1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 
  26 /*
  27  *      Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
  28  *      All rights reserved.
  29  */
  30 
  31 /*
  32  * Copyright 2018 Nexenta Systems, Inc.
  33  */
  34 
  35 #include <sys/param.h>
  36 #include <sys/types.h>
  37 #include <sys/systm.h>
  38 #include <sys/thread.h>
  39 #include <sys/t_lock.h>
  40 #include <sys/time.h>
  41 #include <sys/vnode.h>
  42 #include <sys/vfs.h>
  43 #include <sys/errno.h>
  44 #include <sys/buf.h>
  45 #include <sys/stat.h>
  46 #include <sys/cred.h>
  47 #include <sys/kmem.h>
  48 #include <sys/debug.h>
  49 #include <sys/dnlc.h>
  50 #include <sys/vmsystm.h>
  51 #include <sys/flock.h>
  52 #include <sys/share.h>
  53 #include <sys/cmn_err.h>
  54 #include <sys/tiuser.h>
  55 #include <sys/sysmacros.h>
  56 #include <sys/callb.h>
  57 #include <sys/acl.h>
  58 #include <sys/kstat.h>
  59 #include <sys/signal.h>
  60 #include <sys/list.h>
  61 #include <sys/zone.h>
  62 
  63 #include <rpc/types.h>
  64 #include <rpc/xdr.h>
  65 #include <rpc/auth.h>
  66 #include <rpc/clnt.h>
  67 
  68 #include <nfs/nfs.h>
  69 #include <nfs/nfs_clnt.h>
  70 #include <nfs/nfs_cmd.h>
  71 
  72 #include <nfs/rnode.h>
  73 #include <nfs/nfs_acl.h>
  74 #include <nfs/lm.h>
  75 
  76 #include <vm/hat.h>
  77 #include <vm/as.h>
  78 #include <vm/page.h>
  79 #include <vm/pvn.h>
  80 #include <vm/seg.h>
  81 #include <vm/seg_map.h>
  82 #include <vm/seg_vn.h>
  83 
  84 static void     nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t,
  85                         cred_t *);
  86 static int      nfs_getattr_cache(vnode_t *, struct vattr *);
  87 static int      nfs_remove_locking_id(vnode_t *, int, char *, char *, int *);
  88 
  89 struct mi_globals {
  90         kmutex_t        mig_lock;  /* lock protecting mig_list */
  91         list_t          mig_list;  /* list of NFS v2 or v3 mounts in zone */
  92         boolean_t       mig_destructor_called;
  93 };
  94 
  95 static zone_key_t mi_list_key;
  96 
  97 /* Debugging flag for PC file shares. */
  98 extern int      share_debug;
  99 
 100 /*
 101  * Attributes caching:
 102  *
 103  * Attributes are cached in the rnode in struct vattr form.
 104  * There is a time associated with the cached attributes (r_attrtime)
 105  * which tells whether the attributes are valid. The time is initialized
 106  * to the difference between current time and the modify time of the vnode
 107  * when new attributes are cached. This allows the attributes for
 108  * files that have changed recently to be timed out sooner than for files
 109  * that have not changed for a long time. There are minimum and maximum
 110  * timeout values that can be set per mount point.
 111  */
 112 
 113 int
 114 nfs_waitfor_purge_complete(vnode_t *vp)
 115 {
 116         rnode_t *rp;
 117         k_sigset_t smask;
 118 
 119         rp = VTOR(vp);
 120         if (rp->r_serial != NULL && rp->r_serial != curthread) {
 121                 mutex_enter(&rp->r_statelock);
 122                 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
 123                 while (rp->r_serial != NULL) {
 124                         if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
 125                                 sigunintr(&smask);
 126                                 mutex_exit(&rp->r_statelock);
 127                                 return (EINTR);
 128                         }
 129                 }
 130                 sigunintr(&smask);
 131                 mutex_exit(&rp->r_statelock);
 132         }
 133         return (0);
 134 }
 135 
 136 /*
 137  * Validate caches by checking cached attributes. If the cached
 138  * attributes have timed out, then get new attributes from the server.
 139  * As a side affect, this will do cache invalidation if the attributes
 140  * have changed.
 141  *
 142  * If the attributes have not timed out and if there is a cache
 143  * invalidation being done by some other thread, then wait until that
 144  * thread has completed the cache invalidation.
 145  */
 146 int
 147 nfs_validate_caches(vnode_t *vp, cred_t *cr)
 148 {
 149         int error;
 150         struct vattr va;
 151 
 152         if (ATTRCACHE_VALID(vp)) {
 153                 error = nfs_waitfor_purge_complete(vp);
 154                 if (error)
 155                         return (error);
 156                 return (0);
 157         }
 158 
 159         va.va_mask = AT_ALL;
 160         return (nfs_getattr_otw(vp, &va, cr));
 161 }
 162 
 163 /*
 164  * Validate caches by checking cached attributes. If the cached
 165  * attributes have timed out, then get new attributes from the server.
 166  * As a side affect, this will do cache invalidation if the attributes
 167  * have changed.
 168  *
 169  * If the attributes have not timed out and if there is a cache
 170  * invalidation being done by some other thread, then wait until that
 171  * thread has completed the cache invalidation.
 172  */
 173 int
 174 nfs3_validate_caches(vnode_t *vp, cred_t *cr)
 175 {
 176         int error;
 177         struct vattr va;
 178 
 179         if (ATTRCACHE_VALID(vp)) {
 180                 error = nfs_waitfor_purge_complete(vp);
 181                 if (error)
 182                         return (error);
 183                 return (0);
 184         }
 185 
 186         va.va_mask = AT_ALL;
 187         return (nfs3_getattr_otw(vp, &va, cr));
 188 }
 189 
 190 /*
 191  * Purge all of the various NFS `data' caches.
 192  */
 193 void
 194 nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr)
 195 {
 196         rnode_t *rp;
 197         char *contents;
 198         int size;
 199         int error;
 200 
 201         /*
 202          * Purge the DNLC for any entries which refer to this file.
 203          * Avoid recursive entry into dnlc_purge_vp() in case of a directory.
 204          */
 205         rp = VTOR(vp);
 206         mutex_enter(&rp->r_statelock);
 207         if (vp->v_count > 1 &&
 208             (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) &&
 209             !(rp->r_flags & RINDNLCPURGE)) {
 210                 /*
 211                  * Set the RINDNLCPURGE flag to prevent recursive entry
 212                  * into dnlc_purge_vp()
 213                  */
 214                 if (vp->v_type == VDIR)
 215                         rp->r_flags |= RINDNLCPURGE;
 216                 mutex_exit(&rp->r_statelock);
 217                 dnlc_purge_vp(vp);
 218                 mutex_enter(&rp->r_statelock);
 219                 if (rp->r_flags & RINDNLCPURGE)
 220                         rp->r_flags &= ~RINDNLCPURGE;
 221         }
 222 
 223         /*
 224          * Clear any readdir state bits and purge the readlink response cache.
 225          */
 226         contents = rp->r_symlink.contents;
 227         size = rp->r_symlink.size;
 228         rp->r_symlink.contents = NULL;
 229         mutex_exit(&rp->r_statelock);
 230 
 231         if (contents != NULL) {
 232 
 233                 kmem_free((void *)contents, size);
 234         }
 235 
 236         /*
 237          * Flush the page cache.
 238          */
 239         if (vn_has_cached_data(vp)) {
 240                 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
 241                 if (error && (error == ENOSPC || error == EDQUOT)) {
 242                         mutex_enter(&rp->r_statelock);
 243                         if (!rp->r_error)
 244                                 rp->r_error = error;
 245                         mutex_exit(&rp->r_statelock);
 246                 }
 247         }
 248 
 249         /*
 250          * Flush the readdir response cache.
 251          */
 252         if (HAVE_RDDIR_CACHE(rp))
 253                 nfs_purge_rddir_cache(vp);
 254 }
 255 
 256 /*
 257  * Purge the readdir cache of all entries
 258  */
 259 void
 260 nfs_purge_rddir_cache(vnode_t *vp)
 261 {
 262         rnode_t *rp;
 263         rddir_cache *rdc;
 264         rddir_cache *nrdc;
 265 
 266         rp = VTOR(vp);
 267 top:
 268         mutex_enter(&rp->r_statelock);
 269         rp->r_direof = NULL;
 270         rp->r_flags &= ~RLOOKUP;
 271         rp->r_flags |= RREADDIRPLUS;
 272         rdc = avl_first(&rp->r_dir);
 273         while (rdc != NULL) {
 274                 nrdc = AVL_NEXT(&rp->r_dir, rdc);
 275                 avl_remove(&rp->r_dir, rdc);
 276                 rddir_cache_rele(rdc);
 277                 rdc = nrdc;
 278         }
 279         mutex_exit(&rp->r_statelock);
 280 }
 281 
 282 /*
 283  * Do a cache check based on the post-operation attributes.
 284  * Then make them the new cached attributes.  If no attributes
 285  * were returned, then mark the attributes as timed out.
 286  */
 287 void
 288 nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr)
 289 {
 290         vattr_t attr;
 291 
 292         if (!poap->attributes) {
 293                 PURGE_ATTRCACHE(vp);
 294                 return;
 295         }
 296         (void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr);
 297 }
 298 
 299 /*
 300  * Same as above, but using a vattr
 301  */
 302 void
 303 nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t,
 304     cred_t *cr)
 305 {
 306         if (!poap->attributes) {
 307                 PURGE_ATTRCACHE(vp);
 308                 return;
 309         }
 310         nfs_attr_cache(vp, poap->fres.vap, t, cr);
 311 }
 312 
 313 /*
 314  * Do a cache check based on the weak cache consistency attributes.
 315  * These consist of a small set of pre-operation attributes and the
 316  * full set of post-operation attributes.
 317  *
 318  * If we are given the pre-operation attributes, then use them to
 319  * check the validity of the various caches.  Then, if we got the
 320  * post-operation attributes, make them the new cached attributes.
 321  * If we didn't get the post-operation attributes, then mark the
 322  * attribute cache as timed out so that the next reference will
 323  * cause a GETATTR to the server to refresh with the current
 324  * attributes.
 325  *
 326  * Otherwise, if we didn't get the pre-operation attributes, but
 327  * we did get the post-operation attributes, then use these
 328  * attributes to check the validity of the various caches.  This
 329  * will probably cause a flush of the caches because if the
 330  * operation succeeded, the attributes of the object were changed
 331  * in some way from the old post-operation attributes.  This
 332  * should be okay because it is the safe thing to do.  After
 333  * checking the data caches, then we make these the new cached
 334  * attributes.
 335  *
 336  * Otherwise, we didn't get either the pre- or post-operation
 337  * attributes.  Simply mark the attribute cache as timed out so
 338  * the next reference will cause a GETATTR to the server to
 339  * refresh with the current attributes.
 340  *
 341  * If an error occurred trying to convert the over the wire
 342  * attributes to a vattr, then simply mark the attribute cache as
 343  * timed out.
 344  */
 345 void
 346 nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr)
 347 {
 348         vattr_t bva;
 349         vattr_t ava;
 350 
 351         if (wccp->after.attributes) {
 352                 if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) {
 353                         PURGE_ATTRCACHE(vp);
 354                         return;
 355                 }
 356                 if (wccp->before.attributes) {
 357                         bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds;
 358                         bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds;
 359                         bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds;
 360                         bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds;
 361                         bva.va_size = wccp->before.attr.size;
 362                         nfs3_attr_cache(vp, &bva, &ava, t, cr);
 363                 } else
 364                         nfs_attr_cache(vp, &ava, t, cr);
 365         } else {
 366                 PURGE_ATTRCACHE(vp);
 367         }
 368 }
 369 
 370 /*
 371  * Set attributes cache for given vnode using nfsattr.
 372  *
 373  * This routine does not do cache validation with the attributes.
 374  *
 375  * If an error occurred trying to convert the over the wire
 376  * attributes to a vattr, then simply mark the attribute cache as
 377  * timed out.
 378  */
 379 void
 380 nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t)
 381 {
 382         rnode_t *rp;
 383         struct vattr va;
 384 
 385         if (!nattr_to_vattr(vp, na, &va)) {
 386                 rp = VTOR(vp);
 387                 mutex_enter(&rp->r_statelock);
 388                 if (rp->r_mtime <= t)
 389                         nfs_attrcache_va(vp, &va);
 390                 mutex_exit(&rp->r_statelock);
 391         } else {
 392                 PURGE_ATTRCACHE(vp);
 393         }
 394 }
 395 
 396 /*
 397  * Set attributes cache for given vnode using fattr3.
 398  *
 399  * This routine does not do cache validation with the attributes.
 400  *
 401  * If an error occurred trying to convert the over the wire
 402  * attributes to a vattr, then simply mark the attribute cache as
 403  * timed out.
 404  */
 405 void
 406 nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t)
 407 {
 408         rnode_t *rp;
 409         struct vattr va;
 410 
 411         if (!fattr3_to_vattr(vp, na, &va)) {
 412                 rp = VTOR(vp);
 413                 mutex_enter(&rp->r_statelock);
 414                 if (rp->r_mtime <= t)
 415                         nfs_attrcache_va(vp, &va);
 416                 mutex_exit(&rp->r_statelock);
 417         } else {
 418                 PURGE_ATTRCACHE(vp);
 419         }
 420 }
 421 
 422 /*
 423  * Do a cache check based on attributes returned over the wire.  The
 424  * new attributes are cached.
 425  *
 426  * If an error occurred trying to convert the over the wire attributes
 427  * to a vattr, then just return that error.
 428  *
 429  * As a side affect, the vattr argument is filled in with the converted
 430  * attributes.
 431  */
 432 int
 433 nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t,
 434     cred_t *cr)
 435 {
 436         int error;
 437 
 438         error = nattr_to_vattr(vp, na, vap);
 439         if (error)
 440                 return (error);
 441         nfs_attr_cache(vp, vap, t, cr);
 442         return (0);
 443 }
 444 
 445 /*
 446  * Do a cache check based on attributes returned over the wire.  The
 447  * new attributes are cached.
 448  *
 449  * If an error occurred trying to convert the over the wire attributes
 450  * to a vattr, then just return that error.
 451  *
 452  * As a side affect, the vattr argument is filled in with the converted
 453  * attributes.
 454  */
 455 int
 456 nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr)
 457 {
 458         int error;
 459 
 460         error = fattr3_to_vattr(vp, na, vap);
 461         if (error)
 462                 return (error);
 463         nfs_attr_cache(vp, vap, t, cr);
 464         return (0);
 465 }
 466 
 467 /*
 468  * Use the passed in virtual attributes to check to see whether the
 469  * data and metadata caches are valid, cache the new attributes, and
 470  * then do the cache invalidation if required.
