1 /*
   2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
   3  * Use is subject to license terms.
   4  */
   5 
   6 /*
   7  * The basic framework for this code came from the reference
   8  * implementation for MD5.  That implementation is Copyright (C)
   9  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
  10  *
  11  * License to copy and use this software is granted provided that it
  12  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
  13  * Algorithm" in all material mentioning or referencing this software
  14  * or this function.
  15  *
  16  * License is also granted to make and use derivative works provided
  17  * that such works are identified as "derived from the RSA Data
  18  * Security, Inc. MD5 Message-Digest Algorithm" in all material
  19  * mentioning or referencing the derived work.
  20  *
  21  * RSA Data Security, Inc. makes no representations concerning either
  22  * the merchantability of this software or the suitability of this
  23  * software for any particular purpose. It is provided "as is"
  24  * without express or implied warranty of any kind.
  25  *
  26  * These notices must be retained in any copies of any part of this
  27  * documentation and/or software.
  28  *
  29  * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
  30  * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
  31  * Not as fast as one would like -- further optimizations are encouraged
  32  * and appreciated.
  33  */
  34 
  35 #if defined(_STANDALONE)
  36 #include <sys/cdefs.h>
  37 #define _RESTRICT_KYWD  restrict
  38 #else
  39 #if !defined(_KERNEL) && !defined(_BOOT)
  40 #include <stdint.h>
  41 #include <strings.h>
  42 #include <stdlib.h>
  43 #include <errno.h>
  44 #include <sys/systeminfo.h>
  45 #endif  /* !_KERNEL && !_BOOT */
  46 #endif  /* _STANDALONE */
  47 
  48 #include <sys/types.h>
  49 #include <sys/param.h>
  50 #include <sys/systm.h>
  51 #include <sys/sysmacros.h>
  52 #include <sys/sha1.h>
  53 #include <sys/sha1_consts.h>
  54 
  55 #if defined(_STANDALONE)
  56 #include <sys/endian.h>
  57 #define HAVE_HTONL
  58 #if _BYTE_ORDER == _LITTLE_ENDIAN
  59 #undef _BIG_ENDIAN
  60 #else
  61 #undef _LITTLE_ENDIAN
  62 #endif
  63 #else
  64 #ifdef _LITTLE_ENDIAN
  65 #include <sys/byteorder.h>
  66 #define HAVE_HTONL
  67 #endif
  68 #endif
  69 
  70 #ifdef  _BOOT
  71 #define bcopy(_s, _d, _l)       ((void) memcpy((_d), (_s), (_l)))
  72 #define bzero(_m, _l)           ((void) memset((_m), 0, (_l)))
  73 #endif
  74 
  75 static void Encode(uint8_t *, const uint32_t *, size_t);
  76 
  77 #if     defined(__sparc)
  78 
  79 #define SHA1_TRANSFORM(ctx, in) \
  80         SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
  81                 (ctx)->state[3], (ctx)->state[4], (ctx), (in))
  82 
  83 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
  84     SHA1_CTX *, const uint8_t *);
  85 
  86 #elif   defined(__amd64) && !defined(_STANDALONE)
  87 
  88 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
  89 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
  90                 (in), (num))
  91 
  92 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
  93 
  94 #else
  95 
  96 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
  97 
  98 static void SHA1Transform(SHA1_CTX *, const uint8_t *);
  99 
 100 #endif
 101 
 102 
 103 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
 104 
 105 /*
 106  * F, G, and H are the basic SHA1 functions.
 107  */
 108 #define F(b, c, d)      (((b) & (c)) | ((~b) & (d)))
 109 #define G(b, c, d)      ((b) ^ (c) ^ (d))
 110 #define H(b, c, d)      (((b) & (c)) | (((b)|(c)) & (d)))
 111 
 112 /*
 113  * ROTATE_LEFT rotates x left n bits.
 114  */
 115 
 116 #if     defined(__GNUC__) && defined(_LP64)
 117 static __inline__ uint64_t
 118 ROTATE_LEFT(uint64_t value, uint32_t n)
 119 {
 120         uint32_t t32;
 121 
 122         t32 = (uint32_t)value;
 123         return ((t32 << n) | (t32 >> (32 - n)));
 124 }
 125 
 126 #else
 127 
 128 #define ROTATE_LEFT(x, n)       \
 129         (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
 130 
 131 #endif
 132 
 133 
 134 /*
 135  * SHA1Init()
 136  *
 137  * purpose: initializes the sha1 context and begins and sha1 digest operation
 138  *   input: SHA1_CTX *  : the context to initializes.
 139  *  output: void
 140  */
 141 
 142 void
 143 SHA1Init(SHA1_CTX *ctx)
 144 {
 145         ctx->count[0] = ctx->count[1] = 0;
 146 
 147         /*
 148          * load magic initialization constants. Tell lint
 149          * that these constants are unsigned by using U.
 150          */
 151 
 152         ctx->state[0] = 0x67452301U;
 153         ctx->state[1] = 0xefcdab89U;
 154         ctx->state[2] = 0x98badcfeU;
 155         ctx->state[3] = 0x10325476U;
 156         ctx->state[4] = 0xc3d2e1f0U;
 157 }
 158 
 159 #ifdef VIS_SHA1
 160 #ifdef _KERNEL
 161 
 162 #include <sys/regset.h>
 163 #include <sys/vis.h>
 164 #include <sys/fpu/fpusystm.h>
 165 
 166 /* the alignment for block stores to save fp registers */
 167 #define VIS_ALIGN       (64)
 168 
 169 extern int sha1_savefp(kfpu_t *, int);
 170 extern void sha1_restorefp(kfpu_t *);
 171 
 172 uint32_t        vis_sha1_svfp_threshold = 128;
 173 
 174 #endif /* _KERNEL */
 175 
 176 /*
 177  * VIS SHA-1 consts.
 178  */
 179 static uint64_t VIS[] = {
 180         0x8000000080000000ULL,
 181         0x0002000200020002ULL,
 182         0x5a8279996ed9eba1ULL,
 183         0x8f1bbcdcca62c1d6ULL,
 184         0x012389ab456789abULL};
 185 
 186 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
 187 
 188 
 189 /*
 190  * SHA1Update()
 191  *
 192  * purpose: continues an sha1 digest operation, using the message block
 193  *          to update the context.
 194  *   input: SHA1_CTX *  : the context to update
 195  *          void *      : the message block
 196  *          size_t    : the length of the message block in bytes
 197  *  output: void
 198  */
 199 
 200 void
 201 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
 202 {
 203         uint32_t i, buf_index, buf_len;
 204         uint64_t X0[40], input64[8];
 205         const uint8_t *input = inptr;
 206 #ifdef _KERNEL
 207         int usevis = 0;
 208 #else
 209         int usevis = 1;
 210 #endif /* _KERNEL */
 211 
 212         /* check for noop */
 213         if (input_len == 0)
 214                 return;
 215 
 216         /* compute number of bytes mod 64 */
 217         buf_index = (ctx->count[1] >> 3) & 0x3F;
 218 
 219         /* update number of bits */
 220         if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
 221                 ctx->count[0]++;
 222 
 223         ctx->count[0] += (input_len >> 29);
 224 
 225         buf_len = 64 - buf_index;
 226 
 227         /* transform as many times as possible */
 228         i = 0;
 229         if (input_len >= buf_len) {
 230 #ifdef _KERNEL
 231                 kfpu_t *fpu;
 232                 if (fpu_exists) {
 233                         uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
 234                         uint32_t len = (input_len + buf_index) & ~0x3f;
 235                         int svfp_ok;
 236 
 237                         fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
 238                         svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
 239                         usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
 240                 } else {
 241                         usevis = 0;
 242                 }
 243 #endif /* _KERNEL */
 244 
 245                 /*
 246                  * general optimization:
 247                  *
 248                  * only do initial bcopy() and SHA1Transform() if
 249                  * buf_index != 0.  if buf_index == 0, we're just
 250                  * wasting our time doing the bcopy() since there
 251                  * wasn't any data left over from a previous call to
 252                  * SHA1Update().
 253                  */
 254 
 255                 if (buf_index) {
 256                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 257                         if (usevis) {
 258                                 SHA1TransformVIS(X0,
 259                                     ctx->buf_un.buf32,
 260                                     &ctx->state[0], VIS);
 261                         } else {
 262                                 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
 263                         }
 264                         i = buf_len;
 265                 }
 266 
 267                 /*
 268                  * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
 269                  * SHA-1 processing. This is achieved by "offloading" the
 270                  * computation of the message schedule (MS) to the VIS units.
 271                  * This allows the VIS computation of the message schedule
 272                  * to be performed in parallel with the standard integer
 273                  * processing of the remainder of the SHA-1 computation.
 274                  * performance by up to around 1.37X, compared to an optimized
 275                  * integer-only implementation.
 276                  *
 277                  * The VIS implementation of SHA1Transform has a different API
 278                  * to the standard integer version:
 279                  *
 280                  * void SHA1TransformVIS(
 281                  *       uint64_t *, // Pointer to MS for ith block
 282                  *       uint32_t *, // Pointer to ith block of message data
 283                  *       uint32_t *, // Pointer to SHA state i.e ctx->state
 284                  *       uint64_t *, // Pointer to various VIS constants
 285                  * )
 286                  *
 287                  * Note: the message data must by 4-byte aligned.
 288                  *
 289                  * Function requires VIS 1.0 support.
 290                  *
 291                  * Handling is provided to deal with arbitrary byte alingment
 292                  * of the input data but the performance gains are reduced
 293                  * for alignments other than 4-bytes.
 294                  */
 295                 if (usevis) {
 296                         if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
 297                                 /*
 298                                  * Main processing loop - input misaligned
 299                                  */
 300                                 for (; i + 63 < input_len; i += 64) {
 301                                         bcopy(&input[i], input64, 64);
 302                                         SHA1TransformVIS(X0,
 303                                             (uint32_t *)input64,
 304                                             &ctx->state[0], VIS);
 305                                 }
 306                         } else {
 307                                 /*
 308                                  * Main processing loop - input 8-byte aligned
 309                                  */
 310                                 for (; i + 63 < input_len; i += 64) {
 311                                         SHA1TransformVIS(X0,
 312                                             /* LINTED E_BAD_PTR_CAST_ALIGN */
 313                                             (uint32_t *)&input[i], /* CSTYLED */
 314                                             &ctx->state[0], VIS);
 315                                 }
 316 
 317                         }
 318 #ifdef _KERNEL
 319                         sha1_restorefp(fpu);
 320 #endif /* _KERNEL */
 321                 } else {
 322                         for (; i + 63 < input_len; i += 64) {
 323                                 SHA1_TRANSFORM(ctx, &input[i]);
 324                         }
 325                 }
 326 
 327                 /*
 328                  * general optimization:
 329                  *
 330                  * if i and input_len are the same, return now instead
 331                  * of calling bcopy(), since the bcopy() in this case
 332                  * will be an expensive nop.
 333                  */
 334 
 335                 if (input_len == i)
 336                         return;
 337 
 338                 buf_index = 0;
 339         }
 340 
 341         /* buffer remaining input */
 342         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 343 }
 344 
 345 #else /* VIS_SHA1 */
 346 
 347 void
 348 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
 349 {
 350         uint32_t i, buf_index, buf_len;
 351         const uint8_t *input = inptr;
 352 #if defined(__amd64) && !defined(_STANDALONE)
 353         uint32_t        block_count;
 354 #endif  /* __amd64 */
 355 
 356         /* check for noop */
 357         if (input_len == 0)
 358                 return;
 359 
 360         /* compute number of bytes mod 64 */
 361         buf_index = (ctx->count[1] >> 3) & 0x3F;
 362 
 363         /* update number of bits */
 364         if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
 365                 ctx->count[0]++;
 366 
 367         ctx->count[0] += (input_len >> 29);
 368 
 369         buf_len = 64 - buf_index;
 370 
 371         /* transform as many times as possible */
 372         i = 0;
 373         if (input_len >= buf_len) {
 374 
 375                 /*
 376                  * general optimization:
 377                  *
 378                  * only do initial bcopy() and SHA1Transform() if
 379                  * buf_index != 0.  if buf_index == 0, we're just
 380                  * wasting our time doing the bcopy() since there
 381                  * wasn't any data left over from a previous call to
 382                  * SHA1Update().
 383                  */
 384 
 385                 if (buf_index) {
 386                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 387                         SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
 388                         i = buf_len;
 389                 }
 390 
 391 #if !defined(__amd64) || defined(_STANDALONE)
 392                 for (; i + 63 < input_len; i += 64)
 393                         SHA1_TRANSFORM(ctx, &input[i]);
 394 #else
 395                 block_count = (input_len - i) >> 6;
 396                 if (block_count > 0) {
 397                         SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
 398                         i += block_count << 6;
 399                 }
 400 #endif  /* !__amd64 */
 401 
 402                 /*
 403                  * general optimization:
 404                  *
 405                  * if i and input_len are the same, return now instead
 406                  * of calling bcopy(), since the bcopy() in this case
 407                  * will be an expensive nop.
 408                  */
 409 
 410                 if (input_len == i)
 411                         return;
 412 
 413                 buf_index = 0;
 414         }
 415 
 416         /* buffer remaining input */
 417         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 418 }
 419 
 420 #endif /* VIS_SHA1 */
 421 
 422 /*
 423  * SHA1Final()
 424  *
 425  * purpose: ends an sha1 digest operation, finalizing the message digest and
 426  *          zeroing the context.
 427  *   input: uchar_t *   : A buffer to store the digest.
 428  *                      : The function actually uses void* because many
 429  *                      : callers pass things other than uchar_t here.
 430  *          SHA1_CTX *  : the context to finalize, save, and zero
 431  *  output: void
 432  */
 433 
 434 void
 435 SHA1Final(void *digest, SHA1_CTX *ctx)
 436 {
 437         uint8_t         bitcount_be[sizeof (ctx->count)];
 438         uint32_t        index = (ctx->count[1] >> 3) & 0x3f;
 439 
 440         /* store bit count, big endian */
 441         Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
 442 
 443         /* pad out to 56 mod 64 */
 444         SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
 445 
 446         /* append length (before padding) */
 447         SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
 448 
 449         /* store state in digest */
 450         Encode(digest, ctx->state, sizeof (ctx->state));
 451 
 452         /* zeroize sensitive information */
 453         bzero(ctx, sizeof (*ctx));
 454 }
 455 
 456 
 457 #if !defined(__amd64) || defined(_STANDALONE)
 458 
 459 typedef uint32_t sha1word;
 460 
 461 /*
 462  * sparc optimization:
 463  *
 464  * on the sparc, we can load big endian 32-bit data easily.  note that
 465  * special care must be taken to ensure the address is 32-bit aligned.
 466  * in the interest of speed, we don't check to make sure, since
 467  * careful programming can guarantee this for us.
 468  */
 469 
 470 #if     defined(_BIG_ENDIAN)
 471 #define LOAD_BIG_32(addr)       (*(uint32_t *)(addr))
 472 
 473 #elif   defined(HAVE_HTONL)
 474 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
 475 
 476 #else
 477 /* little endian -- will work on big endian, but slowly */
 478 #define LOAD_BIG_32(addr)       \
 479         (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
 480 #endif  /* _BIG_ENDIAN */
 481 
 482 /*
 483  * SHA1Transform()
 484  */
 485 #if     defined(W_ARRAY)
 486 #define W(n) w[n]
 487 #else   /* !defined(W_ARRAY) */
 488 #define W(n) w_ ## n
 489 #endif  /* !defined(W_ARRAY) */
 490 
 491 
 492 #if     defined(__sparc)
 493 
 494 /*
 495  * sparc register window optimization:
 496  *
 497  * `a', `b', `c', `d', and `e' are passed into SHA1Transform
 498  * explicitly since it increases the number of registers available to
 499  * the compiler.  under this scheme, these variables can be held in
 500  * %i0 - %i4, which leaves more local and out registers available.
 501  *
 502  * purpose: sha1 transformation -- updates the digest based on `block'
 503  *   input: uint32_t    : bytes  1 -  4 of the digest
 504  *          uint32_t    : bytes  5 -  8 of the digest
 505  *          uint32_t    : bytes  9 - 12 of the digest
 506  *          uint32_t    : bytes 12 - 16 of the digest
 507  *          uint32_t    : bytes 16 - 20 of the digest
 508  *          SHA1_CTX *  : the context to update
 509  *          uint8_t [64]: the block to use to update the digest
 510  *  output: void
 511  */
 512 
 513 void
 514 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
 515     SHA1_CTX *ctx, const uint8_t blk[64])
 516 {
 517         /*
 518          * sparc optimization:
 519          *
 520          * while it is somewhat counter-intuitive, on sparc, it is
 521          * more efficient to place all the constants used in this
 522          * function in an array and load the values out of the array
 523          * than to manually load the constants.  this is because
 524          * setting a register to a 32-bit value takes two ops in most
 525          * cases: a `sethi' and an `or', but loading a 32-bit value
 526          * from memory only takes one `ld' (or `lduw' on v9).  while
 527          * this increases memory usage, the compiler can find enough
 528          * other things to do while waiting to keep the pipeline does
 529          * not stall.  additionally, it is likely that many of these
 530          * constants are cached so that later accesses do not even go
 531          * out to the bus.
 532          *
 533          * this array is declared `static' to keep the compiler from
 534          * having to bcopy() this array onto the stack frame of
 535          * SHA1Transform() each time it is called -- which is
 536          * unacceptably expensive.
 537          *
 538          * the `const' is to ensure that callers are good citizens and
 539          * do not try to munge the array.  since these routines are
 540          * going to be called from inside multithreaded kernelland,
 541          * this is a good safety check. -- `sha1_consts' will end up in
 542          * .rodata.
 543          *
 544          * unfortunately, loading from an array in this manner hurts
 545          * performance under Intel.  So, there is a macro,
 546          * SHA1_CONST(), used in SHA1Transform(), that either expands to
 547          * a reference to this array, or to the actual constant,
 548          * depending on what platform this code is compiled for.
 549          */
 550 
 551         static const uint32_t sha1_consts[] = {
 552                 SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
 553         };
 554 
 555         /*
 556          * general optimization:
 557          *
 558          * use individual integers instead of using an array.  this is a
 559          * win, although the amount it wins by seems to vary quite a bit.
 560          */
 561 
 562         uint32_t        w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
 563         uint32_t        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
 564 
 565         /*
 566          * sparc optimization:
 567          *
 568          * if `block' is already aligned on a 4-byte boundary, use
 569          * LOAD_BIG_32() directly.  otherwise, bcopy() into a
 570          * buffer that *is* aligned on a 4-byte boundary and then do
 571          * the LOAD_BIG_32() on that buffer.  benchmarks have shown
 572          * that using the bcopy() is better than loading the bytes
 573          * individually and doing the endian-swap by hand.
 574          *
 575          * even though it's quite tempting to assign to do:
 576          *
 577          * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
 578          *
 579          * and only have one set of LOAD_BIG_32()'s, the compiler
 580          * *does not* like that, so please resist the urge.
 581          */
 582 
 583         if ((uintptr_t)blk & 0x3) {         /* not 4-byte aligned? */
 584                 bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
 585                 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
 586                 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
 587                 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
 588                 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
 589                 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
 590                 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
 591                 w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
 592                 w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
 593                 w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
 594                 w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
 595                 w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
 596                 w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
 597                 w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
 598                 w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
 599                 w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
 600                 w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
 601         } else {
 602                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 603                 w_15 = LOAD_BIG_32(blk + 60);
 604                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 605                 w_14 = LOAD_BIG_32(blk + 56);
 606                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 607                 w_13 = LOAD_BIG_32(blk + 52);
 608                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 609                 w_12 = LOAD_BIG_32(blk + 48);
 610                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 611                 w_11 = LOAD_BIG_32(blk + 44);
 612                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 613                 w_10 = LOAD_BIG_32(blk + 40);
 614                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 615                 w_9  = LOAD_BIG_32(blk + 36);
 616                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 617                 w_8  = LOAD_BIG_32(blk + 32);
 618                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 619                 w_7  = LOAD_BIG_32(blk + 28);
 620                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 621                 w_6  = LOAD_BIG_32(blk + 24);
 622                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 623                 w_5  = LOAD_BIG_32(blk + 20);
 624                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 625                 w_4  = LOAD_BIG_32(blk + 16);
 626                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 627                 w_3  = LOAD_BIG_32(blk + 12);
 628                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 629                 w_2  = LOAD_BIG_32(blk +  8);
 630                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 631                 w_1  = LOAD_BIG_32(blk +  4);
 632                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 633                 w_0  = LOAD_BIG_32(blk +  0);
 634         }
 635 #else   /* !defined(__sparc) */
 636 
 637 void /* CSTYLED */
 638 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
 639 {
 640         /* CSTYLED */
 641         sha1word a = ctx->state[0];
 642         sha1word b = ctx->state[1];
 643         sha1word c = ctx->state[2];
 644         sha1word d = ctx->state[3];
 645         sha1word e = ctx->state[4];
 646 
 647 #if     defined(W_ARRAY)
 648         sha1word        w[16];
 649 #else   /* !defined(W_ARRAY) */
 650         sha1word        w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
 651         sha1word        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
 652 #endif  /* !defined(W_ARRAY) */
 653 
 654         W(0)  = LOAD_BIG_32((void *)(blk +  0));
 655         W(1)  = LOAD_BIG_32((void *)(blk +  4));
 656         W(2)  = LOAD_BIG_32((void *)(blk +  8));
 657         W(3)  = LOAD_BIG_32((void *)(blk + 12));
 658         W(4)  = LOAD_BIG_32((void *)(blk + 16));
 659         W(5)  = LOAD_BIG_32((void *)(blk + 20));
 660         W(6)  = LOAD_BIG_32((void *)(blk + 24));
 661         W(7)  = LOAD_BIG_32((void *)(blk + 28));
 662         W(8)  = LOAD_BIG_32((void *)(blk + 32));
 663         W(9)  = LOAD_BIG_32((void *)(blk + 36));
 664         W(10) = LOAD_BIG_32((void *)(blk + 40));
 665         W(11) = LOAD_BIG_32((void *)(blk + 44));
 666         W(12) = LOAD_BIG_32((void *)(blk + 48));
 667         W(13) = LOAD_BIG_32((void *)(blk + 52));
 668         W(14) = LOAD_BIG_32((void *)(blk + 56));
 669         W(15) = LOAD_BIG_32((void *)(blk + 60));
 670 
 671 #endif  /* !defined(__sparc) */
 672 
 673         /*
 674          * general optimization:
 675          *
 676          * even though this approach is described in the standard as
 677          * being slower algorithmically, it is 30-40% faster than the
 678          * "faster" version under SPARC, because this version has more
 679          * of the constraints specified at compile-time and uses fewer
 680          * variables (and therefore has better register utilization)
 681          * than its "speedier" brother.  (i've tried both, trust me)
 682          *
 683          * for either method given in the spec, there is an "assignment"
 684          * phase where the following takes place:
 685          *
 686          *      tmp = (main_computation);
 687          *      e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
 688          *
 689          * we can make the algorithm go faster by not doing this work,
 690          * but just pretending that `d' is now `e', etc. this works
 691          * really well and obviates the need for a temporary variable.
 692          * however, we still explicitly perform the rotate action,
 693          * since it is cheaper on SPARC to do it once than to have to
 694          * do it over and over again.
 695          */
 696 
 697         /* round 1 */
 698         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
 699         b = ROTATE_LEFT(b, 30);
 700 
 701         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
 702         a = ROTATE_LEFT(a, 30);
 703 
 704         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
 705         e = ROTATE_LEFT(e, 30);
 706 
 707         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
 708         d = ROTATE_LEFT(d, 30);
 709 
 710         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
 711         c = ROTATE_LEFT(c, 30);
 712 
 713         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
 714         b = ROTATE_LEFT(b, 30);
 715 
 716         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
 717         a = ROTATE_LEFT(a, 30);
 718 
 719         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
 720         e = ROTATE_LEFT(e, 30);
 721 
 722         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
 723         d = ROTATE_LEFT(d, 30);
 724 
 725         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
 726         c = ROTATE_LEFT(c, 30);
 727 
 728         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
 729         b = ROTATE_LEFT(b, 30);
 730 
 731         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
 732         a = ROTATE_LEFT(a, 30);
 733 
 734         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
 735         e = ROTATE_LEFT(e, 30);
 736 
 737         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
 738         d = ROTATE_LEFT(d, 30);
 739 
 740         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
 741         c = ROTATE_LEFT(c, 30);
 742 
 743         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
 744         b = ROTATE_LEFT(b, 30);
 745 
 746         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 16 */
 747         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
 748         a = ROTATE_LEFT(a, 30);
 749 
 750         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 17 */
 751         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
 752         e = ROTATE_LEFT(e, 30);
 753 
 754         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 18 */
 755         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
 756         d = ROTATE_LEFT(d, 30);
 757 
 758         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 19 */
 759         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
 760         c = ROTATE_LEFT(c, 30);
 761 
 762         /* round 2 */
 763         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 20 */
 764         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
 765         b = ROTATE_LEFT(b, 30);
 766 
 767         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 21 */
 768         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
 769         a = ROTATE_LEFT(a, 30);
 770 
 771         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 22 */
 772         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
 773         e = ROTATE_LEFT(e, 30);
 774 
 775         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 23 */
 776         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
 777         d = ROTATE_LEFT(d, 30);
 778 
 779         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 24 */
 780         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
 781         c = ROTATE_LEFT(c, 30);
 782 
 783         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 25 */
 784         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
 785         b = ROTATE_LEFT(b, 30);
 786 
 787         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 26 */
 788         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
 789         a = ROTATE_LEFT(a, 30);
 790 
 791         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 27 */
 792         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
 793         e = ROTATE_LEFT(e, 30);
 794 
 795         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 28 */
 796         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
 797         d = ROTATE_LEFT(d, 30);
 798 
 799         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
 800         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
 801         c = ROTATE_LEFT(c, 30);
 802 
 803         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 30 */
 804         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
 805         b = ROTATE_LEFT(b, 30);
 806 
 807         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 31 */
 808         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
 809         a = ROTATE_LEFT(a, 30);
 810 
 811         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 32 */
 812         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
 813         e = ROTATE_LEFT(e, 30);
 814 
 815         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 33 */
 816         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
 817         d = ROTATE_LEFT(d, 30);
 818 
 819         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 34 */
 820         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
 821         c = ROTATE_LEFT(c, 30);
 822 
 823         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 35 */
 824         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
 825         b = ROTATE_LEFT(b, 30);
 826 
 827         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 36 */
 828         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
 829         a = ROTATE_LEFT(a, 30);
 830 
 831         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 37 */
 832         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
 833         e = ROTATE_LEFT(e, 30);
 834 
 835         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 38 */
 836         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
 837         d = ROTATE_LEFT(d, 30);
 838 
 839         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 39 */
 840         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
 841         c = ROTATE_LEFT(c, 30);
 842 
 843         /* round 3 */
 844         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 40 */
 845         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
 846         b = ROTATE_LEFT(b, 30);
 847 
 848         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 41 */
 849         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
 850         a = ROTATE_LEFT(a, 30);
 851 
 852         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 42 */
 853         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
 854         e = ROTATE_LEFT(e, 30);
 855 
 856         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 43 */
 857         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
 858         d = ROTATE_LEFT(d, 30);
 859 
 860         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 44 */
 861         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
 862         c = ROTATE_LEFT(c, 30);
 863 
 864         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
 865         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
 866         b = ROTATE_LEFT(b, 30);
 867 
 868         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 46 */
 869         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
 870         a = ROTATE_LEFT(a, 30);
 871 
 872         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 47 */
 873         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
 874         e = ROTATE_LEFT(e, 30);
 875 
 876         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 48 */
 877         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
 878         d = ROTATE_LEFT(d, 30);
 879 
 880         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 49 */
 881         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
 882         c = ROTATE_LEFT(c, 30);
 883 
 884         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 50 */
 885         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
 886         b = ROTATE_LEFT(b, 30);
 887 
 888         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 51 */
 889         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
 890         a = ROTATE_LEFT(a, 30);
 891 
 892         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 52 */
 893         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
 894         e = ROTATE_LEFT(e, 30);
 895 
 896         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 53 */
 897         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
 898         d = ROTATE_LEFT(d, 30);
 899 
 900         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 54 */
 901         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
 902         c = ROTATE_LEFT(c, 30);
 903 
 904         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 55 */
 905         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
 906         b = ROTATE_LEFT(b, 30);
 907 
 908         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 56 */
 909         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
 910         a = ROTATE_LEFT(a, 30);
 911 
 912         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 57 */
 913         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
 914         e = ROTATE_LEFT(e, 30);
 915 
 916         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 58 */
 917         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
 918         d = ROTATE_LEFT(d, 30);
 919 
 920         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 59 */
 921         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
 922         c = ROTATE_LEFT(c, 30);
 923 
 924         /* round 4 */
 925         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 60 */
 926         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
 927         b = ROTATE_LEFT(b, 30);
 928 
 929         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
 930         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
 931         a = ROTATE_LEFT(a, 30);
 932 
 933         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 62 */
 934         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
 935         e = ROTATE_LEFT(e, 30);
 936 
 937         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 63 */
 938         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
 939         d = ROTATE_LEFT(d, 30);
 940 
 941         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 64 */
 942         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
 943         c = ROTATE_LEFT(c, 30);
 944 
 945         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 65 */
 946         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
 947         b = ROTATE_LEFT(b, 30);
 948 
 949         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 66 */
 950         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
 951         a = ROTATE_LEFT(a, 30);
 952 
 953         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 67 */
 954         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
 955         e = ROTATE_LEFT(e, 30);
 956 
 957         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 68 */
 958         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
 959         d = ROTATE_LEFT(d, 30);
 960 
 961         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 69 */
 962         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
 963         c = ROTATE_LEFT(c, 30);
 964 
 965         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 70 */
 966         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
 967         b = ROTATE_LEFT(b, 30);
 968 
 969         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 71 */
 970         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
 971         a = ROTATE_LEFT(a, 30);
 972 
 973         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 72 */
 974         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
 975         e = ROTATE_LEFT(e, 30);
 976 
 977         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 73 */
 978         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
 979         d = ROTATE_LEFT(d, 30);
 980 
 981         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 74 */
 982         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
 983         c = ROTATE_LEFT(c, 30);
 984 
 985         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 75 */
 986         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
 987         b = ROTATE_LEFT(b, 30);
 988 
 989         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 76 */
 990         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
 991         a = ROTATE_LEFT(a, 30);
 992 
 993         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
 994         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
 995         e = ROTATE_LEFT(e, 30);
 996 
 997         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 78 */
 998         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
 999         d = ROTATE_LEFT(d, 30);
1000 
1001         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 79 */
1002 
1003         ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
1004             SHA1_CONST(3);
1005         ctx->state[1] += b;
1006         ctx->state[2] += ROTATE_LEFT(c, 30);
1007         ctx->state[3] += d;
1008         ctx->state[4] += e;
1009 
1010         /* zeroize sensitive information */
1011         W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
1012         W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
1013 }
1014 #endif  /* !__amd64 */
1015 
1016 
1017 /*
1018  * Encode()
1019  *
1020  * purpose: to convert a list of numbers from little endian to big endian
1021  *   input: uint8_t *   : place to store the converted big endian numbers
1022  *          uint32_t *  : place to get numbers to convert from
1023  *          size_t      : the length of the input in bytes
1024  *  output: void
1025  */
1026 
1027 static void
1028 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
1029     size_t len)
1030 {
1031         size_t          i, j;
1032 
1033 #if     defined(__sparc)
1034         if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
1035                 for (i = 0, j = 0; j < len; i++, j += 4) {
1036                         /* LINTED E_BAD_PTR_CAST_ALIGN */
1037                         *((uint32_t *)(output + j)) = input[i];
1038                 }
1039         } else {
1040 #endif  /* little endian -- will work on big endian, but slowly */
1041                 for (i = 0, j = 0; j < len; i++, j += 4) {
1042                         output[j]       = (input[i] >> 24) & 0xff;
1043                         output[j + 1]   = (input[i] >> 16) & 0xff;
1044                         output[j + 2]   = (input[i] >>  8) & 0xff;
1045                         output[j + 3]   = input[i] & 0xff;
1046                 }
1047 #if     defined(__sparc)
1048         }
1049 #endif
1050 }