Print this page
OS-20 share_nfs(1m) charset handling is unreliable
OS-22 Page fault at nfscmd_dropped_entrysize+0x1e()
OS-23 NFSv2/3/4: READDIR responses are inconsistent when charset conversion fails
OS-24 rfs3_readdir(): Issues related to nfscmd_convdirent()
Reviewed by: Jan Kryl <jan.kryl@nexenta.com>
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
re #13613 rb4516 Tunables needs volatile keyword
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/nfs/nfs_vnops.c
+++ new/usr/src/uts/common/fs/nfs/nfs_vnops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
|
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 + * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
23 24 *
24 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
25 26 * All rights reserved.
26 27 */
27 28
28 29 /*
29 30 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
30 31 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
31 32 */
32 33
33 34 #include <sys/param.h>
34 35 #include <sys/types.h>
35 36 #include <sys/systm.h>
36 37 #include <sys/cred.h>
37 38 #include <sys/time.h>
38 39 #include <sys/vnode.h>
39 40 #include <sys/vfs.h>
40 41 #include <sys/vfs_opreg.h>
41 42 #include <sys/file.h>
42 43 #include <sys/filio.h>
43 44 #include <sys/uio.h>
44 45 #include <sys/buf.h>
45 46 #include <sys/mman.h>
46 47 #include <sys/pathname.h>
47 48 #include <sys/dirent.h>
48 49 #include <sys/debug.h>
49 50 #include <sys/vmsystm.h>
50 51 #include <sys/fcntl.h>
51 52 #include <sys/flock.h>
52 53 #include <sys/swap.h>
53 54 #include <sys/errno.h>
54 55 #include <sys/strsubr.h>
55 56 #include <sys/sysmacros.h>
56 57 #include <sys/kmem.h>
57 58 #include <sys/cmn_err.h>
58 59 #include <sys/pathconf.h>
59 60 #include <sys/utsname.h>
60 61 #include <sys/dnlc.h>
61 62 #include <sys/acl.h>
62 63 #include <sys/atomic.h>
63 64 #include <sys/policy.h>
64 65 #include <sys/sdt.h>
65 66
66 67 #include <rpc/types.h>
67 68 #include <rpc/auth.h>
68 69 #include <rpc/clnt.h>
69 70
70 71 #include <nfs/nfs.h>
71 72 #include <nfs/nfs_clnt.h>
72 73 #include <nfs/rnode.h>
73 74 #include <nfs/nfs_acl.h>
74 75 #include <nfs/lm.h>
75 76
76 77 #include <vm/hat.h>
77 78 #include <vm/as.h>
78 79 #include <vm/page.h>
79 80 #include <vm/pvn.h>
80 81 #include <vm/seg.h>
81 82 #include <vm/seg_map.h>
82 83 #include <vm/seg_kpm.h>
83 84 #include <vm/seg_vn.h>
84 85
85 86 #include <fs/fs_subr.h>
86 87
87 88 #include <sys/ddi.h>
88 89
89 90 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
90 91 cred_t *);
91 92 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *);
92 93 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *);
93 94 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *);
94 95 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
95 96 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
96 97 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *,
97 98 caller_context_t *);
98 99 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *);
99 100 static int nfs_bio(struct buf *, cred_t *);
100 101 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
101 102 page_t *[], size_t, struct seg *, caddr_t,
102 103 enum seg_rw, cred_t *);
103 104 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
104 105 cred_t *);
105 106 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
106 107 int, cred_t *);
107 108 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
108 109 int, cred_t *);
109 110 static void nfs_delmap_callback(struct as *, void *, uint_t);
110 111
111 112 /*
112 113 * Error flags used to pass information about certain special errors
113 114 * which need to be handled specially.
114 115 */
115 116 #define NFS_EOF -98
116 117
117 118 /*
118 119 * These are the vnode ops routines which implement the vnode interface to
119 120 * the networked file system. These routines just take their parameters,
120 121 * make them look networkish by putting the right info into interface structs,
121 122 * and then calling the appropriate remote routine(s) to do the work.
122 123 *
123 124 * Note on directory name lookup cacheing: If we detect a stale fhandle,
124 125 * we purge the directory cache relative to that vnode. This way, the
125 126 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
126 127 * more details on rnode locking.
127 128 */
128 129
129 130 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *);
130 131 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *,
131 132 caller_context_t *);
132 133 static int nfs_read(vnode_t *, struct uio *, int, cred_t *,
133 134 caller_context_t *);
134 135 static int nfs_write(vnode_t *, struct uio *, int, cred_t *,
135 136 caller_context_t *);
136 137 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
137 138 caller_context_t *);
138 139 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *,
139 140 caller_context_t *);
140 141 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *,
141 142 caller_context_t *);
142 143 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);
143 144 static int nfs_accessx(void *, int, cred_t *);
144 145 static int nfs_readlink(vnode_t *, struct uio *, cred_t *,
145 146 caller_context_t *);
146 147 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);
147 148 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *);
148 149 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *,
149 150 int, vnode_t *, cred_t *, caller_context_t *,
150 151 int *, pathname_t *);
151 152 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
152 153 int, vnode_t **, cred_t *, int, caller_context_t *,
153 154 vsecattr_t *);
154 155 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *,
155 156 int);
156 157 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *,
157 158 caller_context_t *, int);
158 159 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
159 160 caller_context_t *, int);
160 161 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
161 162 cred_t *, caller_context_t *, int, vsecattr_t *);
162 163 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
163 164 caller_context_t *, int);
164 165 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *,
165 166 cred_t *, caller_context_t *, int);
166 167 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *,
167 168 caller_context_t *, int);
168 169 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *);
169 170 static int nfs_rwlock(vnode_t *, int, caller_context_t *);
170 171 static void nfs_rwunlock(vnode_t *, int, caller_context_t *);
171 172 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
172 173 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *,
173 174 page_t *[], size_t, struct seg *, caddr_t,
174 175 enum seg_rw, cred_t *, caller_context_t *);
175 176 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
176 177 caller_context_t *);
177 178 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
178 179 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
179 180 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
180 181 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
181 182 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
182 183 struct flk_callback *, cred_t *, caller_context_t *);
183 184 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t,
184 185 cred_t *, caller_context_t *);
185 186 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *);
186 187 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
187 188 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
188 189 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *,
189 190 caller_context_t *);
190 191 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
191 192 cred_t *, caller_context_t *);
192 193 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
193 194 caller_context_t *);
194 195 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
195 196 caller_context_t *);
196 197 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
197 198 caller_context_t *);
198 199
199 200 struct vnodeops *nfs_vnodeops;
200 201
201 202 const fs_operation_def_t nfs_vnodeops_template[] = {
202 203 VOPNAME_OPEN, { .vop_open = nfs_open },
203 204 VOPNAME_CLOSE, { .vop_close = nfs_close },
204 205 VOPNAME_READ, { .vop_read = nfs_read },
205 206 VOPNAME_WRITE, { .vop_write = nfs_write },
206 207 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl },
207 208 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr },
208 209 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr },
209 210 VOPNAME_ACCESS, { .vop_access = nfs_access },
210 211 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup },
211 212 VOPNAME_CREATE, { .vop_create = nfs_create },
212 213 VOPNAME_REMOVE, { .vop_remove = nfs_remove },
213 214 VOPNAME_LINK, { .vop_link = nfs_link },
214 215 VOPNAME_RENAME, { .vop_rename = nfs_rename },
215 216 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir },
216 217 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir },
217 218 VOPNAME_READDIR, { .vop_readdir = nfs_readdir },
218 219 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink },
219 220 VOPNAME_READLINK, { .vop_readlink = nfs_readlink },
220 221 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync },
221 222 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive },
222 223 VOPNAME_FID, { .vop_fid = nfs_fid },
223 224 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock },
224 225 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock },
225 226 VOPNAME_SEEK, { .vop_seek = nfs_seek },
226 227 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock },
227 228 VOPNAME_SPACE, { .vop_space = nfs_space },
228 229 VOPNAME_REALVP, { .vop_realvp = nfs_realvp },
229 230 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage },
230 231 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage },
231 232 VOPNAME_MAP, { .vop_map = nfs_map },
232 233 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap },
233 234 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap },
234 235 VOPNAME_DUMP, { .vop_dump = nfs_dump },
235 236 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf },
236 237 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio },
237 238 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr },
238 239 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr },
239 240 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock },
240 241 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
241 242 NULL, NULL
242 243 };
243 244
244 245 /*
245 246 * XXX: This is referenced in modstubs.s
246 247 */
247 248 struct vnodeops *
248 249 nfs_getvnodeops(void)
249 250 {
250 251 return (nfs_vnodeops);
251 252 }
252 253
253 254 /* ARGSUSED */
254 255 static int
255 256 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
256 257 {
257 258 int error;
258 259 struct vattr va;
259 260 rnode_t *rp;
260 261 vnode_t *vp;
261 262
262 263 vp = *vpp;
263 264 rp = VTOR(vp);
264 265 if (nfs_zone() != VTOMI(vp)->mi_zone)
265 266 return (EIO);
266 267 mutex_enter(&rp->r_statelock);
267 268 if (rp->r_cred == NULL) {
268 269 crhold(cr);
269 270 rp->r_cred = cr;
270 271 }
271 272 mutex_exit(&rp->r_statelock);
272 273
273 274 /*
274 275 * If there is no cached data or if close-to-open
275 276 * consistency checking is turned off, we can avoid
276 277 * the over the wire getattr. Otherwise, if the
277 278 * file system is mounted readonly, then just verify
278 279 * the caches are up to date using the normal mechanism.
279 280 * Else, if the file is not mmap'd, then just mark
280 281 * the attributes as timed out. They will be refreshed
281 282 * and the caches validated prior to being used.
282 283 * Else, the file system is mounted writeable so
283 284 * force an over the wire GETATTR in order to ensure
284 285 * that all cached data is valid.
285 286 */
286 287 if (vp->v_count > 1 ||
287 288 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
288 289 !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
289 290 if (vn_is_readonly(vp))
290 291 error = nfs_validate_caches(vp, cr);
291 292 else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
292 293 PURGE_ATTRCACHE(vp);
293 294 error = 0;
294 295 } else {
295 296 va.va_mask = AT_ALL;
296 297 error = nfs_getattr_otw(vp, &va, cr);
297 298 }
298 299 } else
299 300 error = 0;
300 301
301 302 return (error);
302 303 }
303 304
304 305 /* ARGSUSED */
305 306 static int
306 307 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
307 308 caller_context_t *ct)
308 309 {
309 310 rnode_t *rp;
310 311 int error;
311 312 struct vattr va;
312 313
313 314 /*
314 315 * zone_enter(2) prevents processes from changing zones with NFS files
315 316 * open; if we happen to get here from the wrong zone we can't do
316 317 * anything over the wire.
317 318 */
318 319 if (VTOMI(vp)->mi_zone != nfs_zone()) {
319 320 /*
320 321 * We could attempt to clean up locks, except we're sure
321 322 * that the current process didn't acquire any locks on
322 323 * the file: any attempt to lock a file belong to another zone
323 324 * will fail, and one can't lock an NFS file and then change
324 325 * zones, as that fails too.
325 326 *
326 327 * Returning an error here is the sane thing to do. A
327 328 * subsequent call to VN_RELE() which translates to a
328 329 * nfs_inactive() will clean up state: if the zone of the
329 330 * vnode's origin is still alive and kicking, an async worker
330 331 * thread will handle the request (from the correct zone), and
331 332 * everything (minus the final nfs_getattr_otw() call) should
332 333 * be OK. If the zone is going away nfs_async_inactive() will
333 334 * throw away cached pages inline.
334 335 */
335 336 return (EIO);
336 337 }
337 338
338 339 /*
339 340 * If we are using local locking for this filesystem, then
340 341 * release all of the SYSV style record locks. Otherwise,
341 342 * we are doing network locking and we need to release all
342 343 * of the network locks. All of the locks held by this
343 344 * process on this file are released no matter what the
344 345 * incoming reference count is.
345 346 */
346 347 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
347 348 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
348 349 cleanshares(vp, ttoproc(curthread)->p_pid);
349 350 } else
350 351 nfs_lockrelease(vp, flag, offset, cr);
351 352
352 353 if (count > 1)
353 354 return (0);
354 355
355 356 /*
356 357 * If the file has been `unlinked', then purge the
357 358 * DNLC so that this vnode will get reycled quicker
358 359 * and the .nfs* file on the server will get removed.
359 360 */
360 361 rp = VTOR(vp);
361 362 if (rp->r_unldvp != NULL)
362 363 dnlc_purge_vp(vp);
363 364
364 365 /*
365 366 * If the file was open for write and there are pages,
366 367 * then if the file system was mounted using the "no-close-
367 368 * to-open" semantics, then start an asynchronous flush
368 369 * of the all of the pages in the file.
369 370 * else the file system was not mounted using the "no-close-
370 371 * to-open" semantics, then do a synchronous flush and
371 372 * commit of all of the dirty and uncommitted pages.
372 373 *
373 374 * The asynchronous flush of the pages in the "nocto" path
374 375 * mostly just associates a cred pointer with the rnode so
375 376 * writes which happen later will have a better chance of
376 377 * working. It also starts the data being written to the
377 378 * server, but without unnecessarily delaying the application.
378 379 */
379 380 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
380 381 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) {
381 382 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC,
382 383 cr, ct);
383 384 if (error == EAGAIN)
384 385 error = 0;
385 386 } else
386 387 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
387 388 if (!error) {
388 389 mutex_enter(&rp->r_statelock);
389 390 error = rp->r_error;
390 391 rp->r_error = 0;
391 392 mutex_exit(&rp->r_statelock);
392 393 }
393 394 } else {
394 395 mutex_enter(&rp->r_statelock);
395 396 error = rp->r_error;
396 397 rp->r_error = 0;
397 398 mutex_exit(&rp->r_statelock);
398 399 }
399 400
400 401 /*
401 402 * If RWRITEATTR is set, then issue an over the wire GETATTR to
402 403 * refresh the attribute cache with a set of attributes which
403 404 * weren't returned from a WRITE. This will enable the close-
404 405 * to-open processing to work.
405 406 */
406 407 if (rp->r_flags & RWRITEATTR)
407 408 (void) nfs_getattr_otw(vp, &va, cr);
408 409
409 410 return (error);
410 411 }
411 412
412 413 /* ARGSUSED */
413 414 static int
414 415 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
415 416 caller_context_t *ct)
416 417 {
417 418 rnode_t *rp;
418 419 u_offset_t off;
419 420 offset_t diff;
420 421 int on;
421 422 size_t n;
422 423 caddr_t base;
423 424 uint_t flags;
424 425 int error;
425 426 mntinfo_t *mi;
426 427
427 428 rp = VTOR(vp);
428 429 mi = VTOMI(vp);
429 430
430 431 if (nfs_zone() != mi->mi_zone)
431 432 return (EIO);
432 433
433 434 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
434 435
435 436 if (vp->v_type != VREG)
436 437 return (EISDIR);
437 438
438 439 if (uiop->uio_resid == 0)
439 440 return (0);
440 441
441 442 if (uiop->uio_loffset > MAXOFF32_T)
442 443 return (EFBIG);
443 444
444 445 if (uiop->uio_loffset < 0 ||
445 446 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T)
446 447 return (EINVAL);
447 448
448 449 /*
449 450 * Bypass VM if caching has been disabled (e.g., locking) or if
450 451 * using client-side direct I/O and the file is not mmap'd and
451 452 * there are no cached pages.
452 453 */
453 454 if ((vp->v_flag & VNOCACHE) ||
454 455 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
455 456 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
456 457 !vn_has_cached_data(vp))) {
457 458 size_t bufsize;
458 459 size_t resid = 0;
459 460
460 461 /*
461 462 * Let's try to do read in as large a chunk as we can
462 463 * (Filesystem (NFS client) bsize if possible/needed).
463 464 * For V3, this is 32K and for V2, this is 8K.
464 465 */
465 466 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread);
466 467 base = kmem_alloc(bufsize, KM_SLEEP);
467 468 do {
468 469 n = MIN(uiop->uio_resid, bufsize);
469 470 error = nfsread(vp, base, uiop->uio_offset, n,
470 471 &resid, cr);
471 472 if (!error) {
472 473 n -= resid;
473 474 error = uiomove(base, n, UIO_READ, uiop);
474 475 }
475 476 } while (!error && uiop->uio_resid > 0 && n > 0);
476 477 kmem_free(base, bufsize);
477 478 return (error);
478 479 }
479 480
480 481 error = 0;
481 482
482 483 do {
483 484 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
484 485 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
485 486 n = MIN(MAXBSIZE - on, uiop->uio_resid);
486 487
487 488 error = nfs_validate_caches(vp, cr);
488 489 if (error)
489 490 break;
490 491
491 492 mutex_enter(&rp->r_statelock);
492 493 while (rp->r_flags & RINCACHEPURGE) {
493 494 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
494 495 mutex_exit(&rp->r_statelock);
495 496 return (EINTR);
496 497 }
497 498 }
498 499 diff = rp->r_size - uiop->uio_loffset;
499 500 mutex_exit(&rp->r_statelock);
500 501 if (diff <= 0)
501 502 break;
502 503 if (diff < n)
503 504 n = (size_t)diff;
504 505
505 506 if (vpm_enable) {
506 507 /*
507 508 * Copy data.
508 509 */
509 510 error = vpm_data_copy(vp, off + on, n, uiop,
510 511 1, NULL, 0, S_READ);
511 512 } else {
512 513 base = segmap_getmapflt(segkmap, vp, off + on, n,
513 514 1, S_READ);
514 515 error = uiomove(base + on, n, UIO_READ, uiop);
515 516 }
516 517
517 518 if (!error) {
518 519 /*
519 520 * If read a whole block or read to eof,
520 521 * won't need this buffer again soon.
521 522 */
522 523 mutex_enter(&rp->r_statelock);
523 524 if (n + on == MAXBSIZE ||
524 525 uiop->uio_loffset == rp->r_size)
525 526 flags = SM_DONTNEED;
526 527 else
527 528 flags = 0;
528 529 mutex_exit(&rp->r_statelock);
529 530 if (vpm_enable) {
530 531 error = vpm_sync_pages(vp, off, n, flags);
531 532 } else {
532 533 error = segmap_release(segkmap, base, flags);
533 534 }
534 535 } else {
535 536 if (vpm_enable) {
536 537 (void) vpm_sync_pages(vp, off, n, 0);
537 538 } else {
538 539 (void) segmap_release(segkmap, base, 0);
539 540 }
540 541 }
541 542 } while (!error && uiop->uio_resid > 0);
542 543
543 544 return (error);
544 545 }
545 546
546 547 /* ARGSUSED */
547 548 static int
548 549 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
549 550 caller_context_t *ct)
550 551 {
551 552 rnode_t *rp;
552 553 u_offset_t off;
553 554 caddr_t base;
554 555 uint_t flags;
555 556 int remainder;
556 557 size_t n;
557 558 int on;
558 559 int error;
559 560 int resid;
560 561 offset_t offset;
561 562 rlim_t limit;
562 563 mntinfo_t *mi;
563 564
564 565 rp = VTOR(vp);
565 566
566 567 mi = VTOMI(vp);
567 568 if (nfs_zone() != mi->mi_zone)
568 569 return (EIO);
569 570 if (vp->v_type != VREG)
570 571 return (EISDIR);
571 572
572 573 if (uiop->uio_resid == 0)
573 574 return (0);
574 575
575 576 if (ioflag & FAPPEND) {
576 577 struct vattr va;
577 578
578 579 /*
579 580 * Must serialize if appending.
580 581 */
581 582 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
582 583 nfs_rw_exit(&rp->r_rwlock);
583 584 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
584 585 INTR(vp)))
585 586 return (EINTR);
586 587 }
587 588
588 589 va.va_mask = AT_SIZE;
589 590 error = nfsgetattr(vp, &va, cr);
590 591 if (error)
591 592 return (error);
592 593 uiop->uio_loffset = va.va_size;
593 594 }
594 595
595 596 if (uiop->uio_loffset > MAXOFF32_T)
596 597 return (EFBIG);
597 598
598 599 offset = uiop->uio_loffset + uiop->uio_resid;
599 600
600 601 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T)
601 602 return (EINVAL);
602 603
603 604 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) {
604 605 limit = MAXOFF32_T;
605 606 } else {
606 607 limit = (rlim_t)uiop->uio_llimit;
607 608 }
608 609
609 610 /*
610 611 * Check to make sure that the process will not exceed
611 612 * its limit on file size. It is okay to write up to
612 613 * the limit, but not beyond. Thus, the write which
613 614 * reaches the limit will be short and the next write
614 615 * will return an error.
615 616 */
616 617 remainder = 0;
617 618 if (offset > limit) {
618 619 remainder = offset - limit;
619 620 uiop->uio_resid = limit - uiop->uio_offset;
620 621 if (uiop->uio_resid <= 0) {
621 622 proc_t *p = ttoproc(curthread);
622 623
623 624 uiop->uio_resid += remainder;
624 625 mutex_enter(&p->p_lock);
625 626 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
626 627 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
627 628 mutex_exit(&p->p_lock);
628 629 return (EFBIG);
629 630 }
630 631 }
631 632
632 633 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
633 634 return (EINTR);
634 635
635 636 /*
636 637 * Bypass VM if caching has been disabled (e.g., locking) or if
637 638 * using client-side direct I/O and the file is not mmap'd and
638 639 * there are no cached pages.
639 640 */
640 641 if ((vp->v_flag & VNOCACHE) ||
641 642 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
642 643 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
643 644 !vn_has_cached_data(vp))) {
644 645 size_t bufsize;
645 646 int count;
646 647 uint_t org_offset;
647 648
648 649 nfs_fwrite:
649 650 if (rp->r_flags & RSTALE) {
650 651 resid = uiop->uio_resid;
651 652 offset = uiop->uio_loffset;
652 653 error = rp->r_error;
653 654 /*
654 655 * A close may have cleared r_error, if so,
655 656 * propagate ESTALE error return properly
656 657 */
657 658 if (error == 0)
658 659 error = ESTALE;
659 660 goto bottom;
660 661 }
661 662 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite);
662 663 base = kmem_alloc(bufsize, KM_SLEEP);
663 664 do {
664 665 resid = uiop->uio_resid;
665 666 offset = uiop->uio_loffset;
666 667 count = MIN(uiop->uio_resid, bufsize);
667 668 org_offset = uiop->uio_offset;
668 669 error = uiomove(base, count, UIO_WRITE, uiop);
669 670 if (!error) {
670 671 error = nfswrite(vp, base, org_offset,
671 672 count, cr);
672 673 }
673 674 } while (!error && uiop->uio_resid > 0);
674 675 kmem_free(base, bufsize);
675 676 goto bottom;
676 677 }
677 678
678 679 do {
679 680 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
680 681 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
681 682 n = MIN(MAXBSIZE - on, uiop->uio_resid);
682 683
683 684 resid = uiop->uio_resid;
684 685 offset = uiop->uio_loffset;
685 686
686 687 if (rp->r_flags & RSTALE) {
687 688 error = rp->r_error;
688 689 /*
689 690 * A close may have cleared r_error, if so,
690 691 * propagate ESTALE error return properly
691 692 */
692 693 if (error == 0)
693 694 error = ESTALE;
694 695 break;
695 696 }
696 697
697 698 /*
698 699 * Don't create dirty pages faster than they
699 700 * can be cleaned so that the system doesn't
700 701 * get imbalanced. If the async queue is
701 702 * maxed out, then wait for it to drain before
702 703 * creating more dirty pages. Also, wait for
703 704 * any threads doing pagewalks in the vop_getattr
704 705 * entry points so that they don't block for
705 706 * long periods.
706 707 */
707 708 mutex_enter(&rp->r_statelock);
708 709 while ((mi->mi_max_threads != 0 &&
709 710 rp->r_awcount > 2 * mi->mi_max_threads) ||
710 711 rp->r_gcount > 0) {
711 712 if (INTR(vp)) {
712 713 klwp_t *lwp = ttolwp(curthread);
713 714
714 715 if (lwp != NULL)
715 716 lwp->lwp_nostop++;
716 717 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
717 718 mutex_exit(&rp->r_statelock);
718 719 if (lwp != NULL)
719 720 lwp->lwp_nostop--;
720 721 error = EINTR;
721 722 goto bottom;
722 723 }
723 724 if (lwp != NULL)
724 725 lwp->lwp_nostop--;
725 726 } else
726 727 cv_wait(&rp->r_cv, &rp->r_statelock);
727 728 }
728 729 mutex_exit(&rp->r_statelock);
729 730
730 731 /*
731 732 * Touch the page and fault it in if it is not in core
732 733 * before segmap_getmapflt or vpm_data_copy can lock it.
