
6201 6202 * if found, the starting file-relative DEV_BSIZE lbn is written
6202 6203 * to *bklp; that lbn is intended for use with VOP_DUMP()
6203 6204 */
6204 6205 /*ARGSUSED*/
6205 6206 static int
6206 6207 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct)
6207 6208 {
6208 6209 struct inode *ip = VTOI(vp);
6209 6210 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
6210 6211 struct fs *fs;
6211 6212 daddr32_t *dblk, *storeblk;
6212 6213 daddr32_t *nextblk, *endblk;
6213 6214 struct buf *bp;
6214 6215 int i, entry, entries;
6215 6216 int n, ncontig;
6216 6217
6217 6218 /*
6218 6219 * check for forced unmount
6219 6220 */
6220 6221 if (ufsvfsp == NULL)
6221 6222 return (EIO);
6222 6223
6223 6224 if (action == DUMP_ALLOC) {
6224 6225 /*
6225 6226 * alloc and record dump_info
6226 6227 */
6227 6228 if (dump_info != NULL)
6228 6229 return (EINVAL);
6229 6230
6230 6231 ASSERT(vp->v_type == VREG);
6231 6232 fs = ufsvfsp->vfs_fs;
6232 6233
6233 6234 rw_enter(&ip->i_contents, RW_READER);
6234 6235
6235 6236 if (bmap_has_holes(ip)) {
6236 6237 rw_exit(&ip->i_contents);
6237 6238 return (EFAULT);
6238 6239 }
6239 6240
6240 6241 /*
6241 6242 * calculate and allocate space needed according to i_size
6242 6243 */
6243 6244 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size));
6244 6245 dump_info = kmem_alloc(sizeof (struct dump) +
6245 6246 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP);
6246 6247 if (dump_info == NULL) {
6247 6248 rw_exit(&ip->i_contents);
6248 6249 return (ENOMEM);
6249 6250 }
6250 6251
6251 6252 /* Start saving the info */
6252 6253 dump_info->fsbs = entries;
6253 6254 dump_info->ip = ip;
6254 6255 storeblk = &dump_info->dblk[0];
6255 6256
6256 6257 /* Direct Blocks */
6257 6258 for (entry = 0; entry < NDADDR && entry < entries; entry++)
6258 6259 *storeblk++ = ip->i_db[entry];
6259 6260
6260 6261 /* Indirect Blocks */
6261 6262 for (i = 0; i < NIADDR; i++) {
6262 6263 int error = 0;
6263 6264
6264 6265 bp = UFS_BREAD(ufsvfsp,
6265 6266 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize);
6266 6267 if (bp->b_flags & B_ERROR)
6267 6268 error = EIO;
6268 6269 else {
6269 6270 dblk = bp->b_un.b_daddr;
6270 6271 if ((storeblk = save_dblks(ip, ufsvfsp,
6271 6272 storeblk, dblk, i, entries)) == NULL)
6272 6273 error = EIO;
6273 6274 }
6274 6275
6275 6276 brelse(bp);
6276 6277
6277 6278 if (error != 0) {
6278 6279 kmem_free(dump_info, sizeof (struct dump) +
6279 6280 (entries - 1) * sizeof (daddr32_t));
6280 6281 rw_exit(&ip->i_contents);
6281 6282 dump_info = NULL;
6282 6283 return (error);
6283 6284 }
6284 6285 }
6285 6286 /* and time stamp the information */
6286 6287 mutex_enter(&ip->i_tlock);
6287 6288 dump_info->time = ip->i_mtime;
6288 6289 mutex_exit(&ip->i_tlock);
6289 6290
6290 6291 rw_exit(&ip->i_contents);
6291 6292 } else if (action == DUMP_FREE) {
6292 6293 /*
6293 6294 * free dump_info
6294 6295 */
6295 6296 if (dump_info == NULL)
6296 6297 return (EINVAL);
6297 6298 entries = dump_info->fsbs - 1;
6298 6299 kmem_free(dump_info, sizeof (struct dump) +
6299 6300 entries * sizeof (daddr32_t));
6300 6301 dump_info = NULL;
