1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2014 Toomas Soome <tsoome@me.com>
26 */
27
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <errno.h>
31 #include <strings.h>
32 #include <unistd.h>
33 #include <uuid/uuid.h>
34 #include <libintl.h>
35 #include <sys/types.h>
36 #include <sys/dkio.h>
37 #include <sys/vtoc.h>
38 #include <sys/mhd.h>
39 #include <sys/param.h>
40 #include <sys/dktp/fdisk.h>
41 #include <sys/efi_partition.h>
42 #include <sys/byteorder.h>
43 #include <sys/ddi.h>
44
45 static struct uuid_to_ptag {
46 struct uuid uuid;
47 } conversion_array[] = {
48 { EFI_UNUSED },
49 { EFI_BOOT },
50 { EFI_ROOT },
51 { EFI_SWAP },
52 { EFI_USR },
53 { EFI_BACKUP },
54 { 0 }, /* STAND is never used */
55 { EFI_VAR },
56 { EFI_HOME },
57 { EFI_ALTSCTR },
58 { 0 }, /* CACHE is never used */
59 { EFI_RESERVED },
60 { EFI_SYSTEM },
61 { EFI_LEGACY_MBR },
62 { EFI_SYMC_PUB },
63 { EFI_SYMC_CDS },
64 { EFI_MSFT_RESV },
65 { EFI_DELL_BASIC },
66 { EFI_DELL_RAID },
67 { EFI_DELL_SWAP },
68 { EFI_DELL_LVM },
69 { EFI_DELL_RESV },
70 { EFI_AAPL_HFS },
71 { EFI_AAPL_UFS },
72 { EFI_BIOS_BOOT },
73 { EFI_FREEBSD_BOOT },
74 { EFI_FREEBSD_SWAP },
75 { EFI_FREEBSD_UFS },
76 { EFI_FREEBSD_VINUM },
77 { EFI_FREEBSD_ZFS }
78 };
79
80 /*
81 * Default vtoc information for non-SVr4 partitions
82 */
83 struct dk_map2 default_vtoc_map[NDKMAP] = {
84 { V_ROOT, 0 }, /* a - 0 */
85 { V_SWAP, V_UNMNT }, /* b - 1 */
86 { V_BACKUP, V_UNMNT }, /* c - 2 */
87 { V_UNASSIGNED, 0 }, /* d - 3 */
88 { V_UNASSIGNED, 0 }, /* e - 4 */
89 { V_UNASSIGNED, 0 }, /* f - 5 */
90 { V_USR, 0 }, /* g - 6 */
91 { V_UNASSIGNED, 0 }, /* h - 7 */
92
93 #if defined(_SUNOS_VTOC_16)
94
95 #if defined(i386) || defined(__amd64)
96 { V_BOOT, V_UNMNT }, /* i - 8 */
97 { V_ALTSCTR, 0 }, /* j - 9 */
98
99 #else
100 #error No VTOC format defined.
101 #endif /* defined(i386) */
102
103 { V_UNASSIGNED, 0 }, /* k - 10 */
104 { V_UNASSIGNED, 0 }, /* l - 11 */
105 { V_UNASSIGNED, 0 }, /* m - 12 */
106 { V_UNASSIGNED, 0 }, /* n - 13 */
107 { V_UNASSIGNED, 0 }, /* o - 14 */
108 { V_UNASSIGNED, 0 }, /* p - 15 */
109 #endif /* defined(_SUNOS_VTOC_16) */
110 };
111
112 #ifdef DEBUG
113 int efi_debug = 1;
114 #else
115 int efi_debug = 0;
116 #endif
117
118 extern unsigned int efi_crc32(const unsigned char *, unsigned int);
119 static int efi_read(int, struct dk_gpt *);
120
121 static int
122 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
123 {
124 struct dk_minfo disk_info;
125
126 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
127 return (errno);
128 *capacity = disk_info.dki_capacity;
129 *lbsize = disk_info.dki_lbsize;
130 return (0);
131 }
132
133 /*
134 * the number of blocks the EFI label takes up (round up to nearest
135 * block)
136 */
137 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
138 ((l) - 1)) / (l)))
139 /* number of partitions -- limited by what we can malloc */
140 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
141 sizeof (struct dk_part))
142
143 int
144 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
145 {
146 diskaddr_t capacity;
147 uint_t lbsize;
148 uint_t nblocks;
149 size_t length;
150 struct dk_gpt *vptr;
151 struct uuid uuid;
152
153 if (read_disk_info(fd, &capacity, &lbsize) != 0) {
154 if (efi_debug)
155 (void) fprintf(stderr,
156 "couldn't read disk information\n");
157 return (-1);
158 }
159
160 nblocks = NBLOCKS(nparts, lbsize);
161 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
162 /* 16K plus one block for the GPT */
163 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
164 }
165
166 if (nparts > MAX_PARTS) {
167 if (efi_debug) {
168 (void) fprintf(stderr,
169 "the maximum number of partitions supported is %lu\n",
170 MAX_PARTS);
171 }
172 return (-1);
173 }
174
175 length = sizeof (struct dk_gpt) +
176 sizeof (struct dk_part) * (nparts - 1);
177
178 if ((*vtoc = calloc(length, 1)) == NULL)
179 return (-1);
180
181 vptr = *vtoc;
182
183 vptr->efi_version = EFI_VERSION_CURRENT;
184 vptr->efi_lbasize = lbsize;
185 vptr->efi_nparts = nparts;
186 /*
187 * add one block here for the PMBR; on disks with a 512 byte
188 * block size and 128 or fewer partitions, efi_first_u_lba
189 * should work out to "34"
190 */
191 vptr->efi_first_u_lba = nblocks + 1;
192 vptr->efi_last_lba = capacity - 1;
193 vptr->efi_altern_lba = capacity -1;
194 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
195
196 (void) uuid_generate((uchar_t *)&uuid);
197 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
198 return (0);
199 }
200
201 /*
202 * Read EFI - return partition number upon success.
203 */
204 int
205 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
206 {
207 int rval;
208 uint32_t nparts;
209 int length;
210 struct mboot *mbr;
211 struct ipart *ipart;
212 diskaddr_t capacity;
213 uint_t lbsize;
214 int i;
215
216 if (read_disk_info(fd, &capacity, &lbsize) != 0)
217 return (VT_ERROR);
218
219 if ((mbr = calloc(lbsize, 1)) == NULL)
220 return (VT_ERROR);
221
222 if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) {
223 free(mbr);
224 return (VT_ERROR);
225 }
226
227 if (mbr->signature != MBB_MAGIC) {
228 free(mbr);
229 return (VT_EINVAL);
230 }
231 ipart = (struct ipart *)(uintptr_t)mbr->parts;
232
233 /* Check if we have partition with ID EFI_PMBR */
234 for (i = 0; i < FD_NUMPART; i++) {
235 if (ipart[i].systid == EFI_PMBR)
236 break;
237 }
238 free(mbr);
239 if (i == FD_NUMPART)
240 return (VT_EINVAL);
241
242 /* figure out the number of entries that would fit into 16K */
243 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
244 length = (int) sizeof (struct dk_gpt) +
245 (int) sizeof (struct dk_part) * (nparts - 1);
246 if ((*vtoc = calloc(length, 1)) == NULL)
247 return (VT_ERROR);
248
249 (*vtoc)->efi_nparts = nparts;
250 rval = efi_read(fd, *vtoc);
251
252 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
253 void *tmp;
254 length = (int) sizeof (struct dk_gpt) +
255 (int) sizeof (struct dk_part) *
256 ((*vtoc)->efi_nparts - 1);
257 nparts = (*vtoc)->efi_nparts;
258 if ((tmp = realloc(*vtoc, length)) == NULL) {
259 free (*vtoc);
260 *vtoc = NULL;
261 return (VT_ERROR);
262 } else {
263 *vtoc = tmp;
264 rval = efi_read(fd, *vtoc);
265 }
266 }
267
268 if (rval < 0) {
269 if (efi_debug) {
270 (void) fprintf(stderr,
271 "read of EFI table failed, rval=%d\n", rval);
272 }
273 free (*vtoc);
274 *vtoc = NULL;
275 }
276
277 return (rval);
278 }
279
280 static int
281 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
282 {
283 void *data = dk_ioc->dki_data;
284 int error;
285
286 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
287 error = ioctl(fd, cmd, (void *)dk_ioc);
288 dk_ioc->dki_data = data;
289
290 return (error);
291 }
292
293 static int
294 check_label(int fd, dk_efi_t *dk_ioc)
295 {
296 efi_gpt_t *efi;
297 uint_t crc;
298
299 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
300 switch (errno) {
301 case EIO:
302 return (VT_EIO);
303 default:
304 return (VT_ERROR);
305 }
306 }
307 efi = dk_ioc->dki_data;
308 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
309 if (efi_debug)
310 (void) fprintf(stderr,
311 "Bad EFI signature: 0x%llx != 0x%llx\n",
312 (long long)efi->efi_gpt_Signature,
313 (long long)LE_64(EFI_SIGNATURE));
314 return (VT_EINVAL);
315 }
316
317 /*
318 * check CRC of the header; the size of the header should
319 * never be larger than one block
320 */
321 crc = efi->efi_gpt_HeaderCRC32;
322 efi->efi_gpt_HeaderCRC32 = 0;
323
324 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
325 crc != LE_32(efi_crc32((unsigned char *)efi,
326 LE_32(efi->efi_gpt_HeaderSize)))) {
327 if (efi_debug)
328 (void) fprintf(stderr,
329 "Bad EFI CRC: 0x%x != 0x%x\n",
330 crc,
331 LE_32(efi_crc32((unsigned char *)efi,
332 sizeof (struct efi_gpt))));
333 return (VT_EINVAL);
334 }
335
336 return (0);
337 }
338
339 static int
340 efi_read(int fd, struct dk_gpt *vtoc)
341 {
342 int i, j;
343 int label_len;
344 int rval = 0;
345 int vdc_flag = 0;
346 struct dk_minfo disk_info;
347 dk_efi_t dk_ioc;
348 efi_gpt_t *efi;
349 efi_gpe_t *efi_parts;
350 struct dk_cinfo dki_info;
351 uint32_t user_length;
352 boolean_t legacy_label = B_FALSE;
353
354 /*
355 * get the partition number for this file descriptor.
356 */
357 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
358 if (efi_debug) {
359 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
360 }
361 switch (errno) {
362 case EIO:
363 return (VT_EIO);
364 case EINVAL:
365 return (VT_EINVAL);
366 default:
367 return (VT_ERROR);
368 }
369 }
370
371 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
372 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
373 /*
374 * The controller and drive name "vdc" (virtual disk client)
375 * indicates a LDoms virtual disk.
376 */
377 vdc_flag++;
378 }
379
380 /* get the LBA size */
381 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
382 if (efi_debug) {
383 (void) fprintf(stderr,
384 "assuming LBA 512 bytes %d\n",
385 errno);
386 }
387 disk_info.dki_lbsize = DEV_BSIZE;
388 }
389 if (disk_info.dki_lbsize == 0) {
390 if (efi_debug) {
391 (void) fprintf(stderr,
392 "efi_read: assuming LBA 512 bytes\n");
393 }
394 disk_info.dki_lbsize = DEV_BSIZE;
395 }
396 /*
397 * Read the EFI GPT to figure out how many partitions we need
398 * to deal with.
399 */
400 dk_ioc.dki_lba = 1;
401 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
402 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
403 } else {
404 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
405 disk_info.dki_lbsize;
406 if (label_len % disk_info.dki_lbsize) {
407 /* pad to physical sector size */
408 label_len += disk_info.dki_lbsize;
409 label_len &= ~(disk_info.dki_lbsize - 1);
410 }
411 }
412
413 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
414 return (VT_ERROR);
415
416 dk_ioc.dki_length = disk_info.dki_lbsize;
417 user_length = vtoc->efi_nparts;
418 efi = dk_ioc.dki_data;
419 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
420 /*
421 * No valid label here; try the alternate. Note that here
422 * we just read GPT header and save it into dk_ioc.data,
423 * Later, we will read GUID partition entry array if we
424 * can get valid GPT header.
425 */
426
427 /*
428 * This is a workaround for legacy systems. In the past, the
429 * last sector of SCSI disk was invisible on x86 platform. At
430 * that time, backup label was saved on the next to the last
431 * sector. It is possible for users to move a disk from previous
432 * solaris system to present system. Here, we attempt to search
433 * legacy backup EFI label first.
434 */
435 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
436 dk_ioc.dki_length = disk_info.dki_lbsize;
437 rval = check_label(fd, &dk_ioc);
438 if (rval == VT_EINVAL) {
439 /*
440 * we didn't find legacy backup EFI label, try to
441 * search backup EFI label in the last block.
442 */
443 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
444 dk_ioc.dki_length = disk_info.dki_lbsize;
445 rval = check_label(fd, &dk_ioc);
446 if (rval == 0) {
447 legacy_label = B_TRUE;
448 if (efi_debug)
449 (void) fprintf(stderr,
450 "efi_read: primary label corrupt; "
451 "using EFI backup label located on"
452 " the last block\n");
453 }
454 } else {
455 if ((efi_debug) && (rval == 0))
456 (void) fprintf(stderr, "efi_read: primary label"
457 " corrupt; using legacy EFI backup label "
458 " located on the next to last block\n");
459 }
460
461 if (rval == 0) {
462 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
463 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
464 vtoc->efi_nparts =
465 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
466 /*
467 * Partition tables are between backup GPT header
468 * table and ParitionEntryLBA (the starting LBA of
469 * the GUID partition entries array). Now that we
470 * already got valid GPT header and saved it in
471 * dk_ioc.dki_data, we try to get GUID partition
472 * entry array here.
473 */
474 /* LINTED */
475 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
476 + disk_info.dki_lbsize);
477 if (legacy_label)
478 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
479 dk_ioc.dki_lba;
480 else
481 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
482 dk_ioc.dki_lba;
483 dk_ioc.dki_length *= disk_info.dki_lbsize;
484 if (dk_ioc.dki_length >
485 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
486 rval = VT_EINVAL;
487 } else {
488 /*
489 * read GUID partition entry array
490 */
491 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
492 }
493 }
494
495 } else if (rval == 0) {
496
497 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
498 /* LINTED */
499 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
500 + disk_info.dki_lbsize);
501 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
502 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
503
504 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
505 /*
506 * When the device is a LDoms virtual disk, the DKIOCGETEFI
507 * ioctl can fail with EINVAL if the virtual disk backend
508 * is a ZFS volume serviced by a domain running an old version
509 * of Solaris. This is because the DKIOCGETEFI ioctl was
510 * initially incorrectly implemented for a ZFS volume and it
511 * expected the GPT and GPE to be retrieved with a single ioctl.
512 * So we try to read the GPT and the GPE using that old style
513 * ioctl.
514 */
515 dk_ioc.dki_lba = 1;
516 dk_ioc.dki_length = label_len;
517 rval = check_label(fd, &dk_ioc);
518 }
519
520 if (rval < 0) {
521 free(efi);
522 return (rval);
523 }
524
525 /* LINTED -- always longlong aligned */
526 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
527
528 /*
529 * Assemble this into a "dk_gpt" struct for easier
530 * digestibility by applications.
531 */
532 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
533 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
534 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
535 vtoc->efi_lbasize = disk_info.dki_lbsize;
536 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
537 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
538 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
539 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
540 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
541
542 /*
543 * If the array the user passed in is too small, set the length
544 * to what it needs to be and return
545 */
546 if (user_length < vtoc->efi_nparts) {
547 return (VT_EINVAL);
548 }
549
550 for (i = 0; i < vtoc->efi_nparts; i++) {
551
552 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
553 efi_parts[i].efi_gpe_PartitionTypeGUID);
554
555 for (j = 0;
556 j < sizeof (conversion_array)
557 / sizeof (struct uuid_to_ptag); j++) {
558
559 if (bcmp(&vtoc->efi_parts[i].p_guid,
560 &conversion_array[j].uuid,
561 sizeof (struct uuid)) == 0) {
562 vtoc->efi_parts[i].p_tag = j;
563 break;
564 }
565 }
566 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
567 continue;
568 vtoc->efi_parts[i].p_flag =
569 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
570 vtoc->efi_parts[i].p_start =
571 LE_64(efi_parts[i].efi_gpe_StartingLBA);
572 vtoc->efi_parts[i].p_size =
573 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
574 vtoc->efi_parts[i].p_start + 1;
575 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
576 vtoc->efi_parts[i].p_name[j] =
577 (uchar_t)LE_16(
578 efi_parts[i].efi_gpe_PartitionName[j]);
579 }
580
581 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
582 efi_parts[i].efi_gpe_UniquePartitionGUID);
583 }
584 free(efi);
585
586 return (dki_info.dki_partition);
587 }
588
589 /* writes a "protective" MBR */
590 static int
591 write_pmbr(int fd, struct dk_gpt *vtoc)
592 {
593 dk_efi_t dk_ioc;
594 struct mboot mb;
595 uchar_t *cp;
596 diskaddr_t size_in_lba;
597 uchar_t *buf;
598 int len;
599
600 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
601 buf = calloc(len, 1);
602
603 /*
604 * Preserve any boot code and disk signature if the first block is
605 * already an MBR.
606 */
607 dk_ioc.dki_lba = 0;
608 dk_ioc.dki_length = len;
609 /* LINTED -- always longlong aligned */
610 dk_ioc.dki_data = (efi_gpt_t *)buf;
611 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
612 (void) memcpy(&mb, buf, sizeof (mb));
613 bzero(&mb, sizeof (mb));
614 mb.signature = LE_16(MBB_MAGIC);
615 } else {
616 (void) memcpy(&mb, buf, sizeof (mb));
617 if (mb.signature != LE_16(MBB_MAGIC)) {
618 bzero(&mb, sizeof (mb));
619 mb.signature = LE_16(MBB_MAGIC);
620 }
621 }
622
623 bzero(&mb.parts, sizeof (mb.parts));
624 cp = (uchar_t *)&mb.parts[0];
625 /* bootable or not */
626 *cp++ = 0;
627 /* beginning CHS; 0xffffff if not representable */
628 *cp++ = 0xff;
629 *cp++ = 0xff;
630 *cp++ = 0xff;
631 /* OS type */
632 *cp++ = EFI_PMBR;
633 /* ending CHS; 0xffffff if not representable */
634 *cp++ = 0xff;
635 *cp++ = 0xff;
636 *cp++ = 0xff;
637 /* starting LBA: 1 (little endian format) by EFI definition */
638 *cp++ = 0x01;
639 *cp++ = 0x00;
640 *cp++ = 0x00;
641 *cp++ = 0x00;
642 /* ending LBA: last block on the disk (little endian format) */
643 size_in_lba = vtoc->efi_last_lba;
644 if (size_in_lba < 0xffffffff) {
645 *cp++ = (size_in_lba & 0x000000ff);
646 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
647 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
648 *cp++ = (size_in_lba & 0xff000000) >> 24;
649 } else {
650 *cp++ = 0xff;
651 *cp++ = 0xff;
652 *cp++ = 0xff;
653 *cp++ = 0xff;
654 }
655
656 (void) memcpy(buf, &mb, sizeof (mb));
657 /* LINTED -- always longlong aligned */
658 dk_ioc.dki_data = (efi_gpt_t *)buf;
659 dk_ioc.dki_lba = 0;
660 dk_ioc.dki_length = len;
661 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
662 free(buf);
663 switch (errno) {
664 case EIO:
665 return (VT_EIO);
666 case EINVAL:
667 return (VT_EINVAL);
668 default:
669 return (VT_ERROR);
670 }
671 }
672 free(buf);
673 return (0);
674 }
675
676 /* make sure the user specified something reasonable */
677 static int
678 check_input(struct dk_gpt *vtoc)
679 {
680 int resv_part = -1;
681 int i, j;
682 diskaddr_t istart, jstart, isize, jsize, endsect;
683
684 /*
685 * Sanity-check the input (make sure no partitions overlap)
686 */
687 for (i = 0; i < vtoc->efi_nparts; i++) {
688 /* It can't be unassigned and have an actual size */
689 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
690 (vtoc->efi_parts[i].p_size != 0)) {
691 if (efi_debug) {
692 (void) fprintf(stderr,
693 "partition %d is \"unassigned\" but has a size of %llu",
694 i,
695 vtoc->efi_parts[i].p_size);
696 }
697 return (VT_EINVAL);
698 }
699 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
700 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
701 continue;
702 /* we have encountered an unknown uuid */
703 vtoc->efi_parts[i].p_tag = 0xff;
704 }
705 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
706 if (resv_part != -1) {
707 if (efi_debug) {
708 (void) fprintf(stderr,
709 "found duplicate reserved partition at %d\n",
710 i);
711 }
712 return (VT_EINVAL);
713 }
714 resv_part = i;
715 }
716 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
717 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
718 if (efi_debug) {
719 (void) fprintf(stderr,
720 "Partition %d starts at %llu. ",
721 i,
722 vtoc->efi_parts[i].p_start);
723 (void) fprintf(stderr,
724 "It must be between %llu and %llu.\n",
725 vtoc->efi_first_u_lba,
726 vtoc->efi_last_u_lba);
727 }
728 return (VT_EINVAL);
729 }
730 if ((vtoc->efi_parts[i].p_start +
731 vtoc->efi_parts[i].p_size <
732 vtoc->efi_first_u_lba) ||
733 (vtoc->efi_parts[i].p_start +
734 vtoc->efi_parts[i].p_size >
735 vtoc->efi_last_u_lba + 1)) {
736 if (efi_debug) {
737 (void) fprintf(stderr,
738 "Partition %d ends at %llu. ",
739 i,
740 vtoc->efi_parts[i].p_start +
741 vtoc->efi_parts[i].p_size);
742 (void) fprintf(stderr,
743 "It must be between %llu and %llu.\n",
744 vtoc->efi_first_u_lba,
745 vtoc->efi_last_u_lba);
746 }
747 return (VT_EINVAL);
748 }
749
750 for (j = 0; j < vtoc->efi_nparts; j++) {
751 isize = vtoc->efi_parts[i].p_size;
752 jsize = vtoc->efi_parts[j].p_size;
753 istart = vtoc->efi_parts[i].p_start;
754 jstart = vtoc->efi_parts[j].p_start;
755 if ((i != j) && (isize != 0) && (jsize != 0)) {
756 endsect = jstart + jsize -1;
757 if ((jstart <= istart) &&
758 (istart <= endsect)) {
759 if (efi_debug) {
760 (void) fprintf(stderr,
761 "Partition %d overlaps partition %d.",
762 i, j);
763 }
764 return (VT_EINVAL);
765 }
766 }
767 }
768 }
769 /* just a warning for now */
770 if ((resv_part == -1) && efi_debug) {
771 (void) fprintf(stderr,
772 "no reserved partition found\n");
773 }
774 return (0);
775 }
776
777 /*
778 * add all the unallocated space to the current label
779 */
780 int
781 efi_use_whole_disk(int fd)
782 {
783 struct dk_gpt *efi_label;
784 int rval;
785 int i;
786 uint_t phy_last_slice = 0;
787 diskaddr_t pl_start = 0;
788 diskaddr_t pl_size;
789
790 rval = efi_alloc_and_read(fd, &efi_label);
791 if (rval < 0) {
792 return (rval);
793 }
794
795 /* find the last physically non-zero partition */
796 for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
797 if (pl_start < efi_label->efi_parts[i].p_start) {
798 pl_start = efi_label->efi_parts[i].p_start;
799 phy_last_slice = i;
800 }
801 }
802 pl_size = efi_label->efi_parts[phy_last_slice].p_size;
803
804 /*
805 * If alter_lba is 1, we are using the backup label.
806 * Since we can locate the backup label by disk capacity,
807 * there must be no unallocated space.
808 */
809 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
810 >= efi_label->efi_last_lba)) {
811 if (efi_debug) {
812 (void) fprintf(stderr,
813 "efi_use_whole_disk: requested space not found\n");
814 }
815 efi_free(efi_label);
816 return (VT_ENOSPC);
817 }
818
819 /*
820 * If there is space between the last physically non-zero partition
821 * and the reserved partition, just add the unallocated space to this
822 * area. Otherwise, the unallocated space is added to the last
823 * physically non-zero partition.
824 */
825 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
826 EFI_MIN_RESV_SIZE) {
827 efi_label->efi_parts[phy_last_slice].p_size +=
828 efi_label->efi_last_lba - efi_label->efi_altern_lba;
829 }
830
831 /*
832 * Move the reserved partition. There is currently no data in
833 * here except fabricated devids (which get generated via
834 * efi_write()). So there is no need to copy data.
835 */
836 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
837 efi_label->efi_last_lba - efi_label->efi_altern_lba;
838 efi_label->efi_last_u_lba += efi_label->efi_last_lba
839 - efi_label->efi_altern_lba;
840
841 rval = efi_write(fd, efi_label);
842 if (rval < 0) {
843 if (efi_debug) {
844 (void) fprintf(stderr,
845 "efi_use_whole_disk:fail to write label, rval=%d\n",
846 rval);
847 }
848 efi_free(efi_label);
849 return (rval);
850 }
851
852 efi_free(efi_label);
853 return (0);
854 }
855
856
857 /*
858 * write EFI label and backup label
859 */
860 int
861 efi_write(int fd, struct dk_gpt *vtoc)
862 {
863 dk_efi_t dk_ioc;
864 efi_gpt_t *efi;
865 efi_gpe_t *efi_parts;
866 int i, j;
867 struct dk_cinfo dki_info;
868 int nblocks;
869 diskaddr_t lba_backup_gpt_hdr;
870
871 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
872 if (efi_debug)
873 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
874 switch (errno) {
875 case EIO:
876 return (VT_EIO);
877 case EINVAL:
878 return (VT_EINVAL);
879 default:
880 return (VT_ERROR);
881 }
882 }
883
884 if (check_input(vtoc))
885 return (VT_EINVAL);
886
887 dk_ioc.dki_lba = 1;
888 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
889 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
890 } else {
891 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
892 vtoc->efi_lbasize) *
893 vtoc->efi_lbasize;
894 }
895
896 /*
897 * the number of blocks occupied by GUID partition entry array
898 */
899 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
900
901 /*
902 * Backup GPT header is located on the block after GUID
903 * partition entry array. Here, we calculate the address
904 * for backup GPT header.
905 */
906 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
907 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
908 return (VT_ERROR);
909
910 efi = dk_ioc.dki_data;
911
912 /* stuff user's input into EFI struct */
913 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
914 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
915 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
916 efi->efi_gpt_Reserved1 = 0;
917 efi->efi_gpt_MyLBA = LE_64(1ULL);
918 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
919 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
920 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
921 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
922 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
923 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
924 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
925
926 /* LINTED -- always longlong aligned */
927 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
928
929 for (i = 0; i < vtoc->efi_nparts; i++) {
930 for (j = 0;
931 j < sizeof (conversion_array) /
932 sizeof (struct uuid_to_ptag); j++) {
933
934 if (vtoc->efi_parts[i].p_tag == j) {
935 UUID_LE_CONVERT(
936 efi_parts[i].efi_gpe_PartitionTypeGUID,
937 conversion_array[j].uuid);
938 break;
939 }
940 }
941
942 if (j == sizeof (conversion_array) /
943 sizeof (struct uuid_to_ptag)) {
944 /*
945 * If we didn't have a matching uuid match, bail here.
946 * Don't write a label with unknown uuid.
947 */
948 if (efi_debug) {
949 (void) fprintf(stderr,
950 "Unknown uuid for p_tag %d\n",
951 vtoc->efi_parts[i].p_tag);
952 }
953 return (VT_EINVAL);
954 }
955
956 efi_parts[i].efi_gpe_StartingLBA =
957 LE_64(vtoc->efi_parts[i].p_start);
958 efi_parts[i].efi_gpe_EndingLBA =
959 LE_64(vtoc->efi_parts[i].p_start +
960 vtoc->efi_parts[i].p_size - 1);
961 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
962 LE_16(vtoc->efi_parts[i].p_flag);
963 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
964 efi_parts[i].efi_gpe_PartitionName[j] =
965 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
966 }
967 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
968 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
969 (void) uuid_generate((uchar_t *)
970 &vtoc->efi_parts[i].p_uguid);
971 }
972 bcopy(&vtoc->efi_parts[i].p_uguid,
973 &efi_parts[i].efi_gpe_UniquePartitionGUID,
974 sizeof (uuid_t));
975 }
976 efi->efi_gpt_PartitionEntryArrayCRC32 =
977 LE_32(efi_crc32((unsigned char *)efi_parts,
978 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
979 efi->efi_gpt_HeaderCRC32 =
980 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
981
982 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
983 free(dk_ioc.dki_data);
984 switch (errno) {
985 case EIO:
986 return (VT_EIO);
987 case EINVAL:
988 return (VT_EINVAL);
989 default:
990 return (VT_ERROR);
991 }
992 }
993
994 /* write backup partition array */
995 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
996 dk_ioc.dki_length -= vtoc->efi_lbasize;
997 /* LINTED */
998 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
999 vtoc->efi_lbasize);
1000
1001 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1002 /*
1003 * we wrote the primary label okay, so don't fail
1004 */
1005 if (efi_debug) {
1006 (void) fprintf(stderr,
1007 "write of backup partitions to block %llu "
1008 "failed, errno %d\n",
1009 vtoc->efi_last_u_lba + 1,
1010 errno);
1011 }
1012 }
1013 /*
1014 * now swap MyLBA and AlternateLBA fields and write backup
1015 * partition table header
1016 */
1017 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1018 dk_ioc.dki_length = vtoc->efi_lbasize;
1019 /* LINTED */
1020 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1021 vtoc->efi_lbasize);
1022 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1023 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1024 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1025 efi->efi_gpt_HeaderCRC32 = 0;
1026 efi->efi_gpt_HeaderCRC32 =
1027 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1028 sizeof (struct efi_gpt)));
1029
1030 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1031 if (efi_debug) {
1032 (void) fprintf(stderr,
1033 "write of backup header to block %llu failed, "
1034 "errno %d\n",
1035 lba_backup_gpt_hdr,
1036 errno);
1037 }
1038 }
1039 /* write the PMBR */
1040 (void) write_pmbr(fd, vtoc);
1041 free(dk_ioc.dki_data);
1042 return (0);
1043 }
1044
1045 void
1046 efi_free(struct dk_gpt *ptr)
1047 {
1048 free(ptr);
1049 }
1050
1051 /*
1052 * Input: File descriptor
1053 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1054 * Otherwise 0.
1055 */
1056 int
1057 efi_type(int fd)
1058 {
1059 struct vtoc vtoc;
1060 struct extvtoc extvtoc;
1061
1062 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1063 if (errno == ENOTSUP)
1064 return (1);
1065 else if (errno == ENOTTY) {
1066 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1067 if (errno == ENOTSUP)
1068 return (1);
1069 }
1070 }
1071 return (0);
1072 }
1073
1074 void
1075 efi_err_check(struct dk_gpt *vtoc)
1076 {
1077 int resv_part = -1;
1078 int i, j;
1079 diskaddr_t istart, jstart, isize, jsize, endsect;
1080 int overlap = 0;
1081
1082 /*
1083 * make sure no partitions overlap
1084 */
1085 for (i = 0; i < vtoc->efi_nparts; i++) {
1086 /* It can't be unassigned and have an actual size */
1087 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1088 (vtoc->efi_parts[i].p_size != 0)) {
1089 (void) fprintf(stderr,
1090 "partition %d is \"unassigned\" but has a size "
1091 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1092 }
1093 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1094 continue;
1095 }
1096 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1097 if (resv_part != -1) {
1098 (void) fprintf(stderr,
1099 "found duplicate reserved partition at "
1100 "%d\n", i);
1101 }
1102 resv_part = i;
1103 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1104 (void) fprintf(stderr,
1105 "Warning: reserved partition size must "
1106 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1107 }
1108 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1109 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1110 (void) fprintf(stderr,
1111 "Partition %d starts at %llu\n",
1112 i,
1113 vtoc->efi_parts[i].p_start);
1114 (void) fprintf(stderr,
1115 "It must be between %llu and %llu.\n",
1116 vtoc->efi_first_u_lba,
1117 vtoc->efi_last_u_lba);
1118 }
1119 if ((vtoc->efi_parts[i].p_start +
1120 vtoc->efi_parts[i].p_size <
1121 vtoc->efi_first_u_lba) ||
1122 (vtoc->efi_parts[i].p_start +
1123 vtoc->efi_parts[i].p_size >
1124 vtoc->efi_last_u_lba + 1)) {
1125 (void) fprintf(stderr,
1126 "Partition %d ends at %llu\n",
1127 i,
1128 vtoc->efi_parts[i].p_start +
1129 vtoc->efi_parts[i].p_size);
1130 (void) fprintf(stderr,
1131 "It must be between %llu and %llu.\n",
1132 vtoc->efi_first_u_lba,
1133 vtoc->efi_last_u_lba);
1134 }
1135
1136 for (j = 0; j < vtoc->efi_nparts; j++) {
1137 isize = vtoc->efi_parts[i].p_size;
1138 jsize = vtoc->efi_parts[j].p_size;
1139 istart = vtoc->efi_parts[i].p_start;
1140 jstart = vtoc->efi_parts[j].p_start;
1141 if ((i != j) && (isize != 0) && (jsize != 0)) {
1142 endsect = jstart + jsize -1;
1143 if ((jstart <= istart) &&
1144 (istart <= endsect)) {
1145 if (!overlap) {
1146 (void) fprintf(stderr,
1147 "label error: EFI Labels do not "
1148 "support overlapping partitions\n");
1149 }
1150 (void) fprintf(stderr,
1151 "Partition %d overlaps partition "
1152 "%d.\n", i, j);
1153 overlap = 1;
1154 }
1155 }
1156 }
1157 }
1158 /* make sure there is a reserved partition */
1159 if (resv_part == -1) {
1160 (void) fprintf(stderr,
1161 "no reserved partition found\n");
1162 }
1163 }
1164
1165 /*
1166 * We need to get information necessary to construct a *new* efi
1167 * label type
1168 */
1169 int
1170 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1171 {
1172
1173 int i;
1174
1175 /*
1176 * Now build the default partition table
1177 */
1178 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1179 if (efi_debug) {
1180 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1181 }
1182 return (-1);
1183 }
1184
1185 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1186 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1187 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1188 (*vtoc)->efi_parts[i].p_start = 0;
1189 (*vtoc)->efi_parts[i].p_size = 0;
1190 }
1191 /*
1192 * Make constants first
1193 * and variable partitions later
1194 */
1195
1196 /* root partition - s0 128 MB */
1197 (*vtoc)->efi_parts[0].p_start = 34;
1198 (*vtoc)->efi_parts[0].p_size = 262144;
1199
1200 /* partition - s1 128 MB */
1201 (*vtoc)->efi_parts[1].p_start = 262178;
1202 (*vtoc)->efi_parts[1].p_size = 262144;
1203
1204 /* partition -s2 is NOT the Backup disk */
1205 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1206
1207 /* partition -s6 /usr partition - HOG */
1208 (*vtoc)->efi_parts[6].p_start = 524322;
1209 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1210 - (1024 * 16);
1211
1212 /* efi reserved partition - s9 16K */
1213 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1214 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1215 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1216 return (0);
1217 }