733 734 * This is to avoid the deadlock if the buffer is mapped
734 735 * to the same file through mmap which we want to write.
735 736 */
736 737 uio_prefaultpages((long)n, uiop);
737 738
738 739 if (vpm_enable) {
739 740 /*
740 741 * It will use kpm mappings, so no need to
741 742 * pass an address.
742 743 */
743 744 error = writerp(rp, NULL, n, uiop, 0);
744 745 } else {
745 746 if (segmap_kpm) {
746 747 int pon = uiop->uio_loffset & PAGEOFFSET;
747 748 size_t pn = MIN(PAGESIZE - pon,
748 749 uiop->uio_resid);
749 750 int pagecreate;
750 751
751 752 mutex_enter(&rp->r_statelock);
752 753 pagecreate = (pon == 0) && (pn == PAGESIZE ||
753 754 uiop->uio_loffset + pn >= rp->r_size);
754 755 mutex_exit(&rp->r_statelock);
755 756
756 757 base = segmap_getmapflt(segkmap, vp, off + on,
757 758 pn, !pagecreate, S_WRITE);
758 759
759 760 error = writerp(rp, base + pon, n, uiop,
760 761 pagecreate);
761 762
762 763 } else {
763 764 base = segmap_getmapflt(segkmap, vp, off + on,
764 765 n, 0, S_READ);
765 766 error = writerp(rp, base + on, n, uiop, 0);
766 767 }
767 768 }
768 769
769 770 if (!error) {
770 771 if (mi->mi_flags & MI_NOAC)
771 772 flags = SM_WRITE;
772 773 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
773 774 /*
774 775 * Have written a whole block.
775 776 * Start an asynchronous write
776 777 * and mark the buffer to
777 778 * indicate that it won't be
778 779 * needed again soon.
779 780 */
780 781 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
781 782 } else
782 783 flags = 0;
783 784 if ((ioflag & (FSYNC|FDSYNC)) ||
784 785 (rp->r_flags & ROUTOFSPACE)) {
785 786 flags &= ~SM_ASYNC;
786 787 flags |= SM_WRITE;
787 788 }
788 789 if (vpm_enable) {
789 790 error = vpm_sync_pages(vp, off, n, flags);
790 791 } else {
791 792 error = segmap_release(segkmap, base, flags);
792 793 }
793 794 } else {
794 795 if (vpm_enable) {
795 796 (void) vpm_sync_pages(vp, off, n, 0);
796 797 } else {
797 798 (void) segmap_release(segkmap, base, 0);
798 799 }
799 800 /*
800 801 * In the event that we got an access error while
801 802 * faulting in a page for a write-only file just
802 803 * force a write.
803 804 */
804 805 if (error == EACCES)
805 806 goto nfs_fwrite;
806 807 }
807 808 } while (!error && uiop->uio_resid > 0);
808 809
809 810 bottom:
810 811 if (error) {
811 812 uiop->uio_resid = resid + remainder;
812 813 uiop->uio_loffset = offset;
813 814 } else
814 815 uiop->uio_resid += remainder;
815 816
816 817 nfs_rw_exit(&rp->r_lkserlock);
817 818
818 819 return (error);
819 820 }
820 821
821 822 /*
822 823 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
823 824 */
824 825 static int
825 826 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
826 827 int flags, cred_t *cr)
827 828 {
828 829 struct buf *bp;
829 830 int error;
830 831
831 832 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
832 833 bp = pageio_setup(pp, len, vp, flags);
833 834 ASSERT(bp != NULL);
834 835
835 836 /*
836 837 * pageio_setup should have set b_addr to 0. This
837 838 * is correct since we want to do I/O on a page
838 839 * boundary. bp_mapin will use this addr to calculate
839 840 * an offset, and then set b_addr to the kernel virtual
840 841 * address it allocated for us.
841 842 */
842 843 ASSERT(bp->b_un.b_addr == 0);
843 844
844 845 bp->b_edev = 0;
845 846 bp->b_dev = 0;
846 847 bp->b_lblkno = lbtodb(off);
847 848 bp->b_file = vp;
848 849 bp->b_offset = (offset_t)off;
849 850 bp_mapin(bp);
850 851
851 852 error = nfs_bio(bp, cr);
852 853
853 854 bp_mapout(bp);
854 855 pageio_done(bp);
855 856
856 857 return (error);
857 858 }
858 859
859 860 /*
860 861 * Write to file. Writes to remote server in largest size
861 862 * chunks that the server can handle. Write is synchronous.
862 863 */
863 864 static int
864 865 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr)
865 866 {
866 867 rnode_t *rp;
867 868 mntinfo_t *mi;
868 869 struct nfswriteargs wa;
869 870 struct nfsattrstat ns;
870 871 int error;
871 872 int tsize;
872 873 int douprintf;
873 874
874 875 douprintf = 1;
875 876
876 877 rp = VTOR(vp);
877 878 mi = VTOMI(vp);
878 879
879 880 ASSERT(nfs_zone() == mi->mi_zone);
880 881
881 882 wa.wa_args = &wa.wa_args_buf;
882 883 wa.wa_fhandle = *VTOFH(vp);
883 884
884 885 do {
885 886 tsize = MIN(mi->mi_curwrite, count);
886 887 wa.wa_data = base;
887 888 wa.wa_begoff = offset;
888 889 wa.wa_totcount = tsize;
889 890 wa.wa_count = tsize;
890 891 wa.wa_offset = offset;
891 892
892 893 if (mi->mi_io_kstats) {
893 894 mutex_enter(&mi->mi_lock);
894 895 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
895 896 mutex_exit(&mi->mi_lock);
896 897 }
897 898 wa.wa_mblk = NULL;
898 899 do {
899 900 error = rfs2call(mi, RFS_WRITE,
900 901 xdr_writeargs, (caddr_t)&wa,
901 902 xdr_attrstat, (caddr_t)&ns, cr,
902 903 &douprintf, &ns.ns_status, 0, NULL);
903 904 } while (error == ENFS_TRYAGAIN);
904 905 if (mi->mi_io_kstats) {
905 906 mutex_enter(&mi->mi_lock);
906 907 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
907 908 mutex_exit(&mi->mi_lock);
908 909 }
909 910
910 911 if (!error) {
911 912 error = geterrno(ns.ns_status);
912 913 /*
913 914 * Can't check for stale fhandle and purge caches
914 915 * here because pages are held by nfs_getpage.
915 916 * Just mark the attribute cache as timed out
916 917 * and set RWRITEATTR to indicate that the file
917 918 * was modified with a WRITE operation.
918 919 */
919 920 if (!error) {
920 921 count -= tsize;
921 922 base += tsize;
922 923 offset += tsize;
923 924 if (mi->mi_io_kstats) {
924 925 mutex_enter(&mi->mi_lock);
925 926 KSTAT_IO_PTR(mi->mi_io_kstats)->
926 927 writes++;
927 928 KSTAT_IO_PTR(mi->mi_io_kstats)->
928 929 nwritten += tsize;
929 930 mutex_exit(&mi->mi_lock);
930 931 }
931 932 lwp_stat_update(LWP_STAT_OUBLK, 1);
932 933 mutex_enter(&rp->r_statelock);
933 934 PURGE_ATTRCACHE_LOCKED(rp);
934 935 rp->r_flags |= RWRITEATTR;
935 936 mutex_exit(&rp->r_statelock);
936 937 }
937 938 }
938 939 } while (!error && count);
939 940
940 941 return (error);
941 942 }
942 943
943 944 /*
944 945 * Read from a file. Reads data in largest chunks our interface can handle.
945 946 */
946 947 static int
947 948 nfsread(vnode_t *vp, caddr_t base, uint_t offset,
948 949 int count, size_t *residp, cred_t *cr)
949 950 {
950 951 mntinfo_t *mi;
951 952 struct nfsreadargs ra;
952 953 struct nfsrdresult rr;
953 954 int tsize;
954 955 int error;
955 956 int douprintf;
956 957 failinfo_t fi;
957 958 rnode_t *rp;
958 959 struct vattr va;
959 960 hrtime_t t;
960 961
961 962 rp = VTOR(vp);
962 963 mi = VTOMI(vp);
963 964
964 965 ASSERT(nfs_zone() == mi->mi_zone);
965 966
966 967 douprintf = 1;
967 968
968 969 ra.ra_fhandle = *VTOFH(vp);
969 970
970 971 fi.vp = vp;
971 972 fi.fhp = (caddr_t)&ra.ra_fhandle;
972 973 fi.copyproc = nfscopyfh;
973 974 fi.lookupproc = nfslookup;
974 975 fi.xattrdirproc = acl_getxattrdir2;
975 976
976 977 do {
977 978 if (mi->mi_io_kstats) {
978 979 mutex_enter(&mi->mi_lock);
979 980 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
980 981 mutex_exit(&mi->mi_lock);
981 982 }
982 983
983 984 do {
984 985 tsize = MIN(mi->mi_curread, count);
985 986 rr.rr_data = base;
986 987 ra.ra_offset = offset;
987 988 ra.ra_totcount = tsize;
988 989 ra.ra_count = tsize;
989 990 ra.ra_data = base;
990 991 t = gethrtime();
991 992 error = rfs2call(mi, RFS_READ,
992 993 xdr_readargs, (caddr_t)&ra,
993 994 xdr_rdresult, (caddr_t)&rr, cr,
994 995 &douprintf, &rr.rr_status, 0, &fi);
995 996 } while (error == ENFS_TRYAGAIN);
996 997
997 998 if (mi->mi_io_kstats) {
998 999 mutex_enter(&mi->mi_lock);
999 1000 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1000 1001 mutex_exit(&mi->mi_lock);
1001 1002 }
1002 1003
1003 1004 if (!error) {
1004 1005 error = geterrno(rr.rr_status);
1005 1006 if (!error) {
1006 1007 count -= rr.rr_count;
1007 1008 base += rr.rr_count;
1008 1009 offset += rr.rr_count;
1009 1010 if (mi->mi_io_kstats) {
1010 1011 mutex_enter(&mi->mi_lock);
1011 1012 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1012 1013 KSTAT_IO_PTR(mi->mi_io_kstats)->nread +=
1013 1014 rr.rr_count;
1014 1015 mutex_exit(&mi->mi_lock);
1015 1016 }
1016 1017 lwp_stat_update(LWP_STAT_INBLK, 1);
1017 1018 }
1018 1019 }
1019 1020 } while (!error && count && rr.rr_count == tsize);
1020 1021
1021 1022 *residp = count;
1022 1023
1023 1024 if (!error) {
1024 1025 /*
1025 1026 * Since no error occurred, we have the current
1026 1027 * attributes and we need to do a cache check and then
1027 1028 * potentially update the cached attributes. We can't
1028 1029 * use the normal attribute check and cache mechanisms
1029 1030 * because they might cause a cache flush which would
1030 1031 * deadlock. Instead, we just check the cache to see
1031 1032 * if the attributes have changed. If it is, then we
1032 1033 * just mark the attributes as out of date. The next
1033 1034 * time that the attributes are checked, they will be
1034 1035 * out of date, new attributes will be fetched, and
1035 1036 * the page cache will be flushed. If the attributes
1036 1037 * weren't changed, then we just update the cached
1037 1038 * attributes with these attributes.
1038 1039 */
1039 1040 /*
1040 1041 * If NFS_ACL is supported on the server, then the
1041 1042 * attributes returned by server may have minimal
1042 1043 * permissions sometimes denying access to users having
1043 1044 * proper access. To get the proper attributes, mark
1044 1045 * the attributes as expired so that they will be
1045 1046 * regotten via the NFS_ACL GETATTR2 procedure.
1046 1047 */
1047 1048 error = nattr_to_vattr(vp, &rr.rr_attr, &va);
1048 1049 mutex_enter(&rp->r_statelock);
1049 1050 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) ||
1050 1051 (mi->mi_flags & MI_ACL)) {
1051 1052 mutex_exit(&rp->r_statelock);
1052 1053 PURGE_ATTRCACHE(vp);
1053 1054 } else {
1054 1055 if (rp->r_mtime <= t) {
1055 1056 nfs_attrcache_va(vp, &va);
1056 1057 }
1057 1058 mutex_exit(&rp->r_statelock);
1058 1059 }
1059 1060 }
1060 1061
1061 1062 return (error);
1062 1063 }
1063 1064
1064 1065 /* ARGSUSED */
1065 1066 static int
1066 1067 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1067 1068 caller_context_t *ct)
1068 1069 {
1069 1070
1070 1071 if (nfs_zone() != VTOMI(vp)->mi_zone)
1071 1072 return (EIO);
1072 1073 switch (cmd) {
1073 1074 case _FIODIRECTIO:
1074 1075 return (nfs_directio(vp, (int)arg, cr));
1075 1076 default:
1076 1077 return (ENOTTY);
1077 1078 }
1078 1079 }
1079 1080
1080 1081 /* ARGSUSED */
1081 1082 static int
1082 1083 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1083 1084 caller_context_t *ct)
1084 1085 {
1085 1086 int error;
1086 1087 rnode_t *rp;
1087 1088
1088 1089 if (nfs_zone() != VTOMI(vp)->mi_zone)
1089 1090 return (EIO);
1090 1091 /*
1091 1092 * If it has been specified that the return value will
1092 1093 * just be used as a hint, and we are only being asked
1093 1094 * for size, fsid or rdevid, then return the client's
1094 1095 * notion of these values without checking to make sure
1095 1096 * that the attribute cache is up to date.
1096 1097 * The whole point is to avoid an over the wire GETATTR
1097 1098 * call.
1098 1099 */
1099 1100 rp = VTOR(vp);
1100 1101 if (flags & ATTR_HINT) {
1101 1102 if (vap->va_mask ==
1102 1103 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1103 1104 mutex_enter(&rp->r_statelock);
1104 1105 if (vap->va_mask | AT_SIZE)
1105 1106 vap->va_size = rp->r_size;
1106 1107 if (vap->va_mask | AT_FSID)
1107 1108 vap->va_fsid = rp->r_attr.va_fsid;
1108 1109 if (vap->va_mask | AT_RDEV)
1109 1110 vap->va_rdev = rp->r_attr.va_rdev;
1110 1111 mutex_exit(&rp->r_statelock);
1111 1112 return (0);
1112 1113 }
1113 1114 }
1114 1115
1115 1116 /*
1116 1117 * Only need to flush pages if asking for the mtime
1117 1118 * and if there any dirty pages or any outstanding
1118 1119 * asynchronous (write) requests for this file.
1119 1120 */
1120 1121 if (vap->va_mask & AT_MTIME) {
1121 1122 if (vn_has_cached_data(vp) &&
1122 1123 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1123 1124 mutex_enter(&rp->r_statelock);
1124 1125 rp->r_gcount++;
1125 1126 mutex_exit(&rp->r_statelock);
1126 1127 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1127 1128 mutex_enter(&rp->r_statelock);
1128 1129 if (error && (error == ENOSPC || error == EDQUOT)) {
1129 1130 if (!rp->r_error)
1130 1131 rp->r_error = error;
1131 1132 }
1132 1133 if (--rp->r_gcount == 0)
1133 1134 cv_broadcast(&rp->r_cv);
1134 1135 mutex_exit(&rp->r_statelock);
1135 1136 }
1136 1137 }
1137 1138
1138 1139 return (nfsgetattr(vp, vap, cr));
1139 1140 }
1140 1141
1141 1142 /*ARGSUSED4*/
1142 1143 static int
1143 1144 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1144 1145 caller_context_t *ct)
1145 1146 {
1146 1147 int error;
1147 1148 uint_t mask;
1148 1149 struct vattr va;
1149 1150
1150 1151 mask = vap->va_mask;
1151 1152
1152 1153 if (mask & AT_NOSET)
1153 1154 return (EINVAL);
1154 1155
1155 1156 if ((mask & AT_SIZE) &&
1156 1157 vap->va_type == VREG &&
1157 1158 vap->va_size > MAXOFF32_T)
1158 1159 return (EFBIG);
1159 1160
1160 1161 if (nfs_zone() != VTOMI(vp)->mi_zone)
1161 1162 return (EIO);
1162 1163
1163 1164 va.va_mask = AT_UID | AT_MODE;
1164 1165
1165 1166 error = nfsgetattr(vp, &va, cr);
1166 1167 if (error)
1167 1168 return (error);
1168 1169
1169 1170 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx,
1170 1171 vp);
1171 1172
1172 1173 if (error)
1173 1174 return (error);
1174 1175
1175 1176 error = nfssetattr(vp, vap, flags, cr);
1176 1177
1177 1178 if (error == 0 && (mask & AT_SIZE) && vap->va_size == 0)
1178 1179 vnevent_truncate(vp, ct);
1179 1180
1180 1181 return (error);
1181 1182 }
1182 1183
1183 1184 static int
1184 1185 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1185 1186 {
1186 1187 int error;
1187 1188 uint_t mask;
1188 1189 struct nfssaargs args;
1189 1190 struct nfsattrstat ns;
1190 1191 int douprintf;
1191 1192 rnode_t *rp;
1192 1193 struct vattr va;
1193 1194 mode_t omode;
1194 1195 mntinfo_t *mi;
1195 1196 vsecattr_t *vsp;
1196 1197 hrtime_t t;
1197 1198
1198 1199 mask = vap->va_mask;
1199 1200
1200 1201 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1201 1202
1202 1203 rp = VTOR(vp);
1203 1204
1204 1205 /*
1205 1206 * Only need to flush pages if there are any pages and
1206 1207 * if the file is marked as dirty in some fashion. The
1207 1208 * file must be flushed so that we can accurately
1208 1209 * determine the size of the file and the cached data
1209 1210 * after the SETATTR returns. A file is considered to
1210 1211 * be dirty if it is either marked with RDIRTY, has
1211 1212 * outstanding i/o's active, or is mmap'd. In this
1212 1213 * last case, we can't tell whether there are dirty
1213 1214 * pages, so we flush just to be sure.
1214 1215 */
1215 1216 if (vn_has_cached_data(vp) &&
1216 1217 ((rp->r_flags & RDIRTY) ||
1217 1218 rp->r_count > 0 ||
1218 1219 rp->r_mapcnt > 0)) {
1219 1220 ASSERT(vp->v_type != VCHR);
1220 1221 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1221 1222 if (error && (error == ENOSPC || error == EDQUOT)) {
1222 1223 mutex_enter(&rp->r_statelock);
1223 1224 if (!rp->r_error)
1224 1225 rp->r_error = error;
1225 1226 mutex_exit(&rp->r_statelock);
1226 1227 }
1227 1228 }
1228 1229
1229 1230 /*
1230 1231 * If the system call was utime(2) or utimes(2) and the
1231 1232 * application did not specify the times, then set the
1232 1233 * mtime nanosecond field to 1 billion. This will get
1233 1234 * translated from 1 billion nanoseconds to 1 million
1234 1235 * microseconds in the over the wire request. The
1235 1236 * server will use 1 million in the microsecond field
1236 1237 * to tell whether both the mtime and atime should be
1237 1238 * set to the server's current time.
1238 1239 *
1239 1240 * This is an overload of the protocol and should be
1240 1241 * documented in the NFS Version 2 protocol specification.
1241 1242 */
1242 1243 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) {
1243 1244 vap->va_mtime.tv_nsec = 1000000000;
1244 1245 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) &&
1245 1246 NFS_TIME_T_OK(vap->va_atime.tv_sec)) {
1246 1247 error = vattr_to_sattr(vap, &args.saa_sa);
1247 1248 } else {
1248 1249 /*
1249 1250 * Use server times. vap time values will not be used.
1250 1251 * To ensure no time overflow, make sure vap has
1251 1252 * valid values, but retain the original values.
1252 1253 */
1253 1254 timestruc_t mtime = vap->va_mtime;
1254 1255 timestruc_t atime = vap->va_atime;
1255 1256 time_t now;
1256 1257
1257 1258 now = gethrestime_sec();
1258 1259 if (NFS_TIME_T_OK(now)) {
1259 1260 /* Just in case server does not know of this */
1260 1261 vap->va_mtime.tv_sec = now;
1261 1262 vap->va_atime.tv_sec = now;
1262 1263 } else {
1263 1264 vap->va_mtime.tv_sec = 0;
1264 1265 vap->va_atime.tv_sec = 0;
1265 1266 }
1266 1267 error = vattr_to_sattr(vap, &args.saa_sa);
1267 1268 /* set vap times back on */
1268 1269 vap->va_mtime = mtime;
1269 1270 vap->va_atime = atime;
1270 1271 }
1271 1272 } else {
1272 1273 /* Either do not set times or use the client specified times */
1273 1274 error = vattr_to_sattr(vap, &args.saa_sa);
1274 1275 }
1275 1276 if (error) {
1276 1277 /* req time field(s) overflow - return immediately */
1277 1278 return (error);
1278 1279 }
1279 1280 args.saa_fh = *VTOFH(vp);
1280 1281
1281 1282 va.va_mask = AT_MODE;
1282 1283 error = nfsgetattr(vp, &va, cr);
1283 1284 if (error)
1284 1285 return (error);
1285 1286 omode = va.va_mode;
1286 1287
1287 1288 mi = VTOMI(vp);
1288 1289
1289 1290 douprintf = 1;
1290 1291
1291 1292 t = gethrtime();
1292 1293
1293 1294 error = rfs2call(mi, RFS_SETATTR,
1294 1295 xdr_saargs, (caddr_t)&args,
1295 1296 xdr_attrstat, (caddr_t)&ns, cr,
1296 1297 &douprintf, &ns.ns_status, 0, NULL);
1297 1298
1298 1299 /*
1299 1300 * Purge the access cache and ACL cache if changing either the
1300 1301 * owner of the file, the group owner, or the mode. These may
1301 1302 * change the access permissions of the file, so purge old
1302 1303 * information and start over again.
1303 1304 */
1304 1305 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) {
1305 1306 (void) nfs_access_purge_rp(rp);
1306 1307 if (rp->r_secattr != NULL) {
1307 1308 mutex_enter(&rp->r_statelock);
1308 1309 vsp = rp->r_secattr;
1309 1310 rp->r_secattr = NULL;
1310 1311 mutex_exit(&rp->r_statelock);
1311 1312 if (vsp != NULL)
1312 1313 nfs_acl_free(vsp);
1313 1314 }
1314 1315 }
1315 1316
1316 1317 if (!error) {
1317 1318 error = geterrno(ns.ns_status);
1318 1319 if (!error) {
1319 1320 /*
1320 1321 * If changing the size of the file, invalidate
1321 1322 * any local cached data which is no longer part
1322 1323 * of the file. We also possibly invalidate the
1323 1324 * last page in the file. We could use
1324 1325 * pvn_vpzero(), but this would mark the page as
1325 1326 * modified and require it to be written back to
1326 1327 * the server for no particularly good reason.
1327 1328 * This way, if we access it, then we bring it
1328 1329 * back in. A read should be cheaper than a
1329 1330 * write.
1330 1331 */
1331 1332 if (mask & AT_SIZE) {
1332 1333 nfs_invalidate_pages(vp,
1333 1334 (vap->va_size & PAGEMASK), cr);
1334 1335 }
1335 1336 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr);
1336 1337 /*
1337 1338 * If NFS_ACL is supported on the server, then the
1338 1339 * attributes returned by server may have minimal
1339 1340 * permissions sometimes denying access to users having
1340 1341 * proper access. To get the proper attributes, mark
1341 1342 * the attributes as expired so that they will be
1342 1343 * regotten via the NFS_ACL GETATTR2 procedure.
1343 1344 */
1344 1345 if (mi->mi_flags & MI_ACL) {
1345 1346 PURGE_ATTRCACHE(vp);
1346 1347 }
1347 1348 /*
1348 1349 * This next check attempts to deal with NFS
1349 1350 * servers which can not handle increasing
1350 1351 * the size of the file via setattr. Most
1351 1352 * of these servers do not return an error,
1352 1353 * but do not change the size of the file.