6301 6302 } else if (action == DUMP_SCAN) {
6302 6303 /*
6303 6304 * scan dump_info
6304 6305 */
6305 6306 if (dump_info == NULL)
6306 6307 return (EINVAL);
6307 6308
6308 6309 dblk = dump_info->dblk;
6309 6310 nextblk = dblk + 1;
6310 6311 endblk = dblk + dump_info->fsbs - 1;
6311 6312 fs = ufsvfsp->vfs_fs;
6312 6313 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT);
6313 6314
6314 6315 /*
6315 6316 * scan dblk[] entries; contig fs space is found when:
6316 6317 * ((current blkno + frags per block) == next blkno)
6317 6318 */
6318 6319 n = 0;
6319 6320 while (n < ncontig && dblk < endblk) {
6320 6321 if ((*dblk + fs->fs_frag) == *nextblk)
6321 6322 n++;
6322 6323 else
6323 6324 n = 0;
6324 6325 dblk++;
6325 6326 nextblk++;
6326 6327 }
6327 6328
6328 6329 /*
6329 6330 * index is where size bytes of contig space begins;
6330 6331 * conversion from index to the file's DEV_BSIZE lbn
6331 6332 * is equivalent to: (index * fs_bsize) / DEV_BSIZE
6332 6333 */
6333 6334 if (n == ncontig) {
6334 6335 i = (dblk - dump_info->dblk) - ncontig;
6335 6336 *blkp = i << (fs->fs_bshift - DEV_BSHIFT);
6336 6337 } else
6337 6338 return (EFAULT);
6338 6339 }
6339 6340 return (0);
6340 6341 }
6341 6342
6342 6343 /*
6343 6344 * Recursive helper function for ufs_dumpctl(). It follows the indirect file
6344 6345 * system blocks until it reaches the the disk block addresses, which are
6345 6346 * then stored into the given buffer, storeblk.
6346 6347 */
6347 6348 static daddr32_t *
6348 6349 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk,
6349 6350 daddr32_t *dblk, int level, int entries)
6350 6351 {
6351 6352 struct fs *fs = ufsvfsp->vfs_fs;
6352 6353 struct buf *bp;
6353 6354 int i;
6354 6355
6355 6356 if (level == 0) {
6356 6357 for (i = 0; i < NINDIR(fs); i++) {
6357 6358 if (storeblk - dump_info->dblk >= entries)
6358 6359 break;
6359 6360 *storeblk++ = dblk[i];
6360 6361 }
6361 6362 return (storeblk);
6362 6363 }
6363 6364 for (i = 0; i < NINDIR(fs); i++) {
6364 6365 if (storeblk - dump_info->dblk >= entries)
6365 6366 break;
6366 6367 bp = UFS_BREAD(ufsvfsp,
6367 6368 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize);
6368 6369 if (bp->b_flags & B_ERROR) {
6369 6370 brelse(bp);
6370 6371 return (NULL);
6371 6372 }
6372 6373 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr,
6373 6374 level - 1, entries);
6374 6375 brelse(bp);
6375 6376
6376 6377 if (storeblk == NULL)
6377 6378 return (NULL);
6378 6379 }
6379 6380 return (storeblk);
6380 6381 }
6381 6382
6382 6383 /* ARGSUSED */
6383 6384 static int
6384 6385 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,
6385 6386 struct cred *cr, caller_context_t *ct)
6386 6387 {
6387 6388 struct inode *ip = VTOI(vp);
6388 6389 struct ulockfs *ulp;
6389 6390 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
6390 6391 ulong_t vsa_mask = vsap->vsa_mask;
6391 6392 int err = EINVAL;
6392 6393
6393 6394 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6394 6395
6395 6396 /*
6396 6397 * Only grab locks if needed - they're not needed to check vsa_mask
6397 6398 * or if the mask contains no acl flags.
