1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Copyright 2018 Nexenta Systems, Inc.
28 * Copyright (c) 2015 by Delphix. All rights reserved.
29 */
30
31 #include <sys/param.h>
32 #include <sys/errno.h>
33 #include <sys/vfs.h>
34 #include <sys/vnode.h>
35 #include <sys/cred.h>
36 #include <sys/cmn_err.h>
37 #include <sys/systm.h>
38 #include <sys/kmem.h>
39 #include <sys/pathname.h>
40 #include <sys/utsname.h>
41 #include <sys/debug.h>
42 #include <sys/door.h>
43 #include <sys/sdt.h>
44 #include <sys/thread.h>
45 #include <sys/avl.h>
46
47 #include <rpc/types.h>
48 #include <rpc/auth.h>
49 #include <rpc/clnt.h>
50
51 #include <nfs/nfs.h>
52 #include <nfs/export.h>
53 #include <nfs/nfs_clnt.h>
54 #include <nfs/auth.h>
55
56 static struct kmem_cache *exi_cache_handle;
57 static void exi_cache_reclaim(void *);
58 static void exi_cache_trim(struct exportinfo *exi);
59 static void *nfsauth_zone_init(zoneid_t);
60 static void nfsauth_zone_shutdown(zoneid_t zoneid, void *data);
61 static void nfsauth_zone_fini(zoneid_t, void *);
62
63 extern pri_t minclsyspri;
64
65 /* NFS auth cache statistics */
66 volatile uint_t nfsauth_cache_hit;
67 volatile uint_t nfsauth_cache_miss;
68 volatile uint_t nfsauth_cache_refresh;
69 volatile uint_t nfsauth_cache_reclaim;
70 volatile uint_t exi_cache_auth_reclaim_failed;
71 volatile uint_t exi_cache_clnt_reclaim_failed;
72
73 /*
74 * The lifetime of an auth cache entry:
75 * ------------------------------------
76 *
77 * An auth cache entry is created with both the auth_time
78 * and auth_freshness times set to the current time.
79 *
80 * Upon every client access which results in a hit, the
81 * auth_time will be updated.
82 *
83 * If a client access determines that the auth_freshness
84 * indicates that the entry is STALE, then it will be
85 * refreshed. Note that this will explicitly reset
86 * auth_time.
87 *
88 * When the REFRESH successfully occurs, then the
89 * auth_freshness is updated.
90 *
91 * There are two ways for an entry to leave the cache:
92 *
93 * 1) Purged by an action on the export (remove or changed)
94 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
95 *
96 * For 2) we check the timeout value against auth_time.
97 */
98
99 /*
100 * Number of seconds until we mark for refresh an auth cache entry.
101 */
102 #define NFSAUTH_CACHE_REFRESH 600
103
104 /*
105 * Number of idle seconds until we yield to backpressure
106 * to trim a cache entry.
107 */
108 #define NFSAUTH_CACHE_TRIM 3600
109
110 /*
111 * While we could encapuslate the exi_list inside the
112 * exi structure, we can't do that for the auth_list.
113 * So, to keep things looking clean, we keep them both
114 * in these external lists.
115 */
116 typedef struct refreshq_exi_node {
117 struct exportinfo *ren_exi;
118 list_t ren_authlist;
119 list_node_t ren_node;
120 } refreshq_exi_node_t;
121
122 typedef struct refreshq_auth_node {
123 struct auth_cache *ran_auth;
124 char *ran_netid;
125 list_node_t ran_node;
126 } refreshq_auth_node_t;
127
128 /*
129 * Used to manipulate things on the refreshq_queue. Note that the refresh
130 * thread will effectively pop a node off of the queue, at which point it
131 * will no longer need to hold the mutex.
132 */
133 static kmutex_t refreshq_lock;
134 static list_t refreshq_queue;
135 static kcondvar_t refreshq_cv;
136
137 /*
138 * If there is ever a problem with loading the module, then nfsauth_fini()
139 * needs to be called to remove state. In that event, since the refreshq
140 * thread has been started, they need to work together to get rid of state.
141 */
142 typedef enum nfsauth_refreshq_thread_state {
143 REFRESHQ_THREAD_RUNNING,
144 REFRESHQ_THREAD_FINI_REQ,
145 REFRESHQ_THREAD_HALTED,
146 REFRESHQ_THREAD_NEED_CREATE
147 } nfsauth_refreshq_thread_state_t;
148
149 typedef struct nfsauth_globals {
150 kmutex_t mountd_lock;
151 door_handle_t mountd_dh;
152
153 /*
154 * Used to manipulate things on the refreshq_queue. Note that the
155 * refresh thread will effectively pop a node off of the queue,
156 * at which point it will no longer need to hold the mutex.
157 */
158 kmutex_t refreshq_lock;
159 list_t refreshq_queue;
160 kcondvar_t refreshq_cv;
161
162 /*
163 * A list_t would be overkill. These are auth_cache entries which are
164 * no longer linked to an exi. It should be the case that all of their
165 * states are NFS_AUTH_INVALID, i.e., the only way to be put on this
166 * list is iff their state indicated that they had been placed on the
167 * refreshq_queue.
168 *
169 * Note that while there is no link from the exi or back to the exi,
170 * the exi can not go away until these entries are harvested.
171 */
172 struct auth_cache *refreshq_dead_entries;
173 nfsauth_refreshq_thread_state_t refreshq_thread_state;
174
175 } nfsauth_globals_t;
176
177 static void nfsauth_free_node(struct auth_cache *);
178 static void nfsauth_refresh_thread(nfsauth_globals_t *);
179
180 static int nfsauth_cache_compar(const void *, const void *);
181
182 static zone_key_t nfsauth_zone_key;
183
184 void
185 mountd_args(uint_t did)
186 {
187 nfsauth_globals_t *nag;
188
189 nag = zone_getspecific(nfsauth_zone_key, curzone);
190 mutex_enter(&nag->mountd_lock);
191 if (nag->mountd_dh != NULL)
192 door_ki_rele(nag->mountd_dh);
193 nag->mountd_dh = door_ki_lookup(did);
194 mutex_exit(&nag->mountd_lock);
195 }
196
197 void
198 nfsauth_init(void)
199 {
200 zone_key_create(&nfsauth_zone_key, nfsauth_zone_init,
201 nfsauth_zone_shutdown, nfsauth_zone_fini);
202
203 exi_cache_handle = kmem_cache_create("exi_cache_handle",
204 sizeof (struct auth_cache), 0, NULL, NULL,
205 exi_cache_reclaim, NULL, NULL, 0);
206 }
207
208 void
209 nfsauth_fini(void)
210 {
211 kmem_cache_destroy(exi_cache_handle);
212 }
213
214 /*ARGSUSED*/
215 static void *
216 nfsauth_zone_init(zoneid_t zoneid)
217 {
218 nfsauth_globals_t *nag;
219
220 nag = kmem_zalloc(sizeof (*nag), KM_SLEEP);
221
222 /*
223 * mountd can be restarted by smf(5). We need to make sure
224 * the updated door handle will safely make it to mountd_dh.
225 */
226 mutex_init(&nag->mountd_lock, NULL, MUTEX_DEFAULT, NULL);
227 mutex_init(&nag->refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
228 list_create(&nag->refreshq_queue, sizeof (refreshq_exi_node_t),
229 offsetof(refreshq_exi_node_t, ren_node));
230 cv_init(&nag->refreshq_cv, NULL, CV_DEFAULT, NULL);
231 nag->refreshq_thread_state = REFRESHQ_THREAD_NEED_CREATE;
232
233 return (nag);
234 }
235
236 /*ARGSUSED*/
237 static void
238 nfsauth_zone_shutdown(zoneid_t zoneid, void *data)
239 {
240 refreshq_exi_node_t *ren;
241 nfsauth_globals_t *nag = data;
242
243 /* Prevent the nfsauth_refresh_thread from getting new work */
244 mutex_enter(&nag->refreshq_lock);
245 if (nag->refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
246 nag->refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
247 cv_broadcast(&nag->refreshq_cv);
248
249 /* Wait for nfsauth_refresh_thread() to exit */
250 while (nag->refreshq_thread_state != REFRESHQ_THREAD_HALTED)
251 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock);
252 }
253 mutex_exit(&nag->refreshq_lock);
254
255 /*
256 * Walk the exi_list and in turn, walk the auth_lists and free all
257 * lists. In addition, free INVALID auth_cache entries.
258 */
259 while ((ren = list_remove_head(&nag->refreshq_queue))) {
260 refreshq_auth_node_t *ran;
261
262 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) {
263 struct auth_cache *p = ran->ran_auth;
264 if (p->auth_state == NFS_AUTH_INVALID)
265 nfsauth_free_node(p);
266 strfree(ran->ran_netid);
267 kmem_free(ran, sizeof (*ran));
268 }
269
270 list_destroy(&ren->ren_authlist);
271 exi_rele(&ren->ren_exi);
272 kmem_free(ren, sizeof (*ren));
273 }
274 }
275
276 /*ARGSUSED*/
277 static void
278 nfsauth_zone_fini(zoneid_t zoneid, void *data)
279 {
280 nfsauth_globals_t *nag = data;
281
282 list_destroy(&nag->refreshq_queue);
283 cv_destroy(&nag->refreshq_cv);
284 mutex_destroy(&nag->refreshq_lock);
285 mutex_destroy(&nag->mountd_lock);
286 kmem_free(nag, sizeof (*nag));
287 }
288
289 /*
290 * Convert the address in a netbuf to
291 * a hash index for the auth_cache table.
292 */
293 static int
294 hash(struct netbuf *a)
295 {
296 int i, h = 0;
297
298 for (i = 0; i < a->len; i++)
299 h ^= a->buf[i];
300
301 return (h & (AUTH_TABLESIZE - 1));
302 }
303
304 /*
305 * Mask out the components of an
306 * address that do not identify
307 * a host. For socket addresses the
308 * masking gets rid of the port number.
309 */
310 static void
311 addrmask(struct netbuf *addr, struct netbuf *mask)
312 {
313 int i;
314
315 for (i = 0; i < addr->len; i++)
316 addr->buf[i] &= mask->buf[i];
317 }
318
319 /*
320 * nfsauth4_access is used for NFS V4 auth checking. Besides doing
321 * the common nfsauth_access(), it will check if the client can
322 * have a limited access to this vnode even if the security flavor
323 * used does not meet the policy.
324 */
325 int
326 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req,
327 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
328 {
329 int access;
330
331 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids);
332
333 /*
334 * There are cases that the server needs to allow the client
335 * to have a limited view.
336 *
337 * e.g.
338 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
339 * /export/home is shared as "sec=sys,rw"
340 *
341 * When the client mounts /export with sec=sys, the client
342 * would get a limited view with RO access on /export to see
343 * "home" only because the client is allowed to access
344 * /export/home with auth_sys.
345 */
346 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
347 /*
348 * Allow ro permission with LIMITED view if there is a
349 * sub-dir exported under vp.
350 */
351 if (has_visible(exi, vp))
352 return (NFSAUTH_LIMITED);
353 }
354
355 return (access);
356 }
357
358 static void
359 sys_log(const char *msg)
360 {
361 static time_t tstamp = 0;
362 time_t now;
363
364 /*
365 * msg is shown (at most) once per minute
366 */
367 now = gethrestime_sec();
368 if ((tstamp + 60) < now) {
369 tstamp = now;
370 cmn_err(CE_WARN, msg);
371 }
372 }
373
374 /*
375 * Callup to the mountd to get access information in the kernel.
376 */
377 static bool_t
378 nfsauth_retrieve(nfsauth_globals_t *nag, struct exportinfo *exi,
379 char *req_netid, int flavor, struct netbuf *addr, int *access,
380 cred_t *clnt_cred, uid_t *srv_uid, gid_t *srv_gid, uint_t *srv_gids_cnt,
381 gid_t **srv_gids)
382 {
383 varg_t varg = {0};
384 nfsauth_res_t res = {0};
385 XDR xdrs;
386 size_t absz;
387 caddr_t abuf;
388 int last = 0;
389 door_arg_t da;
390 door_info_t di;
391 door_handle_t dh;
392 uint_t ntries = 0;
393
394 /*
395 * No entry in the cache for this client/flavor
396 * so we need to call the nfsauth service in the
397 * mount daemon.
398 */
399
400 varg.vers = V_PROTO;
401 varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
402 varg.arg_u.arg.areq.req_client.n_len = addr->len;
403 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
404 varg.arg_u.arg.areq.req_netid = req_netid;
405 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
406 varg.arg_u.arg.areq.req_flavor = flavor;
407 varg.arg_u.arg.areq.req_clnt_uid = crgetuid(clnt_cred);
408 varg.arg_u.arg.areq.req_clnt_gid = crgetgid(clnt_cred);
409 varg.arg_u.arg.areq.req_clnt_gids.len = crgetngroups(clnt_cred);
410 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)crgetgroups(clnt_cred);
411
412 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
413
414 /*
415 * Setup the XDR stream for encoding the arguments. Notice that
416 * in addition to the args having variable fields (req_netid and
417 * req_path), the argument data structure is itself versioned,
418 * so we need to make sure we can size the arguments buffer
419 * appropriately to encode all the args. If we can't get sizing
420 * info _or_ properly encode the arguments, there's really no
421 * point in continuting, so we fail the request.
422 */
423 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) {
424 *access = NFSAUTH_DENIED;
425 return (FALSE);
426 }
427
428 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
429 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE);
430 if (!xdr_varg(&xdrs, &varg)) {
431 XDR_DESTROY(&xdrs);
432 goto fail;
433 }
434 XDR_DESTROY(&xdrs);
435
436 /*
437 * Prepare the door arguments
438 *
439 * We don't know the size of the message the daemon
440 * will pass back to us. By setting rbuf to NULL,
441 * we force the door code to allocate a buf of the
442 * appropriate size. We must set rsize > 0, however,
443 * else the door code acts as if no response was
444 * expected and doesn't pass the data to us.
445 */
446 da.data_ptr = (char *)abuf;
447 da.data_size = absz;
448 da.desc_ptr = NULL;
449 da.desc_num = 0;
450 da.rbuf = NULL;
451 da.rsize = 1;
452
453 retry:
454 mutex_enter(&nag->mountd_lock);
455 dh = nag->mountd_dh;
456 if (dh != NULL)
457 door_ki_hold(dh);
458 mutex_exit(&nag->mountd_lock);
459
460 if (dh == NULL) {
461 /*
462 * The rendezvous point has not been established yet!
463 * This could mean that either mountd(1m) has not yet
464 * been started or that _this_ routine nuked the door
465 * handle after receiving an EINTR for a REVOKED door.
466 *
467 * Returning NFSAUTH_DROP will cause the NFS client
468 * to retransmit the request, so let's try to be more
469 * rescillient and attempt for ntries before we bail.
470 */
471 if (++ntries % NFSAUTH_DR_TRYCNT) {
472 delay(hz);
473 goto retry;
474 }
475
476 kmem_free(abuf, absz);
477
478 sys_log("nfsauth: mountd has not established door");
479 *access = NFSAUTH_DROP;
480 return (FALSE);
481 }
482
483 ntries = 0;
484
485 /*
486 * Now that we've got what we need, place the call.
487 */
488 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
489 case 0: /* Success */
490 door_ki_rele(dh);
491
492 if (da.data_ptr == NULL && da.data_size == 0) {
493 /*
494 * The door_return that contained the data
495 * failed! We're here because of the 2nd
496 * door_return (w/o data) such that we can
497 * get control of the thread (and exit
498 * gracefully).
499 */
500 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
501 door_arg_t *, &da);
502 goto fail;
503 }
504
505 break;
506
507 case EAGAIN:
508 /*
509 * Server out of resources; back off for a bit
510 */
511 door_ki_rele(dh);
512 delay(hz);
513 goto retry;
514 /* NOTREACHED */
515
516 case EINTR:
517 if (!door_ki_info(dh, &di)) {
518 door_ki_rele(dh);
519
520 if (di.di_attributes & DOOR_REVOKED) {
521 /*
522 * The server barfed and revoked
523 * the (existing) door on us; we
524 * want to wait to give smf(5) a
525 * chance to restart mountd(1m)
526 * and establish a new door handle.
527 */
528 mutex_enter(&nag->mountd_lock);
529 if (dh == nag->mountd_dh) {
530 door_ki_rele(nag->mountd_dh);
531 nag->mountd_dh = NULL;
532 }
533 mutex_exit(&nag->mountd_lock);
534 delay(hz);
535 goto retry;
536 }
537 /*
538 * If the door was _not_ revoked on us,
539 * then more than likely we took an INTR,
540 * so we need to fail the operation.
541 */
542 goto fail;
543 }
544 /*
545 * The only failure that can occur from getting
546 * the door info is EINVAL, so we let the code
547 * below handle it.
548 */
549 /* FALLTHROUGH */
550
551 case EBADF:
552 case EINVAL:
553 default:
554 /*
555 * If we have a stale door handle, give smf a last
556 * chance to start it by sleeping for a little bit.
557 * If we're still hosed, we'll fail the call.
558 *
559 * Since we're going to reacquire the door handle
560 * upon the retry, we opt to sleep for a bit and
561 * _not_ to clear mountd_dh. If mountd restarted
562 * and was able to set mountd_dh, we should see
563 * the new instance; if not, we won't get caught
564 * up in the retry/DELAY loop.
565 */
566 door_ki_rele(dh);
567 if (!last) {
568 delay(hz);
569 last++;
570 goto retry;
571 }
572 sys_log("nfsauth: stale mountd door handle");
573 goto fail;
574 }
575
576 ASSERT(da.rbuf != NULL);
577
578 /*
579 * No door errors encountered; setup the XDR stream for decoding
580 * the results. If we fail to decode the results, we've got no
581 * other recourse than to fail the request.
582 */
583 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE);
584 if (!xdr_nfsauth_res(&xdrs, &res)) {
585 xdr_free(xdr_nfsauth_res, (char *)&res);
586 XDR_DESTROY(&xdrs);
587 kmem_free(da.rbuf, da.rsize);
588 goto fail;
589 }
590 XDR_DESTROY(&xdrs);
591 kmem_free(da.rbuf, da.rsize);
592
593 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
594 switch (res.stat) {
595 case NFSAUTH_DR_OKAY:
596 *access = res.ares.auth_perm;
597 *srv_uid = res.ares.auth_srv_uid;
598 *srv_gid = res.ares.auth_srv_gid;
599 *srv_gids_cnt = res.ares.auth_srv_gids.len;
600 *srv_gids = kmem_alloc(*srv_gids_cnt * sizeof (gid_t),
601 KM_SLEEP);
602 bcopy(res.ares.auth_srv_gids.val, *srv_gids,
603 *srv_gids_cnt * sizeof (gid_t));
604 break;
605
606 case NFSAUTH_DR_EFAIL:
607 case NFSAUTH_DR_DECERR:
608 case NFSAUTH_DR_BADCMD:
609 default:
610 xdr_free(xdr_nfsauth_res, (char *)&res);
611 fail:
612 *access = NFSAUTH_DENIED;
613 kmem_free(abuf, absz);
614 return (FALSE);
615 /* NOTREACHED */
616 }
617
618 xdr_free(xdr_nfsauth_res, (char *)&res);
619 kmem_free(abuf, absz);
620
621 return (TRUE);
622 }
623
624 static void
625 nfsauth_refresh_thread(nfsauth_globals_t *nag)
626 {
627 refreshq_exi_node_t *ren;
628 refreshq_auth_node_t *ran;
629
630 struct exportinfo *exi;
631
632 int access;
633 bool_t retrieval;
634
635 callb_cpr_t cprinfo;
636
637 CALLB_CPR_INIT(&cprinfo, &nag->refreshq_lock, callb_generic_cpr,
638 "nfsauth_refresh");
639
640 for (;;) {
641 mutex_enter(&nag->refreshq_lock);
642 if (nag->refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
643 /* Keep the hold on the lock! */
644 break;
645 }
646
647 ren = list_remove_head(&nag->refreshq_queue);
648 if (ren == NULL) {
649 CALLB_CPR_SAFE_BEGIN(&cprinfo);
650 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock);
651 CALLB_CPR_SAFE_END(&cprinfo, &nag->refreshq_lock);
652 mutex_exit(&nag->refreshq_lock);
653 continue;
654 }
655 mutex_exit(&nag->refreshq_lock);
656
657 exi = ren->ren_exi;
658 ASSERT(exi != NULL);
659
660 /*
661 * Since the ren was removed from the refreshq_queue above,
662 * this is the only thread aware about the ren existence, so we
663 * have the exclusive ownership of it and we do not need to
664 * protect it by any lock.
665 */
666 while ((ran = list_remove_head(&ren->ren_authlist))) {
667 uid_t uid;
668 gid_t gid;
669 uint_t ngids;
670 gid_t *gids;
671 struct auth_cache *p = ran->ran_auth;
672 char *netid = ran->ran_netid;
673
674 ASSERT(p != NULL);
675 ASSERT(netid != NULL);
676
677 kmem_free(ran, sizeof (refreshq_auth_node_t));
678
679 mutex_enter(&p->auth_lock);
680
681 /*
682 * Once the entry goes INVALID, it can not change
683 * state.
684 *
685 * No need to refresh entries also in a case we are
686 * just shutting down.
687 *
688 * In general, there is no need to hold the
689 * refreshq_lock to test the refreshq_thread_state. We
690 * do hold it at other places because there is some
691 * related thread synchronization (or some other tasks)
692 * close to the refreshq_thread_state check.
693 *
694 * The check for the refreshq_thread_state value here
695 * is purely advisory to allow the faster
696 * nfsauth_refresh_thread() shutdown. In a case we
697 * will miss such advisory, nothing catastrophic
698 * happens: we will just spin longer here before the
699 * shutdown.
700 */
701 if (p->auth_state == NFS_AUTH_INVALID ||
702 nag->refreshq_thread_state !=
703 REFRESHQ_THREAD_RUNNING) {
704 mutex_exit(&p->auth_lock);
705
706 if (p->auth_state == NFS_AUTH_INVALID)
707 nfsauth_free_node(p);
708
709 strfree(netid);
710
711 continue;
712 }
713
714 /*
715 * Make sure the state is valid. Note that once we
716 * change the state to NFS_AUTH_REFRESHING, no other
717 * thread will be able to work on this entry.
718 */
719 ASSERT(p->auth_state == NFS_AUTH_STALE);
720
721 p->auth_state = NFS_AUTH_REFRESHING;
722 mutex_exit(&p->auth_lock);
723
724 DTRACE_PROBE2(nfsauth__debug__cache__refresh,
725 struct exportinfo *, exi,
726 struct auth_cache *, p);
727
728 /*
729 * The first caching of the access rights
730 * is done with the netid pulled out of the
731 * request from the client. All subsequent
732 * users of the cache may or may not have
733 * the same netid. It doesn't matter. So
734 * when we refresh, we simply use the netid
735 * of the request which triggered the
736 * refresh attempt.
737 */
738 retrieval = nfsauth_retrieve(nag, exi, netid,
739 p->auth_flavor, &p->auth_clnt->authc_addr, &access,
740 p->auth_clnt_cred, &uid, &gid, &ngids, &gids);
741
742 /*
743 * This can only be set in one other place
744 * and the state has to be NFS_AUTH_FRESH.
745 */
746 strfree(netid);
747
748 mutex_enter(&p->auth_lock);
749 if (p->auth_state == NFS_AUTH_INVALID) {
750 mutex_exit(&p->auth_lock);
751 nfsauth_free_node(p);
752 if (retrieval == TRUE)
753 kmem_free(gids, ngids * sizeof (gid_t));
754 } else {
755 /*
756 * If we got an error, do not reset the
757 * time. This will cause the next access
758 * check for the client to reschedule this
759 * node.
760 */
761 if (retrieval == TRUE) {
762 p->auth_access = access;
763
764 p->auth_srv_uid = uid;
765 p->auth_srv_gid = gid;
766 kmem_free(p->auth_srv_gids,
767 p->auth_srv_ngids * sizeof (gid_t));
768 p->auth_srv_ngids = ngids;
769 p->auth_srv_gids = gids;
770
771 p->auth_freshness = gethrestime_sec();
772 }
773 p->auth_state = NFS_AUTH_FRESH;
774
775 cv_broadcast(&p->auth_cv);
776 mutex_exit(&p->auth_lock);
777 }
778 }
779
780 list_destroy(&ren->ren_authlist);
781 exi_rele(&ren->ren_exi);
782 kmem_free(ren, sizeof (refreshq_exi_node_t));
783 }
784
785 nag->refreshq_thread_state = REFRESHQ_THREAD_HALTED;
786 cv_broadcast(&nag->refreshq_cv);
787 CALLB_CPR_EXIT(&cprinfo);
788 DTRACE_PROBE(nfsauth__nfsauth__refresh__thread__exit);
789 zthread_exit();
790 }
791
792 int
793 nfsauth_cache_clnt_compar(const void *v1, const void *v2)
794 {
795 int c;
796
797 const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1;
798 const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2;
799
800 if (a1->authc_addr.len < a2->authc_addr.len)
801 return (-1);
802 if (a1->authc_addr.len > a2->authc_addr.len)
803 return (1);
804
805 c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len);
806 if (c < 0)
807 return (-1);
808 if (c > 0)
809 return (1);
810
811 return (0);
812 }
813
814 static int
815 nfsauth_cache_compar(const void *v1, const void *v2)
816 {
817 int c;
818
819 const struct auth_cache *a1 = (const struct auth_cache *)v1;
820 const struct auth_cache *a2 = (const struct auth_cache *)v2;
821
822 if (a1->auth_flavor < a2->auth_flavor)
823 return (-1);
824 if (a1->auth_flavor > a2->auth_flavor)
825 return (1);
826
827 if (crgetuid(a1->auth_clnt_cred) < crgetuid(a2->auth_clnt_cred))
828 return (-1);
829 if (crgetuid(a1->auth_clnt_cred) > crgetuid(a2->auth_clnt_cred))
830 return (1);
831
832 if (crgetgid(a1->auth_clnt_cred) < crgetgid(a2->auth_clnt_cred))
833 return (-1);
834 if (crgetgid(a1->auth_clnt_cred) > crgetgid(a2->auth_clnt_cred))
835 return (1);
836
837 if (crgetngroups(a1->auth_clnt_cred) < crgetngroups(a2->auth_clnt_cred))
838 return (-1);
839 if (crgetngroups(a1->auth_clnt_cred) > crgetngroups(a2->auth_clnt_cred))
840 return (1);
841
842 c = memcmp(crgetgroups(a1->auth_clnt_cred),
843 crgetgroups(a2->auth_clnt_cred), crgetngroups(a1->auth_clnt_cred));
844 if (c < 0)
845 return (-1);
846 if (c > 0)
847 return (1);
848
849 return (0);
850 }
851
852 /*
853 * Get the access information from the cache or callup to the mountd
854 * to get and cache the access information in the kernel.
855 */
856 static int
857 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor,
858 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
859 {
860 nfsauth_globals_t *nag;
861 struct netbuf *taddrmask;
862 struct netbuf addr; /* temporary copy of client's address */
863 const struct netbuf *claddr;
864 avl_tree_t *tree;
865 struct auth_cache ac; /* used as a template for avl_find() */
866 struct auth_cache_clnt *c;
867 struct auth_cache_clnt acc; /* used as a template for avl_find() */
868 struct auth_cache *p = NULL;
869 int access;
870
871 uid_t tmpuid;
872 gid_t tmpgid;
873 uint_t tmpngids;
874 gid_t *tmpgids;
875
876 avl_index_t where; /* used for avl_find()/avl_insert() */
877
878 ASSERT(cr != NULL);
879
880 nag = zone_getspecific(nfsauth_zone_key, curzone);
881
882 /*
883 * Now check whether this client already
884 * has an entry for this flavor in the cache
885 * for this export.
886 * Get the caller's address, mask off the
887 * parts of the address that do not identify
888 * the host (port number, etc), and then hash
889 * it to find the chain of cache entries.
890 */
891
892 claddr = svc_getrpccaller(req->rq_xprt);
893 addr = *claddr;
894 addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP);
895 bcopy(claddr->buf, addr.buf, claddr->len);
896
897 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
898 ASSERT(taddrmask != NULL);
899 addrmask(&addr, taddrmask);
900
901 ac.auth_flavor = flavor;
902 ac.auth_clnt_cred = crdup(cr);
903
904 acc.authc_addr = addr;
905
906 tree = exi->exi_cache[hash(&addr)];
907
908 rw_enter(&exi->exi_cache_lock, RW_READER);
909 c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL);
910
911 if (c == NULL) {
912 struct auth_cache_clnt *nc;
913
914 rw_exit(&exi->exi_cache_lock);
915
916 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP | KM_NORMALPRI);
917 if (nc == NULL)
918 goto retrieve;
919
920 /*
921 * Initialize the new auth_cache_clnt
922 */
923 nc->authc_addr = addr;
924 nc->authc_addr.buf = kmem_alloc(addr.maxlen,
925 KM_NOSLEEP | KM_NORMALPRI);
926 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) {
927 kmem_free(nc, sizeof (*nc));
928 goto retrieve;
929 }
930 bcopy(addr.buf, nc->authc_addr.buf, addr.len);
931 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL);
932 avl_create(&nc->authc_tree, nfsauth_cache_compar,
933 sizeof (struct auth_cache),
934 offsetof(struct auth_cache, auth_link));
935
936 rw_enter(&exi->exi_cache_lock, RW_WRITER);
937 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where);
938 if (c == NULL) {
939 avl_insert(tree, nc, where);
940 rw_downgrade(&exi->exi_cache_lock);
941 c = nc;
942 } else {
943 rw_downgrade(&exi->exi_cache_lock);
944
945 avl_destroy(&nc->authc_tree);
946 rw_destroy(&nc->authc_lock);
947 kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen);
948 kmem_free(nc, sizeof (*nc));
949 }
950 }
951
952 ASSERT(c != NULL);
953
954 rw_enter(&c->authc_lock, RW_READER);
955 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL);
956
957 if (p == NULL) {
958 struct auth_cache *np;
959
960 rw_exit(&c->authc_lock);
961
962 np = kmem_cache_alloc(exi_cache_handle,
963 KM_NOSLEEP | KM_NORMALPRI);
964 if (np == NULL) {
965 rw_exit(&exi->exi_cache_lock);
966 goto retrieve;
967 }
968
969 /*
970 * Initialize the new auth_cache
971 */
972 np->auth_clnt = c;
973 np->auth_flavor = flavor;
974 np->auth_clnt_cred = ac.auth_clnt_cred;
975 np->auth_srv_ngids = 0;
976 np->auth_srv_gids = NULL;
977 np->auth_time = np->auth_freshness = gethrestime_sec();
978 np->auth_state = NFS_AUTH_NEW;
979 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL);
980 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL);
981
982 rw_enter(&c->authc_lock, RW_WRITER);
983 rw_exit(&exi->exi_cache_lock);
984
985 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where);
986 if (p == NULL) {
987 avl_insert(&c->authc_tree, np, where);
988 rw_downgrade(&c->authc_lock);
989 p = np;
990 } else {
991 rw_downgrade(&c->authc_lock);
992
993 cv_destroy(&np->auth_cv);
994 mutex_destroy(&np->auth_lock);
995 crfree(ac.auth_clnt_cred);
996 kmem_cache_free(exi_cache_handle, np);
997 }
998 } else {
999 rw_exit(&exi->exi_cache_lock);
1000 crfree(ac.auth_clnt_cred);
1001 }
1002
1003 mutex_enter(&p->auth_lock);
1004 rw_exit(&c->authc_lock);
1005
1006 /*
1007 * If the entry is in the WAITING state then some other thread is just
1008 * retrieving the required info. The entry was either NEW, or the list
1009 * of client's supplemental groups is going to be changed (either by
1010 * this thread, or by some other thread). We need to wait until the
1011 * nfsauth_retrieve() is done.
1012 */
1013 while (p->auth_state == NFS_AUTH_WAITING)
1014 cv_wait(&p->auth_cv, &p->auth_lock);
1015
1016 /*
1017 * Here the entry cannot be in WAITING or INVALID state.
1018 */
1019 ASSERT(p->auth_state != NFS_AUTH_WAITING);
1020 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1021
1022 /*
1023 * If the cache entry is not valid yet, we need to retrieve the
1024 * info ourselves.
1025 */
1026 if (p->auth_state == NFS_AUTH_NEW) {
1027 bool_t res;
1028 /*
1029 * NFS_AUTH_NEW is the default output auth_state value in a
1030 * case we failed somewhere below.
1031 */
1032 auth_state_t state = NFS_AUTH_NEW;
1033
1034 p->auth_state = NFS_AUTH_WAITING;
1035 mutex_exit(&p->auth_lock);
1036 kmem_free(addr.buf, addr.maxlen);
1037 addr = p->auth_clnt->authc_addr;
1038
1039 atomic_inc_uint(&nfsauth_cache_miss);
1040
1041 res = nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt),
1042 flavor, &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids,
1043 &tmpgids);
1044
1045 p->auth_access = access;
1046 p->auth_time = p->auth_freshness = gethrestime_sec();
1047
1048 if (res == TRUE) {
1049 if (uid != NULL)
1050 *uid = tmpuid;
1051 if (gid != NULL)
1052 *gid = tmpgid;
1053 if (ngids != NULL && gids != NULL) {
1054 *ngids = tmpngids;
1055 *gids = tmpgids;
1056
1057 /*
1058 * We need a copy of gids for the
1059 * auth_cache entry
1060 */
1061 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t),
1062 KM_NOSLEEP | KM_NORMALPRI);
1063 if (tmpgids != NULL)
1064 bcopy(*gids, tmpgids,
1065 tmpngids * sizeof (gid_t));
1066 }
1067
1068 if (tmpgids != NULL || tmpngids == 0) {
1069 p->auth_srv_uid = tmpuid;
1070 p->auth_srv_gid = tmpgid;
1071 p->auth_srv_ngids = tmpngids;
1072 p->auth_srv_gids = tmpgids;
1073
1074 state = NFS_AUTH_FRESH;
1075 }
1076 }
1077
1078 /*
1079 * Set the auth_state and notify waiters.
1080 */
1081 mutex_enter(&p->auth_lock);
1082 p->auth_state = state;
1083 cv_broadcast(&p->auth_cv);
1084 mutex_exit(&p->auth_lock);
1085 } else {
1086 uint_t nach;
1087 time_t refresh;
1088
1089 refresh = gethrestime_sec() - p->auth_freshness;
1090
1091 p->auth_time = gethrestime_sec();
1092
1093 if (uid != NULL)
1094 *uid = p->auth_srv_uid;
1095 if (gid != NULL)
1096 *gid = p->auth_srv_gid;
1097 if (ngids != NULL && gids != NULL) {
1098 *ngids = p->auth_srv_ngids;
1099 *gids = kmem_alloc(*ngids * sizeof (gid_t), KM_SLEEP);
1100 bcopy(p->auth_srv_gids, *gids, *ngids * sizeof (gid_t));
1101 }
1102
1103 access = p->auth_access;
1104
1105 if ((refresh > NFSAUTH_CACHE_REFRESH) &&
1106 p->auth_state == NFS_AUTH_FRESH) {
1107 refreshq_auth_node_t *ran;
1108 uint_t nacr;
1109
1110 p->auth_state = NFS_AUTH_STALE;
1111 mutex_exit(&p->auth_lock);
1112
1113 nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh);
1114 DTRACE_PROBE3(nfsauth__debug__cache__stale,
1115 struct exportinfo *, exi,
1116 struct auth_cache *, p,
1117 uint_t, nacr);
1118
1119 ran = kmem_alloc(sizeof (refreshq_auth_node_t),
1120 KM_SLEEP);
1121 ran->ran_auth = p;
1122 ran->ran_netid = strdup(svc_getnetid(req->rq_xprt));
1123
1124 mutex_enter(&nag->refreshq_lock);
1125
1126 if (nag->refreshq_thread_state ==
1127 REFRESHQ_THREAD_NEED_CREATE) {
1128 /* Launch nfsauth refresh thread */
1129 nag->refreshq_thread_state =
1130 REFRESHQ_THREAD_RUNNING;
1131 (void) zthread_create(NULL, 0,
1132 nfsauth_refresh_thread, nag, 0,
1133 minclsyspri);
1134 }
1135
1136 /*
1137 * We should not add a work queue item if the thread
1138 * is not accepting them.
1139 */
1140 if (nag->refreshq_thread_state ==
1141 REFRESHQ_THREAD_RUNNING) {
1142 refreshq_exi_node_t *ren;
1143
1144 /*
1145 * Is there an existing exi_list?
1146 */
1147 for (ren = list_head(&nag->refreshq_queue);
1148 ren != NULL;
1149 ren = list_next(&nag->refreshq_queue,
1150 ren)) {
1151 if (ren->ren_exi == exi) {
1152 list_insert_tail(
1153 &ren->ren_authlist, ran);
1154 break;
1155 }
1156 }
1157
1158 if (ren == NULL) {
1159 ren = kmem_alloc(
1160 sizeof (refreshq_exi_node_t),
1161 KM_SLEEP);
1162
1163 exi_hold(exi);
1164 ren->ren_exi = exi;
1165
1166 list_create(&ren->ren_authlist,
1167 sizeof (refreshq_auth_node_t),
1168 offsetof(refreshq_auth_node_t,
1169 ran_node));
1170
1171 list_insert_tail(&ren->ren_authlist,
1172 ran);
1173 list_insert_tail(&nag->refreshq_queue,
1174 ren);
1175 }
1176
1177 cv_broadcast(&nag->refreshq_cv);
1178 } else {
1179 strfree(ran->ran_netid);
1180 kmem_free(ran, sizeof (refreshq_auth_node_t));
1181 }
1182
1183 mutex_exit(&nag->refreshq_lock);
1184 } else {
1185 mutex_exit(&p->auth_lock);
1186 }
1187
1188 nach = atomic_inc_uint_nv(&nfsauth_cache_hit);
1189 DTRACE_PROBE2(nfsauth__debug__cache__hit,
1190 uint_t, nach,
1191 time_t, refresh);
1192
1193 kmem_free(addr.buf, addr.maxlen);
1194 }
1195
1196 return (access);
1197
1198 retrieve:
1199 crfree(ac.auth_clnt_cred);
1200
1201 /*
1202 * Retrieve the required data without caching.
1203 */
1204
1205 ASSERT(p == NULL);
1206
1207 atomic_inc_uint(&nfsauth_cache_miss);
1208
1209 if (nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt), flavor,
1210 &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids)) {
1211 if (uid != NULL)
1212 *uid = tmpuid;
1213 if (gid != NULL)
1214 *gid = tmpgid;
1215 if (ngids != NULL && gids != NULL) {
1216 *ngids = tmpngids;
1217 *gids = tmpgids;
1218 } else {
1219 kmem_free(tmpgids, tmpngids * sizeof (gid_t));
1220 }
1221 }
1222
1223 kmem_free(addr.buf, addr.maxlen);
1224
1225 return (access);
1226 }
1227
1228 /*
1229 * Check if the requesting client has access to the filesystem with
1230 * a given nfs flavor number which is an explicitly shared flavor.
1231 */
1232 int
1233 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
1234 int flavor, int perm, cred_t *cr)
1235 {
1236 int access;
1237
1238 if (! (perm & M_4SEC_EXPORTED)) {
1239 return (NFSAUTH_DENIED);
1240 }
1241
1242 /*
1243 * Optimize if there are no lists
1244 */
1245 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) {
1246 perm &= ~M_4SEC_EXPORTED;
1247 if (perm == M_RO)
1248 return (NFSAUTH_RO);
1249 if (perm == M_RW)
1250 return (NFSAUTH_RW);
1251 }
1252
1253 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL,
1254 NULL);
1255
1256 return (access);
1257 }
1258
1259 int
1260 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr,
1261 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
1262 {
1263 int access, mapaccess;
1264 struct secinfo *sp;
1265 int i, flavor, perm;
1266 int authnone_entry = -1;
1267
1268 /*
1269 * By default root is mapped to anonymous user.
1270 * This might get overriden later in nfsauth_cache_get().
1271 */
1272 if (crgetuid(cr) == 0) {
1273 if (uid != NULL)
1274 *uid = exi->exi_export.ex_anon;
1275 if (gid != NULL)
1276 *gid = exi->exi_export.ex_anon;
1277 } else {
1278 if (uid != NULL)
1279 *uid = crgetuid(cr);
1280 if (gid != NULL)
1281 *gid = crgetgid(cr);
1282 }
1283
1284 if (ngids != NULL)
1285 *ngids = 0;
1286 if (gids != NULL)
1287 *gids = NULL;
1288
1289 /*
1290 * Get the nfs flavor number from xprt.
1291 */
1292 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1293
1294 /*
1295 * First check the access restrictions on the filesystem. If
1296 * there are no lists associated with this flavor then there's no
1297 * need to make an expensive call to the nfsauth service or to
1298 * cache anything.
1299 */
1300
1301 sp = exi->exi_export.ex_secinfo;
1302 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1303 if (flavor != sp[i].s_secinfo.sc_nfsnum) {
1304 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
1305 authnone_entry = i;
1306 continue;
1307 }
1308 break;
1309 }
1310
1311 mapaccess = 0;
1312
1313 if (i >= exi->exi_export.ex_seccnt) {
1314 /*
1315 * Flavor not found, but use AUTH_NONE if it exists
1316 */
1317 if (authnone_entry == -1)
1318 return (NFSAUTH_DENIED);
1319 flavor = AUTH_NONE;
1320 mapaccess = NFSAUTH_MAPNONE;
1321 i = authnone_entry;
1322 }
1323
1324 /*
1325 * If the flavor is in the ex_secinfo list, but not an explicitly
1326 * shared flavor by the user, it is a result of the nfsv4 server
1327 * namespace setup. We will grant an RO permission similar for
1328 * a pseudo node except that this node is a shared one.
1329 *
1330 * e.g. flavor in (flavor) indicates that it is not explictly
1331 * shared by the user:
1332 *
1333 * / (sys, krb5)
1334 * |
1335 * export #share -o sec=sys (krb5)
1336 * |
1337 * secure #share -o sec=krb5
1338 *
1339 * In this case, when a krb5 request coming in to access
1340 * /export, RO permission is granted.
1341 */
1342 if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1343 return (mapaccess | NFSAUTH_RO);
1344
1345 /*
1346 * Optimize if there are no lists.
1347 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1348 */
1349 perm = sp[i].s_flags;
1350 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS ||
1351 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) {
1352 perm &= ~M_4SEC_EXPORTED;
1353 if (perm == M_RO)
1354 return (mapaccess | NFSAUTH_RO);
1355 if (perm == M_RW)
1356 return (mapaccess | NFSAUTH_RW);
1357 }
1358
1359 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids);
1360
1361 /*
1362 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1363 * the supplemental groups.
1364 */
1365 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
1366 if (ngids != NULL && gids != NULL) {
1367 kmem_free(*gids, *ngids * sizeof (gid_t));
1368 *ngids = 0;
1369 *gids = NULL;
1370 }
1371 }
1372
1373 /*
1374 * Client's security flavor doesn't match with "ro" or
1375 * "rw" list. Try again using AUTH_NONE if present.
1376 */
1377 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1378 /*
1379 * Have we already encountered AUTH_NONE ?
1380 */
1381 if (authnone_entry != -1) {
1382 mapaccess = NFSAUTH_MAPNONE;
1383 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr,
1384 NULL, NULL, NULL, NULL);
1385 } else {
1386 /*
1387 * Check for AUTH_NONE presence.
1388 */
1389 for (; i < exi->exi_export.ex_seccnt; i++) {
1390 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1391 mapaccess = NFSAUTH_MAPNONE;
1392 access = nfsauth_cache_get(exi, req,
1393 AUTH_NONE, cr, NULL, NULL, NULL,
1394 NULL);
1395 break;
1396 }
1397 }
1398 }
1399 }
1400
1401 if (access & NFSAUTH_DENIED)
1402 access = NFSAUTH_DENIED;
1403
1404 return (access | mapaccess);
1405 }
1406
1407 static void
1408 nfsauth_free_clnt_node(struct auth_cache_clnt *p)
1409 {
1410 void *cookie = NULL;
1411 struct auth_cache *node;
1412
1413 while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL)
1414 nfsauth_free_node(node);
1415 avl_destroy(&p->authc_tree);
1416
1417 kmem_free(p->authc_addr.buf, p->authc_addr.maxlen);
1418 rw_destroy(&p->authc_lock);
1419
1420 kmem_free(p, sizeof (*p));
1421 }
1422
1423 static void
1424 nfsauth_free_node(struct auth_cache *p)
1425 {
1426 crfree(p->auth_clnt_cred);
1427 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t));
1428 mutex_destroy(&p->auth_lock);
1429 cv_destroy(&p->auth_cv);
1430 kmem_cache_free(exi_cache_handle, p);
1431 }
1432
1433 /*
1434 * Free the nfsauth cache for a given export
1435 */
1436 void
1437 nfsauth_cache_free(struct exportinfo *exi)
1438 {
1439 int i;
1440
1441 /*
1442 * The only way we got here was with an exi_rele, which means that no
1443 * auth cache entry is being refreshed.
1444 */
1445
1446 for (i = 0; i < AUTH_TABLESIZE; i++) {
1447 avl_tree_t *tree = exi->exi_cache[i];
1448 void *cookie = NULL;
1449 struct auth_cache_clnt *node;
1450
1451 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
1452 nfsauth_free_clnt_node(node);
1453 }
1454 }
1455
1456 /*
1457 * Called by the kernel memory allocator when
1458 * memory is low. Free unused cache entries.
1459 * If that's not enough, the VM system will
1460 * call again for some more.
1461 */
1462 /*ARGSUSED*/
1463 void
1464 exi_cache_reclaim(void *cdrarg)
1465 {
1466 int i;
1467 struct exportinfo *exi;
1468 nfs_export_t *ne = nfs_get_export();
1469
1470 rw_enter(&ne->exported_lock, RW_READER);
1471
1472 for (i = 0; i < EXPTABLESIZE; i++) {
1473 for (exi = ne->exptable[i]; exi; exi = exi->fid_hash.next)
1474 exi_cache_trim(exi);
1475 }
1476
1477 rw_exit(&ne->exported_lock);
1478
1479 atomic_inc_uint(&nfsauth_cache_reclaim);
1480 }
1481
1482 void
1483 exi_cache_trim(struct exportinfo *exi)
1484 {
1485 struct auth_cache_clnt *c;
1486 struct auth_cache_clnt *nextc;
1487 struct auth_cache *p;
1488 struct auth_cache *next;
1489 int i;
1490 time_t stale_time;
1491 avl_tree_t *tree;
1492
1493 for (i = 0; i < AUTH_TABLESIZE; i++) {
1494 tree = exi->exi_cache[i];
1495 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1496 rw_enter(&exi->exi_cache_lock, RW_READER);
1497
1498 /*
1499 * Free entries that have not been
1500 * used for NFSAUTH_CACHE_TRIM seconds.
1501 */
1502 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) {
1503 /*
1504 * We are being called by the kmem subsystem to reclaim
1505 * memory so don't block if we can't get the lock.
1506 */
1507 if (rw_tryenter(&c->authc_lock, RW_WRITER) == 0) {
1508 exi_cache_auth_reclaim_failed++;
1509 rw_exit(&exi->exi_cache_lock);
1510 return;
1511 }
1512
1513 for (p = avl_first(&c->authc_tree); p != NULL;
1514 p = next) {
1515 next = AVL_NEXT(&c->authc_tree, p);
1516
1517 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1518
1519 mutex_enter(&p->auth_lock);
1520
1521 /*
1522 * We won't trim recently used and/or WAITING
1523 * entries.
1524 */
1525 if (p->auth_time > stale_time ||
1526 p->auth_state == NFS_AUTH_WAITING) {
1527 mutex_exit(&p->auth_lock);
1528 continue;
1529 }
1530
1531 DTRACE_PROBE1(nfsauth__debug__trim__state,
1532 auth_state_t, p->auth_state);
1533
1534 /*
1535 * STALE and REFRESHING entries needs to be
1536 * marked INVALID only because they are
1537 * referenced by some other structures or
1538 * threads. They will be freed later.
1539 */
1540 if (p->auth_state == NFS_AUTH_STALE ||
1541 p->auth_state == NFS_AUTH_REFRESHING) {
1542 p->auth_state = NFS_AUTH_INVALID;
1543 mutex_exit(&p->auth_lock);
1544
1545 avl_remove(&c->authc_tree, p);
1546 } else {
1547 mutex_exit(&p->auth_lock);
1548
1549 avl_remove(&c->authc_tree, p);
1550 nfsauth_free_node(p);
1551 }
1552 }
1553 rw_exit(&c->authc_lock);
1554 }
1555
1556 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) {
1557 rw_exit(&exi->exi_cache_lock);
1558 exi_cache_clnt_reclaim_failed++;
1559 continue;
1560 }
1561
1562 for (c = avl_first(tree); c != NULL; c = nextc) {
1563 nextc = AVL_NEXT(tree, c);
1564
1565 if (avl_is_empty(&c->authc_tree) == B_FALSE)
1566 continue;
1567
1568 avl_remove(tree, c);
1569
1570 nfsauth_free_clnt_node(c);
1571 }
1572
1573 rw_exit(&exi->exi_cache_lock);
1574 }
1575 }