1353 1354 * Hence, this check and then attempt to set
1354 1355 * the file size by writing 1 byte at the
1355 1356 * offset of the end of the file that we need.
1356 1357 */
1357 1358 if ((mask & AT_SIZE) &&
1358 1359 ns.ns_attr.na_size < (uint32_t)vap->va_size) {
1359 1360 char zb = '\0';
1360 1361
1361 1362 error = nfswrite(vp, &zb,
1362 1363 vap->va_size - sizeof (zb),
1363 1364 sizeof (zb), cr);
1364 1365 }
1365 1366 /*
1366 1367 * Some servers will change the mode to clear the setuid
1367 1368 * and setgid bits when changing the uid or gid. The
1368 1369 * client needs to compensate appropriately.
1369 1370 */
1370 1371 if (mask & (AT_UID | AT_GID)) {
1371 1372 int terror;
1372 1373
1373 1374 va.va_mask = AT_MODE;
1374 1375 terror = nfsgetattr(vp, &va, cr);
1375 1376 if (!terror &&
1376 1377 (((mask & AT_MODE) &&
1377 1378 va.va_mode != vap->va_mode) ||
1378 1379 (!(mask & AT_MODE) &&
1379 1380 va.va_mode != omode))) {
1380 1381 va.va_mask = AT_MODE;
1381 1382 if (mask & AT_MODE)
1382 1383 va.va_mode = vap->va_mode;
1383 1384 else
1384 1385 va.va_mode = omode;
1385 1386 (void) nfssetattr(vp, &va, 0, cr);
1386 1387 }
1387 1388 }
1388 1389 } else {
1389 1390 PURGE_ATTRCACHE(vp);
1390 1391 PURGE_STALE_FH(error, vp, cr);
1391 1392 }
1392 1393 } else {
1393 1394 PURGE_ATTRCACHE(vp);
1394 1395 }
1395 1396
1396 1397 return (error);
1397 1398 }
1398 1399
1399 1400 static int
1400 1401 nfs_accessx(void *vp, int mode, cred_t *cr)
1401 1402 {
1402 1403 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1403 1404 return (nfs_access(vp, mode, 0, cr, NULL));
1404 1405 }
1405 1406
1406 1407 /* ARGSUSED */
1407 1408 static int
1408 1409 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1409 1410 {
1410 1411 struct vattr va;
1411 1412 int error;
1412 1413 mntinfo_t *mi;
1413 1414 int shift = 0;
1414 1415
1415 1416 mi = VTOMI(vp);
1416 1417
1417 1418 if (nfs_zone() != mi->mi_zone)
1418 1419 return (EIO);
1419 1420 if (mi->mi_flags & MI_ACL) {
1420 1421 error = acl_access2(vp, mode, flags, cr);
1421 1422 if (mi->mi_flags & MI_ACL)
1422 1423 return (error);
1423 1424 }
1424 1425
1425 1426 va.va_mask = AT_MODE | AT_UID | AT_GID;
1426 1427 error = nfsgetattr(vp, &va, cr);
1427 1428 if (error)
1428 1429 return (error);
1429 1430
1430 1431 /*
1431 1432 * Disallow write attempts on read-only
1432 1433 * file systems, unless the file is a
1433 1434 * device node.
1434 1435 */
1435 1436 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp))
1436 1437 return (EROFS);
1437 1438
1438 1439 /*
1439 1440 * Disallow attempts to access mandatory lock files.
1440 1441 */
1441 1442 if ((mode & (VWRITE | VREAD | VEXEC)) &&
1442 1443 MANDLOCK(vp, va.va_mode))
1443 1444 return (EACCES);
1444 1445
1445 1446 /*
1446 1447 * Access check is based on only
1447 1448 * one of owner, group, public.
1448 1449 * If not owner, then check group.
1449 1450 * If not a member of the group,
1450 1451 * then check public access.
1451 1452 */
|
↓ open down ↓ |
1419 lines elided |
↑ open up ↑ |
1452 1453 if (crgetuid(cr) != va.va_uid) {
1453 1454 shift += 3;
1454 1455 if (!groupmember(va.va_gid, cr))
1455 1456 shift += 3;
1456 1457 }
1457 1458
1458 1459 return (secpolicy_vnode_access2(cr, vp, va.va_uid,
1459 1460 va.va_mode << shift, mode));
1460 1461 }
1461 1462
1462 -static int nfs_do_symlink_cache = 1;
1463 +volatile int nfs_do_symlink_cache = 1;
1463 1464
1464 1465 /* ARGSUSED */
1465 1466 static int
1466 1467 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1467 1468 {
1468 1469 int error;
1469 1470 struct nfsrdlnres rl;
1470 1471 rnode_t *rp;
1471 1472 int douprintf;
1472 1473 failinfo_t fi;
1473 1474
1474 1475 /*
1475 1476 * We want to be consistent with UFS semantics so we will return
1476 1477 * EINVAL instead of ENXIO. This violates the XNFS spec and
1477 1478 * the RFC 1094, which are wrong any way. BUGID 1138002.
1478 1479 */
1479 1480 if (vp->v_type != VLNK)
1480 1481 return (EINVAL);
1481 1482
1482 1483 if (nfs_zone() != VTOMI(vp)->mi_zone)
1483 1484 return (EIO);
1484 1485
1485 1486 rp = VTOR(vp);
1486 1487 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) {
1487 1488 error = nfs_validate_caches(vp, cr);
1488 1489 if (error)
1489 1490 return (error);
1490 1491 mutex_enter(&rp->r_statelock);
1491 1492 if (rp->r_symlink.contents != NULL) {
1492 1493 error = uiomove(rp->r_symlink.contents,
1493 1494 rp->r_symlink.len, UIO_READ, uiop);
1494 1495 mutex_exit(&rp->r_statelock);
1495 1496 return (error);
1496 1497 }
1497 1498 mutex_exit(&rp->r_statelock);
1498 1499 }
1499 1500
1500 1501
1501 1502 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP);
1502 1503
1503 1504 fi.vp = vp;
1504 1505 fi.fhp = NULL; /* no need to update, filehandle not copied */
1505 1506 fi.copyproc = nfscopyfh;
1506 1507 fi.lookupproc = nfslookup;
1507 1508 fi.xattrdirproc = acl_getxattrdir2;
1508 1509
1509 1510 douprintf = 1;
1510 1511
1511 1512 error = rfs2call(VTOMI(vp), RFS_READLINK,
1512 1513 xdr_readlink, (caddr_t)VTOFH(vp),
1513 1514 xdr_rdlnres, (caddr_t)&rl, cr,
1514 1515 &douprintf, &rl.rl_status, 0, &fi);
1515 1516
1516 1517 if (error) {
1517 1518
1518 1519 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1519 1520 return (error);
1520 1521 }
1521 1522
1522 1523 error = geterrno(rl.rl_status);
1523 1524 if (!error) {
1524 1525 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop);
1525 1526 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) {
1526 1527 mutex_enter(&rp->r_statelock);
1527 1528 if (rp->r_symlink.contents == NULL) {
1528 1529 rp->r_symlink.contents = rl.rl_data;
1529 1530 rp->r_symlink.len = (int)rl.rl_count;
1530 1531 rp->r_symlink.size = NFS_MAXPATHLEN;
1531 1532 mutex_exit(&rp->r_statelock);
1532 1533 } else {
1533 1534 mutex_exit(&rp->r_statelock);
1534 1535
1535 1536 kmem_free((void *)rl.rl_data,
1536 1537 NFS_MAXPATHLEN);
1537 1538 }
1538 1539 } else {
1539 1540
1540 1541 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1541 1542 }
1542 1543 } else {
1543 1544 PURGE_STALE_FH(error, vp, cr);
1544 1545
1545 1546 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1546 1547 }
1547 1548
1548 1549 /*
1549 1550 * Conform to UFS semantics (see comment above)
1550 1551 */
1551 1552 return (error == ENXIO ? EINVAL : error);
1552 1553 }
1553 1554
1554 1555 /*
1555 1556 * Flush local dirty pages to stable storage on the server.
1556 1557 *
1557 1558 * If FNODSYNC is specified, then there is nothing to do because
1558 1559 * metadata changes are not cached on the client before being
1559 1560 * sent to the server.
1560 1561 */
1561 1562 /* ARGSUSED */
1562 1563 static int
1563 1564 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1564 1565 {
1565 1566 int error;
1566 1567
1567 1568 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1568 1569 return (0);
1569 1570
1570 1571 if (nfs_zone() != VTOMI(vp)->mi_zone)
1571 1572 return (EIO);
1572 1573
1573 1574 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1574 1575 if (!error)
1575 1576 error = VTOR(vp)->r_error;
1576 1577 return (error);
1577 1578 }
1578 1579
1579 1580
1580 1581 /*
1581 1582 * Weirdness: if the file was removed or the target of a rename
1582 1583 * operation while it was open, it got renamed instead. Here we
1583 1584 * remove the renamed file.
1584 1585 */
1585 1586 /* ARGSUSED */
1586 1587 static void
1587 1588 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1588 1589 {
1589 1590 rnode_t *rp;
1590 1591
1591 1592 ASSERT(vp != DNLC_NO_VNODE);
1592 1593
1593 1594 /*
1594 1595 * If this is coming from the wrong zone, we let someone in the right
1595 1596 * zone take care of it asynchronously. We can get here due to
1596 1597 * VN_RELE() being called from pageout() or fsflush(). This call may
1597 1598 * potentially turn into an expensive no-op if, for instance, v_count
1598 1599 * gets incremented in the meantime, but it's still correct.
1599 1600 */
1600 1601 if (nfs_zone() != VTOMI(vp)->mi_zone) {
1601 1602 nfs_async_inactive(vp, cr, nfs_inactive);
1602 1603 return;
1603 1604 }
1604 1605
1605 1606 rp = VTOR(vp);
1606 1607 redo:
1607 1608 if (rp->r_unldvp != NULL) {
1608 1609 /*
1609 1610 * Save the vnode pointer for the directory where the
1610 1611 * unlinked-open file got renamed, then set it to NULL
1611 1612 * to prevent another thread from getting here before
1612 1613 * we're done with the remove. While we have the
1613 1614 * statelock, make local copies of the pertinent rnode
1614 1615 * fields. If we weren't to do this in an atomic way, the
1615 1616 * the unl* fields could become inconsistent with respect
1616 1617 * to each other due to a race condition between this
1617 1618 * code and nfs_remove(). See bug report 1034328.
1618 1619 */
1619 1620 mutex_enter(&rp->r_statelock);
1620 1621 if (rp->r_unldvp != NULL) {
1621 1622 vnode_t *unldvp;
1622 1623 char *unlname;
1623 1624 cred_t *unlcred;
1624 1625 struct nfsdiropargs da;
1625 1626 enum nfsstat status;
1626 1627 int douprintf;
1627 1628 int error;
1628 1629
1629 1630 unldvp = rp->r_unldvp;
1630 1631 rp->r_unldvp = NULL;
1631 1632 unlname = rp->r_unlname;
1632 1633 rp->r_unlname = NULL;
1633 1634 unlcred = rp->r_unlcred;
1634 1635 rp->r_unlcred = NULL;
1635 1636 mutex_exit(&rp->r_statelock);
1636 1637
1637 1638 /*
1638 1639 * If there are any dirty pages left, then flush
1639 1640 * them. This is unfortunate because they just
1640 1641 * may get thrown away during the remove operation,
1641 1642 * but we have to do this for correctness.
1642 1643 */
1643 1644 if (vn_has_cached_data(vp) &&
1644 1645 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1645 1646 ASSERT(vp->v_type != VCHR);
1646 1647 error = nfs_putpage(vp, (offset_t)0, 0, 0,
1647 1648 cr, ct);
1648 1649 if (error) {
1649 1650 mutex_enter(&rp->r_statelock);
1650 1651 if (!rp->r_error)
1651 1652 rp->r_error = error;
1652 1653 mutex_exit(&rp->r_statelock);
1653 1654 }
1654 1655 }
1655 1656
1656 1657 /*
1657 1658 * Do the remove operation on the renamed file
1658 1659 */
1659 1660 setdiropargs(&da, unlname, unldvp);
1660 1661
1661 1662 douprintf = 1;
1662 1663
1663 1664 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE,
1664 1665 xdr_diropargs, (caddr_t)&da,
1665 1666 xdr_enum, (caddr_t)&status, unlcred,
1666 1667 &douprintf, &status, 0, NULL);
1667 1668
1668 1669 if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1669 1670 nfs_purge_rddir_cache(unldvp);
1670 1671 PURGE_ATTRCACHE(unldvp);
1671 1672
1672 1673 /*
1673 1674 * Release stuff held for the remove
1674 1675 */
1675 1676 VN_RELE(unldvp);
1676 1677 kmem_free(unlname, MAXNAMELEN);
1677 1678 crfree(unlcred);
1678 1679 goto redo;
1679 1680 }
1680 1681 mutex_exit(&rp->r_statelock);
1681 1682 }
1682 1683
1683 1684 rp_addfree(rp, cr);
1684 1685 }
1685 1686
1686 1687 /*
1687 1688 * Remote file system operations having to do with directory manipulation.
1688 1689 */
1689 1690
1690 1691 /* ARGSUSED */
1691 1692 static int
1692 1693 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1693 1694 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1694 1695 int *direntflags, pathname_t *realpnp)
1695 1696 {
1696 1697 int error;
1697 1698 vnode_t *vp;
1698 1699 vnode_t *avp = NULL;
1699 1700 rnode_t *drp;
1700 1701
1701 1702 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1702 1703 return (EPERM);
1703 1704
1704 1705 drp = VTOR(dvp);
1705 1706
1706 1707 /*
1707 1708 * Are we looking up extended attributes? If so, "dvp" is
1708 1709 * the file or directory for which we want attributes, and
1709 1710 * we need a lookup of the hidden attribute directory
1710 1711 * before we lookup the rest of the path.
1711 1712 */
1712 1713 if (flags & LOOKUP_XATTR) {
1713 1714 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1714 1715 mntinfo_t *mi;
1715 1716
1716 1717 mi = VTOMI(dvp);
1717 1718 if (!(mi->mi_flags & MI_EXTATTR))
1718 1719 return (EINVAL);
1719 1720
1720 1721 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1721 1722 return (EINTR);
1722 1723
1723 1724 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1724 1725 if (avp == NULL)
1725 1726 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0);
1726 1727 else
1727 1728 error = 0;
1728 1729
1729 1730 nfs_rw_exit(&drp->r_rwlock);
1730 1731
1731 1732 if (error) {
1732 1733 if (mi->mi_flags & MI_EXTATTR)
1733 1734 return (error);
1734 1735 return (EINVAL);
1735 1736 }
1736 1737 dvp = avp;
1737 1738 drp = VTOR(dvp);
1738 1739 }
1739 1740
1740 1741 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1741 1742 error = EINTR;
1742 1743 goto out;
1743 1744 }
1744 1745
1745 1746 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1746 1747
1747 1748 nfs_rw_exit(&drp->r_rwlock);
1748 1749
1749 1750 /*
1750 1751 * If vnode is a device, create special vnode.
1751 1752 */
1752 1753 if (!error && IS_DEVVP(*vpp)) {
1753 1754 vp = *vpp;
1754 1755 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
|
↓ open down ↓ |
282 lines elided |
↑ open up ↑ |
1755 1756 VN_RELE(vp);
1756 1757 }
1757 1758
1758 1759 out:
1759 1760 if (avp != NULL)
1760 1761 VN_RELE(avp);
1761 1762
1762 1763 return (error);
1763 1764 }
1764 1765
1765 -static int nfs_lookup_neg_cache = 1;
1766 +volatile int nfs_lookup_neg_cache = 1;
1766 1767
1767 1768 #ifdef DEBUG
1768 1769 static int nfs_lookup_dnlc_hits = 0;
1769 1770 static int nfs_lookup_dnlc_misses = 0;
1770 1771 static int nfs_lookup_dnlc_neg_hits = 0;
1771 1772 static int nfs_lookup_dnlc_disappears = 0;
1772 1773 static int nfs_lookup_dnlc_lookups = 0;
1773 1774 #endif
1774 1775
1775 1776 /* ARGSUSED */
1776 1777 int
1777 1778 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1778 1779 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
1779 1780 {
1780 1781 int error;
1781 1782
1782 1783 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1783 1784
1784 1785 /*
1785 1786 * If lookup is for "", just return dvp. Don't need
1786 1787 * to send it over the wire, look it up in the dnlc,
1787 1788 * or perform any access checks.
1788 1789 */
1789 1790 if (*nm == '\0') {
1790 1791 VN_HOLD(dvp);
1791 1792 *vpp = dvp;
1792 1793 return (0);
1793 1794 }
1794 1795
1795 1796 /*
1796 1797 * Can't do lookups in non-directories.
1797 1798 */
1798 1799 if (dvp->v_type != VDIR)
1799 1800 return (ENOTDIR);
1800 1801
1801 1802 /*
1802 1803 * If we're called with RFSCALL_SOFT, it's important that
1803 1804 * the only rfscall is one we make directly; if we permit
1804 1805 * an access call because we're looking up "." or validating
1805 1806 * a dnlc hit, we'll deadlock because that rfscall will not
1806 1807 * have the RFSCALL_SOFT set.
1807 1808 */
1808 1809 if (rfscall_flags & RFSCALL_SOFT)
1809 1810 goto callit;
1810 1811
1811 1812 /*
1812 1813 * If lookup is for ".", just return dvp. Don't need
1813 1814 * to send it over the wire or look it up in the dnlc,
1814 1815 * just need to check access.
1815 1816 */
1816 1817 if (strcmp(nm, ".") == 0) {
1817 1818 error = nfs_access(dvp, VEXEC, 0, cr, NULL);
1818 1819 if (error)
1819 1820 return (error);
1820 1821 VN_HOLD(dvp);
1821 1822 *vpp = dvp;
1822 1823 return (0);
1823 1824 }
1824 1825
1825 1826 /*
1826 1827 * Lookup this name in the DNLC. If there was a valid entry,
1827 1828 * then return the results of the lookup.
1828 1829 */
1829 1830 error = nfslookup_dnlc(dvp, nm, vpp, cr);
1830 1831 if (error || *vpp != NULL)
1831 1832 return (error);
1832 1833
1833 1834 callit:
1834 1835 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags);
1835 1836
1836 1837 return (error);
1837 1838 }
1838 1839
1839 1840 static int
1840 1841 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
1841 1842 {
1842 1843 int error;
1843 1844 vnode_t *vp;
1844 1845
1845 1846 ASSERT(*nm != '\0');
1846 1847 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1847 1848
1848 1849 /*
1849 1850 * Lookup this name in the DNLC. If successful, then validate
1850 1851 * the caches and then recheck the DNLC. The DNLC is rechecked
1851 1852 * just in case this entry got invalidated during the call
1852 1853 * to nfs_validate_caches.
1853 1854 *
1854 1855 * An assumption is being made that it is safe to say that a
1855 1856 * file exists which may not on the server. Any operations to
1856 1857 * the server will fail with ESTALE.
1857 1858 */
1858 1859 #ifdef DEBUG
1859 1860 nfs_lookup_dnlc_lookups++;
1860 1861 #endif
1861 1862 vp = dnlc_lookup(dvp, nm);
1862 1863 if (vp != NULL) {
1863 1864 VN_RELE(vp);
1864 1865 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
1865 1866 PURGE_ATTRCACHE(dvp);
1866 1867 }
1867 1868 error = nfs_validate_caches(dvp, cr);
1868 1869 if (error)
1869 1870 return (error);
1870 1871 vp = dnlc_lookup(dvp, nm);
1871 1872 if (vp != NULL) {
1872 1873 error = nfs_access(dvp, VEXEC, 0, cr, NULL);
1873 1874 if (error) {
1874 1875 VN_RELE(vp);
1875 1876 return (error);
1876 1877 }
1877 1878 if (vp == DNLC_NO_VNODE) {
1878 1879 VN_RELE(vp);
1879 1880 #ifdef DEBUG
1880 1881 nfs_lookup_dnlc_neg_hits++;
1881 1882 #endif
1882 1883 return (ENOENT);
1883 1884 }
1884 1885 *vpp = vp;
1885 1886 #ifdef DEBUG
1886 1887 nfs_lookup_dnlc_hits++;
1887 1888 #endif
1888 1889 return (0);
1889 1890 }
1890 1891 #ifdef DEBUG
1891 1892 nfs_lookup_dnlc_disappears++;
1892 1893 #endif
1893 1894 }
1894 1895 #ifdef DEBUG
1895 1896 else
1896 1897 nfs_lookup_dnlc_misses++;
1897 1898 #endif
1898 1899
1899 1900 *vpp = NULL;
1900 1901
1901 1902 return (0);
1902 1903 }
1903 1904
1904 1905 static int
1905 1906 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
1906 1907 int rfscall_flags)
1907 1908 {
1908 1909 int error;
1909 1910 struct nfsdiropargs da;
1910 1911 struct nfsdiropres dr;
1911 1912 int douprintf;
1912 1913 failinfo_t fi;
1913 1914 hrtime_t t;
1914 1915
1915 1916 ASSERT(*nm != '\0');
1916 1917 ASSERT(dvp->v_type == VDIR);
1917 1918 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1918 1919
1919 1920 setdiropargs(&da, nm, dvp);
1920 1921
1921 1922 fi.vp = dvp;
1922 1923 fi.fhp = NULL; /* no need to update, filehandle not copied */
1923 1924 fi.copyproc = nfscopyfh;
1924 1925 fi.lookupproc = nfslookup;
1925 1926 fi.xattrdirproc = acl_getxattrdir2;
1926 1927
1927 1928 douprintf = 1;
1928 1929
1929 1930 t = gethrtime();
1930 1931
1931 1932 error = rfs2call(VTOMI(dvp), RFS_LOOKUP,
1932 1933 xdr_diropargs, (caddr_t)&da,
1933 1934 xdr_diropres, (caddr_t)&dr, cr,
1934 1935 &douprintf, &dr.dr_status, rfscall_flags, &fi);
1935 1936
1936 1937 if (!error) {
1937 1938 error = geterrno(dr.dr_status);
1938 1939 if (!error) {
1939 1940 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
1940 1941 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
1941 1942 /*
1942 1943 * If NFS_ACL is supported on the server, then the
1943 1944 * attributes returned by server may have minimal
1944 1945 * permissions sometimes denying access to users having
1945 1946 * proper access. To get the proper attributes, mark
1946 1947 * the attributes as expired so that they will be
1947 1948 * regotten via the NFS_ACL GETATTR2 procedure.
1948 1949 */
1949 1950 if (VTOMI(*vpp)->mi_flags & MI_ACL) {
1950 1951 PURGE_ATTRCACHE(*vpp);
1951 1952 }
1952 1953 if (!(rfscall_flags & RFSCALL_SOFT))
1953 1954 dnlc_update(dvp, nm, *vpp);
1954 1955 } else {
1955 1956 PURGE_STALE_FH(error, dvp, cr);
1956 1957 if (error == ENOENT && nfs_lookup_neg_cache)
1957 1958 dnlc_enter(dvp, nm, DNLC_NO_VNODE);
1958 1959 }
1959 1960 }
1960 1961
1961 1962 return (error);
1962 1963 }
1963 1964
1964 1965 /* ARGSUSED */
1965 1966 static int
1966 1967 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
1967 1968 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
1968 1969 vsecattr_t *vsecp)
1969 1970 {
1970 1971 int error;
1971 1972 struct nfscreatargs args;
1972 1973 struct nfsdiropres dr;
1973 1974 int douprintf;
1974 1975 vnode_t *vp;
1975 1976 rnode_t *rp;
1976 1977 struct vattr vattr;
1977 1978 rnode_t *drp;
1978 1979 vnode_t *tempvp;
1979 1980 hrtime_t t;
1980 1981
1981 1982 drp = VTOR(dvp);
1982 1983
1983 1984 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1984 1985 return (EPERM);
1985 1986 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
1986 1987 return (EINTR);
1987 1988
1988 1989 /*
1989 1990 * We make a copy of the attributes because the caller does not
1990 1991 * expect us to change what va points to.
1991 1992 */
1992 1993 vattr = *va;
1993 1994
1994 1995 /*
1995 1996 * If the pathname is "", just use dvp. Don't need
1996 1997 * to send it over the wire, look it up in the dnlc,
1997 1998 * or perform any access checks.
1998 1999 */
1999 2000 if (*nm == '\0') {
2000 2001 error = 0;
2001 2002 VN_HOLD(dvp);
2002 2003 vp = dvp;
2003 2004 /*
2004 2005 * If the pathname is ".", just use dvp. Don't need
2005 2006 * to send it over the wire or look it up in the dnlc,
2006 2007 * just need to check access.
2007 2008 */
2008 2009 } else if (strcmp(nm, ".") == 0) {
2009 2010 error = nfs_access(dvp, VEXEC, 0, cr, ct);
2010 2011 if (error) {
2011 2012 nfs_rw_exit(&drp->r_rwlock);
2012 2013 return (error);
2013 2014 }
2014 2015 VN_HOLD(dvp);
2015 2016 vp = dvp;
2016 2017 /*
2017 2018 * We need to go over the wire, just to be sure whether the
2018 2019 * file exists or not. Using the DNLC can be dangerous in
2019 2020 * this case when making a decision regarding existence.
2020 2021 */
2021 2022 } else {
2022 2023 error = nfslookup_otw(dvp, nm, &vp, cr, 0);
2023 2024 }
2024 2025 if (!error) {
2025 2026 if (exclusive == EXCL)
2026 2027 error = EEXIST;
2027 2028 else if (vp->v_type == VDIR && (mode & VWRITE))
2028 2029 error = EISDIR;
2029 2030 else {
2030 2031 /*
2031 2032 * If vnode is a device, create special vnode.
2032 2033 */
2033 2034 if (IS_DEVVP(vp)) {
2034 2035 tempvp = vp;
2035 2036 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2036 2037 VN_RELE(tempvp);
2037 2038 }
2038 2039 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
2039 2040 if ((vattr.va_mask & AT_SIZE) &&
2040 2041 vp->v_type == VREG) {
2041 2042 vattr.va_mask = AT_SIZE;
2042 2043 error = nfssetattr(vp, &vattr, 0, cr);
2043 2044
2044 2045 if (!error) {
2045 2046 /*
2046 2047 * Existing file was truncated;
2047 2048 * emit a create event.
2048 2049 */
2049 2050 vnevent_create(vp, ct);
2050 2051 }
2051 2052 }
2052 2053 }
2053 2054 }
2054 2055 nfs_rw_exit(&drp->r_rwlock);
2055 2056 if (error) {
2056 2057 VN_RELE(vp);
2057 2058 } else {
2058 2059 *vpp = vp;
2059 2060 }
2060 2061 return (error);
2061 2062 }
2062 2063
2063 2064 ASSERT(vattr.va_mask & AT_TYPE);
2064 2065 if (vattr.va_type == VREG) {
2065 2066 ASSERT(vattr.va_mask & AT_MODE);
2066 2067 if (MANDMODE(vattr.va_mode)) {
2067 2068 nfs_rw_exit(&drp->r_rwlock);
2068 2069 return (EACCES);
2069 2070 }
2070 2071 }
2071 2072
2072 2073 dnlc_remove(dvp, nm);
2073 2074
2074 2075 setdiropargs(&args.ca_da, nm, dvp);
2075 2076
2076 2077 /*
2077 2078 * Decide what the group-id of the created file should be.
2078 2079 * Set it in attribute list as advisory...then do a setattr
2079 2080 * if the server didn't get it right the first time.
2080 2081 */
2081 2082 error = setdirgid(dvp, &vattr.va_gid, cr);
2082 2083 if (error) {
2083 2084 nfs_rw_exit(&drp->r_rwlock);
2084 2085 return (error);
2085 2086 }
2086 2087 vattr.va_mask |= AT_GID;
2087 2088
2088 2089 /*
2089 2090 * This is a completely gross hack to make mknod
2090 2091 * work over the wire until we can wack the protocol
2091 2092 */
2092 2093 #define IFCHR 0020000 /* character special */
2093 2094 #define IFBLK 0060000 /* block special */
2094 2095 #define IFSOCK 0140000 /* socket */
2095 2096
2096 2097 /*
2097 2098 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x
2098 2099 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18
2099 2100 * bits in the minor number where 4.x supports 8 bits. If the 5.x
2100 2101 * minor/major numbers <= 8 bits long, compress the device
2101 2102 * number before sending it. Otherwise, the 4.x server will not
2102 2103 * create the device with the correct device number and nothing can be
2103 2104 * done about this.
2104 2105 */
2105 2106 if (vattr.va_type == VCHR || vattr.va_type == VBLK) {
2106 2107 dev_t d = vattr.va_rdev;
2107 2108 dev32_t dev32;
2108 2109
2109 2110 if (vattr.va_type == VCHR)
2110 2111 vattr.va_mode |= IFCHR;
2111 2112 else
2112 2113 vattr.va_mode |= IFBLK;
2113 2114
2114 2115 (void) cmpldev(&dev32, d);
2115 2116 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN))
2116 2117 vattr.va_size = (u_offset_t)dev32;
2117 2118 else
2118 2119 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d);
2119 2120
2120 2121 vattr.va_mask |= AT_MODE|AT_SIZE;
2121 2122 } else if (vattr.va_type == VFIFO) {
2122 2123 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */
2123 2124 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */
2124 2125 vattr.va_mask |= AT_MODE|AT_SIZE;
2125 2126 } else if (vattr.va_type == VSOCK) {
2126 2127 vattr.va_mode |= IFSOCK;
2127 2128 /*
2128 2129 * To avoid triggering bugs in the servers set AT_SIZE
2129 2130 * (all other RFS_CREATE calls set this).
2130 2131 */
2131 2132 vattr.va_size = 0;
2132 2133 vattr.va_mask |= AT_MODE|AT_SIZE;
2133 2134 }
2134 2135
2135 2136 args.ca_sa = &args.ca_sa_buf;
2136 2137 error = vattr_to_sattr(&vattr, args.ca_sa);
2137 2138 if (error) {
2138 2139 /* req time field(s) overflow - return immediately */
2139 2140 nfs_rw_exit(&drp->r_rwlock);
2140 2141 return (error);
2141 2142 }
2142 2143
2143 2144 douprintf = 1;
2144 2145
2145 2146 t = gethrtime();
2146 2147
2147 2148 error = rfs2call(VTOMI(dvp), RFS_CREATE,
2148 2149 xdr_creatargs, (caddr_t)&args,
2149 2150 xdr_diropres, (caddr_t)&dr, cr,
2150 2151 &douprintf, &dr.dr_status, 0, NULL);
2151 2152
2152 2153 PURGE_ATTRCACHE(dvp); /* mod time changed */
2153 2154
2154 2155 if (!error) {
2155 2156 error = geterrno(dr.dr_status);
2156 2157 if (!error) {
2157 2158 if (HAVE_RDDIR_CACHE(drp))
2158 2159 nfs_purge_rddir_cache(dvp);
2159 2160 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
2160 2161 dvp->v_vfsp, t, cr, NULL, NULL);
2161 2162 /*
2162 2163 * If NFS_ACL is supported on the server, then the
2163 2164 * attributes returned by server may have minimal
2164 2165 * permissions sometimes denying access to users having
2165 2166 * proper access. To get the proper attributes, mark
2166 2167 * the attributes as expired so that they will be
2167 2168 * regotten via the NFS_ACL GETATTR2 procedure.
2168 2169 */
2169 2170 if (VTOMI(vp)->mi_flags & MI_ACL) {
2170 2171 PURGE_ATTRCACHE(vp);
2171 2172 }
2172 2173 dnlc_update(dvp, nm, vp);
2173 2174 rp = VTOR(vp);
2174 2175 if (vattr.va_size == 0) {
2175 2176 mutex_enter(&rp->r_statelock);
2176 2177 rp->r_size = 0;
2177 2178 mutex_exit(&rp->r_statelock);
2178 2179 if (vn_has_cached_data(vp)) {
2179 2180 ASSERT(vp->v_type != VCHR);
2180 2181 nfs_invalidate_pages(vp,
2181 2182 (u_offset_t)0, cr);
2182 2183 }
2183 2184 }
2184 2185
2185 2186 /*
2186 2187 * Make sure the gid was set correctly.
2187 2188 * If not, try to set it (but don't lose
2188 2189 * any sleep over it).
2189 2190 */
2190 2191 if (vattr.va_gid != rp->r_attr.va_gid) {
2191 2192 vattr.va_mask = AT_GID;
2192 2193 (void) nfssetattr(vp, &vattr, 0, cr);
2193 2194 }
2194 2195
2195 2196 /*
2196 2197 * If vnode is a device create special vnode
2197 2198 */
2198 2199 if (IS_DEVVP(vp)) {
2199 2200 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2200 2201 VN_RELE(vp);
2201 2202 } else
2202 2203 *vpp = vp;
2203 2204 } else {
2204 2205 PURGE_STALE_FH(error, dvp, cr);
2205 2206 }
2206 2207 }
2207 2208
2208 2209 nfs_rw_exit(&drp->r_rwlock);
2209 2210
2210 2211 return (error);
2211 2212 }
2212 2213
2213 2214 /*
2214 2215 * Weirdness: if the vnode to be removed is open
2215 2216 * we rename it instead of removing it and nfs_inactive
2216 2217 * will remove the new name.
2217 2218 */
2218 2219 /* ARGSUSED */
2219 2220 static int
2220 2221 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2221 2222 {
2222 2223 int error;
2223 2224 struct nfsdiropargs da;
2224 2225 enum nfsstat status;
2225 2226 vnode_t *vp;
2226 2227 char *tmpname;
2227 2228 int douprintf;
2228 2229 rnode_t *rp;
2229 2230 rnode_t *drp;
2230 2231
2231 2232 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2232 2233 return (EPERM);
2233 2234 drp = VTOR(dvp);
2234 2235 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2235 2236 return (EINTR);
2236 2237
2237 2238 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2238 2239 if (error) {
2239 2240 nfs_rw_exit(&drp->r_rwlock);
2240 2241 return (error);
2241 2242 }
2242 2243
2243 2244 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2244 2245 VN_RELE(vp);
2245 2246 nfs_rw_exit(&drp->r_rwlock);
2246 2247 return (EPERM);
2247 2248 }
2248 2249
2249 2250 /*
2250 2251 * First just remove the entry from the name cache, as it
2251 2252 * is most likely the only entry for this vp.
2252 2253 */
2253 2254 dnlc_remove(dvp, nm);
2254 2255
2255 2256 /*
2256 2257 * If the file has a v_count > 1 then there may be more than one
2257 2258 * entry in the name cache due multiple links or an open file,
2258 2259 * but we don't have the real reference count so flush all
2259 2260 * possible entries.
2260 2261 */
2261 2262 if (vp->v_count > 1)
2262 2263 dnlc_purge_vp(vp);
2263 2264
2264 2265 /*
2265 2266 * Now we have the real reference count on the vnode
2266 2267 */
2267 2268 rp = VTOR(vp);
2268 2269 mutex_enter(&rp->r_statelock);
2269 2270 if (vp->v_count > 1 &&
2270 2271 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2271 2272 mutex_exit(&rp->r_statelock);
2272 2273 tmpname = newname();
2273 2274 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct);
2274 2275 if (error)
2275 2276 kmem_free(tmpname, MAXNAMELEN);
2276 2277 else {
2277 2278 mutex_enter(&rp->r_statelock);
2278 2279 if (rp->r_unldvp == NULL) {
2279 2280 VN_HOLD(dvp);
2280 2281 rp->r_unldvp = dvp;
2281 2282 if (rp->r_unlcred != NULL)
2282 2283 crfree(rp->r_unlcred);
2283 2284 crhold(cr);
2284 2285 rp->r_unlcred = cr;
2285 2286 rp->r_unlname = tmpname;
2286 2287 } else {
2287 2288 kmem_free(rp->r_unlname, MAXNAMELEN);
2288 2289 rp->r_unlname = tmpname;
2289 2290 }
2290 2291 mutex_exit(&rp->r_statelock);
2291 2292 }
2292 2293 } else {
2293 2294 mutex_exit(&rp->r_statelock);
2294 2295 /*
2295 2296 * We need to flush any dirty pages which happen to
2296 2297 * be hanging around before removing the file. This
2297 2298 * shouldn't happen very often and mostly on file
2298 2299 * systems mounted "nocto".
2299 2300 */
2300 2301 if (vn_has_cached_data(vp) &&
2301 2302 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2302 2303 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2303 2304 if (error && (error == ENOSPC || error == EDQUOT)) {
2304 2305 mutex_enter(&rp->r_statelock);
2305 2306 if (!rp->r_error)
2306 2307 rp->r_error = error;
2307 2308 mutex_exit(&rp->r_statelock);
2308 2309 }
2309 2310 }
2310 2311
2311 2312 setdiropargs(&da, nm, dvp);
2312 2313
2313 2314 douprintf = 1;
2314 2315
2315 2316 error = rfs2call(VTOMI(dvp), RFS_REMOVE,
2316 2317 xdr_diropargs, (caddr_t)&da,
2317 2318 xdr_enum, (caddr_t)&status, cr,
2318 2319 &douprintf, &status, 0, NULL);
2319 2320
2320 2321 /*
2321 2322 * The xattr dir may be gone after last attr is removed,
2322 2323 * so flush it from dnlc.
2323 2324 */
2324 2325 if (dvp->v_flag & V_XATTRDIR)
2325 2326 dnlc_purge_vp(dvp);
2326 2327
2327 2328 PURGE_ATTRCACHE(dvp); /* mod time changed */
2328 2329 PURGE_ATTRCACHE(vp); /* link count changed */
2329 2330
2330 2331 if (!error) {
2331 2332 error = geterrno(status);
2332 2333 if (!error) {
2333 2334 if (HAVE_RDDIR_CACHE(drp))
2334 2335 nfs_purge_rddir_cache(dvp);
2335 2336 } else {
2336 2337 PURGE_STALE_FH(error, dvp, cr);
2337 2338 }
2338 2339 }
2339 2340 }
2340 2341
2341 2342 if (error == 0) {
2342 2343 vnevent_remove(vp, dvp, nm, ct);
2343 2344 }
2344 2345 VN_RELE(vp);
2345 2346
2346 2347 nfs_rw_exit(&drp->r_rwlock);
2347 2348
2348 2349 return (error);
2349 2350 }
2350 2351
2351 2352 /* ARGSUSED */
2352 2353 static int
2353 2354 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2354 2355 caller_context_t *ct, int flags)
2355 2356 {
2356 2357 int error;
2357 2358 struct nfslinkargs args;
2358 2359 enum nfsstat status;
2359 2360 vnode_t *realvp;
2360 2361 int douprintf;
2361 2362 rnode_t *tdrp;
2362 2363
2363 2364 if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2364 2365 return (EPERM);
2365 2366 if (VOP_REALVP(svp, &realvp, ct) == 0)
2366 2367 svp = realvp;
2367 2368
2368 2369 args.la_from = VTOFH(svp);
2369 2370 setdiropargs(&args.la_to, tnm, tdvp);
2370 2371
2371 2372 tdrp = VTOR(tdvp);
2372 2373 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
2373 2374 return (EINTR);
2374 2375
2375 2376 dnlc_remove(tdvp, tnm);
2376 2377
2377 2378 douprintf = 1;
2378 2379
2379 2380 error = rfs2call(VTOMI(svp), RFS_LINK,
2380 2381 xdr_linkargs, (caddr_t)&args,
2381 2382 xdr_enum, (caddr_t)&status, cr,
2382 2383 &douprintf, &status, 0, NULL);
2383 2384
2384 2385 PURGE_ATTRCACHE(tdvp); /* mod time changed */
2385 2386 PURGE_ATTRCACHE(svp); /* link count changed */
2386 2387
2387 2388 if (!error) {
2388 2389 error = geterrno(status);
2389 2390 if (!error) {
2390 2391 if (HAVE_RDDIR_CACHE(tdrp))
2391 2392 nfs_purge_rddir_cache(tdvp);
2392 2393 }
2393 2394 }
2394 2395
2395 2396 nfs_rw_exit(&tdrp->r_rwlock);
2396 2397
2397 2398 if (!error) {
2398 2399 /*
2399 2400 * Notify the source file of this link operation.
2400 2401 */
2401 2402 vnevent_link(svp, ct);
2402 2403 }
2403 2404 return (error);
2404 2405 }
2405 2406
2406 2407 /* ARGSUSED */
2407 2408 static int
2408 2409 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2409 2410 caller_context_t *ct, int flags)
2410 2411 {
2411 2412 vnode_t *realvp;
2412 2413
2413 2414 if (nfs_zone() != VTOMI(odvp)->mi_zone)
2414 2415 return (EPERM);
2415 2416 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
2416 2417 ndvp = realvp;
2417 2418
2418 2419 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct));
2419 2420 }
2420 2421
2421 2422 /*
2422 2423 * nfsrename does the real work of renaming in NFS Version 2.
2423 2424 */
2424 2425 static int
2425 2426 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2426 2427 caller_context_t *ct)
2427 2428 {
2428 2429 int error;
2429 2430 enum nfsstat status;
2430 2431 struct nfsrnmargs args;
2431 2432 int douprintf;
2432 2433 vnode_t *nvp = NULL;
2433 2434 vnode_t *ovp = NULL;
2434 2435 char *tmpname;
2435 2436 rnode_t *rp;
2436 2437 rnode_t *odrp;
2437 2438 rnode_t *ndrp;
2438 2439
2439 2440 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
2440 2441 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
2441 2442 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
2442 2443 return (EINVAL);
2443 2444
2444 2445 odrp = VTOR(odvp);
2445 2446 ndrp = VTOR(ndvp);
2446 2447 if ((intptr_t)odrp < (intptr_t)ndrp) {
2447 2448 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
2448 2449 return (EINTR);
2449 2450 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
2450 2451 nfs_rw_exit(&odrp->r_rwlock);
2451 2452 return (EINTR);
2452 2453 }
2453 2454 } else {
2454 2455 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
2455 2456 return (EINTR);
2456 2457 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
2457 2458 nfs_rw_exit(&ndrp->r_rwlock);
2458 2459 return (EINTR);
2459 2460 }
2460 2461 }
2461 2462
2462 2463 /*
2463 2464 * Lookup the target file. If it exists, it needs to be
2464 2465 * checked to see whether it is a mount point and whether
2465 2466 * it is active (open).
2466 2467 */
2467 2468 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
2468 2469 if (!error) {
2469 2470 /*
2470 2471 * If this file has been mounted on, then just
2471 2472 * return busy because renaming to it would remove
2472 2473 * the mounted file system from the name space.
2473 2474 */
2474 2475 if (vn_mountedvfs(nvp) != NULL) {
2475 2476 VN_RELE(nvp);
2476 2477 nfs_rw_exit(&odrp->r_rwlock);
2477 2478 nfs_rw_exit(&ndrp->r_rwlock);
2478 2479 return (EBUSY);
2479 2480 }
2480 2481
2481 2482 /*
2482 2483 * Purge the name cache of all references to this vnode
2483 2484 * so that we can check the reference count to infer
2484 2485 * whether it is active or not.
2485 2486 */
2486 2487 /*
2487 2488 * First just remove the entry from the name cache, as it
2488 2489 * is most likely the only entry for this vp.
2489 2490 */
2490 2491 dnlc_remove(ndvp, nnm);
2491 2492 /*
2492 2493 * If the file has a v_count > 1 then there may be more
2493 2494 * than one entry in the name cache due multiple links
2494 2495 * or an open file, but we don't have the real reference
2495 2496 * count so flush all possible entries.
2496 2497 */
2497 2498 if (nvp->v_count > 1)
2498 2499 dnlc_purge_vp(nvp);
2499 2500
2500 2501 /*
2501 2502 * If the vnode is active and is not a directory,
2502 2503 * arrange to rename it to a
2503 2504 * temporary file so that it will continue to be
2504 2505 * accessible. This implements the "unlink-open-file"
2505 2506 * semantics for the target of a rename operation.
2506 2507 * Before doing this though, make sure that the
2507 2508 * source and target files are not already the same.
2508 2509 */
2509 2510 if (nvp->v_count > 1 && nvp->v_type != VDIR) {
2510 2511 /*
2511 2512 * Lookup the source name.
2512 2513 */
2513 2514 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL,
2514 2515 cr, 0);
2515 2516
2516 2517 /*
2517 2518 * The source name *should* already exist.
2518 2519 */
2519 2520 if (error) {
2520 2521 VN_RELE(nvp);
2521 2522 nfs_rw_exit(&odrp->r_rwlock);
2522 2523 nfs_rw_exit(&ndrp->r_rwlock);
2523 2524 return (error);
2524 2525 }
2525 2526
2526 2527 /*
2527 2528 * Compare the two vnodes. If they are the same,
2528 2529 * just release all held vnodes and return success.
2529 2530 */
2530 2531 if (ovp == nvp) {
2531 2532 VN_RELE(ovp);
2532 2533 VN_RELE(nvp);
2533 2534 nfs_rw_exit(&odrp->r_rwlock);
2534 2535 nfs_rw_exit(&ndrp->r_rwlock);
2535 2536 return (0);
2536 2537 }
2537 2538
2538 2539 /*
2539 2540 * Can't mix and match directories and non-
2540 2541 * directories in rename operations. We already
2541 2542 * know that the target is not a directory. If
2542 2543 * the source is a directory, return an error.
2543 2544 */
2544 2545 if (ovp->v_type == VDIR) {
2545 2546 VN_RELE(ovp);
2546 2547 VN_RELE(nvp);
2547 2548 nfs_rw_exit(&odrp->r_rwlock);
2548 2549 nfs_rw_exit(&ndrp->r_rwlock);
2549 2550 return (ENOTDIR);
2550 2551 }
2551 2552
2552 2553 /*
2553 2554 * The target file exists, is not the same as
2554 2555 * the source file, and is active. Link it
2555 2556 * to a temporary filename to avoid having
2556 2557 * the server removing the file completely.
2557 2558 */
2558 2559 tmpname = newname();
2559 2560 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0);
2560 2561 if (error == EOPNOTSUPP) {
2561 2562 error = nfs_rename(ndvp, nnm, ndvp, tmpname,
2562 2563 cr, NULL, 0);
2563 2564 }
2564 2565 if (error) {
2565 2566 kmem_free(tmpname, MAXNAMELEN);
2566 2567 VN_RELE(ovp);
2567 2568 VN_RELE(nvp);
2568 2569 nfs_rw_exit(&odrp->r_rwlock);
2569 2570 nfs_rw_exit(&ndrp->r_rwlock);
2570 2571 return (error);
2571 2572 }
2572 2573 rp = VTOR(nvp);
2573 2574 mutex_enter(&rp->r_statelock);
2574 2575 if (rp->r_unldvp == NULL) {
2575 2576 VN_HOLD(ndvp);
2576 2577 rp->r_unldvp = ndvp;
2577 2578 if (rp->r_unlcred != NULL)
2578 2579 crfree(rp->r_unlcred);
2579 2580 crhold(cr);
2580 2581 rp->r_unlcred = cr;
2581 2582 rp->r_unlname = tmpname;
2582 2583 } else {
2583 2584 kmem_free(rp->r_unlname, MAXNAMELEN);
2584 2585 rp->r_unlname = tmpname;
2585 2586 }
2586 2587 mutex_exit(&rp->r_statelock);
2587 2588 }
2588 2589 }
2589 2590
2590 2591 if (ovp == NULL) {
2591 2592 /*
2592 2593 * When renaming directories to be a subdirectory of a
2593 2594 * different parent, the dnlc entry for ".." will no
2594 2595 * longer be valid, so it must be removed.
2595 2596 *
2596 2597 * We do a lookup here to determine whether we are renaming
2597 2598 * a directory and we need to check if we are renaming
2598 2599 * an unlinked file. This might have already been done
2599 2600 * in previous code, so we check ovp == NULL to avoid
2600 2601 * doing it twice.
2601 2602 */
2602 2603
2603 2604 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
2604 2605
2605 2606 /*
2606 2607 * The source name *should* already exist.
2607 2608 */
2608 2609 if (error) {
2609 2610 nfs_rw_exit(&odrp->r_rwlock);
2610 2611 nfs_rw_exit(&ndrp->r_rwlock);
2611 2612 if (nvp) {
2612 2613 VN_RELE(nvp);
2613 2614 }
2614 2615 return (error);
2615 2616 }
2616 2617 ASSERT(ovp != NULL);
2617 2618 }
2618 2619
2619 2620 dnlc_remove(odvp, onm);
2620 2621 dnlc_remove(ndvp, nnm);
2621 2622
2622 2623 setdiropargs(&args.rna_from, onm, odvp);
2623 2624 setdiropargs(&args.rna_to, nnm, ndvp);
2624 2625
2625 2626 douprintf = 1;
2626 2627
2627 2628 error = rfs2call(VTOMI(odvp), RFS_RENAME,
2628 2629 xdr_rnmargs, (caddr_t)&args,
2629 2630 xdr_enum, (caddr_t)&status, cr,
2630 2631 &douprintf, &status, 0, NULL);
2631 2632
2632 2633 PURGE_ATTRCACHE(odvp); /* mod time changed */
2633 2634 PURGE_ATTRCACHE(ndvp); /* mod time changed */
2634 2635
2635 2636 if (!error) {
2636 2637 error = geterrno(status);
2637 2638 if (!error) {
2638 2639 if (HAVE_RDDIR_CACHE(odrp))
2639 2640 nfs_purge_rddir_cache(odvp);
2640 2641 if (HAVE_RDDIR_CACHE(ndrp))
2641 2642 nfs_purge_rddir_cache(ndvp);
2642 2643 /*
2643 2644 * when renaming directories to be a subdirectory of a
2644 2645 * different parent, the dnlc entry for ".." will no
2645 2646 * longer be valid, so it must be removed
2646 2647 */
2647 2648 rp = VTOR(ovp);
2648 2649 if (ndvp != odvp) {
2649 2650 if (ovp->v_type == VDIR) {
2650 2651 dnlc_remove(ovp, "..");
2651 2652 if (HAVE_RDDIR_CACHE(rp))
2652 2653 nfs_purge_rddir_cache(ovp);
2653 2654 }
2654 2655 }
2655 2656
2656 2657 /*
2657 2658 * If we are renaming the unlinked file, update the
2658 2659 * r_unldvp and r_unlname as needed.
2659 2660 */
2660 2661 mutex_enter(&rp->r_statelock);
2661 2662 if (rp->r_unldvp != NULL) {
2662 2663 if (strcmp(rp->r_unlname, onm) == 0) {
2663 2664 (void) strncpy(rp->r_unlname,
2664 2665 nnm, MAXNAMELEN);
2665 2666 rp->r_unlname[MAXNAMELEN - 1] = '\0';
2666 2667
2667 2668 if (ndvp != rp->r_unldvp) {
2668 2669 VN_RELE(rp->r_unldvp);
2669 2670 rp->r_unldvp = ndvp;
2670 2671 VN_HOLD(ndvp);
2671 2672 }
2672 2673 }
2673 2674 }
2674 2675 mutex_exit(&rp->r_statelock);
2675 2676 } else {
2676 2677 /*
2677 2678 * System V defines rename to return EEXIST, not
2678 2679 * ENOTEMPTY if the target directory is not empty.
2679 2680 * Over the wire, the error is NFSERR_ENOTEMPTY
2680 2681 * which geterrno maps to ENOTEMPTY.
2681 2682 */
2682 2683 if (error == ENOTEMPTY)
2683 2684 error = EEXIST;
2684 2685 }
2685 2686 }
2686 2687
2687 2688 if (error == 0) {
2688 2689 if (nvp)
2689 2690 vnevent_rename_dest(nvp, ndvp, nnm, ct);
2690 2691
2691 2692 if (odvp != ndvp)
2692 2693 vnevent_rename_dest_dir(ndvp, ct);
2693 2694
2694 2695 ASSERT(ovp != NULL);
2695 2696 vnevent_rename_src(ovp, odvp, onm, ct);
2696 2697 }
2697 2698
2698 2699 if (nvp) {
2699 2700 VN_RELE(nvp);
2700 2701 }
2701 2702 VN_RELE(ovp);
2702 2703
2703 2704 nfs_rw_exit(&odrp->r_rwlock);
2704 2705 nfs_rw_exit(&ndrp->r_rwlock);
2705 2706
2706 2707 return (error);
2707 2708 }
2708 2709
2709 2710 /* ARGSUSED */
2710 2711 static int
2711 2712 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
2712 2713 caller_context_t *ct, int flags, vsecattr_t *vsecp)
2713 2714 {
2714 2715 int error;
2715 2716 struct nfscreatargs args;
2716 2717 struct nfsdiropres dr;
2717 2718 int douprintf;
2718 2719 rnode_t *drp;
2719 2720 hrtime_t t;
2720 2721
2721 2722 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2722 2723 return (EPERM);
2723 2724
2724 2725 setdiropargs(&args.ca_da, nm, dvp);
2725 2726
2726 2727 /*
2727 2728 * Decide what the group-id and set-gid bit of the created directory
2728 2729 * should be. May have to do a setattr to get the gid right.
2729 2730 */
2730 2731 error = setdirgid(dvp, &va->va_gid, cr);
2731 2732 if (error)
2732 2733 return (error);
2733 2734 error = setdirmode(dvp, &va->va_mode, cr);
2734 2735 if (error)
2735 2736 return (error);
2736 2737 va->va_mask |= AT_MODE|AT_GID;
2737 2738
2738 2739 args.ca_sa = &args.ca_sa_buf;
2739 2740 error = vattr_to_sattr(va, args.ca_sa);
2740 2741 if (error) {
2741 2742 /* req time field(s) overflow - return immediately */
2742 2743 return (error);
2743 2744 }
2744 2745
2745 2746 drp = VTOR(dvp);
2746 2747 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2747 2748 return (EINTR);
2748 2749
2749 2750 dnlc_remove(dvp, nm);
2750 2751
2751 2752 douprintf = 1;
2752 2753
2753 2754 t = gethrtime();
2754 2755
2755 2756 error = rfs2call(VTOMI(dvp), RFS_MKDIR,
2756 2757 xdr_creatargs, (caddr_t)&args,
2757 2758 xdr_diropres, (caddr_t)&dr, cr,
2758 2759 &douprintf, &dr.dr_status, 0, NULL);
2759 2760
2760 2761 PURGE_ATTRCACHE(dvp); /* mod time changed */
2761 2762
2762 2763 if (!error) {
2763 2764 error = geterrno(dr.dr_status);
2764 2765 if (!error) {
2765 2766 if (HAVE_RDDIR_CACHE(drp))
2766 2767 nfs_purge_rddir_cache(dvp);
2767 2768 /*
2768 2769 * The attributes returned by RFS_MKDIR can not
2769 2770 * be depended upon, so mark the attribute cache
2770 2771 * as purged. A subsequent GETATTR will get the
2771 2772 * correct attributes from the server.
2772 2773 */
2773 2774 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
2774 2775 dvp->v_vfsp, t, cr, NULL, NULL);
2775 2776 PURGE_ATTRCACHE(*vpp);
2776 2777 dnlc_update(dvp, nm, *vpp);
2777 2778
2778 2779 /*
2779 2780 * Make sure the gid was set correctly.
2780 2781 * If not, try to set it (but don't lose
2781 2782 * any sleep over it).
2782 2783 */
2783 2784 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) {
2784 2785 va->va_mask = AT_GID;
2785 2786 (void) nfssetattr(*vpp, va, 0, cr);
2786 2787 }
2787 2788 } else {
2788 2789 PURGE_STALE_FH(error, dvp, cr);
2789 2790 }
2790 2791 }
2791 2792
2792 2793 nfs_rw_exit(&drp->r_rwlock);
2793 2794
2794 2795 return (error);
2795 2796 }
2796 2797
2797 2798 /* ARGSUSED */
2798 2799 static int
2799 2800 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
2800 2801 caller_context_t *ct, int flags)
2801 2802 {
2802 2803 int error;
2803 2804 enum nfsstat status;
2804 2805 struct nfsdiropargs da;
2805 2806 vnode_t *vp;
2806 2807 int douprintf;
2807 2808 rnode_t *drp;
2808 2809
2809 2810 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2810 2811 return (EPERM);
2811 2812 drp = VTOR(dvp);
2812 2813 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2813 2814 return (EINTR);
2814 2815
2815 2816 /*
2816 2817 * Attempt to prevent a rmdir(".") from succeeding.
2817 2818 */
2818 2819 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2819 2820 if (error) {
2820 2821 nfs_rw_exit(&drp->r_rwlock);
2821 2822 return (error);
2822 2823 }
2823 2824
2824 2825 if (vp == cdir) {
2825 2826 VN_RELE(vp);
2826 2827 nfs_rw_exit(&drp->r_rwlock);
2827 2828 return (EINVAL);
2828 2829 }
2829 2830
2830 2831 setdiropargs(&da, nm, dvp);
2831 2832
2832 2833 /*
2833 2834 * First just remove the entry from the name cache, as it
2834 2835 * is most likely an entry for this vp.
2835 2836 */
2836 2837 dnlc_remove(dvp, nm);
2837 2838
2838 2839 /*
2839 2840 * If there vnode reference count is greater than one, then
2840 2841 * there may be additional references in the DNLC which will
2841 2842 * need to be purged. First, trying removing the entry for
2842 2843 * the parent directory and see if that removes the additional
2843 2844 * reference(s). If that doesn't do it, then use dnlc_purge_vp
2844 2845 * to completely remove any references to the directory which
2845 2846 * might still exist in the DNLC.
2846 2847 */
2847 2848 if (vp->v_count > 1) {
2848 2849 dnlc_remove(vp, "..");
2849 2850 if (vp->v_count > 1)
2850 2851 dnlc_purge_vp(vp);
2851 2852 }
2852 2853
2853 2854 douprintf = 1;
2854 2855
2855 2856 error = rfs2call(VTOMI(dvp), RFS_RMDIR,
2856 2857 xdr_diropargs, (caddr_t)&da,
2857 2858 xdr_enum, (caddr_t)&status, cr,
2858 2859 &douprintf, &status, 0, NULL);
2859 2860
2860 2861 PURGE_ATTRCACHE(dvp); /* mod time changed */
2861 2862
2862 2863 if (error) {
2863 2864 VN_RELE(vp);
2864 2865 nfs_rw_exit(&drp->r_rwlock);
2865 2866 return (error);
2866 2867 }
2867 2868
2868 2869 error = geterrno(status);
2869 2870 if (!error) {
2870 2871 if (HAVE_RDDIR_CACHE(drp))
2871 2872 nfs_purge_rddir_cache(dvp);
2872 2873 if (HAVE_RDDIR_CACHE(VTOR(vp)))
2873 2874 nfs_purge_rddir_cache(vp);
2874 2875 } else {
2875 2876 PURGE_STALE_FH(error, dvp, cr);
2876 2877 /*
2877 2878 * System V defines rmdir to return EEXIST, not
2878 2879 * ENOTEMPTY if the directory is not empty. Over
2879 2880 * the wire, the error is NFSERR_ENOTEMPTY which
2880 2881 * geterrno maps to ENOTEMPTY.
2881 2882 */
2882 2883 if (error == ENOTEMPTY)
2883 2884 error = EEXIST;
2884 2885 }
2885 2886
2886 2887 if (error == 0) {
2887 2888 vnevent_rmdir(vp, dvp, nm, ct);
2888 2889 }
2889 2890 VN_RELE(vp);
2890 2891
2891 2892 nfs_rw_exit(&drp->r_rwlock);
2892 2893
2893 2894 return (error);
2894 2895 }
2895 2896
2896 2897 /* ARGSUSED */
2897 2898 static int
2898 2899 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
2899 2900 caller_context_t *ct, int flags)
2900 2901 {
2901 2902 int error;
2902 2903 struct nfsslargs args;
2903 2904 enum nfsstat status;
2904 2905 int douprintf;
2905 2906 rnode_t *drp;
2906 2907
2907 2908 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2908 2909 return (EPERM);
2909 2910 setdiropargs(&args.sla_from, lnm, dvp);
2910 2911 args.sla_sa = &args.sla_sa_buf;
2911 2912 error = vattr_to_sattr(tva, args.sla_sa);
2912 2913 if (error) {
2913 2914 /* req time field(s) overflow - return immediately */
2914 2915 return (error);
2915 2916 }
2916 2917 args.sla_tnm = tnm;
2917 2918
2918 2919 drp = VTOR(dvp);
2919 2920 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2920 2921 return (EINTR);
2921 2922
2922 2923 dnlc_remove(dvp, lnm);
2923 2924
2924 2925 douprintf = 1;
2925 2926
2926 2927 error = rfs2call(VTOMI(dvp), RFS_SYMLINK,
2927 2928 xdr_slargs, (caddr_t)&args,
2928 2929 xdr_enum, (caddr_t)&status, cr,
2929 2930 &douprintf, &status, 0, NULL);
2930 2931
2931 2932 PURGE_ATTRCACHE(dvp); /* mod time changed */
2932 2933
2933 2934 if (!error) {
2934 2935 error = geterrno(status);
2935 2936 if (!error) {
2936 2937 if (HAVE_RDDIR_CACHE(drp))
2937 2938 nfs_purge_rddir_cache(dvp);
2938 2939 } else {
2939 2940 PURGE_STALE_FH(error, dvp, cr);
2940 2941 }
2941 2942 }
2942 2943
2943 2944 nfs_rw_exit(&drp->r_rwlock);
2944 2945
2945 2946 return (error);
|
↓ open down ↓ |
1170 lines elided |
↑ open up ↑ |
2946 2947 }
2947 2948
2948 2949 #ifdef DEBUG
2949 2950 static int nfs_readdir_cache_hits = 0;
2950 2951 static int nfs_readdir_cache_shorts = 0;
2951 2952 static int nfs_readdir_cache_waits = 0;
2952 2953 static int nfs_readdir_cache_misses = 0;
2953 2954 static int nfs_readdir_readahead = 0;
2954 2955 #endif
2955 2956
2956 -static int nfs_shrinkreaddir = 0;
2957 +volatile int nfs_shrinkreaddir = 0;
2957 2958
2958 2959 /*
2959 2960 * Read directory entries.
2960 2961 * There are some weird things to look out for here. The uio_offset
2961 2962 * field is either 0 or it is the offset returned from a previous
2962 2963 * readdir. It is an opaque value used by the server to find the
2963 2964 * correct directory block to read. The count field is the number
2964 2965 * of blocks to read on the server. This is advisory only, the server
2965 2966 * may return only one block's worth of entries. Entries may be compressed
2966 2967 * on the server.
2967 2968 */
2968 2969 /* ARGSUSED */
2969 2970 static int
2970 2971 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
2971 2972 caller_context_t *ct, int flags)
2972 2973 {
2973 2974 int error;
2974 2975 size_t count;
2975 2976 rnode_t *rp;
2976 2977 rddir_cache *rdc;
2977 2978 rddir_cache *nrdc;
2978 2979 rddir_cache *rrdc;
2979 2980 #ifdef DEBUG
2980 2981 int missed;
2981 2982 #endif
2982 2983 rddir_cache srdc;
2983 2984 avl_index_t where;
2984 2985
2985 2986 rp = VTOR(vp);
2986 2987
2987 2988 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2988 2989 if (nfs_zone() != VTOMI(vp)->mi_zone)
2989 2990 return (EIO);
2990 2991 /*
2991 2992 * Make sure that the directory cache is valid.
2992 2993 */
2993 2994 if (HAVE_RDDIR_CACHE(rp)) {
2994 2995 if (nfs_disable_rddir_cache) {
2995 2996 /*
2996 2997 * Setting nfs_disable_rddir_cache in /etc/system
2997 2998 * allows interoperability with servers that do not
2998 2999 * properly update the attributes of directories.
2999 3000 * Any cached information gets purged before an
3000 3001 * access is made to it.
3001 3002 */
3002 3003 nfs_purge_rddir_cache(vp);
3003 3004 } else {
3004 3005 error = nfs_validate_caches(vp, cr);
3005 3006 if (error)
3006 3007 return (error);
3007 3008 }
3008 3009 }
3009 3010
3010 3011 /*
3011 3012 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an
3012 3013 * RFS_READDIR request with rda_count set to more than 0x400. So
3013 3014 * we reduce the request size here purely for compatibility.
3014 3015 *
3015 3016 * In general, this is no longer required. However, if a server
3016 3017 * is discovered which can not handle requests larger than 1024,
3017 3018 * nfs_shrinkreaddir can be set to 1 to enable this backwards
3018 3019 * compatibility.
3019 3020 *
3020 3021 * In any case, the request size is limited to NFS_MAXDATA bytes.
3021 3022 */
3022 3023 count = MIN(uiop->uio_iov->iov_len,
3023 3024 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA);
3024 3025
3025 3026 nrdc = NULL;
3026 3027 #ifdef DEBUG
3027 3028 missed = 0;
3028 3029 #endif
3029 3030 top:
3030 3031 /*
3031 3032 * Short circuit last readdir which always returns 0 bytes.
3032 3033 * This can be done after the directory has been read through
3033 3034 * completely at least once. This will set r_direof which
3034 3035 * can be used to find the value of the last cookie.
3035 3036 */
3036 3037 mutex_enter(&rp->r_statelock);
3037 3038 if (rp->r_direof != NULL &&
3038 3039 uiop->uio_offset == rp->r_direof->nfs_ncookie) {
3039 3040 mutex_exit(&rp->r_statelock);
3040 3041 #ifdef DEBUG
3041 3042 nfs_readdir_cache_shorts++;
3042 3043 #endif
3043 3044 if (eofp)
3044 3045 *eofp = 1;
3045 3046 if (nrdc != NULL)
3046 3047 rddir_cache_rele(nrdc);
3047 3048 return (0);
3048 3049 }
3049 3050 /*
3050 3051 * Look for a cache entry. Cache entries are identified
3051 3052 * by the NFS cookie value and the byte count requested.
3052 3053 */
3053 3054 srdc.nfs_cookie = uiop->uio_offset;
3054 3055 srdc.buflen = count;
3055 3056 rdc = avl_find(&rp->r_dir, &srdc, &where);
3056 3057 if (rdc != NULL) {
3057 3058 rddir_cache_hold(rdc);
3058 3059 /*
3059 3060 * If the cache entry is in the process of being
3060 3061 * filled in, wait until this completes. The
3061 3062 * RDDIRWAIT bit is set to indicate that someone
3062 3063 * is waiting and then the thread currently
3063 3064 * filling the entry is done, it should do a
3064 3065 * cv_broadcast to wakeup all of the threads
3065 3066 * waiting for it to finish.
3066 3067 */
3067 3068 if (rdc->flags & RDDIR) {
3068 3069 nfs_rw_exit(&rp->r_rwlock);
3069 3070 rdc->flags |= RDDIRWAIT;
3070 3071 #ifdef DEBUG
3071 3072 nfs_readdir_cache_waits++;
3072 3073 #endif
3073 3074 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3074 3075 /*
3075 3076 * We got interrupted, probably
3076 3077 * the user typed ^C or an alarm
3077 3078 * fired. We free the new entry
3078 3079 * if we allocated one.
3079 3080 */
3080 3081 mutex_exit(&rp->r_statelock);
3081 3082 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3082 3083 RW_READER, FALSE);
3083 3084 rddir_cache_rele(rdc);
3084 3085 if (nrdc != NULL)
3085 3086 rddir_cache_rele(nrdc);
3086 3087 return (EINTR);
3087 3088 }
3088 3089 mutex_exit(&rp->r_statelock);
3089 3090 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3090 3091 RW_READER, FALSE);
3091 3092 rddir_cache_rele(rdc);
3092 3093 goto top;
3093 3094 }
3094 3095 /*
3095 3096 * Check to see if a readdir is required to
3096 3097 * fill the entry. If so, mark this entry
3097 3098 * as being filled, remove our reference,
3098 3099 * and branch to the code to fill the entry.
3099 3100 */
3100 3101 if (rdc->flags & RDDIRREQ) {
3101 3102 rdc->flags &= ~RDDIRREQ;
3102 3103 rdc->flags |= RDDIR;
3103 3104 if (nrdc != NULL)
3104 3105 rddir_cache_rele(nrdc);
3105 3106 nrdc = rdc;
3106 3107 mutex_exit(&rp->r_statelock);
3107 3108 goto bottom;
3108 3109 }
3109 3110 #ifdef DEBUG
3110 3111 if (!missed)
3111 3112 nfs_readdir_cache_hits++;
3112 3113 #endif
3113 3114 /*
3114 3115 * If an error occurred while attempting
3115 3116 * to fill the cache entry, just return it.
3116 3117 */
3117 3118 if (rdc->error) {
3118 3119 error = rdc->error;
3119 3120 mutex_exit(&rp->r_statelock);
3120 3121 rddir_cache_rele(rdc);
3121 3122 if (nrdc != NULL)
3122 3123 rddir_cache_rele(nrdc);
3123 3124 return (error);
3124 3125 }
3125 3126
3126 3127 /*
3127 3128 * The cache entry is complete and good,
3128 3129 * copyout the dirent structs to the calling
3129 3130 * thread.
3130 3131 */
3131 3132 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3132 3133
3133 3134 /*
3134 3135 * If no error occurred during the copyout,
3135 3136 * update the offset in the uio struct to
3136 3137 * contain the value of the next cookie
3137 3138 * and set the eof value appropriately.
3138 3139 */
3139 3140 if (!error) {
3140 3141 uiop->uio_offset = rdc->nfs_ncookie;
3141 3142 if (eofp)
3142 3143 *eofp = rdc->eof;
3143 3144 }
3144 3145
3145 3146 /*
3146 3147 * Decide whether to do readahead. Don't if
3147 3148 * have already read to the end of directory.
3148 3149 */
3149 3150 if (rdc->eof) {
3150 3151 rp->r_direof = rdc;
3151 3152 mutex_exit(&rp->r_statelock);
3152 3153 rddir_cache_rele(rdc);
3153 3154 if (nrdc != NULL)
3154 3155 rddir_cache_rele(nrdc);
3155 3156 return (error);
3156 3157 }
3157 3158
3158 3159 /*
3159 3160 * Check to see whether we found an entry
3160 3161 * for the readahead. If so, we don't need
3161 3162 * to do anything further, so free the new
3162 3163 * entry if one was allocated. Otherwise,
3163 3164 * allocate a new entry, add it to the cache,
3164 3165 * and then initiate an asynchronous readdir
3165 3166 * operation to fill it.
3166 3167 */
3167 3168 srdc.nfs_cookie = rdc->nfs_ncookie;
3168 3169 srdc.buflen = count;
3169 3170 rrdc = avl_find(&rp->r_dir, &srdc, &where);
3170 3171 if (rrdc != NULL) {
3171 3172 if (nrdc != NULL)
3172 3173 rddir_cache_rele(nrdc);
3173 3174 } else {
3174 3175 if (nrdc != NULL)
3175 3176 rrdc = nrdc;
3176 3177 else {
3177 3178 rrdc = rddir_cache_alloc(KM_NOSLEEP);
3178 3179 }
3179 3180 if (rrdc != NULL) {
3180 3181 rrdc->nfs_cookie = rdc->nfs_ncookie;
3181 3182 rrdc->buflen = count;
3182 3183 avl_insert(&rp->r_dir, rrdc, where);
3183 3184 rddir_cache_hold(rrdc);
3184 3185 mutex_exit(&rp->r_statelock);
3185 3186 rddir_cache_rele(rdc);
3186 3187 #ifdef DEBUG
3187 3188 nfs_readdir_readahead++;
3188 3189 #endif
3189 3190 nfs_async_readdir(vp, rrdc, cr, nfsreaddir);
3190 3191 return (error);
3191 3192 }
3192 3193 }
3193 3194
3194 3195 mutex_exit(&rp->r_statelock);
3195 3196 rddir_cache_rele(rdc);
3196 3197 return (error);
3197 3198 }
3198 3199
3199 3200 /*
3200 3201 * Didn't find an entry in the cache. Construct a new empty
3201 3202 * entry and link it into the cache. Other processes attempting
3202 3203 * to access this entry will need to wait until it is filled in.
3203 3204 *
3204 3205 * Since kmem_alloc may block, another pass through the cache
3205 3206 * will need to be taken to make sure that another process
3206 3207 * hasn't already added an entry to the cache for this request.
3207 3208 */
3208 3209 if (nrdc == NULL) {
3209 3210 mutex_exit(&rp->r_statelock);
3210 3211 nrdc = rddir_cache_alloc(KM_SLEEP);
3211 3212 nrdc->nfs_cookie = uiop->uio_offset;
3212 3213 nrdc->buflen = count;
3213 3214 goto top;
3214 3215 }
3215 3216
3216 3217 /*
3217 3218 * Add this entry to the cache.
3218 3219 */
3219 3220 avl_insert(&rp->r_dir, nrdc, where);
3220 3221 rddir_cache_hold(nrdc);
3221 3222 mutex_exit(&rp->r_statelock);
3222 3223
3223 3224 bottom:
3224 3225 #ifdef DEBUG
3225 3226 missed = 1;
3226 3227 nfs_readdir_cache_misses++;
3227 3228 #endif
3228 3229 /*
3229 3230 * Do the readdir.
3230 3231 */
3231 3232 error = nfsreaddir(vp, nrdc, cr);
3232 3233
3233 3234 /*
3234 3235 * If this operation failed, just return the error which occurred.
3235 3236 */
3236 3237 if (error != 0)
3237 3238 return (error);
3238 3239
3239 3240 /*
3240 3241 * Since the RPC operation will have taken sometime and blocked
3241 3242 * this process, another pass through the cache will need to be
3242 3243 * taken to find the correct cache entry. It is possible that
3243 3244 * the correct cache entry will not be there (although one was
3244 3245 * added) because the directory changed during the RPC operation
3245 3246 * and the readdir cache was flushed. In this case, just start
3246 3247 * over. It is hoped that this will not happen too often... :-)
3247 3248 */
3248 3249 nrdc = NULL;
3249 3250 goto top;
3250 3251 /* NOTREACHED */
3251 3252 }
3252 3253
3253 3254 static int
3254 3255 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
3255 3256 {
3256 3257 int error;
3257 3258 struct nfsrddirargs rda;
3258 3259 struct nfsrddirres rd;
3259 3260 rnode_t *rp;
3260 3261 mntinfo_t *mi;
3261 3262 uint_t count;
3262 3263 int douprintf;
3263 3264 failinfo_t fi, *fip;
3264 3265
3265 3266 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
3266 3267 count = rdc->buflen;
3267 3268
3268 3269 rp = VTOR(vp);
3269 3270 mi = VTOMI(vp);
3270 3271
3271 3272 rda.rda_fh = *VTOFH(vp);
3272 3273 rda.rda_offset = rdc->nfs_cookie;
3273 3274
3274 3275 /*
3275 3276 * NFS client failover support
3276 3277 * suppress failover unless we have a zero cookie
3277 3278 */
3278 3279 if (rdc->nfs_cookie == (off_t)0) {
|
↓ open down ↓ |
312 lines elided |
↑ open up ↑ |
3279 3280 fi.vp = vp;
3280 3281 fi.fhp = (caddr_t)&rda.rda_fh;
3281 3282 fi.copyproc = nfscopyfh;
3282 3283 fi.lookupproc = nfslookup;
3283 3284 fi.xattrdirproc = acl_getxattrdir2;
3284 3285 fip = &fi;
3285 3286 } else {
3286 3287 fip = NULL;
3287 3288 }
3288 3289
3289 - rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP);
3290 + rd.rd_dirents = kmem_alloc(rdc->buflen, KM_SLEEP);
3290 3291 rd.rd_size = count;
3291 3292 rd.rd_offset = rda.rda_offset;
3292 3293
3293 3294 douprintf = 1;
3294 3295
3295 3296 if (mi->mi_io_kstats) {
3296 3297 mutex_enter(&mi->mi_lock);
3297 3298 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3298 3299 mutex_exit(&mi->mi_lock);
3299 3300 }
3300 3301
3301 3302 do {
3302 3303 rda.rda_count = MIN(count, mi->mi_curread);
3303 3304 error = rfs2call(mi, RFS_READDIR,
3304 3305 xdr_rddirargs, (caddr_t)&rda,
3305 3306 xdr_getrddirres, (caddr_t)&rd, cr,
3306 3307 &douprintf, &rd.rd_status, 0, fip);
3307 3308 } while (error == ENFS_TRYAGAIN);
3308 3309
3309 3310 if (mi->mi_io_kstats) {
3310 3311 mutex_enter(&mi->mi_lock);
3311 3312 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3312 3313 mutex_exit(&mi->mi_lock);
3313 3314 }
3314 3315
3315 3316 /*
3316 3317 * Since we are actually doing a READDIR RPC, we must have
3317 3318 * exclusive access to the cache entry being filled. Thus,
3318 3319 * it is safe to update all fields except for the flags
3319 3320 * field. The r_statelock in the rnode must be held to
3320 3321 * prevent two different threads from simultaneously
3321 3322 * attempting to update the flags field. This can happen
3322 3323 * if we are turning off RDDIR and the other thread is
3323 3324 * trying to set RDDIRWAIT.
3324 3325 */
3325 3326 ASSERT(rdc->flags & RDDIR);
3326 3327 if (!error) {
3327 3328 error = geterrno(rd.rd_status);
3328 3329 if (!error) {
|
↓ open down ↓ |
29 lines elided |
↑ open up ↑ |
3329 3330 rdc->nfs_ncookie = rd.rd_offset;
3330 3331 rdc->eof = rd.rd_eof ? 1 : 0;
3331 3332 rdc->entlen = rd.rd_size;
3332 3333 ASSERT(rdc->entlen <= rdc->buflen);
3333 3334 #ifdef DEBUG
3334 3335 rdc->entries = rddir_cache_buf_alloc(rdc->buflen,
3335 3336 KM_SLEEP);
3336 3337 #else
3337 3338 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
3338 3339 #endif
3339 - bcopy(rd.rd_entries, rdc->entries, rdc->entlen);
3340 + bcopy(rd.rd_dirents, rdc->entries, rdc->entlen);
3340 3341 rdc->error = 0;
3341 3342 if (mi->mi_io_kstats) {
3342 3343 mutex_enter(&mi->mi_lock);
3343 3344 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3344 3345 KSTAT_IO_PTR(mi->mi_io_kstats)->nread +=
3345 3346 rd.rd_size;
3346 3347 mutex_exit(&mi->mi_lock);
3347 3348 }
3348 3349 } else {
3349 3350 PURGE_STALE_FH(error, vp, cr);
3350 3351 }
3351 3352 }
3352 3353 if (error) {
3353 3354 rdc->entries = NULL;
3354 3355 rdc->error = error;
3355 3356 }
3356 - kmem_free(rd.rd_entries, rdc->buflen);
3357 + kmem_free(rd.rd_dirents, rdc->buflen);
3357 3358
3358 3359 mutex_enter(&rp->r_statelock);
3359 3360 rdc->flags &= ~RDDIR;
3360 3361 if (rdc->flags & RDDIRWAIT) {
3361 3362 rdc->flags &= ~RDDIRWAIT;
3362 3363 cv_broadcast(&rdc->cv);
3363 3364 }
3364 3365 if (error)
3365 3366 rdc->flags |= RDDIRREQ;
3366 3367 mutex_exit(&rp->r_statelock);
3367 3368
3368 3369 rddir_cache_rele(rdc);
3369 3370
3370 3371 return (error);
3371 3372 }
3372 3373
3373 3374 #ifdef DEBUG
3374 3375 static int nfs_bio_do_stop = 0;
3375 3376 #endif
3376 3377
3377 3378 static int
3378 3379 nfs_bio(struct buf *bp, cred_t *cr)
3379 3380 {
3380 3381 rnode_t *rp = VTOR(bp->b_vp);
3381 3382 int count;
3382 3383 int error;
3383 3384 cred_t *cred;
3384 3385 uint_t offset;
3385 3386
3386 3387 DTRACE_IO1(start, struct buf *, bp);
3387 3388
3388 3389 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
3389 3390 offset = dbtob(bp->b_blkno);
3390 3391
3391 3392 if (bp->b_flags & B_READ) {
3392 3393 mutex_enter(&rp->r_statelock);
3393 3394 if (rp->r_cred != NULL) {
3394 3395 cred = rp->r_cred;
3395 3396 crhold(cred);
3396 3397 } else {
3397 3398 rp->r_cred = cr;
3398 3399 crhold(cr);
3399 3400 cred = cr;
3400 3401 crhold(cred);
3401 3402 }
3402 3403 mutex_exit(&rp->r_statelock);
3403 3404 read_again:
3404 3405 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr,
3405 3406 offset, bp->b_bcount, &bp->b_resid, cred);
3406 3407
3407 3408 crfree(cred);
3408 3409 if (!error) {
3409 3410 if (bp->b_resid) {
3410 3411 /*
3411 3412 * Didn't get it all because we hit EOF,
3412 3413 * zero all the memory beyond the EOF.
3413 3414 */
3414 3415 /* bzero(rdaddr + */
3415 3416 bzero(bp->b_un.b_addr +
3416 3417 bp->b_bcount - bp->b_resid, bp->b_resid);
3417 3418 }
3418 3419 mutex_enter(&rp->r_statelock);
3419 3420 if (bp->b_resid == bp->b_bcount &&
3420 3421 offset >= rp->r_size) {
3421 3422 /*
3422 3423 * We didn't read anything at all as we are
3423 3424 * past EOF. Return an error indicator back
3424 3425 * but don't destroy the pages (yet).
3425 3426 */
3426 3427 error = NFS_EOF;
3427 3428 }
3428 3429 mutex_exit(&rp->r_statelock);
3429 3430 } else if (error == EACCES) {
3430 3431 mutex_enter(&rp->r_statelock);
3431 3432 if (cred != cr) {
3432 3433 if (rp->r_cred != NULL)
3433 3434 crfree(rp->r_cred);
3434 3435 rp->r_cred = cr;
3435 3436 crhold(cr);
3436 3437 cred = cr;
3437 3438 crhold(cred);
3438 3439 mutex_exit(&rp->r_statelock);
3439 3440 goto read_again;
3440 3441 }
3441 3442 mutex_exit(&rp->r_statelock);
3442 3443 }
3443 3444 } else {
3444 3445 if (!(rp->r_flags & RSTALE)) {
3445 3446 mutex_enter(&rp->r_statelock);
3446 3447 if (rp->r_cred != NULL) {
3447 3448 cred = rp->r_cred;
3448 3449 crhold(cred);
3449 3450 } else {
3450 3451 rp->r_cred = cr;
3451 3452 crhold(cr);
3452 3453 cred = cr;
3453 3454 crhold(cred);
3454 3455 }
3455 3456 mutex_exit(&rp->r_statelock);
3456 3457 write_again:
3457 3458 mutex_enter(&rp->r_statelock);
3458 3459 count = MIN(bp->b_bcount, rp->r_size - offset);
3459 3460 mutex_exit(&rp->r_statelock);
3460 3461 if (count < 0)
3461 3462 cmn_err(CE_PANIC, "nfs_bio: write count < 0");
3462 3463 #ifdef DEBUG
3463 3464 if (count == 0) {
3464 3465 zcmn_err(getzoneid(), CE_WARN,
3465 3466 "nfs_bio: zero length write at %d",
3466 3467 offset);
3467 3468 nfs_printfhandle(&rp->r_fh);
3468 3469 if (nfs_bio_do_stop)
3469 3470 debug_enter("nfs_bio");
3470 3471 }
3471 3472 #endif
3472 3473 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset,
3473 3474 count, cred);
3474 3475 if (error == EACCES) {
3475 3476 mutex_enter(&rp->r_statelock);
3476 3477 if (cred != cr) {
3477 3478 if (rp->r_cred != NULL)
3478 3479 crfree(rp->r_cred);
3479 3480 rp->r_cred = cr;
3480 3481 crhold(cr);
3481 3482 crfree(cred);
3482 3483 cred = cr;
3483 3484 crhold(cred);
3484 3485 mutex_exit(&rp->r_statelock);
3485 3486 goto write_again;
3486 3487 }
3487 3488 mutex_exit(&rp->r_statelock);
3488 3489 }
3489 3490 bp->b_error = error;
3490 3491 if (error && error != EINTR) {
3491 3492 /*
3492 3493 * Don't print EDQUOT errors on the console.
3493 3494 * Don't print asynchronous EACCES errors.
3494 3495 * Don't print EFBIG errors.
3495 3496 * Print all other write errors.
3496 3497 */
3497 3498 if (error != EDQUOT && error != EFBIG &&
3498 3499 (error != EACCES ||
3499 3500 !(bp->b_flags & B_ASYNC)))
3500 3501 nfs_write_error(bp->b_vp, error, cred);
3501 3502 /*
3502 3503 * Update r_error and r_flags as appropriate.
3503 3504 * If the error was ESTALE, then mark the
3504 3505 * rnode as not being writeable and save
3505 3506 * the error status. Otherwise, save any
3506 3507 * errors which occur from asynchronous
3507 3508 * page invalidations. Any errors occurring
3508 3509 * from other operations should be saved
3509 3510 * by the caller.
3510 3511 */
3511 3512 mutex_enter(&rp->r_statelock);
3512 3513 if (error == ESTALE) {
3513 3514 rp->r_flags |= RSTALE;
3514 3515 if (!rp->r_error)
3515 3516 rp->r_error = error;
3516 3517 } else if (!rp->r_error &&
3517 3518 (bp->b_flags &
3518 3519 (B_INVAL|B_FORCE|B_ASYNC)) ==
3519 3520 (B_INVAL|B_FORCE|B_ASYNC)) {
3520 3521 rp->r_error = error;
3521 3522 }
3522 3523 mutex_exit(&rp->r_statelock);
3523 3524 }
3524 3525 crfree(cred);
3525 3526 } else {
3526 3527 error = rp->r_error;
3527 3528 /*
3528 3529 * A close may have cleared r_error, if so,
3529 3530 * propagate ESTALE error return properly
3530 3531 */
3531 3532 if (error == 0)
3532 3533 error = ESTALE;
3533 3534 }
3534 3535 }
3535 3536
3536 3537 if (error != 0 && error != NFS_EOF)
3537 3538 bp->b_flags |= B_ERROR;
3538 3539
3539 3540 DTRACE_IO1(done, struct buf *, bp);
3540 3541
3541 3542 return (error);
3542 3543 }
3543 3544
3544 3545 /* ARGSUSED */
3545 3546 static int
3546 3547 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
3547 3548 {
3548 3549 struct nfs_fid *fp;
3549 3550 rnode_t *rp;
3550 3551
3551 3552 rp = VTOR(vp);
3552 3553
3553 3554 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) {
3554 3555 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short);
3555 3556 return (ENOSPC);
3556 3557 }
3557 3558 fp = (struct nfs_fid *)fidp;
3558 3559 fp->nf_pad = 0;
3559 3560 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short);
3560 3561 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE);
3561 3562 return (0);
3562 3563 }
3563 3564
3564 3565 /* ARGSUSED2 */
3565 3566 static int
3566 3567 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
3567 3568 {
3568 3569 rnode_t *rp = VTOR(vp);
3569 3570
3570 3571 if (!write_lock) {
3571 3572 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
3572 3573 return (V_WRITELOCK_FALSE);
3573 3574 }
3574 3575
3575 3576 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
3576 3577 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
3577 3578 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
3578 3579 return (V_WRITELOCK_FALSE);
3579 3580 nfs_rw_exit(&rp->r_rwlock);
3580 3581 }
3581 3582
3582 3583 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
3583 3584 return (V_WRITELOCK_TRUE);
3584 3585 }
3585 3586
3586 3587 /* ARGSUSED */
3587 3588 static void
3588 3589 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
3589 3590 {
3590 3591 rnode_t *rp = VTOR(vp);
3591 3592
3592 3593 nfs_rw_exit(&rp->r_rwlock);
3593 3594 }
3594 3595
3595 3596 /* ARGSUSED */
3596 3597 static int
3597 3598 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
3598 3599 {
3599 3600
3600 3601 /*
3601 3602 * Because we stuff the readdir cookie into the offset field
3602 3603 * someone may attempt to do an lseek with the cookie which
3603 3604 * we want to succeed.
3604 3605 */
3605 3606 if (vp->v_type == VDIR)
|
↓ open down ↓ |
239 lines elided |
↑ open up ↑ |
3606 3607 return (0);
3607 3608 if (*noffp < 0 || *noffp > MAXOFF32_T)
3608 3609 return (EINVAL);
3609 3610 return (0);
3610 3611 }
3611 3612
3612 3613 /*
3613 3614 * number of NFS_MAXDATA blocks to read ahead
3614 3615 * optimized for 100 base-T.
3615 3616 */
3616 -static int nfs_nra = 4;
3617 +volatile int nfs_nra = 4;
3617 3618
3618 3619 #ifdef DEBUG
3619 3620 static int nfs_lostpage = 0; /* number of times we lost original page */
3620 3621 #endif
3621 3622
3622 3623 /*
3623 3624 * Return all the pages from [off..off+len) in file
3624 3625 */
3625 3626 /* ARGSUSED */
3626 3627 static int
3627 3628 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3628 3629 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3629 3630 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
3630 3631 {
3631 3632 rnode_t *rp;
3632 3633 int error;
3633 3634 mntinfo_t *mi;
3634 3635
3635 3636 if (vp->v_flag & VNOMAP)
3636 3637 return (ENOSYS);
3637 3638
3638 3639 ASSERT(off <= MAXOFF32_T);
3639 3640 if (nfs_zone() != VTOMI(vp)->mi_zone)
3640 3641 return (EIO);
3641 3642 if (protp != NULL)
3642 3643 *protp = PROT_ALL;
3643 3644
3644 3645 /*
3645 3646 * Now valididate that the caches are up to date.
3646 3647 */
3647 3648 error = nfs_validate_caches(vp, cr);
3648 3649 if (error)
3649 3650 return (error);
3650 3651
3651 3652 rp = VTOR(vp);
3652 3653 mi = VTOMI(vp);
3653 3654 retry:
3654 3655 mutex_enter(&rp->r_statelock);
3655 3656
3656 3657 /*
3657 3658 * Don't create dirty pages faster than they
3658 3659 * can be cleaned so that the system doesn't
3659 3660 * get imbalanced. If the async queue is
3660 3661 * maxed out, then wait for it to drain before
3661 3662 * creating more dirty pages. Also, wait for
3662 3663 * any threads doing pagewalks in the vop_getattr
3663 3664 * entry points so that they don't block for
3664 3665 * long periods.
3665 3666 */
3666 3667 if (rw == S_CREATE) {
3667 3668 while ((mi->mi_max_threads != 0 &&
3668 3669 rp->r_awcount > 2 * mi->mi_max_threads) ||
3669 3670 rp->r_gcount > 0)
3670 3671 cv_wait(&rp->r_cv, &rp->r_statelock);
3671 3672 }
3672 3673
3673 3674 /*
3674 3675 * If we are getting called as a side effect of an nfs_write()
3675 3676 * operation the local file size might not be extended yet.
3676 3677 * In this case we want to be able to return pages of zeroes.
3677 3678 */
3678 3679 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
3679 3680 mutex_exit(&rp->r_statelock);
3680 3681 return (EFAULT); /* beyond EOF */
3681 3682 }
3682 3683
3683 3684 mutex_exit(&rp->r_statelock);
3684 3685
3685 3686 error = pvn_getpages(nfs_getapage, vp, off, len, protp, pl, plsz,
3686 3687 seg, addr, rw, cr);
3687 3688
3688 3689 switch (error) {
3689 3690 case NFS_EOF:
3690 3691 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
3691 3692 goto retry;
3692 3693 case ESTALE:
3693 3694 PURGE_STALE_FH(error, vp, cr);
3694 3695 }
3695 3696
3696 3697 return (error);
3697 3698 }
3698 3699
3699 3700 /*
3700 3701 * Called from pvn_getpages to get a particular page.
3701 3702 */
3702 3703 /* ARGSUSED */
3703 3704 static int
3704 3705 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
3705 3706 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3706 3707 enum seg_rw rw, cred_t *cr)
3707 3708 {
3708 3709 rnode_t *rp;
3709 3710 uint_t bsize;
3710 3711 struct buf *bp;
3711 3712 page_t *pp;
3712 3713 u_offset_t lbn;
3713 3714 u_offset_t io_off;
3714 3715 u_offset_t blkoff;
3715 3716 u_offset_t rablkoff;
3716 3717 size_t io_len;
3717 3718 uint_t blksize;
3718 3719 int error;
3719 3720 int readahead;
3720 3721 int readahead_issued = 0;
3721 3722 int ra_window; /* readahead window */
3722 3723 page_t *pagefound;
3723 3724
3724 3725 if (nfs_zone() != VTOMI(vp)->mi_zone)
3725 3726 return (EIO);
3726 3727 rp = VTOR(vp);
3727 3728 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3728 3729
3729 3730 reread:
3730 3731 bp = NULL;
3731 3732 pp = NULL;
3732 3733 pagefound = NULL;
3733 3734
3734 3735 if (pl != NULL)
3735 3736 pl[0] = NULL;
3736 3737
3737 3738 error = 0;
3738 3739 lbn = off / bsize;
3739 3740 blkoff = lbn * bsize;
3740 3741
3741 3742 /*
3742 3743 * Queueing up the readahead before doing the synchronous read
3743 3744 * results in a significant increase in read throughput because
3744 3745 * of the increased parallelism between the async threads and
3745 3746 * the process context.
3746 3747 */
3747 3748 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
3748 3749 rw != S_CREATE &&
3749 3750 !(vp->v_flag & VNOCACHE)) {
3750 3751 mutex_enter(&rp->r_statelock);
3751 3752
3752 3753 /*
3753 3754 * Calculate the number of readaheads to do.
3754 3755 * a) No readaheads at offset = 0.
3755 3756 * b) Do maximum(nfs_nra) readaheads when the readahead
3756 3757 * window is closed.
3757 3758 * c) Do readaheads between 1 to (nfs_nra - 1) depending
3758 3759 * upon how far the readahead window is open or close.
3759 3760 * d) No readaheads if rp->r_nextr is not within the scope
3760 3761 * of the readahead window (random i/o).
3761 3762 */
3762 3763
3763 3764 if (off == 0)
3764 3765 readahead = 0;
3765 3766 else if (blkoff == rp->r_nextr)
3766 3767 readahead = nfs_nra;
3767 3768 else if (rp->r_nextr > blkoff &&
3768 3769 ((ra_window = (rp->r_nextr - blkoff) / bsize)
3769 3770 <= (nfs_nra - 1)))
3770 3771 readahead = nfs_nra - ra_window;
3771 3772 else
3772 3773 readahead = 0;
3773 3774
3774 3775 rablkoff = rp->r_nextr;
3775 3776 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
3776 3777 mutex_exit(&rp->r_statelock);
3777 3778 if (nfs_async_readahead(vp, rablkoff + bsize,
3778 3779 addr + (rablkoff + bsize - off), seg, cr,
3779 3780 nfs_readahead) < 0) {
3780 3781 mutex_enter(&rp->r_statelock);
3781 3782 break;
3782 3783 }
3783 3784 readahead--;
3784 3785 rablkoff += bsize;
3785 3786 /*
3786 3787 * Indicate that we did a readahead so
3787 3788 * readahead offset is not updated
3788 3789 * by the synchronous read below.
3789 3790 */
3790 3791 readahead_issued = 1;
3791 3792 mutex_enter(&rp->r_statelock);
3792 3793 /*
3793 3794 * set readahead offset to
3794 3795 * offset of last async readahead
3795 3796 * request.
3796 3797 */
3797 3798 rp->r_nextr = rablkoff;
3798 3799 }
3799 3800 mutex_exit(&rp->r_statelock);
3800 3801 }
3801 3802
3802 3803 again:
3803 3804 if ((pagefound = page_exists(vp, off)) == NULL) {
3804 3805 if (pl == NULL) {
3805 3806 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
3806 3807 nfs_readahead);
3807 3808 } else if (rw == S_CREATE) {
3808 3809 /*
3809 3810 * Block for this page is not allocated, or the offset
3810 3811 * is beyond the current allocation size, or we're
3811 3812 * allocating a swap slot and the page was not found,
3812 3813 * so allocate it and return a zero page.
3813 3814 */
3814 3815 if ((pp = page_create_va(vp, off,
3815 3816 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
3816 3817 cmn_err(CE_PANIC, "nfs_getapage: page_create");
3817 3818 io_len = PAGESIZE;
3818 3819 mutex_enter(&rp->r_statelock);
3819 3820 rp->r_nextr = off + PAGESIZE;
3820 3821 mutex_exit(&rp->r_statelock);
3821 3822 } else {
3822 3823 /*
3823 3824 * Need to go to server to get a BLOCK, exception to
3824 3825 * that being while reading at offset = 0 or doing
3825 3826 * random i/o, in that case read only a PAGE.
3826 3827 */
3827 3828 mutex_enter(&rp->r_statelock);
3828 3829 if (blkoff < rp->r_size &&
3829 3830 blkoff + bsize >= rp->r_size) {
3830 3831 /*
3831 3832 * If only a block or less is left in
3832 3833 * the file, read all that is remaining.
3833 3834 */
3834 3835 if (rp->r_size <= off) {
3835 3836 /*
3836 3837 * Trying to access beyond EOF,
3837 3838 * set up to get at least one page.
3838 3839 */
3839 3840 blksize = off + PAGESIZE - blkoff;
3840 3841 } else
3841 3842 blksize = rp->r_size - blkoff;
3842 3843 } else if ((off == 0) ||
3843 3844 (off != rp->r_nextr && !readahead_issued)) {
3844 3845 blksize = PAGESIZE;
3845 3846 blkoff = off; /* block = page here */
3846 3847 } else
3847 3848 blksize = bsize;
3848 3849 mutex_exit(&rp->r_statelock);
3849 3850
3850 3851 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3851 3852 &io_len, blkoff, blksize, 0);
3852 3853
3853 3854 /*
3854 3855 * Some other thread has entered the page,
3855 3856 * so just use it.
3856 3857 */
3857 3858 if (pp == NULL)
3858 3859 goto again;
3859 3860
3860 3861 /*
3861 3862 * Now round the request size up to page boundaries.
3862 3863 * This ensures that the entire page will be
3863 3864 * initialized to zeroes if EOF is encountered.
3864 3865 */
3865 3866 io_len = ptob(btopr(io_len));
3866 3867
3867 3868 bp = pageio_setup(pp, io_len, vp, B_READ);
3868 3869 ASSERT(bp != NULL);
3869 3870
3870 3871 /*
3871 3872 * pageio_setup should have set b_addr to 0. This
3872 3873 * is correct since we want to do I/O on a page
3873 3874 * boundary. bp_mapin will use this addr to calculate
3874 3875 * an offset, and then set b_addr to the kernel virtual
3875 3876 * address it allocated for us.
3876 3877 */
3877 3878 ASSERT(bp->b_un.b_addr == 0);
3878 3879
3879 3880 bp->b_edev = 0;
3880 3881 bp->b_dev = 0;
3881 3882 bp->b_lblkno = lbtodb(io_off);
3882 3883 bp->b_file = vp;
3883 3884 bp->b_offset = (offset_t)off;
3884 3885 bp_mapin(bp);
3885 3886
3886 3887 /*
3887 3888 * If doing a write beyond what we believe is EOF,
3888 3889 * don't bother trying to read the pages from the
3889 3890 * server, we'll just zero the pages here. We
3890 3891 * don't check that the rw flag is S_WRITE here
3891 3892 * because some implementations may attempt a
3892 3893 * read access to the buffer before copying data.
3893 3894 */
3894 3895 mutex_enter(&rp->r_statelock);
3895 3896 if (io_off >= rp->r_size && seg == segkmap) {
3896 3897 mutex_exit(&rp->r_statelock);
3897 3898 bzero(bp->b_un.b_addr, io_len);
3898 3899 } else {
3899 3900 mutex_exit(&rp->r_statelock);
3900 3901 error = nfs_bio(bp, cr);
3901 3902 }
3902 3903
3903 3904 /*
3904 3905 * Unmap the buffer before freeing it.
3905 3906 */
3906 3907 bp_mapout(bp);
3907 3908 pageio_done(bp);
3908 3909
3909 3910 if (error == NFS_EOF) {
3910 3911 /*
3911 3912 * If doing a write system call just return
3912 3913 * zeroed pages, else user tried to get pages
3913 3914 * beyond EOF, return error. We don't check
3914 3915 * that the rw flag is S_WRITE here because
3915 3916 * some implementations may attempt a read
3916 3917 * access to the buffer before copying data.
3917 3918 */
3918 3919 if (seg == segkmap)
3919 3920 error = 0;
3920 3921 else
3921 3922 error = EFAULT;
3922 3923 }
3923 3924
3924 3925 if (!readahead_issued && !error) {
3925 3926 mutex_enter(&rp->r_statelock);
3926 3927 rp->r_nextr = io_off + io_len;
3927 3928 mutex_exit(&rp->r_statelock);
3928 3929 }
3929 3930 }
3930 3931 }
3931 3932
3932 3933 out:
3933 3934 if (pl == NULL)
3934 3935 return (error);
3935 3936
3936 3937 if (error) {
3937 3938 if (pp != NULL)
3938 3939 pvn_read_done(pp, B_ERROR);
3939 3940 return (error);
3940 3941 }
3941 3942
3942 3943 if (pagefound) {
3943 3944 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
3944 3945
3945 3946 /*
3946 3947 * Page exists in the cache, acquire the appropriate lock.
3947 3948 * If this fails, start all over again.
3948 3949 */
3949 3950 if ((pp = page_lookup(vp, off, se)) == NULL) {
3950 3951 #ifdef DEBUG
3951 3952 nfs_lostpage++;
3952 3953 #endif
3953 3954 goto reread;
3954 3955 }
3955 3956 pl[0] = pp;
3956 3957 pl[1] = NULL;
3957 3958 return (0);
3958 3959 }
3959 3960
3960 3961 if (pp != NULL)
3961 3962 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3962 3963
3963 3964 return (error);
3964 3965 }
3965 3966
3966 3967 static void
3967 3968 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
3968 3969 cred_t *cr)
3969 3970 {
3970 3971 int error;
3971 3972 page_t *pp;
3972 3973 u_offset_t io_off;
3973 3974 size_t io_len;
3974 3975 struct buf *bp;
3975 3976 uint_t bsize, blksize;
3976 3977 rnode_t *rp = VTOR(vp);
3977 3978
3978 3979 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
3979 3980
3980 3981 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3981 3982
3982 3983 mutex_enter(&rp->r_statelock);
3983 3984 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
3984 3985 /*
3985 3986 * If less than a block left in file read less
3986 3987 * than a block.
3987 3988 */
3988 3989 blksize = rp->r_size - blkoff;
3989 3990 } else
3990 3991 blksize = bsize;
3991 3992 mutex_exit(&rp->r_statelock);
3992 3993
3993 3994 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
3994 3995 &io_off, &io_len, blkoff, blksize, 1);
3995 3996 /*
3996 3997 * The isra flag passed to the kluster function is 1, we may have
3997 3998 * gotten a return value of NULL for a variety of reasons (# of free
3998 3999 * pages < minfree, someone entered the page on the vnode etc). In all
3999 4000 * cases, we want to punt on the readahead.
4000 4001 */
4001 4002 if (pp == NULL)
4002 4003 return;
4003 4004
4004 4005 /*
4005 4006 * Now round the request size up to page boundaries.
4006 4007 * This ensures that the entire page will be
4007 4008 * initialized to zeroes if EOF is encountered.
4008 4009 */
4009 4010 io_len = ptob(btopr(io_len));
4010 4011
4011 4012 bp = pageio_setup(pp, io_len, vp, B_READ);
4012 4013 ASSERT(bp != NULL);
4013 4014
4014 4015 /*
4015 4016 * pageio_setup should have set b_addr to 0. This is correct since
4016 4017 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4017 4018 * to calculate an offset, and then set b_addr to the kernel virtual
4018 4019 * address it allocated for us.
4019 4020 */
4020 4021 ASSERT(bp->b_un.b_addr == 0);
4021 4022
4022 4023 bp->b_edev = 0;
4023 4024 bp->b_dev = 0;
4024 4025 bp->b_lblkno = lbtodb(io_off);
4025 4026 bp->b_file = vp;
4026 4027 bp->b_offset = (offset_t)blkoff;
4027 4028 bp_mapin(bp);
4028 4029
4029 4030 /*
4030 4031 * If doing a write beyond what we believe is EOF, don't bother trying
4031 4032 * to read the pages from the server, we'll just zero the pages here.
4032 4033 * We don't check that the rw flag is S_WRITE here because some
4033 4034 * implementations may attempt a read access to the buffer before
4034 4035 * copying data.
4035 4036 */
4036 4037 mutex_enter(&rp->r_statelock);
4037 4038 if (io_off >= rp->r_size && seg == segkmap) {
4038 4039 mutex_exit(&rp->r_statelock);
4039 4040 bzero(bp->b_un.b_addr, io_len);
4040 4041 error = 0;
4041 4042 } else {
4042 4043 mutex_exit(&rp->r_statelock);
4043 4044 error = nfs_bio(bp, cr);
4044 4045 if (error == NFS_EOF)
4045 4046 error = 0;
4046 4047 }
4047 4048
4048 4049 /*
4049 4050 * Unmap the buffer before freeing it.
4050 4051 */
4051 4052 bp_mapout(bp);
4052 4053 pageio_done(bp);
4053 4054
4054 4055 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4055 4056
4056 4057 /*
4057 4058 * In case of error set readahead offset
4058 4059 * to the lowest offset.
4059 4060 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4060 4061 */
4061 4062 if (error && rp->r_nextr > io_off) {
4062 4063 mutex_enter(&rp->r_statelock);
4063 4064 if (rp->r_nextr > io_off)
4064 4065 rp->r_nextr = io_off;
4065 4066 mutex_exit(&rp->r_statelock);
4066 4067 }
4067 4068 }
4068 4069
4069 4070 /*
4070 4071 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4071 4072 * If len == 0, do from off to EOF.
4072 4073 *
4073 4074 * The normal cases should be len == 0 && off == 0 (entire vp list),
4074 4075 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4075 4076 * (from pageout).
4076 4077 */
4077 4078 /* ARGSUSED */
4078 4079 static int
4079 4080 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4080 4081 caller_context_t *ct)
4081 4082 {
4082 4083 int error;
4083 4084 rnode_t *rp;
4084 4085
4085 4086 ASSERT(cr != NULL);
4086 4087
4087 4088 /*
4088 4089 * XXX - Why should this check be made here?
4089 4090 */
4090 4091 if (vp->v_flag & VNOMAP)
4091 4092 return (ENOSYS);
4092 4093
4093 4094 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
4094 4095 return (0);
4095 4096
4096 4097 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
4097 4098 return (EIO);
4098 4099 ASSERT(off <= MAXOFF32_T);
4099 4100
4100 4101 rp = VTOR(vp);
4101 4102 mutex_enter(&rp->r_statelock);
4102 4103 rp->r_count++;
4103 4104 mutex_exit(&rp->r_statelock);
4104 4105 error = nfs_putpages(vp, off, len, flags, cr);
4105 4106 mutex_enter(&rp->r_statelock);
4106 4107 rp->r_count--;
4107 4108 cv_broadcast(&rp->r_cv);
4108 4109 mutex_exit(&rp->r_statelock);
4109 4110
4110 4111 return (error);
4111 4112 }
4112 4113
4113 4114 /*
4114 4115 * Write out a single page, possibly klustering adjacent dirty pages.
4115 4116 */
4116 4117 int
4117 4118 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
4118 4119 int flags, cred_t *cr)
4119 4120 {
4120 4121 u_offset_t io_off;
4121 4122 u_offset_t lbn_off;
4122 4123 u_offset_t lbn;
4123 4124 size_t io_len;
4124 4125 uint_t bsize;
4125 4126 int error;
4126 4127 rnode_t *rp;
4127 4128
4128 4129 ASSERT(!vn_is_readonly(vp));
4129 4130 ASSERT(pp != NULL);
4130 4131 ASSERT(cr != NULL);
4131 4132 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
4132 4133
4133 4134 rp = VTOR(vp);
4134 4135 ASSERT(rp->r_count > 0);
4135 4136
4136 4137 ASSERT(pp->p_offset <= MAXOFF32_T);
4137 4138
4138 4139 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4139 4140 lbn = pp->p_offset / bsize;
4140 4141 lbn_off = lbn * bsize;
4141 4142
4142 4143 /*
4143 4144 * Find a kluster that fits in one block, or in
4144 4145 * one page if pages are bigger than blocks. If
4145 4146 * there is less file space allocated than a whole
4146 4147 * page, we'll shorten the i/o request below.
4147 4148 */
4148 4149 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
4149 4150 roundup(bsize, PAGESIZE), flags);
4150 4151
4151 4152 /*
4152 4153 * pvn_write_kluster shouldn't have returned a page with offset
4153 4154 * behind the original page we were given. Verify that.
4154 4155 */
4155 4156 ASSERT((pp->p_offset / bsize) >= lbn);
4156 4157
4157 4158 /*
4158 4159 * Now pp will have the list of kept dirty pages marked for
4159 4160 * write back. It will also handle invalidation and freeing
4160 4161 * of pages that are not dirty. Check for page length rounding
4161 4162 * problems.
4162 4163 */
4163 4164 if (io_off + io_len > lbn_off + bsize) {
4164 4165 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
4165 4166 io_len = lbn_off + bsize - io_off;
4166 4167 }
4167 4168 /*
4168 4169 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
4169 4170 * consistent value of r_size. RMODINPROGRESS is set in writerp().
4170 4171 * When RMODINPROGRESS is set it indicates that a uiomove() is in
4171 4172 * progress and the r_size has not been made consistent with the
4172 4173 * new size of the file. When the uiomove() completes the r_size is
4173 4174 * updated and the RMODINPROGRESS flag is cleared.
4174 4175 *
4175 4176 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
4176 4177 * consistent value of r_size. Without this handshaking, it is
4177 4178 * possible that nfs(3)_bio() picks up the old value of r_size
4178 4179 * before the uiomove() in writerp() completes. This will result
4179 4180 * in the write through nfs(3)_bio() being dropped.
4180 4181 *
4181 4182 * More precisely, there is a window between the time the uiomove()
4182 4183 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
4183 4184 * operation intervenes in this window, the page will be picked up,
4184 4185 * because it is dirty (it will be unlocked, unless it was
4185 4186 * pagecreate'd). When the page is picked up as dirty, the dirty
4186 4187 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
4187 4188 * checked. This will still be the old size. Therefore the page will
4188 4189 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
4189 4190 * the page will be found to be clean and the write will be dropped.
4190 4191 */
4191 4192 if (rp->r_flags & RMODINPROGRESS) {
4192 4193 mutex_enter(&rp->r_statelock);
4193 4194 if ((rp->r_flags & RMODINPROGRESS) &&
4194 4195 rp->r_modaddr + MAXBSIZE > io_off &&
4195 4196 rp->r_modaddr < io_off + io_len) {
4196 4197 page_t *plist;
4197 4198 /*
4198 4199 * A write is in progress for this region of the file.
4199 4200 * If we did not detect RMODINPROGRESS here then this
4200 4201 * path through nfs_putapage() would eventually go to
4201 4202 * nfs(3)_bio() and may not write out all of the data
4202 4203 * in the pages. We end up losing data. So we decide
4203 4204 * to set the modified bit on each page in the page
4204 4205 * list and mark the rnode with RDIRTY. This write
4205 4206 * will be restarted at some later time.
4206 4207 */
4207 4208 plist = pp;
4208 4209 while (plist != NULL) {
4209 4210 pp = plist;
4210 4211 page_sub(&plist, pp);
4211 4212 hat_setmod(pp);
4212 4213 page_io_unlock(pp);
4213 4214 page_unlock(pp);
4214 4215 }
4215 4216 rp->r_flags |= RDIRTY;
4216 4217 mutex_exit(&rp->r_statelock);
4217 4218 if (offp)
4218 4219 *offp = io_off;
4219 4220 if (lenp)
4220 4221 *lenp = io_len;
4221 4222 return (0);
4222 4223 }
4223 4224 mutex_exit(&rp->r_statelock);
4224 4225 }
4225 4226
4226 4227 if (flags & B_ASYNC) {
4227 4228 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
4228 4229 nfs_sync_putapage);
4229 4230 } else
4230 4231 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr);
4231 4232
4232 4233 if (offp)
4233 4234 *offp = io_off;
4234 4235 if (lenp)
4235 4236 *lenp = io_len;
4236 4237 return (error);
4237 4238 }
4238 4239
4239 4240 static int
4240 4241 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4241 4242 int flags, cred_t *cr)
4242 4243 {
4243 4244 int error;
4244 4245 rnode_t *rp;
4245 4246
4246 4247 flags |= B_WRITE;
4247 4248
4248 4249 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4249 4250 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4250 4251
4251 4252 rp = VTOR(vp);
4252 4253
4253 4254 if ((error == ENOSPC || error == EDQUOT || error == EACCES) &&
4254 4255 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
4255 4256 if (!(rp->r_flags & ROUTOFSPACE)) {
4256 4257 mutex_enter(&rp->r_statelock);
4257 4258 rp->r_flags |= ROUTOFSPACE;
4258 4259 mutex_exit(&rp->r_statelock);
4259 4260 }
4260 4261 flags |= B_ERROR;
4261 4262 pvn_write_done(pp, flags);
4262 4263 /*
4263 4264 * If this was not an async thread, then try again to
4264 4265 * write out the pages, but this time, also destroy
4265 4266 * them whether or not the write is successful. This
4266 4267 * will prevent memory from filling up with these
4267 4268 * pages and destroying them is the only alternative
4268 4269 * if they can't be written out.
4269 4270 *
4270 4271 * Don't do this if this is an async thread because
4271 4272 * when the pages are unlocked in pvn_write_done,
4272 4273 * some other thread could have come along, locked
4273 4274 * them, and queued for an async thread. It would be
4274 4275 * possible for all of the async threads to be tied
4275 4276 * up waiting to lock the pages again and they would
4276 4277 * all already be locked and waiting for an async
4277 4278 * thread to handle them. Deadlock.
4278 4279 */
4279 4280 if (!(flags & B_ASYNC)) {
4280 4281 error = nfs_putpage(vp, io_off, io_len,
4281 4282 B_INVAL | B_FORCE, cr, NULL);
4282 4283 }
4283 4284 } else {
4284 4285 if (error)
4285 4286 flags |= B_ERROR;
4286 4287 else if (rp->r_flags & ROUTOFSPACE) {
4287 4288 mutex_enter(&rp->r_statelock);
4288 4289 rp->r_flags &= ~ROUTOFSPACE;
4289 4290 mutex_exit(&rp->r_statelock);
4290 4291 }
4291 4292 pvn_write_done(pp, flags);
4292 4293 }
4293 4294
4294 4295 return (error);
4295 4296 }
4296 4297
4297 4298 /* ARGSUSED */
4298 4299 static int
4299 4300 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4300 4301 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4301 4302 caller_context_t *ct)
4302 4303 {
4303 4304 struct segvn_crargs vn_a;
4304 4305 int error;
4305 4306 rnode_t *rp;
4306 4307 struct vattr va;
4307 4308
4308 4309 if (nfs_zone() != VTOMI(vp)->mi_zone)
4309 4310 return (EIO);
4310 4311
4311 4312 if (vp->v_flag & VNOMAP)
4312 4313 return (ENOSYS);
4313 4314
4314 4315 if (off > MAXOFF32_T)
4315 4316 return (EFBIG);
4316 4317
4317 4318 if (off < 0 || off + len < 0)
4318 4319 return (ENXIO);
4319 4320
4320 4321 if (vp->v_type != VREG)
4321 4322 return (ENODEV);
4322 4323
4323 4324 /*
4324 4325 * If there is cached data and if close-to-open consistency
4325 4326 * checking is not turned off and if the file system is not
4326 4327 * mounted readonly, then force an over the wire getattr.
4327 4328 * Otherwise, just invoke nfsgetattr to get a copy of the
4328 4329 * attributes. The attribute cache will be used unless it
4329 4330 * is timed out and if it is, then an over the wire getattr
4330 4331 * will be issued.
4331 4332 */
4332 4333 va.va_mask = AT_ALL;
4333 4334 if (vn_has_cached_data(vp) &&
4334 4335 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
4335 4336 error = nfs_getattr_otw(vp, &va, cr);
4336 4337 else
4337 4338 error = nfsgetattr(vp, &va, cr);
4338 4339 if (error)
4339 4340 return (error);
4340 4341
4341 4342 /*
4342 4343 * Check to see if the vnode is currently marked as not cachable.
4343 4344 * This means portions of the file are locked (through VOP_FRLOCK).
4344 4345 * In this case the map request must be refused. We use
4345 4346 * rp->r_lkserlock to avoid a race with concurrent lock requests.
4346 4347 */
4347 4348 rp = VTOR(vp);
4348 4349
4349 4350 /*
4350 4351 * Atomically increment r_inmap after acquiring r_rwlock. The
4351 4352 * idea here is to acquire r_rwlock to block read/write and
4352 4353 * not to protect r_inmap. r_inmap will inform nfs_read/write()
4353 4354 * that we are in nfs_map(). Now, r_rwlock is acquired in order
4354 4355 * and we can prevent the deadlock that would have occurred
4355 4356 * when nfs_addmap() would have acquired it out of order.
4356 4357 *
4357 4358 * Since we are not protecting r_inmap by any lock, we do not
4358 4359 * hold any lock when we decrement it. We atomically decrement
4359 4360 * r_inmap after we release r_lkserlock.
4360 4361 */
4361 4362
4362 4363 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
4363 4364 return (EINTR);
4364 4365 atomic_inc_uint(&rp->r_inmap);
4365 4366 nfs_rw_exit(&rp->r_rwlock);
4366 4367
4367 4368 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
4368 4369 atomic_dec_uint(&rp->r_inmap);
4369 4370 return (EINTR);
4370 4371 }
4371 4372 if (vp->v_flag & VNOCACHE) {
4372 4373 error = EAGAIN;
4373 4374 goto done;
4374 4375 }
4375 4376
4376 4377 /*
4377 4378 * Don't allow concurrent locks and mapping if mandatory locking is
4378 4379 * enabled.
4379 4380 */
4380 4381 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
4381 4382 MANDLOCK(vp, va.va_mode)) {
4382 4383 error = EAGAIN;
4383 4384 goto done;
4384 4385 }
4385 4386
4386 4387 as_rangelock(as);
4387 4388 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4388 4389 if (error != 0) {
4389 4390 as_rangeunlock(as);
4390 4391 goto done;
4391 4392 }
4392 4393
4393 4394 vn_a.vp = vp;
4394 4395 vn_a.offset = off;
4395 4396 vn_a.type = (flags & MAP_TYPE);
4396 4397 vn_a.prot = (uchar_t)prot;
4397 4398 vn_a.maxprot = (uchar_t)maxprot;
4398 4399 vn_a.flags = (flags & ~MAP_TYPE);
4399 4400 vn_a.cred = cr;
4400 4401 vn_a.amp = NULL;
4401 4402 vn_a.szc = 0;
4402 4403 vn_a.lgrp_mem_policy_flags = 0;
4403 4404
4404 4405 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4405 4406 as_rangeunlock(as);
4406 4407
4407 4408 done:
4408 4409 nfs_rw_exit(&rp->r_lkserlock);
4409 4410 atomic_dec_uint(&rp->r_inmap);
4410 4411 return (error);
4411 4412 }
4412 4413
4413 4414 /* ARGSUSED */
4414 4415 static int
4415 4416 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4416 4417 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4417 4418 caller_context_t *ct)
4418 4419 {
4419 4420 rnode_t *rp;
4420 4421
4421 4422 if (vp->v_flag & VNOMAP)
4422 4423 return (ENOSYS);
4423 4424 if (nfs_zone() != VTOMI(vp)->mi_zone)
4424 4425 return (EIO);
4425 4426
4426 4427 rp = VTOR(vp);
4427 4428 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
4428 4429
4429 4430 return (0);
4430 4431 }
4431 4432
4432 4433 /* ARGSUSED */
4433 4434 static int
4434 4435 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset,
4435 4436 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct)
4436 4437 {
4437 4438 netobj lm_fh;
4438 4439 int rc;
4439 4440 u_offset_t start, end;
4440 4441 rnode_t *rp;
4441 4442 int error = 0, intr = INTR(vp);
4442 4443
4443 4444 /* check for valid cmd parameter */
4444 4445 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
4445 4446 return (EINVAL);
4446 4447 if (nfs_zone() != VTOMI(vp)->mi_zone)
4447 4448 return (EIO);
4448 4449
4449 4450 /* Verify l_type. */
4450 4451 switch (bfp->l_type) {
4451 4452 case F_RDLCK:
4452 4453 if (cmd != F_GETLK && !(flag & FREAD))
4453 4454 return (EBADF);
4454 4455 break;
4455 4456 case F_WRLCK:
4456 4457 if (cmd != F_GETLK && !(flag & FWRITE))
4457 4458 return (EBADF);
4458 4459 break;
4459 4460 case F_UNLCK:
4460 4461 intr = 0;
4461 4462 break;
4462 4463
4463 4464 default:
4464 4465 return (EINVAL);
4465 4466 }
4466 4467
4467 4468 /* check the validity of the lock range */
4468 4469 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
4469 4470 return (rc);
4470 4471 if (rc = flk_check_lock_data(start, end, MAXOFF32_T))
4471 4472 return (rc);
4472 4473
4473 4474 /*
4474 4475 * If the filesystem is mounted using local locking, pass the
4475 4476 * request off to the local locking code.