 471  *
 472  * The cache validation and caching of the new attributes is done
 473  * atomically via the use of the mutex, r_statelock.  If required,
 474  * the cache invalidation is done atomically w.r.t. the cache
 475  * validation and caching of the attributes via the pseudo lock,
 476  * r_serial.
 477  *
 478  * This routine is used to do cache validation and attributes caching
 479  * for operations with a single set of post operation attributes.
 480  */
 481 void
 482 nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr)
 483 {
 484         rnode_t *rp;
 485         int mtime_changed = 0;
 486         int ctime_changed = 0;
 487         vsecattr_t *vsp;
 488         int was_serial;
 489         len_t preattr_rsize;
 490         boolean_t writeattr_set = B_FALSE;
 491         boolean_t cachepurge_set = B_FALSE;
 492 
 493         rp = VTOR(vp);
 494 
 495         mutex_enter(&rp->r_statelock);
 496 
 497         if (rp->r_serial != curthread) {
 498                 klwp_t *lwp = ttolwp(curthread);
 499 
 500                 was_serial = 0;
 501                 if (lwp != NULL)
 502                         lwp->lwp_nostop++;
 503                 while (rp->r_serial != NULL) {
 504                         if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
 505                                 mutex_exit(&rp->r_statelock);
 506                                 if (lwp != NULL)
 507                                         lwp->lwp_nostop--;
 508                                 return;
 509                         }
 510                 }
 511                 if (lwp != NULL)
 512                         lwp->lwp_nostop--;
 513         } else
 514                 was_serial = 1;
 515 
 516         if (rp->r_mtime > t) {
 517                 if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
 518                         PURGE_ATTRCACHE_LOCKED(rp);
 519                 mutex_exit(&rp->r_statelock);
 520                 return;
 521         }
 522 
 523         /*
 524          * Write thread after writing data to file on remote server,
 525          * will always set RWRITEATTR to indicate that file on remote
 526          * server was modified with a WRITE operation and would have
 527          * marked attribute cache as timed out. If RWRITEATTR
 528          * is set, then do not check for mtime and ctime change.
 529          */
 530         if (!(rp->r_flags & RWRITEATTR)) {
 531                 if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
 532                         mtime_changed = 1;
 533 
 534                 if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec ||
 535                     rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec)
 536                         ctime_changed = 1;
 537         } else {
 538                 writeattr_set = B_TRUE;
 539         }
 540 
 541         preattr_rsize = rp->r_size;
 542 
 543         nfs_attrcache_va(vp, vap);
 544 
 545         /*
 546          * If we have updated filesize in nfs_attrcache_va, as soon as we
 547          * drop statelock we will be in transition of purging all
 548          * our caches and updating them. It is possible for another
 549          * thread to pick this new file size and read in zeroed data.
 550          * stall other threads till cache purge is complete.
 551          */
 552         if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
 553                 /*
 554                  * If RWRITEATTR was set and we have updated the file
 555                  * size, Server's returned file size need not necessarily
 556                  * be because of this Client's WRITE. We need to purge
 557                  * all caches.
 558                  */
 559                 if (writeattr_set)
 560                         mtime_changed = 1;
 561 
 562                 if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
 563                         rp->r_flags |= RINCACHEPURGE;
 564                         cachepurge_set = B_TRUE;
 565                 }
 566         }
 567 
 568         if (!mtime_changed && !ctime_changed) {
 569                 mutex_exit(&rp->r_statelock);
 570                 return;
 571         }
 572 
 573         rp->r_serial = curthread;
 574 
 575         mutex_exit(&rp->r_statelock);
 576 
 577         if (mtime_changed)
 578                 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
 579 
 580         if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
 581                 mutex_enter(&rp->r_statelock);
 582                 rp->r_flags &= ~RINCACHEPURGE;
 583                 cv_broadcast(&rp->r_cv);
 584                 mutex_exit(&rp->r_statelock);
 585                 cachepurge_set = B_FALSE;
 586         }
 587 
 588         if (ctime_changed) {
 589                 (void) nfs_access_purge_rp(rp);
 590                 if (rp->r_secattr != NULL) {
 591                         mutex_enter(&rp->r_statelock);
 592                         vsp = rp->r_secattr;
 593                         rp->r_secattr = NULL;
 594                         mutex_exit(&rp->r_statelock);
 595                         if (vsp != NULL)
 596                                 nfs_acl_free(vsp);
 597                 }
 598         }
 599 
 600         if (!was_serial) {
 601                 mutex_enter(&rp->r_statelock);
 602                 rp->r_serial = NULL;
 603                 cv_broadcast(&rp->r_cv);
 604                 mutex_exit(&rp->r_statelock);
 605         }
 606 }
 607 
 608 /*
 609  * Use the passed in "before" virtual attributes to check to see
 610  * whether the data and metadata caches are valid, cache the "after"
 611  * new attributes, and then do the cache invalidation if required.
 612  *
 613  * The cache validation and caching of the new attributes is done
 614  * atomically via the use of the mutex, r_statelock.  If required,
 615  * the cache invalidation is done atomically w.r.t. the cache
 616  * validation and caching of the attributes via the pseudo lock,
 617  * r_serial.
 618  *
 619  * This routine is used to do cache validation and attributes caching
 620  * for operations with both pre operation attributes and post operation
 621  * attributes.
 622  */
 623 static void
 624 nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t,
 625     cred_t *cr)
 626 {
 627         rnode_t *rp;
 628         int mtime_changed = 0;
 629         int ctime_changed = 0;
 630         vsecattr_t *vsp;
 631         int was_serial;
 632         len_t preattr_rsize;
 633         boolean_t writeattr_set = B_FALSE;
 634         boolean_t cachepurge_set = B_FALSE;
 635 
 636         rp = VTOR(vp);
 637 
 638         mutex_enter(&rp->r_statelock);
 639 
 640         if (rp->r_serial != curthread) {
 641                 klwp_t *lwp = ttolwp(curthread);
 642 
 643                 was_serial = 0;
 644                 if (lwp != NULL)
 645                         lwp->lwp_nostop++;
 646                 while (rp->r_serial != NULL) {
 647                         if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
 648                                 mutex_exit(&rp->r_statelock);
 649                                 if (lwp != NULL)
 650                                         lwp->lwp_nostop--;
 651                                 return;
 652                         }
 653                 }
 654                 if (lwp != NULL)
 655                         lwp->lwp_nostop--;
 656         } else
 657                 was_serial = 1;
 658 
 659         if (rp->r_mtime > t) {
 660                 if (!CACHE_VALID(rp, avap->va_mtime, avap->va_size))
 661                         PURGE_ATTRCACHE_LOCKED(rp);
 662                 mutex_exit(&rp->r_statelock);
 663                 return;
 664         }
 665 
 666         /*
 667          * Write thread after writing data to file on remote server,
 668          * will always set RWRITEATTR to indicate that file on remote
 669          * server was modified with a WRITE operation and would have
 670          * marked attribute cache as timed out. If RWRITEATTR
 671          * is set, then do not check for mtime and ctime change.
 672          */
 673         if (!(rp->r_flags & RWRITEATTR)) {
 674                 if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size))
 675                         mtime_changed = 1;
 676 
 677                 if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec ||
 678                     rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec)
 679                         ctime_changed = 1;
 680         } else {
 681                 writeattr_set = B_TRUE;
 682         }
 683 
 684         preattr_rsize = rp->r_size;
 685 
 686         nfs_attrcache_va(vp, avap);
 687 
 688         /*
 689          * If we have updated filesize in nfs_attrcache_va, as soon as we
 690          * drop statelock we will be in transition of purging all
 691          * our caches and updating them. It is possible for another
 692          * thread to pick this new file size and read in zeroed data.
 693          * stall other threads till cache purge is complete.
 694          */
 695         if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
 696                 /*
 697                  * If RWRITEATTR was set and we have updated the file
 698                  * size, Server's returned file size need not necessarily
 699                  * be because of this Client's WRITE. We need to purge
 700                  * all caches.
 701                  */
 702                 if (writeattr_set)
 703                         mtime_changed = 1;
 704 
 705                 if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
 706                         rp->r_flags |= RINCACHEPURGE;
 707                         cachepurge_set = B_TRUE;
 708                 }
 709         }
 710 
 711         if (!mtime_changed && !ctime_changed) {
 712                 mutex_exit(&rp->r_statelock);
 713                 return;
 714         }
 715 
 716         rp->r_serial = curthread;
 717 
 718         mutex_exit(&rp->r_statelock);
 719 
 720         if (mtime_changed)
 721                 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
 722 
 723         if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
 724                 mutex_enter(&rp->r_statelock);
 725                 rp->r_flags &= ~RINCACHEPURGE;
 726                 cv_broadcast(&rp->r_cv);
 727                 mutex_exit(&rp->r_statelock);
 728                 cachepurge_set = B_FALSE;
 729         }
 730 
 731         if (ctime_changed) {
 732                 (void) nfs_access_purge_rp(rp);
 733                 if (rp->r_secattr != NULL) {
 734                         mutex_enter(&rp->r_statelock);
 735                         vsp = rp->r_secattr;
 736                         rp->r_secattr = NULL;
 737                         mutex_exit(&rp->r_statelock);
 738                         if (vsp != NULL)
 739                                 nfs_acl_free(vsp);
 740                 }
 741         }
 742 
 743         if (!was_serial) {
 744                 mutex_enter(&rp->r_statelock);
 745                 rp->r_serial = NULL;
 746                 cv_broadcast(&rp->r_cv);
 747                 mutex_exit(&rp->r_statelock);
 748         }
 749 }
 750 
 751 /*
 752  * Set attributes cache for given vnode using virtual attributes.
 753  *
 754  * Set the timeout value on the attribute cache and fill it
 755  * with the passed in attributes.
 756  *
 757  * The caller must be holding r_statelock.
 758  */
 759 void
 760 nfs_attrcache_va(vnode_t *vp, struct vattr *va)
 761 {
 762         rnode_t *rp;
 763         mntinfo_t *mi;
 764         hrtime_t delta;
 765         hrtime_t now;
 766 
 767         rp = VTOR(vp);
 768 
 769         ASSERT(MUTEX_HELD(&rp->r_statelock));
 770 
 771         now = gethrtime();
 772 
 773         mi = VTOMI(vp);
 774 
 775         /*
 776          * Delta is the number of nanoseconds that we will
 777          * cache the attributes of the file.  It is based on
 778          * the number of nanoseconds since the last time that
 779          * we detected a change.  The assumption is that files
 780          * that changed recently are likely to change again.
 781          * There is a minimum and a maximum for regular files
 782          * and for directories which is enforced though.
 783          *
 784          * Using the time since last change was detected
 785          * eliminates direct comparison or calculation
 786          * using mixed client and server times.  NFS does
 787          * not make any assumptions regarding the client
 788          * and server clocks being synchronized.
 789          */
 790         if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
 791             va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
 792             va->va_size != rp->r_attr.va_size)
 793                 rp->r_mtime = now;
 794 
 795         if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE))
 796                 delta = 0;
 797         else {
 798                 delta = now - rp->r_mtime;
 799                 if (vp->v_type == VDIR) {
 800                         if (delta < mi->mi_acdirmin)
 801                                 delta = mi->mi_acdirmin;
 802                         else if (delta > mi->mi_acdirmax)
 803                                 delta = mi->mi_acdirmax;
 804                 } else {
 805                         if (delta < mi->mi_acregmin)
 806                                 delta = mi->mi_acregmin;
 807                         else if (delta > mi->mi_acregmax)
 808                                 delta = mi->mi_acregmax;
 809                 }
 810         }
 811         rp->r_attrtime = now + delta;
 812         rp->r_attr = *va;
 813         /*
 814          * Update the size of the file if there is no cached data or if
 815          * the cached data is clean and there is no data being written
 816          * out.
 817          */
 818         if (rp->r_size != va->va_size &&
 819             (!vn_has_cached_data(vp) ||
 820             (!(rp->r_flags & RDIRTY) && rp->r_count == 0)))
 821                 rp->r_size = va->va_size;
 822         nfs_setswaplike(vp, va);
 823         rp->r_flags &= ~RWRITEATTR;
 824 }
 825 
 826 /*
 827  * Fill in attribute from the cache.
 828  * If valid, then return 0 to indicate that no error occurred,
 829  * otherwise return 1 to indicate that an error occurred.
 830  */
 831 static int
 832 nfs_getattr_cache(vnode_t *vp, struct vattr *vap)
 833 {
 834         rnode_t *rp;
 835         uint_t mask = vap->va_mask;
 836 
 837         rp = VTOR(vp);
 838         mutex_enter(&rp->r_statelock);
 839         if (ATTRCACHE_VALID(vp)) {
 840                 /*
 841                  * Cached attributes are valid
 842                  */
 843                 *vap = rp->r_attr;
 844                 /*
 845                  * Set the caller's va_mask to the set of attributes
 846                  * that were requested ANDed with the attributes that
 847                  * are available.  If attributes were requested that
 848                  * are not available, those bits must be turned off
 849                  * in the callers va_mask.
 850                  */
 851                 vap->va_mask &= mask;
 852                 mutex_exit(&rp->r_statelock);
 853                 return (0);
 854         }
 855         mutex_exit(&rp->r_statelock);
 856         return (1);
 857 }
 858 
 859 /*
 860  * Get attributes over-the-wire and update attributes cache
 861  * if no error occurred in the over-the-wire operation.
 862  * Return 0 if successful, otherwise error.
 863  */
 864 int
 865 nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
 866 {
 867         int error;
 868         struct nfsattrstat ns;
 869         int douprintf;
 870         mntinfo_t *mi;
 871         failinfo_t fi;
 872         hrtime_t t;
 873 
 874         mi = VTOMI(vp);
 875         fi.vp = vp;
 876         fi.fhp = NULL;          /* no need to update, filehandle not copied */
 877         fi.copyproc = nfscopyfh;
 878         fi.lookupproc = nfslookup;
 879         fi.xattrdirproc = acl_getxattrdir2;
 880 
 881         if (mi->mi_flags & MI_ACL) {
 882                 error = acl_getattr2_otw(vp, vap, cr);
 883                 if (mi->mi_flags & MI_ACL)
 884                         return (error);
 885         }
 886 
 887         douprintf = 1;
 888 
 889         t = gethrtime();
 890 
 891         error = rfs2call(mi, RFS_GETATTR,
 892             xdr_fhandle, (caddr_t)VTOFH(vp),
 893             xdr_attrstat, (caddr_t)&ns, cr,
 894             &douprintf, &ns.ns_status, 0, &fi);
 895 
 896         if (!error) {
 897                 error = geterrno(ns.ns_status);
 898                 if (!error)
 899                         error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr);
 900                 else {
 901                         PURGE_STALE_FH(error, vp, cr);
 902                 }
 903         }
 904 
 905         return (error);
 906 }
 907 
 908 /*
 909  * Return either cached ot remote attributes. If get remote attr
 910  * use them to check and invalidate caches, then cache the new attributes.
 911  */
 912 int
 913 nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
 914 {
 915         int error;
 916         rnode_t *rp;
 917 
 918         /*
 919          * If we've got cached attributes, we're done, otherwise go
 920          * to the server to get attributes, which will update the cache
 921          * in the process.
 922          */
 923         error = nfs_getattr_cache(vp, vap);
 924         if (error)
 925                 error = nfs_getattr_otw(vp, vap, cr);
 926 
 927         /* Return the client's view of file size */
 928         rp = VTOR(vp);
 929         mutex_enter(&rp->r_statelock);
 930         vap->va_size = rp->r_size;
 931         mutex_exit(&rp->r_statelock);
 932 
 933         return (error);
 934 }
 935 
 936 /*
 937  * Get attributes over-the-wire and update attributes cache
 938  * if no error occurred in the over-the-wire operation.
 939  * Return 0 if successful, otherwise error.
 940  */
 941 int
 942 nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
 943 {
 944         int error;
 945         GETATTR3args args;
 946         GETATTR3vres res;
 947         int douprintf;
 948         failinfo_t fi;
 949         hrtime_t t;
 950 
 951         args.object = *VTOFH3(vp);
 952         fi.vp = vp;
 953         fi.fhp = (caddr_t)&args.object;
 954         fi.copyproc = nfs3copyfh;
 955         fi.lookupproc = nfs3lookup;
 956         fi.xattrdirproc = acl_getxattrdir3;
 957         res.fres.vp = vp;
 958         res.fres.vap = vap;
 959 
 960         douprintf = 1;
 961 
 962         t = gethrtime();
 963 
 964         error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR,
 965             xdr_nfs_fh3, (caddr_t)&args,
 966             xdr_GETATTR3vres, (caddr_t)&res, cr,
 967             &douprintf, &res.status, 0, &fi);
 968 
 969         if (error)
 970                 return (error);
 971 
 972         error = geterrno3(res.status);
 973         if (error) {
 974                 PURGE_STALE_FH(error, vp, cr);
 975                 return (error);
 976         }
 977 
 978         /*
 979          * Catch status codes that indicate fattr3 to vattr translation failure
 980          */
 981         if (res.fres.status)
 982                 return (res.fres.status);
 983 
 984         nfs_attr_cache(vp, vap, t, cr);
 985         return (0);
 986 }
 987 
 988 /*
 989  * Return either cached or remote attributes. If get remote attr
 990  * use them to check and invalidate caches, then cache the new attributes.
 991  */
 992 int
 993 nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
 994 {
 995         int error;
 996         rnode_t *rp;
 997 
 998         /*
 999          * If we've got cached attributes, we're done, otherwise go
1000          * to the server to get attributes, which will update the cache
1001          * in the process.
1002          */
1003         error = nfs_getattr_cache(vp, vap);
1004         if (error)
1005                 error = nfs3_getattr_otw(vp, vap, cr);
1006 
1007         /* Return the client's view of file size */
1008         rp = VTOR(vp);
1009         mutex_enter(&rp->r_statelock);
1010         vap->va_size = rp->r_size;
1011         mutex_exit(&rp->r_statelock);
1012 
1013         return (error);
1014 }
1015 
1016 vtype_t nf_to_vt[] = {
1017         VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK
1018 };
1019 /*
1020  * Convert NFS Version 2 over the network attributes to the local
1021  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1022  * network representation and the local representation is done here.
1023  * Returns 0 for success, error if failed due to overflow.
1024  */
1025 int
1026 nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap)
1027 {
1028         /* overflow in time attributes? */
1029 #ifndef _LP64
1030         if (!NFS2_FATTR_TIME_OK(na))
1031                 return (EOVERFLOW);
1032 #endif
1033 
1034         vap->va_mask = AT_ALL;
1035 
1036         if (na->na_type < NFNON || na->na_type > NFSOC)
1037                 vap->va_type = VBAD;
1038         else
1039                 vap->va_type = nf_to_vt[na->na_type];
1040         vap->va_mode = na->na_mode;
1041         vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid;
1042         vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid;
1043         vap->va_fsid = vp->v_vfsp->vfs_dev;
1044         vap->va_nodeid = na->na_nodeid;
1045         vap->va_nlink = na->na_nlink;
1046         vap->va_size = na->na_size;       /* keep for cache validation */
1047         /*
1048          * nfs protocol defines times as unsigned so don't extend sign,
1049          * unless sysadmin set nfs_allow_preepoch_time.
1050          */
1051         NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec);
1052         vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000);
1053         NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec);
1054         vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000);
1055         NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec);
1056         vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000);
1057         /*
1058          * Shannon's law - uncompress the received dev_t
1059          * if the top half of is zero indicating a response
1060          * from an `older style' OS. Except for when it is a
1061          * `new style' OS sending the maj device of zero,
1062          * in which case the algorithm still works because the
1063          * fact that it is a new style server
1064          * is hidden by the minor device not being greater
1065          * than 255 (a requirement in this case).
1066          */
1067         if ((na->na_rdev & 0xffff0000) == 0)
1068                 vap->va_rdev = nfsv2_expdev(na->na_rdev);
1069         else
1070                 vap->va_rdev = expldev(na->na_rdev);
1071 
1072         vap->va_nblocks = na->na_blocks;
1073         switch (na->na_type) {
1074         case NFBLK:
1075                 vap->va_blksize = DEV_BSIZE;
1076                 break;
1077 
1078         case NFCHR:
1079                 vap->va_blksize = MAXBSIZE;
1080                 break;
1081 
1082         case NFSOC:
1083         default:
1084                 vap->va_blksize = na->na_blocksize;
1085                 break;
1086         }
1087         /*
1088          * This bit of ugliness is a hack to preserve the
1089          * over-the-wire protocols for named-pipe vnodes.
1090          * It remaps the special over-the-wire type to the
1091          * VFIFO type. (see note in nfs.h)
1092          */
1093         if (NA_ISFIFO(na)) {
1094                 vap->va_type = VFIFO;
1095                 vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO;
1096                 vap->va_rdev = 0;
1097                 vap->va_blksize = na->na_blocksize;
1098         }
1099         vap->va_seq = 0;
1100         return (0);
1101 }
1102 
1103 /*
1104  * Convert NFS Version 3 over the network attributes to the local
1105  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1106  * network representation and the local representation is done here.
1107  */
1108 vtype_t nf3_to_vt[] = {
1109         VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO
1110 };
1111 
1112 int
1113 fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap)
1114 {
1115 
1116 #ifndef _LP64
1117         /* overflow in time attributes? */
1118         if (!NFS3_FATTR_TIME_OK(na))
1119                 return (EOVERFLOW);
1120 #endif
1121         if (!NFS3_SIZE_OK(na->size))
1122                 /* file too big */
1123                 return (EFBIG);
1124 
1125         vap->va_mask = AT_ALL;
1126 
1127         if (na->type < NF3REG || na->type > NF3FIFO)
1128                 vap->va_type = VBAD;
1129         else
1130                 vap->va_type = nf3_to_vt[na->type];
1131         vap->va_mode = na->mode;
1132         vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid;
1133         vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid;
1134         vap->va_fsid = vp->v_vfsp->vfs_dev;
1135         vap->va_nodeid = na->fileid;
1136         vap->va_nlink = na->nlink;
1137         vap->va_size = na->size;
1138 
1139         /*
1140          * nfs protocol defines times as unsigned so don't extend sign,
1141          * unless sysadmin set nfs_allow_preepoch_time.
1142          */
1143         NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds);
1144         vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds;
1145         NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds);
1146         vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds;
1147         NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds);
1148         vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds;
1149 
1150         switch (na->type) {
1151         case NF3BLK:
1152                 vap->va_rdev = makedevice(na->rdev.specdata1,
1153                     na->rdev.specdata2);
1154                 vap->va_blksize = DEV_BSIZE;
1155                 vap->va_nblocks = 0;
1156                 break;
1157         case NF3CHR:
1158                 vap->va_rdev = makedevice(na->rdev.specdata1,
1159                     na->rdev.specdata2);
1160                 vap->va_blksize = MAXBSIZE;
1161                 vap->va_nblocks = 0;
1162                 break;
1163         case NF3REG:
1164         case NF3DIR:
1165         case NF3LNK:
1166                 vap->va_rdev = 0;
1167                 vap->va_blksize = MAXBSIZE;
1168                 vap->va_nblocks = (u_longlong_t)
1169                     ((na->used + (size3)DEV_BSIZE - (size3)1) /
1170                     (size3)DEV_BSIZE);
1171                 break;
1172         case NF3SOCK:
1173         case NF3FIFO:
1174         default:
1175                 vap->va_rdev = 0;
1176                 vap->va_blksize = MAXBSIZE;
1177                 vap->va_nblocks = 0;
1178                 break;
1179         }
1180         vap->va_seq = 0;
1181         return (0);
1182 }
1183 
1184 /*
1185  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1186  * for the demand-based allocation of async threads per-mount.  The
1187  * nfs_async_timeout is the amount of time a thread will live after it
1188  * becomes idle, unless new I/O requests are received before the thread
1189  * dies.  See nfs_async_putpage and nfs_async_start.
1190  */
1191 
1192 volatile int nfs_async_timeout = -1;    /* uninitialized */
1193 
1194 static void     nfs_async_start(struct vfs *);
1195 static void     nfs_async_pgops_start(struct vfs *);
1196 static void     nfs_async_common_start(struct vfs *, int);
1197 
1198 static void
1199 free_async_args(struct nfs_async_reqs *args)
1200 {
1201         rnode_t *rp;
1202 
1203         if (args->a_io != NFS_INACTIVE) {
1204                 rp = VTOR(args->a_vp);
1205                 mutex_enter(&rp->r_statelock);
1206                 rp->r_count--;
1207                 if (args->a_io == NFS_PUTAPAGE ||
1208                     args->a_io == NFS_PAGEIO)
1209                         rp->r_awcount--;
1210                 cv_broadcast(&rp->r_cv);
1211                 mutex_exit(&rp->r_statelock);
1212                 VN_RELE(args->a_vp);
1213         }
1214         crfree(args->a_cred);
1215         kmem_free(args, sizeof (*args));
1216 }
1217 
1218 /*
1219  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1220  * pageout(), running in the global zone, have legitimate reasons to do
1221  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1222  * use of a a per-mount "asynchronous requests manager thread" which is
1223  * signaled by the various asynchronous work routines when there is
1224  * asynchronous work to be done.  It is responsible for creating new
1225  * worker threads if necessary, and notifying existing worker threads
1226  * that there is work to be done.
1227  *
1228  * In other words, it will "take the specifications from the customers and
1229  * give them to the engineers."
1230  *
1231  * Worker threads die off of their own accord if they are no longer
1232  * needed.
1233  *
1234  * This thread is killed when the zone is going away or the filesystem
1235  * is being unmounted.
1236  */
1237 void
1238 nfs_async_manager(vfs_t *vfsp)
1239 {
1240         callb_cpr_t cprinfo;
1241         mntinfo_t *mi;
1242         uint_t max_threads;
1243 
1244         mi = VFTOMI(vfsp);
1245 
1246         CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1247             "nfs_async_manager");
1248 
1249         mutex_enter(&mi->mi_async_lock);
1250         /*
1251          * We want to stash the max number of threads that this mount was
1252          * allowed so we can use it later when the variable is set to zero as
1253          * part of the zone/mount going away.
1254          *
1255          * We want to be able to create at least one thread to handle
1256          * asynchronous inactive calls.
1257          */
1258         max_threads = MAX(mi->mi_max_threads, 1);
1259         /*
1260          * We don't want to wait for mi_max_threads to go to zero, since that
1261          * happens as part of a failed unmount, but this thread should only
1262          * exit when the mount/zone is really going away.
1263          *
1264          * Once MI_ASYNC_MGR_STOP is set, no more async operations will be
1265          * attempted: the various _async_*() functions know to do things
1266          * inline if mi_max_threads == 0.  Henceforth we just drain out the
1267          * outstanding requests.
1268          *
1269          * Note that we still create zthreads even if we notice the zone is
1270          * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone
1271          * shutdown sequence to take slightly longer in some cases, but
1272          * doesn't violate the protocol, as all threads will exit as soon as
1273          * they're done processing the remaining requests.
1274          */
1275         for (;;) {
1276                 while (mi->mi_async_req_count > 0) {
1277                         /*
1278                          * Paranoia: If the mount started out having
1279                          * (mi->mi_max_threads == 0), and the value was
1280                          * later changed (via a debugger or somesuch),
1281                          * we could be confused since we will think we
1282                          * can't create any threads, and the calling
1283                          * code (which looks at the current value of
1284                          * mi->mi_max_threads, now non-zero) thinks we
1285                          * can.
1286                          *
1287                          * So, because we're paranoid, we create threads
1288                          * up to the maximum of the original and the
1289                          * current value. This means that future
1290                          * (debugger-induced) lowerings of
1291                          * mi->mi_max_threads are ignored for our
1292                          * purposes, but who told them they could change
1293                          * random values on a live kernel anyhow?
1294                          */
1295                         if (mi->mi_threads[NFS_ASYNC_QUEUE] <
1296                             MAX(mi->mi_max_threads, max_threads)) {
1297                                 mi->mi_threads[NFS_ASYNC_QUEUE]++;
1298                                 mutex_exit(&mi->mi_async_lock);
1299                                 VFS_HOLD(vfsp); /* hold for new thread */
1300                                 (void) zthread_create(NULL, 0, nfs_async_start,
1301                                     vfsp, 0, minclsyspri);
1302                                 mutex_enter(&mi->mi_async_lock);
1303                         } else if (mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] <
1304                             NUM_ASYNC_PGOPS_THREADS) {
1305                                 mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE]++;
1306                                 mutex_exit(&mi->mi_async_lock);
1307                                 VFS_HOLD(vfsp); /* hold for new thread */
1308                                 (void) zthread_create(NULL, 0,
1309                                     nfs_async_pgops_start, vfsp, 0,
1310                                     minclsyspri);
1311                                 mutex_enter(&mi->mi_async_lock);
1312                         }
1313                         NFS_WAKE_ASYNC_WORKER(mi->mi_async_work_cv);
1314                         ASSERT(mi->mi_async_req_count != 0);
1315                         mi->mi_async_req_count--;
1316                 }
1317 
1318                 mutex_enter(&mi->mi_lock);
1319                 if (mi->mi_flags & MI_ASYNC_MGR_STOP) {
1320                         mutex_exit(&mi->mi_lock);
1321                         break;
1322                 }
1323                 mutex_exit(&mi->mi_lock);
1324 
1325                 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1326                 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1327                 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1328         }
1329         /*
1330          * Let everyone know we're done.
1331          */
1332         mi->mi_manager_thread = NULL;
1333         cv_broadcast(&mi->mi_async_cv);
1334 
1335         /*
1336          * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1337          * since CALLB_CPR_EXIT is actually responsible for releasing
1338          * 'mi_async_lock'.
1339          */
1340         CALLB_CPR_EXIT(&cprinfo);
1341         VFS_RELE(vfsp); /* release thread's hold */
1342         zthread_exit();
1343 }
1344 
1345 /*
1346  * Signal (and wait for) the async manager thread to clean up and go away.
1347  */
1348 void
1349 nfs_async_manager_stop(vfs_t *vfsp)
1350 {
1351         mntinfo_t *mi = VFTOMI(vfsp);
1352 
1353         mutex_enter(&mi->mi_async_lock);
1354         mutex_enter(&mi->mi_lock);
1355         mi->mi_flags |= MI_ASYNC_MGR_STOP;
1356         mutex_exit(&mi->mi_lock);
1357         cv_broadcast(&mi->mi_async_reqs_cv);
1358         while (mi->mi_manager_thread != NULL)
1359                 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1360         mutex_exit(&mi->mi_async_lock);
1361 }
1362 
1363 int
1364 nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1365     struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *, u_offset_t,
1366     caddr_t, struct seg *, cred_t *))
1367 {
1368         rnode_t *rp;
1369         mntinfo_t *mi;
1370         struct nfs_async_reqs *args;
1371 
1372         rp = VTOR(vp);
1373         ASSERT(rp->r_freef == NULL);
1374 
1375         mi = VTOMI(vp);
1376 
1377         /*
1378          * If addr falls in a different segment, don't bother doing readahead.
1379          */
1380         if (addr >= seg->s_base + seg->s_size)
1381                 return (-1);
1382 
1383         /*
1384          * If we can't allocate a request structure, punt on the readahead.
1385          */
1386         if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1387                 return (-1);
1388 
1389         /*
1390          * If a lock operation is pending, don't initiate any new
1391          * readaheads.  Otherwise, bump r_count to indicate the new
1392          * asynchronous I/O.
1393          */
1394         if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1395                 kmem_free(args, sizeof (*args));
1396                 return (-1);
1397         }
1398         mutex_enter(&rp->r_statelock);
1399         rp->r_count++;
1400         mutex_exit(&rp->r_statelock);
1401         nfs_rw_exit(&rp->r_lkserlock);
1402 
1403         args->a_next = NULL;
1404 #ifdef DEBUG
1405         args->a_queuer = curthread;
1406 #endif
1407         VN_HOLD(vp);
1408         args->a_vp = vp;
1409         ASSERT(cr != NULL);
1410         crhold(cr);
1411         args->a_cred = cr;
1412         args->a_io = NFS_READ_AHEAD;
1413         args->a_nfs_readahead = readahead;
1414         args->a_nfs_blkoff = blkoff;
1415         args->a_nfs_seg = seg;
1416         args->a_nfs_addr = addr;
1417 
1418         mutex_enter(&mi->mi_async_lock);
1419 
1420         /*
1421          * If asyncio has been disabled, don't bother readahead.
1422          */
1423         if (mi->mi_max_threads == 0) {
1424                 mutex_exit(&mi->mi_async_lock);
1425                 goto noasync;
1426         }
1427 
1428         /*
1429          * Link request structure into the async list and
1430          * wakeup async thread to do the i/o.
1431          */
1432         if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) {
1433                 mi->mi_async_reqs[NFS_READ_AHEAD] = args;
1434                 mi->mi_async_tail[NFS_READ_AHEAD] = args;
1435         } else {
1436                 mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args;
1437                 mi->mi_async_tail[NFS_READ_AHEAD] = args;
1438         }
1439 
1440         if (mi->mi_io_kstats) {
1441                 mutex_enter(&mi->mi_lock);
1442                 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1443                 mutex_exit(&mi->mi_lock);
1444         }
1445 
1446         mi->mi_async_req_count++;
1447         ASSERT(mi->mi_async_req_count != 0);
1448         cv_signal(&mi->mi_async_reqs_cv);
1449         mutex_exit(&mi->mi_async_lock);
1450         return (0);
1451 
1452 noasync:
1453         mutex_enter(&rp->r_statelock);
1454         rp->r_count--;
1455         cv_broadcast(&rp->r_cv);
1456         mutex_exit(&rp->r_statelock);
1457         VN_RELE(vp);
1458         crfree(cr);
1459         kmem_free(args, sizeof (*args));
1460         return (-1);
1461 }
1462 
1463 int
1464 nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1465     int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *, u_offset_t,
1466     size_t, int, cred_t *))
1467 {
1468         rnode_t *rp;
1469         mntinfo_t *mi;
1470         struct nfs_async_reqs *args;
1471 
1472         ASSERT(flags & B_ASYNC);
1473         ASSERT(vp->v_vfsp != NULL);
1474 
1475         rp = VTOR(vp);
1476         ASSERT(rp->r_count > 0);
1477 
1478         mi = VTOMI(vp);
1479 
1480         /*
1481          * If we can't allocate a request structure, do the putpage
1482          * operation synchronously in this thread's context.
1483          */
1484         if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1485                 goto noasync;
1486 
1487         args->a_next = NULL;
1488 #ifdef DEBUG
1489         args->a_queuer = curthread;
1490 #endif
1491         VN_HOLD(vp);
1492         args->a_vp = vp;
1493         ASSERT(cr != NULL);
1494         crhold(cr);
1495         args->a_cred = cr;
1496         args->a_io = NFS_PUTAPAGE;
1497         args->a_nfs_putapage = putapage;
1498         args->a_nfs_pp = pp;
1499         args->a_nfs_off = off;
1500         args->a_nfs_len = (uint_t)len;
1501         args->a_nfs_flags = flags;
1502 
1503         mutex_enter(&mi->mi_async_lock);
1504 
1505         /*
1506          * If asyncio has been disabled, then make a synchronous request.
1507          * This check is done a second time in case async io was diabled
1508          * while this thread was blocked waiting for memory pressure to
1509          * reduce or for the queue to drain.
1510          */
1511         if (mi->mi_max_threads == 0) {
1512                 mutex_exit(&mi->mi_async_lock);
1513                 goto noasync;
1514         }
1515 
1516         /*
1517          * Link request structure into the async list and
1518          * wakeup async thread to do the i/o.
1519          */
1520         if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) {
1521                 mi->mi_async_reqs[NFS_PUTAPAGE] = args;
1522                 mi->mi_async_tail[NFS_PUTAPAGE] = args;
1523         } else {
1524                 mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args;
1525                 mi->mi_async_tail[NFS_PUTAPAGE] = args;
1526         }
1527 
1528         mutex_enter(&rp->r_statelock);
1529         rp->r_count++;
1530         rp->r_awcount++;
1531         mutex_exit(&rp->r_statelock);
1532 
1533         if (mi->mi_io_kstats) {
1534                 mutex_enter(&mi->mi_lock);
1535                 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1536                 mutex_exit(&mi->mi_lock);
1537         }
1538 
1539         mi->mi_async_req_count++;
1540         ASSERT(mi->mi_async_req_count != 0);
1541         cv_signal(&mi->mi_async_reqs_cv);
1542         mutex_exit(&mi->mi_async_lock);
1543         return (0);
1544 
1545 noasync:
1546         if (args != NULL) {
1547                 VN_RELE(vp);
1548                 crfree(cr);
1549                 kmem_free(args, sizeof (*args));
1550         }
1551 
1552         if (curproc == proc_pageout || curproc == proc_fsflush) {
1553                 /*
1554                  * If we get here in the context of the pageout/fsflush,
1555                  * we refuse to do a sync write, because this may hang
1556                  * pageout (and the machine). In this case, we just
1557                  * re-mark the page as dirty and punt on the page.
1558                  *
1559                  * Make sure B_FORCE isn't set.  We can re-mark the
1560                  * pages as dirty and unlock the pages in one swoop by
1561                  * passing in B_ERROR to pvn_write_done().  However,
1562                  * we should make sure B_FORCE isn't set - we don't
1563                  * want the page tossed before it gets written out.
1564                  */
1565                 if (flags & B_FORCE)
1566                         flags &= ~(B_INVAL | B_FORCE);
1567                 pvn_write_done(pp, flags | B_ERROR);
1568                 return (0);
1569         }
1570         if (nfs_zone() != mi->mi_zone) {
1571                 /*
1572                  * So this was a cross-zone sync putpage.  We pass in B_ERROR
1573                  * to pvn_write_done() to re-mark the pages as dirty and unlock
1574                  * them.
1575                  *
1576                  * We don't want to clear B_FORCE here as the caller presumably
1577                  * knows what they're doing if they set it.
1578                  */
1579                 pvn_write_done(pp, flags | B_ERROR);
1580                 return (EPERM);
1581         }
1582         return ((*putapage)(vp, pp, off, len, flags, cr));
1583 }
1584 
1585 int
1586 nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1587     int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1588     size_t, int, cred_t *))
1589 {
1590         rnode_t *rp;
1591         mntinfo_t *mi;
1592         struct nfs_async_reqs *args;
1593 
1594         ASSERT(flags & B_ASYNC);
1595         ASSERT(vp->v_vfsp != NULL);
1596 
1597         rp = VTOR(vp);
1598         ASSERT(rp->r_count > 0);
1599 
1600         mi = VTOMI(vp);
1601 
1602         /*
1603          * If we can't allocate a request structure, do the pageio
1604          * request synchronously in this thread's context.
1605          */
1606         if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1607                 goto noasync;
1608 
1609         args->a_next = NULL;
1610 #ifdef DEBUG
1611         args->a_queuer = curthread;
1612 #endif
1613         VN_HOLD(vp);
1614         args->a_vp = vp;
1615         ASSERT(cr != NULL);
1616         crhold(cr);
1617         args->a_cred = cr;
1618         args->a_io = NFS_PAGEIO;
1619         args->a_nfs_pageio = pageio;
1620         args->a_nfs_pp = pp;
1621         args->a_nfs_off = io_off;
1622         args->a_nfs_len = (uint_t)io_len;
1623         args->a_nfs_flags = flags;
1624 
1625         mutex_enter(&mi->mi_async_lock);
1626 
1627         /*
1628          * If asyncio has been disabled, then make a synchronous request.
1629          * This check is done a second time in case async io was diabled
1630          * while this thread was blocked waiting for memory pressure to
1631          * reduce or for the queue to drain.
1632          */
1633         if (mi->mi_max_threads == 0) {
1634                 mutex_exit(&mi->mi_async_lock);
1635                 goto noasync;
1636         }
1637 
1638         /*
1639          * Link request structure into the async list and
1640          * wakeup async thread to do the i/o.
1641          */
1642         if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) {
1643                 mi->mi_async_reqs[NFS_PAGEIO] = args;
1644                 mi->mi_async_tail[NFS_PAGEIO] = args;
1645         } else {
1646                 mi->mi_async_tail[NFS_PAGEIO]->a_next = args;
1647                 mi->mi_async_tail[NFS_PAGEIO] = args;
1648         }
1649 
1650         mutex_enter(&rp->r_statelock);
1651         rp->r_count++;
1652         rp->r_awcount++;
1653         mutex_exit(&rp->r_statelock);
1654 
1655         if (mi->mi_io_kstats) {
1656                 mutex_enter(&mi->mi_lock);
1657                 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1658                 mutex_exit(&mi->mi_lock);
1659         }
1660 
1661         mi->mi_async_req_count++;
1662         ASSERT(mi->mi_async_req_count != 0);
1663         cv_signal(&mi->mi_async_reqs_cv);
1664         mutex_exit(&mi->mi_async_lock);
1665         return (0);
1666 
1667 noasync:
1668         if (args != NULL) {
1669                 VN_RELE(vp);
1670                 crfree(cr);
1671                 kmem_free(args, sizeof (*args));
1672         }
1673 
1674         /*
1675          * If we can't do it ASYNC, for reads we do nothing (but cleanup
1676          * the page list), for writes we do it synchronously, except for
1677          * proc_pageout/proc_fsflush as described below.
1678          */
1679         if (flags & B_READ) {
1680                 pvn_read_done(pp, flags | B_ERROR);
1681                 return (0);
1682         }
1683 
1684         if (curproc == proc_pageout || curproc == proc_fsflush) {
1685                 /*
1686                  * If we get here in the context of the pageout/fsflush,
1687                  * we refuse to do a sync write, because this may hang
1688                  * pageout/fsflush (and the machine). In this case, we just
1689                  * re-mark the page as dirty and punt on the page.
1690                  *
1691                  * Make sure B_FORCE isn't set.  We can re-mark the
1692                  * pages as dirty and unlock the pages in one swoop by
1693                  * passing in B_ERROR to pvn_write_done().  However,
1694                  * we should make sure B_FORCE isn't set - we don't
1695                  * want the page tossed before it gets written out.
1696                  */
1697                 if (flags & B_FORCE)
1698                         flags &= ~(B_INVAL | B_FORCE);
1699                 pvn_write_done(pp, flags | B_ERROR);
1700                 return (0);
1701         }
1702 
1703         if (nfs_zone() != mi->mi_zone) {
1704                 /*
1705                  * So this was a cross-zone sync pageio.  We pass in B_ERROR
1706                  * to pvn_write_done() to re-mark the pages as dirty and unlock
1707                  * them.
1708                  *
1709                  * We don't want to clear B_FORCE here as the caller presumably
1710                  * knows what they're doing if they set it.
1711                  */
1712                 pvn_write_done(pp, flags | B_ERROR);
1713                 return (EPERM);
1714         }
1715         return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1716 }
1717 
1718 void
1719 nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr,
1720     int (*readdir)(vnode_t *, rddir_cache *, cred_t *))
1721 {
1722         rnode_t *rp;
1723         mntinfo_t *mi;
1724         struct nfs_async_reqs *args;
1725 
1726         rp = VTOR(vp);
1727         ASSERT(rp->r_freef == NULL);
1728 
1729         mi = VTOMI(vp);
1730 
1731         /*
1732          * If we can't allocate a request structure, do the readdir
1733          * operation synchronously in this thread's context.
1734          */
1735         if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1736                 goto noasync;
1737 
1738         args->a_next = NULL;
1739 #ifdef DEBUG
1740         args->a_queuer = curthread;
1741 #endif
1742         VN_HOLD(vp);
1743         args->a_vp = vp;
1744         ASSERT(cr != NULL);
1745         crhold(cr);
1746         args->a_cred = cr;
1747         args->a_io = NFS_READDIR;
1748         args->a_nfs_readdir = readdir;
1749         args->a_nfs_rdc = rdc;
1750 
1751         mutex_enter(&mi->mi_async_lock);
1752 
1753         /*
1754          * If asyncio has been disabled, then make a synchronous request.
1755          */
1756         if (mi->mi_max_threads == 0) {
1757                 mutex_exit(&mi->mi_async_lock);
1758                 goto noasync;
1759         }
1760 
1761         /*
1762          * Link request structure into the async list and
1763          * wakeup async thread to do the i/o.
1764          */
1765         if (mi->mi_async_reqs[NFS_READDIR] == NULL) {
1766                 mi->mi_async_reqs[NFS_READDIR] = args;
1767                 mi->mi_async_tail[NFS_READDIR] = args;
1768         } else {
1769                 mi->mi_async_tail[NFS_READDIR]->a_next = args;
1770                 mi->mi_async_tail[NFS_READDIR] = args;
1771         }
1772 
1773         mutex_enter(&rp->r_statelock);
1774         rp->r_count++;
1775         mutex_exit(&rp->r_statelock);
1776 
1777         if (mi->mi_io_kstats) {
1778                 mutex_enter(&mi->mi_lock);
1779                 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1780                 mutex_exit(&mi->mi_lock);
1781         }
1782 
1783         mi->mi_async_req_count++;
1784         ASSERT(mi->mi_async_req_count != 0);
1785         cv_signal(&mi->mi_async_reqs_cv);
1786         mutex_exit(&mi->mi_async_lock);
1787         return;
1788 
1789 noasync:
1790         if (args != NULL) {
1791                 VN_RELE(vp);
1792                 crfree(cr);
1793                 kmem_free(args, sizeof (*args));
1794         }
1795 
1796         rdc->entries = NULL;
1797         mutex_enter(&rp->r_statelock);
1798         ASSERT(rdc->flags & RDDIR);
1799         rdc->flags &= ~RDDIR;
1800         rdc->flags |= RDDIRREQ;
1801         /*
1802          * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT
1803          * is set, wakeup the thread sleeping in cv_wait_sig().
1804          * The woken up thread will reset the flag to RDDIR and will
1805          * continue with the readdir opeartion.
1806          */
1807         if (rdc->flags & RDDIRWAIT) {
1808                 rdc->flags &= ~RDDIRWAIT;
1809                 cv_broadcast(&rdc->cv);
1810         }
1811         mutex_exit(&rp->r_statelock);
1812         rddir_cache_rele(rdc);
1813 }
1814 
1815 void
1816 nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1817     cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3, cred_t *))
1818 {
1819         rnode_t *rp;
1820         mntinfo_t *mi;
1821         struct nfs_async_reqs *args;
1822         page_t *pp;
1823 
1824         rp = VTOR(vp);
1825         mi = VTOMI(vp);
1826 
1827         /*
1828          * If we can't allocate a request structure, do the commit
1829          * operation synchronously in this thread's context.
1830          */
1831         if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1832                 goto noasync;
1833 
1834         args->a_next = NULL;
1835 #ifdef DEBUG
1836         args->a_queuer = curthread;
1837 #endif
1838         VN_HOLD(vp);
1839         args->a_vp = vp;
1840         ASSERT(cr != NULL);
1841         crhold(cr);
1842         args->a_cred = cr;
1843         args->a_io = NFS_COMMIT;
1844         args->a_nfs_commit = commit;
1845         args->a_nfs_plist = plist;
1846         args->a_nfs_offset = offset;
1847         args->a_nfs_count = count;
1848 
1849         mutex_enter(&mi->mi_async_lock);
1850 
1851         /*
1852          * If asyncio has been disabled, then make a synchronous request.
1853          * This check is done a second time in case async io was diabled
1854          * while this thread was blocked waiting for memory pressure to
1855          * reduce or for the queue to drain.
1856          */
1857         if (mi->mi_max_threads == 0) {
1858                 mutex_exit(&mi->mi_async_lock);
1859                 goto noasync;
1860         }
1861 
1862         /*
1863          * Link request structure into the async list and
1864          * wakeup async thread to do the i/o.
1865          */
1866         if (mi->mi_async_reqs[NFS_COMMIT] == NULL) {
1867                 mi->mi_async_reqs[NFS_COMMIT] = args;
1868                 mi->mi_async_tail[NFS_COMMIT] = args;
1869         } else {
1870                 mi->mi_async_tail[NFS_COMMIT]->a_next = args;
1871                 mi->mi_async_tail[NFS_COMMIT] = args;
1872         }
1873 
1874         mutex_enter(&rp->r_statelock);
1875         rp->r_count++;
1876         mutex_exit(&rp->r_statelock);
1877 
1878         if (mi->mi_io_kstats) {
1879                 mutex_enter(&mi->mi_lock);
1880                 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1881                 mutex_exit(&mi->mi_lock);
1882         }
1883 
1884         mi->mi_async_req_count++;
1885         ASSERT(mi->mi_async_req_count != 0);
1886         cv_signal(&mi->mi_async_reqs_cv);
1887         mutex_exit(&mi->mi_async_lock);
1888         return;
1889 
1890 noasync:
1891         if (args != NULL) {
1892                 VN_RELE(vp);
1893                 crfree(cr);
1894                 kmem_free(args, sizeof (*args));
1895         }
1896 
1897         if (curproc == proc_pageout || curproc == proc_fsflush ||
1898             nfs_zone() != mi->mi_zone) {
1899                 while (plist != NULL) {
1900                         pp = plist;
1901                         page_sub(&plist, pp);
1902                         pp->p_fsdata = C_COMMIT;
1903                         page_unlock(pp);
1904                 }
1905                 return;
1906         }
1907         (*commit)(vp, plist, offset, count, cr);
1908 }
1909 
1910 void
1911 nfs_async_inactive(vnode_t *vp, cred_t *cr,
1912     void (*inactive)(vnode_t *, cred_t *, caller_context_t *))
1913 {
1914         mntinfo_t *mi;
1915         struct nfs_async_reqs *args;
1916 
1917         mi = VTOMI(vp);
1918 
1919         args = kmem_alloc(sizeof (*args), KM_SLEEP);
1920         args->a_next = NULL;
1921 #ifdef DEBUG
1922         args->a_queuer = curthread;
1923 #endif
1924         args->a_vp = vp;
1925         ASSERT(cr != NULL);
1926         crhold(cr);
1927         args->a_cred = cr;
1928         args->a_io = NFS_INACTIVE;
1929         args->a_nfs_inactive = inactive;
1930 
1931         /*
1932          * Note that we don't check mi->mi_max_threads here, since we
1933          * *need* to get rid of this vnode regardless of whether someone
1934          * set nfs3_max_threads/nfs_max_threads to zero in /etc/system.
1935          *
1936          * The manager thread knows about this and is willing to create
1937          * at least one thread to accommodate us.
1938          */
1939         mutex_enter(&mi->mi_async_lock);
1940         if (mi->mi_manager_thread == NULL) {
1941                 rnode_t *rp = VTOR(vp);
1942 
1943                 mutex_exit(&mi->mi_async_lock);
1944                 crfree(cr);     /* drop our reference */
1945                 kmem_free(args, sizeof (*args));
1946                 /*
1947                  * We can't do an over-the-wire call since we're in the wrong
1948                  * zone, so we need to clean up state as best we can and then
1949                  * throw away the vnode.
1950                  */
1951                 mutex_enter(&rp->r_statelock);
1952                 if (rp->r_unldvp != NULL) {
1953                         vnode_t *unldvp;
1954                         char *unlname;
1955                         cred_t *unlcred;
1956 
1957                         unldvp = rp->r_unldvp;
1958                         rp->r_unldvp = NULL;
1959                         unlname = rp->r_unlname;
1960                         rp->r_unlname = NULL;
1961                         unlcred = rp->r_unlcred;
1962                         rp->r_unlcred = NULL;
1963                         mutex_exit(&rp->r_statelock);
1964 
1965                         VN_RELE(unldvp);
1966                         kmem_free(unlname, MAXNAMELEN);
1967                         crfree(unlcred);
1968                 } else {
1969                         mutex_exit(&rp->r_statelock);
1970                 }
1971                 /*
1972                  * No need to explicitly throw away any cached pages.  The
1973                  * eventual rinactive() will attempt a synchronous
1974                  * VOP_PUTPAGE() which will immediately fail since the request
1975                  * is coming from the wrong zone, and then will proceed to call
1976                  * nfs_invalidate_pages() which will clean things up for us.
1977                  */
1978                 rp_addfree(VTOR(vp), cr);
1979                 return;
1980         }
1981 
1982         if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) {
1983                 mi->mi_async_reqs[NFS_INACTIVE] = args;
1984         } else {
1985                 mi->mi_async_tail[NFS_INACTIVE]->a_next = args;
1986         }
1987         mi->mi_async_tail[NFS_INACTIVE] = args;
1988         /*
1989          * Don't increment r_count, since we're trying to get rid of the vnode.
1990          */
1991 
1992         mi->mi_async_req_count++;
1993         ASSERT(mi->mi_async_req_count != 0);
1994         cv_signal(&mi->mi_async_reqs_cv);
1995         mutex_exit(&mi->mi_async_lock);
1996 }
1997 
1998 static void
1999 nfs_async_start(struct vfs *vfsp)
2000 {
2001         nfs_async_common_start(vfsp, NFS_ASYNC_QUEUE);
2002 }
2003 
2004 static void
2005 nfs_async_pgops_start(struct vfs *vfsp)
2006 {
2007         nfs_async_common_start(vfsp, NFS_ASYNC_PGOPS_QUEUE);
2008 }
2009 
2010 /*
2011  * The async queues for each mounted file system are arranged as a
2012  * set of queues, one for each async i/o type.  Requests are taken
2013  * from the queues in a round-robin fashion.  A number of consecutive
2014  * requests are taken from each queue before moving on to the next
2015  * queue.  This functionality may allow the NFS Version 2 server to do
2016  * write clustering, even if the client is mixing writes and reads
2017  * because it will take multiple write requests from the queue
2018  * before processing any of the other async i/o types.
2019  *
2020  * XXX The nfs_async_common_start thread is unsafe in the light of the present
2021  * model defined by cpr to suspend the system. Specifically over the
2022  * wire calls are cpr-unsafe. The thread should be reevaluated in
2023  * case of future updates to the cpr model.
2024  */
2025 static void
2026 nfs_async_common_start(struct vfs *vfsp, int async_queue)
2027 {
2028         struct nfs_async_reqs *args;
2029         mntinfo_t *mi = VFTOMI(vfsp);
2030         clock_t time_left = 1;
2031         callb_cpr_t cprinfo;
2032         int i;
2033         int async_types;
2034         kcondvar_t *async_work_cv;
2035 
2036         if (async_queue == NFS_ASYNC_QUEUE) {
2037                 async_types = NFS_ASYNC_TYPES;
2038                 async_work_cv = &mi->mi_async_work_cv[NFS_ASYNC_QUEUE];
2039         } else {
2040                 async_types = NFS_ASYNC_PGOPS_TYPES;
2041                 async_work_cv = &mi->mi_async_work_cv[NFS_ASYNC_PGOPS_QUEUE];
2042         }
2043 
2044         /*
2045          * Dynamic initialization of nfs_async_timeout to allow nfs to be
2046          * built in an implementation independent manner.
2047          */
2048         if (nfs_async_timeout == -1)
2049                 nfs_async_timeout = NFS_ASYNC_TIMEOUT;
2050 
2051         CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
2052 
2053         mutex_enter(&mi->mi_async_lock);
2054         for (;;) {
2055                 /*
2056                  * Find the next queue containing an entry.  We start
2057                  * at the current queue pointer and then round robin
2058                  * through all of them until we either find a non-empty
2059                  * queue or have looked through all of them.
2060                  */
2061                 for (i = 0; i < async_types; i++) {
2062                         args = *mi->mi_async_curr[async_queue];
2063                         if (args != NULL)
2064                                 break;
2065                         mi->mi_async_curr[async_queue]++;
2066                         if (mi->mi_async_curr[async_queue] ==
2067                             &mi->mi_async_reqs[async_types]) {
2068                                 mi->mi_async_curr[async_queue] =
2069                                     &mi->mi_async_reqs[0];
2070                         }
2071                 }
2072                 /*
2073                  * If we didn't find a entry, then block until woken up
2074                  * again and then look through the queues again.
2075                  */
2076                 if (args == NULL) {
2077                         /*
2078                          * Exiting is considered to be safe for CPR as well
2079                          */
2080                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
2081 
2082                         /*
2083                          * Wakeup thread waiting to unmount the file
2084                          * system only if all async threads are inactive.
2085                          *
2086                          * If we've timed-out and there's nothing to do,
2087                          * then get rid of this thread.
2088                          */
2089                         if (mi->mi_max_threads == 0 || time_left <= 0) {
2090                                 --mi->mi_threads[async_queue];
2091 
2092                                 if (mi->mi_threads[NFS_ASYNC_QUEUE] == 0 &&
2093                                     mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] == 0)
2094                                         cv_signal(&mi->mi_async_cv);
2095                                 CALLB_CPR_EXIT(&cprinfo);
2096                                 VFS_RELE(vfsp); /* release thread's hold */
2097                                 zthread_exit();
2098                                 /* NOTREACHED */
2099                         }
2100                         time_left = cv_reltimedwait(async_work_cv,
2101                             &mi->mi_async_lock, nfs_async_timeout,
2102                             TR_CLOCK_TICK);
2103 
2104                         CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
2105 
2106                         continue;
2107                 }
2108                 time_left = 1;
2109 
2110                 /*
2111                  * Remove the request from the async queue and then
2112                  * update the current async request queue pointer.  If
2113                  * the current queue is empty or we have removed enough
2114                  * consecutive entries from it, then reset the counter
2115                  * for this queue and then move the current pointer to
2116                  * the next queue.
2117                  */
2118                 *mi->mi_async_curr[async_queue] = args->a_next;
2119                 if (*mi->mi_async_curr[async_queue] == NULL ||
2120                     --mi->mi_async_clusters[args->a_io] == 0) {
2121                         mi->mi_async_clusters[args->a_io] =
2122                             mi->mi_async_init_clusters;
2123                         mi->mi_async_curr[async_queue]++;
2124                         if (mi->mi_async_curr[async_queue] ==
2125                             &mi->mi_async_reqs[async_types]) {
2126                                 mi->mi_async_curr[async_queue] =
2127                                     &mi->mi_async_reqs[0];
2128                         }
2129                 }
2130 
2131                 if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) {
2132                         mutex_enter(&mi->mi_lock);
2133                         kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
2134                         mutex_exit(&mi->mi_lock);
2135                 }
2136 
2137                 mutex_exit(&mi->mi_async_lock);
2138 
2139                 /*
2140                  * Obtain arguments from the async request structure.
2141                  */
2142                 if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) {
2143                         (*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff,
2144                             args->a_nfs_addr, args->a_nfs_seg,
2145                             args->a_cred);
2146                 } else if (args->a_io == NFS_PUTAPAGE) {
2147                         (void) (*args->a_nfs_putapage)(args->a_vp,
2148                             args->a_nfs_pp, args->a_nfs_off,
2149                             args->a_nfs_len, args->a_nfs_flags,
2150                             args->a_cred);
2151                 } else if (args->a_io == NFS_PAGEIO) {
2152                         (void) (*args->a_nfs_pageio)(args->a_vp,
2153                             args->a_nfs_pp, args->a_nfs_off,
2154                             args->a_nfs_len, args->a_nfs_flags,
2155                             args->a_cred);
2156                 } else if (args->a_io == NFS_READDIR) {
2157                         (void) ((*args->a_nfs_readdir)(args->a_vp,
2158                             args->a_nfs_rdc, args->a_cred));
2159                 } else if (args->a_io == NFS_COMMIT) {
2160                         (*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist,
2161                             args->a_nfs_offset, args->a_nfs_count,
2162                             args->a_cred);
2163                 } else if (args->a_io == NFS_INACTIVE) {
2164                         (*args->a_nfs_inactive)(args->a_vp, args->a_cred, NULL);
2165                 }
2166 
2167                 /*
2168                  * Now, release the vnode and free the credentials
2169                  * structure.
2170                  */
2171                 free_async_args(args);
2172                 /*
2173                  * Reacquire the mutex because it will be needed above.
2174                  */
2175                 mutex_enter(&mi->mi_async_lock);
2176         }
2177 }
2178 
2179 void
2180 nfs_async_stop(struct vfs *vfsp)
2181 {
2182         mntinfo_t *mi = VFTOMI(vfsp);
2183 
2184         /*
2185          * Wait for all outstanding async operations to complete and for the
2186          * worker threads to exit.
2187          */
2188         mutex_enter(&mi->mi_async_lock);
2189         mi->mi_max_threads = 0;
2190         NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2191         while (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2192             mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] != 0)
2193                 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2194         mutex_exit(&mi->mi_async_lock);
2195 }
2196 
2197 /*
2198  * nfs_async_stop_sig:
2199  * Wait for all outstanding putpage operation to complete. If a signal
2200  * is deliver we will abort and return non-zero. If we can put all the
2201  * pages we will return 0. This routine is called from nfs_unmount and
2202  * nfs3_unmount to make these operations interruptible.
2203  */
2204 int
2205 nfs_async_stop_sig(struct vfs *vfsp)
2206 {
2207         mntinfo_t *mi = VFTOMI(vfsp);
2208         ushort_t omax;
2209         int rval;
2210 
2211         /*
2212          * Wait for all outstanding async operations to complete and for the
2213          * worker threads to exit.
2214          */
2215         mutex_enter(&mi->mi_async_lock);
2216         omax = mi->mi_max_threads;
2217         mi->mi_max_threads = 0;
2218         /*
2219          * Tell all the worker threads to exit.
2220          */
2221         NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2222         while (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2223             mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] != 0) {
2224                 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock))
2225                         break;
2226         }
2227         rval = (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2228             mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE]  != 0); /* Interrupted */
2229         if (rval)
2230                 mi->mi_max_threads = omax;
2231         mutex_exit(&mi->mi_async_lock);
2232 
2233         return (rval);
2234 }
2235 
2236 int
2237 writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2238 {
2239         int pagecreate;
2240         int n;
2241         int saved_n;
2242         caddr_t saved_base;
2243         u_offset_t offset;
2244         int error;
2245         int sm_error;
2246         vnode_t *vp = RTOV(rp);
2247 
2248         ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2249         ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2250         if (!vpm_enable) {
2251                 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2252         }
2253 
2254         /*
2255          * Move bytes in at most PAGESIZE chunks. We must avoid
2256          * spanning pages in uiomove() because page faults may cause
2257          * the cache to be invalidated out from under us. The r_size is not
2258          * updated until after the uiomove. If we push the last page of a
2259          * file before r_size is correct, we will lose the data written past
2260          * the current (and invalid) r_size.
2261          */
2262         do {
2263                 offset = uio->uio_loffset;
2264                 pagecreate = 0;
2265 
2266                 /*
2267                  * n is the number of bytes required to satisfy the request
2268                  *   or the number of bytes to fill out the page.
2269                  */
2270                 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2271 
2272                 /*
2273                  * Check to see if we can skip reading in the page
2274                  * and just allocate the memory.  We can do this
2275                  * if we are going to rewrite the entire mapping
2276                  * or if we are going to write to or beyond the current
2277                  * end of file from the beginning of the mapping.
2278                  *
2279                  * The read of r_size is now protected by r_statelock.
2280                  */
2281                 mutex_enter(&rp->r_statelock);
2282                 /*
2283                  * When pgcreated is nonzero the caller has already done
2284                  * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2285                  * segkpm this means we already have at least one page
2286                  * created and mapped at base.
2287                  */
2288                 pagecreate = pgcreated ||
2289                     ((offset & PAGEOFFSET) == 0 &&
2290                     (n == PAGESIZE || ((offset + n) >= rp->r_size)));
2291 
2292                 mutex_exit(&rp->r_statelock);
2293                 if (!vpm_enable && pagecreate) {
2294                         /*
2295                          * The last argument tells segmap_pagecreate() to
2296                          * always lock the page, as opposed to sometimes
2297                          * returning with the page locked. This way we avoid a
2298                          * fault on the ensuing uiomove(), but also
2299                          * more importantly (to fix bug 1094402) we can
2300                          * call segmap_fault() to unlock the page in all
2301                          * cases. An alternative would be to modify
2302                          * segmap_pagecreate() to tell us when it is
2303                          * locking a page, but that's a fairly major
2304                          * interface change.
2305                          */
2306                         if (pgcreated == 0)
2307                                 (void) segmap_pagecreate(segkmap, base,
2308                                     (uint_t)n, 1);
2309                         saved_base = base;
2310                         saved_n = n;
2311                 }
2312 
2313                 /*
2314                  * The number of bytes of data in the last page can not
2315                  * be accurately be determined while page is being
2316                  * uiomove'd to and the size of the file being updated.
2317                  * Thus, inform threads which need to know accurately
2318                  * how much data is in the last page of the file.  They
2319                  * will not do the i/o immediately, but will arrange for
2320                  * the i/o to happen later when this modify operation
2321                  * will have finished.
2322                  */
2323                 ASSERT(!(rp->r_flags & RMODINPROGRESS));
2324                 mutex_enter(&rp->r_statelock);
2325                 rp->r_flags |= RMODINPROGRESS;
2326                 rp->r_modaddr = (offset & MAXBMASK);
2327                 mutex_exit(&rp->r_statelock);
2328 
2329                 if (vpm_enable) {
2330                         /*
2331                          * Copy data. If new pages are created, part of
2332                          * the page that is not written will be initizliazed
2333                          * with zeros.
2334                          */
2335                         error = vpm_data_copy(vp, offset, n, uio,
2336                             !pagecreate, NULL, 0, S_WRITE);
2337                 } else {
2338                         error = uiomove(base, n, UIO_WRITE, uio);
2339                 }
2340 
2341                 /*
2342                  * r_size is the maximum number of
2343                  * bytes known to be in the file.
2344                  * Make sure it is at least as high as the
2345                  * first unwritten byte pointed to by uio_loffset.
2346                  */
2347                 mutex_enter(&rp->r_statelock);
2348                 if (rp->r_size < uio->uio_loffset)
2349                         rp->r_size = uio->uio_loffset;
2350                 rp->r_flags &= ~RMODINPROGRESS;
2351                 rp->r_flags |= RDIRTY;
2352                 mutex_exit(&rp->r_statelock);
2353 
2354                 /* n = # of bytes written */
2355                 n = (int)(uio->uio_loffset - offset);
2356 
2357                 if (!vpm_enable) {
2358                         base += n;
2359                 }
2360                 tcount -= n;
2361                 /*
2362                  * If we created pages w/o initializing them completely,
2363                  * we need to zero the part that wasn't set up.
2364                  * This happens on a most EOF write cases and if
2365                  * we had some sort of error during the uiomove.
2366                  */
2367                 if (!vpm_enable && pagecreate) {
2368                         if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2369                                 (void) kzero(base, PAGESIZE - n);
2370 
2371                         if (pgcreated) {
2372                                 /*
2373                                  * Caller is responsible for this page,
2374                                  * it was not created in this loop.
2375                                  */
2376                                 pgcreated = 0;
2377                         } else {
2378                                 /*
2379                                  * For bug 1094402: segmap_pagecreate locks
2380                                  * page. Unlock it. This also unlocks the
2381                                  * pages allocated by page_create_va() in
2382                                  * segmap_pagecreate().
2383                                  */
2384                                 sm_error = segmap_fault(kas.a_hat, segkmap,
2385                                     saved_base, saved_n,
2386                                     F_SOFTUNLOCK, S_WRITE);
2387                                 if (error == 0)
2388                                         error = sm_error;
2389                         }
2390                 }
2391         } while (tcount > 0 && error == 0);
2392 
2393         return (error);
2394 }
2395 
2396 int
2397 nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2398 {
2399         rnode_t *rp;
2400         page_t *pp;
2401         u_offset_t eoff;
2402         u_offset_t io_off;
2403         size_t io_len;
2404         int error;
2405         int rdirty;
2406         int err;
2407 
2408         rp = VTOR(vp);
2409         ASSERT(rp->r_count > 0);
2410 
2411         if (!vn_has_cached_data(vp))
2412                 return (0);
2413 
2414         ASSERT(vp->v_type != VCHR);
2415 
2416         /*
2417          * If ROUTOFSPACE is set, then all writes turn into B_INVAL
2418          * writes.  B_FORCE is set to force the VM system to actually
2419          * invalidate the pages, even if the i/o failed.  The pages
2420          * need to get invalidated because they can't be written out
2421          * because there isn't any space left on either the server's
2422          * file system or in the user's disk quota.  The B_FREE bit
2423          * is cleared to avoid confusion as to whether this is a
2424          * request to place the page on the freelist or to destroy
2425          * it.
2426          */
2427         if ((rp->r_flags & ROUTOFSPACE) ||
2428             (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2429                 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2430 
2431         if (len == 0) {
2432                 /*
2433                  * If doing a full file synchronous operation, then clear
2434                  * the RDIRTY bit.  If a page gets dirtied while the flush
2435                  * is happening, then RDIRTY will get set again.  The
2436                  * RDIRTY bit must get cleared before the flush so that
2437                  * we don't lose this information.
2438                  *
2439                  * If there are no full file async write operations
2440                  * pending and RDIRTY bit is set, clear it.
2441                  */
2442                 if (off == (u_offset_t)0 &&
2443                     !(flags & B_ASYNC) &&
2444                     (rp->r_flags & RDIRTY)) {
2445                         mutex_enter(&rp->r_statelock);
2446                         rdirty = (rp->r_flags & RDIRTY);
2447                         rp->r_flags &= ~RDIRTY;
2448                         mutex_exit(&rp->r_statelock);
2449                 } else if (flags & B_ASYNC && off == (u_offset_t)0) {
2450                         mutex_enter(&rp->r_statelock);
2451                         if (rp->r_flags & RDIRTY && rp->r_awcount == 0) {
2452                                 rdirty = (rp->r_flags & RDIRTY);
2453                                 rp->r_flags &= ~RDIRTY;
2454                         }
2455                         mutex_exit(&rp->r_statelock);
2456                 } else
2457                         rdirty = 0;
2458 
2459                 /*
2460                  * Search the entire vp list for pages >= off, and flush
2461                  * the dirty pages.
2462                  */
2463                 error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2464                     flags, cr);
2465 
2466                 /*
2467                  * If an error occurred and the file was marked as dirty
2468                  * before and we aren't forcibly invalidating pages, then
2469                  * reset the RDIRTY flag.
2470                  */
2471                 if (error && rdirty &&
2472                     (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2473                         mutex_enter(&rp->r_statelock);
2474                         rp->r_flags |= RDIRTY;
2475                         mutex_exit(&rp->r_statelock);
2476                 }
2477         } else {
2478                 /*
2479                  * Do a range from [off...off + len) looking for pages
2480                  * to deal with.
2481                  */
2482                 error = 0;
2483 #ifdef lint
2484                 io_len = 0;
2485 #endif
2486                 eoff = off + len;
2487                 mutex_enter(&rp->r_statelock);
2488                 for (io_off = off; io_off < eoff && io_off < rp->r_size;
2489                     io_off += io_len) {
2490                         mutex_exit(&rp->r_statelock);
2491                         /*
2492                          * If we are not invalidating, synchronously
2493                          * freeing or writing pages use the routine
2494                          * page_lookup_nowait() to prevent reclaiming
2495                          * them from the free list.
2496                          */
2497                         if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2498                                 pp = page_lookup(vp, io_off,
2499                                     (flags & (B_INVAL | B_FREE)) ?
2500                                     SE_EXCL : SE_SHARED);
2501                         } else {
2502                                 pp = page_lookup_nowait(vp, io_off,
2503                                     (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2504                         }
2505 
2506                         if (pp == NULL || !pvn_getdirty(pp, flags))
2507                                 io_len = PAGESIZE;
2508                         else {
2509                                 err = (*rp->r_putapage)(vp, pp, &io_off,
2510                                     &io_len, flags, cr);
2511                                 if (!error)
2512                                         error = err;
2513                                 /*
2514                                  * "io_off" and "io_len" are returned as
2515                                  * the range of pages we actually wrote.
2516                                  * This allows us to skip ahead more quickly
2517                                  * since several pages may've been dealt
2518                                  * with by this iteration of the loop.
2519                                  */
2520                         }
2521                         mutex_enter(&rp->r_statelock);
2522                 }
2523                 mutex_exit(&rp->r_statelock);
2524         }
2525 
2526         return (error);
2527 }
2528 
2529 void
2530 nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2531 {
2532         rnode_t *rp;
2533 
2534         rp = VTOR(vp);
2535         mutex_enter(&rp->r_statelock);
2536         while (rp->r_flags & RTRUNCATE)
2537                 cv_wait(&rp->r_cv, &rp->r_statelock);
2538         rp->r_flags |= RTRUNCATE;
2539         if (off == (u_offset_t)0) {
2540                 rp->r_flags &= ~RDIRTY;
2541                 if (!(rp->r_flags & RSTALE))
2542                         rp->r_error = 0;
2543         }
2544         rp->r_truncaddr = off;
2545         mutex_exit(&rp->r_statelock);
2546         (void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2547             B_INVAL | B_TRUNC, cr);
2548         mutex_enter(&rp->r_statelock);
2549         rp->r_flags &= ~RTRUNCATE;
2550         cv_broadcast(&rp->r_cv);
2551         mutex_exit(&rp->r_statelock);
2552 }
2553 
2554 volatile int nfs_write_error_to_cons_only = 0;
2555 #define MSG(x)  (nfs_write_error_to_cons_only ? (x) : (x) + 1)
2556 
2557 /*
2558  * Print a file handle
2559  */
2560 void
2561 nfs_printfhandle(nfs_fhandle *fhp)
2562 {
2563         int *ip;
2564         char *buf;
2565         size_t bufsize;
2566         char *cp;
2567 
2568         /*
2569          * 13 == "(file handle:"
2570          * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2571          *      1 == ' '
2572          *      8 == maximum strlen of "%x"
2573          * 3 == ")\n\0"
2574          */
2575         bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2576         buf = kmem_alloc(bufsize, KM_NOSLEEP);
2577         if (buf == NULL)
2578                 return;
2579 
2580         cp = buf;
2581         (void) strcpy(cp, "(file handle:");
2582         while (*cp != '\0')
2583                 cp++;
2584         for (ip = (int *)fhp->fh_buf;
2585             ip < (int *)&fhp->fh_buf[fhp->fh_len];
2586             ip++) {
2587                 (void) sprintf(cp, " %x", *ip);
2588                 while (*cp != '\0')
2589                         cp++;
2590         }
2591         (void) strcpy(cp, ")\n");
2592 
2593         zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf);
2594 
2595         kmem_free(buf, bufsize);
2596 }
2597 
2598 /*
2599  * Notify the system administrator that an NFS write error has
2600  * occurred.
2601  */
2602 
2603 /* seconds between ENOSPC/EDQUOT messages */
2604 volatile clock_t nfs_write_error_interval = 5;
2605 
2606 void
2607 nfs_write_error(vnode_t *vp, int error, cred_t *cr)
2608 {
2609         mntinfo_t *mi;
2610         clock_t now;
2611 
2612         mi = VTOMI(vp);
2613         /*
2614          * In case of forced unmount or zone shutdown, do not print any
2615          * messages since it can flood the console with error messages.
2616          */
2617         if (FS_OR_ZONE_GONE(mi->mi_vfsp))
2618                 return;
2619 
2620         /*
2621          * No use in flooding the console with ENOSPC
2622          * messages from the same file system.
2623          */
2624         now = ddi_get_lbolt();
2625         if ((error != ENOSPC && error != EDQUOT) ||
2626             now - mi->mi_printftime > 0) {
2627                 zoneid_t zoneid = mi->mi_zone->zone_id;
2628 
2629 #ifdef DEBUG
2630                 nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2631                     mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL);
2632 #else
2633                 nfs_perror(error, "NFS write error on host %s: %m.\n",
2634                     VTOR(vp)->r_server->sv_hostname, NULL);
2635 #endif
2636                 if (error == ENOSPC || error == EDQUOT) {
2637                         zcmn_err(zoneid, CE_CONT,
2638                             MSG("^File: userid=%d, groupid=%d\n"),
2639                             crgetuid(cr), crgetgid(cr));
2640                         if (crgetuid(CRED()) != crgetuid(cr) ||
2641                             crgetgid(CRED()) != crgetgid(cr)) {
2642                                 zcmn_err(zoneid, CE_CONT,
2643                                     MSG("^User: userid=%d, groupid=%d\n"),
2644                                     crgetuid(CRED()), crgetgid(CRED()));
2645                         }
2646                         mi->mi_printftime = now +
2647                             nfs_write_error_interval * hz;
2648                 }
2649                 nfs_printfhandle(&VTOR(vp)->r_fh);
2650 #ifdef DEBUG
2651                 if (error == EACCES) {
2652                         zcmn_err(zoneid, CE_CONT,
2653                             MSG("^nfs_bio: cred is%s kcred\n"),
2654                             cr == kcred ? "" : " not");
2655                 }
2656 #endif
2657         }
2658 }
2659 
2660 /* ARGSUSED */
2661 static void *
2662 nfs_mi_init(zoneid_t zoneid)
2663 {
2664         struct mi_globals *mig;
2665 
2666         mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2667         mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2668         list_create(&mig->mig_list, sizeof (mntinfo_t),
2669             offsetof(mntinfo_t, mi_zone_node));
2670         mig->mig_destructor_called = B_FALSE;
2671         return (mig);
2672 }
2673 
2674 /*
2675  * Callback routine to tell all NFS mounts in the zone to stop creating new
2676  * threads.  Existing threads should exit.
2677  */
2678 /* ARGSUSED */
2679 static void
2680 nfs_mi_shutdown(zoneid_t zoneid, void *data)
2681 {
2682         struct mi_globals *mig = data;
2683         mntinfo_t *mi;
2684 
2685         ASSERT(mig != NULL);
2686 again:
2687         mutex_enter(&mig->mig_lock);
2688         for (mi = list_head(&mig->mig_list); mi != NULL;
2689             mi = list_next(&mig->mig_list, mi)) {
2690 
2691                 /*
2692                  * If we've done the shutdown work for this FS, skip.
2693                  * Once we go off the end of the list, we're done.
2694                  */
2695                 if (mi->mi_flags & MI_DEAD)
2696                         continue;
2697 
2698                 /*
2699                  * We will do work, so not done.  Get a hold on the FS.
2700                  */
2701                 VFS_HOLD(mi->mi_vfsp);
2702 
2703                 /*
2704                  * purge the DNLC for this filesystem
2705                  */
2706                 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2707 
2708                 mutex_enter(&mi->mi_async_lock);
2709                 /*
2710                  * Tell existing async worker threads to exit.
2711                  */
2712                 mi->mi_max_threads = 0;
2713                 NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2714                 /*
2715                  * Set MI_ASYNC_MGR_STOP so the async manager thread starts
2716                  * getting ready to exit when it's done with its current work.
2717                  * Also set MI_DEAD to note we've acted on this FS.
2718                  */
2719                 mutex_enter(&mi->mi_lock);
2720                 mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD);
2721                 mutex_exit(&mi->mi_lock);
2722                 /*
2723                  * Wake up the async manager thread.
2724                  */
2725                 cv_broadcast(&mi->mi_async_reqs_cv);
2726                 mutex_exit(&mi->mi_async_lock);
2727 
2728                 /*
2729                  * Drop lock and release FS, which may change list, then repeat.
2730                  * We're done when every mi has been done or the list is empty.
2731                  */
2732                 mutex_exit(&mig->mig_lock);
2733                 VFS_RELE(mi->mi_vfsp);
2734                 goto again;
2735         }
2736         mutex_exit(&mig->mig_lock);
2737 }
2738 
2739 static void
2740 nfs_mi_free_globals(struct mi_globals *mig)
2741 {
2742         list_destroy(&mig->mig_list);    /* makes sure the list is empty */
2743         mutex_destroy(&mig->mig_lock);
2744         kmem_free(mig, sizeof (*mig));
2745 
2746 }
2747 
2748 /* ARGSUSED */
2749 static void
2750 nfs_mi_destroy(zoneid_t zoneid, void *data)
2751 {
2752         struct mi_globals *mig = data;
2753 
2754         ASSERT(mig != NULL);
2755         mutex_enter(&mig->mig_lock);
2756         if (list_head(&mig->mig_list) != NULL) {
2757                 /* Still waiting for VFS_FREEVFS() */
2758                 mig->mig_destructor_called = B_TRUE;
2759                 mutex_exit(&mig->mig_lock);
2760                 return;
2761         }
2762         nfs_mi_free_globals(mig);
2763 }
2764 
2765 /*
2766  * Add an NFS mount to the per-zone list of NFS mounts.
2767  */
2768 void
2769 nfs_mi_zonelist_add(mntinfo_t *mi)
2770 {
2771         struct mi_globals *mig;
2772 
2773         mig = zone_getspecific(mi_list_key, mi->mi_zone);
2774         mutex_enter(&mig->mig_lock);
2775         list_insert_head(&mig->mig_list, mi);
2776         mutex_exit(&mig->mig_lock);
2777 }
2778 
2779 /*
2780  * Remove an NFS mount from the per-zone list of NFS mounts.
2781  */
2782 static void
2783 nfs_mi_zonelist_remove(mntinfo_t *mi)
2784 {
2785         struct mi_globals *mig;
2786 
2787         mig = zone_getspecific(mi_list_key, mi->mi_zone);
2788         mutex_enter(&mig->mig_lock);
2789         list_remove(&mig->mig_list, mi);
2790         /*
2791          * We can be called asynchronously by VFS_FREEVFS() after the zone
2792          * shutdown/destroy callbacks have executed; if so, clean up the zone's
2793          * mi globals.
2794          */
2795         if (list_head(&mig->mig_list) == NULL &&
2796             mig->mig_destructor_called == B_TRUE) {
2797                 nfs_mi_free_globals(mig);
2798                 return;
2799         }
2800         mutex_exit(&mig->mig_lock);
2801 }
2802 
2803 /*
2804  * NFS Client initialization routine.  This routine should only be called
2805  * once.  It performs the following tasks:
2806  *      - Initalize all global locks
2807  *      - Call sub-initialization routines (localize access to variables)
2808  */
2809 int
2810 nfs_clntinit(void)
2811 {
2812 #ifdef DEBUG
2813         static boolean_t nfs_clntup = B_FALSE;
2814 #endif
2815         int error;
2816 
2817 #ifdef DEBUG
2818         ASSERT(nfs_clntup == B_FALSE);
2819 #endif
2820 
2821         error = nfs_subrinit();
2822         if (error)
2823                 return (error);
2824 
2825         error = nfs_vfsinit();
2826         if (error) {
2827                 /*
2828                  * Cleanup nfs_subrinit() work
2829                  */
2830                 nfs_subrfini();
2831                 return (error);
2832         }
2833         zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown,
2834             nfs_mi_destroy);
2835 
2836         nfs4_clnt_init();
2837 
2838         nfscmd_init();
2839 
2840 #ifdef DEBUG
2841         nfs_clntup = B_TRUE;
2842 #endif
2843 
2844         return (0);
2845 }
2846 
2847 /*
2848  * This routine is only called if the NFS Client has been initialized but
2849  * the module failed to be installed. This routine will cleanup the previously
2850  * allocated/initialized work.
2851  */
2852 void
2853 nfs_clntfini(void)
2854 {
2855         (void) zone_key_delete(mi_list_key);
2856         nfs_subrfini();
2857         nfs_vfsfini();
2858         nfs4_clnt_fini();
2859         nfscmd_fini();
2860 }
2861 
2862 /*
2863  * nfs_lockrelease:
2864  *
2865  * Release any locks on the given vnode that are held by the current
2866  * process.
2867  */
2868 void
2869 nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
2870 {
2871         flock64_t ld;
2872         struct shrlock shr;
2873         char *buf;
2874         int remote_lock_possible;
2875         int ret;
2876 
2877         ASSERT((uintptr_t)vp > KERNELBASE);
2878 
2879         /*
2880          * Generate an explicit unlock operation for the entire file.  As a
2881          * partial optimization, only generate the unlock if there is a
2882          * lock registered for the file.  We could check whether this
2883          * particular process has any locks on the file, but that would
2884          * require the local locking code to provide yet another query
2885          * routine.  Note that no explicit synchronization is needed here.
2886          * At worst, flk_has_remote_locks() will return a false positive,
2887          * in which case the unlock call wastes time but doesn't harm
2888          * correctness.
2889          *
2890          * In addition, an unlock request is generated if the process
2891          * is listed as possibly having a lock on the file because the
2892          * server and client lock managers may have gotten out of sync.
2893          * N.B. It is important to make sure nfs_remove_locking_id() is
2894          * called here even if flk_has_remote_locks(vp) reports true.
2895          * If it is not called and there is an entry on the process id
2896          * list, that entry will never get removed.
2897          */
2898         remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID,
2899             (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2900         if (remote_lock_possible || flk_has_remote_locks(vp)) {
2901                 ld.l_type = F_UNLCK;    /* set to unlock entire file */
2902                 ld.l_whence = 0;        /* unlock from start of file */
2903                 ld.l_start = 0;
2904                 ld.l_len = 0;           /* do entire file */
2905                 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr,
2906                     NULL);
2907 
2908                 if (ret != 0) {
2909                         /*
2910                          * If VOP_FRLOCK fails, make sure we unregister
2911                          * local locks before we continue.
2912                          */
2913                         ld.l_pid = ttoproc(curthread)->p_pid;
2914                         lm_register_lock_locally(vp, NULL, &ld, flag, offset);
2915 #ifdef DEBUG
2916                         nfs_perror(ret,
2917                             "NFS lock release error on vp %p: %m.\n",
2918                             (void *)vp, NULL);
2919 #endif
2920                 }
2921 
2922                 /*
2923                  * The call to VOP_FRLOCK may put the pid back on the
2924                  * list.  We need to remove it.
2925                  */
2926                 (void) nfs_remove_locking_id(vp, RLMPL_PID,
2927                     (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2928         }
2929 
2930         /*
2931          * As long as the vp has a share matching our pid,
2932          * pluck it off and unshare it.  There are circumstances in
2933          * which the call to nfs_remove_locking_id() may put the
2934          * owner back on the list, in which case we simply do a
2935          * redundant and harmless unshare.
2936          */
2937         buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP);
2938         while (nfs_remove_locking_id(vp, RLMPL_OWNER,
2939             (char *)NULL, buf, &shr.s_own_len)) {
2940                 shr.s_owner = buf;
2941                 shr.s_access = 0;
2942                 shr.s_deny = 0;
2943                 shr.s_sysid = 0;
2944                 shr.s_pid = curproc->p_pid;
2945 
2946                 ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr, NULL);
2947 #ifdef DEBUG
2948                 if (ret != 0) {
2949                         nfs_perror(ret,
2950                             "NFS share release error on vp %p: %m.\n",
2951                             (void *)vp, NULL);
2952                 }
2953 #endif
2954         }
2955         kmem_free(buf, MAX_SHR_OWNER_LEN);
2956 }
2957 
2958 /*
2959  * nfs_lockcompletion:
2960  *
2961  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2962  * as non cachable (set VNOCACHE bit).
2963  */
2964 
2965 void
2966 nfs_lockcompletion(vnode_t *vp, int cmd)
2967 {
2968 #ifdef DEBUG
2969         rnode_t *rp = VTOR(vp);
2970 
2971         ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2972 #endif
2973 
2974         if (cmd == F_SETLK || cmd == F_SETLKW) {
2975                 if (!lm_safemap(vp)) {
2976                         mutex_enter(&vp->v_lock);
2977                         vp->v_flag |= VNOCACHE;
2978                         mutex_exit(&vp->v_lock);
2979                 } else {
2980                         mutex_enter(&vp->v_lock);
2981                         vp->v_flag &= ~VNOCACHE;
2982                         mutex_exit(&vp->v_lock);
2983                 }
2984         }
2985         /*
2986          * The cached attributes of the file are stale after acquiring
2987          * the lock on the file. They were updated when the file was
2988          * opened, but not updated when the lock was acquired. Therefore the
2989          * cached attributes are invalidated after the lock is obtained.
2990          */
2991         PURGE_ATTRCACHE(vp);
2992 }
2993 
2994 /*
2995  * The lock manager holds state making it possible for the client
2996  * and server to be out of sync.  For example, if the response from
2997  * the server granting a lock request is lost, the server will think
2998  * the lock is granted and the client will think the lock is lost.
2999  * The client can tell when it is not positive if it is in sync with
3000  * the server.
3001  *
3002  * To deal with this, a list of processes for which the client is
3003  * not sure if the server holds a lock is attached to the rnode.
3004  * When such a process closes the rnode, an unlock request is sent
3005  * to the server to unlock the entire file.
3006  *
3007  * The list is kept as a singularly linked NULL terminated list.
3008  * Because it is only added to under extreme error conditions, the
3009  * list shouldn't get very big.  DEBUG kernels print a message if
3010  * the list gets bigger than nfs_lmpl_high_water.  This is arbitrarily
3011  * choosen to be 8, but can be tuned at runtime.
3012  */
3013 #ifdef DEBUG
3014 /* int nfs_lmpl_high_water = 8; */
3015 int nfs_lmpl_high_water = 128;
3016 int nfs_cnt_add_locking_id = 0;
3017 int nfs_len_add_locking_id = 0;
3018 #endif /* DEBUG */
3019 
3020 /*
3021  * Record that the nfs lock manager server may be holding a lock on
3022  * a vnode for a process.
3023  *
3024  * Because the nfs lock manager server holds state, it is possible
3025  * for the server to get out of sync with the client.  This routine is called
3026  * from the client when it is no longer sure if the server is in sync
3027  * with the client.  nfs_lockrelease() will then notice this and send
3028  * an unlock request when the file is closed
3029  */
3030 void
3031 nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len)
3032 {
3033         rnode_t *rp;
3034         lmpl_t *new;
3035         lmpl_t *cur;
3036         lmpl_t **lmplp;
3037 #ifdef DEBUG
3038         int list_len = 1;
3039 #endif /* DEBUG */
3040 
3041 #ifdef DEBUG
3042         ++nfs_cnt_add_locking_id;
3043 #endif /* DEBUG */
3044         /*
3045          * allocate new lmpl_t now so we don't sleep
3046          * later after grabbing mutexes
3047          */
3048         ASSERT(len < MAX_SHR_OWNER_LEN);
3049         new = kmem_alloc(sizeof (*new), KM_SLEEP);
3050         new->lmpl_type = type;
3051         new->lmpl_pid = pid;
3052         new->lmpl_owner = kmem_alloc(len, KM_SLEEP);
3053         bcopy(id, new->lmpl_owner, len);
3054         new->lmpl_own_len = len;
3055         new->lmpl_next = (lmpl_t *)NULL;
3056 #ifdef DEBUG
3057         if (type == RLMPL_PID) {
3058                 ASSERT(len == sizeof (pid_t));
3059                 ASSERT(pid == *(pid_t *)new->lmpl_owner);
3060         } else {
3061                 ASSERT(type == RLMPL_OWNER);
3062         }
3063 #endif
3064 
3065         rp = VTOR(vp);
3066         mutex_enter(&rp->r_statelock);
3067 
3068         /*
3069          * Add this id to the list for this rnode only if the
3070          * rnode is active and the id is not already there.
3071          */
3072         ASSERT(rp->r_flags & RHASHED);
3073         lmplp = &(rp->r_lmpl);
3074         for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3075                 if (cur->lmpl_pid == pid &&
3076                     cur->lmpl_type == type &&
3077                     cur->lmpl_own_len == len &&
3078                     bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) {
3079                         kmem_free(new->lmpl_owner, len);
3080                         kmem_free(new, sizeof (*new));
3081                         break;
3082                 }
3083                 lmplp = &cur->lmpl_next;
3084 #ifdef DEBUG
3085                 ++list_len;
3086 #endif /* DEBUG */
3087         }
3088         if (cur == (lmpl_t *)NULL) {
3089                 *lmplp = new;
3090 #ifdef DEBUG
3091                 if (list_len > nfs_len_add_locking_id) {
3092                         nfs_len_add_locking_id = list_len;
3093                 }
3094                 if (list_len > nfs_lmpl_high_water) {
3095                         cmn_err(CE_WARN, "nfs_add_locking_id: long list "
3096                             "vp=%p is %d", (void *)vp, list_len);
3097                 }
3098 #endif /* DEBUG */
3099         }
3100 
3101 #ifdef DEBUG
3102         if (share_debug) {
3103                 int nitems = 0;
3104                 int npids = 0;
3105                 int nowners = 0;
3106 
3107                 /*
3108                  * Count the number of things left on r_lmpl after the remove.
3109                  */
3110                 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3111                     cur = cur->lmpl_next) {
3112                         nitems++;
3113                         if (cur->lmpl_type == RLMPL_PID) {
3114                                 npids++;
3115                         } else if (cur->lmpl_type == RLMPL_OWNER) {
3116                                 nowners++;
3117                         } else {
3118                                 cmn_err(CE_PANIC, "nfs_add_locking_id: "
3119                                     "unrecognized lmpl_type %d",
3120                                     cur->lmpl_type);
3121                         }
3122                 }
3123 
3124                 cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d "
3125                     "OWNs = %d items left on r_lmpl\n",
3126                     (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems);
3127         }
3128 #endif
3129 
3130         mutex_exit(&rp->r_statelock);
3131 }
3132 
3133 /*
3134  * Remove an id from the lock manager id list.
3135  *
3136  * If the id is not in the list return 0.  If it was found and
3137  * removed, return 1.
3138  */
3139 static int
3140 nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen)
3141 {
3142         lmpl_t *cur;
3143         lmpl_t **lmplp;
3144         rnode_t *rp;
3145         int rv = 0;
3146 
3147         ASSERT(type == RLMPL_PID || type == RLMPL_OWNER);
3148 
3149         rp = VTOR(vp);
3150 
3151         mutex_enter(&rp->r_statelock);
3152         ASSERT(rp->r_flags & RHASHED);
3153         lmplp = &(rp->r_lmpl);
3154 
3155         /*
3156          * Search through the list and remove the entry for this id
3157          * if it is there.  The special case id == NULL allows removal
3158          * of the first share on the r_lmpl list belonging to the
3159          * current process (if any), without regard to further details
3160          * of its identity.
3161          */
3162         for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3163                 if (cur->lmpl_type == type &&
3164                     cur->lmpl_pid == curproc->p_pid &&
3165                     (id == (char *)NULL ||
3166                     bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) {
3167                         *lmplp = cur->lmpl_next;
3168                         ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN);
3169                         if (rid != NULL) {
3170                                 bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len);
3171                                 *rlen = cur->lmpl_own_len;
3172                         }
3173                         kmem_free(cur->lmpl_owner, cur->lmpl_own_len);
3174                         kmem_free(cur, sizeof (*cur));
3175                         rv = 1;
3176                         break;
3177                 }
3178                 lmplp = &cur->lmpl_next;
3179         }
3180 
3181 #ifdef DEBUG
3182         if (share_debug) {
3183                 int nitems = 0;
3184                 int npids = 0;
3185                 int nowners = 0;
3186 
3187                 /*
3188                  * Count the number of things left on r_lmpl after the remove.
3189                  */
3190                 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3191                     cur = cur->lmpl_next) {
3192                         nitems++;
3193                         if (cur->lmpl_type == RLMPL_PID) {
3194                                 npids++;
3195                         } else if (cur->lmpl_type == RLMPL_OWNER) {
3196                                 nowners++;
3197                         } else {
3198                                 cmn_err(CE_PANIC,
3199                                     "nrli: unrecognized lmpl_type %d",
3200                                     cur->lmpl_type);
3201                         }
3202                 }
3203 
3204                 cmn_err(CE_CONT,
3205                 "nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n",
3206                     (type == RLMPL_PID) ? "P" : "O",
3207                     npids,
3208                     nowners,
3209                     nitems);
3210         }
3211 #endif
3212 
3213         mutex_exit(&rp->r_statelock);
3214         return (rv);
3215 }
3216 
3217 void
3218 nfs_free_mi(mntinfo_t *mi)
3219 {
3220         ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP);
3221         ASSERT(mi->mi_manager_thread == NULL);
3222         ASSERT(mi->mi_threads[NFS_ASYNC_QUEUE] == 0 &&
3223             mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] == 0);
3224 
3225         /*
3226          * Remove the node from the global list before we start tearing it down.
3227          */
3228         nfs_mi_zonelist_remove(mi);
3229         if (mi->mi_klmconfig) {
3230                 lm_free_config(mi->mi_klmconfig);
3231                 kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig));
3232         }
3233         mutex_destroy(&mi->mi_lock);
3234         mutex_destroy(&mi->mi_remap_lock);
3235         mutex_destroy(&mi->mi_async_lock);
3236         cv_destroy(&mi->mi_failover_cv);
3237         cv_destroy(&mi->mi_async_work_cv[NFS_ASYNC_QUEUE]);
3238         cv_destroy(&mi->mi_async_work_cv[NFS_ASYNC_PGOPS_QUEUE]);
3239         cv_destroy(&mi->mi_async_reqs_cv);
3240         cv_destroy(&mi->mi_async_cv);
3241         zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFS);
3242         kmem_free(mi, sizeof (*mi));
3243 }
3244 
3245 static int
3246 mnt_kstat_update(kstat_t *ksp, int rw)
3247 {
3248         mntinfo_t *mi;
3249         struct mntinfo_kstat *mik;
3250         vfs_t *vfsp;
3251         int i;
3252 
3253         /* this is a read-only kstat. Bail out on a write */
3254         if (rw == KSTAT_WRITE)
3255                 return (EACCES);
3256 
3257         /*
3258          * We don't want to wait here as kstat_chain_lock could be held by
3259          * dounmount(). dounmount() takes vfs_reflock before the chain lock
3260          * and thus could lead to a deadlock.
3261          */
3262         vfsp = (struct vfs *)ksp->ks_private;
3263 
3264 
3265         mi = VFTOMI(vfsp);
3266 
3267         mik = (struct mntinfo_kstat *)ksp->ks_data;
3268 
3269         (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
3270         mik->mik_vers = (uint32_t)mi->mi_vers;
3271         mik->mik_flags = mi->mi_flags;
3272         mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod;
3273         mik->mik_curread = (uint32_t)mi->mi_curread;
3274         mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
3275         mik->mik_retrans = mi->mi_retrans;
3276         mik->mik_timeo = mi->mi_timeo;
3277         mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
3278         mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
3279         mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
3280         mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
3281         for (i = 0; i < NFS_CALLTYPES + 1; i++) {
3282                 mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt;
3283                 mik->mik_timers[i].deviate =
3284                     (uint32_t)mi->mi_timers[i].rt_deviate;
3285                 mik->mik_timers[i].rtxcur =
3286                     (uint32_t)mi->mi_timers[i].rt_rtxcur;
3287         }
3288         mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
3289         mik->mik_failover = (uint32_t)mi->mi_failover;
3290         mik->mik_remap = (uint32_t)mi->mi_remap;
3291         (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
3292 
3293         return (0);
3294 }
3295 
3296 void
3297 nfs_mnt_kstat_init(struct vfs *vfsp)
3298 {
3299         mntinfo_t *mi = VFTOMI(vfsp);
3300 
3301         /*
3302          * Create the version specific kstats.
3303          *
3304          * PSARC 2001/697 Contract Private Interface
3305          * All nfs kstats are under SunMC contract
3306          * Please refer to the PSARC listed above and contact
3307          * SunMC before making any changes!
3308          *
3309          * Changes must be reviewed by Solaris File Sharing
3310          * Changes must be communicated to contract-2001-697@sun.com
3311          *
3312          */
3313 
3314         mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
3315             NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
3316         if (mi->mi_io_kstats) {
3317                 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3318                         kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
3319                 mi->mi_io_kstats->ks_lock = &mi->mi_lock;
3320                 kstat_install(mi->mi_io_kstats);
3321         }
3322 
3323         if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
3324             getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
3325             sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
3326                 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3327                         kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
3328                 mi->mi_ro_kstats->ks_update = mnt_kstat_update;
3329                 mi->mi_ro_kstats->ks_private = (void *)vfsp;
3330                 kstat_install(mi->mi_ro_kstats);
3331         }
3332 }
3333 
3334 nfs_delmapcall_t *
3335 nfs_init_delmapcall()
3336 {
3337         nfs_delmapcall_t        *delmap_call;
3338 
3339         delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP);
3340         delmap_call->call_id = curthread;
3341         delmap_call->error = 0;
3342 
3343         return (delmap_call);
3344 }
3345 
3346 void
3347 nfs_free_delmapcall(nfs_delmapcall_t *delmap_call)
3348 {
3349         kmem_free(delmap_call, sizeof (nfs_delmapcall_t));
3350 }
3351 
3352 /*
3353  * Searches for the current delmap caller (based on curthread) in the list of
3354  * callers.  If it is found, we remove it and free the delmap caller.
3355  * Returns:
3356  *      0 if the caller wasn't found
3357  *      1 if the caller was found, removed and freed.  *errp is set to what
3358  *      the result of the delmap was.
3359  */
3360 int
3361 nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp)
3362 {
3363         nfs_delmapcall_t        *delmap_call;
3364 
3365         /*
3366          * If the list doesn't exist yet, we create it and return
3367          * that the caller wasn't found.  No list = no callers.
3368          */
3369         mutex_enter(&rp->r_statelock);
3370         if (!(rp->r_flags & RDELMAPLIST)) {
3371                 /* The list does not exist */
3372                 list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t),
3373                     offsetof(nfs_delmapcall_t, call_node));
3374                 rp->r_flags |= RDELMAPLIST;
3375                 mutex_exit(&rp->r_statelock);
3376                 return (0);
3377         } else {
3378                 /* The list exists so search it */
3379                 for (delmap_call = list_head(&rp->r_indelmap);
3380                     delmap_call != NULL;
3381                     delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
3382                         if (delmap_call->call_id == curthread) {
3383                                 /* current caller is in the list */
3384                                 *errp = delmap_call->error;
3385                                 list_remove(&rp->r_indelmap, delmap_call);
3386                                 mutex_exit(&rp->r_statelock);
3387                                 nfs_free_delmapcall(delmap_call);
3388                                 return (1);
3389                         }
3390                 }
3391         }
3392         mutex_exit(&rp->r_statelock);
3393         return (0);
3394 }