6398 6399 */
6399 6400 if (vsa_mask != 0) {
6400 6401 if (err = ufs_lockfs_begin(ufsvfsp, &ulp,
6401 6402 ULOCKFS_GETATTR_MASK))
6402 6403 return (err);
6403 6404
6404 6405 rw_enter(&ip->i_contents, RW_READER);
6405 6406 err = ufs_acl_get(ip, vsap, flag, cr);
6406 6407 rw_exit(&ip->i_contents);
6407 6408
6408 6409 if (ulp)
6409 6410 ufs_lockfs_end(ulp);
6410 6411 }
6411 6412 return (err);
6412 6413 }
6413 6414
6414 6415 /* ARGSUSED */
6415 6416 static int
6416 6417 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr,
6417 6418 caller_context_t *ct)
6418 6419 {
6419 6420 struct inode *ip = VTOI(vp);
6420 6421 struct ulockfs *ulp = NULL;
6421 6422 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
6422 6423 ulong_t vsa_mask = vsap->vsa_mask;
6423 6424 int err;
6424 6425 int haverwlock = 1;
6425 6426 int trans_size;
6426 6427 int donetrans = 0;
6427 6428 int retry = 1;
6428 6429
6429 6430 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
6430 6431
6431 6432 /* Abort now if the request is either empty or invalid. */
6432 6433 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6433 6434 if ((vsa_mask == 0) ||
6434 6435 ((vsap->vsa_aclentp == NULL) &&
6435 6436 (vsap->vsa_dfaclentp == NULL))) {
6436 6437 err = EINVAL;
6437 6438 goto out;
6438 6439 }
6439 6440
6440 6441 /*
6441 6442 * Following convention, if this is a directory then we acquire the
6442 6443 * inode's i_rwlock after starting a UFS logging transaction;
6443 6444 * otherwise, we acquire it beforehand. Since we were called (and
6444 6445 * must therefore return) with the lock held, we will have to drop it,
6445 6446 * and later reacquire it, if operating on a directory.
6446 6447 */
6447 6448 if (vp->v_type == VDIR) {
6448 6449 rw_exit(&ip->i_rwlock);
6449 6450 haverwlock = 0;
6450 6451 } else {
6451 6452 /* Upgrade the lock if required. */
6452 6453 if (!rw_write_held(&ip->i_rwlock)) {
6453 6454 rw_exit(&ip->i_rwlock);
6454 6455 rw_enter(&ip->i_rwlock, RW_WRITER);
6455 6456 }
6456 6457 }
6457 6458
6458 6459 again:
6459 6460 ASSERT(!(vp->v_type == VDIR && haverwlock));
6460 6461 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) {
6461 6462 ulp = NULL;
6462 6463 retry = 0;
6463 6464 goto out;
6464 6465 }
6465 6466
6466 6467 /*
6467 6468 * Check that the file system supports this operation. Note that
6468 6469 * ufs_lockfs_begin() will have checked that the file system had
6469 6470 * not been forcibly unmounted.
6470 6471 */
6471 6472 if (ufsvfsp->vfs_fs->fs_ronly) {
6472 6473 err = EROFS;
6473 6474 goto out;
6474 6475 }
6475 6476 if (ufsvfsp->vfs_nosetsec) {
6476 6477 err = ENOSYS;
6477 6478 goto out;
6478 6479 }
6479 6480
6480 6481 if (ulp) {
6481 6482 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR,
6482 6483 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp)));
6483 6484 donetrans = 1;
6484 6485 }
6485 6486
6486 6487 if (vp->v_type == VDIR) {
6487 6488 rw_enter(&ip->i_rwlock, RW_WRITER);
6488 6489 haverwlock = 1;
6489 6490 }
6490 6491
6491 6492 ASSERT(haverwlock);
6492 6493
6493 6494 /* Do the actual work. */
6494 6495 rw_enter(&ip->i_contents, RW_WRITER);
6495 6496 /*
6496 6497 * Suppress out of inodes messages if we will retry.
6497 6498 */
6498 6499 if (retry)
6499 6500 ip->i_flag |= IQUIET;
6500 6501 err = ufs_acl_set(ip, vsap, flag, cr);
6501 6502 ip->i_flag &= ~IQUIET;
6502 6503 rw_exit(&ip->i_contents);
6503 6504
6504 6505 out:
6505 6506 if (ulp) {
6506 6507 if (donetrans) {
6507 6508 /*
6508 6509 * top_end_async() can eventually call
6509 6510 * top_end_sync(), which can block. We must
6510 6511 * therefore observe the lock-ordering protocol
6511 6512 * here as well.
6512 6513 */
6513 6514 if (vp->v_type == VDIR) {
6514 6515 rw_exit(&ip->i_rwlock);
6515 6516 haverwlock = 0;
6516 6517 }
6517 6518 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size);
6518 6519 }
6519 6520 ufs_lockfs_end(ulp);
6520 6521 }
6521 6522 /*
6522 6523 * If no inodes available, try scaring a logically-
6523 6524 * free one out of the delete queue to someplace
6524 6525 * that we can find it.
6525 6526 */
6526 6527 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
6527 6528 ufs_delete_drain_wait(ufsvfsp, 1);
6528 6529 retry = 0;
6529 6530 if (vp->v_type == VDIR && haverwlock) {
6530 6531 rw_exit(&ip->i_rwlock);
6531 6532 haverwlock = 0;
6532 6533 }
6533 6534 goto again;
6534 6535 }
6535 6536 /*
6536 6537 * If we need to reacquire the lock then it is safe to do so
6537 6538 * as a reader. This is because ufs_rwunlock(), which will be
6538 6539 * called by our caller after we return, does not differentiate
6539 6540 * between shared and exclusive locks.
6540 6541 */
6541 6542 if (!haverwlock) {
6542 6543 ASSERT(vp->v_type == VDIR);
6543 6544 rw_enter(&ip->i_rwlock, RW_READER);
6544 6545 }
6545 6546
6546 6547 return (err);
6547 6548 }
6548 6549
6549 6550 /*
6550 6551 * Locate the vnode to be used for an event notification. As this will
6551 6552 * be called prior to the name space change perform basic verification
6552 6553 * that the change will be allowed.
6553 6554 */
6554 6555
6555 6556 static int
6556 6557 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr,
6557 6558 struct vnode **vpp)
6558 6559 {
6559 6560 int namlen;
6560 6561 int error;
6561 6562 struct vnode *vp;
6562 6563 struct inode *ip;
6563 6564 struct inode *xip;
6564 6565 struct ufsvfs *ufsvfsp;
6565 6566 struct ulockfs *ulp;
6566 6567
6567 6568 ip = VTOI(dvp);
6568 6569 *vpp = NULL;
6569 6570
6570 6571 if ((namlen = strlen(nm)) == 0)
6571 6572 return (EINVAL);
6572 6573
6573 6574 if (nm[0] == '.') {
6574 6575 if (namlen == 1)
6575 6576 return (EINVAL);
6576 6577 else if ((namlen == 2) && nm[1] == '.') {
6577 6578 return (EEXIST);
6578 6579 }
6579 6580 }
6580 6581
6581 6582 /*
6582 6583 * Check accessibility and write access of parent directory as we
6583 6584 * only want to post the event if we're able to make a change.
6584 6585 */
6585 6586 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr))
6586 6587 return (error);
6587 6588
6588 6589 if (vp = dnlc_lookup(dvp, nm)) {
6589 6590 if (vp == DNLC_NO_VNODE) {
6590 6591 VN_RELE(vp);
6591 6592 return (ENOENT);
6592 6593 }
6593 6594
6594 6595 *vpp = vp;
6595 6596 return (0);
6596 6597 }
6597 6598
6598 6599 /*
6599 6600 * Keep the idle queue from getting too long by idling two
6600 6601 * inodes before attempting to allocate another.
6601 6602 * This operation must be performed before entering lockfs
6602 6603 * or a transaction.
6603 6604 */
6604 6605 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
6605 6606 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
6606 6607 ins.in_lidles.value.ul += ufs_lookup_idle_count;
6607 6608 ufs_idle_some(ufs_lookup_idle_count);
6608 6609 }
6609 6610
6610 6611 ufsvfsp = ip->i_ufsvfs;
6611 6612
6612 6613 retry_lookup:
6613 6614 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK))
6614 6615 return (error);
6615 6616
6616 6617 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) {
6617 6618 vp = ITOV(xip);
6618 6619 *vpp = vp;
6619 6620 }
6620 6621
6621 6622 if (ulp) {
6622 6623 ufs_lockfs_end(ulp);
6623 6624 }
6624 6625
6625 6626 if (error == EAGAIN)
6626 6627 goto retry_lookup;
6627 6628
6628 6629 return (error);
6629 6630 }
|
↓ open down ↓ |
4722 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX