1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2016 by Delphix. All rights reserved.
25 */
26
27 /*
28 * IPsec Security Policy Database.
29 *
30 * This module maintains the SPD and provides routines used by ip and ip6
31 * to apply IPsec policy to inbound and outbound datagrams.
32 */
33
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/sysmacros.h>
38 #include <sys/strsubr.h>
39 #include <sys/strsun.h>
40 #include <sys/strlog.h>
41 #include <sys/strsun.h>
42 #include <sys/cmn_err.h>
43 #include <sys/zone.h>
44
45 #include <sys/systm.h>
46 #include <sys/param.h>
47 #include <sys/kmem.h>
48 #include <sys/ddi.h>
49
50 #include <sys/crypto/api.h>
51
52 #include <inet/common.h>
53 #include <inet/mi.h>
54
55 #include <netinet/ip6.h>
56 #include <netinet/icmp6.h>
57 #include <netinet/udp.h>
58
59 #include <inet/ip.h>
60 #include <inet/ip6.h>
61
62 #include <net/pfkeyv2.h>
63 #include <net/pfpolicy.h>
64 #include <inet/sadb.h>
65 #include <inet/ipsec_impl.h>
66
67 #include <inet/ip_impl.h> /* For IP_MOD_ID */
68
69 #include <inet/ipsecah.h>
70 #include <inet/ipsecesp.h>
71 #include <inet/ipdrop.h>
72 #include <inet/ipclassifier.h>
73 #include <inet/iptun.h>
74 #include <inet/iptun/iptun_impl.h>
75
76 static void ipsec_update_present_flags(ipsec_stack_t *);
77 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
78 netstack_t *);
79 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
80 ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *);
81 static void ipsec_action_free_table(ipsec_action_t *);
82 static void ipsec_action_reclaim(void *);
83 static void ipsec_action_reclaim_stack(ipsec_stack_t *);
84 static void ipsid_init(netstack_t *);
85 static void ipsid_fini(netstack_t *);
86
87 /* sel_flags values for ipsec_init_inbound_sel(). */
88 #define SEL_NONE 0x0000
89 #define SEL_PORT_POLICY 0x0001
90 #define SEL_IS_ICMP 0x0002
91 #define SEL_TUNNEL_MODE 0x0004
92 #define SEL_POST_FRAG 0x0008
93
94 /* Return values for ipsec_init_inbound_sel(). */
95 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
96 selret_t;
97
98 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
99 ipha_t *, ip6_t *, uint8_t);
100
101 static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *,
102 struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
103 kstat_named_t **, netstack_t *);
104 static void ipsec_unregister_prov_update(void);
105 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
106 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
107 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
108 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
109 static void ipsec_kstat_destroy(ipsec_stack_t *);
110 static int ipsec_free_tables(ipsec_stack_t *);
111 static int tunnel_compare(const void *, const void *);
112 static void ipsec_freemsg_chain(mblk_t *);
113 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *,
114 struct kstat_named *, ipdropper_t *);
115 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
116 static void ipsec_kstat_destroy(ipsec_stack_t *);
117 static int ipsec_free_tables(ipsec_stack_t *);
118 static int tunnel_compare(const void *, const void *);
119 static void ipsec_freemsg_chain(mblk_t *);
120
121 /*
122 * Selector hash table is statically sized at module load time.
123 * we default to 251 buckets, which is the largest prime number under 255
124 */
125
126 #define IPSEC_SPDHASH_DEFAULT 251
127
128 /* SPD hash-size tunable per tunnel. */
129 #define TUN_SPDHASH_DEFAULT 5
130
131 uint32_t ipsec_spd_hashsize;
132 uint32_t tun_spd_hashsize;
133
134 #define IPSEC_SEL_NOHASH ((uint32_t)(~0))
135
136 /*
137 * Handle global across all stack instances
138 */
139 static crypto_notify_handle_t prov_update_handle = NULL;
140
141 static kmem_cache_t *ipsec_action_cache;
142 static kmem_cache_t *ipsec_sel_cache;
143 static kmem_cache_t *ipsec_pol_cache;
144
145 /* Frag cache prototypes */
146 static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *);
147 static ipsec_fragcache_entry_t *fragcache_delentry(int,
148 ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *);
149 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
150 void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss);
151 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *,
152 int, ipsec_stack_t *);
153
154 int ipsec_hdr_pullup_needed = 0;
155 int ipsec_weird_null_inbound_policy = 0;
156
157 #define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align))
158 #define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align)
159
160 /*
161 * Inbound traffic should have matching identities for both SA's.
162 */
163
164 #define SA_IDS_MATCH(sa1, sa2) \
165 (((sa1) == NULL) || ((sa2) == NULL) || \
166 (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \
167 (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
168
169 /*
170 * IPv6 Fragments
171 */
172 #define IS_V6_FRAGMENT(ipp) (ipp.ipp_fields & IPPF_FRAGHDR)
173
174 /*
175 * Policy failure messages.
176 */
177 static char *ipsec_policy_failure_msgs[] = {
178
179 /* IPSEC_POLICY_NOT_NEEDED */
180 "%s: Dropping the datagram because the incoming packet "
181 "is %s, but the recipient expects clear; Source %s, "
182 "Destination %s.\n",
183
184 /* IPSEC_POLICY_MISMATCH */
185 "%s: Policy Failure for the incoming packet (%s); Source %s, "
186 "Destination %s.\n",
187
188 /* IPSEC_POLICY_AUTH_NOT_NEEDED */
189 "%s: Authentication present while not expected in the "
190 "incoming %s packet; Source %s, Destination %s.\n",
191
192 /* IPSEC_POLICY_ENCR_NOT_NEEDED */
193 "%s: Encryption present while not expected in the "
194 "incoming %s packet; Source %s, Destination %s.\n",
195
196 /* IPSEC_POLICY_SE_NOT_NEEDED */
197 "%s: Self-Encapsulation present while not expected in the "
198 "incoming %s packet; Source %s, Destination %s.\n",
199 };
200
201 /*
202 * General overviews:
203 *
204 * Locking:
205 *
206 * All of the system policy structures are protected by a single
207 * rwlock. These structures are threaded in a
208 * fairly complex fashion and are not expected to change on a
209 * regular basis, so this should not cause scaling/contention
210 * problems. As a result, policy checks should (hopefully) be MT-hot.
211 *
212 * Allocation policy:
213 *
214 * We use custom kmem cache types for the various
215 * bits & pieces of the policy data structures. All allocations
216 * use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The
217 * policy table is of potentially unbounded size, so we don't
218 * want to provide a way to hog all system memory with policy
219 * entries..
220 */
221
222 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
223
224 /* Free all messages in an mblk chain */
225 static void
226 ipsec_freemsg_chain(mblk_t *mp)
227 {
228 mblk_t *mpnext;
229 while (mp != NULL) {
230 ASSERT(mp->b_prev == NULL);
231 mpnext = mp->b_next;
232 mp->b_next = NULL;
233 freemsg(mp);
234 mp = mpnext;
235 }
236 }
237
238 /*
239 * ip_drop all messages in an mblk chain
240 * Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain
241 * of data.
242 */
243 static void
244 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill,
245 struct kstat_named *counter, ipdropper_t *who_called)
246 {
247 mblk_t *mpnext;
248 while (mp != NULL) {
249 ASSERT(mp->b_prev == NULL);
250 mpnext = mp->b_next;
251 mp->b_next = NULL;
252 if (ip_recv_attr_is_mblk(mp))
253 mp = ip_recv_attr_free_mblk(mp);
254 ip_drop_packet(mp, inbound, ill, counter, who_called);
255 mp = mpnext;
256 }
257 }
258
259 /*
260 * AVL tree comparison function.
261 * the in-kernel avl assumes unique keys for all objects.
262 * Since sometimes policy will duplicate rules, we may insert
263 * multiple rules with the same rule id, so we need a tie-breaker.
264 */
265 static int
266 ipsec_policy_cmpbyid(const void *a, const void *b)
267 {
268 const ipsec_policy_t *ipa, *ipb;
269 uint64_t idxa, idxb;
270
271 ipa = (const ipsec_policy_t *)a;
272 ipb = (const ipsec_policy_t *)b;
273 idxa = ipa->ipsp_index;
274 idxb = ipb->ipsp_index;
275
276 if (idxa < idxb)
277 return (-1);
278 if (idxa > idxb)
279 return (1);
280 /*
281 * Tie-breaker #1: All installed policy rules have a non-NULL
282 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
283 * actually in-tree but rather a template node being used in
284 * an avl_find query; see ipsec_policy_delete(). This gives us
285 * a placeholder in the ordering just before the first entry with
286 * a key >= the one we're looking for, so we can walk forward from
287 * that point to get the remaining entries with the same id.
288 */
289 if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
290 return (-1);
291 if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
292 return (1);
293 /*
294 * At most one of the arguments to the comparison should have a
295 * NULL selector pointer; if not, the tree is broken.
296 */
297 ASSERT(ipa->ipsp_sel != NULL);
298 ASSERT(ipb->ipsp_sel != NULL);
299 /*
300 * Tie-breaker #2: use the virtual address of the policy node
301 * to arbitrarily break ties. Since we use the new tree node in
302 * the avl_find() in ipsec_insert_always, the new node will be
303 * inserted into the tree in the right place in the sequence.
304 */
305 if (ipa < ipb)
306 return (-1);
307 if (ipa > ipb)
308 return (1);
309 return (0);
310 }
311
312 /*
313 * Free what ipsec_alloc_table allocated.
314 */
315 void
316 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
317 {
318 int dir;
319 int i;
320
321 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
322 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
323
324 if (ipr->ipr_hash == NULL)
325 continue;
326
327 for (i = 0; i < ipr->ipr_nchains; i++) {
328 ASSERT(ipr->ipr_hash[i].hash_head == NULL);
329 }
330 kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
331 sizeof (ipsec_policy_hash_t));
332 ipr->ipr_hash = NULL;
333 }
334 }
335
336 void
337 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
338 {
339 int dir;
340
341 avl_destroy(&iph->iph_rulebyid);
342 rw_destroy(&iph->iph_lock);
343
344 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
345 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
346 int chain;
347
348 for (chain = 0; chain < ipr->ipr_nchains; chain++)
349 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
350
351 }
352 ipsec_polhead_free_table(iph);
353 }
354
355 /*
356 * Free the IPsec stack instance.
357 */
358 /* ARGSUSED */
359 static void
360 ipsec_stack_fini(netstackid_t stackid, void *arg)
361 {
362 ipsec_stack_t *ipss = (ipsec_stack_t *)arg;
363 void *cookie;
364 ipsec_tun_pol_t *node;
365 netstack_t *ns = ipss->ipsec_netstack;
366 int i;
367 ipsec_algtype_t algtype;
368
369 ipsec_loader_destroy(ipss);
370
371 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
372 /*
373 * It's possible we can just ASSERT() the tree is empty. After all,
374 * we aren't called until IP is ready to unload (and presumably all
375 * tunnels have been unplumbed). But we'll play it safe for now, the
376 * loop will just exit immediately if it's empty.
377 */
378 cookie = NULL;
379 while ((node = (ipsec_tun_pol_t *)
380 avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
381 &cookie)) != NULL) {
382 ITP_REFRELE(node, ns);
383 }
384 avl_destroy(&ipss->ipsec_tunnel_policies);
385 rw_exit(&ipss->ipsec_tunnel_policy_lock);
386 rw_destroy(&ipss->ipsec_tunnel_policy_lock);
387
388 ipsec_config_flush(ns);
389
390 ipsec_kstat_destroy(ipss);
391
392 ip_drop_unregister(&ipss->ipsec_dropper);
393
394 ip_drop_unregister(&ipss->ipsec_spd_dropper);
395 ip_drop_destroy(ipss);
396 /*
397 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
398 * attempting to free them, hence they should have 1 now.
399 */
400 ipsec_polhead_destroy(&ipss->ipsec_system_policy);
401 ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
402 ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
403 ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
404
405 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
406 ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
407 ipss->ipsec_action_hash[i].hash_head = NULL;
408 mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
409 }
410
411 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
412 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
413 mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
414 }
415
416 mutex_enter(&ipss->ipsec_alg_lock);
417 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
418 int nalgs = ipss->ipsec_nalgs[algtype];
419
420 for (i = 0; i < nalgs; i++) {
421 if (ipss->ipsec_alglists[algtype][i] != NULL)
422 ipsec_alg_unreg(algtype, i, ns);
423 }
424 }
425 mutex_exit(&ipss->ipsec_alg_lock);
426 mutex_destroy(&ipss->ipsec_alg_lock);
427
428 ipsid_gc(ns);
429 ipsid_fini(ns);
430
431 (void) ipsec_free_tables(ipss);
432 kmem_free(ipss, sizeof (*ipss));
433 }
434
435 void
436 ipsec_policy_g_destroy(void)
437 {
438 kmem_cache_destroy(ipsec_action_cache);
439 kmem_cache_destroy(ipsec_sel_cache);
440 kmem_cache_destroy(ipsec_pol_cache);
441
442 ipsec_unregister_prov_update();
443
444 netstack_unregister(NS_IPSEC);
445 }
446
447
448 /*
449 * Free what ipsec_alloc_tables allocated.
450 * Called when table allocation fails to free the table.
451 */
452 static int
453 ipsec_free_tables(ipsec_stack_t *ipss)
454 {
455 int i;
456
457 if (ipss->ipsec_sel_hash != NULL) {
458 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
459 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
460 }
461 kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
462 sizeof (*ipss->ipsec_sel_hash));
463 ipss->ipsec_sel_hash = NULL;
464 ipss->ipsec_spd_hashsize = 0;
465 }
466 ipsec_polhead_free_table(&ipss->ipsec_system_policy);
467 ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
468
469 return (ENOMEM);
470 }
471
472 /*
473 * Attempt to allocate the tables in a single policy head.
474 * Return nonzero on failure after cleaning up any work in progress.
475 */
476 int
477 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
478 boolean_t global_cleanup, netstack_t *ns)
479 {
480 int dir;
481
482 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
483 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
484
485 ipr->ipr_nchains = nchains;
486 ipr->ipr_hash = kmem_zalloc(nchains *
487 sizeof (ipsec_policy_hash_t), kmflag);
488 if (ipr->ipr_hash == NULL)
489 return (global_cleanup ?
490 ipsec_free_tables(ns->netstack_ipsec) :
491 ENOMEM);
492 }
493 return (0);
494 }
495
496 /*
497 * Attempt to allocate the various tables. Return nonzero on failure
498 * after cleaning up any work in progress.
499 */
500 static int
501 ipsec_alloc_tables(int kmflag, netstack_t *ns)
502 {
503 int error;
504 ipsec_stack_t *ipss = ns->netstack_ipsec;
505
506 error = ipsec_alloc_table(&ipss->ipsec_system_policy,
507 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
508 if (error != 0)
509 return (error);
510
511 error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
512 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
513 if (error != 0)
514 return (error);
515
516 ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
517 sizeof (*ipss->ipsec_sel_hash), kmflag);
518
519 if (ipss->ipsec_sel_hash == NULL)
520 return (ipsec_free_tables(ipss));
521
522 return (0);
523 }
524
525 /*
526 * After table allocation, initialize a policy head.
527 */
528 void
529 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
530 {
531 int dir, chain;
532
533 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
534 avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
535 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
536
537 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
538 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
539 ipr->ipr_nchains = nchains;
540
541 for (chain = 0; chain < nchains; chain++) {
542 mutex_init(&(ipr->ipr_hash[chain].hash_lock),
543 NULL, MUTEX_DEFAULT, NULL);
544 }
545 }
546 }
547
548 static boolean_t
549 ipsec_kstat_init(ipsec_stack_t *ipss)
550 {
551 ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
552 KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
553 KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
554
555 if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
556 return (B_FALSE);
557
558 ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
559
560 #define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
561 KI(esp_stat_in_requests);
562 KI(esp_stat_in_discards);
563 KI(esp_stat_lookup_failure);
564 KI(ah_stat_in_requests);
565 KI(ah_stat_in_discards);
566 KI(ah_stat_lookup_failure);
567 KI(sadb_acquire_maxpackets);
568 KI(sadb_acquire_qhiwater);
569 #undef KI
570
571 kstat_install(ipss->ipsec_ksp);
572 return (B_TRUE);
573 }
574
575 static void
576 ipsec_kstat_destroy(ipsec_stack_t *ipss)
577 {
578 kstat_delete_netstack(ipss->ipsec_ksp,
579 ipss->ipsec_netstack->netstack_stackid);
580 ipss->ipsec_kstats = NULL;
581
582 }
583
584 /*
585 * Initialize the IPsec stack instance.
586 */
587 /* ARGSUSED */
588 static void *
589 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
590 {
591 ipsec_stack_t *ipss;
592 int i;
593
594 ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
595 ipss->ipsec_netstack = ns;
596
597 /*
598 * FIXME: netstack_ipsec is used by some of the routines we call
599 * below, but it isn't set until this routine returns.
600 * Either we introduce optional xxx_stack_alloc() functions
601 * that will be called by the netstack framework before xxx_stack_init,
602 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
603 * (latter has some include file order issues for sadb.h, but makes
604 * sense if we merge some of the ipsec related stack_t's together.
605 */
606 ns->netstack_ipsec = ipss;
607
608 /*
609 * Make two attempts to allocate policy hash tables; try it at
610 * the "preferred" size (may be set in /etc/system) first,
611 * then fall back to the default size.
612 */
613 ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
614 IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
615
616 if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
617 cmn_err(CE_WARN,
618 "Unable to allocate %d entry IPsec policy hash table",
619 ipss->ipsec_spd_hashsize);
620 ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
621 cmn_err(CE_WARN, "Falling back to %d entries",
622 ipss->ipsec_spd_hashsize);
623 (void) ipsec_alloc_tables(KM_SLEEP, ns);
624 }
625
626 /* Just set a default for tunnels. */
627 ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
628 TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
629
630 ipsid_init(ns);
631 /*
632 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
633 * to free them.
634 */
635 ipss->ipsec_system_policy.iph_refs = 1;
636 ipss->ipsec_inactive_policy.iph_refs = 1;
637 ipsec_polhead_init(&ipss->ipsec_system_policy,
638 ipss->ipsec_spd_hashsize);
639 ipsec_polhead_init(&ipss->ipsec_inactive_policy,
640 ipss->ipsec_spd_hashsize);
641 rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
642 avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
643 sizeof (ipsec_tun_pol_t), 0);
644
645 ipss->ipsec_next_policy_index = 1;
646
647 rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
648 rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
649
650 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
651 mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
652 NULL, MUTEX_DEFAULT, NULL);
653
654 for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
655 mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
656 NULL, MUTEX_DEFAULT, NULL);
657
658 mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL);
659 for (i = 0; i < IPSEC_NALGTYPES; i++) {
660 ipss->ipsec_nalgs[i] = 0;
661 }
662
663 ip_drop_init(ipss);
664 ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
665
666 /* IP's IPsec code calls the packet dropper */
667 ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
668
669 (void) ipsec_kstat_init(ipss);
670
671 ipsec_loader_init(ipss);
672 ipsec_loader_start(ipss);
673
674 return (ipss);
675 }
676
677 /* Global across all stack instances */
678 void
679 ipsec_policy_g_init(void)
680 {
681 ipsec_action_cache = kmem_cache_create("ipsec_actions",
682 sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
683 ipsec_action_reclaim, NULL, NULL, 0);
684 ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
685 sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
686 NULL, NULL, NULL, 0);
687 ipsec_pol_cache = kmem_cache_create("ipsec_policy",
688 sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
689 NULL, NULL, NULL, 0);
690
691 /*
692 * We want to be informed each time a stack is created or
693 * destroyed in the kernel, so we can maintain the
694 * set of ipsec_stack_t's.
695 */
696 netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
697 }
698
699 /*
700 * Sort algorithm lists.
701 *
702 * I may need to split this based on
703 * authentication/encryption, and I may wish to have an administrator
704 * configure this list. Hold on to some NDD variables...
705 *
706 * XXX For now, sort on minimum key size (GAG!). While minimum key size is
707 * not the ideal metric, it's the only quantifiable measure available.
708 * We need a better metric for sorting algorithms by preference.
709 */
710 static void
711 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
712 {
713 ipsec_stack_t *ipss = ns->netstack_ipsec;
714 ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
715 uint8_t holder, swap;
716 uint_t i;
717 uint_t count = ipss->ipsec_nalgs[at];
718 ASSERT(ai != NULL);
719 ASSERT(algid == ai->alg_id);
720
721 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
722
723 holder = algid;
724
725 for (i = 0; i < count - 1; i++) {
726 ipsec_alginfo_t *alt;
727
728 alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
729 /*
730 * If you want to give precedence to newly added algs,
731 * add the = in the > comparison.
732 */
733 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
734 /* Swap sortlist[i] and holder. */
735 swap = ipss->ipsec_sortlist[at][i];
736 ipss->ipsec_sortlist[at][i] = holder;
737 holder = swap;
738 ai = alt;
739 } /* Else just continue. */
740 }
741
742 /* Store holder in last slot. */
743 ipss->ipsec_sortlist[at][i] = holder;
744 }
745
746 /*
747 * Remove an algorithm from a sorted algorithm list.
748 * This should be considerably easier, even with complex sorting.
749 */
750 static void
751 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
752 {
753 boolean_t copyback = B_FALSE;
754 int i;
755 ipsec_stack_t *ipss = ns->netstack_ipsec;
756 int newcount = ipss->ipsec_nalgs[at];
757
758 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
759
760 for (i = 0; i <= newcount; i++) {
761 if (copyback) {
762 ipss->ipsec_sortlist[at][i-1] =
763 ipss->ipsec_sortlist[at][i];
764 } else if (ipss->ipsec_sortlist[at][i] == algid) {
765 copyback = B_TRUE;
766 }
767 }
768 }
769
770 /*
771 * Add the specified algorithm to the algorithm tables.
772 * Must be called while holding the algorithm table writer lock.
773 */
774 void
775 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
776 {
777 ipsec_stack_t *ipss = ns->netstack_ipsec;
778
779 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
780
781 ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
782 ipsec_alg_fix_min_max(alg, algtype, ns);
783 ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
784
785 ipss->ipsec_nalgs[algtype]++;
786 alg_insert_sortlist(algtype, alg->alg_id, ns);
787 }
788
789 /*
790 * Remove the specified algorithm from the algorithm tables.
791 * Must be called while holding the algorithm table writer lock.
792 */
793 void
794 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
795 {
796 ipsec_stack_t *ipss = ns->netstack_ipsec;
797
798 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
799
800 ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
801 ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
802 ipss->ipsec_alglists[algtype][algid] = NULL;
803
804 ipss->ipsec_nalgs[algtype]--;
805 alg_remove_sortlist(algtype, algid, ns);
806 }
807
808 /*
809 * Hooks for spdsock to get a grip on system policy.
810 */
811
812 ipsec_policy_head_t *
813 ipsec_system_policy(netstack_t *ns)
814 {
815 ipsec_stack_t *ipss = ns->netstack_ipsec;
816 ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
817
818 IPPH_REFHOLD(h);
819 return (h);
820 }
821
822 ipsec_policy_head_t *
823 ipsec_inactive_policy(netstack_t *ns)
824 {
825 ipsec_stack_t *ipss = ns->netstack_ipsec;
826 ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
827
828 IPPH_REFHOLD(h);
829 return (h);
830 }
831
832 /*
833 * Lock inactive policy, then active policy, then exchange policy root
834 * pointers.
835 */
836 void
837 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
838 netstack_t *ns)
839 {
840 int af, dir;
841 avl_tree_t r1, r2;
842
843 rw_enter(&inactive->iph_lock, RW_WRITER);
844 rw_enter(&active->iph_lock, RW_WRITER);
845
846 r1 = active->iph_rulebyid;
847 r2 = inactive->iph_rulebyid;
848 active->iph_rulebyid = r2;
849 inactive->iph_rulebyid = r1;
850
851 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
852 ipsec_policy_hash_t *h1, *h2;
853
854 h1 = active->iph_root[dir].ipr_hash;
855 h2 = inactive->iph_root[dir].ipr_hash;
856 active->iph_root[dir].ipr_hash = h2;
857 inactive->iph_root[dir].ipr_hash = h1;
858
859 for (af = 0; af < IPSEC_NAF; af++) {
860 ipsec_policy_t *t1, *t2;
861
862 t1 = active->iph_root[dir].ipr_nonhash[af];
863 t2 = inactive->iph_root[dir].ipr_nonhash[af];
864 active->iph_root[dir].ipr_nonhash[af] = t2;
865 inactive->iph_root[dir].ipr_nonhash[af] = t1;
866 if (t1 != NULL) {
867 t1->ipsp_hash.hash_pp =
868 &(inactive->iph_root[dir].ipr_nonhash[af]);
869 }
870 if (t2 != NULL) {
871 t2->ipsp_hash.hash_pp =
872 &(active->iph_root[dir].ipr_nonhash[af]);
873 }
874
875 }
876 }
877 active->iph_gen++;
878 inactive->iph_gen++;
879 ipsec_update_present_flags(ns->netstack_ipsec);
880 rw_exit(&active->iph_lock);
881 rw_exit(&inactive->iph_lock);
882 }
883
884 /*
885 * Swap global policy primary/secondary.
886 */
887 void
888 ipsec_swap_global_policy(netstack_t *ns)
889 {
890 ipsec_stack_t *ipss = ns->netstack_ipsec;
891
892 ipsec_swap_policy(&ipss->ipsec_system_policy,
893 &ipss->ipsec_inactive_policy, ns);
894 }
895
896 /*
897 * Clone one policy rule..
898 */
899 static ipsec_policy_t *
900 ipsec_copy_policy(const ipsec_policy_t *src)
901 {
902 ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
903
904 if (dst == NULL)
905 return (NULL);
906
907 /*
908 * Adjust refcounts of cloned state.
909 */
910 IPACT_REFHOLD(src->ipsp_act);
911 src->ipsp_sel->ipsl_refs++;
912
913 HASH_NULL(dst, ipsp_hash);
914 dst->ipsp_netstack = src->ipsp_netstack;
915 dst->ipsp_refs = 1;
916 dst->ipsp_sel = src->ipsp_sel;
917 dst->ipsp_act = src->ipsp_act;
918 dst->ipsp_prio = src->ipsp_prio;
919 dst->ipsp_index = src->ipsp_index;
920
921 return (dst);
922 }
923
924 void
925 ipsec_insert_always(avl_tree_t *tree, void *new_node)
926 {
927 void *node;
928 avl_index_t where;
929
930 node = avl_find(tree, new_node, &where);
931 ASSERT(node == NULL);
932 avl_insert(tree, new_node, where);
933 }
934
935
936 static int
937 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
938 ipsec_policy_t **dstp)
939 {
940 for (; src != NULL; src = src->ipsp_hash.hash_next) {
941 ipsec_policy_t *dst = ipsec_copy_policy(src);
942 if (dst == NULL)
943 return (ENOMEM);
944
945 HASHLIST_INSERT(dst, ipsp_hash, *dstp);
946 ipsec_insert_always(&dph->iph_rulebyid, dst);
947 }
948 return (0);
949 }
950
951
952
953 /*
954 * Make one policy head look exactly like another.
955 *
956 * As with ipsec_swap_policy, we lock the destination policy head first, then
957 * the source policy head. Note that we only need to read-lock the source
958 * policy head as we are not changing it.
959 */
960 int
961 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
962 netstack_t *ns)
963 {
964 int af, dir, chain, nchains;
965
966 rw_enter(&dph->iph_lock, RW_WRITER);
967
968 ipsec_polhead_flush(dph, ns);
969
970 rw_enter(&sph->iph_lock, RW_READER);
971
972 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
973 ipsec_policy_root_t *dpr = &dph->iph_root[dir];
974 ipsec_policy_root_t *spr = &sph->iph_root[dir];
975 nchains = dpr->ipr_nchains;
976
977 ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
978
979 for (af = 0; af < IPSEC_NAF; af++) {
980 if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
981 &dpr->ipr_nonhash[af]))
982 goto abort_copy;
983 }
984
985 for (chain = 0; chain < nchains; chain++) {
986 if (ipsec_copy_chain(dph,
987 spr->ipr_hash[chain].hash_head,
988 &dpr->ipr_hash[chain].hash_head))
989 goto abort_copy;
990 }
991 }
992
993 dph->iph_gen++;
994
995 rw_exit(&sph->iph_lock);
996 rw_exit(&dph->iph_lock);
997 return (0);
998
999 abort_copy:
1000 ipsec_polhead_flush(dph, ns);
1001 rw_exit(&sph->iph_lock);
1002 rw_exit(&dph->iph_lock);
1003 return (ENOMEM);
1004 }
1005
1006 /*
1007 * Clone currently active policy to the inactive policy list.
1008 */
1009 int
1010 ipsec_clone_system_policy(netstack_t *ns)
1011 {
1012 ipsec_stack_t *ipss = ns->netstack_ipsec;
1013
1014 return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1015 &ipss->ipsec_inactive_policy, ns));
1016 }
1017
1018 /*
1019 * Extract the string from ipsec_policy_failure_msgs[type] and
1020 * log it.
1021 *
1022 */
1023 void
1024 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1025 boolean_t secure, netstack_t *ns)
1026 {
1027 char sbuf[INET6_ADDRSTRLEN];
1028 char dbuf[INET6_ADDRSTRLEN];
1029 char *s;
1030 char *d;
1031 ipsec_stack_t *ipss = ns->netstack_ipsec;
1032
1033 ASSERT((ipha == NULL && ip6h != NULL) ||
1034 (ip6h == NULL && ipha != NULL));
1035
1036 if (ipha != NULL) {
1037 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1038 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1039 } else {
1040 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1041 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1042
1043 }
1044
1045 /* Always bump the policy failure counter. */
1046 ipss->ipsec_policy_failure_count[type]++;
1047
1048 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1049 ipsec_policy_failure_msgs[type], func_name,
1050 (secure ? "secure" : "not secure"), s, d);
1051 }
1052
1053 /*
1054 * Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables
1055 * in /dev/ip and the same rate-limiting clock so that there's a single
1056 * knob to turn to throttle the rate of messages.
1057 */
1058 void
1059 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1060 char *fmt, ...)
1061 {
1062 va_list adx;
1063 hrtime_t current = gethrtime();
1064 ip_stack_t *ipst = ns->netstack_ip;
1065 ipsec_stack_t *ipss = ns->netstack_ipsec;
1066
1067 sl |= SL_CONSOLE;
1068 /*
1069 * Throttle logging to stop syslog from being swamped. If variable
1070 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1071 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1072 * msec. Convert interval (in msec) to hrtime (in nsec).
1073 */
1074
1075 if (ipst->ips_ipsec_policy_log_interval) {
1076 if (ipss->ipsec_policy_failure_last +
1077 MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) {
1078 va_start(adx, fmt);
1079 (void) vstrlog(mid, sid, level, sl, fmt, adx);
1080 va_end(adx);
1081 ipss->ipsec_policy_failure_last = current;
1082 }
1083 }
1084 }
1085
1086 void
1087 ipsec_config_flush(netstack_t *ns)
1088 {
1089 ipsec_stack_t *ipss = ns->netstack_ipsec;
1090
1091 rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1092 ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1093 ipss->ipsec_next_policy_index = 1;
1094 rw_exit(&ipss->ipsec_system_policy.iph_lock);
1095 ipsec_action_reclaim_stack(ipss);
1096 }
1097
1098 /*
1099 * Clip a policy's min/max keybits vs. the capabilities of the
1100 * algorithm.
1101 */
1102 static void
1103 act_alg_adjust(uint_t algtype, uint_t algid,
1104 uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1105 {
1106 ipsec_stack_t *ipss = ns->netstack_ipsec;
1107 ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1108
1109 if (algp != NULL) {
1110 /*
1111 * If passed-in minbits is zero, we assume the caller trusts
1112 * us with setting the minimum key size. We pick the
1113 * algorithms DEFAULT key size for the minimum in this case.
1114 */
1115 if (*minbits == 0) {
1116 *minbits = algp->alg_default_bits;
1117 ASSERT(*minbits >= algp->alg_minbits);
1118 } else {
1119 *minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1120 algp->alg_minbits);
1121 }
1122 if (*maxbits == 0)
1123 *maxbits = algp->alg_maxbits;
1124 else
1125 *maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1126 algp->alg_maxbits);
1127 ASSERT(*minbits <= *maxbits);
1128 } else {
1129 *minbits = 0;
1130 *maxbits = 0;
1131 }
1132 }
1133
1134 /*
1135 * Check an action's requested algorithms against the algorithms currently
1136 * loaded in the system.
1137 */
1138 boolean_t
1139 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1140 {
1141 ipsec_prot_t *ipp;
1142 ipsec_stack_t *ipss = ns->netstack_ipsec;
1143
1144 ipp = &act->ipa_apply;
1145
1146 if (ipp->ipp_use_ah &&
1147 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1148 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1149 return (B_FALSE);
1150 }
1151 if (ipp->ipp_use_espa &&
1152 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1153 NULL) {
1154 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1155 return (B_FALSE);
1156 }
1157 if (ipp->ipp_use_esp &&
1158 ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1159 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1160 return (B_FALSE);
1161 }
1162
1163 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1164 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1165 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1166 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1167 act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1168 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1169
1170 if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1171 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1172 return (B_FALSE);
1173 }
1174 if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1175 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1176 return (B_FALSE);
1177 }
1178 if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1179 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1180 return (B_FALSE);
1181 }
1182 /* TODO: sanity check lifetimes */
1183 return (B_TRUE);
1184 }
1185
1186 /*
1187 * Set up a single action during wildcard expansion..
1188 */
1189 static void
1190 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1191 uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1192 {
1193 ipsec_prot_t *ipp;
1194
1195 *outact = *act;
1196 ipp = &outact->ipa_apply;
1197 ipp->ipp_auth_alg = (uint8_t)auth_alg;
1198 ipp->ipp_encr_alg = (uint8_t)encr_alg;
1199 ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1200
1201 act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1202 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1203 act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1204 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1205 act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1206 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1207 }
1208
1209 /*
1210 * combinatoric expansion time: expand a wildcarded action into an
1211 * array of wildcarded actions; we return the exploded action list,
1212 * and return a count in *nact (output only).
1213 */
1214 static ipsec_act_t *
1215 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1216 {
1217 boolean_t use_ah, use_esp, use_espa;
1218 boolean_t wild_auth, wild_encr, wild_eauth;
1219 uint_t auth_alg, auth_idx, auth_min, auth_max;
1220 uint_t eauth_alg, eauth_idx, eauth_min, eauth_max;
1221 uint_t encr_alg, encr_idx, encr_min, encr_max;
1222 uint_t action_count, ai;
1223 ipsec_act_t *outact;
1224 ipsec_stack_t *ipss = ns->netstack_ipsec;
1225
1226 if (act->ipa_type != IPSEC_ACT_APPLY) {
1227 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1228 *nact = 1;
1229 if (outact != NULL)
1230 bcopy(act, outact, sizeof (*act));
1231 return (outact);
1232 }
1233 /*
1234 * compute the combinatoric explosion..
1235 *
1236 * we assume a request for encr if esp_req is PREF_REQUIRED
1237 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1238 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1239 */
1240
1241 use_ah = act->ipa_apply.ipp_use_ah;
1242 use_esp = act->ipa_apply.ipp_use_esp;
1243 use_espa = act->ipa_apply.ipp_use_espa;
1244 auth_alg = act->ipa_apply.ipp_auth_alg;
1245 eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1246 encr_alg = act->ipa_apply.ipp_encr_alg;
1247
1248 wild_auth = use_ah && (auth_alg == 0);
1249 wild_eauth = use_espa && (eauth_alg == 0);
1250 wild_encr = use_esp && (encr_alg == 0);
1251
1252 action_count = 1;
1253 auth_min = auth_max = auth_alg;
1254 eauth_min = eauth_max = eauth_alg;
1255 encr_min = encr_max = encr_alg;
1256
1257 /*
1258 * set up for explosion.. for each dimension, expand output
1259 * size by the explosion factor.
1260 *
1261 * Don't include the "any" algorithms, if defined, as no
1262 * kernel policies should be set for these algorithms.
1263 */
1264
1265 #define SET_EXP_MINMAX(type, wild, alg, min, max, ipss) \
1266 if (wild) { \
1267 int nalgs = ipss->ipsec_nalgs[type]; \
1268 if (ipss->ipsec_alglists[type][alg] != NULL) \
1269 nalgs--; \
1270 action_count *= nalgs; \
1271 min = 0; \
1272 max = ipss->ipsec_nalgs[type] - 1; \
1273 }
1274
1275 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1276 auth_min, auth_max, ipss);
1277 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1278 eauth_min, eauth_max, ipss);
1279 SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1280 encr_min, encr_max, ipss);
1281
1282 #undef SET_EXP_MINMAX
1283
1284 /*
1285 * ok, allocate the whole mess..
1286 */
1287
1288 outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1289 if (outact == NULL)
1290 return (NULL);
1291
1292 /*
1293 * Now compute all combinations. Note that non-wildcarded
1294 * dimensions just get a single value from auth_min, while
1295 * wildcarded dimensions indirect through the sortlist.
1296 *
1297 * We do encryption outermost since, at this time, there's
1298 * greater difference in security and performance between
1299 * encryption algorithms vs. authentication algorithms.
1300 */
1301
1302 ai = 0;
1303
1304 #define WHICH_ALG(type, wild, idx, ipss) \
1305 ((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1306
1307 for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1308 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1309 if (wild_encr && encr_alg == SADB_EALG_NONE)
1310 continue;
1311 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1312 auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1313 auth_idx, ipss);
1314 if (wild_auth && auth_alg == SADB_AALG_NONE)
1315 continue;
1316 for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1317 eauth_idx++) {
1318 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1319 wild_eauth, eauth_idx, ipss);
1320 if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1321 continue;
1322
1323 ipsec_setup_act(&outact[ai], act,
1324 auth_alg, encr_alg, eauth_alg, ns);
1325 ai++;
1326 }
1327 }
1328 }
1329
1330 #undef WHICH_ALG
1331
1332 ASSERT(ai == action_count);
1333 *nact = action_count;
1334 return (outact);
1335 }
1336
1337 /*
1338 * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1339 */
1340 static void
1341 ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp)
1342 {
1343 bzero(ipp, sizeof (*ipp));
1344 /*
1345 * ipp_use_* are bitfields. Look at "!!" in the following as a
1346 * "boolean canonicalization" operator.
1347 */
1348 ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1349 ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1350 ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
1351 ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1352 ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1353 IPSEC_PREF_UNIQUE);
1354 ipp->ipp_encr_alg = req->ipsr_esp_alg;
1355 /*
1356 * SADB_AALG_ANY is a placeholder to distinguish "any" from
1357 * "none" above. If auth is required, as determined above,
1358 * SADB_AALG_ANY becomes 0, which is the representation
1359 * of "any" and "none" in PF_KEY v2.
1360 */
1361 ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
1362 req->ipsr_auth_alg : 0;
1363 ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
1364 req->ipsr_esp_auth_alg : 0;
1365 }
1366
1367 /*
1368 * Extract a new-style action from a request.
1369 */
1370 void
1371 ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1372 netstack_t *ns)
1373 {
1374 struct ipsec_act act;
1375
1376 bzero(&act, sizeof (act));
1377 if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1378 (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1379 act.ipa_type = IPSEC_ACT_BYPASS;
1380 } else {
1381 act.ipa_type = IPSEC_ACT_APPLY;
1382 ipsec_prot_from_req(req, &act.ipa_apply);
1383 }
1384 *actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1385 }
1386
1387 /*
1388 * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1389 * We assume caller has already zero'ed *req for us.
1390 */
1391 static int
1392 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1393 {
1394 req->ipsr_esp_alg = ipp->ipp_encr_alg;
1395 req->ipsr_auth_alg = ipp->ipp_auth_alg;
1396 req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1397
1398 if (ipp->ipp_use_unique) {
1399 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1400 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1401 }
1402 if (ipp->ipp_use_se)
1403 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1404 if (ipp->ipp_use_ah)
1405 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1406 if (ipp->ipp_use_esp)
1407 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1408 return (sizeof (*req));
1409 }
1410
1411 /*
1412 * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1413 * We assume caller has already zero'ed *req for us.
1414 */
1415 static int
1416 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1417 {
1418 switch (ap->ipa_act.ipa_type) {
1419 case IPSEC_ACT_BYPASS:
1420 req->ipsr_ah_req = IPSEC_PREF_NEVER;
1421 req->ipsr_esp_req = IPSEC_PREF_NEVER;
1422 return (sizeof (*req));
1423 case IPSEC_ACT_APPLY:
1424 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1425 }
1426 return (sizeof (*req));
1427 }
1428
1429 /*
1430 * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1431 * We assume caller has already zero'ed *req for us.
1432 */
1433 int
1434 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1435 {
1436 ipsec_policy_t *p;
1437
1438 /*
1439 * FULL-PERSOCK: consult hash table, too?
1440 */
1441 for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1442 p != NULL;
1443 p = p->ipsp_hash.hash_next) {
1444 if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1445 return (ipsec_req_from_act(p->ipsp_act, req));
1446 }
1447 return (sizeof (*req));
1448 }
1449
1450 /*
1451 * Based on per-socket or latched policy, convert to an appropriate
1452 * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1453 * be tail-called from ip.
1454 */
1455 int
1456 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1457 {
1458 ipsec_latch_t *ipl;
1459 int rv = sizeof (ipsec_req_t);
1460
1461 bzero(req, sizeof (*req));
1462
1463 ASSERT(MUTEX_HELD(&connp->conn_lock));
1464 ipl = connp->conn_latch;
1465
1466 /*
1467 * Find appropriate policy. First choice is latched action;
1468 * failing that, see latched policy; failing that,
1469 * look at configured policy.
1470 */
1471 if (ipl != NULL) {
1472 if (connp->conn_latch_in_action != NULL) {
1473 rv = ipsec_req_from_act(connp->conn_latch_in_action,
1474 req);
1475 goto done;
1476 }
1477 if (connp->conn_latch_in_policy != NULL) {
1478 rv = ipsec_req_from_act(
1479 connp->conn_latch_in_policy->ipsp_act, req);
1480 goto done;
1481 }
1482 }
1483 if (connp->conn_policy != NULL)
1484 rv = ipsec_req_from_head(connp->conn_policy, req, af);
1485 done:
1486 return (rv);
1487 }
1488
1489 void
1490 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1491 {
1492 kmem_free(act, nact * sizeof (*act));
1493 }
1494
1495 /*
1496 * Consumes a reference to ipsp.
1497 */
1498 static mblk_t *
1499 ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira,
1500 ipsec_policy_t *ipsp)
1501 {
1502 if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
1503 return (data_mp);
1504
1505 ASSERT(ira->ira_flags & IRAF_LOOPBACK);
1506
1507 IPPOL_REFRELE(ipsp);
1508
1509 /*
1510 * We should do an actual policy check here. Revisit this
1511 * when we revisit the IPsec API. (And pass a conn_t in when we
1512 * get there.)
1513 */
1514
1515 return (data_mp);
1516 }
1517
1518 /*
1519 * Check that packet's inbound ports & proto match the selectors
1520 * expected by the SAs it traversed on the way in.
1521 */
1522 static boolean_t
1523 ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason,
1524 kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns)
1525 {
1526 uint64_t ah_mask, esp_mask;
1527 ipsa_t *ah_assoc;
1528 ipsa_t *esp_assoc;
1529 ipsec_stack_t *ipss = ns->netstack_ipsec;
1530
1531 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1532 ASSERT(!(ira->ira_flags & IRAF_LOOPBACK));
1533
1534 ah_assoc = ira->ira_ipsec_ah_sa;
1535 esp_assoc = ira->ira_ipsec_esp_sa;
1536 ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1537
1538 ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1539 esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1540
1541 if ((ah_mask == 0) && (esp_mask == 0))
1542 return (B_TRUE);
1543
1544 /*
1545 * The pkt_unique check will also check for tunnel mode on the SA
1546 * vs. the tunneled_packet boolean. "Be liberal in what you receive"
1547 * should not apply in this case. ;)
1548 */
1549
1550 if (ah_mask != 0 &&
1551 ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1552 *reason = "AH inner header mismatch";
1553 *counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1554 return (B_FALSE);
1555 }
1556 if (esp_mask != 0 &&
1557 esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1558 *reason = "ESP inner header mismatch";
1559 *counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1560 return (B_FALSE);
1561 }
1562 return (B_TRUE);
1563 }
1564
1565 static boolean_t
1566 ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap,
1567 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1568 netstack_t *ns)
1569 {
1570 boolean_t ret = B_TRUE;
1571 ipsec_prot_t *ipp;
1572 ipsa_t *ah_assoc;
1573 ipsa_t *esp_assoc;
1574 boolean_t decaps;
1575 ipsec_stack_t *ipss = ns->netstack_ipsec;
1576
1577 ASSERT((ipha == NULL && ip6h != NULL) ||
1578 (ip6h == NULL && ipha != NULL));
1579
1580 if (ira->ira_flags & IRAF_LOOPBACK) {
1581 /*
1582 * Besides accepting pointer-equivalent actions, we also
1583 * accept any ICMP errors we generated for ourselves,
1584 * regardless of policy. If we do not wish to make this
1585 * assumption in the future, check here, and where
1586 * IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c.
1587 */
1588 if (ap == ira->ira_ipsec_action ||
1589 (ira->ira_flags & IRAF_TRUSTED_ICMP))
1590 return (B_TRUE);
1591
1592 /* Deep compare necessary here?? */
1593 *counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1594 *reason = "loopback policy mismatch";
1595 return (B_FALSE);
1596 }
1597 ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP));
1598 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1599
1600 ah_assoc = ira->ira_ipsec_ah_sa;
1601 esp_assoc = ira->ira_ipsec_esp_sa;
1602
1603 decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS);
1604
1605 switch (ap->ipa_act.ipa_type) {
1606 case IPSEC_ACT_DISCARD:
1607 case IPSEC_ACT_REJECT:
1608 /* Should "fail hard" */
1609 *counter = DROPPER(ipss, ipds_spd_explicit);
1610 *reason = "blocked by policy";
1611 return (B_FALSE);
1612
1613 case IPSEC_ACT_BYPASS:
1614 case IPSEC_ACT_CLEAR:
1615 *counter = DROPPER(ipss, ipds_spd_got_secure);
1616 *reason = "expected clear, got protected";
1617 return (B_FALSE);
1618
1619 case IPSEC_ACT_APPLY:
1620 ipp = &ap->ipa_act.ipa_apply;
1621 /*
1622 * As of now we do the simple checks of whether
1623 * the datagram has gone through the required IPSEC
1624 * protocol constraints or not. We might have more
1625 * in the future like sensitive levels, key bits, etc.
1626 * If it fails the constraints, check whether we would
1627 * have accepted this if it had come in clear.
1628 */
1629 if (ipp->ipp_use_ah) {
1630 if (ah_assoc == NULL) {
1631 ret = ipsec_inbound_accept_clear(mp, ipha,
1632 ip6h);
1633 *counter = DROPPER(ipss, ipds_spd_got_clear);
1634 *reason = "unprotected not accepted";
1635 break;
1636 }
1637 ASSERT(ah_assoc != NULL);
1638 ASSERT(ipp->ipp_auth_alg != 0);
1639
1640 if (ah_assoc->ipsa_auth_alg !=
1641 ipp->ipp_auth_alg) {
1642 *counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1643 *reason = "unacceptable ah alg";
1644 ret = B_FALSE;
1645 break;
1646 }
1647 } else if (ah_assoc != NULL) {
1648 /*
1649 * Don't allow this. Check IPSEC NOTE above
1650 * ip_fanout_proto().
1651 */
1652 *counter = DROPPER(ipss, ipds_spd_got_ah);
1653 *reason = "unexpected AH";
1654 ret = B_FALSE;
1655 break;
1656 }
1657 if (ipp->ipp_use_esp) {
1658 if (esp_assoc == NULL) {
1659 ret = ipsec_inbound_accept_clear(mp, ipha,
1660 ip6h);
1661 *counter = DROPPER(ipss, ipds_spd_got_clear);
1662 *reason = "unprotected not accepted";
1663 break;
1664 }
1665 ASSERT(esp_assoc != NULL);
1666 ASSERT(ipp->ipp_encr_alg != 0);
1667
1668 if (esp_assoc->ipsa_encr_alg !=
1669 ipp->ipp_encr_alg) {
1670 *counter = DROPPER(ipss, ipds_spd_bad_espealg);
1671 *reason = "unacceptable esp alg";
1672 ret = B_FALSE;
1673 break;
1674 }
1675 /*
1676 * If the client does not need authentication,
1677 * we don't verify the alogrithm.
1678 */
1679 if (ipp->ipp_use_espa) {
1680 if (esp_assoc->ipsa_auth_alg !=
1681 ipp->ipp_esp_auth_alg) {
1682 *counter = DROPPER(ipss,
1683 ipds_spd_bad_espaalg);
1684 *reason = "unacceptable esp auth alg";
1685 ret = B_FALSE;
1686 break;
1687 }
1688 }
1689 } else if (esp_assoc != NULL) {
1690 /*
1691 * Don't allow this. Check IPSEC NOTE above
1692 * ip_fanout_proto().
1693 */
1694 *counter = DROPPER(ipss, ipds_spd_got_esp);
1695 *reason = "unexpected ESP";
1696 ret = B_FALSE;
1697 break;
1698 }
1699 if (ipp->ipp_use_se) {
1700 if (!decaps) {
1701 ret = ipsec_inbound_accept_clear(mp, ipha,
1702 ip6h);
1703 if (!ret) {
1704 /* XXX mutant? */
1705 *counter = DROPPER(ipss,
1706 ipds_spd_bad_selfencap);
1707 *reason = "self encap not found";
1708 break;
1709 }
1710 }
1711 } else if (decaps) {
1712 /*
1713 * XXX If the packet comes in tunneled and the
1714 * recipient does not expect it to be tunneled, it
1715 * is okay. But we drop to be consistent with the
1716 * other cases.
1717 */
1718 *counter = DROPPER(ipss, ipds_spd_got_selfencap);
1719 *reason = "unexpected self encap";
1720 ret = B_FALSE;
1721 break;
1722 }
1723 if (ira->ira_ipsec_action != NULL) {
1724 /*
1725 * This can happen if we do a double policy-check on
1726 * a packet
1727 * XXX XXX should fix this case!
1728 */
1729 IPACT_REFRELE(ira->ira_ipsec_action);
1730 }
1731 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1732 ASSERT(ira->ira_ipsec_action == NULL);
1733 IPACT_REFHOLD(ap);
1734 ira->ira_ipsec_action = ap;
1735 break; /* from switch */
1736 }
1737 return (ret);
1738 }
1739
1740 static boolean_t
1741 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1742 {
1743 ASSERT(ipl->ipl_ids_latched == B_TRUE);
1744 return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1745 ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1746 }
1747
1748 /*
1749 * Takes a latched conn and an inbound packet and returns a unique_id suitable
1750 * for SA comparisons. Most of the time we will copy from the conn_t, but
1751 * there are cases when the conn_t is latched but it has wildcard selectors,
1752 * and then we need to fallback to scooping them out of the packet.
1753 *
1754 * Assume we'll never have 0 with a conn_t present, so use 0 as a failure. We
1755 * can get away with this because we only have non-zero ports/proto for
1756 * latched conn_ts.
1757 *
1758 * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1759 * to not be a nice macro.
1760 */
1761 static uint64_t
1762 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1763 {
1764 ipsec_selector_t sel;
1765 uint8_t ulp = connp->conn_proto;
1766
1767 ASSERT(connp->conn_latch_in_policy != NULL);
1768
1769 if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1770 (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1771 /* Slow path - we gotta grab from the packet. */
1772 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1773 SEL_NONE) != SELRET_SUCCESS) {
1774 /* Failure -> have caller free packet with ENOMEM. */
1775 return (0);
1776 }
1777 return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1778 sel.ips_protocol, 0));
1779 }
1780
1781 #ifdef DEBUG_NOT_UNTIL_6478464
1782 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1783 SELRET_SUCCESS) {
1784 ASSERT(sel.ips_local_port == connp->conn_lport);
1785 ASSERT(sel.ips_remote_port == connp->conn_fport);
1786 ASSERT(sel.ips_protocol == connp->conn_proto);
1787 }
1788 ASSERT(connp->conn_proto != 0);
1789 #endif
1790
1791 return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1792 }
1793
1794 /*
1795 * Called to check policy on a latched connection.
1796 * Note that we don't dereference conn_latch or conn_ihere since the conn might
1797 * be closing. The caller passes a held ipsec_latch_t instead.
1798 */
1799 static boolean_t
1800 ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl,
1801 ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason,
1802 kstat_named_t **counter, conn_t *connp, netstack_t *ns)
1803 {
1804 ipsec_stack_t *ipss = ns->netstack_ipsec;
1805
1806 ASSERT(ipl->ipl_ids_latched == B_TRUE);
1807 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1808
1809 if (!(ira->ira_flags & IRAF_LOOPBACK)) {
1810 /*
1811 * Over loopback, there aren't real security associations,
1812 * so there are neither identities nor "unique" values
1813 * for us to check the packet against.
1814 */
1815 if (ira->ira_ipsec_ah_sa != NULL) {
1816 if (!spd_match_inbound_ids(ipl,
1817 ira->ira_ipsec_ah_sa)) {
1818 *counter = DROPPER(ipss, ipds_spd_ah_badid);
1819 *reason = "AH identity mismatch";
1820 return (B_FALSE);
1821 }
1822 }
1823
1824 if (ira->ira_ipsec_esp_sa != NULL) {
1825 if (!spd_match_inbound_ids(ipl,
1826 ira->ira_ipsec_esp_sa)) {
1827 *counter = DROPPER(ipss, ipds_spd_esp_badid);
1828 *reason = "ESP identity mismatch";
1829 return (B_FALSE);
1830 }
1831 }
1832
1833 /*
1834 * Can fudge pkt_unique from connp because we're latched.
1835 * In DEBUG kernels (see conn_to_unique()'s implementation),
1836 * verify this even if it REALLY slows things down.
1837 */
1838 if (!ipsec_check_ipsecin_unique(ira, reason, counter,
1839 conn_to_unique(connp, mp, ipha, ip6h), ns)) {
1840 return (B_FALSE);
1841 }
1842 }
1843 return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason,
1844 counter, ns));
1845 }
1846
1847 /*
1848 * Check to see whether this secured datagram meets the policy
1849 * constraints specified in ipsp.
1850 *
1851 * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1852 *
1853 * Consumes a reference to ipsp.
1854 * Returns the mblk if ok.
1855 */
1856 static mblk_t *
1857 ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp,
1858 ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira,
1859 netstack_t *ns)
1860 {
1861 ipsec_action_t *ap;
1862 const char *reason = "no policy actions found";
1863 ip_stack_t *ipst = ns->netstack_ip;
1864 ipsec_stack_t *ipss = ns->netstack_ipsec;
1865 kstat_named_t *counter;
1866
1867 counter = DROPPER(ipss, ipds_spd_got_secure);
1868
1869 ASSERT(ipsp != NULL);
1870
1871 ASSERT((ipha == NULL && ip6h != NULL) ||
1872 (ip6h == NULL && ipha != NULL));
1873
1874 if (ira->ira_flags & IRAF_LOOPBACK)
1875 return (ipsec_check_loopback_policy(data_mp, ira, ipsp));
1876
1877 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1878
1879 if (ira->ira_ipsec_action != NULL) {
1880 /*
1881 * this can happen if we do a double policy-check on a packet
1882 * Would be nice to be able to delete this test..
1883 */
1884 IPACT_REFRELE(ira->ira_ipsec_action);
1885 }
1886 ASSERT(ira->ira_ipsec_action == NULL);
1887
1888 if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) {
1889 reason = "inbound AH and ESP identities differ";
1890 counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1891 goto drop;
1892 }
1893
1894 if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique,
1895 ns))
1896 goto drop;
1897
1898 /*
1899 * Ok, now loop through the possible actions and see if any
1900 * of them work for us.
1901 */
1902
1903 for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1904 if (ipsec_check_ipsecin_action(ira, data_mp, ap,
1905 ipha, ip6h, &reason, &counter, ns)) {
1906 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
1907 IPPOL_REFRELE(ipsp);
1908 return (data_mp);
1909 }
1910 }
1911 drop:
1912 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1913 "ipsec inbound policy mismatch: %s, packet dropped\n",
1914 reason);
1915 IPPOL_REFRELE(ipsp);
1916 ASSERT(ira->ira_ipsec_action == NULL);
1917 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
1918 ip_drop_packet(data_mp, B_TRUE, NULL, counter,
1919 &ipss->ipsec_spd_dropper);
1920 return (NULL);
1921 }
1922
1923 /*
1924 * sleazy prefix-length-based compare.
1925 * another inlining candidate..
1926 */
1927 boolean_t
1928 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1929 {
1930 int offset = pfxlen>>3;
1931 int bitsleft = pfxlen & 7;
1932 uint8_t *addr2 = (uint8_t *)addr2p;
1933
1934 /*
1935 * and there was much evil..
1936 * XXX should inline-expand the bcmp here and do this 32 bits
1937 * or 64 bits at a time..
1938 */
1939 return ((bcmp(addr1, addr2, offset) == 0) &&
1940 ((bitsleft == 0) ||
1941 (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
1942 }
1943
1944 static ipsec_policy_t *
1945 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1946 ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1947 {
1948 ipsec_selkey_t *isel;
1949 ipsec_policy_t *p;
1950 int bpri = best ? best->ipsp_prio : 0;
1951
1952 for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1953 uint32_t valid;
1954
1955 if (p->ipsp_prio <= bpri)
1956 continue;
1957 isel = &p->ipsp_sel->ipsl_key;
1958 valid = isel->ipsl_valid;
1959
1960 if ((valid & IPSL_PROTOCOL) &&
1961 (isel->ipsl_proto != sel->ips_protocol))
1962 continue;
1963
1964 if ((valid & IPSL_REMOTE_ADDR) &&
1965 !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1966 isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
1967 continue;
1968
1969 if ((valid & IPSL_LOCAL_ADDR) &&
1970 !ip_addr_match((uint8_t *)&isel->ipsl_local,
1971 isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
1972 continue;
1973
1974 if ((valid & IPSL_REMOTE_PORT) &&
1975 isel->ipsl_rport != sel->ips_remote_port)
1976 continue;
1977
1978 if ((valid & IPSL_LOCAL_PORT) &&
1979 isel->ipsl_lport != sel->ips_local_port)
1980 continue;
1981
1982 if (!is_icmp_inv_acq) {
1983 if ((valid & IPSL_ICMP_TYPE) &&
1984 (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1985 isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1986 continue;
1987 }
1988
1989 if ((valid & IPSL_ICMP_CODE) &&
1990 (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1991 isel->ipsl_icmp_code_end <
1992 sel->ips_icmp_code)) {
1993 continue;
1994 }
1995 } else {
1996 /*
1997 * special case for icmp inverse acquire
1998 * we only want policies that aren't drop/pass
1999 */
2000 if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2001 continue;
2002 }
2003
2004 /* we matched all the packet-port-field selectors! */
2005 best = p;
2006 bpri = p->ipsp_prio;
2007 }
2008
2009 return (best);
2010 }
2011
2012 /*
2013 * Try to find and return the best policy entry under a given policy
2014 * root for a given set of selectors; the first parameter "best" is
2015 * the current best policy so far. If "best" is non-null, we have a
2016 * reference to it. We return a reference to a policy; if that policy
2017 * is not the original "best", we need to release that reference
2018 * before returning.
2019 */
2020 ipsec_policy_t *
2021 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2022 int direction, ipsec_selector_t *sel)
2023 {
2024 ipsec_policy_t *curbest;
2025 ipsec_policy_root_t *root;
2026 uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2027 int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2028
2029 curbest = best;
2030 root = &head->iph_root[direction];
2031
2032 #ifdef DEBUG
2033 if (is_icmp_inv_acq) {
2034 if (sel->ips_isv4) {
2035 if (sel->ips_protocol != IPPROTO_ICMP) {
2036 cmn_err(CE_WARN, "ipsec_find_policy_head:"
2037 " expecting icmp, got %d",
2038 sel->ips_protocol);
2039 }
2040 } else {
2041 if (sel->ips_protocol != IPPROTO_ICMPV6) {
2042 cmn_err(CE_WARN, "ipsec_find_policy_head:"
2043 " expecting icmpv6, got %d",
2044 sel->ips_protocol);
2045 }
2046 }
2047 }
2048 #endif
2049
2050 rw_enter(&head->iph_lock, RW_READER);
2051
2052 if (root->ipr_nchains > 0) {
2053 curbest = ipsec_find_policy_chain(curbest,
2054 root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2055 is_icmp_inv_acq);
2056 }
2057 curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2058 is_icmp_inv_acq);
2059
2060 /*
2061 * Adjust reference counts if we found anything new.
2062 */
2063 if (curbest != best) {
2064 ASSERT(curbest != NULL);
2065 IPPOL_REFHOLD(curbest);
2066
2067 if (best != NULL) {
2068 IPPOL_REFRELE(best);
2069 }
2070 }
2071
2072 rw_exit(&head->iph_lock);
2073
2074 return (curbest);
2075 }
2076
2077 /*
2078 * Find the best system policy (either global or per-interface) which
2079 * applies to the given selector; look in all the relevant policy roots
2080 * to figure out which policy wins.
2081 *
2082 * Returns a reference to a policy; caller must release this
2083 * reference when done.
2084 */
2085 ipsec_policy_t *
2086 ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel,
2087 netstack_t *ns)
2088 {
2089 ipsec_policy_t *p;
2090 ipsec_stack_t *ipss = ns->netstack_ipsec;
2091
2092 p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2093 direction, sel);
2094 if ((connp != NULL) && (connp->conn_policy != NULL)) {
2095 p = ipsec_find_policy_head(p, connp->conn_policy,
2096 direction, sel);
2097 }
2098
2099 return (p);
2100 }
2101
2102 /*
2103 * Check with global policy and see whether this inbound
2104 * packet meets the policy constraints.
2105 *
2106 * Locate appropriate policy from global policy, supplemented by the
2107 * conn's configured and/or cached policy if the conn is supplied.
2108 *
2109 * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2110 * encrypted packet to see if they match.
2111 *
2112 * Otherwise, see if the policy allows cleartext; if not, drop it on the
2113 * floor.
2114 */
2115 mblk_t *
2116 ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp,
2117 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns)
2118 {
2119 ipsec_policy_t *p;
2120 ipsec_selector_t sel;
2121 boolean_t policy_present;
2122 kstat_named_t *counter;
2123 uint64_t pkt_unique;
2124 ip_stack_t *ipst = ns->netstack_ip;
2125 ipsec_stack_t *ipss = ns->netstack_ipsec;
2126
2127 sel.ips_is_icmp_inv_acq = 0;
2128
2129 ASSERT((ipha == NULL && ip6h != NULL) ||
2130 (ip6h == NULL && ipha != NULL));
2131
2132 if (ipha != NULL)
2133 policy_present = ipss->ipsec_inbound_v4_policy_present;
2134 else
2135 policy_present = ipss->ipsec_inbound_v6_policy_present;
2136
2137 if (!policy_present && connp == NULL) {
2138 /*
2139 * No global policy and no per-socket policy;
2140 * just pass it back (but we shouldn't get here in that case)
2141 */
2142 return (data_mp);
2143 }
2144
2145 /*
2146 * If we have cached policy, use it.
2147 * Otherwise consult system policy.
2148 */
2149 if ((connp != NULL) && (connp->conn_latch != NULL)) {
2150 p = connp->conn_latch_in_policy;
2151 if (p != NULL) {
2152 IPPOL_REFHOLD(p);
2153 }
2154 /*
2155 * Fudge sel for UNIQUE_ID setting below.
2156 */
2157 pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2158 } else {
2159 /* Initialize the ports in the selector */
2160 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2161 SEL_NONE) == SELRET_NOMEM) {
2162 /*
2163 * Technically not a policy mismatch, but it is
2164 * an internal failure.
2165 */
2166 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2167 "ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns);
2168 counter = DROPPER(ipss, ipds_spd_nomem);
2169 goto fail;
2170 }
2171
2172 /*
2173 * Find the policy which best applies.
2174 *
2175 * If we find global policy, we should look at both
2176 * local policy and global policy and see which is
2177 * stronger and match accordingly.
2178 *
2179 * If we don't find a global policy, check with
2180 * local policy alone.
2181 */
2182
2183 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
2184 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2185 sel.ips_local_port, sel.ips_protocol, 0);
2186 }
2187
2188 if (p == NULL) {
2189 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2190 /*
2191 * We have no policy; default to succeeding.
2192 * XXX paranoid system design doesn't do this.
2193 */
2194 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2195 return (data_mp);
2196 } else {
2197 counter = DROPPER(ipss, ipds_spd_got_secure);
2198 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2199 "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2200 ns);
2201 goto fail;
2202 }
2203 }
2204 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2205 return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h,
2206 pkt_unique, ira, ns));
2207 }
2208 if (p->ipsp_act->ipa_allow_clear) {
2209 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2210 IPPOL_REFRELE(p);
2211 return (data_mp);
2212 }
2213 IPPOL_REFRELE(p);
2214 /*
2215 * If we reach here, we will drop the packet because it failed the
2216 * global policy check because the packet was cleartext, and it
2217 * should not have been.
2218 */
2219 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2220 "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2221 counter = DROPPER(ipss, ipds_spd_got_clear);
2222
2223 fail:
2224 ip_drop_packet(data_mp, B_TRUE, NULL, counter,
2225 &ipss->ipsec_spd_dropper);
2226 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2227 return (NULL);
2228 }
2229
2230 /*
2231 * We check whether an inbound datagram is a valid one
2232 * to accept in clear. If it is secure, it is the job
2233 * of IPSEC to log information appropriately if it
2234 * suspects that it may not be the real one.
2235 *
2236 * It is called only while fanning out to the ULP
2237 * where ULP accepts only secure data and the incoming
2238 * is clear. Usually we never accept clear datagrams in
2239 * such cases. ICMP is the only exception.
2240 *
2241 * NOTE : We don't call this function if the client (ULP)
2242 * is willing to accept things in clear.
2243 */
2244 boolean_t
2245 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2246 {
2247 ushort_t iph_hdr_length;
2248 icmph_t *icmph;
2249 icmp6_t *icmp6;
2250 uint8_t *nexthdrp;
2251
2252 ASSERT((ipha != NULL && ip6h == NULL) ||
2253 (ipha == NULL && ip6h != NULL));
2254
2255 if (ip6h != NULL) {
2256 iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2257 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2258 &nexthdrp)) {
2259 return (B_FALSE);
2260 }
2261 if (*nexthdrp != IPPROTO_ICMPV6)
2262 return (B_FALSE);
2263 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2264 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2265 switch (icmp6->icmp6_type) {
2266 case ICMP6_PARAM_PROB:
2267 /* Corresponds to port/proto unreach in IPv4. */
2268 case ICMP6_ECHO_REQUEST:
2269 /* Just like IPv4. */
2270 return (B_FALSE);
2271
2272 case MLD_LISTENER_QUERY:
2273 case MLD_LISTENER_REPORT:
2274 case MLD_LISTENER_REDUCTION:
2275 /*
2276 * XXX Seperate NDD in IPv4 what about here?
2277 * Plus, mcast is important to ND.
2278 */
2279 case ICMP6_DST_UNREACH:
2280 /* Corresponds to HOST/NET unreachable in IPv4. */
2281 case ICMP6_PACKET_TOO_BIG:
2282 case ICMP6_ECHO_REPLY:
2283 /* These are trusted in IPv4. */
2284 case ND_ROUTER_SOLICIT:
2285 case ND_ROUTER_ADVERT:
2286 case ND_NEIGHBOR_SOLICIT:
2287 case ND_NEIGHBOR_ADVERT:
2288 case ND_REDIRECT:
2289 /* Trust ND messages for now. */
2290 case ICMP6_TIME_EXCEEDED:
2291 default:
2292 return (B_TRUE);
2293 }
2294 } else {
2295 /*
2296 * If it is not ICMP, fail this request.
2297 */
2298 if (ipha->ipha_protocol != IPPROTO_ICMP) {
2299 #ifdef FRAGCACHE_DEBUG
2300 cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2301 ipha->ipha_protocol);
2302 #endif
2303 return (B_FALSE);
2304 }
2305 iph_hdr_length = IPH_HDR_LENGTH(ipha);
2306 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2307 /*
2308 * It is an insecure icmp message. Check to see whether we are
2309 * willing to accept this one.
2310 */
2311
2312 switch (icmph->icmph_type) {
2313 case ICMP_ECHO_REPLY:
2314 case ICMP_TIME_STAMP_REPLY:
2315 case ICMP_INFO_REPLY:
2316 case ICMP_ROUTER_ADVERTISEMENT:
2317 /*
2318 * We should not encourage clear replies if this
2319 * client expects secure. If somebody is replying
2320 * in clear some mailicious user watching both the
2321 * request and reply, can do chosen-plain-text attacks.
2322 * With global policy we might be just expecting secure
2323 * but sending out clear. We don't know what the right
2324 * thing is. We can't do much here as we can't control
2325 * the sender here. Till we are sure of what to do,
2326 * accept them.
2327 */
2328 return (B_TRUE);
2329 case ICMP_ECHO_REQUEST:
2330 case ICMP_TIME_STAMP_REQUEST:
2331 case ICMP_INFO_REQUEST:
2332 case ICMP_ADDRESS_MASK_REQUEST:
2333 case ICMP_ROUTER_SOLICITATION:
2334 case ICMP_ADDRESS_MASK_REPLY:
2335 /*
2336 * Don't accept this as somebody could be sending
2337 * us plain text to get encrypted data. If we reply,
2338 * it will lead to chosen plain text attack.
2339 */
2340 return (B_FALSE);
2341 case ICMP_DEST_UNREACHABLE:
2342 switch (icmph->icmph_code) {
2343 case ICMP_FRAGMENTATION_NEEDED:
2344 /*
2345 * Be in sync with icmp_inbound, where we have
2346 * already set dce_pmtu
2347 */
2348 #ifdef FRAGCACHE_DEBUG
2349 cmn_err(CE_WARN, "ICMP frag needed\n");
2350 #endif
2351 return (B_TRUE);
2352 case ICMP_HOST_UNREACHABLE:
2353 case ICMP_NET_UNREACHABLE:
2354 /*
2355 * By accepting, we could reset a connection.
2356 * How do we solve the problem of some
2357 * intermediate router sending in-secure ICMP
2358 * messages ?
2359 */
2360 return (B_TRUE);
2361 case ICMP_PORT_UNREACHABLE:
2362 case ICMP_PROTOCOL_UNREACHABLE:
2363 default :
2364 return (B_FALSE);
2365 }
2366 case ICMP_SOURCE_QUENCH:
2367 /*
2368 * If this is an attack, TCP will slow start
2369 * because of this. Is it very harmful ?
2370 */
2371 return (B_TRUE);
2372 case ICMP_PARAM_PROBLEM:
2373 return (B_FALSE);
2374 case ICMP_TIME_EXCEEDED:
2375 return (B_TRUE);
2376 case ICMP_REDIRECT:
2377 return (B_FALSE);
2378 default :
2379 return (B_FALSE);
2380 }
2381 }
2382 }
2383
2384 void
2385 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2386 {
2387 mutex_enter(&ipl->ipl_lock);
2388
2389 if (ipl->ipl_ids_latched) {
2390 /* I lost, someone else got here before me */
2391 mutex_exit(&ipl->ipl_lock);
2392 return;
2393 }
2394
2395 if (local != NULL)
2396 IPSID_REFHOLD(local);
2397 if (remote != NULL)
2398 IPSID_REFHOLD(remote);
2399
2400 ipl->ipl_local_cid = local;
2401 ipl->ipl_remote_cid = remote;
2402 ipl->ipl_ids_latched = B_TRUE;
2403 mutex_exit(&ipl->ipl_lock);
2404 }
2405
2406 void
2407 ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira)
2408 {
2409 ipsa_t *sa;
2410 ipsec_latch_t *ipl = connp->conn_latch;
2411
2412 if (!ipl->ipl_ids_latched) {
2413 ipsid_t *local = NULL;
2414 ipsid_t *remote = NULL;
2415
2416 if (!(ira->ira_flags & IRAF_LOOPBACK)) {
2417 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2418 if (ira->ira_ipsec_esp_sa != NULL)
2419 sa = ira->ira_ipsec_esp_sa;
2420 else
2421 sa = ira->ira_ipsec_ah_sa;
2422 ASSERT(sa != NULL);
2423 local = sa->ipsa_dst_cid;
2424 remote = sa->ipsa_src_cid;
2425 }
2426 ipsec_latch_ids(ipl, local, remote);
2427 }
2428 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2429 if (connp->conn_latch_in_action != NULL) {
2430 /*
2431 * Previously cached action. This is probably
2432 * harmless, but in DEBUG kernels, check for
2433 * action equality.
2434 *
2435 * Preserve the existing action to preserve latch
2436 * invariance.
2437 */
2438 ASSERT(connp->conn_latch_in_action ==
2439 ira->ira_ipsec_action);
2440 return;
2441 }
2442 connp->conn_latch_in_action = ira->ira_ipsec_action;
2443 IPACT_REFHOLD(connp->conn_latch_in_action);
2444 }
2445 }
2446
2447 /*
2448 * Check whether the policy constraints are met either for an
2449 * inbound datagram; called from IP in numerous places.
2450 *
2451 * Note that this is not a chokepoint for inbound policy checks;
2452 * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2453 */
2454 mblk_t *
2455 ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp,
2456 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira)
2457 {
2458 boolean_t ret;
2459 ipsec_latch_t *ipl;
2460 ipsec_action_t *ap;
2461 uint64_t unique_id;
2462 ipsec_stack_t *ipss;
2463 ip_stack_t *ipst;
2464 netstack_t *ns;
2465 ipsec_policy_head_t *policy_head;
2466 ipsec_policy_t *p = NULL;
2467
2468 ASSERT(connp != NULL);
2469 ns = connp->conn_netstack;
2470 ipss = ns->netstack_ipsec;
2471 ipst = ns->netstack_ip;
2472
2473 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2474 /*
2475 * This is the case where the incoming datagram is
2476 * cleartext and we need to see whether this client
2477 * would like to receive such untrustworthy things from
2478 * the wire.
2479 */
2480 ASSERT(mp != NULL);
2481
2482 mutex_enter(&connp->conn_lock);
2483 if (connp->conn_state_flags & CONN_CONDEMNED) {
2484 mutex_exit(&connp->conn_lock);
2485 ip_drop_packet(mp, B_TRUE, NULL,
2486 DROPPER(ipss, ipds_spd_got_clear),
2487 &ipss->ipsec_spd_dropper);
2488 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2489 return (NULL);
2490 }
2491 if (connp->conn_latch != NULL) {
2492 /* Hold a reference in case the conn is closing */
2493 p = connp->conn_latch_in_policy;
2494 if (p != NULL)
2495 IPPOL_REFHOLD(p);
2496 mutex_exit(&connp->conn_lock);
2497 /*
2498 * Policy is cached in the conn.
2499 */
2500 if (p != NULL && !p->ipsp_act->ipa_allow_clear) {
2501 ret = ipsec_inbound_accept_clear(mp,
2502 ipha, ip6h);
2503 if (ret) {
2504 BUMP_MIB(&ipst->ips_ip_mib,
2505 ipsecInSucceeded);
2506 IPPOL_REFRELE(p);
2507 return (mp);
2508 } else {
2509 ipsec_log_policy_failure(
2510 IPSEC_POLICY_MISMATCH,
2511 "ipsec_check_inbound_policy", ipha,
2512 ip6h, B_FALSE, ns);
2513 ip_drop_packet(mp, B_TRUE, NULL,
2514 DROPPER(ipss, ipds_spd_got_clear),
2515 &ipss->ipsec_spd_dropper);
2516 BUMP_MIB(&ipst->ips_ip_mib,
2517 ipsecInFailed);
2518 IPPOL_REFRELE(p);
2519 return (NULL);
2520 }
2521 } else {
2522 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2523 if (p != NULL)
2524 IPPOL_REFRELE(p);
2525 return (mp);
2526 }
2527 } else {
2528 policy_head = connp->conn_policy;
2529
2530 /* Hold a reference in case the conn is closing */
2531 if (policy_head != NULL)
2532 IPPH_REFHOLD(policy_head);
2533 mutex_exit(&connp->conn_lock);
2534 /*
2535 * As this is a non-hardbound connection we need
2536 * to look at both per-socket policy and global
2537 * policy.
2538 */
2539 mp = ipsec_check_global_policy(mp, connp,
2540 ipha, ip6h, ira, ns);
2541 if (policy_head != NULL)
2542 IPPH_REFRELE(policy_head, ns);
2543 return (mp);
2544 }
2545 }
2546
2547 mutex_enter(&connp->conn_lock);
2548 /* Connection is closing */
2549 if (connp->conn_state_flags & CONN_CONDEMNED) {
2550 mutex_exit(&connp->conn_lock);
2551 ip_drop_packet(mp, B_TRUE, NULL,
2552 DROPPER(ipss, ipds_spd_got_clear),
2553 &ipss->ipsec_spd_dropper);
2554 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2555 return (NULL);
2556 }
2557
2558 /*
2559 * Once a connection is latched it remains so for life, the conn_latch
2560 * pointer on the conn has not changed, simply initializing ipl here
2561 * as the earlier initialization was done only in the cleartext case.
2562 */
2563 if ((ipl = connp->conn_latch) == NULL) {
2564 mblk_t *retmp;
2565 policy_head = connp->conn_policy;
2566
2567 /* Hold a reference in case the conn is closing */
2568 if (policy_head != NULL)
2569 IPPH_REFHOLD(policy_head);
2570 mutex_exit(&connp->conn_lock);
2571 /*
2572 * We don't have policies cached in the conn
2573 * for this stream. So, look at the global
2574 * policy. It will check against conn or global
2575 * depending on whichever is stronger.
2576 */
2577 retmp = ipsec_check_global_policy(mp, connp,
2578 ipha, ip6h, ira, ns);
2579 if (policy_head != NULL)
2580 IPPH_REFRELE(policy_head, ns);
2581 return (retmp);
2582 }
2583
2584 IPLATCH_REFHOLD(ipl);
2585 /* Hold reference on conn_latch_in_action in case conn is closing */
2586 ap = connp->conn_latch_in_action;
2587 if (ap != NULL)
2588 IPACT_REFHOLD(ap);
2589 mutex_exit(&connp->conn_lock);
2590
2591 if (ap != NULL) {
2592 /* Policy is cached & latched; fast(er) path */
2593 const char *reason;
2594 kstat_named_t *counter;
2595
2596 if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap,
2597 ipha, ip6h, &reason, &counter, connp, ns)) {
2598 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2599 IPLATCH_REFRELE(ipl);
2600 IPACT_REFRELE(ap);
2601 return (mp);
2602 }
2603 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2604 SL_ERROR|SL_WARN|SL_CONSOLE,
2605 "ipsec inbound policy mismatch: %s, packet dropped\n",
2606 reason);
2607 ip_drop_packet(mp, B_TRUE, NULL, counter,
2608 &ipss->ipsec_spd_dropper);
2609 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2610 IPLATCH_REFRELE(ipl);
2611 IPACT_REFRELE(ap);
2612 return (NULL);
2613 }
2614 if ((p = connp->conn_latch_in_policy) == NULL) {
2615 ipsec_weird_null_inbound_policy++;
2616 IPLATCH_REFRELE(ipl);
2617 return (mp);
2618 }
2619
2620 unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2621 IPPOL_REFHOLD(p);
2622 mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns);
2623 /*
2624 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2625 * ipsec_check_ipsecin_policy().
2626 */
2627 if (mp != NULL)
2628 ipsec_latch_inbound(connp, ira);
2629 IPLATCH_REFRELE(ipl);
2630 return (mp);
2631 }
2632
2633 /*
2634 * Handle all sorts of cases like tunnel-mode and ICMP.
2635 */
2636 static int
2637 prepended_length(mblk_t *mp, uintptr_t hptr)
2638 {
2639 int rc = 0;
2640
2641 while (mp != NULL) {
2642 if (hptr >= (uintptr_t)mp->b_rptr && hptr <
2643 (uintptr_t)mp->b_wptr) {
2644 rc += (int)(hptr - (uintptr_t)mp->b_rptr);
2645 break; /* out of while loop */
2646 }
2647 rc += (int)MBLKL(mp);
2648 mp = mp->b_cont;
2649 }
2650
2651 if (mp == NULL) {
2652 /*
2653 * IF (big IF) we make it here by naturally exiting the loop,
2654 * then ip6h isn't in the mblk chain "mp" at all.
2655 *
2656 * The only case where this happens is with a reversed IP
2657 * header that gets passed up by inbound ICMP processing.
2658 * This unfortunately triggers longstanding bug 6478464. For
2659 * now, just pass up 0 for the answer.
2660 */
2661 #ifdef DEBUG_NOT_UNTIL_6478464
2662 ASSERT(mp != NULL);
2663 #endif
2664 rc = 0;
2665 }
2666
2667 return (rc);
2668 }
2669
2670 /*
2671 * Returns:
2672 *
2673 * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2674 * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2675 * gathering, the initial fragment is too short for
2676 * useful data. Only returned if SEL_TUNNEL_FIRSTFRAG is
2677 * set.
2678 * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2679 * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet. Caller
2680 * should put this packet in a fragment-gathering queue.
2681 * Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2682 * is set.
2683 *
2684 * Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case
2685 * of tunneled packets.
2686 * Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in
2687 * error past the ICMP error.
2688 */
2689 static selret_t
2690 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2691 ip6_t *ip6h, uint8_t sel_flags)
2692 {
2693 uint16_t *ports;
2694 int outer_hdr_len = 0; /* For ICMP or tunnel-mode cases... */
2695 ushort_t hdr_len;
2696 mblk_t *spare_mp = NULL;
2697 uint8_t *nexthdrp, *transportp;
2698 uint8_t nexthdr;
2699 uint8_t icmp_proto;
2700 ip_pkt_t ipp;
2701 boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2702 boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2703 boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2704 boolean_t post_frag = (sel_flags & SEL_POST_FRAG);
2705
2706 ASSERT((ipha == NULL && ip6h != NULL) ||
2707 (ipha != NULL && ip6h == NULL));
2708
2709 if (ip6h != NULL) {
2710 outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h);
2711 nexthdr = ip6h->ip6_nxt;
2712 icmp_proto = IPPROTO_ICMPV6;
2713 sel->ips_isv4 = B_FALSE;
2714 sel->ips_local_addr_v6 = ip6h->ip6_dst;
2715 sel->ips_remote_addr_v6 = ip6h->ip6_src;
2716
2717 bzero(&ipp, sizeof (ipp));
2718
2719 switch (nexthdr) {
2720 case IPPROTO_HOPOPTS:
2721 case IPPROTO_ROUTING:
2722 case IPPROTO_DSTOPTS:
2723 case IPPROTO_FRAGMENT:
2724 /*
2725 * Use ip_hdr_length_nexthdr_v6(). And have a spare
2726 * mblk that's contiguous to feed it
2727 */
2728 if ((spare_mp = msgpullup(mp, -1)) == NULL)
2729 return (SELRET_NOMEM);
2730 if (!ip_hdr_length_nexthdr_v6(spare_mp,
2731 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2732 &hdr_len, &nexthdrp)) {
2733 /* Malformed packet - caller frees. */
2734 ipsec_freemsg_chain(spare_mp);
2735 return (SELRET_BADPKT);
2736 }
2737 /* Repopulate now that we have the whole packet */
2738 ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
2739 (void) ip_find_hdr_v6(spare_mp, ip6h, B_FALSE, &ipp,
2740 NULL);
2741 nexthdr = *nexthdrp;
2742 /* We can just extract based on hdr_len now. */
2743 break;
2744 default:
2745 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
2746 hdr_len = IPV6_HDR_LEN;
2747 break;
2748 }
2749 if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2750 /* IPv6 Fragment */
2751 ipsec_freemsg_chain(spare_mp);
2752 return (SELRET_TUNFRAG);
2753 }
2754 transportp = (uint8_t *)ip6h + hdr_len;
2755 } else {
2756 outer_hdr_len = prepended_length(mp, (uintptr_t)ipha);
2757 icmp_proto = IPPROTO_ICMP;
2758 sel->ips_isv4 = B_TRUE;
2759 sel->ips_local_addr_v4 = ipha->ipha_dst;
2760 sel->ips_remote_addr_v4 = ipha->ipha_src;
2761 nexthdr = ipha->ipha_protocol;
2762 hdr_len = IPH_HDR_LENGTH(ipha);
2763
2764 if (port_policy_present &&
2765 IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2766 !is_icmp) {
2767 /* IPv4 Fragment */
2768 ipsec_freemsg_chain(spare_mp);
2769 return (SELRET_TUNFRAG);
2770 }
2771 transportp = (uint8_t *)ipha + hdr_len;
2772 }
2773 sel->ips_protocol = nexthdr;
2774
2775 if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2776 nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) ||
2777 (!port_policy_present && !post_frag && tunnel_mode)) {
2778 sel->ips_remote_port = sel->ips_local_port = 0;
2779 ipsec_freemsg_chain(spare_mp);
2780 return (SELRET_SUCCESS);
2781 }
2782
2783 if (transportp + 4 > mp->b_wptr) {
2784 /* If we didn't pullup a copy already, do so now. */
2785 /*
2786 * XXX performance, will upper-layers frequently split TCP/UDP
2787 * apart from IP or options? If so, perhaps we should revisit
2788 * the spare_mp strategy.
2789 */
2790 ipsec_hdr_pullup_needed++;
2791 if (spare_mp == NULL &&
2792 (spare_mp = msgpullup(mp, -1)) == NULL) {
2793 return (SELRET_NOMEM);
2794 }
2795 transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len];
2796 }
2797
2798 if (nexthdr == icmp_proto) {
2799 sel->ips_icmp_type = *transportp++;
2800 sel->ips_icmp_code = *transportp;
2801 sel->ips_remote_port = sel->ips_local_port = 0;
2802 } else {
2803 ports = (uint16_t *)transportp;
2804 sel->ips_remote_port = *ports++;
2805 sel->ips_local_port = *ports;
2806 }
2807 ipsec_freemsg_chain(spare_mp);
2808 return (SELRET_SUCCESS);
2809 }
2810
2811 /*
2812 * This is called with a b_next chain of messages from the fragcache code,
2813 * hence it needs to discard a chain on error.
2814 */
2815 static boolean_t
2816 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2817 ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2818 {
2819 /*
2820 * XXX cut&paste shared with ipsec_init_inbound_sel
2821 */
2822 uint16_t *ports;
2823 ushort_t hdr_len;
2824 mblk_t *spare_mp = NULL;
2825 uint8_t *nexthdrp;
2826 uint8_t nexthdr;
2827 uint8_t *typecode;
2828 uint8_t check_proto;
2829
2830 ASSERT((ipha == NULL && ip6h != NULL) ||
2831 (ipha != NULL && ip6h == NULL));
2832
2833 if (ip6h != NULL) {
2834 check_proto = IPPROTO_ICMPV6;
2835 nexthdr = ip6h->ip6_nxt;
2836 switch (nexthdr) {
2837 case IPPROTO_HOPOPTS:
2838 case IPPROTO_ROUTING:
2839 case IPPROTO_DSTOPTS:
2840 case IPPROTO_FRAGMENT:
2841 /*
2842 * Use ip_hdr_length_nexthdr_v6(). And have a spare
2843 * mblk that's contiguous to feed it
2844 */
2845 spare_mp = msgpullup(mp, -1);
2846 if (spare_mp == NULL ||
2847 !ip_hdr_length_nexthdr_v6(spare_mp,
2848 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2849 &hdr_len, &nexthdrp)) {
2850 /* Always works, even if NULL. */
2851 ipsec_freemsg_chain(spare_mp);
2852 ip_drop_packet_chain(mp, B_FALSE, NULL,
2853 DROPPER(ipss, ipds_spd_nomem),
2854 &ipss->ipsec_spd_dropper);
2855 return (B_FALSE);
2856 } else {
2857 nexthdr = *nexthdrp;
2858 /* We can just extract based on hdr_len now. */
2859 }
2860 break;
2861 default:
2862 hdr_len = IPV6_HDR_LEN;
2863 break;
2864 }
2865 } else {
2866 check_proto = IPPROTO_ICMP;
2867 hdr_len = IPH_HDR_LENGTH(ipha);
2868 nexthdr = ipha->ipha_protocol;
2869 }
2870
2871 sel->ips_protocol = nexthdr;
2872 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2873 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2874 sel->ips_local_port = sel->ips_remote_port = 0;
2875 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2876 return (B_TRUE);
2877 }
2878
2879 if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2880 /* If we didn't pullup a copy already, do so now. */
2881 /*
2882 * XXX performance, will upper-layers frequently split TCP/UDP
2883 * apart from IP or options? If so, perhaps we should revisit
2884 * the spare_mp strategy.
2885 *
2886 * XXX should this be msgpullup(mp, hdr_len+4) ???
2887 */
2888 if (spare_mp == NULL &&
2889 (spare_mp = msgpullup(mp, -1)) == NULL) {
2890 ip_drop_packet_chain(mp, B_FALSE, NULL,
2891 DROPPER(ipss, ipds_spd_nomem),
2892 &ipss->ipsec_spd_dropper);
2893 return (B_FALSE);
2894 }
2895 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2896 } else {
2897 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2898 }
2899
2900 if (nexthdr == check_proto) {
2901 typecode = (uint8_t *)ports;
2902 sel->ips_icmp_type = *typecode++;
2903 sel->ips_icmp_code = *typecode;
2904 sel->ips_remote_port = sel->ips_local_port = 0;
2905 } else {
2906 sel->ips_local_port = *ports++;
2907 sel->ips_remote_port = *ports;
2908 }
2909 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2910 return (B_TRUE);
2911 }
2912
2913 /*
2914 * Prepend an mblk with a ipsec_crypto_t to the message chain.
2915 * Frees the argument and returns NULL should the allocation fail.
2916 * Returns the pointer to the crypto data part.
2917 */
2918 mblk_t *
2919 ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp)
2920 {
2921 mblk_t *mp;
2922
2923 mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED);
2924 if (mp == NULL) {
2925 freemsg(data_mp);
2926 return (NULL);
2927 }
2928 bzero(mp->b_rptr, sizeof (ipsec_crypto_t));
2929 mp->b_wptr += sizeof (ipsec_crypto_t);
2930 mp->b_cont = data_mp;
2931 mp->b_datap->db_type = M_EVENT; /* For ASSERT */
2932 *icp = (ipsec_crypto_t *)mp->b_rptr;
2933 return (mp);
2934 }
2935
2936 /*
2937 * Remove what was prepended above. Return b_cont and a pointer to the
2938 * crypto data.
2939 * The caller must call ipsec_free_crypto_data for mblk once it is done
2940 * with the crypto data.
2941 */
2942 mblk_t *
2943 ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp)
2944 {
2945 ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2946 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2947
2948 *icp = (ipsec_crypto_t *)crypto_mp->b_rptr;
2949 return (crypto_mp->b_cont);
2950 }
2951
2952 /*
2953 * Free what was prepended above. Return b_cont.
2954 */
2955 mblk_t *
2956 ipsec_free_crypto_data(mblk_t *crypto_mp)
2957 {
2958 mblk_t *mp;
2959
2960 ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2961 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2962
2963 mp = crypto_mp->b_cont;
2964 freeb(crypto_mp);
2965 return (mp);
2966 }
2967
2968 /*
2969 * Create an ipsec_action_t based on the way an inbound packet was protected.
2970 * Used to reflect traffic back to a sender.
2971 *
2972 * We don't bother interning the action into the hash table.
2973 */
2974 ipsec_action_t *
2975 ipsec_in_to_out_action(ip_recv_attr_t *ira)
2976 {
2977 ipsa_t *ah_assoc, *esp_assoc;
2978 uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2979 ipsec_action_t *ap;
2980 boolean_t unique;
2981
2982 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2983
2984 if (ap == NULL)
2985 return (NULL);
2986
2987 bzero(ap, sizeof (*ap));
2988 HASH_NULL(ap, ipa_hash);
2989 ap->ipa_next = NULL;
2990 ap->ipa_refs = 1;
2991
2992 /*
2993 * Get the algorithms that were used for this packet.
2994 */
2995 ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2996 ap->ipa_act.ipa_log = 0;
2997 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2998
2999 ah_assoc = ira->ira_ipsec_ah_sa;
3000 ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
3001
3002 esp_assoc = ira->ira_ipsec_esp_sa;
3003 ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
3004
3005 if (esp_assoc != NULL) {
3006 encr_alg = esp_assoc->ipsa_encr_alg;
3007 espa_alg = esp_assoc->ipsa_auth_alg;
3008 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
3009 }
3010 if (ah_assoc != NULL)
3011 auth_alg = ah_assoc->ipsa_auth_alg;
3012
3013 ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
3014 ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
3015 ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
3016 ap->ipa_act.ipa_apply.ipp_use_se =
3017 !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3018 unique = B_FALSE;
3019
3020 if (esp_assoc != NULL) {
3021 ap->ipa_act.ipa_apply.ipp_espa_minbits =
3022 esp_assoc->ipsa_authkeybits;
3023 ap->ipa_act.ipa_apply.ipp_espa_maxbits =
3024 esp_assoc->ipsa_authkeybits;
3025 ap->ipa_act.ipa_apply.ipp_espe_minbits =
3026 esp_assoc->ipsa_encrkeybits;
3027 ap->ipa_act.ipa_apply.ipp_espe_maxbits =
3028 esp_assoc->ipsa_encrkeybits;
3029 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
3030 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
3031 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
3032 unique = B_TRUE;
3033 }
3034 if (ah_assoc != NULL) {
3035 ap->ipa_act.ipa_apply.ipp_ah_minbits =
3036 ah_assoc->ipsa_authkeybits;
3037 ap->ipa_act.ipa_apply.ipp_ah_maxbits =
3038 ah_assoc->ipsa_authkeybits;
3039 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
3040 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
3041 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
3042 unique = B_TRUE;
3043 }
3044 ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3045 ap->ipa_want_unique = unique;
3046 ap->ipa_allow_clear = B_FALSE;
3047 ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3048 ap->ipa_want_ah = (ah_assoc != NULL);
3049 ap->ipa_want_esp = (esp_assoc != NULL);
3050
3051 ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3052
3053 ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3054
3055 return (ap);
3056 }
3057
3058
3059 /*
3060 * Compute the worst-case amount of extra space required by an action.
3061 * Note that, because of the ESP considerations listed below, this is
3062 * actually not the same as the best-case reduction in the MTU; in the
3063 * future, we should pass additional information to this function to
3064 * allow the actual MTU impact to be computed.
3065 *
3066 * AH: Revisit this if we implement algorithms with
3067 * a verifier size of more than 12 bytes.
3068 *
3069 * ESP: A more exact but more messy computation would take into
3070 * account the interaction between the cipher block size and the
3071 * effective MTU, yielding the inner payload size which reflects a
3072 * packet with *minimum* ESP padding..
3073 */
3074 int32_t
3075 ipsec_act_ovhd(const ipsec_act_t *act)
3076 {
3077 int32_t overhead = 0;
3078
3079 if (act->ipa_type == IPSEC_ACT_APPLY) {
3080 const ipsec_prot_t *ipp = &act->ipa_apply;
3081
3082 if (ipp->ipp_use_ah)
3083 overhead += IPSEC_MAX_AH_HDR_SIZE;
3084 if (ipp->ipp_use_esp) {
3085 overhead += IPSEC_MAX_ESP_HDR_SIZE;
3086 overhead += sizeof (struct udphdr);
3087 }
3088 if (ipp->ipp_use_se)
3089 overhead += IP_SIMPLE_HDR_LENGTH;
3090 }
3091 return (overhead);
3092 }
3093
3094 /*
3095 * This hash function is used only when creating policies and thus is not
3096 * performance-critical for packet flows.
3097 *
3098 * Future work: canonicalize the structures hashed with this (i.e.,
3099 * zeroize padding) so the hash works correctly.
3100 */
3101 /* ARGSUSED */
3102 static uint32_t
3103 policy_hash(int size, const void *start, const void *end)
3104 {
3105 return (0);
3106 }
3107
3108
3109 /*
3110 * Hash function macros for each address type.
3111 *
3112 * The IPV6 hash function assumes that the low order 32-bits of the
3113 * address (typically containing the low order 24 bits of the mac
3114 * address) are reasonably well-distributed. Revisit this if we run
3115 * into trouble from lots of collisions on ::1 addresses and the like
3116 * (seems unlikely).
3117 */
3118 #define IPSEC_IPV4_HASH(a, n) ((a) % (n))
3119 #define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3120
3121 /*
3122 * These two hash functions should produce coordinated values
3123 * but have slightly different roles.
3124 */
3125 static uint32_t
3126 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3127 {
3128 uint32_t valid = selkey->ipsl_valid;
3129 ipsec_stack_t *ipss = ns->netstack_ipsec;
3130
3131 if (!(valid & IPSL_REMOTE_ADDR))
3132 return (IPSEC_SEL_NOHASH);
3133
3134 if (valid & IPSL_IPV4) {
3135 if (selkey->ipsl_remote_pfxlen == 32) {
3136 return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3137 ipss->ipsec_spd_hashsize));
3138 }
3139 }
3140 if (valid & IPSL_IPV6) {
3141 if (selkey->ipsl_remote_pfxlen == 128) {
3142 return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3143 ipss->ipsec_spd_hashsize));
3144 }
3145 }
3146 return (IPSEC_SEL_NOHASH);
3147 }
3148
3149 static uint32_t
3150 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3151 {
3152 if (sel->ips_isv4) {
3153 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3154 root->ipr_nchains));
3155 }
3156 return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3157 }
3158
3159 /*
3160 * Intern actions into the action hash table.
3161 */
3162 ipsec_action_t *
3163 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3164 {
3165 int i;
3166 uint32_t hval;
3167 ipsec_action_t *ap;
3168 ipsec_action_t *prev = NULL;
3169 int32_t overhead, maxovhd = 0;
3170 boolean_t allow_clear = B_FALSE;
3171 boolean_t want_ah = B_FALSE;
3172 boolean_t want_esp = B_FALSE;
3173 boolean_t want_se = B_FALSE;
3174 boolean_t want_unique = B_FALSE;
3175 ipsec_stack_t *ipss = ns->netstack_ipsec;
3176
3177 /*
3178 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3179 * so we can use a non-trivial policy_hash function.
3180 */
3181 for (i = n-1; i >= 0; i--) {
3182 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3183
3184 HASH_LOCK(ipss->ipsec_action_hash, hval);
3185
3186 for (HASH_ITERATE(ap, ipa_hash,
3187 ipss->ipsec_action_hash, hval)) {
3188 if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3189 continue;
3190 if (ap->ipa_next != prev)
3191 continue;
3192 break;
3193 }
3194 if (ap != NULL) {
3195 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3196 prev = ap;
3197 continue;
3198 }
3199 /*
3200 * need to allocate a new one..
3201 */
3202 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3203 if (ap == NULL) {
3204 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3205 if (prev != NULL)
3206 ipsec_action_free(prev);
3207 return (NULL);
3208 }
3209 HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3210
3211 ap->ipa_next = prev;
3212 ap->ipa_act = a[i];
3213
3214 overhead = ipsec_act_ovhd(&a[i]);
3215 if (maxovhd < overhead)
3216 maxovhd = overhead;
3217
3218 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3219 (a[i].ipa_type == IPSEC_ACT_CLEAR))
3220 allow_clear = B_TRUE;
3221 if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3222 const ipsec_prot_t *ipp = &a[i].ipa_apply;
3223
3224 ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3225 want_ah |= ipp->ipp_use_ah;
3226 want_esp |= ipp->ipp_use_esp;
3227 want_se |= ipp->ipp_use_se;
3228 want_unique |= ipp->ipp_use_unique;
3229 }
3230 ap->ipa_allow_clear = allow_clear;
3231 ap->ipa_want_ah = want_ah;
3232 ap->ipa_want_esp = want_esp;
3233 ap->ipa_want_se = want_se;
3234 ap->ipa_want_unique = want_unique;
3235 ap->ipa_refs = 1; /* from the hash table */
3236 ap->ipa_ovhd = maxovhd;
3237 if (prev)
3238 prev->ipa_refs++;
3239 prev = ap;
3240 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3241 }
3242
3243 ap->ipa_refs++; /* caller's reference */
3244
3245 return (ap);
3246 }
3247
3248 /*
3249 * Called when refcount goes to 0, indicating that all references to this
3250 * node are gone.
3251 *
3252 * This does not unchain the action from the hash table.
3253 */
3254 void
3255 ipsec_action_free(ipsec_action_t *ap)
3256 {
3257 for (;;) {
3258 ipsec_action_t *np = ap->ipa_next;
3259 ASSERT(ap->ipa_refs == 0);
3260 ASSERT(ap->ipa_hash.hash_pp == NULL);
3261 kmem_cache_free(ipsec_action_cache, ap);
3262 ap = np;
3263 /* Inlined IPACT_REFRELE -- avoid recursion */
3264 if (ap == NULL)
3265 break;
3266 membar_exit();
3267 if (atomic_dec_32_nv(&(ap)->ipa_refs) != 0)
3268 break;
3269 /* End inlined IPACT_REFRELE */
3270 }
3271 }
3272
3273 /*
3274 * Called when the action hash table goes away.
3275 *
3276 * The actions can be queued on an mblk with ipsec_in or
3277 * ipsec_out, hence the actions might still be around.
3278 * But we decrement ipa_refs here since we no longer have
3279 * a reference to the action from the hash table.
3280 */
3281 static void
3282 ipsec_action_free_table(ipsec_action_t *ap)
3283 {
3284 while (ap != NULL) {
3285 ipsec_action_t *np = ap->ipa_next;
3286
3287 /* FIXME: remove? */
3288 (void) printf("ipsec_action_free_table(%p) ref %d\n",
3289 (void *)ap, ap->ipa_refs);
3290 ASSERT(ap->ipa_refs > 0);
3291 IPACT_REFRELE(ap);
3292 ap = np;
3293 }
3294 }
3295
3296 /*
3297 * Need to walk all stack instances since the reclaim function
3298 * is global for all instances
3299 */
3300 /* ARGSUSED */
3301 static void
3302 ipsec_action_reclaim(void *arg)
3303 {
3304 netstack_handle_t nh;
3305 netstack_t *ns;
3306 ipsec_stack_t *ipss;
3307
3308 netstack_next_init(&nh);
3309 while ((ns = netstack_next(&nh)) != NULL) {
3310 /*
3311 * netstack_next() can return a netstack_t with a NULL
3312 * netstack_ipsec at boot time.
3313 */
3314 if ((ipss = ns->netstack_ipsec) == NULL) {
3315 netstack_rele(ns);
3316 continue;
3317 }
3318 ipsec_action_reclaim_stack(ipss);
3319 netstack_rele(ns);
3320 }
3321 netstack_next_fini(&nh);
3322 }
3323
3324 /*
3325 * Periodically sweep action hash table for actions with refcount==1, and
3326 * nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3327 * because we can't close the race between another thread finding the action
3328 * in the hash table without holding the bucket lock during IPACT_REFRELE.
3329 * Instead, we run this function sporadically to clean up after ourselves;
3330 * we also set it as the "reclaim" function for the action kmem_cache.
3331 *
3332 * Note that it may take several passes of ipsec_action_gc() to free all
3333 * "stale" actions.
3334 */
3335 static void
3336 ipsec_action_reclaim_stack(ipsec_stack_t *ipss)
3337 {
3338 int i;
3339
3340 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3341 ipsec_action_t *ap, *np;
3342
3343 /* skip the lock if nobody home */
3344 if (ipss->ipsec_action_hash[i].hash_head == NULL)
3345 continue;
3346
3347 HASH_LOCK(ipss->ipsec_action_hash, i);
3348 for (ap = ipss->ipsec_action_hash[i].hash_head;
3349 ap != NULL; ap = np) {
3350 ASSERT(ap->ipa_refs > 0);
3351 np = ap->ipa_hash.hash_next;
3352 if (ap->ipa_refs > 1)
3353 continue;
3354 HASH_UNCHAIN(ap, ipa_hash,
3355 ipss->ipsec_action_hash, i);
3356 IPACT_REFRELE(ap);
3357 }
3358 HASH_UNLOCK(ipss->ipsec_action_hash, i);
3359 }
3360 }
3361
3362 /*
3363 * Intern a selector set into the selector set hash table.
3364 * This is simpler than the actions case..
3365 */
3366 static ipsec_sel_t *
3367 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3368 {
3369 ipsec_sel_t *sp;
3370 uint32_t hval, bucket;
3371 ipsec_stack_t *ipss = ns->netstack_ipsec;
3372
3373 /*
3374 * Exactly one AF bit should be set in selkey.
3375 */
3376 ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3377 !(selkey->ipsl_valid & IPSL_IPV6));
3378
3379 hval = selkey_hash(selkey, ns);
3380 /* Set pol_hval to uninitialized until we put it in a polhead. */
3381 selkey->ipsl_sel_hval = hval;
3382
3383 bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3384
3385 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3386 HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3387
3388 for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3389 if (bcmp(&sp->ipsl_key, selkey,
3390 offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3391 break;
3392 }
3393 if (sp != NULL) {
3394 sp->ipsl_refs++;
3395
3396 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3397 return (sp);
3398 }
3399
3400 sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3401 if (sp == NULL) {
3402 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3403 return (NULL);
3404 }
3405
3406 HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3407 sp->ipsl_refs = 2; /* one for hash table, one for caller */
3408 sp->ipsl_key = *selkey;
3409 /* Set to uninitalized and have insertion into polhead fix things. */
3410 if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3411 sp->ipsl_key.ipsl_pol_hval = 0;
3412 else
3413 sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3414
3415 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3416
3417 return (sp);
3418 }
3419
3420 static void
3421 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3422 {
3423 ipsec_sel_t *sp = *spp;
3424 int hval = sp->ipsl_key.ipsl_sel_hval;
3425 ipsec_stack_t *ipss = ns->netstack_ipsec;
3426
3427 *spp = NULL;
3428
3429 if (hval == IPSEC_SEL_NOHASH)
3430 hval = 0;
3431
3432 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3433 HASH_LOCK(ipss->ipsec_sel_hash, hval);
3434 if (--sp->ipsl_refs == 1) {
3435 HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3436 sp->ipsl_refs--;
3437 HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3438 ASSERT(sp->ipsl_refs == 0);
3439 kmem_cache_free(ipsec_sel_cache, sp);
3440 /* Caller unlocks */
3441 return;
3442 }
3443
3444 HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3445 }
3446
3447 /*
3448 * Free a policy rule which we know is no longer being referenced.
3449 */
3450 void
3451 ipsec_policy_free(ipsec_policy_t *ipp)
3452 {
3453 ASSERT(ipp->ipsp_refs == 0);
3454 ASSERT(ipp->ipsp_sel != NULL);
3455 ASSERT(ipp->ipsp_act != NULL);
3456 ASSERT(ipp->ipsp_netstack != NULL);
3457
3458 ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack);
3459 IPACT_REFRELE(ipp->ipsp_act);
3460 kmem_cache_free(ipsec_pol_cache, ipp);
3461 }
3462
3463 /*
3464 * Construction of new policy rules; construct a policy, and add it to
3465 * the appropriate tables.
3466 */
3467 ipsec_policy_t *
3468 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3469 int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3470 {
3471 ipsec_action_t *ap;
3472 ipsec_sel_t *sp;
3473 ipsec_policy_t *ipp;
3474 ipsec_stack_t *ipss = ns->netstack_ipsec;
3475
3476 if (index_ptr == NULL)
3477 index_ptr = &ipss->ipsec_next_policy_index;
3478
3479 ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3480 ap = ipsec_act_find(a, nacts, ns);
3481 sp = ipsec_find_sel(keys, ns);
3482
3483 if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3484 if (ap != NULL) {
3485 IPACT_REFRELE(ap);
3486 }
3487 if (sp != NULL)
3488 ipsec_sel_rel(&sp, ns);
3489 if (ipp != NULL)
3490 kmem_cache_free(ipsec_pol_cache, ipp);
3491 return (NULL);
3492 }
3493
3494 HASH_NULL(ipp, ipsp_hash);
3495
3496 ipp->ipsp_netstack = ns; /* Needed for ipsec_policy_free */
3497 ipp->ipsp_refs = 1; /* caller's reference */
3498 ipp->ipsp_sel = sp;
3499 ipp->ipsp_act = ap;
3500 ipp->ipsp_prio = prio; /* rule priority */
3501 ipp->ipsp_index = *index_ptr;
3502 (*index_ptr)++;
3503
3504 return (ipp);
3505 }
3506
3507 static void
3508 ipsec_update_present_flags(ipsec_stack_t *ipss)
3509 {
3510 boolean_t hashpol;
3511
3512 hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3513
3514 if (hashpol) {
3515 ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3516 ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3517 ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3518 ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3519 return;
3520 }
3521
3522 ipss->ipsec_outbound_v4_policy_present = (NULL !=
3523 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3524 ipr_nonhash[IPSEC_AF_V4]);
3525 ipss->ipsec_outbound_v6_policy_present = (NULL !=
3526 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3527 ipr_nonhash[IPSEC_AF_V6]);
3528 ipss->ipsec_inbound_v4_policy_present = (NULL !=
3529 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3530 ipr_nonhash[IPSEC_AF_V4]);
3531 ipss->ipsec_inbound_v6_policy_present = (NULL !=
3532 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3533 ipr_nonhash[IPSEC_AF_V6]);
3534 }
3535
3536 boolean_t
3537 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3538 netstack_t *ns)
3539 {
3540 ipsec_sel_t *sp;
3541 ipsec_policy_t *ip, *nip, *head;
3542 int af;
3543 ipsec_policy_root_t *pr = &php->iph_root[dir];
3544
3545 sp = ipsec_find_sel(keys, ns);
3546
3547 if (sp == NULL)
3548 return (B_FALSE);
3549
3550 af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3551
3552 rw_enter(&php->iph_lock, RW_WRITER);
3553
3554 if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3555 head = pr->ipr_nonhash[af];
3556 } else {
3557 head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3558 }
3559
3560 for (ip = head; ip != NULL; ip = nip) {
3561 nip = ip->ipsp_hash.hash_next;
3562 if (ip->ipsp_sel != sp) {
3563 continue;
3564 }
3565
3566 IPPOL_UNCHAIN(php, ip);
3567
3568 php->iph_gen++;
3569 ipsec_update_present_flags(ns->netstack_ipsec);
3570
3571 rw_exit(&php->iph_lock);
3572
3573 ipsec_sel_rel(&sp, ns);
3574
3575 return (B_TRUE);
3576 }
3577
3578 rw_exit(&php->iph_lock);
3579 ipsec_sel_rel(&sp, ns);
3580 return (B_FALSE);
3581 }
3582
3583 int
3584 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3585 netstack_t *ns)
3586 {
3587 boolean_t found = B_FALSE;
3588 ipsec_policy_t ipkey;
3589 ipsec_policy_t *ip;
3590 avl_index_t where;
3591
3592 bzero(&ipkey, sizeof (ipkey));
3593 ipkey.ipsp_index = policy_index;
3594
3595 rw_enter(&php->iph_lock, RW_WRITER);
3596
3597 /*
3598 * We could be cleverer here about the walk.
3599 * but well, (k+1)*log(N) will do for now (k==number of matches,
3600 * N==number of table entries
3601 */
3602 for (;;) {
3603 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3604 (void *)&ipkey, &where);
3605 ASSERT(ip == NULL);
3606
3607 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3608
3609 if (ip == NULL)
3610 break;
3611
3612 if (ip->ipsp_index != policy_index) {
3613 ASSERT(ip->ipsp_index > policy_index);
3614 break;
3615 }
3616
3617 IPPOL_UNCHAIN(php, ip);
3618 found = B_TRUE;
3619 }
3620
3621 if (found) {
3622 php->iph_gen++;
3623 ipsec_update_present_flags(ns->netstack_ipsec);
3624 }
3625
3626 rw_exit(&php->iph_lock);
3627
3628 return (found ? 0 : ENOENT);
3629 }
3630
3631 /*
3632 * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3633 * into the correct policy ruleset. As a side-effect, it sets the hash
3634 * entries on "ipp"'s ipsp_pol_hval.
3635 *
3636 * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3637 * duplicate policy exists with exactly the same selectors), or an icmp
3638 * rule exists with a different encryption/authentication action.
3639 */
3640 boolean_t
3641 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3642 {
3643 ipsec_policy_root_t *pr = &php->iph_root[direction];
3644 int af = -1;
3645 ipsec_policy_t *p2, *head;
3646 uint8_t check_proto;
3647 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3648 uint32_t valid = selkey->ipsl_valid;
3649
3650 if (valid & IPSL_IPV6) {
3651 ASSERT(!(valid & IPSL_IPV4));
3652 af = IPSEC_AF_V6;
3653 check_proto = IPPROTO_ICMPV6;
3654 } else {
3655 ASSERT(valid & IPSL_IPV4);
3656 af = IPSEC_AF_V4;
3657 check_proto = IPPROTO_ICMP;
3658 }
3659
3660 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3661
3662 /*
3663 * Double-check that we don't have any duplicate selectors here.
3664 * Because selectors are interned below, we need only compare pointers
3665 * for equality.
3666 */
3667 if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3668 head = pr->ipr_nonhash[af];
3669 } else {
3670 selkey->ipsl_pol_hval =
3671 (selkey->ipsl_valid & IPSL_IPV4) ?
3672 IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3673 pr->ipr_nchains) :
3674 IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3675 pr->ipr_nchains);
3676
3677 head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3678 }
3679
3680 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3681 if (p2->ipsp_sel == ipp->ipsp_sel)
3682 return (B_FALSE);
3683 }
3684
3685 /*
3686 * If it's ICMP and not a drop or pass rule, run through the ICMP
3687 * rules and make sure the action is either new or the same as any
3688 * other actions. We don't have to check the full chain because
3689 * discard and bypass will override all other actions
3690 */
3691
3692 if (valid & IPSL_PROTOCOL &&
3693 selkey->ipsl_proto == check_proto &&
3694 (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3695
3696 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3697
3698 if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3699 p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3700 (p2->ipsp_act->ipa_act.ipa_type ==
3701 IPSEC_ACT_APPLY)) {
3702 return (ipsec_compare_action(p2, ipp));
3703 }
3704 }
3705 }
3706
3707 return (B_TRUE);
3708 }
3709
3710 /*
3711 * compare the action chains of two policies for equality
3712 * B_TRUE -> effective equality
3713 */
3714
3715 static boolean_t
3716 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3717 {
3718
3719 ipsec_action_t *act1, *act2;
3720
3721 /* We have a valid rule. Let's compare the actions */
3722 if (p1->ipsp_act == p2->ipsp_act) {
3723 /* same action. We are good */
3724 return (B_TRUE);
3725 }
3726
3727 /* we have to walk the chain */
3728
3729 act1 = p1->ipsp_act;
3730 act2 = p2->ipsp_act;
3731
3732 while (act1 != NULL && act2 != NULL) {
3733
3734 /* otherwise, Are we close enough? */
3735 if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3736 act1->ipa_want_ah != act2->ipa_want_ah ||
3737 act1->ipa_want_esp != act2->ipa_want_esp ||
3738 act1->ipa_want_se != act2->ipa_want_se) {
3739 /* Nope, we aren't */
3740 return (B_FALSE);
3741 }
3742
3743 if (act1->ipa_want_ah) {
3744 if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3745 act2->ipa_act.ipa_apply.ipp_auth_alg) {
3746 return (B_FALSE);
3747 }
3748
3749 if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3750 act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3751 act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3752 act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3753 return (B_FALSE);
3754 }
3755 }
3756
3757 if (act1->ipa_want_esp) {
3758 if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3759 act2->ipa_act.ipa_apply.ipp_use_esp ||
3760 act1->ipa_act.ipa_apply.ipp_use_espa !=
3761 act2->ipa_act.ipa_apply.ipp_use_espa) {
3762 return (B_FALSE);
3763 }
3764
3765 if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3766 if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3767 act2->ipa_act.ipa_apply.ipp_encr_alg) {
3768 return (B_FALSE);
3769 }
3770
3771 if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3772 act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3773 act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3774 act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3775 return (B_FALSE);
3776 }
3777 }
3778
3779 if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3780 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3781 act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3782 return (B_FALSE);
3783 }
3784
3785 if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3786 act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3787 act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3788 act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3789 return (B_FALSE);
3790 }
3791 }
3792
3793 }
3794
3795 act1 = act1->ipa_next;
3796 act2 = act2->ipa_next;
3797 }
3798
3799 if (act1 != NULL || act2 != NULL) {
3800 return (B_FALSE);
3801 }
3802
3803 return (B_TRUE);
3804 }
3805
3806
3807 /*
3808 * Given a constructed ipsec_policy_t policy rule, enter it into
3809 * the correct policy ruleset.
3810 *
3811 * ipsec_check_policy() is assumed to have succeeded first (to check for
3812 * duplicates).
3813 */
3814 void
3815 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3816 netstack_t *ns)
3817 {
3818 ipsec_policy_root_t *pr = &php->iph_root[direction];
3819 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3820 uint32_t valid = selkey->ipsl_valid;
3821 uint32_t hval = selkey->ipsl_pol_hval;
3822 int af = -1;
3823
3824 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3825
3826 if (valid & IPSL_IPV6) {
3827 ASSERT(!(valid & IPSL_IPV4));
3828 af = IPSEC_AF_V6;
3829 } else {
3830 ASSERT(valid & IPSL_IPV4);
3831 af = IPSEC_AF_V4;
3832 }
3833
3834 php->iph_gen++;
3835
3836 if (hval == IPSEC_SEL_NOHASH) {
3837 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3838 } else {
3839 HASH_LOCK(pr->ipr_hash, hval);
3840 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3841 HASH_UNLOCK(pr->ipr_hash, hval);
3842 }
3843
3844 ipsec_insert_always(&php->iph_rulebyid, ipp);
3845
3846 ipsec_update_present_flags(ns->netstack_ipsec);
3847 }
3848
3849 static void
3850 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3851 {
3852 ipsec_policy_t *ip, *nip;
3853 int af, chain, nchain;
3854
3855 for (af = 0; af < IPSEC_NAF; af++) {
3856 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3857 nip = ip->ipsp_hash.hash_next;
3858 IPPOL_UNCHAIN(php, ip);
3859 }
3860 ipr->ipr_nonhash[af] = NULL;
3861 }
3862 nchain = ipr->ipr_nchains;
3863
3864 for (chain = 0; chain < nchain; chain++) {
3865 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3866 ip = nip) {
3867 nip = ip->ipsp_hash.hash_next;
3868 IPPOL_UNCHAIN(php, ip);
3869 }
3870 ipr->ipr_hash[chain].hash_head = NULL;
3871 }
3872 }
3873
3874 /*
3875 * Create and insert inbound or outbound policy associated with actp for the
3876 * address family fam into the policy head ph. Returns B_TRUE if policy was
3877 * inserted, and B_FALSE otherwise.
3878 */
3879 boolean_t
3880 ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact,
3881 int fam, int ptype, netstack_t *ns)
3882 {
3883 ipsec_selkey_t sel;
3884 ipsec_policy_t *pol;
3885 ipsec_policy_root_t *pr;
3886
3887 bzero(&sel, sizeof (sel));
3888 sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6);
3889 if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET,
3890 NULL, ns)) != NULL) {
3891 pr = &ph->iph_root[ptype];
3892 HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]);
3893 ipsec_insert_always(&ph->iph_rulebyid, pol);
3894 }
3895 return (pol != NULL);
3896 }
3897
3898 void
3899 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3900 {
3901 int dir;
3902
3903 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3904
3905 for (dir = 0; dir < IPSEC_NTYPES; dir++)
3906 ipsec_ipr_flush(php, &php->iph_root[dir]);
3907
3908 php->iph_gen++;
3909 ipsec_update_present_flags(ns->netstack_ipsec);
3910 }
3911
3912 void
3913 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3914 {
3915 int dir;
3916
3917 ASSERT(php->iph_refs == 0);
3918
3919 rw_enter(&php->iph_lock, RW_WRITER);
3920 ipsec_polhead_flush(php, ns);
3921 rw_exit(&php->iph_lock);
3922 rw_destroy(&php->iph_lock);
3923 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3924 ipsec_policy_root_t *ipr = &php->iph_root[dir];
3925 int chain;
3926
3927 for (chain = 0; chain < ipr->ipr_nchains; chain++)
3928 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3929
3930 }
3931 ipsec_polhead_free_table(php);
3932 kmem_free(php, sizeof (*php));
3933 }
3934
3935 static void
3936 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3937 {
3938 int af;
3939
3940 ipr->ipr_nchains = 0;
3941 ipr->ipr_hash = NULL;
3942
3943 for (af = 0; af < IPSEC_NAF; af++) {
3944 ipr->ipr_nonhash[af] = NULL;
3945 }
3946 }
3947
3948 ipsec_policy_head_t *
3949 ipsec_polhead_create(void)
3950 {
3951 ipsec_policy_head_t *php;
3952
3953 php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3954 if (php == NULL)
3955 return (php);
3956
3957 rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3958 php->iph_refs = 1;
3959 php->iph_gen = 0;
3960
3961 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3962 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3963
3964 avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3965 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3966
3967 return (php);
3968 }
3969
3970 /*
3971 * Clone the policy head into a new polhead; release one reference to the
3972 * old one and return the only reference to the new one.
3973 * If the old one had a refcount of 1, just return it.
3974 */
3975 ipsec_policy_head_t *
3976 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3977 {
3978 ipsec_policy_head_t *nphp;
3979
3980 if (php == NULL)
3981 return (ipsec_polhead_create());
3982 else if (php->iph_refs == 1)
3983 return (php);
3984
3985 nphp = ipsec_polhead_create();
3986 if (nphp == NULL)
3987 return (NULL);
3988
3989 if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3990 ipsec_polhead_free(nphp, ns);
3991 return (NULL);
3992 }
3993 IPPH_REFRELE(php, ns);
3994 return (nphp);
3995 }
3996
3997 /*
3998 * When sending a response to a ICMP request or generating a RST
3999 * in the TCP case, the outbound packets need to go at the same level
4000 * of protection as the incoming ones i.e we associate our outbound
4001 * policy with how the packet came in. We call this after we have
4002 * accepted the incoming packet which may or may not have been in
4003 * clear and hence we are sending the reply back with the policy
4004 * matching the incoming datagram's policy.
4005 *
4006 * NOTE : This technology serves two purposes :
4007 *
4008 * 1) If we have multiple outbound policies, we send out a reply
4009 * matching with how it came in rather than matching the outbound
4010 * policy.
4011 *
4012 * 2) For assymetric policies, we want to make sure that incoming
4013 * and outgoing has the same level of protection. Assymetric
4014 * policies exist only with global policy where we may not have
4015 * both outbound and inbound at the same time.
4016 *
4017 * NOTE2: This function is called by cleartext cases, so it needs to be
4018 * in IP proper.
4019 *
4020 * Note: the caller has moved other parts of ira into ixa already.
4021 */
4022 boolean_t
4023 ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp,
4024 ipha_t *ipha, ip6_t *ip6h)
4025 {
4026 ipsec_selector_t sel;
4027 ipsec_action_t *reflect_action = NULL;
4028 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
4029
4030 bzero((void*)&sel, sizeof (sel));
4031
4032 if (ira->ira_ipsec_action != NULL) {
4033 /* transfer reference.. */
4034 reflect_action = ira->ira_ipsec_action;
4035 ira->ira_ipsec_action = NULL;
4036 } else if (!(ira->ira_flags & IRAF_LOOPBACK))
4037 reflect_action = ipsec_in_to_out_action(ira);
4038
4039 /*
4040 * The caller is going to send the datagram out which might
4041 * go on the wire or delivered locally through ire_send_local.
4042 *
4043 * 1) If it goes out on the wire, new associations will be
4044 * obtained.
4045 * 2) If it is delivered locally, ire_send_local will convert
4046 * this ip_xmit_attr_t back to a ip_recv_attr_t looking at the
4047 * requests.
4048 */
4049 ixa->ixa_ipsec_action = reflect_action;
4050
4051 if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0,
4052 ns->netstack_ipsec)) {
4053 /* Note: data_mp already consumed and ip_drop_packet done */
4054 return (B_FALSE);
4055 }
4056 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4057 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4058 ixa->ixa_ipsec_proto = sel.ips_protocol;
4059 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4060 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4061
4062 /*
4063 * Don't use global policy for this, as we want
4064 * to use the same protection that was applied to the inbound packet.
4065 * Thus we set IXAF_NO_IPSEC is it arrived in the clear to make
4066 * it be sent in the clear.
4067 */
4068 if (ira->ira_flags & IRAF_IPSEC_SECURE)
4069 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4070 else
4071 ixa->ixa_flags |= IXAF_NO_IPSEC;
4072
4073 return (B_TRUE);
4074 }
4075
4076 void
4077 ipsec_out_release_refs(ip_xmit_attr_t *ixa)
4078 {
4079 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4080 return;
4081
4082 if (ixa->ixa_ipsec_ah_sa != NULL) {
4083 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
4084 ixa->ixa_ipsec_ah_sa = NULL;
4085 }
4086 if (ixa->ixa_ipsec_esp_sa != NULL) {
4087 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
4088 ixa->ixa_ipsec_esp_sa = NULL;
4089 }
4090 if (ixa->ixa_ipsec_policy != NULL) {
4091 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4092 ixa->ixa_ipsec_policy = NULL;
4093 }
4094 if (ixa->ixa_ipsec_action != NULL) {
4095 IPACT_REFRELE(ixa->ixa_ipsec_action);
4096 ixa->ixa_ipsec_action = NULL;
4097 }
4098 if (ixa->ixa_ipsec_latch) {
4099 IPLATCH_REFRELE(ixa->ixa_ipsec_latch);
4100 ixa->ixa_ipsec_latch = NULL;
4101 }
4102 /* Clear the soft references to the SAs */
4103 ixa->ixa_ipsec_ref[0].ipsr_sa = NULL;
4104 ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL;
4105 ixa->ixa_ipsec_ref[0].ipsr_gen = 0;
4106 ixa->ixa_ipsec_ref[1].ipsr_sa = NULL;
4107 ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL;
4108 ixa->ixa_ipsec_ref[1].ipsr_gen = 0;
4109 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4110 }
4111
4112 void
4113 ipsec_in_release_refs(ip_recv_attr_t *ira)
4114 {
4115 if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
4116 return;
4117
4118 if (ira->ira_ipsec_ah_sa != NULL) {
4119 IPSA_REFRELE(ira->ira_ipsec_ah_sa);
4120 ira->ira_ipsec_ah_sa = NULL;
4121 }
4122 if (ira->ira_ipsec_esp_sa != NULL) {
4123 IPSA_REFRELE(ira->ira_ipsec_esp_sa);
4124 ira->ira_ipsec_esp_sa = NULL;
4125 }
4126 ira->ira_flags &= ~IRAF_IPSEC_SECURE;
4127 }
4128
4129 /*
4130 * This is called from ire_send_local when a packet
4131 * is looped back. We setup the ip_recv_attr_t "borrowing" the references
4132 * held by the callers.
4133 * Note that we don't do any IPsec but we carry the actions and IPSEC flags
4134 * across so that the fanout policy checks see that IPsec was applied.
4135 *
4136 * The caller should do ipsec_in_release_refs() on the ira by calling
4137 * ira_cleanup().
4138 */
4139 void
4140 ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira)
4141 {
4142 ipsec_policy_t *pol;
4143 ipsec_action_t *act;
4144
4145 /* Non-IPsec operations */
4146 ira->ira_free_flags = 0;
4147 ira->ira_zoneid = ixa->ixa_zoneid;
4148 ira->ira_cred = ixa->ixa_cred;
4149 ira->ira_cpid = ixa->ixa_cpid;
4150 ira->ira_tsl = ixa->ixa_tsl;
4151 ira->ira_ill = ira->ira_rill = ill;
4152 ira->ira_flags = ixa->ixa_flags & IAF_MASK;
4153 ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid;
4154 ira->ira_pktlen = ixa->ixa_pktlen;
4155 ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length;
4156 ira->ira_protocol = ixa->ixa_protocol;
4157 ira->ira_mhip = NULL;
4158
4159 ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
4160
4161 ira->ira_sqp = ixa->ixa_sqp;
4162 ira->ira_ring = NULL;
4163
4164 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
4165 ira->ira_rifindex = ira->ira_ruifindex;
4166
4167 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4168 return;
4169
4170 ira->ira_flags |= IRAF_IPSEC_SECURE;
4171
4172 ira->ira_ipsec_ah_sa = NULL;
4173 ira->ira_ipsec_esp_sa = NULL;
4174
4175 act = ixa->ixa_ipsec_action;
4176 if (act == NULL) {
4177 pol = ixa->ixa_ipsec_policy;
4178 if (pol != NULL) {
4179 act = pol->ipsp_act;
4180 IPACT_REFHOLD(act);
4181 }
4182 }
4183 ixa->ixa_ipsec_action = NULL;
4184 ira->ira_ipsec_action = act;
4185 }
4186
4187 /*
4188 * Consults global policy and per-socket policy to see whether this datagram
4189 * should go out secure. If so it updates the ip_xmit_attr_t
4190 * Should not be used when connecting, since then we want to latch the policy.
4191 *
4192 * If connp is NULL we just look at the global policy.
4193 *
4194 * Returns NULL if the packet was dropped, in which case the MIB has
4195 * been incremented and ip_drop_packet done.
4196 */
4197 mblk_t *
4198 ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4199 const conn_t *connp, ip_xmit_attr_t *ixa)
4200 {
4201 ipsec_selector_t sel;
4202 boolean_t policy_present;
4203 ip_stack_t *ipst = ixa->ixa_ipst;
4204 netstack_t *ns = ipst->ips_netstack;
4205 ipsec_stack_t *ipss = ns->netstack_ipsec;
4206 ipsec_policy_t *p;
4207
4208 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4209 ASSERT((ipha != NULL && ip6h == NULL) ||
4210 (ip6h != NULL && ipha == NULL));
4211
4212 if (ipha != NULL)
4213 policy_present = ipss->ipsec_outbound_v4_policy_present;
4214 else
4215 policy_present = ipss->ipsec_outbound_v6_policy_present;
4216
4217 if (!policy_present && (connp == NULL || connp->conn_policy == NULL))
4218 return (mp);
4219
4220 bzero((void*)&sel, sizeof (sel));
4221
4222 if (ipha != NULL) {
4223 sel.ips_local_addr_v4 = ipha->ipha_src;
4224 sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4225 sel.ips_isv4 = B_TRUE;
4226 } else {
4227 sel.ips_isv4 = B_FALSE;
4228 sel.ips_local_addr_v6 = ip6h->ip6_src;
4229 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL);
4230 }
4231 sel.ips_protocol = ixa->ixa_protocol;
4232
4233 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4234 if (ipha != NULL) {
4235 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4236 } else {
4237 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4238 }
4239 /* Note: mp already consumed and ip_drop_packet done */
4240 return (NULL);
4241 }
4242
4243 ASSERT(ixa->ixa_ipsec_policy == NULL);
4244 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4245 ixa->ixa_ipsec_policy = p;
4246 if (p != NULL) {
4247 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4248 if (connp == NULL || connp->conn_policy == NULL)
4249 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4250 } else {
4251 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4252 }
4253
4254 /*
4255 * Copy the right port information.
4256 */
4257 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4258 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4259 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4260 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4261 ixa->ixa_ipsec_proto = sel.ips_protocol;
4262 return (mp);
4263 }
4264
4265 /*
4266 * When appropriate, this function caches inbound and outbound policy
4267 * for this connection. The outbound policy is stored in conn_ixa.
4268 * Note that it can not be used for SCTP since conn_faddr isn't set for SCTP.
4269 *
4270 * XXX need to work out more details about per-interface policy and
4271 * caching here!
4272 *
4273 * XXX may want to split inbound and outbound caching for ill..
4274 */
4275 int
4276 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4277 {
4278 boolean_t global_policy_present;
4279 netstack_t *ns = connp->conn_netstack;
4280 ipsec_stack_t *ipss = ns->netstack_ipsec;
4281
4282 connp->conn_ixa->ixa_ipsec_policy_gen =
4283 ipss->ipsec_system_policy.iph_gen;
4284 /*
4285 * There is no policy latching for ICMP sockets because we can't
4286 * decide on which policy to use until we see the packet and get
4287 * type/code selectors.
4288 */
4289 if (connp->conn_proto == IPPROTO_ICMP ||
4290 connp->conn_proto == IPPROTO_ICMPV6) {
4291 connp->conn_in_enforce_policy =
4292 connp->conn_out_enforce_policy = B_TRUE;
4293 if (connp->conn_latch != NULL) {
4294 IPLATCH_REFRELE(connp->conn_latch);
4295 connp->conn_latch = NULL;
4296 }
4297 if (connp->conn_latch_in_policy != NULL) {
4298 IPPOL_REFRELE(connp->conn_latch_in_policy);
4299 connp->conn_latch_in_policy = NULL;
4300 }
4301 if (connp->conn_latch_in_action != NULL) {
4302 IPACT_REFRELE(connp->conn_latch_in_action);
4303 connp->conn_latch_in_action = NULL;
4304 }
4305 if (connp->conn_ixa->ixa_ipsec_policy != NULL) {
4306 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4307 connp->conn_ixa->ixa_ipsec_policy = NULL;
4308 }
4309 if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4310 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4311 connp->conn_ixa->ixa_ipsec_action = NULL;
4312 }
4313 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4314 return (0);
4315 }
4316
4317 global_policy_present = isv4 ?
4318 (ipss->ipsec_outbound_v4_policy_present ||
4319 ipss->ipsec_inbound_v4_policy_present) :
4320 (ipss->ipsec_outbound_v6_policy_present ||
4321 ipss->ipsec_inbound_v6_policy_present);
4322
4323 if ((connp->conn_policy != NULL) || global_policy_present) {
4324 ipsec_selector_t sel;
4325 ipsec_policy_t *p;
4326
4327 if (connp->conn_latch == NULL &&
4328 (connp->conn_latch = iplatch_create()) == NULL) {
4329 return (ENOMEM);
4330 }
4331
4332 bzero((void*)&sel, sizeof (sel));
4333
4334 sel.ips_protocol = connp->conn_proto;
4335 sel.ips_local_port = connp->conn_lport;
4336 sel.ips_remote_port = connp->conn_fport;
4337 sel.ips_is_icmp_inv_acq = 0;
4338 sel.ips_isv4 = isv4;
4339 if (isv4) {
4340 sel.ips_local_addr_v4 = connp->conn_laddr_v4;
4341 sel.ips_remote_addr_v4 = connp->conn_faddr_v4;
4342 } else {
4343 sel.ips_local_addr_v6 = connp->conn_laddr_v6;
4344 sel.ips_remote_addr_v6 = connp->conn_faddr_v6;
4345 }
4346
4347 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
4348 if (connp->conn_latch_in_policy != NULL)
4349 IPPOL_REFRELE(connp->conn_latch_in_policy);
4350 connp->conn_latch_in_policy = p;
4351 connp->conn_in_enforce_policy = (p != NULL);
4352
4353 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4354 if (connp->conn_ixa->ixa_ipsec_policy != NULL)
4355 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4356 connp->conn_ixa->ixa_ipsec_policy = p;
4357 connp->conn_out_enforce_policy = (p != NULL);
4358 if (p != NULL) {
4359 connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4360 if (connp->conn_policy == NULL) {
4361 connp->conn_ixa->ixa_flags |=
4362 IXAF_IPSEC_GLOBAL_POLICY;
4363 }
4364 } else {
4365 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4366 }
4367 /* Clear the latched actions too, in case we're recaching. */
4368 if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4369 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4370 connp->conn_ixa->ixa_ipsec_action = NULL;
4371 }
4372 if (connp->conn_latch_in_action != NULL) {
4373 IPACT_REFRELE(connp->conn_latch_in_action);
4374 connp->conn_latch_in_action = NULL;
4375 }
4376 connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port;
4377 connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4378 connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4379 connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4380 connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol;
4381 } else {
4382 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4383 }
4384
4385 /*
4386 * We may or may not have policy for this endpoint. We still set
4387 * conn_policy_cached so that inbound datagrams don't have to look
4388 * at global policy as policy is considered latched for these
4389 * endpoints. We should not set conn_policy_cached until the conn
4390 * reflects the actual policy. If we *set* this before inheriting
4391 * the policy there is a window where the check
4392 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4393 * on the conn (because we have not yet copied the policy on to
4394 * conn and hence not set conn_in_enforce_policy) nor with the
4395 * global policy (because conn_policy_cached is already set).
4396 */
4397 connp->conn_policy_cached = B_TRUE;
4398 return (0);
4399 }
4400
4401 /*
4402 * When appropriate, this function caches outbound policy for faddr/fport.
4403 * It is used when we are not connected i.e., when we can not latch the
4404 * policy.
4405 */
4406 void
4407 ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src,
4408 const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa)
4409 {
4410 boolean_t isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0;
4411 boolean_t global_policy_present;
4412 netstack_t *ns = connp->conn_netstack;
4413 ipsec_stack_t *ipss = ns->netstack_ipsec;
4414
4415 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4416
4417 /*
4418 * There is no policy caching for ICMP sockets because we can't
4419 * decide on which policy to use until we see the packet and get
4420 * type/code selectors.
4421 */
4422 if (connp->conn_proto == IPPROTO_ICMP ||
4423 connp->conn_proto == IPPROTO_ICMPV6) {
4424 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4425 if (ixa->ixa_ipsec_policy != NULL) {
4426 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4427 ixa->ixa_ipsec_policy = NULL;
4428 }
4429 if (ixa->ixa_ipsec_action != NULL) {
4430 IPACT_REFRELE(ixa->ixa_ipsec_action);
4431 ixa->ixa_ipsec_action = NULL;
4432 }
4433 return;
4434 }
4435
4436 global_policy_present = isv4 ?
4437 (ipss->ipsec_outbound_v4_policy_present ||
4438 ipss->ipsec_inbound_v4_policy_present) :
4439 (ipss->ipsec_outbound_v6_policy_present ||
4440 ipss->ipsec_inbound_v6_policy_present);
4441
4442 if ((connp->conn_policy != NULL) || global_policy_present) {
4443 ipsec_selector_t sel;
4444 ipsec_policy_t *p;
4445
4446 bzero((void*)&sel, sizeof (sel));
4447
4448 sel.ips_protocol = connp->conn_proto;
4449 sel.ips_local_port = connp->conn_lport;
4450 sel.ips_remote_port = dstport;
4451 sel.ips_is_icmp_inv_acq = 0;
4452 sel.ips_isv4 = isv4;
4453 if (isv4) {
4454 IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4);
4455 IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4);
4456 } else {
4457 sel.ips_local_addr_v6 = *v6src;
4458 sel.ips_remote_addr_v6 = *v6dst;
4459 }
4460
4461 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4462 if (ixa->ixa_ipsec_policy != NULL)
4463 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4464 ixa->ixa_ipsec_policy = p;
4465 if (p != NULL) {
4466 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4467 if (connp->conn_policy == NULL)
4468 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4469 } else {
4470 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4471 }
4472 /* Clear the latched actions too, in case we're recaching. */
4473 if (ixa->ixa_ipsec_action != NULL) {
4474 IPACT_REFRELE(ixa->ixa_ipsec_action);
4475 ixa->ixa_ipsec_action = NULL;
4476 }
4477
4478 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4479 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4480 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4481 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4482 ixa->ixa_ipsec_proto = sel.ips_protocol;
4483 } else {
4484 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4485 if (ixa->ixa_ipsec_policy != NULL) {
4486 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4487 ixa->ixa_ipsec_policy = NULL;
4488 }
4489 if (ixa->ixa_ipsec_action != NULL) {
4490 IPACT_REFRELE(ixa->ixa_ipsec_action);
4491 ixa->ixa_ipsec_action = NULL;
4492 }
4493 }
4494 }
4495
4496 /*
4497 * Returns B_FALSE if the policy has gone stale.
4498 */
4499 boolean_t
4500 ipsec_outbound_policy_current(ip_xmit_attr_t *ixa)
4501 {
4502 ipsec_stack_t *ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec;
4503
4504 if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY))
4505 return (B_TRUE);
4506
4507 return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen);
4508 }
4509
4510 void
4511 iplatch_free(ipsec_latch_t *ipl)
4512 {
4513 if (ipl->ipl_local_cid != NULL)
4514 IPSID_REFRELE(ipl->ipl_local_cid);
4515 if (ipl->ipl_remote_cid != NULL)
4516 IPSID_REFRELE(ipl->ipl_remote_cid);
4517 mutex_destroy(&ipl->ipl_lock);
4518 kmem_free(ipl, sizeof (*ipl));
4519 }
4520
4521 ipsec_latch_t *
4522 iplatch_create()
4523 {
4524 ipsec_latch_t *ipl = kmem_zalloc(sizeof (*ipl), KM_NOSLEEP);
4525 if (ipl == NULL)
4526 return (ipl);
4527 mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4528 ipl->ipl_refcnt = 1;
4529 return (ipl);
4530 }
4531
4532 /*
4533 * Hash function for ID hash table.
4534 */
4535 static uint32_t
4536 ipsid_hash(int idtype, char *idstring)
4537 {
4538 uint32_t hval = idtype;
4539 unsigned char c;
4540
4541 while ((c = *idstring++) != 0) {
4542 hval = (hval << 4) | (hval >> 28);
4543 hval ^= c;
4544 }
4545 hval = hval ^ (hval >> 16);
4546 return (hval & (IPSID_HASHSIZE-1));
4547 }
4548
4549 /*
4550 * Look up identity string in hash table. Return identity object
4551 * corresponding to the name -- either preexisting, or newly allocated.
4552 *
4553 * Return NULL if we need to allocate a new one and can't get memory.
4554 */
4555 ipsid_t *
4556 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4557 {
4558 ipsid_t *retval;
4559 char *nstr;
4560 int idlen = strlen(idstring) + 1;
4561 ipsec_stack_t *ipss = ns->netstack_ipsec;
4562 ipsif_t *bucket;
4563
4564 bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4565
4566 mutex_enter(&bucket->ipsif_lock);
4567
4568 for (retval = bucket->ipsif_head; retval != NULL;
4569 retval = retval->ipsid_next) {
4570 if (idtype != retval->ipsid_type)
4571 continue;
4572 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4573 continue;
4574
4575 IPSID_REFHOLD(retval);
4576 mutex_exit(&bucket->ipsif_lock);
4577 return (retval);
4578 }
4579
4580 retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4581 if (!retval) {
4582 mutex_exit(&bucket->ipsif_lock);
4583 return (NULL);
4584 }
4585
4586 nstr = kmem_alloc(idlen, KM_NOSLEEP);
4587 if (!nstr) {
4588 mutex_exit(&bucket->ipsif_lock);
4589 kmem_free(retval, sizeof (*retval));
4590 return (NULL);
4591 }
4592
4593 retval->ipsid_refcnt = 1;
4594 retval->ipsid_next = bucket->ipsif_head;
4595 if (retval->ipsid_next != NULL)
4596 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4597 retval->ipsid_ptpn = &bucket->ipsif_head;
4598 retval->ipsid_type = idtype;
4599 retval->ipsid_cid = nstr;
4600 bucket->ipsif_head = retval;
4601 bcopy(idstring, nstr, idlen);
4602 mutex_exit(&bucket->ipsif_lock);
4603
4604 return (retval);
4605 }
4606
4607 /*
4608 * Garbage collect the identity hash table.
4609 */
4610 void
4611 ipsid_gc(netstack_t *ns)
4612 {
4613 int i, len;
4614 ipsid_t *id, *nid;
4615 ipsif_t *bucket;
4616 ipsec_stack_t *ipss = ns->netstack_ipsec;
4617
4618 for (i = 0; i < IPSID_HASHSIZE; i++) {
4619 bucket = &ipss->ipsec_ipsid_buckets[i];
4620 mutex_enter(&bucket->ipsif_lock);
4621 for (id = bucket->ipsif_head; id != NULL; id = nid) {
4622 nid = id->ipsid_next;
4623 if (id->ipsid_refcnt == 0) {
4624 *id->ipsid_ptpn = nid;
4625 if (nid != NULL)
4626 nid->ipsid_ptpn = id->ipsid_ptpn;
4627 len = strlen(id->ipsid_cid) + 1;
4628 kmem_free(id->ipsid_cid, len);
4629 kmem_free(id, sizeof (*id));
4630 }
4631 }
4632 mutex_exit(&bucket->ipsif_lock);
4633 }
4634 }
4635
4636 /*
4637 * Return true if two identities are the same.
4638 */
4639 boolean_t
4640 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4641 {
4642 if (id1 == id2)
4643 return (B_TRUE);
4644 #ifdef DEBUG
4645 if ((id1 == NULL) || (id2 == NULL))
4646 return (B_FALSE);
4647 /*
4648 * test that we're interning id's correctly..
4649 */
4650 ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4651 (id1->ipsid_type != id2->ipsid_type));
4652 #endif
4653 return (B_FALSE);
4654 }
4655
4656 /*
4657 * Initialize identity table; called during module initialization.
4658 */
4659 static void
4660 ipsid_init(netstack_t *ns)
4661 {
4662 ipsif_t *bucket;
4663 int i;
4664 ipsec_stack_t *ipss = ns->netstack_ipsec;
4665
4666 for (i = 0; i < IPSID_HASHSIZE; i++) {
4667 bucket = &ipss->ipsec_ipsid_buckets[i];
4668 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4669 }
4670 }
4671
4672 /*
4673 * Free identity table (preparatory to module unload)
4674 */
4675 static void
4676 ipsid_fini(netstack_t *ns)
4677 {
4678 ipsif_t *bucket;
4679 int i;
4680 ipsec_stack_t *ipss = ns->netstack_ipsec;
4681
4682 for (i = 0; i < IPSID_HASHSIZE; i++) {
4683 bucket = &ipss->ipsec_ipsid_buckets[i];
4684 ASSERT(bucket->ipsif_head == NULL);
4685 mutex_destroy(&bucket->ipsif_lock);
4686 }
4687 }
4688
4689 /*
4690 * Update the minimum and maximum supported key sizes for the
4691 * specified algorithm. Must be called while holding the algorithms lock.
4692 */
4693 void
4694 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
4695 netstack_t *ns)
4696 {
4697 size_t crypto_min = (size_t)-1, crypto_max = 0;
4698 size_t cur_crypto_min, cur_crypto_max;
4699 boolean_t is_valid;
4700 crypto_mechanism_info_t *mech_infos;
4701 uint_t nmech_infos;
4702 int crypto_rc, i;
4703 crypto_mech_usage_t mask;
4704 ipsec_stack_t *ipss = ns->netstack_ipsec;
4705
4706 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
4707
4708 /*
4709 * Compute the min, max, and default key sizes (in number of
4710 * increments to the default key size in bits) as defined
4711 * by the algorithm mappings. This range of key sizes is used
4712 * for policy related operations. The effective key sizes
4713 * supported by the framework could be more limited than
4714 * those defined for an algorithm.
4715 */
4716 alg->alg_default_bits = alg->alg_key_sizes[0];
4717 alg->alg_default = 0;
4718 if (alg->alg_increment != 0) {
4719 /* key sizes are defined by range & increment */
4720 alg->alg_minbits = alg->alg_key_sizes[1];
4721 alg->alg_maxbits = alg->alg_key_sizes[2];
4722 } else if (alg->alg_nkey_sizes == 0) {
4723 /* no specified key size for algorithm */
4724 alg->alg_minbits = alg->alg_maxbits = 0;
4725 } else {
4726 /* key sizes are defined by enumeration */
4727 alg->alg_minbits = (uint16_t)-1;
4728 alg->alg_maxbits = 0;
4729
4730 for (i = 0; i < alg->alg_nkey_sizes; i++) {
4731 if (alg->alg_key_sizes[i] < alg->alg_minbits)
4732 alg->alg_minbits = alg->alg_key_sizes[i];
4733 if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4734 alg->alg_maxbits = alg->alg_key_sizes[i];
4735 }
4736 }
4737
4738 if (!(alg->alg_flags & ALG_FLAG_VALID))
4739 return;
4740
4741 /*
4742 * Mechanisms do not apply to the NULL encryption
4743 * algorithm, so simply return for this case.
4744 */
4745 if (alg->alg_id == SADB_EALG_NULL)
4746 return;
4747
4748 /*
4749 * Find the min and max key sizes supported by the cryptographic
4750 * framework providers.
4751 */
4752
4753 /* get the key sizes supported by the framework */
4754 crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4755 &mech_infos, &nmech_infos, KM_SLEEP);
4756 if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4757 alg->alg_flags &= ~ALG_FLAG_VALID;
4758 return;
4759 }
4760
4761 /* min and max key sizes supported by framework */
4762 for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4763 int unit_bits;
4764
4765 /*
4766 * Ignore entries that do not support the operations
4767 * needed for the algorithm type.
4768 */
4769 if (alg_type == IPSEC_ALG_AUTH) {
4770 mask = CRYPTO_MECH_USAGE_MAC;
4771 } else {
4772 mask = CRYPTO_MECH_USAGE_ENCRYPT |
4773 CRYPTO_MECH_USAGE_DECRYPT;
4774 }
4775 if ((mech_infos[i].mi_usage & mask) != mask)
4776 continue;
4777
4778 unit_bits = (mech_infos[i].mi_keysize_unit ==
4779 CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1;
4780 /* adjust min/max supported by framework */
4781 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4782 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4783
4784 if (cur_crypto_min < crypto_min)
4785 crypto_min = cur_crypto_min;
4786
4787 /*
4788 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4789 * the crypto framework which means "no upper limit".
4790 */
4791 if (mech_infos[i].mi_max_key_size ==
4792 CRYPTO_EFFECTIVELY_INFINITE) {
4793 crypto_max = (size_t)-1;
4794 } else if (cur_crypto_max > crypto_max) {
4795 crypto_max = cur_crypto_max;
4796 }
4797
4798 is_valid = B_TRUE;
4799 }
4800
4801 kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4802 nmech_infos);
4803
4804 if (!is_valid) {
4805 /* no key sizes supported by framework */
4806 alg->alg_flags &= ~ALG_FLAG_VALID;
4807 return;
4808 }
4809
4810 /*
4811 * Determine min and max key sizes from alg_key_sizes[].
4812 * defined for the algorithm entry. Adjust key sizes based on
4813 * those supported by the framework.
4814 */
4815 alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4816
4817 /*
4818 * For backwards compatability, assume that the IV length
4819 * is the same as the data length.
4820 */
4821 alg->alg_ivlen = alg->alg_datalen;
4822
4823 /*
4824 * Copy any algorithm parameters (if provided) into dedicated
4825 * elements in the ipsec_alginfo_t structure.
4826 * There may be a better place to put this code.
4827 */
4828 for (i = 0; i < alg->alg_nparams; i++) {
4829 switch (i) {
4830 case 0:
4831 /* Initialisation Vector length (bytes) */
4832 alg->alg_ivlen = alg->alg_params[0];
4833 break;
4834 case 1:
4835 /* Integrity Check Vector length (bytes) */
4836 alg->alg_icvlen = alg->alg_params[1];
4837 break;
4838 case 2:
4839 /* Salt length (bytes) */
4840 alg->alg_saltlen = (uint8_t)alg->alg_params[2];
4841 break;
4842 default:
4843 break;
4844 }
4845 }
4846
4847 /* Default if the IV length is not specified. */
4848 if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0)
4849 alg->alg_ivlen = alg->alg_datalen;
4850
4851 alg_flag_check(alg);
4852
4853 if (alg->alg_increment != 0) {
4854 /* supported key sizes are defined by range & increment */
4855 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4856 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4857
4858 alg->alg_ef_minbits = MAX(alg->alg_minbits,
4859 (uint16_t)crypto_min);
4860 alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4861 (uint16_t)crypto_max);
4862
4863 /*
4864 * If the sizes supported by the framework are outside
4865 * the range of sizes defined by the algorithm mappings,
4866 * the algorithm cannot be used. Check for this
4867 * condition here.
4868 */
4869 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4870 alg->alg_flags &= ~ALG_FLAG_VALID;
4871 return;
4872 }
4873 if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4874 alg->alg_ef_default_bits = alg->alg_ef_minbits;
4875 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4876 alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4877 } else if (alg->alg_nkey_sizes == 0) {
4878 /* no specified key size for algorithm */
4879 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4880 } else {
4881 /* supported key sizes are defined by enumeration */
4882 alg->alg_ef_minbits = (uint16_t)-1;
4883 alg->alg_ef_maxbits = 0;
4884
4885 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4886 /*
4887 * Ignore the current key size if it is not in the
4888 * range of sizes supported by the framework.
4889 */
4890 if (alg->alg_key_sizes[i] < crypto_min ||
4891 alg->alg_key_sizes[i] > crypto_max)
4892 continue;
4893 if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4894 alg->alg_ef_minbits = alg->alg_key_sizes[i];
4895 if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4896 alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4897 is_valid = B_TRUE;
4898 }
4899
4900 if (!is_valid) {
4901 alg->alg_flags &= ~ALG_FLAG_VALID;
4902 return;
4903 }
4904 alg->alg_ef_default = 0;
4905 }
4906 }
4907
4908 /*
4909 * Sanity check parameters provided by ipsecalgs(1m). Assume that
4910 * the algoritm is marked as valid, there is a check at the top
4911 * of this function. If any of the checks below fail, the algorithm
4912 * entry is invalid.
4913 */
4914 void
4915 alg_flag_check(ipsec_alginfo_t *alg)
4916 {
4917 alg->alg_flags &= ~ALG_FLAG_VALID;
4918
4919 /*
4920 * Can't have the algorithm marked as CCM and GCM.
4921 * Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE
4922 * flags are set for CCM & GCM.
4923 */
4924 if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) ==
4925 (ALG_FLAG_CCM|ALG_FLAG_GCM))
4926 return;
4927 if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) {
4928 if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE))
4929 return;
4930 if (!(alg->alg_flags & ALG_FLAG_COMBINED))
4931 return;
4932 }
4933
4934 /*
4935 * For ALG_FLAG_COUNTERMODE, check the parameters
4936 * fit in the ipsec_nonce_t structure.
4937 */
4938 if (alg->alg_flags & ALG_FLAG_COUNTERMODE) {
4939 if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv))
4940 return;
4941 if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt))
4942 return;
4943 }
4944 if ((alg->alg_flags & ALG_FLAG_COMBINED) &&
4945 (alg->alg_icvlen == 0))
4946 return;
4947
4948 /* all is well. */
4949 alg->alg_flags |= ALG_FLAG_VALID;
4950 }
4951
4952 /*
4953 * Free the memory used by the specified algorithm.
4954 */
4955 void
4956 ipsec_alg_free(ipsec_alginfo_t *alg)
4957 {
4958 if (alg == NULL)
4959 return;
4960
4961 if (alg->alg_key_sizes != NULL) {
4962 kmem_free(alg->alg_key_sizes,
4963 (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4964 alg->alg_key_sizes = NULL;
4965 }
4966 if (alg->alg_block_sizes != NULL) {
4967 kmem_free(alg->alg_block_sizes,
4968 (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4969 alg->alg_block_sizes = NULL;
4970 }
4971 if (alg->alg_params != NULL) {
4972 kmem_free(alg->alg_params,
4973 (alg->alg_nparams + 1) * sizeof (uint16_t));
4974 alg->alg_params = NULL;
4975 }
4976 kmem_free(alg, sizeof (*alg));
4977 }
4978
4979 /*
4980 * Check the validity of the specified key size for an algorithm.
4981 * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4982 */
4983 boolean_t
4984 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4985 {
4986 if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4987 return (B_FALSE);
4988
4989 if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4990 /*
4991 * If the key sizes are defined by enumeration, the new
4992 * key size must be equal to one of the supported values.
4993 */
4994 int i;
4995
4996 for (i = 0; i < alg->alg_nkey_sizes; i++)
4997 if (key_size == alg->alg_key_sizes[i])
4998 break;
4999 if (i == alg->alg_nkey_sizes)
5000 return (B_FALSE);
5001 }
5002
5003 return (B_TRUE);
5004 }
5005
5006 /*
5007 * Callback function invoked by the crypto framework when a provider
5008 * registers or unregisters. This callback updates the algorithms
5009 * tables when a crypto algorithm is no longer available or becomes
5010 * available, and triggers the freeing/creation of context templates
5011 * associated with existing SAs, if needed.
5012 *
5013 * Need to walk all stack instances since the callback is global
5014 * for all instances
5015 */
5016 void
5017 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5018 {
5019 netstack_handle_t nh;
5020 netstack_t *ns;
5021
5022 netstack_next_init(&nh);
5023 while ((ns = netstack_next(&nh)) != NULL) {
5024 ipsec_prov_update_callback_stack(event, event_arg, ns);
5025 netstack_rele(ns);
5026 }
5027 netstack_next_fini(&nh);
5028 }
5029
5030 static void
5031 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5032 netstack_t *ns)
5033 {
5034 crypto_notify_event_change_t *prov_change =
5035 (crypto_notify_event_change_t *)event_arg;
5036 uint_t algidx, algid, algtype, mech_count, mech_idx;
5037 ipsec_alginfo_t *alg;
5038 ipsec_alginfo_t oalg;
5039 crypto_mech_name_t *mechs;
5040 boolean_t alg_changed = B_FALSE;
5041 ipsec_stack_t *ipss = ns->netstack_ipsec;
5042
5043 /* ignore events for which we didn't register */
5044 if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5045 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5046 " received from crypto framework\n", event));
5047 return;
5048 }
5049
5050 mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5051 if (mechs == NULL)
5052 return;
5053
5054 /*
5055 * Walk the list of currently defined IPsec algorithm. Update
5056 * the algorithm valid flag and trigger an update of the
5057 * SAs that depend on that algorithm.
5058 */
5059 mutex_enter(&ipss->ipsec_alg_lock);
5060 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5061 for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5062 algidx++) {
5063
5064 algid = ipss->ipsec_sortlist[algtype][algidx];
5065 alg = ipss->ipsec_alglists[algtype][algid];
5066 ASSERT(alg != NULL);
5067
5068 /*
5069 * Skip the algorithms which do not map to the
5070 * crypto framework provider being added or removed.
5071 */
5072 if (strncmp(alg->alg_mech_name,
5073 prov_change->ec_mech_name,
5074 CRYPTO_MAX_MECH_NAME) != 0)
5075 continue;
5076
5077 /*
5078 * Determine if the mechanism is valid. If it
5079 * is not, mark the algorithm as being invalid. If
5080 * it is, mark the algorithm as being valid.
5081 */
5082 for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5083 if (strncmp(alg->alg_mech_name,
5084 mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5085 break;
5086 if (mech_idx == mech_count &&
5087 alg->alg_flags & ALG_FLAG_VALID) {
5088 alg->alg_flags &= ~ALG_FLAG_VALID;
5089 alg_changed = B_TRUE;
5090 } else if (mech_idx < mech_count &&
5091 !(alg->alg_flags & ALG_FLAG_VALID)) {
5092 alg->alg_flags |= ALG_FLAG_VALID;
5093 alg_changed = B_TRUE;
5094 }
5095
5096 /*
5097 * Update the supported key sizes, regardless
5098 * of whether a crypto provider was added or
5099 * removed.
5100 */
5101 oalg = *alg;
5102 ipsec_alg_fix_min_max(alg, algtype, ns);
5103 if (!alg_changed &&
5104 alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5105 alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5106 alg->alg_ef_default != oalg.alg_ef_default ||
5107 alg->alg_ef_default_bits !=
5108 oalg.alg_ef_default_bits)
5109 alg_changed = B_TRUE;
5110
5111 /*
5112 * Update the affected SAs if a software provider is
5113 * being added or removed.
5114 */
5115 if (prov_change->ec_provider_type ==
5116 CRYPTO_SW_PROVIDER)
5117 sadb_alg_update(algtype, alg->alg_id,
5118 prov_change->ec_change ==
5119 CRYPTO_MECH_ADDED, ns);
5120 }
5121 }
5122 mutex_exit(&ipss->ipsec_alg_lock);
5123 crypto_free_mech_list(mechs, mech_count);
5124
5125 if (alg_changed) {
5126 /*
5127 * An algorithm has changed, i.e. it became valid or
5128 * invalid, or its support key sizes have changed.
5129 * Notify ipsecah and ipsecesp of this change so
5130 * that they can send a SADB_REGISTER to their consumers.
5131 */
5132 ipsecah_algs_changed(ns);
5133 ipsecesp_algs_changed(ns);
5134 }
5135 }
5136
5137 /*
5138 * Registers with the crypto framework to be notified of crypto
5139 * providers changes. Used to update the algorithm tables and
5140 * to free or create context templates if needed. Invoked after IPsec
5141 * is loaded successfully.
5142 *
5143 * This is called separately for each IP instance, so we ensure we only
5144 * register once.
5145 */
5146 void
5147 ipsec_register_prov_update(void)
5148 {
5149 if (prov_update_handle != NULL)
5150 return;
5151
5152 prov_update_handle = crypto_notify_events(
5153 ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5154 }
5155
5156 /*
5157 * Unregisters from the framework to be notified of crypto providers
5158 * changes. Called from ipsec_policy_g_destroy().
5159 */
5160 static void
5161 ipsec_unregister_prov_update(void)
5162 {
5163 if (prov_update_handle != NULL)
5164 crypto_unnotify_events(prov_update_handle);
5165 }
5166
5167 /*
5168 * Tunnel-mode support routines.
5169 */
5170
5171 /*
5172 * Returns an mblk chain suitable for putnext() if policies match and IPsec
5173 * SAs are available. If there's no per-tunnel policy, or a match comes back
5174 * with no match, then still return the packet and have global policy take
5175 * a crack at it in IP.
5176 * This updates the ip_xmit_attr with the IPsec policy.
5177 *
5178 * Remember -> we can be forwarding packets. Keep that in mind w.r.t.
5179 * inner-packet contents.
5180 */
5181 mblk_t *
5182 ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4,
5183 ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5184 ip_xmit_attr_t *ixa)
5185 {
5186 ipsec_policy_head_t *polhead;
5187 ipsec_selector_t sel;
5188 mblk_t *nmp;
5189 boolean_t is_fragment;
5190 ipsec_policy_t *pol;
5191 ipsec_tun_pol_t *itp = iptun->iptun_itp;
5192 netstack_t *ns = iptun->iptun_ns;
5193 ipsec_stack_t *ipss = ns->netstack_ipsec;
5194
5195 ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5196 outer_ipv4 != NULL && outer_ipv6 == NULL);
5197 /* We take care of inners in a bit. */
5198
5199 /* Are the IPsec fields initialized at all? */
5200 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) {
5201 ASSERT(ixa->ixa_ipsec_policy == NULL);
5202 ASSERT(ixa->ixa_ipsec_latch == NULL);
5203 ASSERT(ixa->ixa_ipsec_action == NULL);
5204 ASSERT(ixa->ixa_ipsec_ah_sa == NULL);
5205 ASSERT(ixa->ixa_ipsec_esp_sa == NULL);
5206 }
5207
5208 ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE));
5209 polhead = itp->itp_policy;
5210
5211 bzero(&sel, sizeof (sel));
5212 if (inner_ipv4 != NULL) {
5213 ASSERT(inner_ipv6 == NULL);
5214 sel.ips_isv4 = B_TRUE;
5215 sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5216 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5217 sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5218 } else {
5219 ASSERT(inner_ipv6 != NULL);
5220 sel.ips_isv4 = B_FALSE;
5221 sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5222 /*
5223 * We don't care about routing-header dests in the
5224 * forwarding/tunnel path, so just grab ip6_dst.
5225 */
5226 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5227 }
5228
5229 if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5230 /*
5231 * Caller can prepend the outer header, which means
5232 * inner_ipv[46] may be stuck in the middle. Pullup the whole
5233 * mess now if need-be, for easier processing later. Don't
5234 * forget to rewire the outer header too.
5235 */
5236 if (mp->b_cont != NULL) {
5237 nmp = msgpullup(mp, -1);
5238 if (nmp == NULL) {
5239 ip_drop_packet(mp, B_FALSE, NULL,
5240 DROPPER(ipss, ipds_spd_nomem),
5241 &ipss->ipsec_spd_dropper);
5242 return (NULL);
5243 }
5244 freemsg(mp);
5245 mp = nmp;
5246 if (outer_ipv4 != NULL)
5247 outer_ipv4 = (ipha_t *)mp->b_rptr;
5248 else
5249 outer_ipv6 = (ip6_t *)mp->b_rptr;
5250 if (inner_ipv4 != NULL) {
5251 inner_ipv4 =
5252 (ipha_t *)(mp->b_rptr + outer_hdr_len);
5253 } else {
5254 inner_ipv6 =
5255 (ip6_t *)(mp->b_rptr + outer_hdr_len);
5256 }
5257 }
5258 if (inner_ipv4 != NULL) {
5259 is_fragment = IS_V4_FRAGMENT(
5260 inner_ipv4->ipha_fragment_offset_and_flags);
5261 } else {
5262 sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp,
5263 &is_fragment);
5264 }
5265
5266 if (is_fragment) {
5267 ipha_t *oiph;
5268 ipha_t *iph = NULL;
5269 ip6_t *ip6h = NULL;
5270 int hdr_len;
5271 uint16_t ip6_hdr_length;
5272 uint8_t v6_proto;
5273 uint8_t *v6_proto_p;
5274
5275 /*
5276 * We have a fragment we need to track!
5277 */
5278 mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5279 outer_hdr_len, ipss);
5280 if (mp == NULL)
5281 return (NULL);
5282 ASSERT(mp->b_cont == NULL);
5283
5284 /*
5285 * If we get here, we have a full fragment chain
5286 */
5287
5288 oiph = (ipha_t *)mp->b_rptr;
5289 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5290 hdr_len = ((outer_hdr_len != 0) ?
5291 IPH_HDR_LENGTH(oiph) : 0);
5292 iph = (ipha_t *)(mp->b_rptr + hdr_len);
5293 } else {
5294 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5295 ip6h = (ip6_t *)mp->b_rptr;
5296 if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
5297 &ip6_hdr_length, &v6_proto_p)) {
5298 ip_drop_packet_chain(mp, B_FALSE, NULL,
5299 DROPPER(ipss,
5300 ipds_spd_malformed_packet),
5301 &ipss->ipsec_spd_dropper);
5302 return (NULL);
5303 }
5304 hdr_len = ip6_hdr_length;
5305 }
5306 outer_hdr_len = hdr_len;
5307
5308 if (sel.ips_isv4) {
5309 if (iph == NULL) {
5310 /* Was v6 outer */
5311 iph = (ipha_t *)(mp->b_rptr + hdr_len);
5312 }
5313 inner_ipv4 = iph;
5314 sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5315 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5316 sel.ips_protocol =
5317 (uint8_t)inner_ipv4->ipha_protocol;
5318 } else {
5319 inner_ipv6 = (ip6_t *)(mp->b_rptr +
5320 hdr_len);
5321 sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5322 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5323 if (!ip_hdr_length_nexthdr_v6(mp,
5324 inner_ipv6, &ip6_hdr_length, &v6_proto_p)) {
5325 ip_drop_packet_chain(mp, B_FALSE, NULL,
5326 DROPPER(ipss,
5327 ipds_spd_malformed_frag),
5328 &ipss->ipsec_spd_dropper);
5329 return (NULL);
5330 }
5331 v6_proto = *v6_proto_p;
5332 sel.ips_protocol = v6_proto;
5333 #ifdef FRAGCACHE_DEBUG
5334 cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5335 sel.ips_protocol);
5336 #endif
5337 }
5338 /* Ports are extracted below */
5339 }
5340
5341 /* Get ports... */
5342 if (!ipsec_init_outbound_ports(&sel, mp,
5343 inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5344 /* callee did ip_drop_packet_chain() on mp. */
5345 return (NULL);
5346 }
5347 #ifdef FRAGCACHE_DEBUG
5348 if (inner_ipv4 != NULL)
5349 cmn_err(CE_WARN,
5350 "(v4) sel.ips_protocol = %d, "
5351 "sel.ips_local_port = %d, "
5352 "sel.ips_remote_port = %d\n",
5353 sel.ips_protocol, ntohs(sel.ips_local_port),
5354 ntohs(sel.ips_remote_port));
5355 if (inner_ipv6 != NULL)
5356 cmn_err(CE_WARN,
5357 "(v6) sel.ips_protocol = %d, "
5358 "sel.ips_local_port = %d, "
5359 "sel.ips_remote_port = %d\n",
5360 sel.ips_protocol, ntohs(sel.ips_local_port),
5361 ntohs(sel.ips_remote_port));
5362 #endif
5363 /* Success so far! */
5364 }
5365 rw_enter(&polhead->iph_lock, RW_READER);
5366 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
5367 rw_exit(&polhead->iph_lock);
5368 if (pol == NULL) {
5369 /*
5370 * No matching policy on this tunnel, drop the packet.
5371 *
5372 * NOTE: Tunnel-mode tunnels are different from the
5373 * IP global transport mode policy head. For a tunnel-mode
5374 * tunnel, we drop the packet in lieu of passing it
5375 * along accepted the way a global-policy miss would.
5376 *
5377 * NOTE2: "negotiate transport" tunnels should match ALL
5378 * inbound packets, but we do not uncomment the ASSERT()
5379 * below because if/when we open PF_POLICY, a user can
5380 * shoot themself in the foot with a 0 priority.
5381 */
5382
5383 /* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5384 #ifdef FRAGCACHE_DEBUG
5385 cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5386 "per-port policy\n");
5387 #endif
5388 ip_drop_packet_chain(mp, B_FALSE, NULL,
5389 DROPPER(ipss, ipds_spd_explicit),
5390 &ipss->ipsec_spd_dropper);
5391 return (NULL);
5392 }
5393
5394 #ifdef FRAGCACHE_DEBUG
5395 cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5396 #endif
5397
5398 /*
5399 * NOTE: ixa_cleanup() function will release pol references.
5400 */
5401 ixa->ixa_ipsec_policy = pol;
5402 /*
5403 * NOTE: There is a subtle difference between iptun_zoneid and
5404 * iptun_connp->conn_zoneid explained in iptun_conn_create(). When
5405 * interacting with the ip module, we must use conn_zoneid.
5406 */
5407 ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid;
5408
5409 ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) :
5410 !(ixa->ixa_flags & IXAF_IS_IPV4));
5411 ASSERT(ixa->ixa_ipsec_policy != NULL);
5412 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
5413
5414 if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5415 /* Set up transport mode for tunnelled packets. */
5416 ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5417 IPPROTO_IPV6;
5418 return (mp);
5419 }
5420
5421 /* Fill in tunnel-mode goodies here. */
5422 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
5423 /* XXX Do I need to fill in all of the goodies here? */
5424 if (inner_ipv4) {
5425 ixa->ixa_ipsec_inaf = AF_INET;
5426 ixa->ixa_ipsec_insrc[0] =
5427 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5428 ixa->ixa_ipsec_indst[0] =
5429 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5430 } else {
5431 ixa->ixa_ipsec_inaf = AF_INET6;
5432 ixa->ixa_ipsec_insrc[0] =
5433 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5434 ixa->ixa_ipsec_insrc[1] =
5435 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5436 ixa->ixa_ipsec_insrc[2] =
5437 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5438 ixa->ixa_ipsec_insrc[3] =
5439 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5440 ixa->ixa_ipsec_indst[0] =
5441 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5442 ixa->ixa_ipsec_indst[1] =
5443 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5444 ixa->ixa_ipsec_indst[2] =
5445 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5446 ixa->ixa_ipsec_indst[3] =
5447 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5448 }
5449 ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5450 ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5451 /* NOTE: These are used for transport mode too. */
5452 ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5453 ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5454 ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5455
5456 return (mp);
5457 }
5458
5459 /*
5460 * NOTE: The following releases pol's reference and
5461 * calls ip_drop_packet() for me on NULL returns.
5462 */
5463 mblk_t *
5464 ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol,
5465 ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5466 {
5467 /* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */
5468 mblk_t *data_chain = NULL, *data_tail = NULL;
5469 mblk_t *next;
5470 mblk_t *data_mp;
5471 ip_recv_attr_t iras;
5472
5473 while (attr_mp != NULL) {
5474 ASSERT(ip_recv_attr_is_mblk(attr_mp));
5475 next = attr_mp->b_next;
5476 attr_mp->b_next = NULL; /* No tripping asserts. */
5477
5478 data_mp = attr_mp->b_cont;
5479 attr_mp->b_cont = NULL;
5480 if (!ip_recv_attr_from_mblk(attr_mp, &iras)) {
5481 /* The ill or ip_stack_t disappeared on us */
5482 freemsg(data_mp); /* ip_drop_packet?? */
5483 ira_cleanup(&iras, B_TRUE);
5484 goto fail;
5485 }
5486
5487 /*
5488 * Need IPPOL_REFHOLD(pol) for extras because
5489 * ipsecin_policy does the refrele.
5490 */
5491 IPPOL_REFHOLD(pol);
5492
5493 data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4,
5494 inner_ipv6, pkt_unique, &iras, ns);
5495 ira_cleanup(&iras, B_TRUE);
5496
5497 if (data_mp == NULL)
5498 goto fail;
5499
5500 if (data_tail == NULL) {
5501 /* First one */
5502 data_chain = data_tail = data_mp;
5503 } else {
5504 data_tail->b_next = data_mp;
5505 data_tail = data_mp;
5506 }
5507 attr_mp = next;
5508 }
5509 /*
5510 * One last release because either the loop bumped it up, or we never
5511 * called ipsec_check_ipsecin_policy().
5512 */
5513 IPPOL_REFRELE(pol);
5514
5515 /* data_chain is ready for return to tun module. */
5516 return (data_chain);
5517
5518 fail:
5519 /*
5520 * Need to get rid of any extra pol
5521 * references, and any remaining bits as well.
5522 */
5523 IPPOL_REFRELE(pol);
5524 ipsec_freemsg_chain(data_chain);
5525 ipsec_freemsg_chain(next); /* ipdrop stats? */
5526 return (NULL);
5527 }
5528
5529 /*
5530 * Return a message if the inbound packet passed an IPsec policy check. Returns
5531 * NULL if it failed or if it is a fragment needing its friends before a
5532 * policy check can be performed.
5533 *
5534 * Expects a non-NULL data_mp, and a non-NULL polhead.
5535 * The returned mblk may be a b_next chain of packets if fragments
5536 * neeeded to be collected for a proper policy check.
5537 *
5538 * This function calls ip_drop_packet() on data_mp if need be.
5539 *
5540 * NOTE: outer_hdr_len is signed. If it's a negative value, the caller
5541 * is inspecting an ICMP packet.
5542 */
5543 mblk_t *
5544 ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp,
5545 ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5546 ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5547 {
5548 ipsec_policy_head_t *polhead;
5549 ipsec_selector_t sel;
5550 ipsec_policy_t *pol;
5551 uint16_t tmpport;
5552 selret_t rc;
5553 boolean_t port_policy_present, is_icmp, global_present;
5554 in6_addr_t tmpaddr;
5555 ipaddr_t tmp4;
5556 uint8_t flags, *inner_hdr;
5557 ipsec_stack_t *ipss = ns->netstack_ipsec;
5558
5559 sel.ips_is_icmp_inv_acq = 0;
5560
5561 if (outer_ipv4 != NULL) {
5562 ASSERT(outer_ipv6 == NULL);
5563 global_present = ipss->ipsec_inbound_v4_policy_present;
5564 } else {
5565 ASSERT(outer_ipv6 != NULL);
5566 global_present = ipss->ipsec_inbound_v6_policy_present;
5567 }
5568
5569 ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5570 inner_ipv4 == NULL && inner_ipv6 != NULL);
5571
5572 if (outer_hdr_len < 0) {
5573 outer_hdr_len = (-outer_hdr_len);
5574 is_icmp = B_TRUE;
5575 } else {
5576 is_icmp = B_FALSE;
5577 }
5578
5579 if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5580 mblk_t *mp = data_mp;
5581
5582 polhead = itp->itp_policy;
5583 /*
5584 * We need to perform full Tunnel-Mode enforcement,
5585 * and we need to have inner-header data for such enforcement.
5586 *
5587 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5588 * and on return.
5589 */
5590
5591 port_policy_present = ((itp->itp_flags &
5592 ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5593 /*
5594 * NOTE: Even if our policy is transport mode, set the
5595 * SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can
5596 * do the right thing w.r.t. outer headers.
5597 */
5598 flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5599 (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5600
5601 rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4,
5602 inner_ipv6, flags);
5603
5604 switch (rc) {
5605 case SELRET_NOMEM:
5606 ip_drop_packet(data_mp, B_TRUE, NULL,
5607 DROPPER(ipss, ipds_spd_nomem),
5608 &ipss->ipsec_spd_dropper);
5609 return (NULL);
5610 case SELRET_TUNFRAG:
5611 /*
5612 * At this point, if we're cleartext, we don't want
5613 * to go there.
5614 */
5615 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5616 ip_drop_packet(data_mp, B_TRUE, NULL,
5617 DROPPER(ipss, ipds_spd_got_clear),
5618 &ipss->ipsec_spd_dropper);
5619 return (NULL);
5620 }
5621
5622 /*
5623 * Inner and outer headers may not be contiguous.
5624 * Pullup the data_mp now to satisfy assumptions of
5625 * ipsec_fragcache_add()
5626 */
5627 if (data_mp->b_cont != NULL) {
5628 mblk_t *nmp;
5629
5630 nmp = msgpullup(data_mp, -1);
5631 if (nmp == NULL) {
5632 ip_drop_packet(data_mp, B_TRUE, NULL,
5633 DROPPER(ipss, ipds_spd_nomem),
5634 &ipss->ipsec_spd_dropper);
5635 return (NULL);
5636 }
5637 freemsg(data_mp);
5638 data_mp = nmp;
5639 if (outer_ipv4 != NULL)
5640 outer_ipv4 =
5641 (ipha_t *)data_mp->b_rptr;
5642 else
5643 outer_ipv6 =
5644 (ip6_t *)data_mp->b_rptr;
5645 if (inner_ipv4 != NULL) {
5646 inner_ipv4 =
5647 (ipha_t *)(data_mp->b_rptr +
5648 outer_hdr_len);
5649 } else {
5650 inner_ipv6 =
5651 (ip6_t *)(data_mp->b_rptr +
5652 outer_hdr_len);
5653 }
5654 }
5655
5656 /*
5657 * If we need to queue the packet. First we
5658 * get an mblk with the attributes. ipsec_fragcache_add
5659 * will prepend that to the queued data and return
5660 * a list of b_next messages each of which starts with
5661 * the attribute mblk.
5662 */
5663 mp = ip_recv_attr_to_mblk(ira);
5664 if (mp == NULL) {
5665 ip_drop_packet(data_mp, B_TRUE, NULL,
5666 DROPPER(ipss, ipds_spd_nomem),
5667 &ipss->ipsec_spd_dropper);
5668 return (NULL);
5669 }
5670
5671 mp = ipsec_fragcache_add(&itp->itp_fragcache,
5672 mp, data_mp, outer_hdr_len, ipss);
5673
5674 if (mp == NULL) {
5675 /*
5676 * Data is cached, fragment chain is not
5677 * complete.
5678 */
5679 return (NULL);
5680 }
5681
5682 /*
5683 * If we get here, we have a full fragment chain.
5684 * Reacquire headers and selectors from first fragment.
5685 */
5686 ASSERT(ip_recv_attr_is_mblk(mp));
5687 data_mp = mp->b_cont;
5688 inner_hdr = data_mp->b_rptr;
5689 if (outer_ipv4 != NULL) {
5690 inner_hdr += IPH_HDR_LENGTH(
5691 (ipha_t *)data_mp->b_rptr);
5692 } else {
5693 inner_hdr += ip_hdr_length_v6(data_mp,
5694 (ip6_t *)data_mp->b_rptr);
5695 }
5696 ASSERT(inner_hdr <= data_mp->b_wptr);
5697
5698 if (inner_ipv4 != NULL) {
5699 inner_ipv4 = (ipha_t *)inner_hdr;
5700 inner_ipv6 = NULL;
5701 } else {
5702 inner_ipv6 = (ip6_t *)inner_hdr;
5703 inner_ipv4 = NULL;
5704 }
5705
5706 /*
5707 * Use SEL_TUNNEL_MODE to take into account the outer
5708 * header. Use SEL_POST_FRAG so we always get ports.
5709 */
5710 rc = ipsec_init_inbound_sel(&sel, data_mp,
5711 inner_ipv4, inner_ipv6,
5712 SEL_TUNNEL_MODE | SEL_POST_FRAG);
5713 switch (rc) {
5714 case SELRET_SUCCESS:
5715 /*
5716 * Get to same place as first caller's
5717 * SELRET_SUCCESS case.
5718 */
5719 break;
5720 case SELRET_NOMEM:
5721 ip_drop_packet_chain(mp, B_TRUE, NULL,
5722 DROPPER(ipss, ipds_spd_nomem),
5723 &ipss->ipsec_spd_dropper);
5724 return (NULL);
5725 case SELRET_BADPKT:
5726 ip_drop_packet_chain(mp, B_TRUE, NULL,
5727 DROPPER(ipss, ipds_spd_malformed_frag),
5728 &ipss->ipsec_spd_dropper);
5729 return (NULL);
5730 case SELRET_TUNFRAG:
5731 cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5732 /* FALLTHRU */
5733 default:
5734 cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5735 " returns bizarro 0x%x", rc);
5736 /* Guaranteed panic! */
5737 ASSERT(rc == SELRET_NOMEM);
5738 return (NULL);
5739 }
5740 /* FALLTHRU */
5741 case SELRET_SUCCESS:
5742 /*
5743 * Common case:
5744 * No per-port policy or a non-fragment. Keep going.
5745 */
5746 break;
5747 case SELRET_BADPKT:
5748 /*
5749 * We may receive ICMP (with IPv6 inner) packets that
5750 * trigger this return value. Send 'em in for
5751 * enforcement checking.
5752 */
5753 cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5754 "sending 'bad packet' in for enforcement");
5755 break;
5756 default:
5757 cmn_err(CE_WARN,
5758 "ipsec_init_inbound_sel() returns bizarro 0x%x",
5759 rc);
5760 ASSERT(rc == SELRET_NOMEM); /* Guaranteed panic! */
5761 return (NULL);
5762 }
5763
5764 if (is_icmp) {
5765 /*
5766 * Swap local/remote because this is an ICMP packet.
5767 */
5768 tmpaddr = sel.ips_local_addr_v6;
5769 sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5770 sel.ips_remote_addr_v6 = tmpaddr;
5771 tmpport = sel.ips_local_port;
5772 sel.ips_local_port = sel.ips_remote_port;
5773 sel.ips_remote_port = tmpport;
5774 }
5775
5776 /* find_policy_head() */
5777 rw_enter(&polhead->iph_lock, RW_READER);
5778 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5779 &sel);
5780 rw_exit(&polhead->iph_lock);
5781 if (pol != NULL) {
5782 uint64_t pkt_unique;
5783
5784 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5785 if (!pol->ipsp_act->ipa_allow_clear) {
5786 /*
5787 * XXX should never get here with
5788 * tunnel reassembled fragments?
5789 */
5790 ASSERT(mp == data_mp);
5791 ip_drop_packet(data_mp, B_TRUE, NULL,
5792 DROPPER(ipss, ipds_spd_got_clear),
5793 &ipss->ipsec_spd_dropper);
5794 IPPOL_REFRELE(pol);
5795 return (NULL);
5796 } else {
5797 IPPOL_REFRELE(pol);
5798 return (mp);
5799 }
5800 }
5801 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
5802 sel.ips_local_port,
5803 (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5804 IPPROTO_ENCAP, sel.ips_protocol);
5805
5806 /*
5807 * NOTE: The following releases pol's reference and
5808 * calls ip_drop_packet() for me on NULL returns.
5809 *
5810 * "sel" is still good here, so let's use it!
5811 */
5812 if (data_mp == mp) {
5813 /* A single packet without attributes */
5814 data_mp = ipsec_check_ipsecin_policy(data_mp,
5815 pol, inner_ipv4, inner_ipv6, pkt_unique,
5816 ira, ns);
5817 } else {
5818 /*
5819 * We pass in the b_next chain of attr_mp's
5820 * and get back a b_next chain of data_mp's.
5821 */
5822 data_mp = ipsec_check_ipsecin_policy_reasm(mp,
5823 pol, inner_ipv4, inner_ipv6, pkt_unique,
5824 ns);
5825 }
5826 return (data_mp);
5827 }
5828
5829 /*
5830 * Else fallthru and check the global policy on the outer
5831 * header(s) if this tunnel is an old-style transport-mode
5832 * one. Drop the packet explicitly (no policy entry) for
5833 * a new-style tunnel-mode tunnel.
5834 */
5835 if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5836 ip_drop_packet_chain(data_mp, B_TRUE, NULL,
5837 DROPPER(ipss, ipds_spd_explicit),
5838 &ipss->ipsec_spd_dropper);
5839 return (NULL);
5840 }
5841 }
5842
5843 /*
5844 * NOTE: If we reach here, we will not have packet chains from
5845 * fragcache_add(), because the only way I get chains is on a
5846 * tunnel-mode tunnel, which either returns with a pass, or gets
5847 * hit by the ip_drop_packet_chain() call right above here.
5848 */
5849 ASSERT(data_mp->b_next == NULL);
5850
5851 /* If no per-tunnel security, check global policy now. */
5852 if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) {
5853 if (ira->ira_flags & IRAF_TRUSTED_ICMP) {
5854 /*
5855 * This is an ICMP message that was geenrated locally.
5856 * We should accept it.
5857 */
5858 return (data_mp);
5859 }
5860
5861 ip_drop_packet(data_mp, B_TRUE, NULL,
5862 DROPPER(ipss, ipds_spd_got_secure),
5863 &ipss->ipsec_spd_dropper);
5864 return (NULL);
5865 }
5866
5867 if (is_icmp) {
5868 /*
5869 * For ICMP packets, "outer_ipvN" is set to the outer header
5870 * that is *INSIDE* the ICMP payload. For global policy
5871 * checking, we need to reverse src/dst on the payload in
5872 * order to construct selectors appropriately. See "ripha"
5873 * constructions in ip.c. To avoid a bug like 6478464 (see
5874 * earlier in this file), we will actually exchange src/dst
5875 * in the packet, and reverse if after the call to
5876 * ipsec_check_global_policy().
5877 */
5878 if (outer_ipv4 != NULL) {
5879 tmp4 = outer_ipv4->ipha_src;
5880 outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5881 outer_ipv4->ipha_dst = tmp4;
5882 } else {
5883 ASSERT(outer_ipv6 != NULL);
5884 tmpaddr = outer_ipv6->ip6_src;
5885 outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5886 outer_ipv6->ip6_dst = tmpaddr;
5887 }
5888 }
5889
5890 data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4,
5891 outer_ipv6, ira, ns);
5892 if (data_mp == NULL)
5893 return (NULL);
5894
5895 if (is_icmp) {
5896 /* Set things back to normal. */
5897 if (outer_ipv4 != NULL) {
5898 tmp4 = outer_ipv4->ipha_src;
5899 outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5900 outer_ipv4->ipha_dst = tmp4;
5901 } else {
5902 /* No need for ASSERT()s now. */
5903 tmpaddr = outer_ipv6->ip6_src;
5904 outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5905 outer_ipv6->ip6_dst = tmpaddr;
5906 }
5907 }
5908
5909 /*
5910 * At this point, we pretend it's a cleartext accepted
5911 * packet.
5912 */
5913 return (data_mp);
5914 }
5915
5916 /*
5917 * AVL comparison routine for our list of tunnel polheads.
5918 */
5919 static int
5920 tunnel_compare(const void *arg1, const void *arg2)
5921 {
5922 ipsec_tun_pol_t *left, *right;
5923 int rc;
5924
5925 left = (ipsec_tun_pol_t *)arg1;
5926 right = (ipsec_tun_pol_t *)arg2;
5927
5928 rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
5929 return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
5930 }
5931
5932 /*
5933 * Free a tunnel policy node.
5934 */
5935 void
5936 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
5937 {
5938 if (node->itp_policy != NULL) {
5939 IPPH_REFRELE(node->itp_policy, ns);
5940 node->itp_policy = NULL;
5941 }
5942 if (node->itp_inactive != NULL) {
5943 IPPH_REFRELE(node->itp_inactive, ns);
5944 node->itp_inactive = NULL;
5945 }
5946 mutex_destroy(&node->itp_lock);
5947 kmem_free(node, sizeof (*node));
5948 }
5949
5950 void
5951 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
5952 {
5953 ipsec_stack_t *ipss = ns->netstack_ipsec;
5954
5955 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
5956 ipss->ipsec_tunnel_policy_gen++;
5957 ipsec_fragcache_uninit(&node->itp_fragcache, ipss);
5958 avl_remove(&ipss->ipsec_tunnel_policies, node);
5959 rw_exit(&ipss->ipsec_tunnel_policy_lock);
5960 ITP_REFRELE(node, ns);
5961 }
5962
5963 /*
5964 * Public interface to look up a tunnel security policy by name. Used by
5965 * spdsock mostly. Returns "node" with a bumped refcnt.
5966 */
5967 ipsec_tun_pol_t *
5968 get_tunnel_policy(char *name, netstack_t *ns)
5969 {
5970 ipsec_tun_pol_t *node, lookup;
5971 ipsec_stack_t *ipss = ns->netstack_ipsec;
5972
5973 (void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
5974
5975 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5976 node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
5977 &lookup, NULL);
5978 if (node != NULL) {
5979 ITP_REFHOLD(node);
5980 }
5981 rw_exit(&ipss->ipsec_tunnel_policy_lock);
5982
5983 return (node);
5984 }
5985
5986 /*
5987 * Public interface to walk all tunnel security polcies. Useful for spdsock
5988 * DUMP operations. iterator() will not consume a reference.
5989 */
5990 void
5991 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
5992 void *arg, netstack_t *ns)
5993 {
5994 ipsec_tun_pol_t *node;
5995 ipsec_stack_t *ipss = ns->netstack_ipsec;
5996
5997 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5998 for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
5999 node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6000 iterator(node, arg, ns);
6001 }
6002 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6003 }
6004
6005 /*
6006 * Initialize policy head. This can only fail if there's a memory problem.
6007 */
6008 static boolean_t
6009 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6010 {
6011 ipsec_stack_t *ipss = ns->netstack_ipsec;
6012
6013 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6014 iph->iph_refs = 1;
6015 iph->iph_gen = 0;
6016 if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6017 KM_SLEEP, B_FALSE, ns) != 0) {
6018 ipsec_polhead_free_table(iph);
6019 return (B_FALSE);
6020 }
6021 ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6022 return (B_TRUE);
6023 }
6024
6025 /*
6026 * Create a tunnel policy node with "name". Set errno with
6027 * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6028 * node.
6029 */
6030 ipsec_tun_pol_t *
6031 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6032 {
6033 ipsec_tun_pol_t *newbie, *existing;
6034 avl_index_t where;
6035 ipsec_stack_t *ipss = ns->netstack_ipsec;
6036
6037 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6038 if (newbie == NULL) {
6039 *errno = ENOMEM;
6040 return (NULL);
6041 }
6042 if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6043 kmem_free(newbie, sizeof (*newbie));
6044 *errno = ENOMEM;
6045 return (NULL);
6046 }
6047
6048 (void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6049
6050 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6051 existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6052 newbie, &where);
6053 if (existing != NULL) {
6054 itp_free(newbie, ns);
6055 *errno = EEXIST;
6056 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6057 return (NULL);
6058 }
6059 ipss->ipsec_tunnel_policy_gen++;
6060 *gen = ipss->ipsec_tunnel_policy_gen;
6061 newbie->itp_refcnt = 2; /* One for the caller, one for the tree. */
6062 newbie->itp_next_policy_index = 1;
6063 avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6064 mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6065 newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6066 KM_NOSLEEP);
6067 if (newbie->itp_policy == NULL)
6068 goto nomem;
6069 newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6070 KM_NOSLEEP);
6071 if (newbie->itp_inactive == NULL) {
6072 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6073 goto nomem;
6074 }
6075
6076 if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6077 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6078 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6079 goto nomem;
6080 } else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6081 IPPH_REFRELE(newbie->itp_policy, ns);
6082 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6083 goto nomem;
6084 }
6085 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6086
6087 return (newbie);
6088 nomem:
6089 *errno = ENOMEM;
6090 kmem_free(newbie, sizeof (*newbie));
6091 return (NULL);
6092 }
6093
6094 /*
6095 * Given two addresses, find a tunnel instance's IPsec policy heads.
6096 * Returns NULL on failure.
6097 */
6098 ipsec_tun_pol_t *
6099 itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst)
6100 {
6101 conn_t *connp;
6102 iptun_t *iptun;
6103 ipsec_tun_pol_t *itp = NULL;
6104
6105 /* Classifiers are used to "src" being foreign. */
6106 if (af == AF_INET) {
6107 connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr,
6108 (ipaddr_t *)laddr, ipst);
6109 } else {
6110 ASSERT(af == AF_INET6);
6111 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr));
6112 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr));
6113 connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr,
6114 (in6_addr_t *)laddr, ipst);
6115 }
6116
6117 if (connp == NULL)
6118 return (NULL);
6119
6120 if (IPCL_IS_IPTUN(connp)) {
6121 iptun = connp->conn_iptun;
6122 if (iptun != NULL) {
6123 itp = iptun->iptun_itp;
6124 if (itp != NULL) {
6125 /* Braces due to the macro's nature... */
6126 ITP_REFHOLD(itp);
6127 }
6128 } /* Else itp is already NULL. */
6129 }
6130
6131 CONN_DEC_REF(connp);
6132 return (itp);
6133 }
6134
6135 /*
6136 * Frag cache code, based on SunScreen 3.2 source
6137 * screen/kernel/common/screen_fragcache.c
6138 */
6139
6140 #define IPSEC_FRAG_TTL_MAX 5
6141 /*
6142 * Note that the following parameters create 256 hash buckets
6143 * with 1024 free entries to be distributed. Things are cleaned
6144 * periodically and are attempted to be cleaned when there is no
6145 * free space, but this system errs on the side of dropping packets
6146 * over creating memory exhaustion. We may decide to make hash
6147 * factor a tunable if this proves to be a bad decision.
6148 */
6149 #define IPSEC_FRAG_HASH_SLOTS (1<<8)
6150 #define IPSEC_FRAG_HASH_FACTOR 4
6151 #define IPSEC_FRAG_HASH_SIZE (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6152
6153 #define IPSEC_FRAG_HASH_MASK (IPSEC_FRAG_HASH_SLOTS - 1)
6154 #define IPSEC_FRAG_HASH_FUNC(id) (((id) & IPSEC_FRAG_HASH_MASK) ^ \
6155 (((id) / \
6156 (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6157 IPSEC_FRAG_HASH_MASK))
6158
6159 /* Maximum fragments per packet. 48 bytes payload x 1366 packets > 64KB */
6160 #define IPSEC_MAX_FRAGS 1366
6161
6162 #define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6163 IPH_OFFSET) << 3)
6164 #define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6165 IPH_MF)
6166
6167 /*
6168 * Initialize an ipsec fragcache instance.
6169 * Returns B_FALSE if memory allocation fails.
6170 */
6171 boolean_t
6172 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6173 {
6174 ipsec_fragcache_entry_t *ftemp;
6175 int i;
6176
6177 mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6178 frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6179 kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6180 IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6181 if (frag->itpf_ptr == NULL)
6182 return (B_FALSE);
6183
6184 ftemp = (ipsec_fragcache_entry_t *)
6185 kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6186 IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6187 if (ftemp == NULL) {
6188 kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6189 IPSEC_FRAG_HASH_SLOTS);
6190 return (B_FALSE);
6191 }
6192
6193 frag->itpf_freelist = NULL;
6194
6195 for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6196 ftemp->itpfe_next = frag->itpf_freelist;
6197 frag->itpf_freelist = ftemp;
6198 ftemp++;
6199 }
6200
6201 frag->itpf_expire_hint = 0;
6202
6203 return (B_TRUE);
6204 }
6205
6206 void
6207 ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6208 {
6209 ipsec_fragcache_entry_t *fep;
6210 int i;
6211
6212 mutex_enter(&frag->itpf_lock);
6213 if (frag->itpf_ptr) {
6214 /* Delete any existing fragcache entry chains */
6215 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6216 fep = (frag->itpf_ptr)[i];
6217 while (fep != NULL) {
6218 /* Returned fep is next in chain or NULL */
6219 fep = fragcache_delentry(i, fep, frag, ipss);
6220 }
6221 }
6222 /*
6223 * Chase the pointers back to the beginning
6224 * of the memory allocation and then
6225 * get rid of the allocated freelist
6226 */
6227 while (frag->itpf_freelist->itpfe_next != NULL)
6228 frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6229 /*
6230 * XXX - If we ever dynamically grow the freelist
6231 * then we'll have to free entries individually
6232 * or determine how many entries or chunks we have
6233 * grown since the initial allocation.
6234 */
6235 kmem_free(frag->itpf_freelist,
6236 sizeof (ipsec_fragcache_entry_t) *
6237 IPSEC_FRAG_HASH_SIZE);
6238 /* Free the fragcache structure */
6239 kmem_free(frag->itpf_ptr,
6240 sizeof (ipsec_fragcache_entry_t *) *
6241 IPSEC_FRAG_HASH_SLOTS);
6242 }
6243 mutex_exit(&frag->itpf_lock);
6244 mutex_destroy(&frag->itpf_lock);
6245 }
6246
6247 /*
6248 * Add a fragment to the fragment cache. Consumes mp if NULL is returned.
6249 * Returns mp if a whole fragment has been assembled, NULL otherwise
6250 * The returned mp could be a b_next chain of fragments.
6251 *
6252 * The iramp argument is set on inbound; NULL if outbound.
6253 */
6254 mblk_t *
6255 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp,
6256 int outer_hdr_len, ipsec_stack_t *ipss)
6257 {
6258 boolean_t is_v4;
6259 time_t itpf_time;
6260 ipha_t *iph;
6261 ipha_t *oiph;
6262 ip6_t *ip6h = NULL;
6263 uint8_t v6_proto;
6264 uint8_t *v6_proto_p;
6265 uint16_t ip6_hdr_length;
6266 ip_pkt_t ipp;
6267 ip6_frag_t *fraghdr;
6268 ipsec_fragcache_entry_t *fep;
6269 int i;
6270 mblk_t *nmp, *prevmp;
6271 int firstbyte, lastbyte;
6272 int offset;
6273 int last;
6274 boolean_t inbound = (iramp != NULL);
6275
6276 #ifdef FRAGCACHE_DEBUG
6277 cmn_err(CE_WARN, "Fragcache: %s\n", inbound ? "INBOUND" : "OUTBOUND");
6278 #endif
6279 /*
6280 * You're on the slow path, so insure that every packet in the
6281 * cache is a single-mblk one.
6282 */
6283 if (mp->b_cont != NULL) {
6284 nmp = msgpullup(mp, -1);
6285 if (nmp == NULL) {
6286 ip_drop_packet(mp, inbound, NULL,
6287 DROPPER(ipss, ipds_spd_nomem),
6288 &ipss->ipsec_spd_dropper);
6289 if (inbound)
6290 (void) ip_recv_attr_free_mblk(iramp);
6291 return (NULL);
6292 }
6293 freemsg(mp);
6294 mp = nmp;
6295 }
6296
6297 mutex_enter(&frag->itpf_lock);
6298
6299 oiph = (ipha_t *)mp->b_rptr;
6300 iph = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6301
6302 if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6303 is_v4 = B_TRUE;
6304 } else {
6305 ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6306 ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len);
6307
6308 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length,
6309 &v6_proto_p)) {
6310 /*
6311 * Find upper layer protocol.
6312 * If it fails we have a malformed packet
6313 */
6314 mutex_exit(&frag->itpf_lock);
6315 ip_drop_packet(mp, inbound, NULL,
6316 DROPPER(ipss, ipds_spd_malformed_packet),
6317 &ipss->ipsec_spd_dropper);
6318 if (inbound)
6319 (void) ip_recv_attr_free_mblk(iramp);
6320 return (NULL);
6321 } else {
6322 v6_proto = *v6_proto_p;
6323 }
6324
6325
6326 bzero(&ipp, sizeof (ipp));
6327 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
6328 if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6329 /*
6330 * We think this is a fragment, but didn't find
6331 * a fragment header. Something is wrong.
6332 */
6333 mutex_exit(&frag->itpf_lock);
6334 ip_drop_packet(mp, inbound, NULL,
6335 DROPPER(ipss, ipds_spd_malformed_frag),
6336 &ipss->ipsec_spd_dropper);
6337 if (inbound)
6338 (void) ip_recv_attr_free_mblk(iramp);
6339 return (NULL);
6340 }
6341 fraghdr = ipp.ipp_fraghdr;
6342 is_v4 = B_FALSE;
6343 }
6344
6345 /* Anything to cleanup? */
6346
6347 /*
6348 * This cleanup call could be put in a timer loop
6349 * but it may actually be just as reasonable a decision to
6350 * leave it here. The disadvantage is this only gets called when
6351 * frags are added. The advantage is that it is not
6352 * susceptible to race conditions like a time-based cleanup
6353 * may be.
6354 */
6355 itpf_time = gethrestime_sec();
6356 if (itpf_time >= frag->itpf_expire_hint)
6357 ipsec_fragcache_clean(frag, ipss);
6358
6359 /* Lookup to see if there is an existing entry */
6360
6361 if (is_v4)
6362 i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6363 else
6364 i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6365
6366 for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6367 if (is_v4) {
6368 ASSERT(iph != NULL);
6369 if ((fep->itpfe_id == iph->ipha_ident) &&
6370 (fep->itpfe_src == iph->ipha_src) &&
6371 (fep->itpfe_dst == iph->ipha_dst) &&
6372 (fep->itpfe_proto == iph->ipha_protocol))
6373 break;
6374 } else {
6375 ASSERT(fraghdr != NULL);
6376 ASSERT(fep != NULL);
6377 if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6378 IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6379 &ip6h->ip6_src) &&
6380 IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6381 &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6382 break;
6383 }
6384 }
6385
6386 if (is_v4) {
6387 firstbyte = V4_FRAG_OFFSET(iph);
6388 lastbyte = firstbyte + ntohs(iph->ipha_length) -
6389 IPH_HDR_LENGTH(iph);
6390 last = (V4_MORE_FRAGS(iph) == 0);
6391 #ifdef FRAGCACHE_DEBUG
6392 cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6393 "is_last_frag = %d, id = %d, mp = %p\n", firstbyte,
6394 lastbyte, last, iph->ipha_ident, mp);
6395 #endif
6396 } else {
6397 firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6398 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) +
6399 sizeof (ip6_t) - ip6_hdr_length;
6400 last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6401 #ifdef FRAGCACHE_DEBUG
6402 cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6403 "is_last_frag = %d, id = %d, fraghdr = %p, mp = %p\n",
6404 firstbyte, lastbyte, last, fraghdr->ip6f_ident, fraghdr,
6405 mp);
6406 #endif
6407 }
6408
6409 /* check for bogus fragments and delete the entry */
6410 if (firstbyte > 0 && firstbyte <= 8) {
6411 if (fep != NULL)
6412 (void) fragcache_delentry(i, fep, frag, ipss);
6413 mutex_exit(&frag->itpf_lock);
6414 ip_drop_packet(mp, inbound, NULL,
6415 DROPPER(ipss, ipds_spd_malformed_frag),
6416 &ipss->ipsec_spd_dropper);
6417 if (inbound)
6418 (void) ip_recv_attr_free_mblk(iramp);
6419 return (NULL);
6420 }
6421
6422 /* Not found, allocate a new entry */
6423 if (fep == NULL) {
6424 if (frag->itpf_freelist == NULL) {
6425 /* see if there is some space */
6426 ipsec_fragcache_clean(frag, ipss);
6427 if (frag->itpf_freelist == NULL) {
6428 mutex_exit(&frag->itpf_lock);
6429 ip_drop_packet(mp, inbound, NULL,
6430 DROPPER(ipss, ipds_spd_nomem),
6431 &ipss->ipsec_spd_dropper);
6432 if (inbound)
6433 (void) ip_recv_attr_free_mblk(iramp);
6434 return (NULL);
6435 }
6436 }
6437
6438 fep = frag->itpf_freelist;
6439 frag->itpf_freelist = fep->itpfe_next;
6440
6441 if (is_v4) {
6442 bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6443 sizeof (struct in_addr));
6444 bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6445 sizeof (struct in_addr));
6446 fep->itpfe_id = iph->ipha_ident;
6447 fep->itpfe_proto = iph->ipha_protocol;
6448 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6449 } else {
6450 bcopy((in6_addr_t *)&ip6h->ip6_src,
6451 (in6_addr_t *)&fep->itpfe_src6,
6452 sizeof (struct in6_addr));
6453 bcopy((in6_addr_t *)&ip6h->ip6_dst,
6454 (in6_addr_t *)&fep->itpfe_dst6,
6455 sizeof (struct in6_addr));
6456 fep->itpfe_id = fraghdr->ip6f_ident;
6457 fep->itpfe_proto = v6_proto;
6458 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6459 }
6460 itpf_time = gethrestime_sec();
6461 fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6462 fep->itpfe_last = 0;
6463 fep->itpfe_fraglist = NULL;
6464 fep->itpfe_depth = 0;
6465 fep->itpfe_next = (frag->itpf_ptr)[i];
6466 (frag->itpf_ptr)[i] = fep;
6467
6468 if (frag->itpf_expire_hint > fep->itpfe_exp)
6469 frag->itpf_expire_hint = fep->itpfe_exp;
6470
6471 }
6472
6473 /* Insert it in the frag list */
6474 /* List is in order by starting offset of fragments */
6475
6476 prevmp = NULL;
6477 for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6478 ipha_t *niph;
6479 ipha_t *oniph;
6480 ip6_t *nip6h;
6481 ip_pkt_t nipp;
6482 ip6_frag_t *nfraghdr;
6483 uint16_t nip6_hdr_length;
6484 uint8_t *nv6_proto_p;
6485 int nfirstbyte, nlastbyte;
6486 char *data, *ndata;
6487 mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6488 int hdr_len;
6489
6490 oniph = (ipha_t *)mp->b_rptr;
6491 nip6h = NULL;
6492 niph = NULL;
6493
6494 /*
6495 * Determine outer header type and length and set
6496 * pointers appropriately
6497 */
6498
6499 if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6500 hdr_len = ((outer_hdr_len != 0) ?
6501 IPH_HDR_LENGTH(oiph) : 0);
6502 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6503 } else {
6504 ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6505 ASSERT(ndata_mp->b_cont == NULL);
6506 nip6h = (ip6_t *)ndata_mp->b_rptr;
6507 (void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6508 &nip6_hdr_length, &v6_proto_p);
6509 hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6510 }
6511
6512 /*
6513 * Determine inner header type and length and set
6514 * pointers appropriately
6515 */
6516
6517 if (is_v4) {
6518 if (niph == NULL) {
6519 /* Was v6 outer */
6520 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6521 }
6522 nfirstbyte = V4_FRAG_OFFSET(niph);
6523 nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6524 IPH_HDR_LENGTH(niph);
6525 } else {
6526 ASSERT(ndata_mp->b_cont == NULL);
6527 nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len);
6528 if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6529 &nip6_hdr_length, &nv6_proto_p)) {
6530 mutex_exit(&frag->itpf_lock);
6531 ip_drop_packet_chain(nmp, inbound, NULL,
6532 DROPPER(ipss, ipds_spd_malformed_frag),
6533 &ipss->ipsec_spd_dropper);
6534 ipsec_freemsg_chain(ndata_mp);
6535 if (inbound)
6536 (void) ip_recv_attr_free_mblk(iramp);
6537 return (NULL);
6538 }
6539 bzero(&nipp, sizeof (nipp));
6540 (void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp,
6541 NULL);
6542 nfraghdr = nipp.ipp_fraghdr;
6543 nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6544 IP6F_OFF_MASK);
6545 nlastbyte = nfirstbyte + ntohs(nip6h->ip6_plen) +
6546 sizeof (ip6_t) - nip6_hdr_length;
6547 }
6548
6549 /* Check for overlapping fragments */
6550 if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6551 /*
6552 * Overlap Check:
6553 * ~~~~--------- # Check if the newly
6554 * ~ ndata_mp| # received fragment
6555 * ~~~~--------- # overlaps with the
6556 * ---------~~~~~~ # current fragment.
6557 * | mp ~
6558 * ---------~~~~~~
6559 */
6560 if (is_v4) {
6561 data = (char *)iph + IPH_HDR_LENGTH(iph) +
6562 firstbyte - nfirstbyte;
6563 ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6564 } else {
6565 data = (char *)ip6h +
6566 nip6_hdr_length + firstbyte -
6567 nfirstbyte;
6568 ndata = (char *)nip6h + nip6_hdr_length;
6569 }
6570 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6571 firstbyte)) {
6572 /* Overlapping data does not match */
6573 (void) fragcache_delentry(i, fep, frag, ipss);
6574 mutex_exit(&frag->itpf_lock);
6575 ip_drop_packet(mp, inbound, NULL,
6576 DROPPER(ipss, ipds_spd_overlap_frag),
6577 &ipss->ipsec_spd_dropper);
6578 if (inbound)
6579 (void) ip_recv_attr_free_mblk(iramp);
6580 return (NULL);
6581 }
6582 /* Part of defense for jolt2.c fragmentation attack */
6583 if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6584 /*
6585 * Check for identical or subset fragments:
6586 * ---------- ~~~~--------~~~~~
6587 * | nmp | or ~ nmp ~
6588 * ---------- ~~~~--------~~~~~
6589 * ---------- ------
6590 * | mp | | mp |
6591 * ---------- ------
6592 */
6593 mutex_exit(&frag->itpf_lock);
6594 ip_drop_packet(mp, inbound, NULL,
6595 DROPPER(ipss, ipds_spd_evil_frag),
6596 &ipss->ipsec_spd_dropper);
6597 if (inbound)
6598 (void) ip_recv_attr_free_mblk(iramp);
6599 return (NULL);
6600 }
6601
6602 }
6603
6604 /* Correct location for this fragment? */
6605 if (firstbyte <= nfirstbyte) {
6606 /*
6607 * Check if the tail end of the new fragment overlaps
6608 * with the head of the current fragment.
6609 * --------~~~~~~~
6610 * | nmp ~
6611 * --------~~~~~~~
6612 * ~~~~~--------
6613 * ~ mp |
6614 * ~~~~~--------
6615 */
6616 if (lastbyte > nfirstbyte) {
6617 /* Fragments overlap */
6618 data = (char *)iph + IPH_HDR_LENGTH(iph) +
6619 firstbyte - nfirstbyte;
6620 ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6621 if (is_v4) {
6622 data = (char *)iph +
6623 IPH_HDR_LENGTH(iph) + firstbyte -
6624 nfirstbyte;
6625 ndata = (char *)niph +
6626 IPH_HDR_LENGTH(niph);
6627 } else {
6628 data = (char *)ip6h +
6629 nip6_hdr_length + firstbyte -
6630 nfirstbyte;
6631 ndata = (char *)nip6h + nip6_hdr_length;
6632 }
6633 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6634 - nfirstbyte)) {
6635 /* Overlap mismatch */
6636 (void) fragcache_delentry(i, fep, frag,
6637 ipss);
6638 mutex_exit(&frag->itpf_lock);
6639 ip_drop_packet(mp, inbound, NULL,
6640 DROPPER(ipss,
6641 ipds_spd_overlap_frag),
6642 &ipss->ipsec_spd_dropper);
6643 if (inbound) {
6644 (void) ip_recv_attr_free_mblk(
6645 iramp);
6646 }
6647 return (NULL);
6648 }
6649 }
6650
6651 /*
6652 * Fragment does not illegally overlap and can now
6653 * be inserted into the chain
6654 */
6655 break;
6656 }
6657
6658 prevmp = nmp;
6659 }
6660 /* Prepend the attributes before we link it in */
6661 if (iramp != NULL) {
6662 ASSERT(iramp->b_cont == NULL);
6663 iramp->b_cont = mp;
6664 mp = iramp;
6665 iramp = NULL;
6666 }
6667 mp->b_next = nmp;
6668
6669 if (prevmp == NULL) {
6670 fep->itpfe_fraglist = mp;
6671 } else {
6672 prevmp->b_next = mp;
6673 }
6674 if (last)
6675 fep->itpfe_last = 1;
6676
6677 /* Part of defense for jolt2.c fragmentation attack */
6678 if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6679 (void) fragcache_delentry(i, fep, frag, ipss);
6680 mutex_exit(&frag->itpf_lock);
6681 if (inbound)
6682 mp = ip_recv_attr_free_mblk(mp);
6683
6684 ip_drop_packet(mp, inbound, NULL,
6685 DROPPER(ipss, ipds_spd_max_frags),
6686 &ipss->ipsec_spd_dropper);
6687 return (NULL);
6688 }
6689
6690 /* Check for complete packet */
6691
6692 if (!fep->itpfe_last) {
6693 mutex_exit(&frag->itpf_lock);
6694 #ifdef FRAGCACHE_DEBUG
6695 cmn_err(CE_WARN, "Fragment cached, last not yet seen.\n");
6696 #endif
6697 return (NULL);
6698 }
6699
6700 offset = 0;
6701 for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6702 mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6703 int hdr_len;
6704
6705 oiph = (ipha_t *)data_mp->b_rptr;
6706 ip6h = NULL;
6707 iph = NULL;
6708
6709 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6710 hdr_len = ((outer_hdr_len != 0) ?
6711 IPH_HDR_LENGTH(oiph) : 0);
6712 iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6713 } else {
6714 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6715 ASSERT(data_mp->b_cont == NULL);
6716 ip6h = (ip6_t *)data_mp->b_rptr;
6717 (void) ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6718 &ip6_hdr_length, &v6_proto_p);
6719 hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6720 }
6721
6722 /* Calculate current fragment start/end */
6723 if (is_v4) {
6724 if (iph == NULL) {
6725 /* Was v6 outer */
6726 iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6727 }
6728 firstbyte = V4_FRAG_OFFSET(iph);
6729 lastbyte = firstbyte + ntohs(iph->ipha_length) -
6730 IPH_HDR_LENGTH(iph);
6731 } else {
6732 ASSERT(data_mp->b_cont == NULL);
6733 ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len);
6734 if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6735 &ip6_hdr_length, &v6_proto_p)) {
6736 mutex_exit(&frag->itpf_lock);
6737 ip_drop_packet_chain(mp, inbound, NULL,
6738 DROPPER(ipss, ipds_spd_malformed_frag),
6739 &ipss->ipsec_spd_dropper);
6740 return (NULL);
6741 }
6742 v6_proto = *v6_proto_p;
6743 bzero(&ipp, sizeof (ipp));
6744 (void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
6745 NULL);
6746 fraghdr = ipp.ipp_fraghdr;
6747 firstbyte = ntohs(fraghdr->ip6f_offlg &
6748 IP6F_OFF_MASK);
6749 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) +
6750 sizeof (ip6_t) - ip6_hdr_length;
6751 }
6752
6753 /*
6754 * If this fragment is greater than current offset,
6755 * we have a missing fragment so return NULL
6756 */
6757 if (firstbyte > offset) {
6758 mutex_exit(&frag->itpf_lock);
6759 #ifdef FRAGCACHE_DEBUG
6760 /*
6761 * Note, this can happen when the last frag
6762 * gets sent through because it is smaller
6763 * than the MTU. It is not necessarily an
6764 * error condition.
6765 */
6766 cmn_err(CE_WARN, "Frag greater than offset! : "
6767 "missing fragment: firstbyte = %d, offset = %d, "
6768 "mp = %p\n", firstbyte, offset, mp);
6769 #endif
6770 return (NULL);
6771 }
6772 #ifdef FRAGCACHE_DEBUG
6773 cmn_err(CE_WARN, "Frag offsets : "
6774 "firstbyte = %d, offset = %d, mp = %p\n",
6775 firstbyte, offset, mp);
6776 #endif
6777
6778 /*
6779 * If we are at the last fragment, we have the complete
6780 * packet, so rechain things and return it to caller
6781 * for processing
6782 */
6783
6784 if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6785 (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6786 mp = fep->itpfe_fraglist;
6787 fep->itpfe_fraglist = NULL;
6788 (void) fragcache_delentry(i, fep, frag, ipss);
6789 mutex_exit(&frag->itpf_lock);
6790
6791 if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6792 65535)) || (!is_v4 && (firstbyte +
6793 ntohs(ip6h->ip6_plen) > 65535))) {
6794 /* It is an invalid "ping-o-death" packet */
6795 /* Discard it */
6796 ip_drop_packet_chain(mp, inbound, NULL,
6797 DROPPER(ipss, ipds_spd_evil_frag),
6798 &ipss->ipsec_spd_dropper);
6799 return (NULL);
6800 }
6801 #ifdef FRAGCACHE_DEBUG
6802 cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6803 "mp->b_next = %p", mp, mp->b_next);
6804 #endif
6805 /*
6806 * For inbound case, mp has attrmp b_next'd chain
6807 * For outbound case, it is just data mp chain
6808 */
6809 return (mp);
6810 }
6811
6812 /*
6813 * Update new ending offset if this
6814 * fragment extends the packet
6815 */
6816 if (offset < lastbyte)
6817 offset = lastbyte;
6818 }
6819
6820 mutex_exit(&frag->itpf_lock);
6821
6822 /* Didn't find last fragment, so return NULL */
6823 return (NULL);
6824 }
6825
6826 static void
6827 ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6828 {
6829 ipsec_fragcache_entry_t *fep;
6830 int i;
6831 ipsec_fragcache_entry_t *earlyfep = NULL;
6832 time_t itpf_time;
6833 int earlyexp;
6834 int earlyi = 0;
6835
6836 ASSERT(MUTEX_HELD(&frag->itpf_lock));
6837
6838 itpf_time = gethrestime_sec();
6839 earlyexp = itpf_time + 10000;
6840
6841 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6842 fep = (frag->itpf_ptr)[i];
6843 while (fep) {
6844 if (fep->itpfe_exp < itpf_time) {
6845 /* found */
6846 fep = fragcache_delentry(i, fep, frag, ipss);
6847 } else {
6848 if (fep->itpfe_exp < earlyexp) {
6849 earlyfep = fep;
6850 earlyexp = fep->itpfe_exp;
6851 earlyi = i;
6852 }
6853 fep = fep->itpfe_next;
6854 }
6855 }
6856 }
6857
6858 frag->itpf_expire_hint = earlyexp;
6859
6860 /* if (!found) */
6861 if (frag->itpf_freelist == NULL)
6862 (void) fragcache_delentry(earlyi, earlyfep, frag, ipss);
6863 }
6864
6865 static ipsec_fragcache_entry_t *
6866 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
6867 ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6868 {
6869 ipsec_fragcache_entry_t *targp;
6870 ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
6871
6872 ASSERT(MUTEX_HELD(&frag->itpf_lock));
6873
6874 /* Free up any fragment list still in cache entry */
6875 if (fep->itpfe_fraglist != NULL) {
6876 ip_drop_packet_chain(fep->itpfe_fraglist,
6877 ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL,
6878 DROPPER(ipss, ipds_spd_expired_frags),
6879 &ipss->ipsec_spd_dropper);
6880 }
6881 fep->itpfe_fraglist = NULL;
6882
6883 targp = (frag->itpf_ptr)[slot];
6884 ASSERT(targp != 0);
6885
6886 if (targp == fep) {
6887 /* unlink from head of hash chain */
6888 (frag->itpf_ptr)[slot] = nextp;
6889 /* link into free list */
6890 fep->itpfe_next = frag->itpf_freelist;
6891 frag->itpf_freelist = fep;
6892 return (nextp);
6893 }
6894
6895 /* maybe should use double linked list to make update faster */
6896 /* must be past front of chain */
6897 while (targp) {
6898 if (targp->itpfe_next == fep) {
6899 /* unlink from hash chain */
6900 targp->itpfe_next = nextp;
6901 /* link into free list */
6902 fep->itpfe_next = frag->itpf_freelist;
6903 frag->itpf_freelist = fep;
6904 return (nextp);
6905 }
6906 targp = targp->itpfe_next;
6907 ASSERT(targp != 0);
6908 }
6909 /* NOTREACHED */
6910 return (NULL);
6911 }