4476 4477 */
4477 4478 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
4478 4479 if (offset > MAXOFF32_T)
4479 4480 return (EFBIG);
4480 4481 if (cmd == F_SETLK || cmd == F_SETLKW) {
4481 4482 /*
4482 4483 * For complete safety, we should be holding
4483 4484 * r_lkserlock. However, we can't call
4484 4485 * lm_safelock and then fs_frlock while
4485 4486 * holding r_lkserlock, so just invoke
4486 4487 * lm_safelock and expect that this will
4487 4488 * catch enough of the cases.
4488 4489 */
4489 4490 if (!lm_safelock(vp, bfp, cr))
4490 4491 return (EAGAIN);
4491 4492 }
4492 4493 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4493 4494 }
4494 4495
4495 4496 rp = VTOR(vp);
4496 4497
4497 4498 /*
4498 4499 * Check whether the given lock request can proceed, given the
4499 4500 * current file mappings.
4500 4501 */
4501 4502 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
4502 4503 return (EINTR);
4503 4504 if (cmd == F_SETLK || cmd == F_SETLKW) {
4504 4505 if (!lm_safelock(vp, bfp, cr)) {
4505 4506 rc = EAGAIN;
4506 4507 goto done;
4507 4508 }
4508 4509 }
4509 4510
4510 4511 /*
4511 4512 * Flush the cache after waiting for async I/O to finish. For new
4512 4513 * locks, this is so that the process gets the latest bits from the
4513 4514 * server. For unlocks, this is so that other clients see the
4514 4515 * latest bits once the file has been unlocked. If currently dirty
4515 4516 * pages can't be flushed, then don't allow a lock to be set. But
4516 4517 * allow unlocks to succeed, to avoid having orphan locks on the
4517 4518 * server.
4518 4519 */
4519 4520 if (cmd != F_GETLK) {
4520 4521 mutex_enter(&rp->r_statelock);
4521 4522 while (rp->r_count > 0) {
4522 4523 if (intr) {
4523 4524 klwp_t *lwp = ttolwp(curthread);
4524 4525
4525 4526 if (lwp != NULL)
4526 4527 lwp->lwp_nostop++;
4527 4528 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock)
4528 4529 == 0) {
4529 4530 if (lwp != NULL)
4530 4531 lwp->lwp_nostop--;
4531 4532 rc = EINTR;
4532 4533 break;
4533 4534 }
4534 4535 if (lwp != NULL)
4535 4536 lwp->lwp_nostop--;
4536 4537 } else
4537 4538 cv_wait(&rp->r_cv, &rp->r_statelock);
4538 4539 }
4539 4540 mutex_exit(&rp->r_statelock);
4540 4541 if (rc != 0)
4541 4542 goto done;
4542 4543 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
4543 4544 if (error) {
4544 4545 if (error == ENOSPC || error == EDQUOT) {
4545 4546 mutex_enter(&rp->r_statelock);
4546 4547 if (!rp->r_error)
4547 4548 rp->r_error = error;
4548 4549 mutex_exit(&rp->r_statelock);
4549 4550 }
4550 4551 if (bfp->l_type != F_UNLCK) {
4551 4552 rc = ENOLCK;
4552 4553 goto done;
4553 4554 }
4554 4555 }
4555 4556 }
4556 4557
4557 4558 lm_fh.n_len = sizeof (fhandle_t);
4558 4559 lm_fh.n_bytes = (char *)VTOFH(vp);
4559 4560
4560 4561 /*
4561 4562 * Call the lock manager to do the real work of contacting
4562 4563 * the server and obtaining the lock.
4563 4564 */
4564 4565 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp);
4565 4566
4566 4567 if (rc == 0)
4567 4568 nfs_lockcompletion(vp, cmd);
4568 4569
4569 4570 done:
4570 4571 nfs_rw_exit(&rp->r_lkserlock);
4571 4572 return (rc);
4572 4573 }
4573 4574
4574 4575 /*
4575 4576 * Free storage space associated with the specified vnode. The portion
4576 4577 * to be freed is specified by bfp->l_start and bfp->l_len (already
4577 4578 * normalized to a "whence" of 0).
4578 4579 *
4579 4580 * This is an experimental facility whose continued existence is not
4580 4581 * guaranteed. Currently, we only support the special case
4581 4582 * of l_len == 0, meaning free to end of file.
4582 4583 */
4583 4584 /* ARGSUSED */
4584 4585 static int
4585 4586 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
4586 4587 offset_t offset, cred_t *cr, caller_context_t *ct)
4587 4588 {
4588 4589 int error;
4589 4590
4590 4591 ASSERT(vp->v_type == VREG);
4591 4592 if (cmd != F_FREESP)
4592 4593 return (EINVAL);
4593 4594
4594 4595 if (offset > MAXOFF32_T)
4595 4596 return (EFBIG);
4596 4597
4597 4598 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) ||
4598 4599 (bfp->l_len > MAXOFF32_T))
4599 4600 return (EFBIG);
4600 4601
4601 4602 if (nfs_zone() != VTOMI(vp)->mi_zone)
4602 4603 return (EIO);
4603 4604
4604 4605 error = convoff(vp, bfp, 0, offset);
4605 4606 if (!error) {
4606 4607 ASSERT(bfp->l_start >= 0);
4607 4608 if (bfp->l_len == 0) {
4608 4609 struct vattr va;
4609 4610
4610 4611 /*
4611 4612 * ftruncate should not change the ctime and
4612 4613 * mtime if we truncate the file to its
4613 4614 * previous size.
4614 4615 */
4615 4616 va.va_mask = AT_SIZE;
4616 4617 error = nfsgetattr(vp, &va, cr);
4617 4618 if (error || va.va_size == bfp->l_start)
4618 4619 return (error);
4619 4620 va.va_mask = AT_SIZE;
4620 4621 va.va_size = bfp->l_start;
4621 4622 error = nfssetattr(vp, &va, 0, cr);
4622 4623
4623 4624 if (error == 0 && bfp->l_start == 0)
4624 4625 vnevent_truncate(vp, ct);
4625 4626 } else
4626 4627 error = EINVAL;
4627 4628 }
4628 4629
4629 4630 return (error);
4630 4631 }
4631 4632
4632 4633 /* ARGSUSED */
4633 4634 static int
4634 4635 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
4635 4636 {
4636 4637
4637 4638 return (EINVAL);
4638 4639 }
4639 4640
4640 4641 /*
4641 4642 * Setup and add an address space callback to do the work of the delmap call.
4642 4643 * The callback will (and must be) deleted in the actual callback function.
4643 4644 *
4644 4645 * This is done in order to take care of the problem that we have with holding
4645 4646 * the address space's a_lock for a long period of time (e.g. if the NFS server
4646 4647 * is down). Callbacks will be executed in the address space code while the
4647 4648 * a_lock is not held. Holding the address space's a_lock causes things such
4648 4649 * as ps and fork to hang because they are trying to acquire this lock as well.
4649 4650 */
4650 4651 /* ARGSUSED */
4651 4652 static int
4652 4653 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4653 4654 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4654 4655 caller_context_t *ct)
4655 4656 {
4656 4657 int caller_found;
4657 4658 int error;
4658 4659 rnode_t *rp;
4659 4660 nfs_delmap_args_t *dmapp;
4660 4661 nfs_delmapcall_t *delmap_call;
4661 4662
4662 4663 if (vp->v_flag & VNOMAP)
4663 4664 return (ENOSYS);
4664 4665 /*
4665 4666 * A process may not change zones if it has NFS pages mmap'ed
4666 4667 * in, so we can't legitimately get here from the wrong zone.
4667 4668 */
4668 4669 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4669 4670
4670 4671 rp = VTOR(vp);
4671 4672
4672 4673 /*
4673 4674 * The way that the address space of this process deletes its mapping
4674 4675 * of this file is via the following call chains:
4675 4676 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap()
4676 4677 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap()
4677 4678 *
4678 4679 * With the use of address space callbacks we are allowed to drop the
4679 4680 * address space lock, a_lock, while executing the NFS operations that
4680 4681 * need to go over the wire. Returning EAGAIN to the caller of this
4681 4682 * function is what drives the execution of the callback that we add
4682 4683 * below. The callback will be executed by the address space code
4683 4684 * after dropping the a_lock. When the callback is finished, since
4684 4685 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
4685 4686 * is called again on the same segment to finish the rest of the work
4686 4687 * that needs to happen during unmapping.
4687 4688 *
4688 4689 * This action of calling back into the segment driver causes
4689 4690 * nfs_delmap() to get called again, but since the callback was
4690 4691 * already executed at this point, it already did the work and there
4691 4692 * is nothing left for us to do.
4692 4693 *
4693 4694 * To Summarize:
4694 4695 * - The first time nfs_delmap is called by the current thread is when
4695 4696 * we add the caller associated with this delmap to the delmap caller
4696 4697 * list, add the callback, and return EAGAIN.
4697 4698 * - The second time in this call chain when nfs_delmap is called we
4698 4699 * will find this caller in the delmap caller list and realize there
4699 4700 * is no more work to do thus removing this caller from the list and
4700 4701 * returning the error that was set in the callback execution.
4701 4702 */
4702 4703 caller_found = nfs_find_and_delete_delmapcall(rp, &error);
4703 4704 if (caller_found) {
4704 4705 /*
4705 4706 * 'error' is from the actual delmap operations. To avoid
4706 4707 * hangs, we need to handle the return of EAGAIN differently
4707 4708 * since this is what drives the callback execution.
4708 4709 * In this case, we don't want to return EAGAIN and do the
4709 4710 * callback execution because there are none to execute.
4710 4711 */
4711 4712 if (error == EAGAIN)
4712 4713 return (0);
4713 4714 else
4714 4715 return (error);
4715 4716 }
4716 4717
4717 4718 /* current caller was not in the list */
4718 4719 delmap_call = nfs_init_delmapcall();
4719 4720
4720 4721 mutex_enter(&rp->r_statelock);
4721 4722 list_insert_tail(&rp->r_indelmap, delmap_call);
4722 4723 mutex_exit(&rp->r_statelock);
4723 4724
4724 4725 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
4725 4726
4726 4727 dmapp->vp = vp;
4727 4728 dmapp->off = off;
4728 4729 dmapp->addr = addr;
4729 4730 dmapp->len = len;
4730 4731 dmapp->prot = prot;
4731 4732 dmapp->maxprot = maxprot;
4732 4733 dmapp->flags = flags;
4733 4734 dmapp->cr = cr;
4734 4735 dmapp->caller = delmap_call;
4735 4736
4736 4737 error = as_add_callback(as, nfs_delmap_callback, dmapp,
4737 4738 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
4738 4739
4739 4740 return (error ? error : EAGAIN);
4740 4741 }
4741 4742
4742 4743 /*
4743 4744 * Remove some pages from an mmap'd vnode. Just update the
4744 4745 * count of pages. If doing close-to-open, then flush all
4745 4746 * of the pages associated with this file. Otherwise, start
4746 4747 * an asynchronous page flush to write out any dirty pages.
4747 4748 * This will also associate a credential with the rnode which
4748 4749 * can be used to write the pages.
4749 4750 */
4750 4751 /* ARGSUSED */
4751 4752 static void
4752 4753 nfs_delmap_callback(struct as *as, void *arg, uint_t event)
4753 4754 {
4754 4755 int error;
4755 4756 rnode_t *rp;
4756 4757 mntinfo_t *mi;
4757 4758 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
4758 4759
4759 4760 rp = VTOR(dmapp->vp);
4760 4761 mi = VTOMI(dmapp->vp);
4761 4762
4762 4763 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
4763 4764 ASSERT(rp->r_mapcnt >= 0);
4764 4765
4765 4766 /*
4766 4767 * Initiate a page flush if there are pages, the file system
4767 4768 * was not mounted readonly, the segment was mapped shared, and
4768 4769 * the pages themselves were writeable.
4769 4770 */
4770 4771 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
4771 4772 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
4772 4773 mutex_enter(&rp->r_statelock);
4773 4774 rp->r_flags |= RDIRTY;
4774 4775 mutex_exit(&rp->r_statelock);
4775 4776 /*
4776 4777 * If this is a cross-zone access a sync putpage won't work, so
4777 4778 * the best we can do is try an async putpage. That seems
4778 4779 * better than something more draconian such as discarding the
4779 4780 * dirty pages.
4780 4781 */
4781 4782 if ((mi->mi_flags & MI_NOCTO) ||
4782 4783 nfs_zone() != mi->mi_zone)
4783 4784 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4784 4785 B_ASYNC, dmapp->cr, NULL);
4785 4786 else
4786 4787 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4787 4788 0, dmapp->cr, NULL);
4788 4789 if (!error) {
4789 4790 mutex_enter(&rp->r_statelock);
4790 4791 error = rp->r_error;
4791 4792 rp->r_error = 0;
4792 4793 mutex_exit(&rp->r_statelock);
4793 4794 }
4794 4795 } else
4795 4796 error = 0;
4796 4797
4797 4798 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
4798 4799 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4799 4800 B_INVAL, dmapp->cr, NULL);
4800 4801
4801 4802 dmapp->caller->error = error;
4802 4803 (void) as_delete_callback(as, arg);
4803 4804 kmem_free(dmapp, sizeof (nfs_delmap_args_t));
4804 4805 }
4805 4806
4806 4807 /* ARGSUSED */
4807 4808 static int
4808 4809 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4809 4810 caller_context_t *ct)
4810 4811 {
4811 4812 int error = 0;
4812 4813
4813 4814 if (nfs_zone() != VTOMI(vp)->mi_zone)
4814 4815 return (EIO);
4815 4816 /*
4816 4817 * This looks a little weird because it's written in a general
4817 4818 * manner but we make little use of cases. If cntl() ever gets
4818 4819 * widely used, the outer switch will make more sense.
4819 4820 */
4820 4821
4821 4822 switch (cmd) {
4822 4823
4823 4824 /*
4824 4825 * Large file spec - need to base answer new query with
4825 4826 * hardcoded constant based on the protocol.
4826 4827 */
4827 4828 case _PC_FILESIZEBITS:
4828 4829 *valp = 32;
4829 4830 return (0);
4830 4831
4831 4832 case _PC_LINK_MAX:
4832 4833 case _PC_NAME_MAX:
4833 4834 case _PC_PATH_MAX:
4834 4835 case _PC_SYMLINK_MAX:
4835 4836 case _PC_CHOWN_RESTRICTED:
4836 4837 case _PC_NO_TRUNC: {
4837 4838 mntinfo_t *mi;
4838 4839 struct pathcnf *pc;
4839 4840
4840 4841 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL)
4841 4842 return (EINVAL);
4842 4843 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */
4843 4844 switch (cmd) {
4844 4845 case _PC_LINK_MAX:
4845 4846 *valp = pc->pc_link_max;
4846 4847 break;
4847 4848 case _PC_NAME_MAX:
4848 4849 *valp = pc->pc_name_max;
4849 4850 break;
4850 4851 case _PC_PATH_MAX:
4851 4852 case _PC_SYMLINK_MAX:
4852 4853 *valp = pc->pc_path_max;
4853 4854 break;
4854 4855 case _PC_CHOWN_RESTRICTED:
4855 4856 /*
4856 4857 * if we got here, error is really a boolean which
4857 4858 * indicates whether cmd is set or not.
4858 4859 */
4859 4860 *valp = error ? 1 : 0; /* see above */
4860 4861 error = 0;
4861 4862 break;
4862 4863 case _PC_NO_TRUNC:
4863 4864 /*
4864 4865 * if we got here, error is really a boolean which
4865 4866 * indicates whether cmd is set or not.
4866 4867 */
4867 4868 *valp = error ? 1 : 0; /* see above */
4868 4869 error = 0;
4869 4870 break;
4870 4871 }
4871 4872 return (error ? EINVAL : 0);
4872 4873 }
4873 4874
4874 4875 case _PC_XATTR_EXISTS:
4875 4876 *valp = 0;
4876 4877 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
4877 4878 vnode_t *avp;
4878 4879 rnode_t *rp;
4879 4880 mntinfo_t *mi = VTOMI(vp);
4880 4881
4881 4882 if (!(mi->mi_flags & MI_EXTATTR))
4882 4883 return (0);
4883 4884
4884 4885 rp = VTOR(vp);
4885 4886 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
4886 4887 INTR(vp)))
4887 4888 return (EINTR);
4888 4889
4889 4890 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
4890 4891 if (error || avp == NULL)
4891 4892 error = acl_getxattrdir2(vp, &avp, 0, cr, 0);
4892 4893
4893 4894 nfs_rw_exit(&rp->r_rwlock);
4894 4895
4895 4896 if (error == 0 && avp != NULL) {
4896 4897 error = do_xattr_exists_check(avp, valp, cr);
4897 4898 VN_RELE(avp);
4898 4899 }
4899 4900 }
4900 4901 return (error ? EINVAL : 0);
4901 4902
4902 4903 case _PC_ACL_ENABLED:
4903 4904 *valp = _ACL_ACLENT_ENABLED;
4904 4905 return (0);
4905 4906
4906 4907 default:
4907 4908 return (EINVAL);
4908 4909 }
4909 4910 }
4910 4911
4911 4912 /*
4912 4913 * Called by async thread to do synchronous pageio. Do the i/o, wait
4913 4914 * for it to complete, and cleanup the page list when done.
4914 4915 */
4915 4916 static int
4916 4917 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4917 4918 int flags, cred_t *cr)
4918 4919 {
4919 4920 int error;
4920 4921
4921 4922 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4922 4923 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4923 4924 if (flags & B_READ)
4924 4925 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
4925 4926 else
4926 4927 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
4927 4928 return (error);
4928 4929 }
4929 4930
4930 4931 /* ARGSUSED */
4931 4932 static int
4932 4933 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4933 4934 int flags, cred_t *cr, caller_context_t *ct)
4934 4935 {
4935 4936 int error;
4936 4937 rnode_t *rp;
4937 4938
4938 4939 if (pp == NULL)
4939 4940 return (EINVAL);
4940 4941
4941 4942 if (io_off > MAXOFF32_T)
4942 4943 return (EFBIG);
4943 4944 if (nfs_zone() != VTOMI(vp)->mi_zone)
4944 4945 return (EIO);
4945 4946 rp = VTOR(vp);
4946 4947 mutex_enter(&rp->r_statelock);
4947 4948 rp->r_count++;
4948 4949 mutex_exit(&rp->r_statelock);
4949 4950
4950 4951 if (flags & B_ASYNC) {
4951 4952 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
4952 4953 nfs_sync_pageio);
4953 4954 } else
4954 4955 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4955 4956 mutex_enter(&rp->r_statelock);
4956 4957 rp->r_count--;
4957 4958 cv_broadcast(&rp->r_cv);
4958 4959 mutex_exit(&rp->r_statelock);
4959 4960 return (error);
4960 4961 }
4961 4962
4962 4963 /* ARGSUSED */
4963 4964 static int
4964 4965 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
4965 4966 caller_context_t *ct)
4966 4967 {
4967 4968 int error;
4968 4969 mntinfo_t *mi;
4969 4970
4970 4971 mi = VTOMI(vp);
4971 4972
4972 4973 if (nfs_zone() != mi->mi_zone)
4973 4974 return (EIO);
4974 4975 if (mi->mi_flags & MI_ACL) {
4975 4976 error = acl_setacl2(vp, vsecattr, flag, cr);
4976 4977 if (mi->mi_flags & MI_ACL)
4977 4978 return (error);
4978 4979 }
4979 4980
4980 4981 return (ENOSYS);
4981 4982 }
4982 4983
4983 4984 /* ARGSUSED */
4984 4985 static int
4985 4986 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
4986 4987 caller_context_t *ct)
4987 4988 {
4988 4989 int error;
4989 4990 mntinfo_t *mi;
4990 4991
4991 4992 mi = VTOMI(vp);
4992 4993
4993 4994 if (nfs_zone() != mi->mi_zone)
4994 4995 return (EIO);
4995 4996 if (mi->mi_flags & MI_ACL) {
4996 4997 error = acl_getacl2(vp, vsecattr, flag, cr);
4997 4998 if (mi->mi_flags & MI_ACL)
4998 4999 return (error);
4999 5000 }
5000 5001
5001 5002 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
5002 5003 }
5003 5004
5004 5005 /* ARGSUSED */
5005 5006 static int
5006 5007 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
5007 5008 caller_context_t *ct)
5008 5009 {
5009 5010 int error;
5010 5011 struct shrlock nshr;
5011 5012 struct nfs_owner nfs_owner;
5012 5013 netobj lm_fh;
5013 5014
5014 5015 if (nfs_zone() != VTOMI(vp)->mi_zone)
5015 5016 return (EIO);
5016 5017
5017 5018 /*
5018 5019 * check for valid cmd parameter
5019 5020 */
5020 5021 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
5021 5022 return (EINVAL);
5022 5023
5023 5024 /*
5024 5025 * Check access permissions
5025 5026 */
5026 5027 if (cmd == F_SHARE &&
5027 5028 (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
5028 5029 ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
5029 5030 return (EBADF);
5030 5031
5031 5032 /*
5032 5033 * If the filesystem is mounted using local locking, pass the
5033 5034 * request off to the local share code.
5034 5035 */
5035 5036 if (VTOMI(vp)->mi_flags & MI_LLOCK)
5036 5037 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
5037 5038
5038 5039 switch (cmd) {
5039 5040 case F_SHARE:
5040 5041 case F_UNSHARE:
5041 5042 lm_fh.n_len = sizeof (fhandle_t);
5042 5043 lm_fh.n_bytes = (char *)VTOFH(vp);
5043 5044
5044 5045 /*
5045 5046 * If passed an owner that is too large to fit in an
5046 5047 * nfs_owner it is likely a recursive call from the
5047 5048 * lock manager client and pass it straight through. If
5048 5049 * it is not a nfs_owner then simply return an error.
5049 5050 */
5050 5051 if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
5051 5052 if (((struct nfs_owner *)shr->s_owner)->magic !=
5052 5053 NFS_OWNER_MAGIC)
5053 5054 return (EINVAL);
5054 5055
5055 5056 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) {
5056 5057 error = set_errno(error);
5057 5058 }
5058 5059 return (error);
5059 5060 }
5060 5061 /*
5061 5062 * Remote share reservations owner is a combination of
5062 5063 * a magic number, hostname, and the local owner
5063 5064 */
5064 5065 bzero(&nfs_owner, sizeof (nfs_owner));
5065 5066 nfs_owner.magic = NFS_OWNER_MAGIC;
5066 5067 (void) strncpy(nfs_owner.hname, uts_nodename(),
5067 5068 sizeof (nfs_owner.hname));
5068 5069 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
5069 5070 nshr.s_access = shr->s_access;
5070 5071 nshr.s_deny = shr->s_deny;
5071 5072 nshr.s_sysid = 0;
5072 5073 nshr.s_pid = ttoproc(curthread)->p_pid;
5073 5074 nshr.s_own_len = sizeof (nfs_owner);
5074 5075 nshr.s_owner = (caddr_t)&nfs_owner;
5075 5076
5076 5077 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) {
5077 5078 error = set_errno(error);
5078 5079 }
5079 5080
5080 5081 break;
5081 5082
5082 5083 case F_HASREMOTELOCKS:
5083 5084 /*
5084 5085 * NFS client can't store remote locks itself
5085 5086 */
5086 5087 shr->s_access = 0;
5087 5088 error = 0;
5088 5089 break;
5089 5090
5090 5091 default:
5091 5092 error = EINVAL;
5092 5093 break;
5093 5094 }
5094 5095
5095 5096 return (error);
5096 5097 }
|
↓ open down ↓ |
1470 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX