1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2019, Joyent, Inc.
25 * Copyright (c) 2016 by Delphix. All rights reserved.
26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27 */
28
29 /*
30 * Zones
31 *
32 * A zone is a named collection of processes, namespace constraints,
33 * and other system resources which comprise a secure and manageable
34 * application containment facility.
35 *
36 * Zones (represented by the reference counted zone_t) are tracked in
37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
38 * (zoneid_t) are used to track zone association. Zone IDs are
39 * dynamically generated when the zone is created; if a persistent
40 * identifier is needed (core files, accounting logs, audit trail,
41 * etc.), the zone name should be used.
42 *
43 *
44 * Global Zone:
45 *
46 * The global zone (zoneid 0) is automatically associated with all
47 * system resources that have not been bound to a user-created zone.
48 * This means that even systems where zones are not in active use
49 * have a global zone, and all processes, mounts, etc. are
50 * associated with that zone. The global zone is generally
51 * unconstrained in terms of privileges and access, though the usual
52 * credential and privilege based restrictions apply.
53 *
54 *
55 * Zone States:
56 *
57 * The states in which a zone may be in and the transitions are as
58 * follows:
59 *
60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
61 * initialized zone is added to the list of active zones on the system but
62 * isn't accessible.
63 *
64 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
65 * not yet completed. Not possible to enter the zone, but attributes can
66 * be retrieved.
67 *
68 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
69 * ready. The zone is made visible after the ZSD constructor callbacks are
70 * executed. A zone remains in this state until it transitions into
71 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
72 *
73 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
74 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
75 * state.
76 *
77 * ZONE_IS_RUNNING: The zone is open for business: zsched has
78 * successfully started init. A zone remains in this state until
79 * zone_shutdown() is called.
80 *
81 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
82 * killing all processes running in the zone. The zone remains
83 * in this state until there are no more user processes running in the zone.
84 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
85 * Since zone_shutdown() is restartable, it may be called successfully
86 * multiple times for the same zone_t. Setting of the zone's state to
87 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
88 * the zone's status without worrying about it being a moving target.
89 *
90 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
91 * are no more user processes in the zone. The zone remains in this
92 * state until there are no more kernel threads associated with the
93 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
94 * fail.
95 *
96 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
97 * have exited. zone_shutdown() returns. Henceforth it is not possible to
98 * join the zone or create kernel threads therein.
99 *
100 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
101 * remains in this state until zsched exits. Calls to zone_find_by_*()
102 * return NULL from now on.
103 *
104 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
105 * processes or threads doing work on behalf of the zone. The zone is
106 * removed from the list of active zones. zone_destroy() returns, and
107 * the zone can be recreated.
108 *
109 * ZONE_IS_FREE (internal state): All references have been dropped and
110 * the zone_t is no longer in the zone_active nor zone_deathrow lists.
111 * The zone_t is in the process of being freed. This state exists
112 * only for publishing a sysevent to indicate that the zone by this
113 * name can be booted again.
114 *
115 * Threads can wait for the zone to enter a requested state (other than
116 * ZONE_IS_FREE) by using zone_status_wait() or zone_status_timedwait()
117 * with the desired state passed in as an argument. Zone state transitions
118 * are uni-directional; it is not possible to move back to an earlier state.
119 *
120 *
121 * Zone-Specific Data:
122 *
123 * Subsystems needing to maintain zone-specific data can store that
124 * data using the ZSD mechanism. This provides a zone-specific data
125 * store, similar to thread-specific data (see pthread_getspecific(3C)
126 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
127 * to register callbacks to be invoked when a zone is created, shut
128 * down, or destroyed. This can be used to initialize zone-specific
129 * data for new zones and to clean up when zones go away.
130 *
131 *
132 * Data Structures:
133 *
134 * The per-zone structure (zone_t) is reference counted, and freed
135 * when all references are released. zone_hold and zone_rele can be
136 * used to adjust the reference count. In addition, reference counts
137 * associated with the cred_t structure are tracked separately using
138 * zone_cred_hold and zone_cred_rele.
139 *
140 * Pointers to active zone_t's are stored in two hash tables; one
141 * for searching by id, the other for searching by name. Lookups
142 * can be performed on either basis, using zone_find_by_id and
143 * zone_find_by_name. Both return zone_t pointers with the zone
144 * held, so zone_rele should be called when the pointer is no longer
145 * needed. Zones can also be searched by path; zone_find_by_path
146 * returns the zone with which a path name is associated (global
147 * zone if the path is not within some other zone's file system
148 * hierarchy). This currently requires iterating through each zone,
149 * so it is slower than an id or name search via a hash table.
150 *
151 *
152 * Locking:
153 *
154 * zonehash_lock: This is a top-level global lock used to protect the
155 * zone hash tables and lists. Zones cannot be created or destroyed
156 * while this lock is held.
157 * zone_status_lock: This is a global lock protecting zone state.
158 * Zones cannot change state while this lock is held. It also
159 * protects the list of kernel threads associated with a zone.
160 * zone_lock: This is a per-zone lock used to protect several fields of
161 * the zone_t (see <sys/zone.h> for details). In addition, holding
162 * this lock means that the zone cannot go away.
163 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
164 * related to the zone.max-lwps rctl.
165 * zone_mem_lock: This is a per-zone lock used to protect the fields
166 * related to the zone.max-locked-memory and zone.max-swap rctls.
167 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
168 * currently just max_lofi
169 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
170 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
171 * list (a list of zones in the ZONE_IS_DEAD state).
172 *
173 * Ordering requirements:
174 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
175 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
176 *
177 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
178 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
179 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
180 *
181 * Blocking memory allocations are permitted while holding any of the
182 * zone locks.
183 *
184 *
185 * System Call Interface:
186 *
187 * The zone subsystem can be managed and queried from user level with
188 * the following system calls (all subcodes of the primary "zone"
189 * system call):
190 * - zone_create: creates a zone with selected attributes (name,
191 * root path, privileges, resource controls, ZFS datasets)
192 * - zone_enter: allows the current process to enter a zone
193 * - zone_getattr: reports attributes of a zone
194 * - zone_setattr: set attributes of a zone
195 * - zone_boot: set 'init' running for the zone
196 * - zone_list: lists all zones active in the system
197 * - zone_lookup: looks up zone id based on name
198 * - zone_shutdown: initiates shutdown process (see states above)
199 * - zone_destroy: completes shutdown process (see states above)
200 *
201 */
202
203 #include <sys/priv_impl.h>
204 #include <sys/cred.h>
205 #include <c2/audit.h>
206 #include <sys/debug.h>
207 #include <sys/file.h>
208 #include <sys/kmem.h>
209 #include <sys/kstat.h>
210 #include <sys/mutex.h>
211 #include <sys/note.h>
212 #include <sys/pathname.h>
213 #include <sys/proc.h>
214 #include <sys/project.h>
215 #include <sys/sysevent.h>
216 #include <sys/task.h>
217 #include <sys/systm.h>
218 #include <sys/types.h>
219 #include <sys/utsname.h>
220 #include <sys/vnode.h>
221 #include <sys/vfs.h>
222 #include <sys/systeminfo.h>
223 #include <sys/policy.h>
224 #include <sys/cred_impl.h>
225 #include <sys/contract_impl.h>
226 #include <sys/contract/process_impl.h>
227 #include <sys/class.h>
228 #include <sys/pool.h>
229 #include <sys/pool_pset.h>
230 #include <sys/pset.h>
231 #include <sys/strlog.h>
232 #include <sys/sysmacros.h>
233 #include <sys/callb.h>
234 #include <sys/vmparam.h>
235 #include <sys/corectl.h>
236 #include <sys/ipc_impl.h>
237 #include <sys/klpd.h>
238
239 #include <sys/door.h>
240 #include <sys/cpuvar.h>
241 #include <sys/sdt.h>
242
243 #include <sys/uadmin.h>
244 #include <sys/session.h>
245 #include <sys/cmn_err.h>
246 #include <sys/modhash.h>
247 #include <sys/sunddi.h>
248 #include <sys/nvpair.h>
249 #include <sys/rctl.h>
250 #include <sys/fss.h>
251 #include <sys/brand.h>
252 #include <sys/zone.h>
253 #include <net/if.h>
254 #include <sys/cpucaps.h>
255 #include <vm/seg.h>
256 #include <sys/mac.h>
257 #include <sys/rt.h>
258 #include <sys/fx.h>
259
260 /*
261 * This constant specifies the number of seconds that threads waiting for
262 * subsystems to release a zone's general-purpose references will wait before
263 * they log the zone's reference counts. The constant's value shouldn't
264 * be so small that reference counts are unnecessarily reported for zones
265 * whose references are slowly released. On the other hand, it shouldn't be so
266 * large that users reboot their systems out of frustration over hung zones
267 * before the system logs the zones' reference counts.
268 */
269 #define ZONE_DESTROY_TIMEOUT_SECS 60
270
271 /* List of data link IDs which are accessible from the zone */
272 typedef struct zone_dl {
273 datalink_id_t zdl_id;
274 nvlist_t *zdl_net;
275 list_node_t zdl_linkage;
276 } zone_dl_t;
277
278 /*
279 * cv used to signal that all references to the zone have been released. This
280 * needs to be global since there may be multiple waiters, and the first to
281 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
282 */
283 static kcondvar_t zone_destroy_cv;
284 /*
285 * Lock used to serialize access to zone_cv. This could have been per-zone,
286 * but then we'd need another lock for zone_destroy_cv, and why bother?
287 */
288 static kmutex_t zone_status_lock;
289
290 /*
291 * ZSD-related global variables.
292 */
293 static kmutex_t zsd_key_lock; /* protects the following two */
294 /*
295 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
296 */
297 static zone_key_t zsd_keyval = 0;
298 /*
299 * Global list of registered keys. We use this when a new zone is created.
300 */
301 static list_t zsd_registered_keys;
302
303 int zone_hash_size = 256;
304 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
305 static kmutex_t zonehash_lock;
306 static uint_t zonecount;
307 static id_space_t *zoneid_space;
308
309 /*
310 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
311 * kernel proper runs, and which manages all other zones.
312 *
313 * Although not declared as static, the variable "zone0" should not be used
314 * except for by code that needs to reference the global zone early on in boot,
315 * before it is fully initialized. All other consumers should use
316 * 'global_zone'.
317 */
318 zone_t zone0;
319 zone_zfs_io_t zone0_zp_zfs;
320 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
321
322 /*
323 * List of active zones, protected by zonehash_lock.
324 */
325 static list_t zone_active;
326
327 /*
328 * List of destroyed zones that still have outstanding cred references.
329 * Used for debugging. Uses a separate lock to avoid lock ordering
330 * problems in zone_free.
331 */
332 static list_t zone_deathrow;
333 static kmutex_t zone_deathrow_lock;
334
335 /* This can be dynamically reduced if various subsystems hit internal limits. */
336 uint_t maxzones = MAX_ZONES;
337
338 /* Event channel to sent zone state change notifications */
339 evchan_t *zone_event_chan;
340
341 /*
342 * This table holds the mapping from kernel zone states to
343 * states visible in the state notification API.
344 * The idea is that we only expose "obvious" states and
345 * do not expose states which are just implementation details.
346 */
347 const char *zone_status_table[] = {
348 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
349 ZONE_EVENT_INITIALIZED, /* initialized */
350 ZONE_EVENT_READY, /* ready */
351 ZONE_EVENT_READY, /* booting */
352 ZONE_EVENT_RUNNING, /* running */
353 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
354 ZONE_EVENT_SHUTTING_DOWN, /* empty */
355 ZONE_EVENT_SHUTTING_DOWN, /* down */
356 ZONE_EVENT_SHUTTING_DOWN, /* dying */
357 ZONE_EVENT_UNINITIALIZED, /* dead */
358 ZONE_EVENT_FREE, /* free */
359 };
360
361 /*
362 * This array contains the names of the subsystems listed in zone_ref_subsys_t
363 * (see sys/zone.h).
364 */
365 static char *zone_ref_subsys_names[] = {
366 "NFS", /* ZONE_REF_NFS */
367 "NFSv4", /* ZONE_REF_NFSV4 */
368 "SMBFS", /* ZONE_REF_SMBFS */
369 "MNTFS", /* ZONE_REF_MNTFS */
370 "LOFI", /* ZONE_REF_LOFI */
371 "VFS", /* ZONE_REF_VFS */
372 "IPC" /* ZONE_REF_IPC */
373 };
374
375 /*
376 * This isn't static so lint doesn't complain.
377 */
378 rctl_hndl_t rc_zone_cpu_shares;
379 rctl_hndl_t rc_zone_locked_mem;
380 rctl_hndl_t rc_zone_max_swap;
381 rctl_hndl_t rc_zone_phys_mem;
382 rctl_hndl_t rc_zone_max_lofi;
383 rctl_hndl_t rc_zone_cpu_cap;
384 rctl_hndl_t rc_zone_cpu_baseline;
385 rctl_hndl_t rc_zone_cpu_burst_time;
386 rctl_hndl_t rc_zone_zfs_io_pri;
387 rctl_hndl_t rc_zone_nlwps;
388 rctl_hndl_t rc_zone_nprocs;
389 rctl_hndl_t rc_zone_shmmax;
390 rctl_hndl_t rc_zone_shmmni;
391 rctl_hndl_t rc_zone_semmni;
392 rctl_hndl_t rc_zone_msgmni;
393
394 const char * const zone_default_initname = "/sbin/init";
395 static char * const zone_prefix = "/zone/";
396 static int zone_shutdown(zoneid_t zoneid);
397 static int zone_add_datalink(zoneid_t, datalink_id_t);
398 static int zone_remove_datalink(zoneid_t, datalink_id_t);
399 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
400 static int zone_set_network(zoneid_t, zone_net_data_t *);
401 static int zone_get_network(zoneid_t, zone_net_data_t *);
402 static void zone_status_set(zone_t *, zone_status_t);
403
404 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
405
406 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
407 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
408 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
409 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
410 zone_key_t);
411 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
412 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
413 kmutex_t *);
414 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
415 kmutex_t *);
416
417 /*
418 * Bump this number when you alter the zone syscall interfaces; this is
419 * because we need to have support for previous API versions in libc
420 * to support patching; libc calls into the kernel to determine this number.
421 *
422 * Version 1 of the API is the version originally shipped with Solaris 10
423 * Version 2 alters the zone_create system call in order to support more
424 * arguments by moving the args into a structure; and to do better
425 * error reporting when zone_create() fails.
426 * Version 3 alters the zone_create system call in order to support the
427 * import of ZFS datasets to zones.
428 * Version 4 alters the zone_create system call in order to support
429 * Trusted Extensions.
430 * Version 5 alters the zone_boot system call, and converts its old
431 * bootargs parameter to be set by the zone_setattr API instead.
432 * Version 6 adds the flag argument to zone_create.
433 * Version 7 adds the requested zoneid to zone_create.
434 */
435 static const int ZONE_SYSCALL_API_VERSION = 7;
436
437 /*
438 * "zone_pdata" is an array indexed by zoneid. It is used to store "persistent"
439 * data which can be referenced independently of the zone_t structure. This
440 * data falls into two categories;
441 * 1) pages and RSS data associated with processes inside a zone
442 * 2) in-flight ZFS I/O data
443 *
444 * Each member of zone_persist_t stores the zone's current page usage, its page
445 * limit, a flag indicating if the zone is over its physical memory cap and
446 * various page-related statistics. The zpers_over flag is the interface for
447 * the page scanner to use when reclaiming pages for zones that are over their
448 * cap. The zone_persist_t structure also includes a mutex and a reference to a
449 * zone_zfs_io_t structure used for tracking the zone's ZFS I/O data.
450 *
451 * All zone physical memory cap data is stored in this array instead of within
452 * the zone structure itself. This is because zone structures come and go, but
453 * paging-related work can be asynchronous to any particular zone. In,
454 * particular:
455 * 1) Page scanning to reclaim pages occurs from a kernel thread that is not
456 * associated with any zone.
457 * 2) Freeing segkp pages can occur long after the zone which first
458 * instantiated those pages has gone away.
459 * We want to be able to account for pages/zone without constantly having to
460 * take extra locks and finding the relevant zone structure, particularly during
461 * page scanning.
462 *
463 * The page scanner can run when "zone_num_over_cap" is non-zero. It can
464 * do a direct lookup of a zoneid into the "zone_pdata" array to determine
465 * if that zone is over its cap.
466 *
467 * There is no locking for the page scanner to perform these two checks.
468 * We cannot have the page scanner blocking normal paging activity for
469 * running processes. Because the physical memory cap is a soft cap, it is
470 * fine for the scanner to simply read the current state of the counter and
471 * the zone's zpers_over entry in the array. The scanner should never modify
472 * either of these items. Internally the entries and the counter are managed
473 * with the "zone_physcap_lock" mutex as we add/remove mappings to pages. We
474 * take care to ensure that we only take the zone_physcap_lock mutex when a
475 * zone is transitioning over/under its physical memory cap.
476 *
477 * The "zone_incr_capped" and "zone_decr_capped" functions are used to manage
478 * the "zone_pdata" array and associated counter.
479 *
480 * The zone_persist_t structure tracks the zone's physical cap and phyiscal
481 * usage in terms of pages. These values are currently defined as uint32. Thus,
482 * the maximum number of pages we can track is a UINT_MAX-1 (4,294,967,295)
483 * since UINT_MAX means the zone's RSS is unlimited. Assuming a 4k page size, a
484 * zone's maximum RSS is limited to 17.5 TB and twice that with an 8k page size.
485 * In the future we may need to expand these counters to 64-bit, but for now
486 * we're using 32-bit to conserve memory, since this array is statically
487 * allocated within the kernel based on the maximum number of zones supported.
488 *
489 * With respect to the zone_zfs_io_t referenced by the zone_persist_t, under
490 * a heavy I/O workload, the "zonehash_lock" would become extremely hot if we
491 * had to continuously find the zone structure associated with an I/O that has
492 * just completed. To avoid that overhead, we track the I/O data within the
493 * zone_zfs_io_t instead. We can directly access that data without having to
494 * lookup the full zone_t structure.
495 */
496 uint_t zone_num_over_cap;
497 zone_persist_t zone_pdata[MAX_ZONES];
498 static kmutex_t zone_physcap_lock;
499
500 /*
501 * Certain filesystems (such as NFS and autofs) need to know which zone
502 * the mount is being placed in. Because of this, we need to be able to
503 * ensure that a zone isn't in the process of being created/destroyed such
504 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
505 * it gets added the list of mounted zones, it ends up on the wrong zone's
506 * mount list. Since a zone can't reside on an NFS file system, we don't
507 * have to worry about the zonepath itself.
508 *
509 * The following functions: block_mounts()/resume_mounts() and
510 * mount_in_progress()/mount_completed() are used by zones and the VFS
511 * layer (respectively) to synchronize zone state transitions and new
512 * mounts within a zone. This syncronization is on a per-zone basis, so
513 * activity for one zone will not interfere with activity for another zone.
514 *
515 * The semantics are like a reader-reader lock such that there may
516 * either be multiple mounts (or zone state transitions, if that weren't
517 * serialized by zonehash_lock) in progress at the same time, but not
518 * both.
519 *
520 * We use cv's so the user can ctrl-C out of the operation if it's
521 * taking too long.
522 *
523 * The semantics are such that there is unfair bias towards the
524 * "current" operation. This means that zone halt may starve if
525 * there is a rapid succession of new mounts coming in to the zone.
526 */
527 /*
528 * Prevent new mounts from progressing to the point of calling
529 * VFS_MOUNT(). If there are already mounts in this "region", wait for
530 * them to complete.
531 */
532 static int
533 block_mounts(zone_t *zp)
534 {
535 int retval = 0;
536
537 /*
538 * Since it may block for a long time, block_mounts() shouldn't be
539 * called with zonehash_lock held.
540 */
541 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
542 mutex_enter(&zp->zone_mount_lock);
543 while (zp->zone_mounts_in_progress > 0) {
544 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
545 goto signaled;
546 }
547 /*
548 * A negative value of mounts_in_progress indicates that mounts
549 * have been blocked by (-mounts_in_progress) different callers
550 * (remotely possible if two threads enter zone_shutdown at the same
551 * time).
552 */
553 zp->zone_mounts_in_progress--;
554 retval = 1;
555 signaled:
556 mutex_exit(&zp->zone_mount_lock);
557 return (retval);
558 }
559
560 /*
561 * The VFS layer may progress with new mounts as far as we're concerned.
562 * Allow them to progress if we were the last obstacle.
563 */
564 static void
565 resume_mounts(zone_t *zp)
566 {
567 mutex_enter(&zp->zone_mount_lock);
568 if (++zp->zone_mounts_in_progress == 0)
569 cv_broadcast(&zp->zone_mount_cv);
570 mutex_exit(&zp->zone_mount_lock);
571 }
572
573 /*
574 * The VFS layer is busy with a mount; this zone should wait until all
575 * of its mounts are completed to progress.
576 */
577 void
578 mount_in_progress(zone_t *zp)
579 {
580 mutex_enter(&zp->zone_mount_lock);
581 while (zp->zone_mounts_in_progress < 0)
582 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
583 zp->zone_mounts_in_progress++;
584 mutex_exit(&zp->zone_mount_lock);
585 }
586
587 /*
588 * VFS is done with one mount; wake up any waiting block_mounts()
589 * callers if this is the last mount.
590 */
591 void
592 mount_completed(zone_t *zp)
593 {
594 mutex_enter(&zp->zone_mount_lock);
595 if (--zp->zone_mounts_in_progress == 0)
596 cv_broadcast(&zp->zone_mount_cv);
597 mutex_exit(&zp->zone_mount_lock);
598 }
599
600 /*
601 * ZSD routines.
602 *
603 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
604 * defined by the pthread_key_create() and related interfaces.
605 *
606 * Kernel subsystems may register one or more data items and/or
607 * callbacks to be executed when a zone is created, shutdown, or
608 * destroyed.
609 *
610 * Unlike the thread counterpart, destructor callbacks will be executed
611 * even if the data pointer is NULL and/or there are no constructor
612 * callbacks, so it is the responsibility of such callbacks to check for
613 * NULL data values if necessary.
614 *
615 * The locking strategy and overall picture is as follows:
616 *
617 * When someone calls zone_key_create(), a template ZSD entry is added to the
618 * global list "zsd_registered_keys", protected by zsd_key_lock. While
619 * holding that lock all the existing zones are marked as
620 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
621 * zone_zsd list (protected by zone_lock). The global list is updated first
622 * (under zone_key_lock) to make sure that newly created zones use the
623 * most recent list of keys. Then under zonehash_lock we walk the zones
624 * and mark them. Similar locking is used in zone_key_delete().
625 *
626 * The actual create, shutdown, and destroy callbacks are done without
627 * holding any lock. And zsd_flags are used to ensure that the operations
628 * completed so that when zone_key_create (and zone_create) is done, as well as
629 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
630 * are completed.
631 *
632 * When new zones are created constructor callbacks for all registered ZSD
633 * entries will be called. That also uses the above two phases of marking
634 * what needs to be done, and then running the callbacks without holding
635 * any locks.
636 *
637 * The framework does not provide any locking around zone_getspecific() and
638 * zone_setspecific() apart from that needed for internal consistency, so
639 * callers interested in atomic "test-and-set" semantics will need to provide
640 * their own locking.
641 */
642
643 /*
644 * Helper function to find the zsd_entry associated with the key in the
645 * given list.
646 */
647 static struct zsd_entry *
648 zsd_find(list_t *l, zone_key_t key)
649 {
650 struct zsd_entry *zsd;
651
652 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
653 if (zsd->zsd_key == key) {
654 return (zsd);
655 }
656 }
657 return (NULL);
658 }
659
660 /*
661 * Helper function to find the zsd_entry associated with the key in the
662 * given list. Move it to the front of the list.
663 */
664 static struct zsd_entry *
665 zsd_find_mru(list_t *l, zone_key_t key)
666 {
667 struct zsd_entry *zsd;
668
669 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
670 if (zsd->zsd_key == key) {
671 /*
672 * Move to head of list to keep list in MRU order.
673 */
674 if (zsd != list_head(l)) {
675 list_remove(l, zsd);
676 list_insert_head(l, zsd);
677 }
678 return (zsd);
679 }
680 }
681 return (NULL);
682 }
683
684 void
685 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
686 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
687 {
688 struct zsd_entry *zsdp;
689 struct zsd_entry *t;
690 struct zone *zone;
691 zone_key_t key;
692
693 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
694 zsdp->zsd_data = NULL;
695 zsdp->zsd_create = create;
696 zsdp->zsd_shutdown = shutdown;
697 zsdp->zsd_destroy = destroy;
698
699 /*
700 * Insert in global list of callbacks. Makes future zone creations
701 * see it.
702 */
703 mutex_enter(&zsd_key_lock);
704 key = zsdp->zsd_key = ++zsd_keyval;
705 ASSERT(zsd_keyval != 0);
706 list_insert_tail(&zsd_registered_keys, zsdp);
707 mutex_exit(&zsd_key_lock);
708
709 /*
710 * Insert for all existing zones and mark them as needing
711 * a create callback.
712 */
713 mutex_enter(&zonehash_lock); /* stop the world */
714 for (zone = list_head(&zone_active); zone != NULL;
715 zone = list_next(&zone_active, zone)) {
716 zone_status_t status;
717
718 mutex_enter(&zone->zone_lock);
719
720 /* Skip zones that are on the way down or not yet up */
721 status = zone_status_get(zone);
722 if (status >= ZONE_IS_DOWN ||
723 status == ZONE_IS_UNINITIALIZED) {
724 mutex_exit(&zone->zone_lock);
725 continue;
726 }
727
728 t = zsd_find_mru(&zone->zone_zsd, key);
729 if (t != NULL) {
730 /*
731 * A zsd_configure already inserted it after
732 * we dropped zsd_key_lock above.
733 */
734 mutex_exit(&zone->zone_lock);
735 continue;
736 }
737 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
738 t->zsd_key = key;
739 t->zsd_create = create;
740 t->zsd_shutdown = shutdown;
741 t->zsd_destroy = destroy;
742 if (create != NULL) {
743 t->zsd_flags = ZSD_CREATE_NEEDED;
744 DTRACE_PROBE2(zsd__create__needed,
745 zone_t *, zone, zone_key_t, key);
746 }
747 list_insert_tail(&zone->zone_zsd, t);
748 mutex_exit(&zone->zone_lock);
749 }
750 mutex_exit(&zonehash_lock);
751
752 if (create != NULL) {
753 /* Now call the create callback for this key */
754 zsd_apply_all_zones(zsd_apply_create, key);
755 }
756 /*
757 * It is safe for consumers to use the key now, make it
758 * globally visible. Specifically zone_getspecific() will
759 * always successfully return the zone specific data associated
760 * with the key.
761 */
762 *keyp = key;
763
764 }
765
766 /*
767 * Function called when a module is being unloaded, or otherwise wishes
768 * to unregister its ZSD key and callbacks.
769 *
770 * Remove from the global list and determine the functions that need to
771 * be called under a global lock. Then call the functions without
772 * holding any locks. Finally free up the zone_zsd entries. (The apply
773 * functions need to access the zone_zsd entries to find zsd_data etc.)
774 */
775 int
776 zone_key_delete(zone_key_t key)
777 {
778 struct zsd_entry *zsdp = NULL;
779 zone_t *zone;
780
781 mutex_enter(&zsd_key_lock);
782 zsdp = zsd_find_mru(&zsd_registered_keys, key);
783 if (zsdp == NULL) {
784 mutex_exit(&zsd_key_lock);
785 return (-1);
786 }
787 list_remove(&zsd_registered_keys, zsdp);
788 mutex_exit(&zsd_key_lock);
789
790 mutex_enter(&zonehash_lock);
791 for (zone = list_head(&zone_active); zone != NULL;
792 zone = list_next(&zone_active, zone)) {
793 struct zsd_entry *del;
794
795 mutex_enter(&zone->zone_lock);
796 del = zsd_find_mru(&zone->zone_zsd, key);
797 if (del == NULL) {
798 /*
799 * Somebody else got here first e.g the zone going
800 * away.
801 */
802 mutex_exit(&zone->zone_lock);
803 continue;
804 }
805 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
806 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
807 if (del->zsd_shutdown != NULL &&
808 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
809 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
810 DTRACE_PROBE2(zsd__shutdown__needed,
811 zone_t *, zone, zone_key_t, key);
812 }
813 if (del->zsd_destroy != NULL &&
814 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
815 del->zsd_flags |= ZSD_DESTROY_NEEDED;
816 DTRACE_PROBE2(zsd__destroy__needed,
817 zone_t *, zone, zone_key_t, key);
818 }
819 mutex_exit(&zone->zone_lock);
820 }
821 mutex_exit(&zonehash_lock);
822 kmem_free(zsdp, sizeof (*zsdp));
823
824 /* Now call the shutdown and destroy callback for this key */
825 zsd_apply_all_zones(zsd_apply_shutdown, key);
826 zsd_apply_all_zones(zsd_apply_destroy, key);
827
828 /* Now we can free up the zsdp structures in each zone */
829 mutex_enter(&zonehash_lock);
830 for (zone = list_head(&zone_active); zone != NULL;
831 zone = list_next(&zone_active, zone)) {
832 struct zsd_entry *del;
833
834 mutex_enter(&zone->zone_lock);
835 del = zsd_find(&zone->zone_zsd, key);
836 if (del != NULL) {
837 list_remove(&zone->zone_zsd, del);
838 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
839 kmem_free(del, sizeof (*del));
840 }
841 mutex_exit(&zone->zone_lock);
842 }
843 mutex_exit(&zonehash_lock);
844
845 return (0);
846 }
847
848 /*
849 * ZSD counterpart of pthread_setspecific().
850 *
851 * Since all zsd callbacks, including those with no create function,
852 * have an entry in zone_zsd, if the key is registered it is part of
853 * the zone_zsd list.
854 * Return an error if the key wasn't registerd.
855 */
856 int
857 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
858 {
859 struct zsd_entry *t;
860
861 mutex_enter(&zone->zone_lock);
862 t = zsd_find_mru(&zone->zone_zsd, key);
863 if (t != NULL) {
864 /*
865 * Replace old value with new
866 */
867 t->zsd_data = (void *)data;
868 mutex_exit(&zone->zone_lock);
869 return (0);
870 }
871 mutex_exit(&zone->zone_lock);
872 return (-1);
873 }
874
875 /*
876 * ZSD counterpart of pthread_getspecific().
877 */
878 void *
879 zone_getspecific(zone_key_t key, zone_t *zone)
880 {
881 struct zsd_entry *t;
882 void *data;
883
884 mutex_enter(&zone->zone_lock);
885 t = zsd_find_mru(&zone->zone_zsd, key);
886 data = (t == NULL ? NULL : t->zsd_data);
887 mutex_exit(&zone->zone_lock);
888 return (data);
889 }
890
891 /*
892 * Function used to initialize a zone's list of ZSD callbacks and data
893 * when the zone is being created. The callbacks are initialized from
894 * the template list (zsd_registered_keys). The constructor callback is
895 * executed later (once the zone exists and with locks dropped).
896 */
897 static void
898 zone_zsd_configure(zone_t *zone)
899 {
900 struct zsd_entry *zsdp;
901 struct zsd_entry *t;
902
903 ASSERT(MUTEX_HELD(&zonehash_lock));
904 ASSERT(list_head(&zone->zone_zsd) == NULL);
905 mutex_enter(&zone->zone_lock);
906 mutex_enter(&zsd_key_lock);
907 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
908 zsdp = list_next(&zsd_registered_keys, zsdp)) {
909 /*
910 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
911 * should not have added anything to it.
912 */
913 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
914
915 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
916 t->zsd_key = zsdp->zsd_key;
917 t->zsd_create = zsdp->zsd_create;
918 t->zsd_shutdown = zsdp->zsd_shutdown;
919 t->zsd_destroy = zsdp->zsd_destroy;
920 if (zsdp->zsd_create != NULL) {
921 t->zsd_flags = ZSD_CREATE_NEEDED;
922 DTRACE_PROBE2(zsd__create__needed,
923 zone_t *, zone, zone_key_t, zsdp->zsd_key);
924 }
925 list_insert_tail(&zone->zone_zsd, t);
926 }
927 mutex_exit(&zsd_key_lock);
928 mutex_exit(&zone->zone_lock);
929 }
930
931 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
932
933 /*
934 * Helper function to execute shutdown or destructor callbacks.
935 */
936 static void
937 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
938 {
939 struct zsd_entry *t;
940
941 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
942 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
943 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
944
945 /*
946 * Run the callback solely based on what is registered for the zone
947 * in zone_zsd. The global list can change independently of this
948 * as keys are registered and unregistered and we don't register new
949 * callbacks for a zone that is in the process of going away.
950 */
951 mutex_enter(&zone->zone_lock);
952 for (t = list_head(&zone->zone_zsd); t != NULL;
953 t = list_next(&zone->zone_zsd, t)) {
954 zone_key_t key = t->zsd_key;
955
956 /* Skip if no callbacks registered */
957
958 if (ct == ZSD_SHUTDOWN) {
959 if (t->zsd_shutdown != NULL &&
960 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
961 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
962 DTRACE_PROBE2(zsd__shutdown__needed,
963 zone_t *, zone, zone_key_t, key);
964 }
965 } else {
966 if (t->zsd_destroy != NULL &&
967 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
968 t->zsd_flags |= ZSD_DESTROY_NEEDED;
969 DTRACE_PROBE2(zsd__destroy__needed,
970 zone_t *, zone, zone_key_t, key);
971 }
972 }
973 }
974 mutex_exit(&zone->zone_lock);
975
976 /* Now call the shutdown and destroy callback for this key */
977 zsd_apply_all_keys(zsd_apply_shutdown, zone);
978 zsd_apply_all_keys(zsd_apply_destroy, zone);
979
980 }
981
982 /*
983 * Called when the zone is going away; free ZSD-related memory, and
984 * destroy the zone_zsd list.
985 */
986 static void
987 zone_free_zsd(zone_t *zone)
988 {
989 struct zsd_entry *t, *next;
990
991 /*
992 * Free all the zsd_entry's we had on this zone.
993 */
994 mutex_enter(&zone->zone_lock);
995 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
996 next = list_next(&zone->zone_zsd, t);
997 list_remove(&zone->zone_zsd, t);
998 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
999 kmem_free(t, sizeof (*t));
1000 }
1001 list_destroy(&zone->zone_zsd);
1002 mutex_exit(&zone->zone_lock);
1003
1004 }
1005
1006 /*
1007 * Apply a function to all zones for particular key value.
1008 *
1009 * The applyfn has to drop zonehash_lock if it does some work, and
1010 * then reacquire it before it returns.
1011 * When the lock is dropped we don't follow list_next even
1012 * if it is possible to do so without any hazards. This is
1013 * because we want the design to allow for the list of zones
1014 * to change in any arbitrary way during the time the
1015 * lock was dropped.
1016 *
1017 * It is safe to restart the loop at list_head since the applyfn
1018 * changes the zsd_flags as it does work, so a subsequent
1019 * pass through will have no effect in applyfn, hence the loop will terminate
1020 * in at worst O(N^2).
1021 */
1022 static void
1023 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
1024 {
1025 zone_t *zone;
1026
1027 mutex_enter(&zonehash_lock);
1028 zone = list_head(&zone_active);
1029 while (zone != NULL) {
1030 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
1031 /* Lock dropped - restart at head */
1032 zone = list_head(&zone_active);
1033 } else {
1034 zone = list_next(&zone_active, zone);
1035 }
1036 }
1037 mutex_exit(&zonehash_lock);
1038 }
1039
1040 /*
1041 * Apply a function to all keys for a particular zone.
1042 *
1043 * The applyfn has to drop zonehash_lock if it does some work, and
1044 * then reacquire it before it returns.
1045 * When the lock is dropped we don't follow list_next even
1046 * if it is possible to do so without any hazards. This is
1047 * because we want the design to allow for the list of zsd callbacks
1048 * to change in any arbitrary way during the time the
1049 * lock was dropped.
1050 *
1051 * It is safe to restart the loop at list_head since the applyfn
1052 * changes the zsd_flags as it does work, so a subsequent
1053 * pass through will have no effect in applyfn, hence the loop will terminate
1054 * in at worst O(N^2).
1055 */
1056 static void
1057 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
1058 {
1059 struct zsd_entry *t;
1060
1061 mutex_enter(&zone->zone_lock);
1062 t = list_head(&zone->zone_zsd);
1063 while (t != NULL) {
1064 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
1065 /* Lock dropped - restart at head */
1066 t = list_head(&zone->zone_zsd);
1067 } else {
1068 t = list_next(&zone->zone_zsd, t);
1069 }
1070 }
1071 mutex_exit(&zone->zone_lock);
1072 }
1073
1074 /*
1075 * Call the create function for the zone and key if CREATE_NEEDED
1076 * is set.
1077 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1078 * we wait for that thread to complete so that we can ensure that
1079 * all the callbacks are done when we've looped over all zones/keys.
1080 *
1081 * When we call the create function, we drop the global held by the
1082 * caller, and return true to tell the caller it needs to re-evalute the
1083 * state.
1084 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1085 * remains held on exit.
1086 */
1087 static boolean_t
1088 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1089 zone_t *zone, zone_key_t key)
1090 {
1091 void *result;
1092 struct zsd_entry *t;
1093 boolean_t dropped;
1094
1095 if (lockp != NULL) {
1096 ASSERT(MUTEX_HELD(lockp));
1097 }
1098 if (zone_lock_held) {
1099 ASSERT(MUTEX_HELD(&zone->zone_lock));
1100 } else {
1101 mutex_enter(&zone->zone_lock);
1102 }
1103
1104 t = zsd_find(&zone->zone_zsd, key);
1105 if (t == NULL) {
1106 /*
1107 * Somebody else got here first e.g the zone going
1108 * away.
1109 */
1110 if (!zone_lock_held)
1111 mutex_exit(&zone->zone_lock);
1112 return (B_FALSE);
1113 }
1114 dropped = B_FALSE;
1115 if (zsd_wait_for_inprogress(zone, t, lockp))
1116 dropped = B_TRUE;
1117
1118 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1119 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1120 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1121 DTRACE_PROBE2(zsd__create__inprogress,
1122 zone_t *, zone, zone_key_t, key);
1123 mutex_exit(&zone->zone_lock);
1124 if (lockp != NULL)
1125 mutex_exit(lockp);
1126
1127 dropped = B_TRUE;
1128 ASSERT(t->zsd_create != NULL);
1129 DTRACE_PROBE2(zsd__create__start,
1130 zone_t *, zone, zone_key_t, key);
1131
1132 result = (*t->zsd_create)(zone->zone_id);
1133
1134 DTRACE_PROBE2(zsd__create__end,
1135 zone_t *, zone, voidn *, result);
1136
1137 ASSERT(result != NULL);
1138 if (lockp != NULL)
1139 mutex_enter(lockp);
1140 mutex_enter(&zone->zone_lock);
1141 t->zsd_data = result;
1142 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1143 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1144 cv_broadcast(&t->zsd_cv);
1145 DTRACE_PROBE2(zsd__create__completed,
1146 zone_t *, zone, zone_key_t, key);
1147 }
1148 if (!zone_lock_held)
1149 mutex_exit(&zone->zone_lock);
1150 return (dropped);
1151 }
1152
1153 /*
1154 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1155 * is set.
1156 * If some other thread gets here first and sets *_INPROGRESS, then
1157 * we wait for that thread to complete so that we can ensure that
1158 * all the callbacks are done when we've looped over all zones/keys.
1159 *
1160 * When we call the shutdown function, we drop the global held by the
1161 * caller, and return true to tell the caller it needs to re-evalute the
1162 * state.
1163 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1164 * remains held on exit.
1165 */
1166 static boolean_t
1167 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1168 zone_t *zone, zone_key_t key)
1169 {
1170 struct zsd_entry *t;
1171 void *data;
1172 boolean_t dropped;
1173
1174 if (lockp != NULL) {
1175 ASSERT(MUTEX_HELD(lockp));
1176 }
1177 if (zone_lock_held) {
1178 ASSERT(MUTEX_HELD(&zone->zone_lock));
1179 } else {
1180 mutex_enter(&zone->zone_lock);
1181 }
1182
1183 t = zsd_find(&zone->zone_zsd, key);
1184 if (t == NULL) {
1185 /*
1186 * Somebody else got here first e.g the zone going
1187 * away.
1188 */
1189 if (!zone_lock_held)
1190 mutex_exit(&zone->zone_lock);
1191 return (B_FALSE);
1192 }
1193 dropped = B_FALSE;
1194 if (zsd_wait_for_creator(zone, t, lockp))
1195 dropped = B_TRUE;
1196
1197 if (zsd_wait_for_inprogress(zone, t, lockp))
1198 dropped = B_TRUE;
1199
1200 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1201 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1202 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1203 DTRACE_PROBE2(zsd__shutdown__inprogress,
1204 zone_t *, zone, zone_key_t, key);
1205 mutex_exit(&zone->zone_lock);
1206 if (lockp != NULL)
1207 mutex_exit(lockp);
1208 dropped = B_TRUE;
1209
1210 ASSERT(t->zsd_shutdown != NULL);
1211 data = t->zsd_data;
1212
1213 DTRACE_PROBE2(zsd__shutdown__start,
1214 zone_t *, zone, zone_key_t, key);
1215
1216 (t->zsd_shutdown)(zone->zone_id, data);
1217 DTRACE_PROBE2(zsd__shutdown__end,
1218 zone_t *, zone, zone_key_t, key);
1219
1220 if (lockp != NULL)
1221 mutex_enter(lockp);
1222 mutex_enter(&zone->zone_lock);
1223 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1224 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1225 cv_broadcast(&t->zsd_cv);
1226 DTRACE_PROBE2(zsd__shutdown__completed,
1227 zone_t *, zone, zone_key_t, key);
1228 }
1229 if (!zone_lock_held)
1230 mutex_exit(&zone->zone_lock);
1231 return (dropped);
1232 }
1233
1234 /*
1235 * Call the destroy function for the zone and key if DESTROY_NEEDED
1236 * is set.
1237 * If some other thread gets here first and sets *_INPROGRESS, then
1238 * we wait for that thread to complete so that we can ensure that
1239 * all the callbacks are done when we've looped over all zones/keys.
1240 *
1241 * When we call the destroy function, we drop the global held by the
1242 * caller, and return true to tell the caller it needs to re-evalute the
1243 * state.
1244 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1245 * remains held on exit.
1246 */
1247 static boolean_t
1248 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1249 zone_t *zone, zone_key_t key)
1250 {
1251 struct zsd_entry *t;
1252 void *data;
1253 boolean_t dropped;
1254
1255 if (lockp != NULL) {
1256 ASSERT(MUTEX_HELD(lockp));
1257 }
1258 if (zone_lock_held) {
1259 ASSERT(MUTEX_HELD(&zone->zone_lock));
1260 } else {
1261 mutex_enter(&zone->zone_lock);
1262 }
1263
1264 t = zsd_find(&zone->zone_zsd, key);
1265 if (t == NULL) {
1266 /*
1267 * Somebody else got here first e.g the zone going
1268 * away.
1269 */
1270 if (!zone_lock_held)
1271 mutex_exit(&zone->zone_lock);
1272 return (B_FALSE);
1273 }
1274 dropped = B_FALSE;
1275 if (zsd_wait_for_creator(zone, t, lockp))
1276 dropped = B_TRUE;
1277
1278 if (zsd_wait_for_inprogress(zone, t, lockp))
1279 dropped = B_TRUE;
1280
1281 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1282 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1283 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1284 DTRACE_PROBE2(zsd__destroy__inprogress,
1285 zone_t *, zone, zone_key_t, key);
1286 mutex_exit(&zone->zone_lock);
1287 if (lockp != NULL)
1288 mutex_exit(lockp);
1289 dropped = B_TRUE;
1290
1291 ASSERT(t->zsd_destroy != NULL);
1292 data = t->zsd_data;
1293 DTRACE_PROBE2(zsd__destroy__start,
1294 zone_t *, zone, zone_key_t, key);
1295
1296 (t->zsd_destroy)(zone->zone_id, data);
1297 DTRACE_PROBE2(zsd__destroy__end,
1298 zone_t *, zone, zone_key_t, key);
1299
1300 if (lockp != NULL)
1301 mutex_enter(lockp);
1302 mutex_enter(&zone->zone_lock);
1303 t->zsd_data = NULL;
1304 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1305 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1306 cv_broadcast(&t->zsd_cv);
1307 DTRACE_PROBE2(zsd__destroy__completed,
1308 zone_t *, zone, zone_key_t, key);
1309 }
1310 if (!zone_lock_held)
1311 mutex_exit(&zone->zone_lock);
1312 return (dropped);
1313 }
1314
1315 /*
1316 * Wait for any CREATE_NEEDED flag to be cleared.
1317 * Returns true if lockp was temporarily dropped while waiting.
1318 */
1319 static boolean_t
1320 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1321 {
1322 boolean_t dropped = B_FALSE;
1323
1324 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1325 DTRACE_PROBE2(zsd__wait__for__creator,
1326 zone_t *, zone, struct zsd_entry *, t);
1327 if (lockp != NULL) {
1328 dropped = B_TRUE;
1329 mutex_exit(lockp);
1330 }
1331 cv_wait(&t->zsd_cv, &zone->zone_lock);
1332 if (lockp != NULL) {
1333 /* First drop zone_lock to preserve order */
1334 mutex_exit(&zone->zone_lock);
1335 mutex_enter(lockp);
1336 mutex_enter(&zone->zone_lock);
1337 }
1338 }
1339 return (dropped);
1340 }
1341
1342 /*
1343 * Wait for any INPROGRESS flag to be cleared.
1344 * Returns true if lockp was temporarily dropped while waiting.
1345 */
1346 static boolean_t
1347 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1348 {
1349 boolean_t dropped = B_FALSE;
1350
1351 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1352 DTRACE_PROBE2(zsd__wait__for__inprogress,
1353 zone_t *, zone, struct zsd_entry *, t);
1354 if (lockp != NULL) {
1355 dropped = B_TRUE;
1356 mutex_exit(lockp);
1357 }
1358 cv_wait(&t->zsd_cv, &zone->zone_lock);
1359 if (lockp != NULL) {
1360 /* First drop zone_lock to preserve order */
1361 mutex_exit(&zone->zone_lock);
1362 mutex_enter(lockp);
1363 mutex_enter(&zone->zone_lock);
1364 }
1365 }
1366 return (dropped);
1367 }
1368
1369 /*
1370 * Frees memory associated with the zone dataset list.
1371 */
1372 static void
1373 zone_free_datasets(zone_t *zone)
1374 {
1375 zone_dataset_t *t, *next;
1376
1377 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1378 next = list_next(&zone->zone_datasets, t);
1379 list_remove(&zone->zone_datasets, t);
1380 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1381 kmem_free(t, sizeof (*t));
1382 }
1383 list_destroy(&zone->zone_datasets);
1384 }
1385
1386 /*
1387 * zone.cpu-shares resource control support.
1388 */
1389 /*ARGSUSED*/
1390 static rctl_qty_t
1391 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1392 {
1393 ASSERT(MUTEX_HELD(&p->p_lock));
1394 return (p->p_zone->zone_shares);
1395 }
1396
1397 /*ARGSUSED*/
1398 static int
1399 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1400 rctl_qty_t nv)
1401 {
1402 ASSERT(MUTEX_HELD(&p->p_lock));
1403 ASSERT(e->rcep_t == RCENTITY_ZONE);
1404 if (e->rcep_p.zone == NULL)
1405 return (0);
1406
1407 e->rcep_p.zone->zone_shares = nv;
1408 return (0);
1409 }
1410
1411 static rctl_ops_t zone_cpu_shares_ops = {
1412 rcop_no_action,
1413 zone_cpu_shares_usage,
1414 zone_cpu_shares_set,
1415 rcop_no_test
1416 };
1417
1418 /*
1419 * zone.cpu-cap resource control support.
1420 */
1421 /*ARGSUSED*/
1422 static rctl_qty_t
1423 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1424 {
1425 ASSERT(MUTEX_HELD(&p->p_lock));
1426 return (cpucaps_zone_get(p->p_zone));
1427 }
1428
1429 /*ARGSUSED*/
1430 static int
1431 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1432 rctl_qty_t nv)
1433 {
1434 zone_t *zone = e->rcep_p.zone;
1435
1436 ASSERT(MUTEX_HELD(&p->p_lock));
1437 ASSERT(e->rcep_t == RCENTITY_ZONE);
1438
1439 if (zone == NULL)
1440 return (0);
1441
1442 /*
1443 * set cap to the new value.
1444 */
1445 return (cpucaps_zone_set(zone, nv));
1446 }
1447
1448 static rctl_ops_t zone_cpu_cap_ops = {
1449 rcop_no_action,
1450 zone_cpu_cap_get,
1451 zone_cpu_cap_set,
1452 rcop_no_test
1453 };
1454
1455 /*ARGSUSED*/
1456 static rctl_qty_t
1457 zone_cpu_base_get(rctl_t *rctl, struct proc *p)
1458 {
1459 ASSERT(MUTEX_HELD(&p->p_lock));
1460 return (cpucaps_zone_get_base(p->p_zone));
1461 }
1462
1463 /*
1464 * The zone cpu base is used to set the baseline CPU for the zone
1465 * so we can track when the zone is bursting.
1466 */
1467 /*ARGSUSED*/
1468 static int
1469 zone_cpu_base_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1470 rctl_qty_t nv)
1471 {
1472 zone_t *zone = e->rcep_p.zone;
1473
1474 ASSERT(MUTEX_HELD(&p->p_lock));
1475 ASSERT(e->rcep_t == RCENTITY_ZONE);
1476
1477 if (zone == NULL)
1478 return (0);
1479
1480 return (cpucaps_zone_set_base(zone, nv));
1481 }
1482
1483 static rctl_ops_t zone_cpu_base_ops = {
1484 rcop_no_action,
1485 zone_cpu_base_get,
1486 zone_cpu_base_set,
1487 rcop_no_test
1488 };
1489
1490 /*ARGSUSED*/
1491 static rctl_qty_t
1492 zone_cpu_burst_time_get(rctl_t *rctl, struct proc *p)
1493 {
1494 ASSERT(MUTEX_HELD(&p->p_lock));
1495 return (cpucaps_zone_get_burst_time(p->p_zone));
1496 }
1497
1498 /*
1499 * The zone cpu burst time is used to set the amount of time CPU(s) can be
1500 * bursting for the zone.
1501 */
1502 /*ARGSUSED*/
1503 static int
1504 zone_cpu_burst_time_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1505 rctl_qty_t nv)
1506 {
1507 zone_t *zone = e->rcep_p.zone;
1508
1509 ASSERT(MUTEX_HELD(&p->p_lock));
1510 ASSERT(e->rcep_t == RCENTITY_ZONE);
1511
1512 if (zone == NULL)
1513 return (0);
1514
1515 return (cpucaps_zone_set_burst_time(zone, nv));
1516 }
1517
1518 static rctl_ops_t zone_cpu_burst_time_ops = {
1519 rcop_no_action,
1520 zone_cpu_burst_time_get,
1521 zone_cpu_burst_time_set,
1522 rcop_no_test
1523 };
1524
1525 /*
1526 * zone.zfs-io-pri resource control support (IO priority).
1527 */
1528 /*ARGSUSED*/
1529 static rctl_qty_t
1530 zone_zfs_io_pri_get(rctl_t *rctl, struct proc *p)
1531 {
1532 zone_persist_t *zp = &zone_pdata[p->p_zone->zone_id];
1533 rctl_qty_t r = 0;
1534
1535 ASSERT(MUTEX_HELD(&p->p_lock));
1536 mutex_enter(&zp->zpers_zfs_lock);
1537 if (zp->zpers_zfsp != NULL)
1538 r = (rctl_qty_t)zp->zpers_zfsp->zpers_zfs_io_pri;
1539 mutex_exit(&zp->zpers_zfs_lock);
1540
1541 return (r);
1542 }
1543
1544 /*ARGSUSED*/
1545 static int
1546 zone_zfs_io_pri_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1547 rctl_qty_t nv)
1548 {
1549 zone_t *zone = e->rcep_p.zone;
1550 zone_persist_t *zp;
1551
1552 ASSERT(MUTEX_HELD(&p->p_lock));
1553 ASSERT(e->rcep_t == RCENTITY_ZONE);
1554
1555 if (zone == NULL)
1556 return (0);
1557
1558 /*
1559 * set priority to the new value.
1560 */
1561 zp = &zone_pdata[zone->zone_id];
1562 mutex_enter(&zp->zpers_zfs_lock);
1563 if (zp->zpers_zfsp != NULL)
1564 zp->zpers_zfsp->zpers_zfs_io_pri = (uint16_t)nv;
1565 mutex_exit(&zp->zpers_zfs_lock);
1566 return (0);
1567 }
1568
1569 static rctl_ops_t zone_zfs_io_pri_ops = {
1570 rcop_no_action,
1571 zone_zfs_io_pri_get,
1572 zone_zfs_io_pri_set,
1573 rcop_no_test
1574 };
1575
1576 /*ARGSUSED*/
1577 static rctl_qty_t
1578 zone_lwps_usage(rctl_t *r, proc_t *p)
1579 {
1580 rctl_qty_t nlwps;
1581 zone_t *zone = p->p_zone;
1582
1583 ASSERT(MUTEX_HELD(&p->p_lock));
1584
1585 mutex_enter(&zone->zone_nlwps_lock);
1586 nlwps = zone->zone_nlwps;
1587 mutex_exit(&zone->zone_nlwps_lock);
1588
1589 return (nlwps);
1590 }
1591
1592 /*ARGSUSED*/
1593 static int
1594 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1595 rctl_qty_t incr, uint_t flags)
1596 {
1597 rctl_qty_t nlwps;
1598
1599 ASSERT(MUTEX_HELD(&p->p_lock));
1600 ASSERT(e->rcep_t == RCENTITY_ZONE);
1601 if (e->rcep_p.zone == NULL)
1602 return (0);
1603 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1604 nlwps = e->rcep_p.zone->zone_nlwps;
1605
1606 if (nlwps + incr > rcntl->rcv_value)
1607 return (1);
1608
1609 return (0);
1610 }
1611
1612 /*ARGSUSED*/
1613 static int
1614 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1615 {
1616 ASSERT(MUTEX_HELD(&p->p_lock));
1617 ASSERT(e->rcep_t == RCENTITY_ZONE);
1618 if (e->rcep_p.zone == NULL)
1619 return (0);
1620 e->rcep_p.zone->zone_nlwps_ctl = nv;
1621 return (0);
1622 }
1623
1624 static rctl_ops_t zone_lwps_ops = {
1625 rcop_no_action,
1626 zone_lwps_usage,
1627 zone_lwps_set,
1628 zone_lwps_test,
1629 };
1630
1631 /*ARGSUSED*/
1632 static rctl_qty_t
1633 zone_procs_usage(rctl_t *r, proc_t *p)
1634 {
1635 rctl_qty_t nprocs;
1636 zone_t *zone = p->p_zone;
1637
1638 ASSERT(MUTEX_HELD(&p->p_lock));
1639
1640 mutex_enter(&zone->zone_nlwps_lock);
1641 nprocs = zone->zone_nprocs;
1642 mutex_exit(&zone->zone_nlwps_lock);
1643
1644 return (nprocs);
1645 }
1646
1647 /*ARGSUSED*/
1648 static int
1649 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1650 rctl_qty_t incr, uint_t flags)
1651 {
1652 rctl_qty_t nprocs;
1653
1654 ASSERT(MUTEX_HELD(&p->p_lock));
1655 ASSERT(e->rcep_t == RCENTITY_ZONE);
1656 if (e->rcep_p.zone == NULL)
1657 return (0);
1658 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1659 nprocs = e->rcep_p.zone->zone_nprocs;
1660
1661 if (nprocs + incr > rcntl->rcv_value)
1662 return (1);
1663
1664 return (0);
1665 }
1666
1667 /*ARGSUSED*/
1668 static int
1669 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1670 {
1671 ASSERT(MUTEX_HELD(&p->p_lock));
1672 ASSERT(e->rcep_t == RCENTITY_ZONE);
1673 if (e->rcep_p.zone == NULL)
1674 return (0);
1675 e->rcep_p.zone->zone_nprocs_ctl = nv;
1676 return (0);
1677 }
1678
1679 static rctl_ops_t zone_procs_ops = {
1680 rcop_no_action,
1681 zone_procs_usage,
1682 zone_procs_set,
1683 zone_procs_test,
1684 };
1685
1686 /*ARGSUSED*/
1687 static rctl_qty_t
1688 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1689 {
1690 ASSERT(MUTEX_HELD(&p->p_lock));
1691 return (p->p_zone->zone_shmmax);
1692 }
1693
1694 /*ARGSUSED*/
1695 static int
1696 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1697 rctl_qty_t incr, uint_t flags)
1698 {
1699 rctl_qty_t v;
1700 ASSERT(MUTEX_HELD(&p->p_lock));
1701 ASSERT(e->rcep_t == RCENTITY_ZONE);
1702 v = e->rcep_p.zone->zone_shmmax + incr;
1703 if (v > rval->rcv_value)
1704 return (1);
1705 return (0);
1706 }
1707
1708 static rctl_ops_t zone_shmmax_ops = {
1709 rcop_no_action,
1710 zone_shmmax_usage,
1711 rcop_no_set,
1712 zone_shmmax_test
1713 };
1714
1715 /*ARGSUSED*/
1716 static rctl_qty_t
1717 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1718 {
1719 ASSERT(MUTEX_HELD(&p->p_lock));
1720 return (p->p_zone->zone_ipc.ipcq_shmmni);
1721 }
1722
1723 /*ARGSUSED*/
1724 static int
1725 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1726 rctl_qty_t incr, uint_t flags)
1727 {
1728 rctl_qty_t v;
1729 ASSERT(MUTEX_HELD(&p->p_lock));
1730 ASSERT(e->rcep_t == RCENTITY_ZONE);
1731 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1732 if (v > rval->rcv_value)
1733 return (1);
1734 return (0);
1735 }
1736
1737 static rctl_ops_t zone_shmmni_ops = {
1738 rcop_no_action,
1739 zone_shmmni_usage,
1740 rcop_no_set,
1741 zone_shmmni_test
1742 };
1743
1744 /*ARGSUSED*/
1745 static rctl_qty_t
1746 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1747 {
1748 ASSERT(MUTEX_HELD(&p->p_lock));
1749 return (p->p_zone->zone_ipc.ipcq_semmni);
1750 }
1751
1752 /*ARGSUSED*/
1753 static int
1754 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1755 rctl_qty_t incr, uint_t flags)
1756 {
1757 rctl_qty_t v;
1758 ASSERT(MUTEX_HELD(&p->p_lock));
1759 ASSERT(e->rcep_t == RCENTITY_ZONE);
1760 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1761 if (v > rval->rcv_value)
1762 return (1);
1763 return (0);
1764 }
1765
1766 static rctl_ops_t zone_semmni_ops = {
1767 rcop_no_action,
1768 zone_semmni_usage,
1769 rcop_no_set,
1770 zone_semmni_test
1771 };
1772
1773 /*ARGSUSED*/
1774 static rctl_qty_t
1775 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1776 {
1777 ASSERT(MUTEX_HELD(&p->p_lock));
1778 return (p->p_zone->zone_ipc.ipcq_msgmni);
1779 }
1780
1781 /*ARGSUSED*/
1782 static int
1783 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1784 rctl_qty_t incr, uint_t flags)
1785 {
1786 rctl_qty_t v;
1787 ASSERT(MUTEX_HELD(&p->p_lock));
1788 ASSERT(e->rcep_t == RCENTITY_ZONE);
1789 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1790 if (v > rval->rcv_value)
1791 return (1);
1792 return (0);
1793 }
1794
1795 static rctl_ops_t zone_msgmni_ops = {
1796 rcop_no_action,
1797 zone_msgmni_usage,
1798 rcop_no_set,
1799 zone_msgmni_test
1800 };
1801
1802 /*ARGSUSED*/
1803 static rctl_qty_t
1804 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1805 {
1806 rctl_qty_t q;
1807 ASSERT(MUTEX_HELD(&p->p_lock));
1808 mutex_enter(&p->p_zone->zone_mem_lock);
1809 q = p->p_zone->zone_locked_mem;
1810 mutex_exit(&p->p_zone->zone_mem_lock);
1811 return (q);
1812 }
1813
1814 /*ARGSUSED*/
1815 static int
1816 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1817 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1818 {
1819 rctl_qty_t q;
1820 zone_t *z;
1821
1822 z = e->rcep_p.zone;
1823 ASSERT(MUTEX_HELD(&p->p_lock));
1824 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1825 q = z->zone_locked_mem;
1826 if (q + incr > rcntl->rcv_value)
1827 return (1);
1828 return (0);
1829 }
1830
1831 /*ARGSUSED*/
1832 static int
1833 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1834 rctl_qty_t nv)
1835 {
1836 ASSERT(MUTEX_HELD(&p->p_lock));
1837 ASSERT(e->rcep_t == RCENTITY_ZONE);
1838 if (e->rcep_p.zone == NULL)
1839 return (0);
1840 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1841 return (0);
1842 }
1843
1844 static rctl_ops_t zone_locked_mem_ops = {
1845 rcop_no_action,
1846 zone_locked_mem_usage,
1847 zone_locked_mem_set,
1848 zone_locked_mem_test
1849 };
1850
1851 /*ARGSUSED*/
1852 static rctl_qty_t
1853 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1854 {
1855 rctl_qty_t q;
1856 zone_t *z = p->p_zone;
1857
1858 ASSERT(MUTEX_HELD(&p->p_lock));
1859 mutex_enter(&z->zone_mem_lock);
1860 q = z->zone_max_swap;
1861 mutex_exit(&z->zone_mem_lock);
1862 return (q);
1863 }
1864
1865 /*ARGSUSED*/
1866 static int
1867 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1868 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1869 {
1870 rctl_qty_t q;
1871 zone_t *z;
1872
1873 z = e->rcep_p.zone;
1874 ASSERT(MUTEX_HELD(&p->p_lock));
1875 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1876 q = z->zone_max_swap;
1877 if (q + incr > rcntl->rcv_value)
1878 return (1);
1879 return (0);
1880 }
1881
1882 /*ARGSUSED*/
1883 static int
1884 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1885 rctl_qty_t nv)
1886 {
1887 ASSERT(MUTEX_HELD(&p->p_lock));
1888 ASSERT(e->rcep_t == RCENTITY_ZONE);
1889 if (e->rcep_p.zone == NULL)
1890 return (0);
1891 e->rcep_p.zone->zone_max_swap_ctl = nv;
1892 return (0);
1893 }
1894
1895 static rctl_ops_t zone_max_swap_ops = {
1896 rcop_no_action,
1897 zone_max_swap_usage,
1898 zone_max_swap_set,
1899 zone_max_swap_test
1900 };
1901
1902 /*ARGSUSED*/
1903 static rctl_qty_t
1904 zone_phys_mem_usage(rctl_t *rctl, struct proc *p)
1905 {
1906 rctl_qty_t q;
1907 zone_persist_t *zp = &zone_pdata[p->p_zone->zone_id];
1908
1909 ASSERT(MUTEX_HELD(&p->p_lock));
1910 q = ptob(zp->zpers_pg_cnt);
1911 return (q);
1912 }
1913
1914 /*ARGSUSED*/
1915 static int
1916 zone_phys_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1917 rctl_qty_t nv)
1918 {
1919 zoneid_t zid;
1920 uint_t pg_val;
1921
1922 ASSERT(MUTEX_HELD(&p->p_lock));
1923 ASSERT(e->rcep_t == RCENTITY_ZONE);
1924 if (e->rcep_p.zone == NULL)
1925 return (0);
1926 zid = e->rcep_p.zone->zone_id;
1927 if (nv == UINT64_MAX) {
1928 pg_val = UINT32_MAX;
1929 } else {
1930 uint64_t pages = btop(nv);
1931
1932 /*
1933 * Return from RCTLOP_SET is always ignored so just clamp an
1934 * out-of-range value to our largest "limited" value.
1935 */
1936 if (pages >= UINT32_MAX) {
1937 pg_val = UINT32_MAX - 1;
1938 } else {
1939 pg_val = (uint_t)pages;
1940 }
1941 }
1942 zone_pdata[zid].zpers_pg_limit = pg_val;
1943 return (0);
1944 }
1945
1946 static rctl_ops_t zone_phys_mem_ops = {
1947 rcop_no_action,
1948 zone_phys_mem_usage,
1949 zone_phys_mem_set,
1950 rcop_no_test
1951 };
1952
1953 /*ARGSUSED*/
1954 static rctl_qty_t
1955 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1956 {
1957 rctl_qty_t q;
1958 zone_t *z = p->p_zone;
1959
1960 ASSERT(MUTEX_HELD(&p->p_lock));
1961 mutex_enter(&z->zone_rctl_lock);
1962 q = z->zone_max_lofi;
1963 mutex_exit(&z->zone_rctl_lock);
1964 return (q);
1965 }
1966
1967 /*ARGSUSED*/
1968 static int
1969 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1970 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1971 {
1972 rctl_qty_t q;
1973 zone_t *z;
1974
1975 z = e->rcep_p.zone;
1976 ASSERT(MUTEX_HELD(&p->p_lock));
1977 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1978 q = z->zone_max_lofi;
1979 if (q + incr > rcntl->rcv_value)
1980 return (1);
1981 return (0);
1982 }
1983
1984 /*ARGSUSED*/
1985 static int
1986 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1987 rctl_qty_t nv)
1988 {
1989 ASSERT(MUTEX_HELD(&p->p_lock));
1990 ASSERT(e->rcep_t == RCENTITY_ZONE);
1991 if (e->rcep_p.zone == NULL)
1992 return (0);
1993 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1994 return (0);
1995 }
1996
1997 static rctl_ops_t zone_max_lofi_ops = {
1998 rcop_no_action,
1999 zone_max_lofi_usage,
2000 zone_max_lofi_set,
2001 zone_max_lofi_test
2002 };
2003
2004 /*
2005 * Helper function to brand the zone with a unique ID.
2006 */
2007 static void
2008 zone_uniqid(zone_t *zone)
2009 {
2010 static uint64_t uniqid = 0;
2011
2012 ASSERT(MUTEX_HELD(&zonehash_lock));
2013 zone->zone_uniqid = uniqid++;
2014 }
2015
2016 /*
2017 * Returns a held pointer to the "kcred" for the specified zone.
2018 */
2019 struct cred *
2020 zone_get_kcred(zoneid_t zoneid)
2021 {
2022 zone_t *zone;
2023 cred_t *cr;
2024
2025 if ((zone = zone_find_by_id(zoneid)) == NULL)
2026 return (NULL);
2027 cr = zone->zone_kcred;
2028 crhold(cr);
2029 zone_rele(zone);
2030 return (cr);
2031 }
2032
2033 static int
2034 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
2035 {
2036 zone_t *zone = ksp->ks_private;
2037 zone_kstat_t *zk = ksp->ks_data;
2038
2039 if (rw == KSTAT_WRITE)
2040 return (EACCES);
2041
2042 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
2043 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
2044 return (0);
2045 }
2046
2047 static int
2048 zone_physmem_kstat_update(kstat_t *ksp, int rw)
2049 {
2050 zone_t *zone = ksp->ks_private;
2051 zone_kstat_t *zk = ksp->ks_data;
2052 zone_persist_t *zp = &zone_pdata[zone->zone_id];
2053
2054 if (rw == KSTAT_WRITE)
2055 return (EACCES);
2056
2057 zk->zk_usage.value.ui64 = ptob(zp->zpers_pg_cnt);
2058 zk->zk_value.value.ui64 = ptob(zp->zpers_pg_limit);
2059 return (0);
2060 }
2061
2062 static int
2063 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
2064 {
2065 zone_t *zone = ksp->ks_private;
2066 zone_kstat_t *zk = ksp->ks_data;
2067
2068 if (rw == KSTAT_WRITE)
2069 return (EACCES);
2070
2071 zk->zk_usage.value.ui64 = zone->zone_nprocs;
2072 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
2073 return (0);
2074 }
2075
2076 static int
2077 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
2078 {
2079 zone_t *zone = ksp->ks_private;
2080 zone_kstat_t *zk = ksp->ks_data;
2081
2082 if (rw == KSTAT_WRITE)
2083 return (EACCES);
2084
2085 zk->zk_usage.value.ui64 = zone->zone_max_swap;
2086 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
2087 return (0);
2088 }
2089
2090 static kstat_t *
2091 zone_rctl_kstat_create_common(zone_t *zone, char *name,
2092 int (*updatefunc) (kstat_t *, int))
2093 {
2094 kstat_t *ksp;
2095 zone_kstat_t *zk;
2096
2097 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
2098 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
2099 KSTAT_FLAG_VIRTUAL);
2100
2101 if (ksp == NULL)
2102 return (NULL);
2103
2104 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
2105 ksp->ks_data_size += strlen(zone->zone_name) + 1;
2106 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
2107 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
2108 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
2109 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
2110 ksp->ks_update = updatefunc;
2111 ksp->ks_private = zone;
2112 kstat_install(ksp);
2113 return (ksp);
2114 }
2115
2116 static int
2117 zone_vfs_kstat_update(kstat_t *ksp, int rw)
2118 {
2119 zone_t *zone = ksp->ks_private;
2120 zone_vfs_kstat_t *zvp = ksp->ks_data;
2121 kstat_io_t *kiop = &zone->zone_vfs_rwstats;
2122
2123 if (rw == KSTAT_WRITE)
2124 return (EACCES);
2125
2126 /*
2127 * Extract the VFS statistics from the kstat_io_t structure used by
2128 * kstat_runq_enter() and related functions. Since the slow ops
2129 * counters are updated directly by the VFS layer, there's no need to
2130 * copy those statistics here.
2131 *
2132 * Note that kstat_runq_enter() and the related functions use
2133 * gethrtime_unscaled(), so scale the time here.
2134 */
2135 zvp->zv_nread.value.ui64 = kiop->nread;
2136 zvp->zv_reads.value.ui64 = kiop->reads;
2137 zvp->zv_rtime.value.ui64 = kiop->rtime;
2138 zvp->zv_rcnt.value.ui64 = kiop->rcnt;
2139 zvp->zv_rlentime.value.ui64 = kiop->rlentime;
2140 zvp->zv_nwritten.value.ui64 = kiop->nwritten;
2141 zvp->zv_writes.value.ui64 = kiop->writes;
2142 zvp->zv_wtime.value.ui64 = kiop->wtime;
2143 zvp->zv_wcnt.value.ui64 = kiop->wcnt;
2144 zvp->zv_wlentime.value.ui64 = kiop->wlentime;
2145
2146 scalehrtime((hrtime_t *)&zvp->zv_rtime.value.ui64);
2147 scalehrtime((hrtime_t *)&zvp->zv_rlentime.value.ui64);
2148 scalehrtime((hrtime_t *)&zvp->zv_wtime.value.ui64);
2149 scalehrtime((hrtime_t *)&zvp->zv_wlentime.value.ui64);
2150
2151 return (0);
2152 }
2153
2154 static kstat_t *
2155 zone_vfs_kstat_create(zone_t *zone)
2156 {
2157 kstat_t *ksp;
2158 zone_vfs_kstat_t *zvp;
2159
2160 if ((ksp = kstat_create_zone("zone_vfs", zone->zone_id,
2161 zone->zone_name, "zone_vfs", KSTAT_TYPE_NAMED,
2162 sizeof (zone_vfs_kstat_t) / sizeof (kstat_named_t),
2163 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
2164 return (NULL);
2165
2166 if (zone->zone_id != GLOBAL_ZONEID)
2167 kstat_zone_add(ksp, GLOBAL_ZONEID);
2168
2169 zvp = ksp->ks_data = kmem_zalloc(sizeof (zone_vfs_kstat_t), KM_SLEEP);
2170 ksp->ks_data_size += strlen(zone->zone_name) + 1;
2171 ksp->ks_lock = &zone->zone_vfs_lock;
2172 zone->zone_vfs_stats = zvp;
2173
2174 /* The kstat "name" field is not large enough for a full zonename */
2175 kstat_named_init(&zvp->zv_zonename, "zonename", KSTAT_DATA_STRING);
2176 kstat_named_setstr(&zvp->zv_zonename, zone->zone_name);
2177 kstat_named_init(&zvp->zv_nread, "nread", KSTAT_DATA_UINT64);
2178 kstat_named_init(&zvp->zv_reads, "reads", KSTAT_DATA_UINT64);
2179 kstat_named_init(&zvp->zv_rtime, "rtime", KSTAT_DATA_UINT64);
2180 kstat_named_init(&zvp->zv_rcnt, "rcnt", KSTAT_DATA_UINT64);
2181 kstat_named_init(&zvp->zv_rlentime, "rlentime", KSTAT_DATA_UINT64);
2182 kstat_named_init(&zvp->zv_nwritten, "nwritten", KSTAT_DATA_UINT64);
2183 kstat_named_init(&zvp->zv_writes, "writes", KSTAT_DATA_UINT64);
2184 kstat_named_init(&zvp->zv_wtime, "wtime", KSTAT_DATA_UINT64);
2185 kstat_named_init(&zvp->zv_wcnt, "wcnt", KSTAT_DATA_UINT64);
2186 kstat_named_init(&zvp->zv_wlentime, "wlentime", KSTAT_DATA_UINT64);
2187 kstat_named_init(&zvp->zv_10ms_ops, "10ms_ops", KSTAT_DATA_UINT64);
2188 kstat_named_init(&zvp->zv_100ms_ops, "100ms_ops", KSTAT_DATA_UINT64);
2189 kstat_named_init(&zvp->zv_1s_ops, "1s_ops", KSTAT_DATA_UINT64);
2190 kstat_named_init(&zvp->zv_10s_ops, "10s_ops", KSTAT_DATA_UINT64);
2191 kstat_named_init(&zvp->zv_delay_cnt, "delay_cnt", KSTAT_DATA_UINT64);
2192 kstat_named_init(&zvp->zv_delay_time, "delay_time", KSTAT_DATA_UINT64);
2193
2194 ksp->ks_update = zone_vfs_kstat_update;
2195 ksp->ks_private = zone;
2196
2197 kstat_install(ksp);
2198 return (ksp);
2199 }
2200
2201 static int
2202 zone_zfs_kstat_update(kstat_t *ksp, int rw)
2203 {
2204 zone_t *zone = ksp->ks_private;
2205 zone_zfs_kstat_t *zzp = ksp->ks_data;
2206 zone_persist_t *zp = &zone_pdata[zone->zone_id];
2207
2208 if (rw == KSTAT_WRITE)
2209 return (EACCES);
2210
2211 mutex_enter(&zp->zpers_zfs_lock);
2212 if (zp->zpers_zfsp == NULL) {
2213 zzp->zz_nread.value.ui64 = 0;
2214 zzp->zz_reads.value.ui64 = 0;
2215 zzp->zz_rtime.value.ui64 = 0;
2216 zzp->zz_rlentime.value.ui64 = 0;
2217 zzp->zz_nwritten.value.ui64 = 0;
2218 zzp->zz_writes.value.ui64 = 0;
2219 zzp->zz_waittime.value.ui64 = 0;
2220 } else {
2221 kstat_io_t *kiop = &zp->zpers_zfsp->zpers_zfs_rwstats;
2222
2223 /*
2224 * Extract the ZFS statistics from the kstat_io_t structure
2225 * used by kstat_runq_enter() and related functions. Since the
2226 * I/O throttle counters are updated directly by the ZFS layer,
2227 * there's no need to copy those statistics here.
2228 *
2229 * Note that kstat_runq_enter() and the related functions use
2230 * gethrtime_unscaled(), so scale the time here.
2231 */
2232 zzp->zz_nread.value.ui64 = kiop->nread;
2233 zzp->zz_reads.value.ui64 = kiop->reads;
2234 zzp->zz_rtime.value.ui64 = kiop->rtime;
2235 zzp->zz_rlentime.value.ui64 = kiop->rlentime;
2236 zzp->zz_nwritten.value.ui64 = kiop->nwritten;
2237 zzp->zz_writes.value.ui64 = kiop->writes;
2238 zzp->zz_waittime.value.ui64 =
2239 zp->zpers_zfsp->zpers_zfs_rd_waittime;
2240 }
2241 mutex_exit(&zp->zpers_zfs_lock);
2242
2243 scalehrtime((hrtime_t *)&zzp->zz_rtime.value.ui64);
2244 scalehrtime((hrtime_t *)&zzp->zz_rlentime.value.ui64);
2245
2246 return (0);
2247 }
2248
2249 static kstat_t *
2250 zone_zfs_kstat_create(zone_t *zone)
2251 {
2252 kstat_t *ksp;
2253 zone_zfs_kstat_t *zzp;
2254
2255 if ((ksp = kstat_create_zone("zone_zfs", zone->zone_id,
2256 zone->zone_name, "zone_zfs", KSTAT_TYPE_NAMED,
2257 sizeof (zone_zfs_kstat_t) / sizeof (kstat_named_t),
2258 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
2259 return (NULL);
2260
2261 if (zone->zone_id != GLOBAL_ZONEID)
2262 kstat_zone_add(ksp, GLOBAL_ZONEID);
2263
2264 zzp = ksp->ks_data = kmem_zalloc(sizeof (zone_zfs_kstat_t), KM_SLEEP);
2265 ksp->ks_data_size += strlen(zone->zone_name) + 1;
2266 ksp->ks_lock = &zone->zone_zfs_lock;
2267 zone->zone_zfs_stats = zzp;
2268
2269 /* The kstat "name" field is not large enough for a full zonename */
2270 kstat_named_init(&zzp->zz_zonename, "zonename", KSTAT_DATA_STRING);
2271 kstat_named_setstr(&zzp->zz_zonename, zone->zone_name);
2272 kstat_named_init(&zzp->zz_nread, "nread", KSTAT_DATA_UINT64);
2273 kstat_named_init(&zzp->zz_reads, "reads", KSTAT_DATA_UINT64);
2274 kstat_named_init(&zzp->zz_rtime, "rtime", KSTAT_DATA_UINT64);
2275 kstat_named_init(&zzp->zz_rlentime, "rlentime", KSTAT_DATA_UINT64);
2276 kstat_named_init(&zzp->zz_nwritten, "nwritten", KSTAT_DATA_UINT64);
2277 kstat_named_init(&zzp->zz_writes, "writes", KSTAT_DATA_UINT64);
2278 kstat_named_init(&zzp->zz_waittime, "waittime", KSTAT_DATA_UINT64);
2279
2280 ksp->ks_update = zone_zfs_kstat_update;
2281 ksp->ks_private = zone;
2282
2283 kstat_install(ksp);
2284 return (ksp);
2285 }
2286
2287 static int
2288 zone_mcap_kstat_update(kstat_t *ksp, int rw)
2289 {
2290 zone_t *zone = ksp->ks_private;
2291 zone_mcap_kstat_t *zmp = ksp->ks_data;
2292 zone_persist_t *zp;
2293
2294 if (rw == KSTAT_WRITE)
2295 return (EACCES);
2296
2297 zp = &zone_pdata[zone->zone_id];
2298
2299 zmp->zm_rss.value.ui64 = ptob(zp->zpers_pg_cnt);
2300 zmp->zm_phys_cap.value.ui64 = ptob(zp->zpers_pg_limit);
2301 zmp->zm_swap.value.ui64 = zone->zone_max_swap;
2302 zmp->zm_swap_cap.value.ui64 = zone->zone_max_swap_ctl;
2303 zmp->zm_nover.value.ui64 = zp->zpers_nover;
2304 #ifndef DEBUG
2305 zmp->zm_pagedout.value.ui64 = ptob(zp->zpers_pg_out);
2306 #else
2307 zmp->zm_pagedout.value.ui64 = ptob(zp->zpers_pg_fsdirty +
2308 zp->zpers_pg_fs + zp->zpers_pg_anon + zp->zpers_pg_anondirty);
2309 #endif
2310 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
2311 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
2312 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
2313 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
2314 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
2315
2316 return (0);
2317 }
2318
2319 static kstat_t *
2320 zone_mcap_kstat_create(zone_t *zone)
2321 {
2322 kstat_t *ksp;
2323 zone_mcap_kstat_t *zmp;
2324
2325 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
2326 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
2327 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
2328 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
2329 return (NULL);
2330
2331 if (zone->zone_id != GLOBAL_ZONEID)
2332 kstat_zone_add(ksp, GLOBAL_ZONEID);
2333
2334 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
2335 ksp->ks_data_size += strlen(zone->zone_name) + 1;
2336 ksp->ks_lock = &zone->zone_mcap_lock;
2337 zone->zone_mcap_stats = zmp;
2338
2339 /* The kstat "name" field is not large enough for a full zonename */
2340 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
2341 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
2342 kstat_named_init(&zmp->zm_rss, "rss", KSTAT_DATA_UINT64);
2343 kstat_named_init(&zmp->zm_phys_cap, "physcap", KSTAT_DATA_UINT64);
2344 kstat_named_init(&zmp->zm_swap, "swap", KSTAT_DATA_UINT64);
2345 kstat_named_init(&zmp->zm_swap_cap, "swapcap", KSTAT_DATA_UINT64);
2346 kstat_named_init(&zmp->zm_nover, "nover", KSTAT_DATA_UINT64);
2347 kstat_named_init(&zmp->zm_pagedout, "pagedout", KSTAT_DATA_UINT64);
2348 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
2349 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
2350 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
2351 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
2352 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
2353 KSTAT_DATA_UINT64);
2354
2355 ksp->ks_update = zone_mcap_kstat_update;
2356 ksp->ks_private = zone;
2357
2358 kstat_install(ksp);
2359 return (ksp);
2360 }
2361
2362 static int
2363 zone_misc_kstat_update(kstat_t *ksp, int rw)
2364 {
2365 zone_t *zone = ksp->ks_private;
2366 zone_misc_kstat_t *zmp = ksp->ks_data;
2367 hrtime_t hrtime;
2368 uint64_t tmp;
2369
2370 if (rw == KSTAT_WRITE)
2371 return (EACCES);
2372
2373 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME);
2374 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
2375 scalehrtime(&hrtime);
2376 zmp->zm_stime.value.ui64 = hrtime;
2377
2378 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME);
2379 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
2380 scalehrtime(&hrtime);
2381 zmp->zm_utime.value.ui64 = hrtime;
2382
2383 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME);
2384 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
2385 scalehrtime(&hrtime);
2386 zmp->zm_wtime.value.ui64 = hrtime;
2387
2388 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
2389 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
2390 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
2391
2392 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
2393 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
2394 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
2395 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
2396
2397 zmp->zm_mfseglim.value.ui32 = zone->zone_mfseglim;
2398
2399 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
2400
2401 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
2402 zmp->zm_init_restarts.value.ui32 = zone->zone_proc_init_restarts;
2403 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
2404
2405 return (0);
2406 }
2407
2408 static kstat_t *
2409 zone_misc_kstat_create(zone_t *zone)
2410 {
2411 kstat_t *ksp;
2412 zone_misc_kstat_t *zmp;
2413
2414 if ((ksp = kstat_create_zone("zones", zone->zone_id,
2415 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
2416 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
2417 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
2418 return (NULL);
2419
2420 if (zone->zone_id != GLOBAL_ZONEID)
2421 kstat_zone_add(ksp, GLOBAL_ZONEID);
2422
2423 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
2424 ksp->ks_data_size += strlen(zone->zone_name) + 1;
2425 ksp->ks_lock = &zone->zone_misc_lock;
2426 zone->zone_misc_stats = zmp;
2427
2428 /* The kstat "name" field is not large enough for a full zonename */
2429 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
2430 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
2431 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
2432 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
2433 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
2434 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
2435 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
2436 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
2437 KSTAT_DATA_UINT32);
2438 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
2439 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
2440 KSTAT_DATA_UINT32);
2441 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
2442 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
2443 kstat_named_init(&zmp->zm_mfseglim, "mapfail_seglim",
2444 KSTAT_DATA_UINT32);
2445 kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
2446 KSTAT_DATA_UINT32);
2447 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
2448 kstat_named_init(&zmp->zm_init_restarts, "init_restarts",
2449 KSTAT_DATA_UINT32);
2450 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
2451
2452 ksp->ks_update = zone_misc_kstat_update;
2453 ksp->ks_private = zone;
2454
2455 kstat_install(ksp);
2456 return (ksp);
2457 }
2458
2459 static void
2460 zone_kstat_create(zone_t *zone)
2461 {
2462 zone->zone_lockedmem_kstat = zone_rctl_kstat_create_common(zone,
2463 "lockedmem", zone_lockedmem_kstat_update);
2464 zone->zone_swapresv_kstat = zone_rctl_kstat_create_common(zone,
2465 "swapresv", zone_swapresv_kstat_update);
2466 zone->zone_physmem_kstat = zone_rctl_kstat_create_common(zone,
2467 "physicalmem", zone_physmem_kstat_update);
2468 zone->zone_nprocs_kstat = zone_rctl_kstat_create_common(zone,
2469 "nprocs", zone_nprocs_kstat_update);
2470
2471 if ((zone->zone_vfs_ksp = zone_vfs_kstat_create(zone)) == NULL) {
2472 zone->zone_vfs_stats = kmem_zalloc(
2473 sizeof (zone_vfs_kstat_t), KM_SLEEP);
2474 }
2475
2476 if ((zone->zone_zfs_ksp = zone_zfs_kstat_create(zone)) == NULL) {
2477 zone->zone_zfs_stats = kmem_zalloc(
2478 sizeof (zone_zfs_kstat_t), KM_SLEEP);
2479 }
2480
2481 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2482 zone->zone_mcap_stats = kmem_zalloc(
2483 sizeof (zone_mcap_kstat_t), KM_SLEEP);
2484 }
2485
2486 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2487 zone->zone_misc_stats = kmem_zalloc(
2488 sizeof (zone_misc_kstat_t), KM_SLEEP);
2489 }
2490 }
2491
2492 static void
2493 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2494 {
2495 void *data;
2496
2497 if (*pkstat != NULL) {
2498 data = (*pkstat)->ks_data;
2499 kstat_delete(*pkstat);
2500 kmem_free(data, datasz);
2501 *pkstat = NULL;
2502 }
2503 }
2504
2505 static void
2506 zone_kstat_delete(zone_t *zone)
2507 {
2508 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2509 sizeof (zone_kstat_t));
2510 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2511 sizeof (zone_kstat_t));
2512 zone_kstat_delete_common(&zone->zone_physmem_kstat,
2513 sizeof (zone_kstat_t));
2514 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2515 sizeof (zone_kstat_t));
2516
2517 zone_kstat_delete_common(&zone->zone_vfs_ksp,
2518 sizeof (zone_vfs_kstat_t));
2519 zone_kstat_delete_common(&zone->zone_zfs_ksp,
2520 sizeof (zone_zfs_kstat_t));
2521 zone_kstat_delete_common(&zone->zone_mcap_ksp,
2522 sizeof (zone_mcap_kstat_t));
2523 zone_kstat_delete_common(&zone->zone_misc_ksp,
2524 sizeof (zone_misc_kstat_t));
2525 }
2526
2527 /*
2528 * Called very early on in boot to initialize the ZSD list so that
2529 * zone_key_create() can be called before zone_init(). It also initializes
2530 * portions of zone0 which may be used before zone_init() is called. The
2531 * variable "global_zone" will be set when zone0 is fully initialized by
2532 * zone_init().
2533 */
2534 void
2535 zone_zsd_init(void)
2536 {
2537 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2538 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2539 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2540 offsetof(struct zsd_entry, zsd_linkage));
2541 list_create(&zone_active, sizeof (zone_t),
2542 offsetof(zone_t, zone_linkage));
2543 list_create(&zone_deathrow, sizeof (zone_t),
2544 offsetof(zone_t, zone_linkage));
2545
2546 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2547 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2548 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2549 zone0.zone_shares = 1;
2550 zone0.zone_nlwps = 0;
2551 zone0.zone_nlwps_ctl = INT_MAX;
2552 zone0.zone_nprocs = 0;
2553 zone0.zone_nprocs_ctl = INT_MAX;
2554 zone0.zone_locked_mem = 0;
2555 zone0.zone_locked_mem_ctl = UINT64_MAX;
2556 ASSERT(zone0.zone_max_swap == 0);
2557 zone0.zone_max_swap_ctl = UINT64_MAX;
2558 zone0.zone_max_lofi = 0;
2559 zone0.zone_max_lofi_ctl = UINT64_MAX;
2560 zone0.zone_shmmax = 0;
2561 zone0.zone_ipc.ipcq_shmmni = 0;
2562 zone0.zone_ipc.ipcq_semmni = 0;
2563 zone0.zone_ipc.ipcq_msgmni = 0;
2564 zone0.zone_name = GLOBAL_ZONENAME;
2565 zone0.zone_nodename = utsname.nodename;
2566 zone0.zone_domain = srpc_domain;
2567 zone0.zone_hostid = HW_INVALID_HOSTID;
2568 zone0.zone_fs_allowed = NULL;
2569 psecflags_default(&zone0.zone_secflags);
2570 zone0.zone_ref = 1;
2571 zone0.zone_id = GLOBAL_ZONEID;
2572 zone0.zone_status = ZONE_IS_RUNNING;
2573 zone0.zone_rootpath = "/";
2574 zone0.zone_rootpathlen = 2;
2575 zone0.zone_psetid = ZONE_PS_INVAL;
2576 zone0.zone_ncpus = 0;
2577 zone0.zone_ncpus_online = 0;
2578 zone0.zone_proc_initpid = 1;
2579 zone0.zone_initname = initname;
2580 zone0.zone_lockedmem_kstat = NULL;
2581 zone0.zone_swapresv_kstat = NULL;
2582 zone0.zone_physmem_kstat = NULL;
2583 zone0.zone_nprocs_kstat = NULL;
2584
2585 zone_pdata[0].zpers_zfsp = &zone0_zp_zfs;
2586 zone_pdata[0].zpers_zfsp->zpers_zfs_io_pri = 1;
2587
2588 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2589 offsetof(zone_ref_t, zref_linkage));
2590 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2591 offsetof(struct zsd_entry, zsd_linkage));
2592 list_insert_head(&zone_active, &zone0);
2593
2594 /*
2595 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2596 * to anything meaningful. It is assigned to be 'rootdir' in
2597 * vfs_mountroot().
2598 */
2599 zone0.zone_rootvp = NULL;
2600 zone0.zone_vfslist = NULL;
2601 zone0.zone_bootargs = initargs;
2602 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2603 /*
2604 * The global zone has all privileges
2605 */
2606 priv_fillset(zone0.zone_privset);
2607 /*
2608 * Add p0 to the global zone
2609 */
2610 zone0.zone_zsched = &p0;
2611 p0.p_zone = &zone0;
2612 }
2613
2614 /*
2615 * Compute a hash value based on the contents of the label and the DOI. The
2616 * hash algorithm is somewhat arbitrary, but is based on the observation that
2617 * humans will likely pick labels that differ by amounts that work out to be
2618 * multiples of the number of hash chains, and thus stirring in some primes
2619 * should help.
2620 */
2621 static uint_t
2622 hash_bylabel(void *hdata, mod_hash_key_t key)
2623 {
2624 const ts_label_t *lab = (ts_label_t *)key;
2625 const uint32_t *up, *ue;
2626 uint_t hash;
2627 int i;
2628
2629 _NOTE(ARGUNUSED(hdata));
2630
2631 hash = lab->tsl_doi + (lab->tsl_doi << 1);
2632 /* we depend on alignment of label, but not representation */
2633 up = (const uint32_t *)&lab->tsl_label;
2634 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2635 i = 1;
2636 while (up < ue) {
2637 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2638 hash += *up + (*up << ((i % 16) + 1));
2639 up++;
2640 i++;
2641 }
2642 return (hash);
2643 }
2644
2645 /*
2646 * All that mod_hash cares about here is zero (equal) versus non-zero (not
2647 * equal). This may need to be changed if less than / greater than is ever
2648 * needed.
2649 */
2650 static int
2651 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2652 {
2653 ts_label_t *lab1 = (ts_label_t *)key1;
2654 ts_label_t *lab2 = (ts_label_t *)key2;
2655
2656 return (label_equal(lab1, lab2) ? 0 : 1);
2657 }
2658
2659 /*
2660 * Called by main() to initialize the zones framework.
2661 */
2662 void
2663 zone_init(void)
2664 {
2665 rctl_dict_entry_t *rde;
2666 rctl_val_t *dval;
2667 rctl_set_t *set;
2668 rctl_alloc_gp_t *gp;
2669 rctl_entity_p_t e;
2670 int res;
2671
2672 ASSERT(curproc == &p0);
2673
2674 /*
2675 * Create ID space for zone IDs. ID 0 is reserved for the
2676 * global zone.
2677 */
2678 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2679
2680 /*
2681 * Initialize generic zone resource controls, if any.
2682 */
2683 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2684 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2685 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2686 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2687
2688 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2689 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2690 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2691 RCTL_GLOBAL_INFINITE,
2692 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2693
2694 rc_zone_cpu_baseline = rctl_register("zone.cpu-baseline",
2695 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2696 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2697 MAXCAP, MAXCAP, &zone_cpu_base_ops);
2698
2699 rc_zone_cpu_burst_time = rctl_register("zone.cpu-burst-time",
2700 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2701 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2702 INT_MAX, INT_MAX, &zone_cpu_burst_time_ops);
2703
2704 rc_zone_zfs_io_pri = rctl_register("zone.zfs-io-priority",
2705 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2706 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2707 16384, 16384, &zone_zfs_io_pri_ops);
2708
2709 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2710 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2711 INT_MAX, INT_MAX, &zone_lwps_ops);
2712
2713 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2714 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2715 INT_MAX, INT_MAX, &zone_procs_ops);
2716
2717 /*
2718 * System V IPC resource controls
2719 */
2720 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2721 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2722 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2723
2724 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2725 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2726 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2727
2728 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2729 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2730 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2731
2732 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2733 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2734 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2735
2736 /*
2737 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2738 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2739 */
2740 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2741 bzero(dval, sizeof (rctl_val_t));
2742 dval->rcv_value = 1;
2743 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2744 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2745 dval->rcv_action_recip_pid = -1;
2746
2747 rde = rctl_dict_lookup("zone.cpu-shares");
2748 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2749
2750 /*
2751 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2752 * this at the head of the rctl_dict_entry for ``zone.zfs-io-priority'.
2753 */
2754 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2755 bzero(dval, sizeof (rctl_val_t));
2756 dval->rcv_value = 1;
2757 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2758 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2759 dval->rcv_action_recip_pid = -1;
2760
2761 rde = rctl_dict_lookup("zone.zfs-io-priority");
2762 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2763
2764 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2765 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2766 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2767 &zone_locked_mem_ops);
2768
2769 rc_zone_max_swap = rctl_register("zone.max-swap",
2770 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2771 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2772 &zone_max_swap_ops);
2773
2774 rc_zone_phys_mem = rctl_register("zone.max-physical-memory",
2775 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2776 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2777 &zone_phys_mem_ops);
2778
2779 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2780 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2781 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2782 &zone_max_lofi_ops);
2783
2784 /*
2785 * Initialize the ``global zone''.
2786 */
2787 set = rctl_set_create();
2788 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2789 mutex_enter(&p0.p_lock);
2790 e.rcep_p.zone = &zone0;
2791 e.rcep_t = RCENTITY_ZONE;
2792 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2793 gp);
2794
2795 zone0.zone_nlwps = p0.p_lwpcnt;
2796 zone0.zone_nprocs = 1;
2797 zone0.zone_ntasks = 1;
2798 mutex_exit(&p0.p_lock);
2799 zone0.zone_restart_init = B_TRUE;
2800 zone0.zone_reboot_on_init_exit = B_FALSE;
2801 zone0.zone_restart_init_0 = B_FALSE;
2802 zone0.zone_init_status = -1;
2803 zone0.zone_brand = &native_brand;
2804 rctl_prealloc_destroy(gp);
2805 /*
2806 * pool_default hasn't been initialized yet, so we let pool_init()
2807 * take care of making sure the global zone is in the default pool.
2808 */
2809
2810 /*
2811 * Initialize global zone kstats
2812 */
2813 zone_kstat_create(&zone0);
2814
2815 /*
2816 * Initialize zone label.
2817 * mlp are initialized when tnzonecfg is loaded.
2818 */
2819 zone0.zone_slabel = l_admin_low;
2820 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2821 label_hold(l_admin_low);
2822
2823 /*
2824 * Initialise the lock for the database structure used by mntfs.
2825 */
2826 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2827
2828 zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
2829
2830 mutex_enter(&zonehash_lock);
2831 zone_uniqid(&zone0);
2832 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2833
2834 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2835 mod_hash_null_valdtor);
2836 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2837 zone_hash_size, mod_hash_null_valdtor);
2838 /*
2839 * maintain zonehashbylabel only for labeled systems
2840 */
2841 if (is_system_labeled())
2842 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2843 zone_hash_size, mod_hash_null_keydtor,
2844 mod_hash_null_valdtor, hash_bylabel, NULL,
2845 hash_labelkey_cmp, KM_SLEEP);
2846 zonecount = 1;
2847
2848 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2849 (mod_hash_val_t)&zone0);
2850 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2851 (mod_hash_val_t)&zone0);
2852 if (is_system_labeled()) {
2853 zone0.zone_flags |= ZF_HASHED_LABEL;
2854 (void) mod_hash_insert(zonehashbylabel,
2855 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2856 }
2857 mutex_exit(&zonehash_lock);
2858
2859 /*
2860 * We avoid setting zone_kcred until now, since kcred is initialized
2861 * sometime after zone_zsd_init() and before zone_init().
2862 */
2863 zone0.zone_kcred = kcred;
2864 /*
2865 * The global zone is fully initialized (except for zone_rootvp which
2866 * will be set when the root filesystem is mounted).
2867 */
2868 global_zone = &zone0;
2869
2870 /*
2871 * Setup an event channel to send zone status change notifications on
2872 */
2873 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2874 EVCH_CREAT);
2875
2876 if (res)
2877 panic("Sysevent_evc_bind failed during zone setup.\n");
2878
2879 }
2880
2881 static void
2882 zone_free(zone_t *zone)
2883 {
2884 zone_dl_t *zdl;
2885
2886 ASSERT(zone != global_zone);
2887 ASSERT(zone->zone_ntasks == 0);
2888 ASSERT(zone->zone_nlwps == 0);
2889 ASSERT(zone->zone_nprocs == 0);
2890 ASSERT(zone->zone_cred_ref == 0);
2891 ASSERT(zone->zone_kcred == NULL);
2892 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2893 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2894 ASSERT(list_is_empty(&zone->zone_ref_list));
2895
2896 /*
2897 * Remove any zone caps.
2898 */
2899 cpucaps_zone_remove(zone);
2900
2901 /* Clear physical memory capping data. */
2902 bzero(&zone_pdata[zone->zone_id], sizeof (zone_persist_t));
2903
2904 ASSERT(zone->zone_cpucap == NULL);
2905
2906 /* remove from deathrow list */
2907 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2908 ASSERT(zone->zone_ref == 0);
2909 mutex_enter(&zone_deathrow_lock);
2910 list_remove(&zone_deathrow, zone);
2911 mutex_exit(&zone_deathrow_lock);
2912 }
2913
2914 list_destroy(&zone->zone_ref_list);
2915 zone_free_zsd(zone);
2916 zone_free_datasets(zone);
2917
2918 /*
2919 * While dlmgmtd should have removed all of these, it could have left
2920 * something behind or crashed. In which case it's not safe for us to
2921 * assume that the list is empty which list_destroy() will ASSERT. We
2922 * clean up for our userland comrades which may have crashed, or worse,
2923 * been disabled by SMF.
2924 */
2925 while ((zdl = list_remove_head(&zone->zone_dl_list)) != NULL) {
2926 if (zdl->zdl_net != NULL)
2927 nvlist_free(zdl->zdl_net);
2928 kmem_free(zdl, sizeof (zone_dl_t));
2929 }
2930 list_destroy(&zone->zone_dl_list);
2931
2932 /*
2933 * This zone_t can no longer inhibit creation of another zone_t
2934 * with the same name or debug ID. Generate a sysevent so that
2935 * userspace tools know it is safe to carry on.
2936 */
2937 mutex_enter(&zone_status_lock);
2938 zone_status_set(zone, ZONE_IS_FREE);
2939 mutex_exit(&zone_status_lock);
2940
2941 cpu_uarray_free(zone->zone_ustate);
2942
2943 if (zone->zone_rootvp != NULL)
2944 VN_RELE(zone->zone_rootvp);
2945 if (zone->zone_rootpath)
2946 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2947 if (zone->zone_name != NULL)
2948 kmem_free(zone->zone_name, ZONENAME_MAX);
2949 if (zone->zone_slabel != NULL)
2950 label_rele(zone->zone_slabel);
2951 if (zone->zone_nodename != NULL)
2952 kmem_free(zone->zone_nodename, _SYS_NMLN);
2953 if (zone->zone_domain != NULL)
2954 kmem_free(zone->zone_domain, _SYS_NMLN);
2955 if (zone->zone_privset != NULL)
2956 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2957 if (zone->zone_rctls != NULL)
2958 rctl_set_free(zone->zone_rctls);
2959 if (zone->zone_bootargs != NULL)
2960 strfree(zone->zone_bootargs);
2961 if (zone->zone_initname != NULL)
2962 strfree(zone->zone_initname);
2963 if (zone->zone_fs_allowed != NULL)
2964 strfree(zone->zone_fs_allowed);
2965 if (zone->zone_pfexecd != NULL)
2966 klpd_freelist(&zone->zone_pfexecd);
2967 id_free(zoneid_space, zone->zone_id);
2968 mutex_destroy(&zone->zone_lock);
2969 cv_destroy(&zone->zone_cv);
2970 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2971 rw_destroy(&zone->zone_mntfs_db_lock);
2972 kmem_free(zone, sizeof (zone_t));
2973 }
2974
2975 /*
2976 * See block comment at the top of this file for information about zone
2977 * status values.
2978 */
2979 /*
2980 * Convenience function for setting zone status.
2981 */
2982 static void
2983 zone_status_set(zone_t *zone, zone_status_t status)
2984 {
2985 timestruc_t now;
2986 uint64_t t;
2987
2988 nvlist_t *nvl = NULL;
2989 ASSERT(MUTEX_HELD(&zone_status_lock));
2990 ASSERT((status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE ||
2991 status == ZONE_IS_FREE) && status >= zone_status_get(zone));
2992
2993 /* Current time since Jan 1 1970 but consumers expect NS */
2994 gethrestime(&now);
2995 t = (now.tv_sec * NANOSEC) + now.tv_nsec;
2996
2997 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2998 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2999 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
3000 zone_status_table[status]) ||
3001 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
3002 zone_status_table[zone->zone_status]) ||
3003 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
3004 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, t) ||
3005 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
3006 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
3007 #ifdef DEBUG
3008 (void) printf(
3009 "Failed to allocate and send zone state change event.\n");
3010 #else
3011 /* EMPTY */
3012 #endif
3013 }
3014 nvlist_free(nvl);
3015
3016 zone->zone_status = status;
3017
3018 cv_broadcast(&zone->zone_cv);
3019 }
3020
3021 /*
3022 * Public function to retrieve the zone status. The zone status may
3023 * change after it is retrieved.
3024 */
3025 zone_status_t
3026 zone_status_get(zone_t *zone)
3027 {
3028 return (zone->zone_status);
3029 }
3030
3031 /*
3032 * Publish a zones-related sysevent for purposes other than zone state changes.
3033 * While it is unfortunate that zone_event_chan is associated with
3034 * "com.sun:zones:status" (rather than "com.sun:zones") state changes should be
3035 * the only ones with class "status" and subclass "change".
3036 */
3037 void
3038 zone_sysevent_publish(zone_t *zone, const char *class, const char *subclass,
3039 nvlist_t *ev_nvl)
3040 {
3041 nvlist_t *nvl = NULL;
3042 timestruc_t now;
3043 uint64_t t;
3044
3045 gethrestime(&now);
3046 t = (now.tv_sec * NANOSEC) + now.tv_nsec;
3047
3048 if (nvlist_dup(ev_nvl, &nvl, KM_SLEEP) != 0 ||
3049 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) != 0 ||
3050 nvlist_add_uint64(nvl, ZONE_CB_ZONEID, zone->zone_id) != 0 ||
3051 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, t) != 0 ||
3052 sysevent_evc_publish(zone_event_chan, class, subclass, "sun.com",
3053 "kernel", nvl, EVCH_SLEEP) != 0) {
3054 #ifdef DEBUG
3055 (void) printf("Failed to allocate and send zone misc event.\n");
3056 #else
3057 /* EMPTY */
3058 #endif
3059 }
3060 nvlist_free(nvl);
3061 }
3062
3063 static int
3064 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
3065 {
3066 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
3067 int err = 0;
3068
3069 ASSERT(zone != global_zone);
3070 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
3071 goto done; /* EFAULT or ENAMETOOLONG */
3072
3073 if (zone->zone_bootargs != NULL)
3074 strfree(zone->zone_bootargs);
3075
3076 zone->zone_bootargs = strdup(buf);
3077
3078 done:
3079 kmem_free(buf, BOOTARGS_MAX);
3080 return (err);
3081 }
3082
3083 static int
3084 zone_set_brand(zone_t *zone, const char *brand)
3085 {
3086 struct brand_attr *attrp;
3087 brand_t *bp;
3088
3089 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
3090 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
3091 kmem_free(attrp, sizeof (struct brand_attr));
3092 return (EFAULT);
3093 }
3094
3095 bp = brand_register_zone(attrp);
3096 kmem_free(attrp, sizeof (struct brand_attr));
3097 if (bp == NULL)
3098 return (EINVAL);
3099
3100 /*
3101 * This is the only place where a zone can change it's brand.
3102 * We already need to hold zone_status_lock to check the zone
3103 * status, so we'll just use that lock to serialize zone
3104 * branding requests as well.
3105 */
3106 mutex_enter(&zone_status_lock);
3107
3108 /* Re-Branding is not allowed and the zone can't be booted yet */
3109 if ((ZONE_IS_BRANDED(zone)) ||
3110 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
3111 mutex_exit(&zone_status_lock);
3112 brand_unregister_zone(bp);
3113 return (EINVAL);
3114 }
3115
3116 /*
3117 * Set up the brand specific data.
3118 * Note that it's possible that the hook has to drop the
3119 * zone_status_lock and reaquire it before returning so we can't
3120 * assume the lock has been held the entire time.
3121 */
3122 zone->zone_brand = bp;
3123 ZBROP(zone)->b_init_brand_data(zone, &zone_status_lock);
3124
3125 mutex_exit(&zone_status_lock);
3126 return (0);
3127 }
3128
3129 static int
3130 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
3131 {
3132 int err = 0;
3133 psecflags_t psf;
3134
3135 ASSERT(zone != global_zone);
3136
3137 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
3138 return (err);
3139
3140 if (zone_status_get(zone) > ZONE_IS_READY)
3141 return (EINVAL);
3142
3143 if (!psecflags_validate(&psf))
3144 return (EINVAL);
3145
3146 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
3147
3148 /* Set security flags on the zone's zsched */
3149 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
3150 sizeof (zone->zone_zsched->p_secflags));
3151
3152 return (0);
3153 }
3154
3155 static int
3156 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
3157 {
3158 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
3159 int err = 0;
3160
3161 ASSERT(zone != global_zone);
3162 if ((err = copyinstr(zone_fs_allowed, buf,
3163 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
3164 goto done;
3165
3166 if (zone->zone_fs_allowed != NULL)
3167 strfree(zone->zone_fs_allowed);
3168
3169 zone->zone_fs_allowed = strdup(buf);
3170
3171 done:
3172 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
3173 return (err);
3174 }
3175
3176 static int
3177 zone_set_initname(zone_t *zone, const char *zone_initname)
3178 {
3179 char initname[INITNAME_SZ];
3180 size_t len;
3181 int err = 0;
3182
3183 ASSERT(zone != global_zone);
3184 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
3185 return (err); /* EFAULT or ENAMETOOLONG */
3186
3187 if (zone->zone_initname != NULL)
3188 strfree(zone->zone_initname);
3189
3190 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
3191 (void) strcpy(zone->zone_initname, initname);
3192 return (0);
3193 }
3194
3195 static int
3196 zone_set_sched_class(zone_t *zone, const char *new_class)
3197 {
3198 char sched_class[PC_CLNMSZ];
3199 id_t classid;
3200 int err;
3201
3202 ASSERT(zone != global_zone);
3203 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
3204 return (err); /* EFAULT or ENAMETOOLONG */
3205
3206 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
3207 return (set_errno(EINVAL));
3208 zone->zone_defaultcid = classid;
3209 ASSERT(zone->zone_defaultcid > 0 &&
3210 zone->zone_defaultcid < loaded_classes);
3211
3212 return (0);
3213 }
3214
3215 /*
3216 * Block indefinitely waiting for (zone_status >= status)
3217 */
3218 void
3219 zone_status_wait(zone_t *zone, zone_status_t status)
3220 {
3221 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
3222
3223 mutex_enter(&zone_status_lock);
3224 while (zone->zone_status < status) {
3225 cv_wait(&zone->zone_cv, &zone_status_lock);
3226 }
3227 mutex_exit(&zone_status_lock);
3228 }
3229
3230 /*
3231 * Private CPR-safe version of zone_status_wait().
3232 */
3233 static void
3234 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
3235 {
3236 callb_cpr_t cprinfo;
3237
3238 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
3239
3240 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
3241 str);
3242 mutex_enter(&zone_status_lock);
3243 while (zone->zone_status < status) {
3244 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3245 cv_wait(&zone->zone_cv, &zone_status_lock);
3246 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
3247 }
3248 /*
3249 * zone_status_lock is implicitly released by the following.
3250 */
3251 CALLB_CPR_EXIT(&cprinfo);
3252 }
3253
3254 /*
3255 * Block until zone enters requested state or signal is received. Return (0)
3256 * if signaled, non-zero otherwise.
3257 */
3258 int
3259 zone_status_wait_sig(zone_t *zone, zone_status_t status)
3260 {
3261 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
3262
3263 mutex_enter(&zone_status_lock);
3264 while (zone->zone_status < status) {
3265 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
3266 mutex_exit(&zone_status_lock);
3267 return (0);
3268 }
3269 }
3270 mutex_exit(&zone_status_lock);
3271 return (1);
3272 }
3273
3274 /*
3275 * Block until the zone enters the requested state or the timeout expires,
3276 * whichever happens first. Return (-1) if operation timed out, time remaining
3277 * otherwise.
3278 */
3279 clock_t
3280 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
3281 {
3282 clock_t timeleft = 0;
3283
3284 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
3285
3286 mutex_enter(&zone_status_lock);
3287 while (zone->zone_status < status && timeleft != -1) {
3288 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
3289 }
3290 mutex_exit(&zone_status_lock);
3291 return (timeleft);
3292 }
3293
3294 /*
3295 * Block until the zone enters the requested state, the current process is
3296 * signaled, or the timeout expires, whichever happens first. Return (-1) if
3297 * operation timed out, 0 if signaled, time remaining otherwise.
3298 */
3299 clock_t
3300 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
3301 {
3302 clock_t timeleft = tim - ddi_get_lbolt();
3303
3304 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
3305
3306 mutex_enter(&zone_status_lock);
3307 while (zone->zone_status < status) {
3308 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
3309 tim);
3310 if (timeleft <= 0)
3311 break;
3312 }
3313 mutex_exit(&zone_status_lock);
3314 return (timeleft);
3315 }
3316
3317 /*
3318 * Zones have two reference counts: one for references from credential
3319 * structures (zone_cred_ref), and one (zone_ref) for everything else.
3320 * This is so we can allow a zone to be rebooted while there are still
3321 * outstanding cred references, since certain drivers cache dblks (which
3322 * implicitly results in cached creds). We wait for zone_ref to drop to
3323 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
3324 * later freed when the zone_cred_ref drops to 0, though nothing other
3325 * than the zone id and privilege set should be accessed once the zone
3326 * is "dead".
3327 *
3328 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
3329 * to force halt/reboot to block waiting for the zone_cred_ref to drop
3330 * to 0. This can be useful to flush out other sources of cached creds
3331 * that may be less innocuous than the driver case.
3332 *
3333 * Zones also provide a tracked reference counting mechanism in which zone
3334 * references are represented by "crumbs" (zone_ref structures). Crumbs help
3335 * debuggers determine the sources of leaked zone references. See
3336 * zone_hold_ref() and zone_rele_ref() below for more information.
3337 */
3338
3339 int zone_wait_for_cred = 0;
3340
3341 static void
3342 zone_hold_locked(zone_t *z)
3343 {
3344 ASSERT(MUTEX_HELD(&z->zone_lock));
3345 z->zone_ref++;
3346 ASSERT(z->zone_ref != 0);
3347 }
3348
3349 /*
3350 * Increment the specified zone's reference count. The zone's zone_t structure
3351 * will not be freed as long as the zone's reference count is nonzero.
3352 * Decrement the zone's reference count via zone_rele().
3353 *
3354 * NOTE: This function should only be used to hold zones for short periods of
3355 * time. Use zone_hold_ref() if the zone must be held for a long time.
3356 */
3357 void
3358 zone_hold(zone_t *z)
3359 {
3360 mutex_enter(&z->zone_lock);
3361 zone_hold_locked(z);
3362 mutex_exit(&z->zone_lock);
3363 }
3364
3365 /*
3366 * If the non-cred ref count drops to 1 and either the cred ref count
3367 * is 0 or we aren't waiting for cred references, the zone is ready to
3368 * be destroyed.
3369 */
3370 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
3371 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
3372
3373 /*
3374 * Common zone reference release function invoked by zone_rele() and
3375 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
3376 * zone's subsystem-specific reference counters are not affected by the
3377 * release. If ref is not NULL, then the zone_ref_t to which it refers is
3378 * removed from the specified zone's reference list. ref must be non-NULL iff
3379 * subsys is not ZONE_REF_NUM_SUBSYS.
3380 */
3381 static void
3382 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
3383 {
3384 boolean_t wakeup;
3385
3386 mutex_enter(&z->zone_lock);
3387 ASSERT(z->zone_ref != 0);
3388 z->zone_ref--;
3389 if (subsys != ZONE_REF_NUM_SUBSYS) {
3390 ASSERT(z->zone_subsys_ref[subsys] != 0);
3391 z->zone_subsys_ref[subsys]--;
3392 list_remove(&z->zone_ref_list, ref);
3393 }
3394 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
3395 /* no more refs, free the structure */
3396 mutex_exit(&z->zone_lock);
3397 zone_free(z);
3398 return;
3399 }
3400 /* signal zone_destroy so the zone can finish halting */
3401 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
3402 mutex_exit(&z->zone_lock);
3403
3404 if (wakeup) {
3405 /*
3406 * Grabbing zonehash_lock here effectively synchronizes with
3407 * zone_destroy() to avoid missed signals.
3408 */
3409 mutex_enter(&zonehash_lock);
3410 cv_broadcast(&zone_destroy_cv);
3411 mutex_exit(&zonehash_lock);
3412 }
3413 }
3414
3415 /*
3416 * Decrement the specified zone's reference count. The specified zone will
3417 * cease to exist after this function returns if the reference count drops to
3418 * zero. This function should be paired with zone_hold().
3419 */
3420 void
3421 zone_rele(zone_t *z)
3422 {
3423 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
3424 }
3425
3426 /*
3427 * Initialize a zone reference structure. This function must be invoked for
3428 * a reference structure before the structure is passed to zone_hold_ref().
3429 */
3430 void
3431 zone_init_ref(zone_ref_t *ref)
3432 {
3433 ref->zref_zone = NULL;
3434 list_link_init(&ref->zref_linkage);
3435 }
3436
3437 /*
3438 * Acquire a reference to zone z. The caller must specify the
3439 * zone_ref_subsys_t constant associated with its subsystem. The specified
3440 * zone_ref_t structure will represent a reference to the specified zone. Use
3441 * zone_rele_ref() to release the reference.
3442 *
3443 * The referenced zone_t structure will not be freed as long as the zone_t's
3444 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
3445 * references.
3446 *
3447 * NOTE: The zone_ref_t structure must be initialized before it is used.
3448 * See zone_init_ref() above.
3449 */
3450 void
3451 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
3452 {
3453 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
3454
3455 /*
3456 * Prevent consumers from reusing a reference structure before
3457 * releasing it.
3458 */
3459 VERIFY(ref->zref_zone == NULL);
3460
3461 ref->zref_zone = z;
3462 mutex_enter(&z->zone_lock);
3463 zone_hold_locked(z);
3464 z->zone_subsys_ref[subsys]++;
3465 ASSERT(z->zone_subsys_ref[subsys] != 0);
3466 list_insert_head(&z->zone_ref_list, ref);
3467 mutex_exit(&z->zone_lock);
3468 }
3469
3470 /*
3471 * Release the zone reference represented by the specified zone_ref_t.
3472 * The reference is invalid after it's released; however, the zone_ref_t
3473 * structure can be reused without having to invoke zone_init_ref().
3474 * subsys should be the same value that was passed to zone_hold_ref()
3475 * when the reference was acquired.
3476 */
3477 void
3478 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
3479 {
3480 zone_rele_common(ref->zref_zone, ref, subsys);
3481
3482 /*
3483 * Set the zone_ref_t's zref_zone field to NULL to generate panics
3484 * when consumers dereference the reference. This helps us catch
3485 * consumers who use released references. Furthermore, this lets
3486 * consumers reuse the zone_ref_t structure without having to
3487 * invoke zone_init_ref().
3488 */
3489 ref->zref_zone = NULL;
3490 }
3491
3492 void
3493 zone_cred_hold(zone_t *z)
3494 {
3495 mutex_enter(&z->zone_lock);
3496 z->zone_cred_ref++;
3497 ASSERT(z->zone_cred_ref != 0);
3498 mutex_exit(&z->zone_lock);
3499 }
3500
3501 void
3502 zone_cred_rele(zone_t *z)
3503 {
3504 boolean_t wakeup;
3505
3506 mutex_enter(&z->zone_lock);
3507 ASSERT(z->zone_cred_ref != 0);
3508 z->zone_cred_ref--;
3509 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
3510 /* no more refs, free the structure */
3511 mutex_exit(&z->zone_lock);
3512 zone_free(z);
3513 return;
3514 }
3515 /*
3516 * If zone_destroy is waiting for the cred references to drain
3517 * out, and they have, signal it.
3518 */
3519 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
3520 zone_status_get(z) >= ZONE_IS_DEAD);
3521 mutex_exit(&z->zone_lock);
3522
3523 if (wakeup) {
3524 /*
3525 * Grabbing zonehash_lock here effectively synchronizes with
3526 * zone_destroy() to avoid missed signals.
3527 */
3528 mutex_enter(&zonehash_lock);
3529 cv_broadcast(&zone_destroy_cv);
3530 mutex_exit(&zonehash_lock);
3531 }
3532 }
3533
3534 void
3535 zone_task_hold(zone_t *z)
3536 {
3537 mutex_enter(&z->zone_lock);
3538 z->zone_ntasks++;
3539 ASSERT(z->zone_ntasks != 0);
3540 mutex_exit(&z->zone_lock);
3541 }
3542
3543 void
3544 zone_task_rele(zone_t *zone)
3545 {
3546 uint_t refcnt;
3547
3548 mutex_enter(&zone->zone_lock);
3549 ASSERT(zone->zone_ntasks != 0);
3550 refcnt = --zone->zone_ntasks;
3551 if (refcnt > 1) { /* Common case */
3552 mutex_exit(&zone->zone_lock);
3553 return;
3554 }
3555 zone_hold_locked(zone); /* so we can use the zone_t later */
3556 mutex_exit(&zone->zone_lock);
3557 if (refcnt == 1) {
3558 /*
3559 * See if the zone is shutting down.
3560 */
3561 mutex_enter(&zone_status_lock);
3562 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
3563 goto out;
3564 }
3565
3566 /*
3567 * Make sure the ntasks didn't change since we
3568 * dropped zone_lock.
3569 */
3570 mutex_enter(&zone->zone_lock);
3571 if (refcnt != zone->zone_ntasks) {
3572 mutex_exit(&zone->zone_lock);
3573 goto out;
3574 }
3575 mutex_exit(&zone->zone_lock);
3576
3577 /*
3578 * No more user processes in the zone. The zone is empty.
3579 */
3580 zone_status_set(zone, ZONE_IS_EMPTY);
3581 goto out;
3582 }
3583
3584 ASSERT(refcnt == 0);
3585 /*
3586 * zsched has exited; the zone is dead.
3587 */
3588 zone->zone_zsched = NULL; /* paranoia */
3589 mutex_enter(&zone_status_lock);
3590 zone_status_set(zone, ZONE_IS_DEAD);
3591 out:
3592 mutex_exit(&zone_status_lock);
3593 zone_rele(zone);
3594 }
3595
3596 zoneid_t
3597 getzoneid(void)
3598 {
3599 return (curproc->p_zone->zone_id);
3600 }
3601
3602 zoneid_t
3603 getzonedid(void)
3604 {
3605 return (curproc->p_zone->zone_did);
3606 }
3607
3608 /*
3609 * Internal versions of zone_find_by_*(). These don't zone_hold() or
3610 * check the validity of a zone's state.
3611 */
3612 static zone_t *
3613 zone_find_all_by_id(zoneid_t zoneid)
3614 {
3615 mod_hash_val_t hv;
3616 zone_t *zone = NULL;
3617
3618 ASSERT(MUTEX_HELD(&zonehash_lock));
3619
3620 if (mod_hash_find(zonehashbyid,
3621 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3622 zone = (zone_t *)hv;
3623 return (zone);
3624 }
3625
3626 static zone_t *
3627 zone_find_all_by_label(const ts_label_t *label)
3628 {
3629 mod_hash_val_t hv;
3630 zone_t *zone = NULL;
3631
3632 ASSERT(MUTEX_HELD(&zonehash_lock));
3633
3634 /*
3635 * zonehashbylabel is not maintained for unlabeled systems
3636 */
3637 if (!is_system_labeled())
3638 return (NULL);
3639 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3640 zone = (zone_t *)hv;
3641 return (zone);
3642 }
3643
3644 static zone_t *
3645 zone_find_all_by_name(char *name)
3646 {
3647 mod_hash_val_t hv;
3648 zone_t *zone = NULL;
3649
3650 ASSERT(MUTEX_HELD(&zonehash_lock));
3651
3652 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3653 zone = (zone_t *)hv;
3654 return (zone);
3655 }
3656
3657 /*
3658 * Public interface for looking up a zone by zoneid. Only returns the zone if
3659 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3660 * Caller must call zone_rele() once it is done with the zone.
3661 *
3662 * The zone may begin the zone_destroy() sequence immediately after this
3663 * function returns, but may be safely used until zone_rele() is called.
3664 */
3665 zone_t *
3666 zone_find_by_id(zoneid_t zoneid)
3667 {
3668 zone_t *zone;
3669 zone_status_t status;
3670
3671 mutex_enter(&zonehash_lock);
3672 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3673 mutex_exit(&zonehash_lock);
3674 return (NULL);
3675 }
3676 status = zone_status_get(zone);
3677 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3678 /*
3679 * For all practical purposes the zone doesn't exist.
3680 */
3681 mutex_exit(&zonehash_lock);
3682 return (NULL);
3683 }
3684 zone_hold(zone);
3685 mutex_exit(&zonehash_lock);
3686 return (zone);
3687 }
3688
3689 /*
3690 * Similar to zone_find_by_id, but using zone label as the key.
3691 */
3692 zone_t *
3693 zone_find_by_label(const ts_label_t *label)
3694 {
3695 zone_t *zone;
3696 zone_status_t status;
3697
3698 mutex_enter(&zonehash_lock);
3699 if ((zone = zone_find_all_by_label(label)) == NULL) {
3700 mutex_exit(&zonehash_lock);
3701 return (NULL);
3702 }
3703
3704 status = zone_status_get(zone);
3705 if (status > ZONE_IS_DOWN) {
3706 /*
3707 * For all practical purposes the zone doesn't exist.
3708 */
3709 mutex_exit(&zonehash_lock);
3710 return (NULL);
3711 }
3712 zone_hold(zone);
3713 mutex_exit(&zonehash_lock);
3714 return (zone);
3715 }
3716
3717 /*
3718 * Similar to zone_find_by_id, but using zone name as the key.
3719 */
3720 zone_t *
3721 zone_find_by_name(char *name)
3722 {
3723 zone_t *zone;
3724 zone_status_t status;
3725
3726 mutex_enter(&zonehash_lock);
3727 if ((zone = zone_find_all_by_name(name)) == NULL) {
3728 mutex_exit(&zonehash_lock);
3729 return (NULL);
3730 }
3731 status = zone_status_get(zone);
3732 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3733 /*
3734 * For all practical purposes the zone doesn't exist.
3735 */
3736 mutex_exit(&zonehash_lock);
3737 return (NULL);
3738 }
3739 zone_hold(zone);
3740 mutex_exit(&zonehash_lock);
3741 return (zone);
3742 }
3743
3744 /*
3745 * Similar to zone_find_by_id(), using the path as a key. For instance,
3746 * if there is a zone "foo" rooted at /foo/root, and the path argument
3747 * is "/foo/root/proc", it will return the held zone_t corresponding to
3748 * zone "foo".
3749 *
3750 * zone_find_by_path() always returns a non-NULL value, since at the
3751 * very least every path will be contained in the global zone.
3752 *
3753 * As with the other zone_find_by_*() functions, the caller is
3754 * responsible for zone_rele()ing the return value of this function.
3755 */
3756 zone_t *
3757 zone_find_by_path(const char *path)
3758 {
3759 zone_t *zone;
3760 zone_t *zret = NULL;
3761 zone_status_t status;
3762
3763 if (path == NULL) {
3764 /*
3765 * Call from rootconf().
3766 */
3767 zone_hold(global_zone);
3768 return (global_zone);
3769 }
3770 ASSERT(*path == '/');
3771 mutex_enter(&zonehash_lock);
3772 for (zone = list_head(&zone_active); zone != NULL;
3773 zone = list_next(&zone_active, zone)) {
3774 if (ZONE_PATH_VISIBLE(path, zone))
3775 zret = zone;
3776 }
3777 ASSERT(zret != NULL);
3778 status = zone_status_get(zret);
3779 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3780 /*
3781 * Zone practically doesn't exist.
3782 */
3783 zret = global_zone;
3784 }
3785 zone_hold(zret);
3786 mutex_exit(&zonehash_lock);
3787 return (zret);
3788 }
3789
3790 /*
3791 * Public interface for updating per-zone load averages. Called once per
3792 * second.
3793 *
3794 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3795 */
3796 void
3797 zone_loadavg_update(void)
3798 {
3799 zone_t *zp;
3800 zone_status_t status;
3801 struct loadavg_s *lavg;
3802 hrtime_t zone_total;
3803 uint64_t tmp;
3804 int i;
3805 hrtime_t hr_avg;
3806 int nrun;
3807 static int64_t f[3] = { 135, 27, 9 };
3808 int64_t q, r;
3809
3810 mutex_enter(&zonehash_lock);
3811 for (zp = list_head(&zone_active); zp != NULL;
3812 zp = list_next(&zone_active, zp)) {
3813 mutex_enter(&zp->zone_lock);
3814
3815 /* Skip zones that are on the way down or not yet up */
3816 status = zone_status_get(zp);
3817 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3818 /* For all practical purposes the zone doesn't exist. */
3819 mutex_exit(&zp->zone_lock);
3820 continue;
3821 }
3822
3823 /*
3824 * Update the 10 second moving average data in zone_loadavg.
3825 */
3826 lavg = &zp->zone_loadavg;
3827
3828 tmp = cpu_uarray_sum_all(zp->zone_ustate);
3829 zone_total = UINT64_OVERFLOW_TO_INT64(tmp);
3830
3831 scalehrtime(&zone_total);
3832
3833 /* The zone_total should always be increasing. */
3834 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3835 zone_total - lavg->lg_total : 0;
3836 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3837 /* lg_total holds the prev. 1 sec. total */
3838 lavg->lg_total = zone_total;
3839
3840 /*
3841 * To simplify the calculation, we don't calculate the load avg.
3842 * until the zone has been up for at least 10 seconds and our
3843 * moving average is thus full.
3844 */
3845 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3846 lavg->lg_len++;
3847 mutex_exit(&zp->zone_lock);
3848 continue;
3849 }
3850
3851 /* Now calculate the 1min, 5min, 15 min load avg. */
3852 hr_avg = 0;
3853 for (i = 0; i < S_LOADAVG_SZ; i++)
3854 hr_avg += lavg->lg_loads[i];
3855 hr_avg = hr_avg / S_LOADAVG_SZ;
3856 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3857
3858 /* Compute load avg. See comment in calcloadavg() */
3859 for (i = 0; i < 3; i++) {
3860 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3861 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3862 zp->zone_hp_avenrun[i] +=
3863 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3864
3865 /* avenrun[] can only hold 31 bits of load avg. */
3866 if (zp->zone_hp_avenrun[i] <
3867 ((uint64_t)1<<(31+16-FSHIFT)))
3868 zp->zone_avenrun[i] = (int32_t)
3869 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3870 else
3871 zp->zone_avenrun[i] = 0x7fffffff;
3872 }
3873
3874 mutex_exit(&zp->zone_lock);
3875 }
3876 mutex_exit(&zonehash_lock);
3877 }
3878
3879 /*
3880 * Get the number of cpus visible to this zone. The system-wide global
3881 * 'ncpus' is returned if pools are disabled, the caller is in the
3882 * global zone, or a NULL zone argument is passed in.
3883 */
3884 int
3885 zone_ncpus_get(zone_t *zone)
3886 {
3887 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3888
3889 return (myncpus != 0 ? myncpus : ncpus);
3890 }
3891
3892 /*
3893 * Get the number of online cpus visible to this zone. The system-wide
3894 * global 'ncpus_online' is returned if pools are disabled, the caller
3895 * is in the global zone, or a NULL zone argument is passed in.
3896 */
3897 int
3898 zone_ncpus_online_get(zone_t *zone)
3899 {
3900 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3901
3902 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3903 }
3904
3905 /*
3906 * Return the pool to which the zone is currently bound.
3907 */
3908 pool_t *
3909 zone_pool_get(zone_t *zone)
3910 {
3911 ASSERT(pool_lock_held());
3912
3913 return (zone->zone_pool);
3914 }
3915
3916 /*
3917 * Set the zone's pool pointer and update the zone's visibility to match
3918 * the resources in the new pool.
3919 */
3920 void
3921 zone_pool_set(zone_t *zone, pool_t *pool)
3922 {
3923 ASSERT(pool_lock_held());
3924 ASSERT(MUTEX_HELD(&cpu_lock));
3925
3926 zone->zone_pool = pool;
3927 zone_pset_set(zone, pool->pool_pset->pset_id);
3928 }
3929
3930 /*
3931 * Return the cached value of the id of the processor set to which the
3932 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3933 * facility is disabled.
3934 */
3935 psetid_t
3936 zone_pset_get(zone_t *zone)
3937 {
3938 ASSERT(MUTEX_HELD(&cpu_lock));
3939
3940 return (zone->zone_psetid);
3941 }
3942
3943 /*
3944 * Set the cached value of the id of the processor set to which the zone
3945 * is currently bound. Also update the zone's visibility to match the
3946 * resources in the new processor set.
3947 */
3948 void
3949 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3950 {
3951 psetid_t oldpsetid;
3952
3953 ASSERT(MUTEX_HELD(&cpu_lock));
3954 oldpsetid = zone_pset_get(zone);
3955
3956 if (oldpsetid == newpsetid)
3957 return;
3958 /*
3959 * Global zone sees all.
3960 */
3961 if (zone != global_zone) {
3962 zone->zone_psetid = newpsetid;
3963 if (newpsetid != ZONE_PS_INVAL)
3964 pool_pset_visibility_add(newpsetid, zone);
3965 if (oldpsetid != ZONE_PS_INVAL)
3966 pool_pset_visibility_remove(oldpsetid, zone);
3967 }
3968 /*
3969 * Disabling pools, so we should start using the global values
3970 * for ncpus and ncpus_online.
3971 */
3972 if (newpsetid == ZONE_PS_INVAL) {
3973 zone->zone_ncpus = 0;
3974 zone->zone_ncpus_online = 0;
3975 }
3976 }
3977
3978 /*
3979 * Walk the list of active zones and issue the provided callback for
3980 * each of them.
3981 *
3982 * Caller must not be holding any locks that may be acquired under
3983 * zonehash_lock. See comment at the beginning of the file for a list of
3984 * common locks and their interactions with zones.
3985 */
3986 int
3987 zone_walk(int (*cb)(zone_t *, void *), void *data)
3988 {
3989 zone_t *zone;
3990 int ret = 0;
3991 zone_status_t status;
3992
3993 mutex_enter(&zonehash_lock);
3994 for (zone = list_head(&zone_active); zone != NULL;
3995 zone = list_next(&zone_active, zone)) {
3996 /*
3997 * Skip zones that shouldn't be externally visible.
3998 */
3999 status = zone_status_get(zone);
4000 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
4001 continue;
4002 /*
4003 * Bail immediately if any callback invocation returns a
4004 * non-zero value.
4005 */
4006 ret = (*cb)(zone, data);
4007 if (ret != 0)
4008 break;
4009 }
4010 mutex_exit(&zonehash_lock);
4011 return (ret);
4012 }
4013
4014 static int
4015 zone_set_root(zone_t *zone, const char *upath)
4016 {
4017 vnode_t *vp;
4018 int trycount;
4019 int error = 0;
4020 char *path;
4021 struct pathname upn, pn;
4022 size_t pathlen;
4023
4024 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
4025 return (error);
4026
4027 pn_alloc(&pn);
4028
4029 /* prevent infinite loop */
4030 trycount = 10;
4031 for (;;) {
4032 if (--trycount <= 0) {
4033 error = ESTALE;
4034 goto out;
4035 }
4036
4037 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
4038 /*
4039 * VOP_ACCESS() may cover 'vp' with a new
4040 * filesystem, if 'vp' is an autoFS vnode.
4041 * Get the new 'vp' if so.
4042 */
4043 if ((error =
4044 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
4045 (!vn_ismntpt(vp) ||
4046 (error = traverse(&vp)) == 0)) {
4047 pathlen = pn.pn_pathlen + 2;
4048 path = kmem_alloc(pathlen, KM_SLEEP);
4049 (void) strncpy(path, pn.pn_path,
4050 pn.pn_pathlen + 1);
4051 path[pathlen - 2] = '/';
4052 path[pathlen - 1] = '\0';
4053 pn_free(&pn);
4054 pn_free(&upn);
4055
4056 /* Success! */
4057 break;
4058 }
4059 VN_RELE(vp);
4060 }
4061 if (error != ESTALE)
4062 goto out;
4063 }
4064
4065 ASSERT(error == 0);
4066 zone->zone_rootvp = vp; /* we hold a reference to vp */
4067 zone->zone_rootpath = path;
4068 zone->zone_rootpathlen = pathlen;
4069 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
4070 zone->zone_flags |= ZF_IS_SCRATCH;
4071 return (0);
4072
4073 out:
4074 pn_free(&pn);
4075 pn_free(&upn);
4076 return (error);
4077 }
4078
4079 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
4080 ((c) >= 'a' && (c) <= 'z') || \
4081 ((c) >= 'A' && (c) <= 'Z'))
4082
4083 static int
4084 zone_set_name(zone_t *zone, const char *uname)
4085 {
4086 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
4087 size_t len;
4088 int i, err;
4089
4090 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
4091 kmem_free(kname, ZONENAME_MAX);
4092 return (err); /* EFAULT or ENAMETOOLONG */
4093 }
4094
4095 /* must be less than ZONENAME_MAX */
4096 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
4097 kmem_free(kname, ZONENAME_MAX);
4098 return (EINVAL);
4099 }
4100
4101 /*
4102 * Name must start with an alphanumeric and must contain only
4103 * alphanumerics, '-', '_' and '.'.
4104 */
4105 if (!isalnum(kname[0])) {
4106 kmem_free(kname, ZONENAME_MAX);
4107 return (EINVAL);
4108 }
4109 for (i = 1; i < len - 1; i++) {
4110 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
4111 kname[i] != '.') {
4112 kmem_free(kname, ZONENAME_MAX);
4113 return (EINVAL);
4114 }
4115 }
4116
4117 zone->zone_name = kname;
4118 return (0);
4119 }
4120
4121 /*
4122 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
4123 * is NULL or it points to a zone with no hostid emulation, then the machine's
4124 * hostid (i.e., the global zone's hostid) is returned. This function returns
4125 * zero if neither the zone nor the host machine (global zone) have hostids. It
4126 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
4127 * hostid and the machine's hostid is invalid.
4128 */
4129 uint32_t
4130 zone_get_hostid(zone_t *zonep)
4131 {
4132 unsigned long machine_hostid;
4133
4134 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
4135 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
4136 return (HW_INVALID_HOSTID);
4137 return ((uint32_t)machine_hostid);
4138 }
4139 return (zonep->zone_hostid);
4140 }
4141
4142 /*
4143 * Similar to thread_create(), but makes sure the thread is in the appropriate
4144 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
4145 */
4146 /*ARGSUSED*/
4147 kthread_t *
4148 zthread_create(
4149 caddr_t stk,
4150 size_t stksize,
4151 void (*proc)(),
4152 void *arg,
4153 size_t len,
4154 pri_t pri)
4155 {
4156 kthread_t *t;
4157 zone_t *zone = curproc->p_zone;
4158 proc_t *pp = zone->zone_zsched;
4159
4160 zone_hold(zone); /* Reference to be dropped when thread exits */
4161
4162 /*
4163 * No-one should be trying to create threads if the zone is shutting
4164 * down and there aren't any kernel threads around. See comment
4165 * in zthread_exit().
4166 */
4167 ASSERT(!(zone->zone_kthreads == NULL &&
4168 zone_status_get(zone) >= ZONE_IS_EMPTY));
4169 /*
4170 * Create a thread, but don't let it run until we've finished setting
4171 * things up.
4172 */
4173 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
4174 ASSERT(t->t_forw == NULL);
4175 mutex_enter(&zone_status_lock);
4176 if (zone->zone_kthreads == NULL) {
4177 t->t_forw = t->t_back = t;
4178 } else {
4179 kthread_t *tx = zone->zone_kthreads;
4180
4181 t->t_forw = tx;
4182 t->t_back = tx->t_back;
4183 tx->t_back->t_forw = t;
4184 tx->t_back = t;
4185 }
4186 zone->zone_kthreads = t;
4187 mutex_exit(&zone_status_lock);
4188
4189 mutex_enter(&pp->p_lock);
4190 t->t_proc_flag |= TP_ZTHREAD;
4191 project_rele(t->t_proj);
4192 t->t_proj = project_hold(pp->p_task->tk_proj);
4193
4194 /*
4195 * Setup complete, let it run.
4196 */
4197 thread_lock(t);
4198 t->t_schedflag |= TS_ALLSTART;
4199 setrun_locked(t);
4200 thread_unlock(t);
4201
4202 mutex_exit(&pp->p_lock);
4203
4204 return (t);
4205 }
4206
4207 /*
4208 * Similar to thread_exit(). Must be called by threads created via
4209 * zthread_exit().
4210 */
4211 void
4212 zthread_exit(void)
4213 {
4214 kthread_t *t = curthread;
4215 proc_t *pp = curproc;
4216 zone_t *zone = pp->p_zone;
4217
4218 mutex_enter(&zone_status_lock);
4219
4220 /*
4221 * Reparent to p0
4222 */
4223 kpreempt_disable();
4224 mutex_enter(&pp->p_lock);
4225 t->t_proc_flag &= ~TP_ZTHREAD;
4226 t->t_procp = &p0;
4227 hat_thread_exit(t);
4228 mutex_exit(&pp->p_lock);
4229 kpreempt_enable();
4230
4231 if (t->t_back == t) {
4232 ASSERT(t->t_forw == t);
4233 /*
4234 * If the zone is empty, once the thread count
4235 * goes to zero no further kernel threads can be
4236 * created. This is because if the creator is a process
4237 * in the zone, then it must have exited before the zone
4238 * state could be set to ZONE_IS_EMPTY.
4239 * Otherwise, if the creator is a kernel thread in the
4240 * zone, the thread count is non-zero.
4241 *
4242 * This really means that non-zone kernel threads should
4243 * not create zone kernel threads.
4244 */
4245 zone->zone_kthreads = NULL;
4246 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
4247 zone_status_set(zone, ZONE_IS_DOWN);
4248 /*
4249 * Remove any CPU caps on this zone.
4250 */
4251 cpucaps_zone_remove(zone);
4252 }
4253 } else {
4254 t->t_forw->t_back = t->t_back;
4255 t->t_back->t_forw = t->t_forw;
4256 if (zone->zone_kthreads == t)
4257 zone->zone_kthreads = t->t_forw;
4258 }
4259 mutex_exit(&zone_status_lock);
4260 zone_rele(zone);
4261 thread_exit();
4262 /* NOTREACHED */
4263 }
4264
4265 static void
4266 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
4267 {
4268 vnode_t *oldvp;
4269
4270 /* we're going to hold a reference here to the directory */
4271 VN_HOLD(vp);
4272
4273 /* update abs cwd/root path see c2/audit.c */
4274 if (AU_AUDITING())
4275 audit_chdirec(vp, vpp);
4276
4277 mutex_enter(&pp->p_lock);
4278 oldvp = *vpp;
4279 *vpp = vp;
4280 mutex_exit(&pp->p_lock);
4281 if (oldvp != NULL)
4282 VN_RELE(oldvp);
4283 }
4284
4285 /*
4286 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
4287 */
4288 static int
4289 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
4290 {
4291 nvpair_t *nvp = NULL;
4292 boolean_t priv_set = B_FALSE;
4293 boolean_t limit_set = B_FALSE;
4294 boolean_t action_set = B_FALSE;
4295
4296 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4297 const char *name;
4298 uint64_t ui64;
4299
4300 name = nvpair_name(nvp);
4301 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
4302 return (EINVAL);
4303 (void) nvpair_value_uint64(nvp, &ui64);
4304 if (strcmp(name, "privilege") == 0) {
4305 /*
4306 * Currently only privileged values are allowed, but
4307 * this may change in the future.
4308 */
4309 if (ui64 != RCPRIV_PRIVILEGED)
4310 return (EINVAL);
4311 rv->rcv_privilege = ui64;
4312 priv_set = B_TRUE;
4313 } else if (strcmp(name, "limit") == 0) {
4314 rv->rcv_value = ui64;
4315 limit_set = B_TRUE;
4316 } else if (strcmp(name, "action") == 0) {
4317 if (ui64 != RCTL_LOCAL_NOACTION &&
4318 ui64 != RCTL_LOCAL_DENY)
4319 return (EINVAL);
4320 rv->rcv_flagaction = ui64;
4321 action_set = B_TRUE;
4322 } else {
4323 return (EINVAL);
4324 }
4325 }
4326
4327 if (!(priv_set && limit_set && action_set))
4328 return (EINVAL);
4329 rv->rcv_action_signal = 0;
4330 rv->rcv_action_recipient = NULL;
4331 rv->rcv_action_recip_pid = -1;
4332 rv->rcv_firing_time = 0;
4333
4334 return (0);
4335 }
4336
4337 /*
4338 * Non-global zone version of start_init.
4339 */
4340 void
4341 zone_start_init(void)
4342 {
4343 proc_t *p = ttoproc(curthread);
4344 zone_t *z = p->p_zone;
4345
4346 ASSERT(!INGLOBALZONE(curproc));
4347
4348 /*
4349 * For all purposes (ZONE_ATTR_INITPID and restart_init),
4350 * storing just the pid of init is sufficient.
4351 */
4352 z->zone_proc_initpid = p->p_pid;
4353
4354 if (z->zone_setup_app_contract == B_TRUE) {
4355 /*
4356 * Normally a process cannot modify its own contract, but we're
4357 * just starting the zone's init process and its contract is
4358 * always initialized from the sys_process_tmpl template, so
4359 * this is the simplest way to setup init's contract to kill
4360 * the process if any other process in the contract exits.
4361 */
4362 p->p_ct_process->conp_ev_fatal |= CT_PR_EV_EXIT;
4363 }
4364
4365 /*
4366 * We maintain zone_boot_err so that we can return the cause of the
4367 * failure back to the caller of the zone_boot syscall.
4368 */
4369 p->p_zone->zone_boot_err = start_init_common();
4370
4371 /*
4372 * We will prevent booting zones from becoming running zones if the
4373 * global zone is shutting down.
4374 */
4375 mutex_enter(&zone_status_lock);
4376 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
4377 ZONE_IS_SHUTTING_DOWN) {
4378 /*
4379 * Make sure we are still in the booting state-- we could have
4380 * raced and already be shutting down, or even further along.
4381 */
4382 if (zone_status_get(z) == ZONE_IS_BOOTING) {
4383 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
4384 }
4385 mutex_exit(&zone_status_lock);
4386 /* It's gone bad, dispose of the process */
4387 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
4388 mutex_enter(&p->p_lock);
4389 ASSERT(p->p_flag & SEXITLWPS);
4390 lwp_exit();
4391 }
4392 } else {
4393 id_t cid = curthread->t_cid;
4394
4395 if (zone_status_get(z) == ZONE_IS_BOOTING)
4396 zone_status_set(z, ZONE_IS_RUNNING);
4397 mutex_exit(&zone_status_lock);
4398
4399 mutex_enter(&class_lock);
4400 ASSERT(cid < loaded_classes);
4401 if (strcmp(sclass[cid].cl_name, "FX") == 0 &&
4402 z->zone_fixed_hipri) {
4403 /*
4404 * If the zone is using FX then by default all
4405 * processes start at the lowest priority and stay
4406 * there. We provide a mechanism for the zone to
4407 * indicate that it should run at "high priority". In
4408 * this case we setup init to run at the highest FX
4409 * priority (which is one level higher than the
4410 * non-fixed scheduling classes can use).
4411 */
4412 pcparms_t pcparms;
4413
4414 pcparms.pc_cid = cid;
4415 ((fxkparms_t *)pcparms.pc_clparms)->fx_upri = FXMAXUPRI;
4416 ((fxkparms_t *)pcparms.pc_clparms)->fx_uprilim =
4417 FXMAXUPRI;
4418 ((fxkparms_t *)pcparms.pc_clparms)->fx_cflags =
4419 FX_DOUPRILIM | FX_DOUPRI;
4420
4421 mutex_enter(&pidlock);
4422 mutex_enter(&curproc->p_lock);
4423
4424 (void) parmsset(&pcparms, curthread);
4425
4426 mutex_exit(&curproc->p_lock);
4427 mutex_exit(&pidlock);
4428 } else if (strcmp(sclass[cid].cl_name, "RT") == 0) {
4429 /*
4430 * zsched always starts the init lwp at priority
4431 * minclsyspri - 1. This priority gets set in t_pri and
4432 * is invalid for RT, but RT never uses t_pri. However
4433 * t_pri is used by procfs, so we always see processes
4434 * within an RT zone with an invalid priority value.
4435 * We fix that up now.
4436 */
4437 curthread->t_pri = RTGPPRIO0;
4438 }
4439 mutex_exit(&class_lock);
4440
4441 /* cause the process to return to userland. */
4442 lwp_rtt();
4443 }
4444 }
4445
4446 struct zsched_arg {
4447 zone_t *zone;
4448 nvlist_t *nvlist;
4449 };
4450
4451 /*
4452 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
4453 * anything to do with scheduling, but rather with the fact that
4454 * per-zone kernel threads are parented to zsched, just like regular
4455 * kernel threads are parented to sched (p0).
4456 *
4457 * zsched is also responsible for launching init for the zone.
4458 */
4459 static void
4460 zsched(void *arg)
4461 {
4462 struct zsched_arg *za = arg;
4463 proc_t *pp = curproc;
4464 proc_t *initp = proc_init;
4465 zone_t *zone = za->zone;
4466 cred_t *cr, *oldcred;
4467 rctl_set_t *set;
4468 rctl_alloc_gp_t *gp;
4469 contract_t *ct = NULL;
4470 task_t *tk, *oldtk;
4471 rctl_entity_p_t e;
4472 kproject_t *pj;
4473
4474 nvlist_t *nvl = za->nvlist;
4475 nvpair_t *nvp = NULL;
4476
4477 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
4478 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
4479 PTOU(pp)->u_argc = 0;
4480 PTOU(pp)->u_argv = 0;
4481 PTOU(pp)->u_envp = 0;
4482 PTOU(pp)->u_commpagep = 0;
4483 closeall(P_FINFO(pp));
4484
4485 /*
4486 * We are this zone's "zsched" process. As the zone isn't generally
4487 * visible yet we don't need to grab any locks before initializing its
4488 * zone_proc pointer.
4489 */
4490 zone_hold(zone); /* this hold is released by zone_destroy() */
4491 zone->zone_zsched = pp;
4492 mutex_enter(&pp->p_lock);
4493 pp->p_zone = zone;
4494 mutex_exit(&pp->p_lock);
4495
4496 /*
4497 * Disassociate process from its 'parent'; parent ourselves to init
4498 * (pid 1) and change other values as needed.
4499 */
4500 sess_create();
4501
4502 mutex_enter(&pidlock);
4503 proc_detach(pp);
4504 pp->p_ppid = 1;
4505 pp->p_flag |= SZONETOP;
4506 pp->p_ancpid = 1;
4507 pp->p_parent = initp;
4508 pp->p_psibling = NULL;
4509 if (initp->p_child)
4510 initp->p_child->p_psibling = pp;
4511 pp->p_sibling = initp->p_child;
4512 initp->p_child = pp;
4513
4514 /* Decrement what newproc() incremented. */
4515 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
4516 /*
4517 * Our credentials are about to become kcred-like, so we don't care
4518 * about the caller's ruid.
4519 */
4520 upcount_inc(crgetruid(kcred), zone->zone_id);
4521 mutex_exit(&pidlock);
4522
4523 /*
4524 * getting out of global zone, so decrement lwp and process counts
4525 */
4526 pj = pp->p_task->tk_proj;
4527 mutex_enter(&global_zone->zone_nlwps_lock);
4528 pj->kpj_nlwps -= pp->p_lwpcnt;
4529 global_zone->zone_nlwps -= pp->p_lwpcnt;
4530 pj->kpj_nprocs--;
4531 global_zone->zone_nprocs--;
4532 mutex_exit(&global_zone->zone_nlwps_lock);
4533
4534 /*
4535 * Decrement locked memory counts on old zone and project.
4536 */
4537 mutex_enter(&global_zone->zone_mem_lock);
4538 global_zone->zone_locked_mem -= pp->p_locked_mem;
4539 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
4540 mutex_exit(&global_zone->zone_mem_lock);
4541
4542 /*
4543 * Create and join a new task in project '0' of this zone.
4544 *
4545 * We don't need to call holdlwps() since we know we're the only lwp in
4546 * this process.
4547 *
4548 * task_join() returns with p_lock held.
4549 */
4550 tk = task_create(0, zone);
4551 mutex_enter(&cpu_lock);
4552 oldtk = task_join(tk, 0);
4553
4554 pj = pp->p_task->tk_proj;
4555
4556 mutex_enter(&zone->zone_mem_lock);
4557 zone->zone_locked_mem += pp->p_locked_mem;
4558 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
4559 mutex_exit(&zone->zone_mem_lock);
4560
4561 /*
4562 * add lwp and process counts to zsched's zone, and increment
4563 * project's task and process count due to the task created in
4564 * the above task_create.
4565 */
4566 mutex_enter(&zone->zone_nlwps_lock);
4567 pj->kpj_nlwps += pp->p_lwpcnt;
4568 pj->kpj_ntasks += 1;
4569 zone->zone_nlwps += pp->p_lwpcnt;
4570 pj->kpj_nprocs++;
4571 zone->zone_nprocs++;
4572 mutex_exit(&zone->zone_nlwps_lock);
4573
4574 mutex_exit(&curproc->p_lock);
4575 mutex_exit(&cpu_lock);
4576 task_rele(oldtk);
4577
4578 /*
4579 * The process was created by a process in the global zone, hence the
4580 * credentials are wrong. We might as well have kcred-ish credentials.
4581 */
4582 cr = zone->zone_kcred;
4583 crhold(cr);
4584 mutex_enter(&pp->p_crlock);
4585 oldcred = pp->p_cred;
4586 pp->p_cred = cr;
4587 mutex_exit(&pp->p_crlock);
4588 crfree(oldcred);
4589
4590 /*
4591 * Hold credentials again (for thread)
4592 */
4593 crhold(cr);
4594
4595 /*
4596 * p_lwpcnt can't change since this is a kernel process.
4597 */
4598 crset(pp, cr);
4599
4600 /*
4601 * Chroot
4602 */
4603 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
4604 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
4605
4606 /*
4607 * Initialize zone's rctl set.
4608 */
4609 set = rctl_set_create();
4610 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
4611 mutex_enter(&pp->p_lock);
4612 e.rcep_p.zone = zone;
4613 e.rcep_t = RCENTITY_ZONE;
4614 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
4615 mutex_exit(&pp->p_lock);
4616 rctl_prealloc_destroy(gp);
4617
4618 /*
4619 * Apply the rctls passed in to zone_create(). This is basically a list
4620 * assignment: all of the old values are removed and the new ones
4621 * inserted. That is, if an empty list is passed in, all values are
4622 * removed.
4623 */
4624 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4625 rctl_dict_entry_t *rde;
4626 rctl_hndl_t hndl;
4627 char *name;
4628 nvlist_t **nvlarray;
4629 uint_t i, nelem;
4630 int error; /* For ASSERT()s */
4631
4632 name = nvpair_name(nvp);
4633 hndl = rctl_hndl_lookup(name);
4634 ASSERT(hndl != -1);
4635 rde = rctl_dict_lookup_hndl(hndl);
4636 ASSERT(rde != NULL);
4637
4638 for (; /* ever */; ) {
4639 rctl_val_t oval;
4640
4641 mutex_enter(&pp->p_lock);
4642 error = rctl_local_get(hndl, NULL, &oval, pp);
4643 mutex_exit(&pp->p_lock);
4644 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
4645 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
4646 if (oval.rcv_privilege == RCPRIV_SYSTEM)
4647 break;
4648 mutex_enter(&pp->p_lock);
4649 error = rctl_local_delete(hndl, &oval, pp);
4650 mutex_exit(&pp->p_lock);
4651 ASSERT(error == 0);
4652 }
4653 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4654 ASSERT(error == 0);
4655 for (i = 0; i < nelem; i++) {
4656 rctl_val_t *nvalp;
4657
4658 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4659 error = nvlist2rctlval(nvlarray[i], nvalp);
4660 ASSERT(error == 0);
4661 /*
4662 * rctl_local_insert can fail if the value being
4663 * inserted is a duplicate; this is OK.
4664 */
4665 mutex_enter(&pp->p_lock);
4666 if (rctl_local_insert(hndl, nvalp, pp) != 0)
4667 kmem_cache_free(rctl_val_cache, nvalp);
4668 mutex_exit(&pp->p_lock);
4669 }
4670 }
4671
4672 /*
4673 * Tell the world that we're done setting up.
4674 *
4675 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4676 * and atomically set the zone's processor set visibility. Once
4677 * we drop pool_lock() this zone will automatically get updated
4678 * to reflect any future changes to the pools configuration.
4679 *
4680 * Note that after we drop the locks below (zonehash_lock in
4681 * particular) other operations such as a zone_getattr call can
4682 * now proceed and observe the zone. That is the reason for doing a
4683 * state transition to the INITIALIZED state.
4684 */
4685 pool_lock();
4686 mutex_enter(&cpu_lock);
4687 mutex_enter(&zonehash_lock);
4688 zone_uniqid(zone);
4689 zone_zsd_configure(zone);
4690 if (pool_state == POOL_ENABLED)
4691 zone_pset_set(zone, pool_default->pool_pset->pset_id);
4692 mutex_enter(&zone_status_lock);
4693 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4694 zone_status_set(zone, ZONE_IS_INITIALIZED);
4695 mutex_exit(&zone_status_lock);
4696 mutex_exit(&zonehash_lock);
4697 mutex_exit(&cpu_lock);
4698 pool_unlock();
4699
4700 /* Now call the create callback for this key */
4701 zsd_apply_all_keys(zsd_apply_create, zone);
4702
4703 /* The callbacks are complete. Mark ZONE_IS_READY */
4704 mutex_enter(&zone_status_lock);
4705 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4706 zone_status_set(zone, ZONE_IS_READY);
4707 mutex_exit(&zone_status_lock);
4708
4709 /*
4710 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4711 * we launch init, and set the state to running.
4712 */
4713 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4714
4715 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4716 id_t cid;
4717
4718 /*
4719 * Ok, this is a little complicated. We need to grab the
4720 * zone's pool's scheduling class ID; note that by now, we
4721 * are already bound to a pool if we need to be (zoneadmd
4722 * will have done that to us while we're in the READY
4723 * state). *But* the scheduling class for the zone's 'init'
4724 * must be explicitly passed to newproc, which doesn't
4725 * respect pool bindings.
4726 *
4727 * We hold the pool_lock across the call to newproc() to
4728 * close the obvious race: the pool's scheduling class
4729 * could change before we manage to create the LWP with
4730 * classid 'cid'.
4731 */
4732 pool_lock();
4733 if (zone->zone_defaultcid > 0)
4734 cid = zone->zone_defaultcid;
4735 else
4736 cid = pool_get_class(zone->zone_pool);
4737 if (cid == -1)
4738 cid = defaultcid;
4739
4740 /*
4741 * If this fails, zone_boot will ultimately fail. The
4742 * state of the zone will be set to SHUTTING_DOWN-- userland
4743 * will have to tear down the zone, and fail, or try again.
4744 */
4745 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4746 minclsyspri - 1, &ct, 0)) != 0) {
4747 mutex_enter(&zone_status_lock);
4748 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4749 mutex_exit(&zone_status_lock);
4750 } else {
4751 zone->zone_boot_time = gethrestime_sec();
4752 }
4753
4754 pool_unlock();
4755 }
4756
4757 /*
4758 * Wait for zone_destroy() to be called. This is what we spend
4759 * most of our life doing.
4760 */
4761 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4762
4763 if (ct)
4764 /*
4765 * At this point the process contract should be empty.
4766 * (Though if it isn't, it's not the end of the world.)
4767 */
4768 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4769
4770 /*
4771 * Allow kcred to be freed when all referring processes
4772 * (including this one) go away. We can't just do this in
4773 * zone_free because we need to wait for the zone_cred_ref to
4774 * drop to 0 before calling zone_free, and the existence of
4775 * zone_kcred will prevent that. Thus, we call crfree here to
4776 * balance the crdup in zone_create. The crhold calls earlier
4777 * in zsched will be dropped when the thread and process exit.
4778 */
4779 crfree(zone->zone_kcred);
4780 zone->zone_kcred = NULL;
4781
4782 exit(CLD_EXITED, 0);
4783 }
4784
4785 /*
4786 * Helper function to determine if there are any submounts of the
4787 * provided path. Used to make sure the zone doesn't "inherit" any
4788 * mounts from before it is created.
4789 */
4790 static uint_t
4791 zone_mount_count(const char *rootpath)
4792 {
4793 vfs_t *vfsp;
4794 uint_t count = 0;
4795 size_t rootpathlen = strlen(rootpath);
4796
4797 /*
4798 * Holding zonehash_lock prevents race conditions with
4799 * vfs_list_add()/vfs_list_remove() since we serialize with
4800 * zone_find_by_path().
4801 */
4802 ASSERT(MUTEX_HELD(&zonehash_lock));
4803 /*
4804 * The rootpath must end with a '/'
4805 */
4806 ASSERT(rootpath[rootpathlen - 1] == '/');
4807
4808 /*
4809 * This intentionally does not count the rootpath itself if that
4810 * happens to be a mount point.
4811 */
4812 vfs_list_read_lock();
4813 vfsp = rootvfs;
4814 do {
4815 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4816 rootpathlen) == 0)
4817 count++;
4818 vfsp = vfsp->vfs_next;
4819 } while (vfsp != rootvfs);
4820 vfs_list_unlock();
4821 return (count);
4822 }
4823
4824 /*
4825 * Helper function to make sure that a zone created on 'rootpath'
4826 * wouldn't end up containing other zones' rootpaths.
4827 */
4828 static boolean_t
4829 zone_is_nested(const char *rootpath)
4830 {
4831 zone_t *zone;
4832 size_t rootpathlen = strlen(rootpath);
4833 size_t len;
4834
4835 ASSERT(MUTEX_HELD(&zonehash_lock));
4836
4837 /*
4838 * zone_set_root() appended '/' and '\0' at the end of rootpath
4839 */
4840 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4841 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4842 return (B_TRUE);
4843
4844 for (zone = list_head(&zone_active); zone != NULL;
4845 zone = list_next(&zone_active, zone)) {
4846 if (zone == global_zone)
4847 continue;
4848 len = strlen(zone->zone_rootpath);
4849 if (strncmp(rootpath, zone->zone_rootpath,
4850 MIN(rootpathlen, len)) == 0)
4851 return (B_TRUE);
4852 }
4853 return (B_FALSE);
4854 }
4855
4856 static int
4857 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4858 size_t zone_privssz)
4859 {
4860 priv_set_t *privs;
4861
4862 if (zone_privssz < sizeof (priv_set_t))
4863 return (ENOMEM);
4864
4865 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4866
4867 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4868 kmem_free(privs, sizeof (priv_set_t));
4869 return (EFAULT);
4870 }
4871
4872 zone->zone_privset = privs;
4873 return (0);
4874 }
4875
4876 /*
4877 * We make creative use of nvlists to pass in rctls from userland. The list is
4878 * a list of the following structures:
4879 *
4880 * (name = rctl_name, value = nvpair_list_array)
4881 *
4882 * Where each element of the nvpair_list_array is of the form:
4883 *
4884 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4885 * (name = "limit", value = uint64_t),
4886 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4887 */
4888 static int
4889 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4890 {
4891 nvpair_t *nvp = NULL;
4892 nvlist_t *nvl = NULL;
4893 char *kbuf;
4894 int error;
4895 rctl_val_t rv;
4896
4897 *nvlp = NULL;
4898
4899 if (buflen == 0)
4900 return (0);
4901
4902 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4903 return (ENOMEM);
4904 if (copyin(ubuf, kbuf, buflen)) {
4905 error = EFAULT;
4906 goto out;
4907 }
4908 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4909 /*
4910 * nvl may have been allocated/free'd, but the value set to
4911 * non-NULL, so we reset it here.
4912 */
4913 nvl = NULL;
4914 error = EINVAL;
4915 goto out;
4916 }
4917 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4918 rctl_dict_entry_t *rde;
4919 rctl_hndl_t hndl;
4920 nvlist_t **nvlarray;
4921 uint_t i, nelem;
4922 char *name;
4923
4924 error = EINVAL;
4925 name = nvpair_name(nvp);
4926 if ((strncmp(name, "zone.", sizeof ("zone.") - 1) != 0 &&
4927 strncmp(name, "project.", sizeof ("project.") - 1) != 0) ||
4928 nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4929 goto out;
4930 }
4931 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4932 goto out;
4933 }
4934 rde = rctl_dict_lookup_hndl(hndl);
4935 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4936 ASSERT(error == 0);
4937 for (i = 0; i < nelem; i++) {
4938 if (error = nvlist2rctlval(nvlarray[i], &rv))
4939 goto out;
4940 }
4941 if (rctl_invalid_value(rde, &rv)) {
4942 error = EINVAL;
4943 goto out;
4944 }
4945 }
4946 error = 0;
4947 *nvlp = nvl;
4948 out:
4949 kmem_free(kbuf, buflen);
4950 if (error && nvl != NULL)
4951 nvlist_free(nvl);
4952 return (error);
4953 }
4954
4955 int
4956 zone_create_error(int er_error, int er_ext, int *er_out)
4957 {
4958 if (er_out != NULL) {
4959 if (copyout(&er_ext, er_out, sizeof (int))) {
4960 return (set_errno(EFAULT));
4961 }
4962 }
4963 return (set_errno(er_error));
4964 }
4965
4966 static int
4967 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4968 {
4969 ts_label_t *tsl;
4970 bslabel_t blab;
4971
4972 /* Get label from user */
4973 if (copyin(lab, &blab, sizeof (blab)) != 0)
4974 return (EFAULT);
4975 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4976 if (tsl == NULL)
4977 return (ENOMEM);
4978
4979 zone->zone_slabel = tsl;
4980 return (0);
4981 }
4982
4983 /*
4984 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4985 */
4986 static int
4987 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4988 {
4989 char *kbuf;
4990 char *dataset, *next;
4991 zone_dataset_t *zd;
4992 size_t len;
4993
4994 if (ubuf == NULL || buflen == 0)
4995 return (0);
4996
4997 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4998 return (ENOMEM);
4999
5000 if (copyin(ubuf, kbuf, buflen) != 0) {
5001 kmem_free(kbuf, buflen);
5002 return (EFAULT);
5003 }
5004
5005 dataset = next = kbuf;
5006 for (;;) {
5007 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
5008
5009 next = strchr(dataset, ',');
5010
5011 if (next == NULL)
5012 len = strlen(dataset);
5013 else
5014 len = next - dataset;
5015
5016 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
5017 bcopy(dataset, zd->zd_dataset, len);
5018 zd->zd_dataset[len] = '\0';
5019
5020 list_insert_head(&zone->zone_datasets, zd);
5021
5022 if (next == NULL)
5023 break;
5024
5025 dataset = next + 1;
5026 }
5027
5028 kmem_free(kbuf, buflen);
5029 return (0);
5030 }
5031
5032 /*
5033 * System call to create/initialize a new zone named 'zone_name', rooted
5034 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
5035 * and initialized with the zone-wide rctls described in 'rctlbuf', and
5036 * with labeling set by 'match', 'doi', and 'label'.
5037 *
5038 * If extended error is non-null, we may use it to return more detailed
5039 * error information.
5040 */
5041 static zoneid_t
5042 zone_create(const char *zone_name, const char *zone_root,
5043 const priv_set_t *zone_privs, size_t zone_privssz,
5044 caddr_t rctlbuf, size_t rctlbufsz,
5045 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
5046 int match, uint32_t doi, const bslabel_t *label,
5047 int flags, zoneid_t zone_did)
5048 {
5049 struct zsched_arg zarg;
5050 nvlist_t *rctls = NULL;
5051 proc_t *pp = curproc;
5052 zone_t *zone, *ztmp;
5053 zoneid_t zoneid, start = GLOBAL_ZONEID;
5054 int error;
5055 int error2 = 0;
5056 char *str;
5057 cred_t *zkcr;
5058 boolean_t insert_label_hash;
5059
5060 if (secpolicy_zone_config(CRED()) != 0)
5061 return (set_errno(EPERM));
5062
5063 /* can't boot zone from within chroot environment */
5064 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
5065 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
5066 extended_error));
5067 /*
5068 * As the first step of zone creation, we want to allocate a zoneid.
5069 * This allocation is complicated by the fact that netstacks use the
5070 * zoneid to determine their stackid, but netstacks themselves are
5071 * freed asynchronously with respect to zone destruction. This means
5072 * that a netstack reference leak (or in principle, an extraordinarily
5073 * long netstack reference hold) could result in a zoneid being
5074 * allocated that in fact corresponds to a stackid from an active
5075 * (referenced) netstack -- unleashing all sorts of havoc when that
5076 * netstack is actually (re)used. (In the abstract, we might wish a
5077 * zoneid to not be deallocated until its last referencing netstack
5078 * has been released, but netstacks lack a backpointer into their
5079 * referencing zone -- and changing them to have such a pointer would
5080 * be substantial, to put it euphemistically.) To avoid this, we
5081 * detect this condition on allocation: if we have allocated a zoneid
5082 * that corresponds to a netstack that's still in use, we warn about
5083 * it (as it is much more likely to be a reference leak than an actual
5084 * netstack reference), free it, and allocate another. That these
5085 * identifers are allocated out of an ID space assures that we won't
5086 * see the identifier we just allocated.
5087 */
5088 for (;;) {
5089 zoneid = id_alloc(zoneid_space);
5090
5091 if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
5092 break;
5093
5094 id_free(zoneid_space, zoneid);
5095
5096 if (start == GLOBAL_ZONEID) {
5097 start = zoneid;
5098 } else if (zoneid == start) {
5099 /*
5100 * We have managed to iterate over the entire available
5101 * zoneid space -- there are no identifiers available,
5102 * presumably due to some number of leaked netstack
5103 * references. While it's in principle possible for us
5104 * to continue to try, it seems wiser to give up at
5105 * this point to warn and fail explicitly with a
5106 * distinctive error.
5107 */
5108 cmn_err(CE_WARN, "zone_create() failed: all available "
5109 "zone IDs have netstacks still in use");
5110 return (set_errno(ENFILE));
5111 }
5112
5113 cmn_err(CE_WARN, "unable to reuse zone ID %d; "
5114 "netstack still in use", zoneid);
5115 }
5116
5117 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
5118 zone->zone_id = zoneid;
5119 zone->zone_did = zone_did;
5120 zone->zone_status = ZONE_IS_UNINITIALIZED;
5121 zone->zone_pool = pool_default;
5122 zone->zone_pool_mod = gethrtime();
5123 zone->zone_psetid = ZONE_PS_INVAL;
5124 zone->zone_ncpus = 0;
5125 zone->zone_ncpus_online = 0;
5126 zone->zone_restart_init = B_TRUE;
5127 zone->zone_reboot_on_init_exit = B_FALSE;
5128 zone->zone_restart_init_0 = B_FALSE;
5129 zone->zone_init_status = -1;
5130 zone->zone_brand = &native_brand;
5131 zone->zone_initname = NULL;
5132 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
5133 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
5134 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
5135 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
5136 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
5137 offsetof(zone_ref_t, zref_linkage));
5138 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
5139 offsetof(struct zsd_entry, zsd_linkage));
5140 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
5141 offsetof(zone_dataset_t, zd_linkage));
5142 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
5143 offsetof(zone_dl_t, zdl_linkage));
5144 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
5145 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
5146
5147 if (flags & ZCF_NET_EXCL) {
5148 zone->zone_flags |= ZF_NET_EXCL;
5149 }
5150
5151 if ((error = zone_set_name(zone, zone_name)) != 0) {
5152 zone_free(zone);
5153 return (zone_create_error(error, 0, extended_error));
5154 }
5155
5156 if ((error = zone_set_root(zone, zone_root)) != 0) {
5157 zone_free(zone);
5158 return (zone_create_error(error, 0, extended_error));
5159 }
5160 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
5161 zone_free(zone);
5162 return (zone_create_error(error, 0, extended_error));
5163 }
5164
5165 /* initialize node name to be the same as zone name */
5166 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
5167 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
5168 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
5169
5170 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
5171 zone->zone_domain[0] = '\0';
5172 zone->zone_hostid = HW_INVALID_HOSTID;
5173 zone->zone_shares = 1;
5174 zone->zone_shmmax = 0;
5175 zone->zone_ipc.ipcq_shmmni = 0;
5176 zone->zone_ipc.ipcq_semmni = 0;
5177 zone->zone_ipc.ipcq_msgmni = 0;
5178 zone->zone_bootargs = NULL;
5179 zone->zone_fs_allowed = NULL;
5180
5181 psecflags_default(&zone->zone_secflags);
5182
5183 zone->zone_initname =
5184 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
5185 (void) strcpy(zone->zone_initname, zone_default_initname);
5186 zone->zone_nlwps = 0;
5187 zone->zone_nlwps_ctl = INT_MAX;
5188 zone->zone_nprocs = 0;
5189 zone->zone_nprocs_ctl = INT_MAX;
5190 zone->zone_locked_mem = 0;
5191 zone->zone_locked_mem_ctl = UINT64_MAX;
5192 zone->zone_max_swap = 0;
5193 zone->zone_max_swap_ctl = UINT64_MAX;
5194 zone->zone_max_lofi = 0;
5195 zone->zone_max_lofi_ctl = UINT64_MAX;
5196 zone->zone_lockedmem_kstat = NULL;
5197 zone->zone_swapresv_kstat = NULL;
5198 zone->zone_physmem_kstat = NULL;
5199
5200 zone_pdata[zoneid].zpers_zfsp =
5201 kmem_zalloc(sizeof (zone_zfs_io_t), KM_SLEEP);
5202 zone_pdata[zoneid].zpers_zfsp->zpers_zfs_io_pri = 1;
5203
5204 zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
5205
5206 /*
5207 * Zsched initializes the rctls.
5208 */
5209 zone->zone_rctls = NULL;
5210
5211 /*
5212 * Ensure page count is 0 (in case zoneid has wrapped).
5213 * Initialize physical memory cap as unlimited.
5214 */
5215 zone_pdata[zoneid].zpers_pg_cnt = 0;
5216 zone_pdata[zoneid].zpers_pg_limit = UINT32_MAX;
5217
5218 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
5219 zone_free(zone);
5220 return (zone_create_error(error, 0, extended_error));
5221 }
5222
5223 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
5224 zone_free(zone);
5225 return (set_errno(error));
5226 }
5227
5228 /*
5229 * Read in the trusted system parameters:
5230 * match flag and sensitivity label.
5231 */
5232 zone->zone_match = match;
5233 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
5234 /* Fail if requested to set doi to anything but system's doi */
5235 if (doi != 0 && doi != default_doi) {
5236 zone_free(zone);
5237 return (set_errno(EINVAL));
5238 }
5239 /* Always apply system's doi to the zone */
5240 error = zone_set_label(zone, label, default_doi);
5241 if (error != 0) {
5242 zone_free(zone);
5243 return (set_errno(error));
5244 }
5245 insert_label_hash = B_TRUE;
5246 } else {
5247 /* all zones get an admin_low label if system is not labeled */
5248 zone->zone_slabel = l_admin_low;
5249 label_hold(l_admin_low);
5250 insert_label_hash = B_FALSE;
5251 }
5252
5253 /*
5254 * Stop all lwps since that's what normally happens as part of fork().
5255 * This needs to happen before we grab any locks to avoid deadlock
5256 * (another lwp in the process could be waiting for the held lock).
5257 */
5258 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
5259 zone_free(zone);
5260 nvlist_free(rctls);
5261 return (zone_create_error(error, 0, extended_error));
5262 }
5263
5264 if (block_mounts(zone) == 0) {
5265 mutex_enter(&pp->p_lock);
5266 if (curthread != pp->p_agenttp)
5267 continuelwps(pp);
5268 mutex_exit(&pp->p_lock);
5269 zone_free(zone);
5270 nvlist_free(rctls);
5271 return (zone_create_error(error, 0, extended_error));
5272 }
5273
5274 /*
5275 * Set up credential for kernel access. After this, any errors
5276 * should go through the dance in errout rather than calling
5277 * zone_free directly.
5278 */
5279 zone->zone_kcred = crdup(kcred);
5280 crsetzone(zone->zone_kcred, zone);
5281 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
5282 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
5283 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
5284 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
5285
5286 mutex_enter(&zonehash_lock);
5287 /*
5288 * Make sure zone doesn't already exist.
5289 *
5290 * If the system and zone are labeled,
5291 * make sure no other zone exists that has the same label.
5292 */
5293 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
5294 (insert_label_hash &&
5295 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
5296 zone_status_t status;
5297
5298 status = zone_status_get(ztmp);
5299 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
5300 error = EEXIST;
5301 else
5302 error = EBUSY;
5303
5304 if (insert_label_hash)
5305 error2 = ZE_LABELINUSE;
5306
5307 goto errout;
5308 }
5309
5310 /*
5311 * Don't allow zone creations which would cause one zone's rootpath to
5312 * be accessible from that of another (non-global) zone.
5313 */
5314 if (zone_is_nested(zone->zone_rootpath)) {
5315 error = EBUSY;
5316 goto errout;
5317 }
5318
5319 ASSERT(zonecount != 0); /* check for leaks */
5320 if (zonecount + 1 > maxzones) {
5321 error = ENOMEM;
5322 goto errout;
5323 }
5324
5325 if (zone_mount_count(zone->zone_rootpath) != 0) {
5326 error = EBUSY;
5327 error2 = ZE_AREMOUNTS;
5328 goto errout;
5329 }
5330
5331 /*
5332 * Zone is still incomplete, but we need to drop all locks while
5333 * zsched() initializes this zone's kernel process. We
5334 * optimistically add the zone to the hashtable and associated
5335 * lists so a parallel zone_create() doesn't try to create the
5336 * same zone.
5337 */
5338 zonecount++;
5339 (void) mod_hash_insert(zonehashbyid,
5340 (mod_hash_key_t)(uintptr_t)zone->zone_id,
5341 (mod_hash_val_t)(uintptr_t)zone);
5342 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
5343 (void) strcpy(str, zone->zone_name);
5344 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
5345 (mod_hash_val_t)(uintptr_t)zone);
5346 if (insert_label_hash) {
5347 (void) mod_hash_insert(zonehashbylabel,
5348 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
5349 zone->zone_flags |= ZF_HASHED_LABEL;
5350 }
5351
5352 /*
5353 * Insert into active list. At this point there are no 'hold's
5354 * on the zone, but everyone else knows not to use it, so we can
5355 * continue to use it. zsched() will do a zone_hold() if the
5356 * newproc() is successful.
5357 */
5358 list_insert_tail(&zone_active, zone);
5359 mutex_exit(&zonehash_lock);
5360
5361 zarg.zone = zone;
5362 zarg.nvlist = rctls;
5363 /*
5364 * The process, task, and project rctls are probably wrong;
5365 * we need an interface to get the default values of all rctls,
5366 * and initialize zsched appropriately. However, we allow zoneadmd
5367 * to pass down both zone and project rctls for the zone's init.
5368 */
5369 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
5370 if (error != 0) {
5371 /*
5372 * We need to undo all globally visible state.
5373 */
5374 mutex_enter(&zonehash_lock);
5375 list_remove(&zone_active, zone);
5376 if (zone->zone_flags & ZF_HASHED_LABEL) {
5377 ASSERT(zone->zone_slabel != NULL);
5378 (void) mod_hash_destroy(zonehashbylabel,
5379 (mod_hash_key_t)zone->zone_slabel);
5380 }
5381 (void) mod_hash_destroy(zonehashbyname,
5382 (mod_hash_key_t)(uintptr_t)zone->zone_name);
5383 (void) mod_hash_destroy(zonehashbyid,
5384 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5385 ASSERT(zonecount > 1);
5386 zonecount--;
5387 goto errout;
5388 }
5389
5390 /*
5391 * Zone creation can't fail from now on.
5392 */
5393
5394 /*
5395 * Create zone kstats
5396 */
5397 zone_kstat_create(zone);
5398
5399 /*
5400 * Let the other lwps continue.
5401 */
5402 mutex_enter(&pp->p_lock);
5403 if (curthread != pp->p_agenttp)
5404 continuelwps(pp);
5405 mutex_exit(&pp->p_lock);
5406
5407 /*
5408 * Wait for zsched to finish initializing the zone.
5409 */
5410 zone_status_wait(zone, ZONE_IS_READY);
5411 /*
5412 * The zone is fully visible, so we can let mounts progress.
5413 */
5414 resume_mounts(zone);
5415 nvlist_free(rctls);
5416
5417 return (zoneid);
5418
5419 errout:
5420 mutex_exit(&zonehash_lock);
5421 /*
5422 * Let the other lwps continue.
5423 */
5424 mutex_enter(&pp->p_lock);
5425 if (curthread != pp->p_agenttp)
5426 continuelwps(pp);
5427 mutex_exit(&pp->p_lock);
5428
5429 resume_mounts(zone);
5430 nvlist_free(rctls);
5431 /*
5432 * There is currently one reference to the zone, a cred_ref from
5433 * zone_kcred. To free the zone, we call crfree, which will call
5434 * zone_cred_rele, which will call zone_free.
5435 */
5436 ASSERT(zone->zone_cred_ref == 1);
5437 ASSERT(zone->zone_kcred->cr_ref == 1);
5438 ASSERT(zone->zone_ref == 0);
5439 zkcr = zone->zone_kcred;
5440 zone->zone_kcred = NULL;
5441 crfree(zkcr); /* triggers call to zone_free */
5442 return (zone_create_error(error, error2, extended_error));
5443 }
5444
5445 /*
5446 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
5447 * the heavy lifting. initname is the path to the program to launch
5448 * at the "top" of the zone; if this is NULL, we use the system default,
5449 * which is stored at zone_default_initname.
5450 */
5451 static int
5452 zone_boot(zoneid_t zoneid)
5453 {
5454 int err;
5455 zone_t *zone;
5456
5457 if (secpolicy_zone_config(CRED()) != 0)
5458 return (set_errno(EPERM));
5459 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5460 return (set_errno(EINVAL));
5461
5462 mutex_enter(&zonehash_lock);
5463 /*
5464 * Look for zone under hash lock to prevent races with calls to
5465 * zone_shutdown, zone_destroy, etc.
5466 */
5467 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5468 mutex_exit(&zonehash_lock);
5469 return (set_errno(EINVAL));
5470 }
5471
5472 mutex_enter(&zone_status_lock);
5473 if (zone_status_get(zone) != ZONE_IS_READY) {
5474 mutex_exit(&zone_status_lock);
5475 mutex_exit(&zonehash_lock);
5476 return (set_errno(EINVAL));
5477 }
5478 zone_status_set(zone, ZONE_IS_BOOTING);
5479 mutex_exit(&zone_status_lock);
5480
5481 zone_hold(zone); /* so we can use the zone_t later */
5482 mutex_exit(&zonehash_lock);
5483
5484 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
5485 zone_rele(zone);
5486 return (set_errno(EINTR));
5487 }
5488
5489 /*
5490 * Boot (starting init) might have failed, in which case the zone
5491 * will go to the SHUTTING_DOWN state; an appropriate errno will
5492 * be placed in zone->zone_boot_err, and so we return that.
5493 */
5494 err = zone->zone_boot_err;
5495 zone_rele(zone);
5496 return (err ? set_errno(err) : 0);
5497 }
5498
5499 /*
5500 * Kills all user processes in the zone, waiting for them all to exit
5501 * before returning.
5502 */
5503 static int
5504 zone_empty(zone_t *zone)
5505 {
5506 int cnt = 0;
5507 int waitstatus;
5508
5509 /*
5510 * We need to drop zonehash_lock before killing all
5511 * processes, otherwise we'll deadlock with zone_find_*
5512 * which can be called from the exit path.
5513 */
5514 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
5515 while ((waitstatus = zone_status_timedwait_sig(zone,
5516 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
5517 boolean_t force = B_FALSE;
5518
5519 /* Every 30 seconds, try harder */
5520 if (cnt++ >= 30) {
5521 cmn_err(CE_WARN, "attempt to force kill zone %d\n",
5522 zone->zone_id);
5523 force = B_TRUE;
5524 cnt = 0;
5525 }
5526 killall(zone->zone_id, force);
5527 }
5528 /*
5529 * return EINTR if we were signaled
5530 */
5531 if (waitstatus == 0)
5532 return (EINTR);
5533 return (0);
5534 }
5535
5536 /*
5537 * This function implements the policy for zone visibility.
5538 *
5539 * In standard Solaris, a non-global zone can only see itself.
5540 *
5541 * In Trusted Extensions, a labeled zone can lookup any zone whose label
5542 * it dominates. For this test, the label of the global zone is treated as
5543 * admin_high so it is special-cased instead of being checked for dominance.
5544 *
5545 * Returns true if zone attributes are viewable, false otherwise.
5546 */
5547 static boolean_t
5548 zone_list_access(zone_t *zone)
5549 {
5550
5551 if (curproc->p_zone == global_zone ||
5552 curproc->p_zone == zone) {
5553 return (B_TRUE);
5554 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
5555 bslabel_t *curproc_label;
5556 bslabel_t *zone_label;
5557
5558 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
5559 zone_label = label2bslabel(zone->zone_slabel);
5560
5561 if (zone->zone_id != GLOBAL_ZONEID &&
5562 bldominates(curproc_label, zone_label)) {
5563 return (B_TRUE);
5564 } else {
5565 return (B_FALSE);
5566 }
5567 } else {
5568 return (B_FALSE);
5569 }
5570 }
5571
5572 /*
5573 * Systemcall to start the zone's halt sequence. By the time this
5574 * function successfully returns, all user processes and kernel threads
5575 * executing in it will have exited, ZSD shutdown callbacks executed,
5576 * and the zone status set to ZONE_IS_DOWN.
5577 *
5578 * It is possible that the call will interrupt itself if the caller is the
5579 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
5580 */
5581 static int
5582 zone_shutdown(zoneid_t zoneid)
5583 {
5584 int error;
5585 zone_t *zone;
5586 zone_status_t status;
5587
5588 if (secpolicy_zone_config(CRED()) != 0)
5589 return (set_errno(EPERM));
5590 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5591 return (set_errno(EINVAL));
5592
5593 mutex_enter(&zonehash_lock);
5594 /*
5595 * Look for zone under hash lock to prevent races with other
5596 * calls to zone_shutdown and zone_destroy.
5597 */
5598 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5599 mutex_exit(&zonehash_lock);
5600 return (set_errno(EINVAL));
5601 }
5602
5603 /*
5604 * We have to drop zonehash_lock before calling block_mounts.
5605 * Hold the zone so we can continue to use the zone_t.
5606 */
5607 zone_hold(zone);
5608 mutex_exit(&zonehash_lock);
5609
5610 /*
5611 * Block mounts so that VFS_MOUNT() can get an accurate view of
5612 * the zone's status with regards to ZONE_IS_SHUTTING down.
5613 *
5614 * e.g. NFS can fail the mount if it determines that the zone
5615 * has already begun the shutdown sequence.
5616 *
5617 */
5618 if (block_mounts(zone) == 0) {
5619 zone_rele(zone);
5620 return (set_errno(EINTR));
5621 }
5622
5623 mutex_enter(&zonehash_lock);
5624 mutex_enter(&zone_status_lock);
5625 status = zone_status_get(zone);
5626 /*
5627 * Fail if the zone isn't fully initialized yet.
5628 */
5629 if (status < ZONE_IS_READY) {
5630 mutex_exit(&zone_status_lock);
5631 mutex_exit(&zonehash_lock);
5632 resume_mounts(zone);
5633 zone_rele(zone);
5634 return (set_errno(EINVAL));
5635 }
5636 /*
5637 * If conditions required for zone_shutdown() to return have been met,
5638 * return success.
5639 */
5640 if (status >= ZONE_IS_DOWN) {
5641 mutex_exit(&zone_status_lock);
5642 mutex_exit(&zonehash_lock);
5643 resume_mounts(zone);
5644 zone_rele(zone);
5645 return (0);
5646 }
5647 /*
5648 * If zone_shutdown() hasn't been called before, go through the motions.
5649 * If it has, there's nothing to do but wait for the kernel threads to
5650 * drain.
5651 */
5652 if (status < ZONE_IS_EMPTY) {
5653 uint_t ntasks;
5654
5655 mutex_enter(&zone->zone_lock);
5656 if ((ntasks = zone->zone_ntasks) != 1) {
5657 /*
5658 * There's still stuff running.
5659 */
5660 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
5661 }
5662 mutex_exit(&zone->zone_lock);
5663 if (ntasks == 1) {
5664 /*
5665 * The only way to create another task is through
5666 * zone_enter(), which will block until we drop
5667 * zonehash_lock. The zone is empty.
5668 */
5669 if (zone->zone_kthreads == NULL) {
5670 /*
5671 * Skip ahead to ZONE_IS_DOWN
5672 */
5673 zone_status_set(zone, ZONE_IS_DOWN);
5674 } else {
5675 zone_status_set(zone, ZONE_IS_EMPTY);
5676 }
5677 }
5678 }
5679 mutex_exit(&zone_status_lock);
5680 mutex_exit(&zonehash_lock);
5681 resume_mounts(zone);
5682
5683 if (error = zone_empty(zone)) {
5684 zone_rele(zone);
5685 return (set_errno(error));
5686 }
5687 /*
5688 * After the zone status goes to ZONE_IS_DOWN this zone will no
5689 * longer be notified of changes to the pools configuration, so
5690 * in order to not end up with a stale pool pointer, we point
5691 * ourselves at the default pool and remove all resource
5692 * visibility. This is especially important as the zone_t may
5693 * languish on the deathrow for a very long time waiting for
5694 * cred's to drain out.
5695 *
5696 * This rebinding of the zone can happen multiple times
5697 * (presumably due to interrupted or parallel systemcalls)
5698 * without any adverse effects.
5699 */
5700 if (pool_lock_intr() != 0) {
5701 zone_rele(zone);
5702 return (set_errno(EINTR));
5703 }
5704 if (pool_state == POOL_ENABLED) {
5705 mutex_enter(&cpu_lock);
5706 zone_pool_set(zone, pool_default);
5707 /*
5708 * The zone no longer needs to be able to see any cpus.
5709 */
5710 zone_pset_set(zone, ZONE_PS_INVAL);
5711 mutex_exit(&cpu_lock);
5712 }
5713 pool_unlock();
5714
5715 /*
5716 * ZSD shutdown callbacks can be executed multiple times, hence
5717 * it is safe to not be holding any locks across this call.
5718 */
5719 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5720
5721 mutex_enter(&zone_status_lock);
5722 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5723 zone_status_set(zone, ZONE_IS_DOWN);
5724 mutex_exit(&zone_status_lock);
5725
5726 /*
5727 * Wait for kernel threads to drain.
5728 */
5729 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5730 zone_rele(zone);
5731 return (set_errno(EINTR));
5732 }
5733
5734 /*
5735 * Zone can be become down/destroyable even if the above wait
5736 * returns EINTR, so any code added here may never execute.
5737 * (i.e. don't add code here)
5738 */
5739
5740 zone_rele(zone);
5741 return (0);
5742 }
5743
5744 /*
5745 * Log the specified zone's reference counts. The caller should not be
5746 * holding the zone's zone_lock.
5747 */
5748 static void
5749 zone_log_refcounts(zone_t *zone)
5750 {
5751 char *buffer;
5752 char *buffer_position;
5753 uint32_t buffer_size;
5754 uint32_t index;
5755 uint_t ref;
5756 uint_t cred_ref;
5757
5758 /*
5759 * Construct a string representing the subsystem-specific reference
5760 * counts. The counts are printed in ascending order by index into the
5761 * zone_t::zone_subsys_ref array. The list will be surrounded by
5762 * square brackets [] and will only contain nonzero reference counts.
5763 *
5764 * The buffer will hold two square bracket characters plus ten digits,
5765 * one colon, one space, one comma, and some characters for a
5766 * subsystem name per subsystem-specific reference count. (Unsigned 32-
5767 * bit integers have at most ten decimal digits.) The last
5768 * reference count's comma is replaced by the closing square
5769 * bracket and a NULL character to terminate the string.
5770 *
5771 * NOTE: We have to grab the zone's zone_lock to create a consistent
5772 * snapshot of the zone's reference counters.
5773 *
5774 * First, figure out how much space the string buffer will need.
5775 * The buffer's size is stored in buffer_size.
5776 */
5777 buffer_size = 2; /* for the square brackets */
5778 mutex_enter(&zone->zone_lock);
5779 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5780 ref = zone->zone_ref;
5781 cred_ref = zone->zone_cred_ref;
5782 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5783 if (zone->zone_subsys_ref[index] != 0)
5784 buffer_size += strlen(zone_ref_subsys_names[index]) +
5785 13;
5786 if (buffer_size == 2) {
5787 /*
5788 * No subsystems had nonzero reference counts. Don't bother
5789 * with allocating a buffer; just log the general-purpose and
5790 * credential reference counts.
5791 */
5792 mutex_exit(&zone->zone_lock);
5793 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5794 "Zone '%s' (ID: %d) is shutting down, but %u zone "
5795 "references and %u credential references are still extant",
5796 zone->zone_name, zone->zone_id, ref, cred_ref);
5797 return;
5798 }
5799
5800 /*
5801 * buffer_size contains the exact number of characters that the
5802 * buffer will need. Allocate the buffer and fill it with nonzero
5803 * subsystem-specific reference counts. Surround the results with
5804 * square brackets afterwards.
5805 */
5806 buffer = kmem_alloc(buffer_size, KM_SLEEP);
5807 buffer_position = &buffer[1];
5808 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5809 /*
5810 * NOTE: The DDI's version of sprintf() returns a pointer to
5811 * the modified buffer rather than the number of bytes written
5812 * (as in snprintf(3C)). This is unfortunate and annoying.
5813 * Therefore, we'll use snprintf() with INT_MAX to get the
5814 * number of bytes written. Using INT_MAX is safe because
5815 * the buffer is perfectly sized for the data: we'll never
5816 * overrun the buffer.
5817 */
5818 if (zone->zone_subsys_ref[index] != 0)
5819 buffer_position += snprintf(buffer_position, INT_MAX,
5820 "%s: %u,", zone_ref_subsys_names[index],
5821 zone->zone_subsys_ref[index]);
5822 }
5823 mutex_exit(&zone->zone_lock);
5824 buffer[0] = '[';
5825 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5826 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5827 buffer_position[-1] = ']';
5828
5829 /*
5830 * Log the reference counts and free the message buffer.
5831 */
5832 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5833 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5834 "%u credential references are still extant %s", zone->zone_name,
5835 zone->zone_id, ref, cred_ref, buffer);
5836 kmem_free(buffer, buffer_size);
5837 }
5838
5839 /*
5840 * Systemcall entry point to finalize the zone halt process. The caller
5841 * must have already successfully called zone_shutdown().
5842 *
5843 * Upon successful completion, the zone will have been fully destroyed:
5844 * zsched will have exited, destructor callbacks executed, and the zone
5845 * removed from the list of active zones.
5846 */
5847 static int
5848 zone_destroy(zoneid_t zoneid)
5849 {
5850 uint64_t uniqid;
5851 zone_t *zone;
5852 zone_status_t status;
5853 clock_t wait_time;
5854 boolean_t log_refcounts;
5855 zone_persist_t *zp;
5856
5857 if (secpolicy_zone_config(CRED()) != 0)
5858 return (set_errno(EPERM));
5859 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5860 return (set_errno(EINVAL));
5861
5862 mutex_enter(&zonehash_lock);
5863 /*
5864 * Look for zone under hash lock to prevent races with other
5865 * calls to zone_destroy.
5866 */
5867 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5868 mutex_exit(&zonehash_lock);
5869 return (set_errno(EINVAL));
5870 }
5871
5872 if (zone_mount_count(zone->zone_rootpath) != 0) {
5873 mutex_exit(&zonehash_lock);
5874 return (set_errno(EBUSY));
5875 }
5876 mutex_enter(&zone_status_lock);
5877 status = zone_status_get(zone);
5878 if (status < ZONE_IS_DOWN) {
5879 mutex_exit(&zone_status_lock);
5880 mutex_exit(&zonehash_lock);
5881 return (set_errno(EBUSY));
5882 } else if (status == ZONE_IS_DOWN) {
5883 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5884 }
5885 mutex_exit(&zone_status_lock);
5886 zone_hold(zone);
5887 mutex_exit(&zonehash_lock);
5888
5889 zp = &zone_pdata[zoneid];
5890 mutex_enter(&zp->zpers_zfs_lock);
5891 kmem_free(zp->zpers_zfsp, sizeof (zone_zfs_io_t));
5892 zp->zpers_zfsp = NULL;
5893 mutex_exit(&zp->zpers_zfs_lock);
5894
5895 /*
5896 * wait for zsched to exit
5897 */
5898 zone_status_wait(zone, ZONE_IS_DEAD);
5899 zone_zsd_callbacks(zone, ZSD_DESTROY);
5900 zone->zone_netstack = NULL;
5901 uniqid = zone->zone_uniqid;
5902 zone_rele(zone);
5903 zone = NULL; /* potentially free'd */
5904
5905 log_refcounts = B_FALSE;
5906 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5907 mutex_enter(&zonehash_lock);
5908 for (; /* ever */; ) {
5909 boolean_t unref;
5910 boolean_t refs_have_been_logged;
5911
5912 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5913 zone->zone_uniqid != uniqid) {
5914 /*
5915 * The zone has gone away. Necessary conditions
5916 * are met, so we return success.
5917 */
5918 mutex_exit(&zonehash_lock);
5919 return (0);
5920 }
5921 mutex_enter(&zone->zone_lock);
5922 unref = ZONE_IS_UNREF(zone);
5923 refs_have_been_logged = (zone->zone_flags &
5924 ZF_REFCOUNTS_LOGGED);
5925 mutex_exit(&zone->zone_lock);
5926 if (unref) {
5927 /*
5928 * There is only one reference to the zone -- that
5929 * added when the zone was added to the hashtables --
5930 * and things will remain this way until we drop
5931 * zonehash_lock... we can go ahead and cleanup the
5932 * zone.
5933 */
5934 break;
5935 }
5936
5937 /*
5938 * Wait for zone_rele_common() or zone_cred_rele() to signal
5939 * zone_destroy_cv. zone_destroy_cv is signaled only when
5940 * some zone's general-purpose reference count reaches one.
5941 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5942 * on zone_destroy_cv, then log the zone's reference counts and
5943 * continue to wait for zone_rele() and zone_cred_rele().
5944 */
5945 if (!refs_have_been_logged) {
5946 if (!log_refcounts) {
5947 /*
5948 * This thread hasn't timed out waiting on
5949 * zone_destroy_cv yet. Wait wait_time clock
5950 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5951 * seconds) for the zone's references to clear.
5952 */
5953 ASSERT(wait_time > 0);
5954 wait_time = cv_reltimedwait_sig(
5955 &zone_destroy_cv, &zonehash_lock, wait_time,
5956 TR_SEC);
5957 if (wait_time > 0) {
5958 /*
5959 * A thread in zone_rele() or
5960 * zone_cred_rele() signaled
5961 * zone_destroy_cv before this thread's
5962 * wait timed out. The zone might have
5963 * only one reference left; find out!
5964 */
5965 continue;
5966 } else if (wait_time == 0) {
5967 /* The thread's process was signaled. */
5968 mutex_exit(&zonehash_lock);
5969 return (set_errno(EINTR));
5970 }
5971
5972 /*
5973 * The thread timed out while waiting on
5974 * zone_destroy_cv. Even though the thread
5975 * timed out, it has to check whether another
5976 * thread woke up from zone_destroy_cv and
5977 * destroyed the zone.
5978 *
5979 * If the zone still exists and has more than
5980 * one unreleased general-purpose reference,
5981 * then log the zone's reference counts.
5982 */
5983 log_refcounts = B_TRUE;
5984 continue;
5985 }
5986
5987 /*
5988 * The thread already timed out on zone_destroy_cv while
5989 * waiting for subsystems to release the zone's last
5990 * general-purpose references. Log the zone's reference
5991 * counts and wait indefinitely on zone_destroy_cv.
5992 */
5993 zone_log_refcounts(zone);
5994 }
5995 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5996 /* The thread's process was signaled. */
5997 mutex_exit(&zonehash_lock);
5998 return (set_errno(EINTR));
5999 }
6000 }
6001
6002 /*
6003 * Remove CPU cap for this zone now since we're not going to
6004 * fail below this point.
6005 */
6006 cpucaps_zone_remove(zone);
6007
6008 /* Get rid of the zone's kstats */
6009 zone_kstat_delete(zone);
6010
6011 /* remove the pfexecd doors */
6012 if (zone->zone_pfexecd != NULL) {
6013 klpd_freelist(&zone->zone_pfexecd);
6014 zone->zone_pfexecd = NULL;
6015 }
6016
6017 /* free brand specific data */
6018 if (ZONE_IS_BRANDED(zone))
6019 ZBROP(zone)->b_free_brand_data(zone);
6020
6021 /* Say goodbye to brand framework. */
6022 brand_unregister_zone(zone->zone_brand);
6023
6024 /*
6025 * It is now safe to let the zone be recreated; remove it from the
6026 * lists. The memory will not be freed until the last cred
6027 * reference goes away.
6028 */
6029 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
6030 zonecount--;
6031 /* remove from active list and hash tables */
6032 list_remove(&zone_active, zone);
6033 (void) mod_hash_destroy(zonehashbyname,
6034 (mod_hash_key_t)zone->zone_name);
6035 (void) mod_hash_destroy(zonehashbyid,
6036 (mod_hash_key_t)(uintptr_t)zone->zone_id);
6037 if (zone->zone_flags & ZF_HASHED_LABEL)
6038 (void) mod_hash_destroy(zonehashbylabel,
6039 (mod_hash_key_t)zone->zone_slabel);
6040 mutex_exit(&zonehash_lock);
6041
6042 /*
6043 * Release the root vnode; we're not using it anymore. Nor should any
6044 * other thread that might access it exist.
6045 */
6046 if (zone->zone_rootvp != NULL) {
6047 VN_RELE(zone->zone_rootvp);
6048 zone->zone_rootvp = NULL;
6049 }
6050
6051 /* add to deathrow list */
6052 mutex_enter(&zone_deathrow_lock);
6053 list_insert_tail(&zone_deathrow, zone);
6054 mutex_exit(&zone_deathrow_lock);
6055
6056 /*
6057 * Drop last reference (which was added by zsched()), this will
6058 * free the zone unless there are outstanding cred references.
6059 */
6060 zone_rele(zone);
6061 return (0);
6062 }
6063
6064 /*
6065 * Systemcall entry point for zone_getattr(2).
6066 */
6067 static ssize_t
6068 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
6069 {
6070 size_t size;
6071 int error = 0, err;
6072 zone_t *zone;
6073 char *zonepath;
6074 char *outstr;
6075 zone_status_t zone_status;
6076 pid_t initpid;
6077 boolean_t global = (curzone == global_zone);
6078 boolean_t inzone = (curzone->zone_id == zoneid);
6079 ushort_t flags;
6080 zone_net_data_t *zbuf;
6081
6082 mutex_enter(&zonehash_lock);
6083 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
6084 mutex_exit(&zonehash_lock);
6085 return (set_errno(EINVAL));
6086 }
6087 zone_status = zone_status_get(zone);
6088 if (zone_status < ZONE_IS_INITIALIZED) {
6089 mutex_exit(&zonehash_lock);
6090 return (set_errno(EINVAL));
6091 }
6092 zone_hold(zone);
6093 mutex_exit(&zonehash_lock);
6094
6095 /*
6096 * If not in the global zone, don't show information about other zones,
6097 * unless the system is labeled and the local zone's label dominates
6098 * the other zone.
6099 */
6100 if (!zone_list_access(zone)) {
6101 zone_rele(zone);
6102 return (set_errno(EINVAL));
6103 }
6104
6105 switch (attr) {
6106 case ZONE_ATTR_ROOT:
6107 if (global) {
6108 /*
6109 * Copy the path to trim the trailing "/" (except for
6110 * the global zone).
6111 */
6112 if (zone != global_zone)
6113 size = zone->zone_rootpathlen - 1;
6114 else
6115 size = zone->zone_rootpathlen;
6116 zonepath = kmem_alloc(size, KM_SLEEP);
6117 bcopy(zone->zone_rootpath, zonepath, size);
6118 zonepath[size - 1] = '\0';
6119 } else {
6120 if (inzone || !is_system_labeled()) {
6121 /*
6122 * Caller is not in the global zone.
6123 * if the query is on the current zone
6124 * or the system is not labeled,
6125 * just return faked-up path for current zone.
6126 */
6127 zonepath = "/";
6128 size = 2;
6129 } else {
6130 /*
6131 * Return related path for current zone.
6132 */
6133 int prefix_len = strlen(zone_prefix);
6134 int zname_len = strlen(zone->zone_name);
6135
6136 size = prefix_len + zname_len + 1;
6137 zonepath = kmem_alloc(size, KM_SLEEP);
6138 bcopy(zone_prefix, zonepath, prefix_len);
6139 bcopy(zone->zone_name, zonepath +
6140 prefix_len, zname_len);
6141 zonepath[size - 1] = '\0';
6142 }
6143 }
6144 if (bufsize > size)
6145 bufsize = size;
6146 if (buf != NULL) {
6147 err = copyoutstr(zonepath, buf, bufsize, NULL);
6148 if (err != 0 && err != ENAMETOOLONG)
6149 error = EFAULT;
6150 }
6151 if (global || (is_system_labeled() && !inzone))
6152 kmem_free(zonepath, size);
6153 break;
6154
6155 case ZONE_ATTR_NAME:
6156 size = strlen(zone->zone_name) + 1;
6157 if (bufsize > size)
6158 bufsize = size;
6159 if (buf != NULL) {
6160 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
6161 if (err != 0 && err != ENAMETOOLONG)
6162 error = EFAULT;
6163 }
6164 break;
6165
6166 case ZONE_ATTR_STATUS:
6167 /*
6168 * Since we're not holding zonehash_lock, the zone status
6169 * may be anything; leave it up to userland to sort it out.
6170 */
6171 size = sizeof (zone_status);
6172 if (bufsize > size)
6173 bufsize = size;
6174 zone_status = zone_status_get(zone);
6175 if (buf != NULL &&
6176 copyout(&zone_status, buf, bufsize) != 0)
6177 error = EFAULT;
6178 break;
6179 case ZONE_ATTR_FLAGS:
6180 size = sizeof (zone->zone_flags);
6181 if (bufsize > size)
6182 bufsize = size;
6183 flags = zone->zone_flags;
6184 if (buf != NULL &&
6185 copyout(&flags, buf, bufsize) != 0)
6186 error = EFAULT;
6187 break;
6188 case ZONE_ATTR_PRIVSET:
6189 size = sizeof (priv_set_t);
6190 if (bufsize > size)
6191 bufsize = size;
6192 if (buf != NULL &&
6193 copyout(zone->zone_privset, buf, bufsize) != 0)
6194 error = EFAULT;
6195 break;
6196 case ZONE_ATTR_UNIQID:
6197 size = sizeof (zone->zone_uniqid);
6198 if (bufsize > size)
6199 bufsize = size;
6200 if (buf != NULL &&
6201 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
6202 error = EFAULT;
6203 break;
6204 case ZONE_ATTR_POOLID:
6205 {
6206 pool_t *pool;
6207 poolid_t poolid;
6208
6209 if (pool_lock_intr() != 0) {
6210 error = EINTR;
6211 break;
6212 }
6213 pool = zone_pool_get(zone);
6214 poolid = pool->pool_id;
6215 pool_unlock();
6216 size = sizeof (poolid);
6217 if (bufsize > size)
6218 bufsize = size;
6219 if (buf != NULL && copyout(&poolid, buf, size) != 0)
6220 error = EFAULT;
6221 }
6222 break;
6223 case ZONE_ATTR_SLBL:
6224 size = sizeof (bslabel_t);
6225 if (bufsize > size)
6226 bufsize = size;
6227 if (zone->zone_slabel == NULL)
6228 error = EINVAL;
6229 else if (buf != NULL &&
6230 copyout(label2bslabel(zone->zone_slabel), buf,
6231 bufsize) != 0)
6232 error = EFAULT;
6233 break;
6234 case ZONE_ATTR_INITPID:
6235 size = sizeof (initpid);
6236 if (bufsize > size)
6237 bufsize = size;
6238 initpid = zone->zone_proc_initpid;
6239 if (initpid == -1) {
6240 error = ESRCH;
6241 break;
6242 }
6243 if (buf != NULL &&
6244 copyout(&initpid, buf, bufsize) != 0)
6245 error = EFAULT;
6246 break;
6247 case ZONE_ATTR_BRAND:
6248 size = strlen(zone->zone_brand->b_name) + 1;
6249
6250 if (bufsize > size)
6251 bufsize = size;
6252 if (buf != NULL) {
6253 err = copyoutstr(zone->zone_brand->b_name, buf,
6254 bufsize, NULL);
6255 if (err != 0 && err != ENAMETOOLONG)
6256 error = EFAULT;
6257 }
6258 break;
6259 case ZONE_ATTR_INITNAME:
6260 size = strlen(zone->zone_initname) + 1;
6261 if (bufsize > size)
6262 bufsize = size;
6263 if (buf != NULL) {
6264 err = copyoutstr(zone->zone_initname, buf, bufsize,
6265 NULL);
6266 if (err != 0 && err != ENAMETOOLONG)
6267 error = EFAULT;
6268 }
6269 break;
6270 case ZONE_ATTR_BOOTARGS:
6271 if (zone->zone_bootargs == NULL)
6272 outstr = "";
6273 else
6274 outstr = zone->zone_bootargs;
6275 size = strlen(outstr) + 1;
6276 if (bufsize > size)
6277 bufsize = size;
6278 if (buf != NULL) {
6279 err = copyoutstr(outstr, buf, bufsize, NULL);
6280 if (err != 0 && err != ENAMETOOLONG)
6281 error = EFAULT;
6282 }
6283 break;
6284 case ZONE_ATTR_SCHED_CLASS:
6285 mutex_enter(&class_lock);
6286
6287 if (zone->zone_defaultcid >= loaded_classes)
6288 outstr = "";
6289 else
6290 outstr = sclass[zone->zone_defaultcid].cl_name;
6291 size = strlen(outstr) + 1;
6292 if (bufsize > size)
6293 bufsize = size;
6294 if (buf != NULL) {
6295 err = copyoutstr(outstr, buf, bufsize, NULL);
6296 if (err != 0 && err != ENAMETOOLONG)
6297 error = EFAULT;
6298 }
6299
6300 mutex_exit(&class_lock);
6301 break;
6302 case ZONE_ATTR_HOSTID:
6303 if (zone->zone_hostid != HW_INVALID_HOSTID &&
6304 bufsize == sizeof (zone->zone_hostid)) {
6305 size = sizeof (zone->zone_hostid);
6306 if (buf != NULL && copyout(&zone->zone_hostid, buf,
6307 bufsize) != 0)
6308 error = EFAULT;
6309 } else {
6310 error = EINVAL;
6311 }
6312 break;
6313 case ZONE_ATTR_FS_ALLOWED:
6314 if (zone->zone_fs_allowed == NULL)
6315 outstr = "";
6316 else
6317 outstr = zone->zone_fs_allowed;
6318 size = strlen(outstr) + 1;
6319 if (bufsize > size)
6320 bufsize = size;
6321 if (buf != NULL) {
6322 err = copyoutstr(outstr, buf, bufsize, NULL);
6323 if (err != 0 && err != ENAMETOOLONG)
6324 error = EFAULT;
6325 }
6326 break;
6327 case ZONE_ATTR_SECFLAGS:
6328 size = sizeof (zone->zone_secflags);
6329 if (bufsize > size)
6330 bufsize = size;
6331 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
6332 error = EFAULT;
6333 break;
6334 case ZONE_ATTR_NETWORK:
6335 bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t));
6336 size = bufsize;
6337 zbuf = kmem_alloc(bufsize, KM_SLEEP);
6338 if (copyin(buf, zbuf, bufsize) != 0) {
6339 error = EFAULT;
6340 } else {
6341 error = zone_get_network(zoneid, zbuf);
6342 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
6343 error = EFAULT;
6344 }
6345 kmem_free(zbuf, bufsize);
6346 break;
6347 case ZONE_ATTR_DID:
6348 size = sizeof (zoneid_t);
6349 if (bufsize > size)
6350 bufsize = size;
6351
6352 if (buf != NULL && copyout(&zone->zone_did, buf, bufsize) != 0)
6353 error = EFAULT;
6354 break;
6355 case ZONE_ATTR_SCHED_FIXEDHI:
6356 size = sizeof (boolean_t);
6357 if (bufsize > size)
6358 bufsize = size;
6359
6360 if (buf != NULL && copyout(&zone->zone_fixed_hipri, buf,
6361 bufsize) != 0)
6362 error = EFAULT;
6363 break;
6364 default:
6365 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
6366 size = bufsize;
6367 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
6368 } else {
6369 error = EINVAL;
6370 }
6371 }
6372 zone_rele(zone);
6373
6374 if (error)
6375 return (set_errno(error));
6376 return ((ssize_t)size);
6377 }
6378
6379 /*
6380 * Systemcall entry point for zone_setattr(2).
6381 */
6382 /*ARGSUSED*/
6383 static int
6384 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
6385 {
6386 zone_t *zone;
6387 zone_status_t zone_status;
6388 int err = -1;
6389 zone_net_data_t *zbuf;
6390
6391 if (secpolicy_zone_config(CRED()) != 0)
6392 return (set_errno(EPERM));
6393
6394 /*
6395 * No attributes can be set on the global zone.
6396 */
6397 if (zoneid == GLOBAL_ZONEID) {
6398 return (set_errno(EINVAL));
6399 }
6400
6401 mutex_enter(&zonehash_lock);
6402 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
6403 mutex_exit(&zonehash_lock);
6404 return (set_errno(EINVAL));
6405 }
6406 zone_hold(zone);
6407 mutex_exit(&zonehash_lock);
6408
6409 /*
6410 * At present attributes can only be set on non-running,
6411 * non-global zones.
6412 */
6413 zone_status = zone_status_get(zone);
6414 if (zone_status > ZONE_IS_READY) {
6415 err = EINVAL;
6416 goto done;
6417 }
6418
6419 switch (attr) {
6420 case ZONE_ATTR_INITNAME:
6421 err = zone_set_initname(zone, (const char *)buf);
6422 break;
6423 case ZONE_ATTR_INITNORESTART:
6424 zone->zone_restart_init = B_FALSE;
6425 err = 0;
6426 break;
6427 case ZONE_ATTR_INITRESTART0:
6428 zone->zone_restart_init_0 = B_TRUE;
6429 err = 0;
6430 break;
6431 case ZONE_ATTR_INITREBOOT:
6432 zone->zone_reboot_on_init_exit = B_TRUE;
6433 err = 0;
6434 break;
6435 case ZONE_ATTR_BOOTARGS:
6436 err = zone_set_bootargs(zone, (const char *)buf);
6437 break;
6438 case ZONE_ATTR_BRAND:
6439 err = zone_set_brand(zone, (const char *)buf);
6440 break;
6441 case ZONE_ATTR_FS_ALLOWED:
6442 err = zone_set_fs_allowed(zone, (const char *)buf);
6443 break;
6444 case ZONE_ATTR_SECFLAGS:
6445 err = zone_set_secflags(zone, (psecflags_t *)buf);
6446 break;
6447 case ZONE_ATTR_SCHED_CLASS:
6448 err = zone_set_sched_class(zone, (const char *)buf);
6449 break;
6450 case ZONE_ATTR_HOSTID:
6451 if (bufsize == sizeof (zone->zone_hostid)) {
6452 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
6453 err = 0;
6454 else
6455 err = EFAULT;
6456 } else {
6457 err = EINVAL;
6458 }
6459 break;
6460 case ZONE_ATTR_NETWORK:
6461 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
6462 err = EINVAL;
6463 break;
6464 }
6465 zbuf = kmem_alloc(bufsize, KM_SLEEP);
6466 if (copyin(buf, zbuf, bufsize) != 0) {
6467 kmem_free(zbuf, bufsize);
6468 err = EFAULT;
6469 break;
6470 }
6471 err = zone_set_network(zoneid, zbuf);
6472 kmem_free(zbuf, bufsize);
6473 break;
6474 case ZONE_ATTR_APP_SVC_CT:
6475 if (bufsize != sizeof (boolean_t)) {
6476 err = EINVAL;
6477 } else {
6478 zone->zone_setup_app_contract = (boolean_t)buf;
6479 err = 0;
6480 }
6481 break;
6482 case ZONE_ATTR_SCHED_FIXEDHI:
6483 if (bufsize != sizeof (boolean_t)) {
6484 err = EINVAL;
6485 } else {
6486 zone->zone_fixed_hipri = (boolean_t)buf;
6487 err = 0;
6488 }
6489 break;
6490 default:
6491 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
6492 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
6493 else
6494 err = EINVAL;
6495 }
6496
6497 done:
6498 zone_rele(zone);
6499 ASSERT(err != -1);
6500 return (err != 0 ? set_errno(err) : 0);
6501 }
6502
6503 /*
6504 * Return zero if the process has at least one vnode mapped in to its
6505 * address space which shouldn't be allowed to change zones.
6506 *
6507 * Also return zero if the process has any shared mappings which reserve
6508 * swap. This is because the counting for zone.max-swap does not allow swap
6509 * reservation to be shared between zones. zone swap reservation is counted
6510 * on zone->zone_max_swap.
6511 */
6512 static int
6513 as_can_change_zones(void)
6514 {
6515 proc_t *pp = curproc;
6516 struct seg *seg;
6517 struct as *as = pp->p_as;
6518 vnode_t *vp;
6519 int allow = 1;
6520
6521 ASSERT(pp->p_as != &kas);
6522 AS_LOCK_ENTER(as, RW_READER);
6523 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
6524
6525 /*
6526 * Cannot enter zone with shared anon memory which
6527 * reserves swap. See comment above.
6528 */
6529 if (seg_can_change_zones(seg) == B_FALSE) {
6530 allow = 0;
6531 break;
6532 }
6533 /*
6534 * if we can't get a backing vnode for this segment then skip
6535 * it.
6536 */
6537 vp = NULL;
6538 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
6539 continue;
6540 if (!vn_can_change_zones(vp)) { /* bail on first match */
6541 allow = 0;
6542 break;
6543 }
6544 }
6545 AS_LOCK_EXIT(as);
6546 return (allow);
6547 }
6548
6549 /*
6550 * Count swap reserved by curproc's address space
6551 */
6552 static size_t
6553 as_swresv(void)
6554 {
6555 proc_t *pp = curproc;
6556 struct seg *seg;
6557 struct as *as = pp->p_as;
6558 size_t swap = 0;
6559
6560 ASSERT(pp->p_as != &kas);
6561 ASSERT(AS_WRITE_HELD(as));
6562 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
6563 swap += seg_swresv(seg);
6564
6565 return (swap);
6566 }
6567
6568 /*
6569 * Systemcall entry point for zone_enter().
6570 *
6571 * The current process is injected into said zone. In the process
6572 * it will change its project membership, privileges, rootdir/cwd,
6573 * zone-wide rctls, and pool association to match those of the zone.
6574 *
6575 * The first zone_enter() called while the zone is in the ZONE_IS_READY
6576 * state will transition it to ZONE_IS_RUNNING. Processes may only
6577 * enter a zone that is "ready" or "running".
6578 */
6579 static int
6580 zone_enter(zoneid_t zoneid)
6581 {
6582 zone_t *zone;
6583 vnode_t *vp;
6584 proc_t *pp = curproc;
6585 contract_t *ct;
6586 cont_process_t *ctp;
6587 task_t *tk, *oldtk;
6588 kproject_t *zone_proj0;
6589 cred_t *cr, *newcr;
6590 pool_t *oldpool, *newpool;
6591 sess_t *sp;
6592 uid_t uid;
6593 zone_status_t status;
6594 int err = 0;
6595 rctl_entity_p_t e;
6596 size_t swap;
6597 kthread_id_t t;
6598
6599 if (secpolicy_zone_config(CRED()) != 0)
6600 return (set_errno(EPERM));
6601 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
6602 return (set_errno(EINVAL));
6603
6604 /*
6605 * Stop all lwps so we don't need to hold a lock to look at
6606 * curproc->p_zone. This needs to happen before we grab any
6607 * locks to avoid deadlock (another lwp in the process could
6608 * be waiting for the held lock).
6609 */
6610 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
6611 return (set_errno(EINTR));
6612
6613 /*
6614 * Make sure we're not changing zones with files open or mapped in
6615 * to our address space which shouldn't be changing zones.
6616 */
6617 if (!files_can_change_zones()) {
6618 err = EBADF;
6619 goto out;
6620 }
6621 if (!as_can_change_zones()) {
6622 err = EFAULT;
6623 goto out;
6624 }
6625
6626 mutex_enter(&zonehash_lock);
6627 if (pp->p_zone != global_zone) {
6628 mutex_exit(&zonehash_lock);
6629 err = EINVAL;
6630 goto out;
6631 }
6632
6633 zone = zone_find_all_by_id(zoneid);
6634 if (zone == NULL) {
6635 mutex_exit(&zonehash_lock);
6636 err = EINVAL;
6637 goto out;
6638 }
6639
6640 /*
6641 * To prevent processes in a zone from holding contracts on
6642 * extrazonal resources, and to avoid process contract
6643 * memberships which span zones, contract holders and processes
6644 * which aren't the sole members of their encapsulating process
6645 * contracts are not allowed to zone_enter.
6646 */
6647 ctp = pp->p_ct_process;
6648 ct = &ctp->conp_contract;
6649 mutex_enter(&ct->ct_lock);
6650 mutex_enter(&pp->p_lock);
6651 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
6652 mutex_exit(&pp->p_lock);
6653 mutex_exit(&ct->ct_lock);
6654 mutex_exit(&zonehash_lock);
6655 err = EINVAL;
6656 goto out;
6657 }
6658
6659 /*
6660 * Moreover, we don't allow processes whose encapsulating
6661 * process contracts have inherited extrazonal contracts.
6662 * While it would be easier to eliminate all process contracts
6663 * with inherited contracts, we need to be able to give a
6664 * restarted init (or other zone-penetrating process) its
6665 * predecessor's contracts.
6666 */
6667 if (ctp->conp_ninherited != 0) {
6668 contract_t *next;
6669 for (next = list_head(&ctp->conp_inherited); next;
6670 next = list_next(&ctp->conp_inherited, next)) {
6671 if (contract_getzuniqid(next) != zone->zone_uniqid) {
6672 mutex_exit(&pp->p_lock);
6673 mutex_exit(&ct->ct_lock);
6674 mutex_exit(&zonehash_lock);
6675 err = EINVAL;
6676 goto out;
6677 }
6678 }
6679 }
6680
6681 mutex_exit(&pp->p_lock);
6682 mutex_exit(&ct->ct_lock);
6683
6684 status = zone_status_get(zone);
6685 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
6686 /*
6687 * Can't join
6688 */
6689 mutex_exit(&zonehash_lock);
6690 err = EINVAL;
6691 goto out;
6692 }
6693
6694 /*
6695 * Make sure new priv set is within the permitted set for caller
6696 */
6697 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
6698 mutex_exit(&zonehash_lock);
6699 err = EPERM;
6700 goto out;
6701 }
6702 /*
6703 * We want to momentarily drop zonehash_lock while we optimistically
6704 * bind curproc to the pool it should be running in. This is safe
6705 * since the zone can't disappear (we have a hold on it).
6706 */
6707 zone_hold(zone);
6708 mutex_exit(&zonehash_lock);
6709
6710 /*
6711 * Grab pool_lock to keep the pools configuration from changing
6712 * and to stop ourselves from getting rebound to another pool
6713 * until we join the zone.
6714 */
6715 if (pool_lock_intr() != 0) {
6716 zone_rele(zone);
6717 err = EINTR;
6718 goto out;
6719 }
6720 ASSERT(secpolicy_pool(CRED()) == 0);
6721 /*
6722 * Bind ourselves to the pool currently associated with the zone.
6723 */
6724 oldpool = curproc->p_pool;
6725 newpool = zone_pool_get(zone);
6726 if (pool_state == POOL_ENABLED && newpool != oldpool &&
6727 (err = pool_do_bind(newpool, P_PID, P_MYID,
6728 POOL_BIND_ALL)) != 0) {
6729 pool_unlock();
6730 zone_rele(zone);
6731 goto out;
6732 }
6733
6734 /*
6735 * Grab cpu_lock now; we'll need it later when we call
6736 * task_join().
6737 */
6738 mutex_enter(&cpu_lock);
6739 mutex_enter(&zonehash_lock);
6740 /*
6741 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6742 */
6743 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6744 /*
6745 * Can't join anymore.
6746 */
6747 mutex_exit(&zonehash_lock);
6748 mutex_exit(&cpu_lock);
6749 if (pool_state == POOL_ENABLED &&
6750 newpool != oldpool)
6751 (void) pool_do_bind(oldpool, P_PID, P_MYID,
6752 POOL_BIND_ALL);
6753 pool_unlock();
6754 zone_rele(zone);
6755 err = EINVAL;
6756 goto out;
6757 }
6758
6759 /*
6760 * a_lock must be held while transfering locked memory and swap
6761 * reservation from the global zone to the non global zone because
6762 * asynchronous faults on the processes' address space can lock
6763 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6764 * segments respectively.
6765 */
6766 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6767 swap = as_swresv();
6768 mutex_enter(&pp->p_lock);
6769 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6770 /* verify that we do not exceed and task or lwp limits */
6771 mutex_enter(&zone->zone_nlwps_lock);
6772 /* add new lwps to zone and zone's proj0 */
6773 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6774 zone->zone_nlwps += pp->p_lwpcnt;
6775 /* add 1 task to zone's proj0 */
6776 zone_proj0->kpj_ntasks += 1;
6777
6778 zone_proj0->kpj_nprocs++;
6779 zone->zone_nprocs++;
6780 mutex_exit(&zone->zone_nlwps_lock);
6781
6782 mutex_enter(&zone->zone_mem_lock);
6783 zone->zone_locked_mem += pp->p_locked_mem;
6784 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6785 zone->zone_max_swap += swap;
6786 mutex_exit(&zone->zone_mem_lock);
6787
6788 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6789 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6790 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6791
6792 /* remove lwps and process from proc's old zone and old project */
6793 mutex_enter(&pp->p_zone->zone_nlwps_lock);
6794 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6795 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6796 pp->p_task->tk_proj->kpj_nprocs--;
6797 pp->p_zone->zone_nprocs--;
6798 mutex_exit(&pp->p_zone->zone_nlwps_lock);
6799
6800 mutex_enter(&pp->p_zone->zone_mem_lock);
6801 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6802 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6803 pp->p_zone->zone_max_swap -= swap;
6804 mutex_exit(&pp->p_zone->zone_mem_lock);
6805
6806 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6807 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6808 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6809
6810 pp->p_flag |= SZONETOP;
6811 pp->p_zone = zone;
6812 mutex_exit(&pp->p_lock);
6813 AS_LOCK_EXIT(pp->p_as);
6814
6815 /*
6816 * Joining the zone cannot fail from now on.
6817 *
6818 * This means that a lot of the following code can be commonized and
6819 * shared with zsched().
6820 */
6821
6822 /*
6823 * If the process contract fmri was inherited, we need to
6824 * flag this so that any contract status will not leak
6825 * extra zone information, svc_fmri in this case
6826 */
6827 if (ctp->conp_svc_ctid != ct->ct_id) {
6828 mutex_enter(&ct->ct_lock);
6829 ctp->conp_svc_zone_enter = ct->ct_id;
6830 mutex_exit(&ct->ct_lock);
6831 }
6832
6833 /*
6834 * Reset the encapsulating process contract's zone.
6835 */
6836 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6837 contract_setzuniqid(ct, zone->zone_uniqid);
6838
6839 /*
6840 * Create a new task and associate the process with the project keyed
6841 * by (projid,zoneid).
6842 *
6843 * We might as well be in project 0; the global zone's projid doesn't
6844 * make much sense in a zone anyhow.
6845 *
6846 * This also increments zone_ntasks, and returns with p_lock held.
6847 */
6848 tk = task_create(0, zone);
6849 oldtk = task_join(tk, 0);
6850 mutex_exit(&cpu_lock);
6851
6852 /*
6853 * call RCTLOP_SET functions on this proc
6854 */
6855 e.rcep_p.zone = zone;
6856 e.rcep_t = RCENTITY_ZONE;
6857 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6858 RCD_CALLBACK);
6859 mutex_exit(&pp->p_lock);
6860
6861 /*
6862 * We don't need to hold any of zsched's locks here; not only do we know
6863 * the process and zone aren't going away, we know its session isn't
6864 * changing either.
6865 *
6866 * By joining zsched's session here, we mimic the behavior in the
6867 * global zone of init's sid being the pid of sched. We extend this
6868 * to all zlogin-like zone_enter()'ing processes as well.
6869 */
6870 mutex_enter(&pidlock);
6871 sp = zone->zone_zsched->p_sessp;
6872 sess_hold(zone->zone_zsched);
6873 mutex_enter(&pp->p_lock);
6874 pgexit(pp);
6875 sess_rele(pp->p_sessp, B_TRUE);
6876 pp->p_sessp = sp;
6877 pgjoin(pp, zone->zone_zsched->p_pidp);
6878
6879 /*
6880 * If any threads are scheduled to be placed on zone wait queue they
6881 * should abandon the idea since the wait queue is changing.
6882 * We need to be holding pidlock & p_lock to do this.
6883 */
6884 if ((t = pp->p_tlist) != NULL) {
6885 do {
6886 thread_lock(t);
6887 /*
6888 * Kick this thread so that it doesn't sit
6889 * on a wrong wait queue.
6890 */
6891 if (ISWAITING(t))
6892 setrun_locked(t);
6893
6894 if (t->t_schedflag & TS_ANYWAITQ)
6895 t->t_schedflag &= ~ TS_ANYWAITQ;
6896
6897 thread_unlock(t);
6898 } while ((t = t->t_forw) != pp->p_tlist);
6899 }
6900
6901 /*
6902 * If there is a default scheduling class for the zone and it is not
6903 * the class we are currently in, change all of the threads in the
6904 * process to the new class. We need to be holding pidlock & p_lock
6905 * when we call parmsset so this is a good place to do it.
6906 */
6907 if (zone->zone_defaultcid > 0 &&
6908 zone->zone_defaultcid != curthread->t_cid) {
6909 pcparms_t pcparms;
6910
6911 pcparms.pc_cid = zone->zone_defaultcid;
6912 pcparms.pc_clparms[0] = 0;
6913
6914 /*
6915 * If setting the class fails, we still want to enter the zone.
6916 */
6917 if ((t = pp->p_tlist) != NULL) {
6918 do {
6919 (void) parmsset(&pcparms, t);
6920 } while ((t = t->t_forw) != pp->p_tlist);
6921 }
6922 }
6923
6924 mutex_exit(&pp->p_lock);
6925 mutex_exit(&pidlock);
6926
6927 mutex_exit(&zonehash_lock);
6928 /*
6929 * We're firmly in the zone; let pools progress.
6930 */
6931 pool_unlock();
6932 task_rele(oldtk);
6933 /*
6934 * We don't need to retain a hold on the zone since we already
6935 * incremented zone_ntasks, so the zone isn't going anywhere.
6936 */
6937 zone_rele(zone);
6938
6939 /*
6940 * Chroot
6941 */
6942 vp = zone->zone_rootvp;
6943 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6944 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6945
6946 /*
6947 * Change process security flags. Note that the _effective_ flags
6948 * cannot change
6949 */
6950 secflags_copy(&pp->p_secflags.psf_lower,
6951 &zone->zone_secflags.psf_lower);
6952 secflags_copy(&pp->p_secflags.psf_upper,
6953 &zone->zone_secflags.psf_upper);
6954 secflags_copy(&pp->p_secflags.psf_inherit,
6955 &zone->zone_secflags.psf_inherit);
6956
6957 /*
6958 * Change process credentials
6959 */
6960 newcr = cralloc();
6961 mutex_enter(&pp->p_crlock);
6962 cr = pp->p_cred;
6963 crcopy_to(cr, newcr);
6964 crsetzone(newcr, zone);
6965 pp->p_cred = newcr;
6966
6967 /*
6968 * Restrict all process privilege sets to zone limit
6969 */
6970 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6971 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6972 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6973 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6974 mutex_exit(&pp->p_crlock);
6975 crset(pp, newcr);
6976
6977 /*
6978 * Adjust upcount to reflect zone entry.
6979 */
6980 uid = crgetruid(newcr);
6981 mutex_enter(&pidlock);
6982 upcount_dec(uid, GLOBAL_ZONEID);
6983 upcount_inc(uid, zoneid);
6984 mutex_exit(&pidlock);
6985
6986 /*
6987 * Set up core file path and content.
6988 */
6989 set_core_defaults();
6990
6991 out:
6992 /*
6993 * Let the other lwps continue.
6994 */
6995 mutex_enter(&pp->p_lock);
6996 if (curthread != pp->p_agenttp)
6997 continuelwps(pp);
6998 mutex_exit(&pp->p_lock);
6999
7000 return (err != 0 ? set_errno(err) : 0);
7001 }
7002
7003 /*
7004 * Systemcall entry point for zone_list(2).
7005 *
7006 * Processes running in a (non-global) zone only see themselves.
7007 * On labeled systems, they see all zones whose label they dominate.
7008 */
7009 static int
7010 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
7011 {
7012 zoneid_t *zoneids;
7013 zone_t *zone, *myzone;
7014 uint_t user_nzones, real_nzones;
7015 uint_t domi_nzones;
7016 int error;
7017
7018 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
7019 return (set_errno(EFAULT));
7020
7021 myzone = curproc->p_zone;
7022 if (myzone != global_zone) {
7023 bslabel_t *mybslab;
7024
7025 if (!is_system_labeled()) {
7026 /* just return current zone */
7027 real_nzones = domi_nzones = 1;
7028 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
7029 zoneids[0] = myzone->zone_id;
7030 } else {
7031 /* return all zones that are dominated */
7032 mutex_enter(&zonehash_lock);
7033 real_nzones = zonecount;
7034 domi_nzones = 0;
7035 if (real_nzones > 0) {
7036 zoneids = kmem_alloc(real_nzones *
7037 sizeof (zoneid_t), KM_SLEEP);
7038 mybslab = label2bslabel(myzone->zone_slabel);
7039 for (zone = list_head(&zone_active);
7040 zone != NULL;
7041 zone = list_next(&zone_active, zone)) {
7042 if (zone->zone_id == GLOBAL_ZONEID)
7043 continue;
7044 if (zone != myzone &&
7045 (zone->zone_flags & ZF_IS_SCRATCH))
7046 continue;
7047 /*
7048 * Note that a label always dominates
7049 * itself, so myzone is always included
7050 * in the list.
7051 */
7052 if (bldominates(mybslab,
7053 label2bslabel(zone->zone_slabel))) {
7054 zoneids[domi_nzones++] =
7055 zone->zone_id;
7056 }
7057 }
7058 }
7059 mutex_exit(&zonehash_lock);
7060 }
7061 } else {
7062 mutex_enter(&zonehash_lock);
7063 real_nzones = zonecount;
7064 domi_nzones = 0;
7065 if (real_nzones > 0) {
7066 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
7067 KM_SLEEP);
7068 for (zone = list_head(&zone_active); zone != NULL;
7069 zone = list_next(&zone_active, zone))
7070 zoneids[domi_nzones++] = zone->zone_id;
7071 ASSERT(domi_nzones == real_nzones);
7072 }
7073 mutex_exit(&zonehash_lock);
7074 }
7075
7076 /*
7077 * If user has allocated space for fewer entries than we found, then
7078 * return only up to their limit. Either way, tell them exactly how
7079 * many we found.
7080 */
7081 if (domi_nzones < user_nzones)
7082 user_nzones = domi_nzones;
7083 error = 0;
7084 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
7085 error = EFAULT;
7086 } else if (zoneidlist != NULL && user_nzones != 0) {
7087 if (copyout(zoneids, zoneidlist,
7088 user_nzones * sizeof (zoneid_t)) != 0)
7089 error = EFAULT;
7090 }
7091
7092 if (real_nzones > 0)
7093 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
7094
7095 if (error != 0)
7096 return (set_errno(error));
7097 else
7098 return (0);
7099 }
7100
7101 /*
7102 * Systemcall entry point for zone_lookup(2).
7103 *
7104 * Non-global zones are only able to see themselves and (on labeled systems)
7105 * the zones they dominate.
7106 */
7107 static zoneid_t
7108 zone_lookup(const char *zone_name)
7109 {
7110 char *kname;
7111 zone_t *zone;
7112 zoneid_t zoneid;
7113 int err;
7114
7115 if (zone_name == NULL) {
7116 /* return caller's zone id */
7117 return (getzoneid());
7118 }
7119
7120 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
7121 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
7122 kmem_free(kname, ZONENAME_MAX);
7123 return (set_errno(err));
7124 }
7125
7126 mutex_enter(&zonehash_lock);
7127 zone = zone_find_all_by_name(kname);
7128 kmem_free(kname, ZONENAME_MAX);
7129 /*
7130 * In a non-global zone, can only lookup global and own name.
7131 * In Trusted Extensions zone label dominance rules apply.
7132 */
7133 if (zone == NULL ||
7134 zone_status_get(zone) < ZONE_IS_READY ||
7135 !zone_list_access(zone)) {
7136 mutex_exit(&zonehash_lock);
7137 return (set_errno(EINVAL));
7138 } else {
7139 zoneid = zone->zone_id;
7140 mutex_exit(&zonehash_lock);
7141 return (zoneid);
7142 }
7143 }
7144
7145 static int
7146 zone_version(int *version_arg)
7147 {
7148 int version = ZONE_SYSCALL_API_VERSION;
7149
7150 if (copyout(&version, version_arg, sizeof (int)) != 0)
7151 return (set_errno(EFAULT));
7152 return (0);
7153 }
7154
7155 /* ARGSUSED */
7156 long
7157 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
7158 {
7159 zone_def zs;
7160 int err;
7161
7162 switch (cmd) {
7163 case ZONE_CREATE:
7164 if (get_udatamodel() == DATAMODEL_NATIVE) {
7165 if (copyin(arg1, &zs, sizeof (zone_def))) {
7166 return (set_errno(EFAULT));
7167 }
7168 } else {
7169 #ifdef _SYSCALL32_IMPL
7170 zone_def32 zs32;
7171
7172 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
7173 return (set_errno(EFAULT));
7174 }
7175 zs.zone_name =
7176 (const char *)(unsigned long)zs32.zone_name;
7177 zs.zone_root =
7178 (const char *)(unsigned long)zs32.zone_root;
7179 zs.zone_privs =
7180 (const struct priv_set *)
7181 (unsigned long)zs32.zone_privs;
7182 zs.zone_privssz = zs32.zone_privssz;
7183 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
7184 zs.rctlbufsz = zs32.rctlbufsz;
7185 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
7186 zs.zfsbufsz = zs32.zfsbufsz;
7187 zs.extended_error =
7188 (int *)(unsigned long)zs32.extended_error;
7189 zs.match = zs32.match;
7190 zs.doi = zs32.doi;
7191 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
7192 zs.flags = zs32.flags;
7193 zs.zoneid = zs32.zoneid;
7194 #else
7195 panic("get_udatamodel() returned bogus result\n");
7196 #endif
7197 }
7198
7199 return (zone_create(zs.zone_name, zs.zone_root,
7200 zs.zone_privs, zs.zone_privssz,
7201 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
7202 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
7203 zs.extended_error, zs.match, zs.doi,
7204 zs.label, zs.flags, zs.zoneid));
7205 case ZONE_BOOT:
7206 return (zone_boot((zoneid_t)(uintptr_t)arg1));
7207 case ZONE_DESTROY:
7208 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
7209 case ZONE_GETATTR:
7210 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
7211 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
7212 case ZONE_SETATTR:
7213 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
7214 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
7215 case ZONE_ENTER:
7216 return (zone_enter((zoneid_t)(uintptr_t)arg1));
7217 case ZONE_LIST:
7218 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
7219 case ZONE_SHUTDOWN:
7220 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
7221 case ZONE_LOOKUP:
7222 return (zone_lookup((const char *)arg1));
7223 case ZONE_VERSION:
7224 return (zone_version((int *)arg1));
7225 case ZONE_ADD_DATALINK:
7226 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
7227 (datalink_id_t)(uintptr_t)arg2));
7228 case ZONE_DEL_DATALINK:
7229 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
7230 (datalink_id_t)(uintptr_t)arg2));
7231 case ZONE_CHECK_DATALINK: {
7232 zoneid_t zoneid;
7233 boolean_t need_copyout;
7234
7235 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
7236 return (EFAULT);
7237 need_copyout = (zoneid == ALL_ZONES);
7238 err = zone_check_datalink(&zoneid,
7239 (datalink_id_t)(uintptr_t)arg2);
7240 if (err == 0 && need_copyout) {
7241 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
7242 err = EFAULT;
7243 }
7244 return (err == 0 ? 0 : set_errno(err));
7245 }
7246 case ZONE_LIST_DATALINK:
7247 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
7248 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
7249 default:
7250 return (set_errno(EINVAL));
7251 }
7252 }
7253
7254 struct zarg {
7255 zone_t *zone;
7256 zone_cmd_arg_t arg;
7257 };
7258
7259 static int
7260 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
7261 {
7262 char *buf;
7263 size_t buflen;
7264 int error;
7265
7266 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
7267 buf = kmem_alloc(buflen, KM_SLEEP);
7268 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
7269 error = door_ki_open(buf, doorp);
7270 kmem_free(buf, buflen);
7271 return (error);
7272 }
7273
7274 static void
7275 zone_release_door(door_handle_t *doorp)
7276 {
7277 door_ki_rele(*doorp);
7278 *doorp = NULL;
7279 }
7280
7281 static void
7282 zone_ki_call_zoneadmd(struct zarg *zargp)
7283 {
7284 door_handle_t door = NULL;
7285 door_arg_t darg, save_arg;
7286 char *zone_name;
7287 size_t zone_namelen;
7288 zoneid_t zoneid;
7289 zone_t *zone;
7290 zone_cmd_arg_t arg;
7291 uint64_t uniqid;
7292 size_t size;
7293 int error;
7294 int retry;
7295
7296 zone = zargp->zone;
7297 arg = zargp->arg;
7298 kmem_free(zargp, sizeof (*zargp));
7299
7300 zone_namelen = strlen(zone->zone_name) + 1;
7301 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
7302 bcopy(zone->zone_name, zone_name, zone_namelen);
7303 zoneid = zone->zone_id;
7304 uniqid = zone->zone_uniqid;
7305 arg.status = zone->zone_init_status;
7306 /*
7307 * zoneadmd may be down, but at least we can empty out the zone.
7308 * We can ignore the return value of zone_empty() since we're called
7309 * from a kernel thread and know we won't be delivered any signals.
7310 */
7311 ASSERT(curproc == &p0);
7312 (void) zone_empty(zone);
7313 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
7314 zone_rele(zone);
7315
7316 size = sizeof (arg);
7317 darg.rbuf = (char *)&arg;
7318 darg.data_ptr = (char *)&arg;
7319 darg.rsize = size;
7320 darg.data_size = size;
7321 darg.desc_ptr = NULL;
7322 darg.desc_num = 0;
7323
7324 save_arg = darg;
7325 /*
7326 * Since we're not holding a reference to the zone, any number of
7327 * things can go wrong, including the zone disappearing before we get a
7328 * chance to talk to zoneadmd.
7329 */
7330 for (retry = 0; /* forever */; retry++) {
7331 if (door == NULL &&
7332 (error = zone_lookup_door(zone_name, &door)) != 0) {
7333 goto next;
7334 }
7335 ASSERT(door != NULL);
7336
7337 if ((error = door_ki_upcall_limited(door, &darg, NULL,
7338 SIZE_MAX, 0)) == 0) {
7339 break;
7340 }
7341 switch (error) {
7342 case EINTR:
7343 /* FALLTHROUGH */
7344 case EAGAIN: /* process may be forking */
7345 /*
7346 * Back off for a bit
7347 */
7348 break;
7349 case EBADF:
7350 zone_release_door(&door);
7351 if (zone_lookup_door(zone_name, &door) != 0) {
7352 /*
7353 * zoneadmd may be dead, but it may come back to
7354 * life later.
7355 */
7356 break;
7357 }
7358 break;
7359 default:
7360 cmn_err(CE_WARN,
7361 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
7362 error);
7363 goto out;
7364 }
7365 next:
7366 /*
7367 * If this isn't the same zone_t that we originally had in mind,
7368 * then this is the same as if two kadmin requests come in at
7369 * the same time: the first one wins. This means we lose, so we
7370 * bail.
7371 */
7372 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7373 /*
7374 * Problem is solved.
7375 */
7376 break;
7377 }
7378 if (zone->zone_uniqid != uniqid) {
7379 /*
7380 * zoneid recycled
7381 */
7382 zone_rele(zone);
7383 break;
7384 }
7385 /*
7386 * We could zone_status_timedwait(), but there doesn't seem to
7387 * be much point in doing that (plus, it would mean that
7388 * zone_free() isn't called until this thread exits).
7389 */
7390 zone_rele(zone);
7391 delay(hz);
7392 darg = save_arg;
7393 }
7394 out:
7395 if (door != NULL) {
7396 zone_release_door(&door);
7397 }
7398 kmem_free(zone_name, zone_namelen);
7399 thread_exit();
7400 }
7401
7402 /*
7403 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
7404 * kadmin(). The caller is a process in the zone.
7405 *
7406 * In order to shutdown the zone, we will hand off control to zoneadmd
7407 * (running in the global zone) via a door. We do a half-hearted job at
7408 * killing all processes in the zone, create a kernel thread to contact
7409 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
7410 * a form of generation number used to let zoneadmd (as well as
7411 * zone_destroy()) know exactly which zone they're re talking about.
7412 */
7413 int
7414 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
7415 {
7416 struct zarg *zargp;
7417 zone_cmd_t zcmd;
7418 zone_t *zone;
7419
7420 zone = curproc->p_zone;
7421 ASSERT(getzoneid() != GLOBAL_ZONEID);
7422
7423 switch (cmd) {
7424 case A_SHUTDOWN:
7425 switch (fcn) {
7426 case AD_HALT:
7427 case AD_POWEROFF:
7428 zcmd = Z_HALT;
7429 break;
7430 case AD_BOOT:
7431 zcmd = Z_REBOOT;
7432 break;
7433 case AD_IBOOT:
7434 case AD_SBOOT:
7435 case AD_SIBOOT:
7436 case AD_NOSYNC:
7437 return (ENOTSUP);
7438 default:
7439 return (EINVAL);
7440 }
7441 break;
7442 case A_REBOOT:
7443 zcmd = Z_REBOOT;
7444 break;
7445 case A_FTRACE:
7446 case A_REMOUNT:
7447 case A_FREEZE:
7448 case A_DUMP:
7449 case A_CONFIG:
7450 return (ENOTSUP);
7451 default:
7452 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
7453 return (EINVAL);
7454 }
7455
7456 if (secpolicy_zone_admin(credp, B_FALSE))
7457 return (EPERM);
7458 mutex_enter(&zone_status_lock);
7459
7460 /*
7461 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
7462 * is in the zone.
7463 */
7464 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
7465 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
7466 /*
7467 * This zone is already on its way down.
7468 */
7469 mutex_exit(&zone_status_lock);
7470 return (0);
7471 }
7472 /*
7473 * Prevent future zone_enter()s
7474 */
7475 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
7476 mutex_exit(&zone_status_lock);
7477
7478 /*
7479 * Kill everyone now and call zoneadmd later.
7480 * zone_ki_call_zoneadmd() will do a more thorough job of this
7481 * later.
7482 */
7483 killall(zone->zone_id, B_FALSE);
7484 /*
7485 * Now, create the thread to contact zoneadmd and do the rest of the
7486 * work. This thread can't be created in our zone otherwise
7487 * zone_destroy() would deadlock.
7488 */
7489 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
7490 zargp->arg.cmd = zcmd;
7491 zargp->arg.uniqid = zone->zone_uniqid;
7492 zargp->zone = zone;
7493 (void) strcpy(zargp->arg.locale, "C");
7494 /* mdep was already copied in for us by uadmin */
7495 if (mdep != NULL)
7496 (void) strlcpy(zargp->arg.bootbuf, mdep,
7497 sizeof (zargp->arg.bootbuf));
7498 zone_hold(zone);
7499
7500 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
7501 TS_RUN, minclsyspri);
7502 exit(CLD_EXITED, 0);
7503
7504 return (EINVAL);
7505 }
7506
7507 /*
7508 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
7509 * status to ZONE_IS_SHUTTING_DOWN.
7510 *
7511 * This function also shuts down all running zones to ensure that they won't
7512 * fork new processes.
7513 */
7514 void
7515 zone_shutdown_global(void)
7516 {
7517 zone_t *current_zonep;
7518
7519 ASSERT(INGLOBALZONE(curproc));
7520 mutex_enter(&zonehash_lock);
7521 mutex_enter(&zone_status_lock);
7522
7523 /* Modify the global zone's status first. */
7524 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
7525 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
7526
7527 /*
7528 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
7529 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
7530 * could cause assertions to fail (e.g., assertions about a zone's
7531 * state during initialization, readying, or booting) or produce races.
7532 * We'll let threads continue to initialize and ready new zones: they'll
7533 * fail to boot the new zones when they see that the global zone is
7534 * shutting down.
7535 */
7536 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
7537 current_zonep = list_next(&zone_active, current_zonep)) {
7538 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
7539 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
7540 }
7541 mutex_exit(&zone_status_lock);
7542 mutex_exit(&zonehash_lock);
7543 }
7544
7545 /*
7546 * Returns true if the named dataset is visible in the specified zone.
7547 * The 'write' parameter is set to 1 if the dataset is also writable.
7548 */
7549 int
7550 zone_dataset_visible_inzone(zone_t *zone, const char *dataset, int *write)
7551 {
7552 static int zfstype = -1;
7553 zone_dataset_t *zd;
7554 size_t len;
7555 const char *name = NULL;
7556 vfs_t *vfsp = NULL;
7557
7558 if (dataset[0] == '\0')
7559 return (0);
7560
7561 /*
7562 * Walk the list once, looking for datasets which match exactly, or
7563 * specify a dataset underneath an exported dataset. If found, return
7564 * true and note that it is writable.
7565 */
7566 for (zd = list_head(&zone->zone_datasets); zd != NULL;
7567 zd = list_next(&zone->zone_datasets, zd)) {
7568
7569 len = strlen(zd->zd_dataset);
7570 if (strlen(dataset) >= len &&
7571 bcmp(dataset, zd->zd_dataset, len) == 0 &&
7572 (dataset[len] == '\0' || dataset[len] == '/' ||
7573 dataset[len] == '@')) {
7574 if (write)
7575 *write = 1;
7576 return (1);
7577 }
7578 }
7579
7580 /*
7581 * Walk the list a second time, searching for datasets which are parents
7582 * of exported datasets. These should be visible, but read-only.
7583 *
7584 * Note that we also have to support forms such as 'pool/dataset/', with
7585 * a trailing slash.
7586 */
7587 for (zd = list_head(&zone->zone_datasets); zd != NULL;
7588 zd = list_next(&zone->zone_datasets, zd)) {
7589
7590 len = strlen(dataset);
7591 if (dataset[len - 1] == '/')
7592 len--; /* Ignore trailing slash */
7593 if (len < strlen(zd->zd_dataset) &&
7594 bcmp(dataset, zd->zd_dataset, len) == 0 &&
7595 zd->zd_dataset[len] == '/') {
7596 if (write)
7597 *write = 0;
7598 return (1);
7599 }
7600 }
7601
7602 /*
7603 * We reach here if the given dataset is not found in the zone_dataset
7604 * list. Check if this dataset was added as a filesystem (ie. "add fs")
7605 * instead of delegation. For this we search for the dataset in the
7606 * zone_vfslist of this zone. If found, return true and note that it is
7607 * not writable.
7608 */
7609
7610 /*
7611 * Initialize zfstype if it is not initialized yet.
7612 */
7613 if (zfstype == -1) {
7614 struct vfssw *vswp = vfs_getvfssw("zfs");
7615 zfstype = vswp - vfssw;
7616 vfs_unrefvfssw(vswp);
7617 }
7618
7619 vfs_list_read_lock();
7620 vfsp = zone->zone_vfslist;
7621 do {
7622 if (vfsp == NULL)
7623 break;
7624 if (vfsp->vfs_fstype == zfstype) {
7625 name = refstr_value(vfsp->vfs_resource);
7626
7627 /*
7628 * Check if we have an exact match.
7629 */
7630 if (strcmp(dataset, name) == 0) {
7631 vfs_list_unlock();
7632 if (write)
7633 *write = 0;
7634 return (1);
7635 }
7636 /*
7637 * We need to check if we are looking for parents of
7638 * a dataset. These should be visible, but read-only.
7639 */
7640 len = strlen(dataset);
7641 if (dataset[len - 1] == '/')
7642 len--;
7643
7644 if (len < strlen(name) &&
7645 bcmp(dataset, name, len) == 0 && name[len] == '/') {
7646 vfs_list_unlock();
7647 if (write)
7648 *write = 0;
7649 return (1);
7650 }
7651 }
7652 vfsp = vfsp->vfs_zone_next;
7653 } while (vfsp != zone->zone_vfslist);
7654
7655 vfs_list_unlock();
7656 return (0);
7657 }
7658
7659 /*
7660 * Returns true if the named dataset is visible in the current zone.
7661 * The 'write' parameter is set to 1 if the dataset is also writable.
7662 */
7663 int
7664 zone_dataset_visible(const char *dataset, int *write)
7665 {
7666 zone_t *zone = curproc->p_zone;
7667
7668 return (zone_dataset_visible_inzone(zone, dataset, write));
7669 }
7670
7671 /*
7672 * zone_find_by_any_path() -
7673 *
7674 * kernel-private routine similar to zone_find_by_path(), but which
7675 * effectively compares against zone paths rather than zonerootpath
7676 * (i.e., the last component of zonerootpaths, which should be "root/",
7677 * are not compared.) This is done in order to accurately identify all
7678 * paths, whether zone-visible or not, including those which are parallel
7679 * to /root/, such as /dev/, /home/, etc...
7680 *
7681 * If the specified path does not fall under any zone path then global
7682 * zone is returned.
7683 *
7684 * The treat_abs parameter indicates whether the path should be treated as
7685 * an absolute path although it does not begin with "/". (This supports
7686 * nfs mount syntax such as host:any/path.)
7687 *
7688 * The caller is responsible for zone_rele of the returned zone.
7689 */
7690 zone_t *
7691 zone_find_by_any_path(const char *path, boolean_t treat_abs)
7692 {
7693 zone_t *zone;
7694 int path_offset = 0;
7695
7696 if (path == NULL) {
7697 zone_hold(global_zone);
7698 return (global_zone);
7699 }
7700
7701 if (*path != '/') {
7702 ASSERT(treat_abs);
7703 path_offset = 1;
7704 }
7705
7706 mutex_enter(&zonehash_lock);
7707 for (zone = list_head(&zone_active); zone != NULL;
7708 zone = list_next(&zone_active, zone)) {
7709 char *c;
7710 size_t pathlen;
7711 char *rootpath_start;
7712
7713 if (zone == global_zone) /* skip global zone */
7714 continue;
7715
7716 /* scan backwards to find start of last component */
7717 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
7718 do {
7719 c--;
7720 } while (*c != '/');
7721
7722 pathlen = c - zone->zone_rootpath + 1 - path_offset;
7723 rootpath_start = (zone->zone_rootpath + path_offset);
7724 if (strncmp(path, rootpath_start, pathlen) == 0)
7725 break;
7726 }
7727 if (zone == NULL)
7728 zone = global_zone;
7729 zone_hold(zone);
7730 mutex_exit(&zonehash_lock);
7731 return (zone);
7732 }
7733
7734 /*
7735 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
7736 * zone_dl_t pointer if found, and NULL otherwise.
7737 */
7738 static zone_dl_t *
7739 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7740 {
7741 zone_dl_t *zdl;
7742
7743 ASSERT(mutex_owned(&zone->zone_lock));
7744 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7745 zdl = list_next(&zone->zone_dl_list, zdl)) {
7746 if (zdl->zdl_id == linkid)
7747 break;
7748 }
7749 return (zdl);
7750 }
7751
7752 static boolean_t
7753 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7754 {
7755 boolean_t exists;
7756
7757 mutex_enter(&zone->zone_lock);
7758 exists = (zone_find_dl(zone, linkid) != NULL);
7759 mutex_exit(&zone->zone_lock);
7760 return (exists);
7761 }
7762
7763 /*
7764 * Add an data link name for the zone.
7765 */
7766 static int
7767 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7768 {
7769 zone_dl_t *zdl;
7770 zone_t *zone;
7771 zone_t *thiszone;
7772
7773 /*
7774 * Only the GZ may add a datalink to a zone's list.
7775 */
7776 if (getzoneid() != GLOBAL_ZONEID)
7777 return (set_errno(EPERM));
7778
7779 /*
7780 * Only a process with the datalink config priv may add a
7781 * datalink to a zone's list.
7782 */
7783 if (secpolicy_dl_config(CRED()) != 0)
7784 return (set_errno(EPERM));
7785
7786 /*
7787 * When links exist in the GZ, they aren't added to the GZ's
7788 * zone_dl_list. We must enforce this because link_activate()
7789 * depends on zone_check_datalink() returning only NGZs.
7790 */
7791 if (zoneid == GLOBAL_ZONEID)
7792 return (set_errno(EINVAL));
7793
7794 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7795 return (set_errno(ENXIO));
7796
7797 /* Verify that the datalink ID doesn't already belong to a zone. */
7798 mutex_enter(&zonehash_lock);
7799 for (zone = list_head(&zone_active); zone != NULL;
7800 zone = list_next(&zone_active, zone)) {
7801 if (zone_dl_exists(zone, linkid)) {
7802 mutex_exit(&zonehash_lock);
7803 zone_rele(thiszone);
7804 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7805 }
7806 }
7807
7808 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7809 zdl->zdl_id = linkid;
7810 zdl->zdl_net = NULL;
7811 mutex_enter(&thiszone->zone_lock);
7812 list_insert_head(&thiszone->zone_dl_list, zdl);
7813 mutex_exit(&thiszone->zone_lock);
7814 mutex_exit(&zonehash_lock);
7815 zone_rele(thiszone);
7816 return (0);
7817 }
7818
7819 static int
7820 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7821 {
7822 zone_dl_t *zdl;
7823 zone_t *zone;
7824 int err = 0;
7825
7826 /*
7827 * Only the GZ may remove a datalink from a zone's list.
7828 */
7829 if (getzoneid() != GLOBAL_ZONEID)
7830 return (set_errno(EPERM));
7831
7832 /*
7833 * Only a process with the datalink config priv may remove a
7834 * datalink from a zone's list.
7835 */
7836 if (secpolicy_dl_config(CRED()) != 0)
7837 return (set_errno(EPERM));
7838
7839 /*
7840 * If we can't add a datalink to the GZ's zone_dl_list then we
7841 * certainly can't remove them either.
7842 */
7843 if (zoneid == GLOBAL_ZONEID)
7844 return (set_errno(EINVAL));
7845
7846 if ((zone = zone_find_by_id(zoneid)) == NULL)
7847 return (set_errno(EINVAL));
7848
7849 mutex_enter(&zone->zone_lock);
7850 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7851 err = ENXIO;
7852 } else {
7853 list_remove(&zone->zone_dl_list, zdl);
7854 nvlist_free(zdl->zdl_net);
7855 kmem_free(zdl, sizeof (zone_dl_t));
7856 }
7857 mutex_exit(&zone->zone_lock);
7858 zone_rele(zone);
7859 return (err == 0 ? 0 : set_errno(err));
7860 }
7861
7862 /*
7863 *
7864 * This function may be used in two ways:
7865 *
7866 * 1. to get the zoneid of the zone this link is under, or
7867 *
7868 * 2. to verify that the link is under a specific zone.
7869 *
7870 * The first use is achieved by passing a zoneid of ALL_ZONES. The
7871 * function then iterates the datalink list of every zone on the
7872 * system until it finds the linkid. If the linkid is found then the
7873 * function returns 0 and zoneidp is updated. Otherwise, ENXIO is
7874 * returned and zoneidp is not modified. The use of ALL_ZONES is
7875 * limited to callers in the GZ to prevent leaking information to
7876 * NGZs. If an NGZ passes ALL_ZONES it's query is implicitly changed
7877 * to the second type in the list above.
7878 *
7879 * The second use is achieved by passing a specific zoneid. The GZ can
7880 * use this to verify a link is under a particular zone. An NGZ can
7881 * use this to verify a link is under itself. But an NGZ cannot use
7882 * this to determine if a link is under some other zone as that would
7883 * result in information leakage. If the link exists under the zone
7884 * then 0 is returned. Otherwise, ENXIO is returned.
7885 */
7886 int
7887 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7888 {
7889 zone_t *zone;
7890 zoneid_t zoneid = *zoneidp;
7891 zoneid_t caller = getzoneid();
7892 int err = ENXIO;
7893
7894 /*
7895 * Only the GZ may enquire about all zones; an NGZ may only
7896 * enuqire about itself.
7897 */
7898 if (zoneid == ALL_ZONES && caller != GLOBAL_ZONEID)
7899 zoneid = caller;
7900
7901 if (zoneid != caller && caller != GLOBAL_ZONEID)
7902 return (err);
7903
7904 if (zoneid != ALL_ZONES) {
7905 if ((zone = zone_find_by_id(zoneid)) != NULL) {
7906 if (zone_dl_exists(zone, linkid)) {
7907 /*
7908 * We need to set this in case an NGZ
7909 * passes ALL_ZONES.
7910 */
7911 *zoneidp = zoneid;
7912 err = 0;
7913 }
7914 zone_rele(zone);
7915 }
7916 return (err);
7917 }
7918
7919 ASSERT(caller == GLOBAL_ZONEID);
7920 mutex_enter(&zonehash_lock);
7921 for (zone = list_head(&zone_active); zone != NULL;
7922 zone = list_next(&zone_active, zone)) {
7923 if (zone_dl_exists(zone, linkid)) {
7924 *zoneidp = zone->zone_id;
7925 err = 0;
7926 break;
7927 }
7928 }
7929 mutex_exit(&zonehash_lock);
7930
7931 return (err);
7932 }
7933
7934 /*
7935 * Get the list of datalink IDs assigned to a zone.
7936 *
7937 * On input, *nump is the number of datalink IDs that can fit in the supplied
7938 * idarray. Upon return, *nump is either set to the number of datalink IDs
7939 * that were placed in the array if the array was large enough, or to the
7940 * number of datalink IDs that the function needs to place in the array if the
7941 * array is too small.
7942 */
7943 static int
7944 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7945 {
7946 uint_t num, dlcount;
7947 zone_t *zone;
7948 zone_dl_t *zdl;
7949 datalink_id_t *idptr = idarray;
7950
7951 /*
7952 * Only the GZ or the owning zone may look at the datalink list.
7953 */
7954 if ((getzoneid() != GLOBAL_ZONEID) && (getzoneid() != zoneid))
7955 return (set_errno(EPERM));
7956
7957 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7958 return (set_errno(EFAULT));
7959 if ((zone = zone_find_by_id(zoneid)) == NULL)
7960 return (set_errno(ENXIO));
7961
7962 num = 0;
7963 mutex_enter(&zone->zone_lock);
7964 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7965 zdl = list_next(&zone->zone_dl_list, zdl)) {
7966 /*
7967 * If the list is bigger than what the caller supplied, just
7968 * count, don't do copyout.
7969 */
7970 if (++num > dlcount)
7971 continue;
7972 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7973 mutex_exit(&zone->zone_lock);
7974 zone_rele(zone);
7975 return (set_errno(EFAULT));
7976 }
7977 idptr++;
7978 }
7979 mutex_exit(&zone->zone_lock);
7980 zone_rele(zone);
7981
7982 /*
7983 * Prevent returning negative nump values -- we should never
7984 * have this many links anyways.
7985 */
7986 if (num > INT_MAX)
7987 return (set_errno(EOVERFLOW));
7988
7989 /* Increased or decreased, caller should be notified. */
7990 if (num != dlcount) {
7991 if (copyout(&num, nump, sizeof (num)) != 0)
7992 return (set_errno(EFAULT));
7993 }
7994 return (0);
7995 }
7996
7997 /*
7998 * Public interface for looking up a zone by zoneid. It's a customized version
7999 * for netstack_zone_create(). It can only be called from the zsd create
8000 * callbacks, since it doesn't have reference on the zone structure hence if
8001 * it is called elsewhere the zone could disappear after the zonehash_lock
8002 * is dropped.
8003 *
8004 * Furthermore it
8005 * 1. Doesn't check the status of the zone.
8006 * 2. It will be called even before zone_init is called, in that case the
8007 * address of zone0 is returned directly, and netstack_zone_create()
8008 * will only assign a value to zone0.zone_netstack, won't break anything.
8009 * 3. Returns without the zone being held.
8010 */
8011 zone_t *
8012 zone_find_by_id_nolock(zoneid_t zoneid)
8013 {
8014 zone_t *zone;
8015
8016 mutex_enter(&zonehash_lock);
8017 if (zonehashbyid == NULL)
8018 zone = &zone0;
8019 else
8020 zone = zone_find_all_by_id(zoneid);
8021 mutex_exit(&zonehash_lock);
8022 return (zone);
8023 }
8024
8025 /*
8026 * Walk the datalinks for a given zone
8027 */
8028 int
8029 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
8030 void *data)
8031 {
8032 zone_t *zone;
8033 zone_dl_t *zdl;
8034 datalink_id_t *idarray;
8035 uint_t idcount = 0;
8036 int i, ret = 0;
8037
8038 if ((zone = zone_find_by_id(zoneid)) == NULL)
8039 return (ENOENT);
8040
8041 /*
8042 * We first build an array of linkid's so that we can walk these and
8043 * execute the callback with the zone_lock dropped.
8044 */
8045 mutex_enter(&zone->zone_lock);
8046 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
8047 zdl = list_next(&zone->zone_dl_list, zdl)) {
8048 idcount++;
8049 }
8050
8051 if (idcount == 0) {
8052 mutex_exit(&zone->zone_lock);
8053 zone_rele(zone);
8054 return (0);
8055 }
8056
8057 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
8058 if (idarray == NULL) {
8059 mutex_exit(&zone->zone_lock);
8060 zone_rele(zone);
8061 return (ENOMEM);
8062 }
8063
8064 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
8065 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
8066 idarray[i] = zdl->zdl_id;
8067 }
8068
8069 mutex_exit(&zone->zone_lock);
8070
8071 for (i = 0; i < idcount && ret == 0; i++) {
8072 if ((ret = (*cb)(idarray[i], data)) != 0)
8073 break;
8074 }
8075
8076 zone_rele(zone);
8077 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
8078 return (ret);
8079 }
8080
8081 static char *
8082 zone_net_type2name(int type)
8083 {
8084 switch (type) {
8085 case ZONE_NETWORK_ADDRESS:
8086 return (ZONE_NET_ADDRNAME);
8087 case ZONE_NETWORK_DEFROUTER:
8088 return (ZONE_NET_RTRNAME);
8089 default:
8090 return (NULL);
8091 }
8092 }
8093
8094 static int
8095 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
8096 {
8097 zone_t *zone;
8098 zone_dl_t *zdl;
8099 nvlist_t *nvl;
8100 int err = 0;
8101 uint8_t *new = NULL;
8102 char *nvname;
8103 int bufsize;
8104 datalink_id_t linkid = znbuf->zn_linkid;
8105
8106 if (secpolicy_zone_config(CRED()) != 0)
8107 return (set_errno(EPERM));
8108
8109 if (zoneid == GLOBAL_ZONEID)
8110 return (set_errno(EINVAL));
8111
8112 nvname = zone_net_type2name(znbuf->zn_type);
8113 bufsize = znbuf->zn_len;
8114 new = znbuf->zn_val;
8115 if (nvname == NULL)
8116 return (set_errno(EINVAL));
8117
8118 if ((zone = zone_find_by_id(zoneid)) == NULL) {
8119 return (set_errno(EINVAL));
8120 }
8121
8122 mutex_enter(&zone->zone_lock);
8123 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
8124 err = ENXIO;
8125 goto done;
8126 }
8127 if ((nvl = zdl->zdl_net) == NULL) {
8128 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
8129 err = ENOMEM;
8130 goto done;
8131 } else {
8132 zdl->zdl_net = nvl;
8133 }
8134 }
8135 if (nvlist_exists(nvl, nvname)) {
8136 err = EINVAL;
8137 goto done;
8138 }
8139 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
8140 ASSERT(err == 0);
8141 done:
8142 mutex_exit(&zone->zone_lock);
8143 zone_rele(zone);
8144 if (err != 0)
8145 return (set_errno(err));
8146 else
8147 return (0);
8148 }
8149
8150 static int
8151 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
8152 {
8153 zone_t *zone;
8154 zone_dl_t *zdl;
8155 nvlist_t *nvl;
8156 uint8_t *ptr;
8157 uint_t psize;
8158 int err = 0;
8159 char *nvname;
8160 int bufsize;
8161 void *buf;
8162 datalink_id_t linkid = znbuf->zn_linkid;
8163
8164 if (zoneid == GLOBAL_ZONEID)
8165 return (set_errno(EINVAL));
8166
8167 nvname = zone_net_type2name(znbuf->zn_type);
8168 bufsize = znbuf->zn_len;
8169 buf = znbuf->zn_val;
8170
8171 if (nvname == NULL)
8172 return (set_errno(EINVAL));
8173 if ((zone = zone_find_by_id(zoneid)) == NULL)
8174 return (set_errno(EINVAL));
8175
8176 mutex_enter(&zone->zone_lock);
8177 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
8178 err = ENXIO;
8179 goto done;
8180 }
8181 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
8182 err = ENOENT;
8183 goto done;
8184 }
8185 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
8186 ASSERT(err == 0);
8187
8188 if (psize > bufsize) {
8189 err = ENOBUFS;
8190 goto done;
8191 }
8192 znbuf->zn_len = psize;
8193 bcopy(ptr, buf, psize);
8194 done:
8195 mutex_exit(&zone->zone_lock);
8196 zone_rele(zone);
8197 if (err != 0)
8198 return (set_errno(err));
8199 else
8200 return (0);
8201 }
8202
8203 static void
8204 zone_incr_capped(zoneid_t zid)
8205 {
8206 zone_persist_t *zp = &zone_pdata[zid];
8207
8208 /* See if over (unlimited is UINT32_MAX), or already marked that way. */
8209 if (zp->zpers_pg_cnt <= zp->zpers_pg_limit || zp->zpers_over == 1) {
8210 return;
8211 }
8212
8213 mutex_enter(&zone_physcap_lock);
8214 /* Recheck setting under mutex */
8215 if (zp->zpers_pg_cnt > zp->zpers_pg_limit && zp->zpers_over == 0) {
8216 zp->zpers_over = 1;
8217 zp->zpers_nover++;
8218 zone_num_over_cap++;
8219 DTRACE_PROBE1(zone__over__pcap, zoneid_t, zid);
8220 }
8221 mutex_exit(&zone_physcap_lock);
8222 }
8223
8224 /*
8225 * We want some hysteresis when the zone is going under its cap so that we're
8226 * not continuously toggling page scanning back and forth by a single page
8227 * around the cap. Using ~1% of the zone's page limit seems to be a good
8228 * quantity. This table shows some various zone memory caps and the number of
8229 * pages (assuming a 4k page size). Given this, we choose to shift the page
8230 * limit by 7 places to get a hysteresis that is slightly less than 1%.
8231 *
8232 * cap pages pages 1% shift7 shift7
8233 * 128M 32768 0x0008000 327 256 0x00100
8234 * 512M 131072 0x0020000 1310 1024 0x00400
8235 * 1G 262144 0x0040000 2621 2048 0x00800
8236 * 4G 1048576 0x0100000 10485 8192 0x02000
8237 * 8G 2097152 0x0200000 20971 16384 0x04000
8238 * 16G 4194304 0x0400000 41943 32768 0x08000
8239 * 32G 8388608 0x0800000 83886 65536 0x10000
8240 * 64G 16777216 0x1000000 167772 131072 0x20000
8241 */
8242 static void
8243 zone_decr_capped(zoneid_t zid)
8244 {
8245 zone_persist_t *zp = &zone_pdata[zid];
8246 uint32_t adjusted_limit;
8247
8248 /*
8249 * See if under, or already marked that way. There is no need to
8250 * check for an unlimited cap (zpers_pg_limit == UINT32_MAX)
8251 * since we'll never set zpers_over in zone_incr_capped().
8252 */
8253 if (zp->zpers_over == 0 || zp->zpers_pg_cnt >= zp->zpers_pg_limit) {
8254 return;
8255 }
8256
8257 adjusted_limit = zp->zpers_pg_limit - (zp->zpers_pg_limit >> 7);
8258
8259 /* Recheck, accounting for our hysteresis. */
8260 if (zp->zpers_pg_cnt >= adjusted_limit) {
8261 return;
8262 }
8263
8264 mutex_enter(&zone_physcap_lock);
8265 /* Recheck under mutex. */
8266 if (zp->zpers_pg_cnt < adjusted_limit && zp->zpers_over == 1) {
8267 zp->zpers_over = 0;
8268 ASSERT(zone_num_over_cap > 0);
8269 zone_num_over_cap--;
8270 DTRACE_PROBE1(zone__under__pcap, zoneid_t, zid);
8271 }
8272 mutex_exit(&zone_physcap_lock);
8273 }
8274
8275 /*
8276 * For zone_add_page() and zone_rm_page(), access to the page we're touching is
8277 * controlled by our caller's locking.
8278 * On x86 our callers already did: ASSERT(x86_hm_held(pp))
8279 * On SPARC our callers already did: ASSERT(sfmmu_mlist_held(pp))
8280 */
8281 void
8282 zone_add_page(page_t *pp)
8283 {
8284 uint_t pcnt;
8285 zone_persist_t *zp;
8286 zoneid_t zid;
8287
8288 /* Skip pages in segkmem, etc. (KV_KVP, ...) */
8289 if (PP_ISKAS(pp))
8290 return;
8291
8292 ASSERT(!PP_ISFREE(pp));
8293
8294 zid = curzone->zone_id;
8295 if (pp->p_zoneid == zid) {
8296 /* Another mapping to this page for this zone, do nothing */
8297 return;
8298 }
8299
8300 if (pp->p_szc == 0) {
8301 pcnt = 1;
8302 } else {
8303 /* large page */
8304 pcnt = page_get_pagecnt(pp->p_szc);
8305 }
8306
8307 if (pp->p_share == 0) {
8308 /* First mapping to this page. */
8309 pp->p_zoneid = zid;
8310 zp = &zone_pdata[zid];
8311 ASSERT(zp->zpers_pg_cnt + pcnt < UINT32_MAX);
8312 atomic_add_32((uint32_t *)&zp->zpers_pg_cnt, pcnt);
8313 zone_incr_capped(zid);
8314 return;
8315 }
8316
8317 if (pp->p_zoneid != ALL_ZONES) {
8318 /*
8319 * The page is now being shared across a different zone.
8320 * Decrement the original zone's usage.
8321 */
8322 zid = pp->p_zoneid;
8323 pp->p_zoneid = ALL_ZONES;
8324 ASSERT(zid >= 0 && zid <= MAX_ZONEID);
8325 zp = &zone_pdata[zid];
8326
8327 if (zp->zpers_pg_cnt > 0) {
8328 atomic_add_32((uint32_t *)&zp->zpers_pg_cnt, -pcnt);
8329 }
8330 zone_decr_capped(zid);
8331 }
8332 }
8333
8334 void
8335 zone_rm_page(page_t *pp)
8336 {
8337 uint_t pcnt;
8338 zone_persist_t *zp;
8339 zoneid_t zid;
8340
8341 /* Skip pages in segkmem, etc. (KV_KVP, ...) */
8342 if (PP_ISKAS(pp))
8343 return;
8344
8345 zid = pp->p_zoneid;
8346 if (zid == ALL_ZONES || pp->p_share != 0)
8347 return;
8348
8349 /* This is the last mapping to the page for a zone. */
8350 if (pp->p_szc == 0) {
8351 pcnt = 1;
8352 } else {
8353 /* large page */
8354 pcnt = (int64_t)page_get_pagecnt(pp->p_szc);
8355 }
8356
8357 ASSERT(zid >= 0 && zid <= MAX_ZONEID);
8358 zp = &zone_pdata[zid];
8359 if (zp->zpers_pg_cnt > 0) {
8360 atomic_add_32((uint32_t *)&zp->zpers_pg_cnt, -pcnt);
8361 }
8362 zone_decr_capped(zid);
8363 pp->p_zoneid = ALL_ZONES;
8364 }
8365
8366 void
8367 zone_pageout_stat(int zid, zone_pageout_op_t op)
8368 {
8369 zone_persist_t *zp;
8370
8371 if (zid == ALL_ZONES)
8372 return;
8373
8374 ASSERT(zid >= 0 && zid <= MAX_ZONEID);
8375 zp = &zone_pdata[zid];
8376
8377 #ifndef DEBUG
8378 atomic_add_64(&zp->zpers_pg_out, 1);
8379 #else
8380 switch (op) {
8381 case ZPO_DIRTY:
8382 atomic_add_64(&zp->zpers_pg_fsdirty, 1);
8383 break;
8384 case ZPO_FS:
8385 atomic_add_64(&zp->zpers_pg_fs, 1);
8386 break;
8387 case ZPO_ANON:
8388 atomic_add_64(&zp->zpers_pg_anon, 1);
8389 break;
8390 case ZPO_ANONDIRTY:
8391 atomic_add_64(&zp->zpers_pg_anondirty, 1);
8392 break;
8393 default:
8394 cmn_err(CE_PANIC, "Invalid pageout operator %d", op);
8395 break;
8396 }
8397 #endif
8398 }
8399
8400 /*
8401 * Return the zone's physical memory cap and current free memory (in pages).
8402 */
8403 void
8404 zone_get_physmem_data(int zid, pgcnt_t *memcap, pgcnt_t *free)
8405 {
8406 zone_persist_t *zp;
8407
8408 ASSERT(zid >= 0 && zid <= MAX_ZONEID);
8409 zp = &zone_pdata[zid];
8410
8411 /*
8412 * If memory or swap limits are set on the zone, use those, otherwise
8413 * use the system values. physmem and freemem are also in pages.
8414 */
8415 if (zp->zpers_pg_limit == UINT32_MAX) {
8416 *memcap = physmem;
8417 *free = freemem;
8418 } else {
8419 int64_t freemem;
8420
8421 *memcap = (pgcnt_t)zp->zpers_pg_limit;
8422 freemem = zp->zpers_pg_limit - zp->zpers_pg_cnt;
8423 if (freemem > 0) {
8424 *free = (pgcnt_t)freemem;
8425 } else {
8426 *free = (pgcnt_t)0;
8427 }
8428 }
8429 }