1 /*
   2  * This file and its contents are supplied under the terms of the
   3  * Common Development and Distribution License ("CDDL"), version 1.0.
   4  * You may only use this file in accordance with the terms of version
   5  * 1.0 of the CDDL.
   6  *
   7  * A full copy of the text of the CDDL should have accompanied this
   8  * source.  A copy of the CDDL is also available via the Internet at
   9  * http://www.illumos.org/license/CDDL.
  10  */
  11 
  12 /*
  13  * Copyright 2016 Joyent, Inc.
  14  */
  15 
  16 /*
  17  * Overlay Devices
  18  *
  19  * Overlay devices provide a means for creating overlay networks, a means of
  20  * multiplexing multiple logical, isolated, and discrete layer two and layer
  21  * three networks on top of one physical network.
  22  *
  23  * In general, these overlay devices encapsulate the logic to answer two
  24  * different questions:
  25  *
  26  *   1) How should I transform a packet to put it on the wire?
  27  *   2) Where should I send a transformed packet?
  28  *
  29  * Each overlay device is presented to the user as a GLDv3 device. While the
  30  * link itself cannot have an IP interface created on top of it, it allows for
  31  * additional GLDv3 devices, such as a VNIC, to be created on top of it which
  32  * can be plumbed up with IP interfaces.
  33  *
  34  *
  35  * --------------------
  36  * General Architecture
  37  * --------------------
  38  *
  39  * The logical overlay device that a user sees in dladm(1M) is a combination of
  40  * two different components that work together. The first component is this
  41  * kernel module, which is responsible for answering question one -- how should
  42  * I transform a packet to put it on the wire.
  43  *
  44  * The second component is what we call the virtual ARP daemon, or varpd. It is
  45  * a userland component that is responsible for answering the second question --
  46  * Where should I send a transformed packet. Instances of the kernel overlay
  47  * GLDv3 device ask varpd the question of where should a packet go.
  48  *
  49  * The split was done for a few reasons. Importantly, we wanted to keep the act
  50  * of generating encapsulated packets in the kernel so as to ensure that the
  51  * general data path was fast and also kept simple. On the flip side, while the
  52  * question of where should something go may be simple, it may often be
  53  * complicated and need to interface with several different external or
  54  * distributed systems. In those cases, it's simpler to allow for the full
  55  * flexibility of userland to be brought to bear to solve that problem and in
  56  * general, the path isn't very common.
  57  *
  58  * The following is what makes up the logical overlay device that a user would
  59  * create with dladm(1M).
  60  *
  61  *       Kernel                                     Userland
  62  *   . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . .
  63  *   . +--------+   +--------+  +--------+   .   .                       .
  64  *   . | VNIC 0 |   | VNIC 1 |  | VNIC 2 |   .   .                       .
  65  *   . +--------+   +--------+  +--------+   .   .                       .
  66  *   .     |            |           |        .   .                       .
  67  *   .     |            |           |        .   .                       .
  68  *   .     +------------+-----------+        .   .                       .
  69  *   .                  |              . . /dev/overlay                  .
  70  *   .           +--------------+      .     .   .       +------------+  .
  71  *   .           |              |      .     .   .       |            |  .
  72  *   .           |    Overlay   |======*=================|   Virtual  |  .
  73  *   .           | GLDv3 Device |========================| ARP Daemon |  .
  74  *   .           |              |            .   .       |            |  .
  75  *   .           +--------------+            .   .       +------------+  .
  76  *   .                  |                    .   .              |        .
  77  *   .                  |                    .   .              |        .
  78  *   .           +----------------+          .   .         +--------+    .
  79  *   .           |  Overlay       |          .   .         | varpd  |    .
  80  *   .           |  Encapsulation |          .   .         | Lookup |    .
  81  *   .           |  Plugin        |          .   .         | Plugin |    .
  82  *   .           +----------------+          .   .         +--------+    .
  83  *   . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . .
  84  *
  85  *
  86  * This image shows the two different components and where they live.
  87  * Importantly, it also shows that both the kernel overlay device and the
  88  * userland varpd both support plugins. The plugins actually implement the
  89  * things that users care about and the APIs have been designed to try to
  90  * minimize the amount of things that a module writer needs to worry about it.
  91  *
  92  * IDENTIFIERS
  93  *
  94  * Every overlay device is defined by a unique identifier which is the overlay
  95  * identifier. Its purpose is similar to that of a VLAN identifier, it's a
  96  * unique number that is used to differentiate between different entries on the
  97  * wire.
  98  *
  99  * ENCAPSULATION
 100  *
 101  * An overlay encapsulation plugin is a kernel miscellaneous module whose
 102  * purpose is to contain knowledge about how to transform packets to put them
 103  * onto the wire and to take them off. An example of an encapsulation plugin is
 104  * vxlan. It's also how support for things like nvgre or geneve would be brought
 105  * into the system.
 106  *
 107  * Each encapsulation plugins defines a series of operation vectors and
 108  * properties. For the full details on everything they should provide, please
 109  * read uts/common/sys/overlay_plugin.h. The encapsulation plugin is responsible
 110  * for telling the system what information is required to send a packet. For
 111  * example, vxlan is defined to send everything over a UDP packet and therefore
 112  * requires a port and an IP address, while nvgre on the other hand is its own
 113  * IP type and therefore just requires an IP address. In addition, it also
 114  * provides information about the kind of socket that should be created. This is
 115  * used by the kernel multiplexor, more of that in the Kernel Components
 116  * section.
 117  *
 118  * LOOKUPS
 119  *
 120  * The kernel communicates requests for lookups over the character device
 121  * /dev/overlay. varpd is responsible for listening for requests on that device
 122  * and answering them. The character device is specific to the target path and
 123  * varpd.
 124  *
 125  * Much as the kernel overlay module handles the bulk of the scaffolding but
 126  * leaves the important work to the encapsulation plugin, varpd provides a
 127  * similar role and leaves the full brunt of lookups to a userland dynamic
 128  * shared object which implements the logic of lookups.
 129  *
 130  * Each lookup plugin defines a series of operation vectors and properties. For
 131  * the full details on everything that they should provide, please read
 132  * lib/varpd/libvarpd/libvarpd_provider.h. Essentially, they are given a MAC
 133  * address and asked to give an address on the physical network that it should
 134  * be sent to. In addition, they handle questions related to how to handle
 135  * things like broadcast and multicast traffic, etc.
 136  *
 137  * ----------
 138  * Properties
 139  * ----------
 140  *
 141  * A device from a dladm perspective has a unique set of properties that are
 142  * combined from three different sources:
 143  *
 144  *   1) Generic properties that every overlay device has
 145  *   2) Properties that are specific to the encapsulation plugin
 146  *   3) Properties that are specific to the lookup plugin
 147  *
 148  * All of these are exposed in a single set of properties in dladm. Note that
 149  * these are not necessarily traditional link properties. However, if something
 150  * is both a traditional GLDv3 link property, say the MTU of a device, and a
 151  * specific property here, than the driver ensures that all existing GLDv3
 152  * specific means of manipulating it are used and wraps up its private property
 153  * interfaces to ensure that works.
 154  *
 155  * Properties in the second and third category are prefixed with the name of
 156  * their module. For example, the vxlan encapsulation module has a property
 157  * called the 'listen_ip'. This property would show up in dladm as
 158  * 'vxlan/listen_ip'. This allows different plugins to both use similar names
 159  * for similar properties and to also have independent name spaces so that
 160  * overlapping names do not conflict with anything else.
 161  *
 162  * While the kernel combines both sets one and two into a single coherent view,
 163  * it does not do anything with respect to the properties that are owned by the
 164  * lookup plugin -- those are owned wholly by varpd. Instead, libdladm is in
 165  * charge of bridging these two worlds into one magical experience for the user.
 166  * It carries the burden of knowing about both overlay specific and varpd
 167  * specific properties. Importantly, we want to maintain this distinction. We
 168  * don't want to treat the kernel as an arbitrary key/value store for varpd and
 169  * we want the kernel to own its own data and not have to ask userland for
 170  * information that it owns.
 171  *
 172  * Every property in the system has the following attributes:
 173  *
 174  *   o A name
 175  *   o A type
 176  *   o A size
 177  *   o Permissions
 178  *   o Default value
 179  *   o Valid value ranges
 180  *   o A value
 181  *
 182  * Everything except for the value is obtained by callers through the propinfo
 183  * callbacks and a property has a maximum size of OVERLAY_PROP_SIZEMAX,
 184  * currently 256 bytes.
 185  *
 186  * The following are the supported types of properties:
 187  *
 188  *      OVERLAY_PROP_T_INT
 189  *
 190  *              A signed integer, its length is 8 bytes, corresponding to a
 191  *              int64_t.
 192  *
 193  *      OVERLAY_PROP_T_UINT
 194  *
 195  *              An unsigned integer, its length is 8 bytes, corresponding to a
 196  *              uint64_t.
 197  *
 198  *      OVERLAY_PROP_T_IP
 199  *
 200  *              A struct in6_addr, it has a fixed size.
 201  *
 202  *      OVERLAY_PROP_T_STRING
 203  *
 204  *              A null-terminated character string encoded in either ASCII or
 205  *              UTF-8. Note that the size of the string includes the null
 206  *              terminator.
 207  *
 208  * The next thing that we apply to a property is its permission. The permissions
 209  * are put together by the bitwise or of the following flags and values.
 210  *
 211  *      OVERLAY_PROP_PERM_REQ
 212  *
 213  *              This indicates a required property. A property that is required
 214  *              must be set by a consumer before the device can be created. If a
 215  *              required property has a default property, this constraint is
 216  *              loosened because the default property defines the value.
 217  *
 218  *      OVERLAY_PORP_PERM_READ
 219  *
 220  *              This indicates that a property can be read. All properties will
 221  *              have this value set.
 222  *
 223  *      OVERLAY_PROP_PERM_WRITE
 224  *
 225  *              This indicates that a property can be written to and thus
 226  *              updated by userland. Properties that are only intended to
 227  *              display information, will not have OVERLAY_PROP_PERM_WRITE set.
 228  *
 229  * In addition, a few additional values are defined as a convenience to
 230  * consumers. The first, OVERLAY_PROP_PERM_RW, is a combination of
 231  * OVERLAY_PROP_PERM_READ and OVERLAY_PERM_PROP_WRITE. The second,
 232  * OVERLAY_PROP_PERM_RRW, is a combination of OVERLAY_PROP_PERM_REQ,
 233  * OVERLAY_PROP_PERM_READ, and OVERLAY_PROP_PERM_WRITE. The protection mode of a
 234  * property should generally be a constant across its lifetime.
 235  *
 236  * A property may optionally have a default value. If it does have a default
 237  * value, and that property is not set to be a different value, then the default
 238  * value is inherited automatically. It also means that if the default value is
 239  * acceptable, there is no need to set the value for a required property. For
 240  * example, the vxlan module has the vxlan/listen_port property which is
 241  * required, but has a default value of 4789 (the IANA assigned port). Because
 242  * of that default value, there is no need for it to be set.
 243  *
 244  * Finally, a property may declare a list of valid values. These valid values
 245  * are used for display purposes, they are not enforced by the broader system,
 246  * but merely allow a means for the information to be communicated to the user
 247  * through dladm(1M). Like a default value, this is optional.
 248  *
 249  * The general scaffolding does not do very much with respect to the getting and
 250  * setting of properties. That is really owned by the individual plugins
 251  * themselves.
 252  *
 253  * -----------------------------
 254  * Destinations and Plugin Types
 255  * -----------------------------
 256  *
 257  * Both encapsulation and lookup plugins define the kinds of destinations that
 258  * they know how to support. There are three different pieces of information
 259  * that can be used to address to a destination currently, all of which is
 260  * summarized in the type overlay_point_t. Any combination of these is
 261  * supported.
 262  *
 263  *      OVERLAY_PLUGIN_D_ETHERNET
 264  *
 265  *              An Ethernet MAC address is required.
 266  *
 267  *      OVERLAY_PLUGIN_D_IP
 268  *
 269  *              An IP address is required. All IP addresses used by the overlay
 270  *              system are transmitted as IPv6 addresses. IPv4 addresses can be
 271  *              represented by using IPv4-mapped IPv6 addresses.
 272  *
 273  *      OVERLAY_PLUGIN_D_PORT
 274  *
 275  *              A TCP/UDP port is required.
 276  *
 277  * A kernel encapsulation plugin declares which of these that it requires, it's
 278  * a static set. On the other hand, a userland lookup plugin can be built to
 279  * support all of these or any combination thereof. It gets passed the required
 280  * destination type, based on the kernel encapsulation method, and then it makes
 281  * the determination as to whether or not it supports it. For example, the
 282  * direct plugin can support either an IP or both an IP and a port, it simply
 283  * doesn't display the direct/dest_port property in the cases where a port is
 284  * not required to support this.
 285  *
 286  * The user lookup plugins have two different modes of operation which
 287  * determines how they interact with the broader system and how look ups are
 288  * performed. These types are:
 289  *
 290  *      OVERLAY_TARGET_POINT
 291  *
 292  *              A point to point plugin has a single static definition for where
 293  *              to send all traffic. Every packet in the system always gets sent
 294  *              to the exact same destination which is programmed into the
 295  *              kernel when the general device is activated.
 296  *
 297  *      OVERLAY_TARGET_DYNAMIC
 298  *
 299  *              A dynamic plugin does not have a single static definition.
 300  *              Instead, for each destination, the kernel makes an asynchronous
 301  *              request to varpd to determine where the packet should be routed,
 302  *              and if a specific destination is found, then that destination is
 303  *              cached in the overlay device's target cache.
 304  *
 305  * This distinction, while important for the general overlay device's operation,
 306  * is not important to the encapsulation plugins. They don't need to know about
 307  * any of these pieces. It's just a concern for varpd, the userland plugin, and
 308  * the general overlay scaffolding.
 309  *
 310  * When an overlay device is set to OVERLAY_TARGET_POINT, then it does not
 311  * maintain a target cache, and instead just keeps track of the destination and
 312  * always sends encapsulated packets to that address. When the target type is of
 313  * OVERLAY_TARGET_DYNAMIC, then the kernel maintains a cache of all such
 314  * destinations. These destinations are kept around in an instance of a
 315  * reference hash that is specific to the given overlay device. Entries in the
 316  * cache can be invalidated and replaced by varpd and its lookup plugins.
 317  *
 318  * ----------------------------------
 319  * Kernel Components and Architecture
 320  * ----------------------------------
 321  *
 322  * There are multiple pieces inside the kernel that work together, there is the
 323  * general overlay_dev_t structure, which is the logical GLDv3 device, but it
 324  * itself has references to things like an instance of an encapsulation plugin,
 325  * a pointer to a mux and a target cache. It can roughly be summarized in the
 326  * following image:
 327  *
 328  *     +------------------+
 329  *     | global           |
 330  *     | overlay list     |
 331  *     | overlay_dev_list |
 332  *     +------------------+
 333  *        |
 334  *        |  +-----------------------+            +---------------+
 335  *        +->| GLDv3 Device          |----------->| GLDv3 Device  | -> ...
 336  *           | overlay_dev_t         |            | overlay_dev_t |
 337  *           |                       |            +---------------+
 338  *           |                       |
 339  *           | mac_handle_t     -----+---> GLDv3 handle to MAC
 340  *           | datalink_id_t    -----+---> Datalink ID used by DLS
 341  *           | overlay_dev_flag_t ---+---> Device state
 342  *           | uint_t           -----+---> Curent device MTU
 343  *           | uint_t           -----+---> In-progress RX operations
 344  *           | uint_t           -----+---> In-progress TX operations
 345  *           | char[]           -----+---> FMA degraded message
 346  *           | void *           -----+---> plugin private data
 347  *           | overlay_target_t * ---+---------------------+
 348  *           | overlay_plugin_t * ---+---------+           |
 349  *           +-----------------------+         |           |
 350  *                           ^                 |           |
 351  *   +--------------------+  |                 |           |
 352  *   | Kernel Socket      |  |                 |           |
 353  *   | Multiplexor        |  |                 |           |
 354  *   | overlay_mux_t      |  |                 |           |
 355  *   |                    |  |                 |           |
 356  *   | avl_tree_t        -+--+                 |           |
 357  *   | uint_t            -+--> socket family   |           |
 358  *   | uint_t            -+--> socket type     |           |
 359  *   | uint_t            -+--> socket protocol |           |
 360  *   | ksocket_t         -+--> I/O socket      |           |
 361  *   | struct sockaddr * -+--> ksocket address |           |
 362  *   | overlay_plugin_t --+--------+           |           |
 363  *   +--------------------+        |           |           |
 364  *                                 |           |           |
 365  *   +-------------------------+   |           |           |
 366  *   | Encap Plugin            |<--+-----------+           |
 367  *   | overlay_plugin_t        |                           |
 368  *   |                         |                           |
 369  *   | char *               ---+--> plugin name            |
 370  *   | overlay_plugin_ops_t * -+--> plugin downcalls       |
 371  *   | char ** (props)      ---+--> property list          |
 372  *   | uint_t               ---+--> id length              |
 373  *   | overlay_plugin_flags_t -+--> plugin flags           |
 374  *   | overlay_plugin_dest_t --+--> destination type       v
 375  *   +-------------------------+                    +-------------------------+
 376  *                                                  |   Target Cache          |
 377  *                                                  |   overlay_target_t      |
 378  *                                                  |                         |
 379  *                                    cache mode <--+- overlay_target_mode_t  |
 380  *                                     dest type <--+- overlay_plugin_dest_t  |
 381  *                                   cache flags <--+- overlay_target_flag_t  |
 382  *                                     varpd id  <--+- uint64_t               |
 383  *                       outstanding varpd reqs. <--+- uint_t                 |
 384  *                   OVERLAY_TARGET_POINT state  <--+- overlay_target_point_t |
 385  *               OVERLAY_TARGET_DYNAMIC state <-+---+- overlay_target_dyn_t   |
 386  *                                              |   +-------------------------+
 387  *                      +-----------------------+
 388  *                      |
 389  *                      v
 390  *   +-------------------------------+   +------------------------+
 391  *   | Target Entry                  |-->| Target Entry           |--> ...
 392  *   | overlay_target_entry_t        |   | overlay_target_entry_t |
 393  *   |                               |   +------------------------+
 394  *   |                               |
 395  *   | overlay_target_entry_flags_t -+--> Entry flags
 396  *   | uint8_t[ETHERADDRL]        ---+--> Target MAC address
 397  *   | overlay_target_point_t     ---+--> Target underlay address
 398  *   | mblk_t *                   ---+--> outstanding mblk head
 399  *   | mblk_t *                   ---+--> outstanding mblk tail
 400  *   | size_t                     ---+--> outstanding mblk size
 401  *   +-------------------------------+
 402  *
 403  * The primary entries that we care about are the overlay_dev_t, which
 404  * correspond to each overlay device that is created with dladm(1M). Globally,
 405  * these devices are maintained in a simple list_t which is protected with a
 406  * lock.  Hence, these include important information such as the mac_handle_t
 407  * and a datalink_id_t which is used to interact with the broader MAC and DLS
 408  * ecosystem. We also maintain additional information such as the current state,
 409  * outstanding operations, the mtu, and importantly, the plugin's private data.
 410  * This is the instance of an encapsulation plugin that gets created as part of
 411  * creating an overlay device. Another aspect of this is that the overlay_dev_t
 412  * also includes information with respect to FMA. For more information, see the
 413  * FMA section.
 414  *
 415  * Each overlay_dev_t has a pointer to a plugin, a mux, and a target. The plugin
 416  * is the encapsulation plugin. This allows the device to make downcalls into it
 417  * based on doing things like getting and setting properties. Otherwise, the
 418  * plugin itself is a fairly straightforward entity. They are maintained in an
 419  * (not pictured above) list. The plugins themselves mostly maintain things like
 420  * the static list of properties, what kind of destination they require, and the
 421  * operations vector. A given module may contain more if necessary.
 422  *
 423  * The next piece of the puzzle is the mux, or a multiplexor. The mux itself
 424  * maintains a ksocket and it is through the mux that we send and receive
 425  * message blocks. The mux represents a socket type and address, as well as a
 426  * plugin. Multiple overlay_dev_t devices may then share the same mux. For
 427  * example, consider the case where you have different instances of vxlan all on
 428  * the same underlay network. These would all logically share the same IP
 429  * address and port that packets are sent and received on; however, what differs
 430  * is the decapuslation ID.
 431  *
 432  * Each mux maintains a ksocket_t which is similar to a socket(3SOCKET). Unlike
 433  * a socket, we enable a direct callback on the ksocket. This means that
 434  * whenever a message block chain is received, rather than sitting there and
 435  * getting a callback in a context and kicking that back out to a taskq. Instead
 436  * data comes into the callback function overlay_mux_recv().
 437  *
 438  * The mux is given encapsulated packets (via overlay_m_tx, the GLDv3 tx
 439  * function) to transmit. It receives encapsulated packets, decapsulates them to
 440  * determine the overlay identifier, looks up the given device that matches that
 441  * identifier, and then causes the broader MAC world to receive the packet with
 442  * a call to mac_rx().
 443  *
 444  * Today, we don't do too much that's special with the ksocket; however, as
 445  * hardware is gaining understanding for these encapuslation protocols, we'll
 446  * probably want to think of better ways to get those capabilities passed down
 447  * and potentially better ways to program receive filters so they get directly
 448  * to us. Though, that's all fantasy future land.
 449  *
 450  * The next part of the puzzle is the target cache. The purpose of the target
 451  * cache is to cache where we should send a packet on the underlay network,
 452  * given its mac address. The target cache operates in two modes depending on
 453  * whether the lookup module was declared to OVERLAY_TARGET_POINT or
 454  * OVERLAY_TARGET_DYANMIC.
 455  *
 456  * In the case where the target cache has been programmed to be
 457  * OVERLAY_TARGET_POINT, then we only maintain a single overlay_target_point_t
 458  * which has the destination that we send everything, no matter the destination
 459  * mac address.
 460  *
 461  * On the other hand, when we have an instance of OVERLAY_TARGET_DYNAMIC, things
 462  * are much more interesting and as a result, more complicated. We primarily
 463  * store lists of overlay_target_entry_t's which are stored in both an avl tree
 464  * and a refhash_t. The primary look up path uses the refhash_t and the avl tree
 465  * is only used for a few of the target ioctls used to dump data such that we
 466  * can get a consistent iteration order for things like dladm show-overlay -t.
 467  * The key that we use for the reference hashtable is based on the mac address
 468  * in the cache and currently we just do a simple CRC32 to transform it into a
 469  * hash.
 470  *
 471  * Each entry maintains a set of flags to indicate the current status of the
 472  * request. The flags may indicate one of three states: that current cache entry
 473  * is valid, that the current cache entry has been directed to drop all output,
 474  * and that the current cache entry is invalid and may be being looked up. In
 475  * the case where it's valid, we just take the destination address and run with
 476  * it.
 477  *
 478  * If it's invalid and a lookup has not been made, then we start the process
 479  * that prepares a query that will make its way up to varpd. The cache entry
 480  * entry maintains a message block chain of outstanding message blocks and a
 481  * size. These lists are populated only when we don't know the answer as to
 482  * where should these be sent. The size entry is used to cap the amount of
 483  * outstanding data that we don't know the answer to. If we exceed a cap on the
 484  * amount of outstanding data (currently 1 Mb), then we'll drop any additional
 485  * packets. Once we get an answer indicating a valid destination, we transmit
 486  * any outstanding data to that place. For the full story on how we look that up
 487  * will be discussed in the section on the Target Cache Lifecycle.
 488  *
 489  * ------------------------
 490  * FMA and Degraded Devices
 491  * ------------------------
 492  *
 493  * Every kernel overlay device keeps track of its FMA state. Today in FMA we
 494  * cannot represent partitions between resources nor can we represent that a
 495  * given minor node of a psuedo device has failed -- if we degrade the overlay
 496  * device, then the entire dev_info_t is degraded. However, we still want to be
 497  * able to indicate to administrators that things may go wrong.
 498  *
 499  * To this end, we've added a notion of a degraded state to every overlay
 500  * device. This state is primarily dictated by userland and it can happen for
 501  * various reasons. Generally, because a userland lookup plugin has been
 502  * partitioned, or something has gone wrong such that there is no longer any
 503  * userland lookup module for a device, then we'll mark it degraded.
 504  *
 505  * As long as any of our minor instances is degraded, then we'll fire off the
 506  * FMA event to note that. Once the last degraded instance is no longer
 507  * degraded, then we'll end up telling FMA that we're all clean.
 508  *
 509  * To help administrators get a better sense of which of the various minor
 510  * devices is wrong, we store the odd_fmamsg[] character array. This character
 511  * array can be fetched with doing a dladm show-overlay -f.
 512  *
 513  * Note, that it's important that we do not update the link status of the
 514  * devices. We want to remain up as much as possible. By changing the link in a
 515  * degraded state, this may end up making things worse. We may still actually
 516  * have information in the target cache and if we mark the link down, that'll
 517  * result in not being able to use it. The reason being that this'll mark all
 518  * the downstream VNICs down which will go to IP and from there we end up
 519  * dealing with sadness.
 520  *
 521  * -----------------------
 522  * Target Cache Life Cycle
 523  * -----------------------
 524  *
 525  * This section only applies when we have a lookup plugin of
 526  * OVERLAY_TARGET_DYNAMIC. None of this applies to those of type
 527  * OVERLAY_TARGET_POINT.
 528  *
 529  * While we got into the target cache in the general architecture section, it's
 530  * worth going into more details as to how this actually works and showing some
 531  * examples and state machines. Recall that a target cache entry basically has
 532  * the following state transition diagram:
 533  *
 534  * Initial state
 535  *    . . .           . . . first access       . . . varpd lookup enqueued
 536  *        .           .                        .
 537  *        .           .                        .
 538  *     +-------+      .     +----------+       .
 539  *     |  No   |------*---->| Invalid  |-------*----+
 540  *     | Entry |            |  Entry   |            |
 541  *     +-------+            +----------+            |
 542  *                 varpd      ^      ^   varpd      |
 543  *                 invalidate |      |   drop       |
 544  *                      . . . *      * . .          v
 545  *          +-------+         |      |         +---------+
 546  *          | Entry |--->-----+      +----<----| Entry   |
 547  *          | Valid |<----------*---------<----| Pending |->-+     varpd
 548  *          +-------+           .              +---------+   * . . drop, but
 549  *                              . varpd                ^     |     other queued
 550  *                              . success              |     |     entries
 551  *                                                     +-----+
 552  *
 553  * When the table is first created, it is empty. As we attempt to lookup entries
 554  * and we find there is no entry at all, we'll create a new table entry for it.
 555  * At that point the entry is technically in an invalid state, that means that
 556  * we have no valid data from varpd. In that case, we'll go ahead and queue the
 557  * packet into the entry's pending chain, and queue a varpd lookup, setting the
 558  * OVERLAY_ENTRY_F_PENDING flag in the progress.
 559  *
 560  * If additional mblk_t's come in for this entry, we end up appending them to
 561  * the tail of the chain, if and only if, we don't exceed the threshold for the
 562  * amount of space they can take up. An entry remains pending until we get a
 563  * varpd reply. If varpd replies with a valid results, we move to the valid
 564  * entry state, and remove the OVERLAY_ENTRY_F_PENDING flag and set it with one
 565  * of OVERLAY_ENTRY_F_VALID or OVERLAY_ENTRY_F_DROP as appropriate.
 566  *
 567  * Once an entry is valid, it stays valid until user land tells us to invalidate
 568  * it with an ioctl or replace it, OVERLAY_TARG_CACHE_REMOE and
 569  * OVERLAY_TARG_CACHE_SET respectively.
 570  *
 571  * If the lookup fails with a call to drop the packet, then the next state is
 572  * determined by the state of the queue. If the set of outstanding entries is
 573  * empty, then we just transition back to the invalid state. If instead, the
 574  * set of outstanding entries is not empty, then we'll queue another entry and
 575  * stay in the same state, repeating this until the number of requests is
 576  * drained.
 577  *
 578  * The following images describes the flow of a given lookup and where the
 579  * overlay_target_entry_t is at any given time.
 580  *
 581  *     +-------------------+
 582  *     | Invalid Entry     |            An entry starts off as an invalid entry
 583  *     | de:ad:be:ef:00:00 |            and only exists in the target cache.
 584  *     +-------------------+
 585  *
 586  *      ~~~~
 587  *
 588  *     +---------------------+
 589  *     | Global list_t       |          A mblk_t comes in for an entry. We
 590  *     | overlay_target_list |          append it to the overlay_target_list.
 591  *     +---------------------+
 592  *                   |
 593  *                   v
 594  *             +-------------------+      +-------------------+
 595  *             | Pending Entry     |----->| Pending Entry     |--->...
 596  *             | 42:5e:1a:10:d6:2d |      | de:ad:be:ef:00:00 |
 597  *             +-------------------+      +-------------------+
 598  *
 599  *      ~~~~
 600  *
 601  *     +--------------------------+
 602  *     | /dev/overlay minor state |     User land said that it would look up an
 603  *     | overlay_target_hdl_t     |     entry for us. We remove it from the
 604  *     +--------------------------+     global list and add it to the handle's
 605  *                  |                   outstanding list.
 606  *                  |
 607  *                  v
 608  *            +-------------------+      +-------------------+
 609  *            | Pending Entry     |----->| Pending Entry     |
 610  *            | 90:b8:d0:79:02:dd |      | de:ad:be:ef:00:00 |
 611  *            +-------------------+      +-------------------+
 612  *
 613  *      ~~~~
 614  *
 615  *     +-------------------+
 616  *     | Valid Entry       |            varpd returned an answer with
 617  *     | de:ad:be:ef:00:00 |            OVERLAY_IOC_RESPOND and the target cache
 618  *     | 10.169.23.42:4789 |            entry is now populated with a
 619  *     +-------------------+            destination and marked as valid
 620  *
 621  *
 622  * The lookup mechanism is performed via a series of operations on the character
 623  * psuedo-device /dev/overlay. The only thing that uses this device is the
 624  * userland daemon varpd. /dev/overlay is a cloneable device, each open of it
 625  * granting a new minor number which maintains its own state. We maintain this
 626  * state so that way if an outstanding lookup was queued to something that
 627  * crashed or closed its handle without responding, we can know about this and
 628  * thus handle it appropriately.
 629  *
 630  * When a lookup is first created it's added to our global list of outstanding
 631  * lookups. To service requests, userland is required to perform an ioctl to ask
 632  * for a request. We will block it in the kernel a set amount of time waiting
 633  * for a request. When we give a request to a given minor instance of the
 634  * device, we remove it from the global list and append the request to the
 635  * device's list of outstanding entries, for the reasons we discussed above.
 636  * When a lookup comes in, we give user land a smaller amount of information
 637  * specific to that packet, the overlay_targ_lookup_t. It includes a request id
 638  * to identify this, and then the overlay id, the varpd id, the header and
 639  * packet size, the source and destination mac address, the SAP, and any
 640  * potential VLAN header.
 641  *
 642  * At that point, it stays in that outstanding list until one of two ioctls are
 643  * returned: OVERLAY_TARG_RESPOND or OVERLAY_TARG_DROP. During this time,
 644  * userland may also perform other operations. For example, it may use
 645  * OVERLAY_TARG_PKT to get a copy of this packet so it can perform more in-depth
 646  * analysis of what to do beyond what we gave it initially. This is useful for
 647  * providing proxy arp and the like. Finally, there are two other ioctls that
 648  * varpd can then do. The first is OVERLAY_TARG_INJECT which injects the
 649  * non-jumbo frame packet up into that mac device and OVERLAY_TARG_RESEND which
 650  * causes us to encapsulate and send out the packet they've given us.
 651  *
 652  *
 653  * Finally, through the target cache, several ioctls are provided to allow for
 654  * interrogation and management of the cache. They allow for individual entries
 655  * to be retrieved, set, or have the entire table flushed. For the full set of
 656  * ioctls here and what they do, take a look at uts/common/sys/overlay_target.h.
 657  *
 658  * ------------------
 659  * Sample Packet Flow
 660  * ------------------
 661  *
 662  * There's a lot of pieces here, hopefully an example of how this all fits
 663  * together will help clarify and elucidate what's going on. We're going to
 664  * first track an outgoing packet, eg. one that is sent from an IP interface on
 665  * a VNIC on top of an overlay device, and then we'll look at what it means to
 666  * respond to that.
 667  *
 668  *
 669  *    +----------------+        +--------------+            +------------------+
 670  *    | IP/DLS send    |------->| MAC sends it |----------->| mblk_t reaches   |
 671  *    | packet to MAC  |        | to the GLDv3 |            | overlay GLDv3 tx |
 672  *    +----------------+        | VNIC device  |            | overlay_m_tx()   |
 673  *                              +--------------+            +------------------+
 674  *                                                                   |
 675  *                             . lookup              . cache         |
 676  *                             . drop                . miss          v
 677  *            +---------+      .       +--------+    .      +------------------+
 678  *            | freemsg |<-----*-------| varpd  |<---*------| Lookup each mblk |
 679  *            | mblk_t  |              | lookup |           | in the target    |
 680  *            +---------+              | queued |           | cache            |
 681  *                ^                    +--------+           +------------------+
 682  *      on send   |                        |                         |     cache
 683  *      error . . *                        *. . lookup               * . . hit
 684  *                |                        |    success              v
 685  *                |                        |                +------------------+
 686  *    +-----------------+                  +--------------->| call plugin      |
 687  *    | Send out        |                                   | ovpo_encap() to  |
 688  *    | overlay_mux_t's |<----------------------------------| get encap mblk_t |
 689  *    | ksocket         |                                   +------------------+
 690  *    +-----------------+
 691  *
 692  * The receive end point looks a little different and looks more like:
 693  *
 694  *  +------------------+     +----------------+    +-----------+
 695  *  | mblk_t comes off |---->| enter netstack |--->| delivered |---+
 696  *  | the physical     |     | IP stack       |    |     to    |   * . . direct
 697  *  | device           |     +----------------+    |  ksocket  |   |   callback
 698  *  +------------------+                           +-----------+   |
 699  *                       . overlay id                              |
 700  *                       . not found                               v
 701  *       +-----------+   .      +-----------------+       +--------------------+
 702  *       | freemsg   |<--*------| call plugin     |<------| overlay_mux_recv() |
 703  *       | mblk_t    |          | ovpo_decap() to |       +--------------------+
 704  *       +-----------+          | decap mblk_t    |
 705  *                              +-----------------+
 706  *                                     |
 707  *                                     * . . overlay id
 708  *                                     v     found
 709  *                                 +--------+      +----------------+
 710  *                                 | adjust |----->| call mac_rx    |
 711  *                                 | mblk_t |      | on original    |
 712  *                                 +--------+      | decaped packet |
 713  *                                                 +----------------+
 714  *
 715  * ------------------
 716  * Netstack Awareness
 717  * ------------------
 718  *
 719  * In the above image we note that this enters a netstack. Today the only
 720  * netstack that can be is the global zone as the overlay driver itself is not
 721  * exactly netstack aware. What this really means is that varpd cannot run in a
 722  * non-global zone and an overlay device cannot belong to a non-global zone.
 723  * Non-global zones can still have a VNIC assigned to them that's been created
 724  * over the overlay device the same way they would if it had been created over
 725  * an etherstub or a physical device.
 726  *
 727  * The majority of the work to make it netstack aware is straightforward and the
 728  * biggest thing is to create a netstack module that allows us to hook into
 729  * netstack (and thus zone) creation and destruction.  From there, we need to
 730  * amend the target cache lookup routines that we discussed earlier to not have
 731  * a global outstanding list and a global list of handles, but rather, one per
 732  * netstack.
 733  *
 734  * For the mux, we'll need to open the ksocket in the context of the zone, we
 735  * can likely do this with a properly composed credential, but we'll need to do
 736  * some more work on that path. Finally, we'll want to make sure the dld ioctls
 737  * are aware of the zoneid of the caller and we use that appropriately and store
 738  * it in the overlay_dev_t.
 739  *
 740  * -----------
 741  * GLDv3 Notes
 742  * -----------
 743  *
 744  * The overlay driver implements a GLDv3 device. Parts of GLDv3 are more
 745  * relevant and other parts are much less relevant for us. For example, the
 746  * GLDv3 is used to toggle the device being put into and out of promiscuous
 747  * mode, to program MAC addresses for unicast and multicast hardware filters.
 748  * Today, an overlay device doesn't have a notion of promiscuous mode nor does
 749  * it have a notion of unicast and multicast addresses programmed into the
 750  * device. Instead, for the purposes of the hardware filter, we don't do
 751  * anything and just always accept new addresses being added and removed.
 752  *
 753  * If the GLDv3 start function has not been called, then we will not use this
 754  * device for I/O purposes. Any calls to transmit or receive should be dropped,
 755  * though the GLDv3 guarantees us that transmit will not be called without
 756  * calling start. Similarly, once stop is called, then no packets can be dealt
 757  * with.
 758  *
 759  * Today we don't support the stat interfaces, though there's no good reason
 760  * that we shouldn't assemble some of the stats based on what we have in the
 761  * future.
 762  *
 763  * When it comes to link properties, many of the traditional link properties do
 764  * not apply and many others MAC handles for us. For example, we don't need to
 765  * implement anything for overlay_m_getprop() to deal with returning the MTU, as
 766  * MAC never calls into us for that. As such, there isn't much of anything to
 767  * support in terms of properties.
 768  *
 769  * Today, we don't support any notion of hardware capabilities. However, if
 770  * future NIC hardware or other changes to the system cause it to make sense for
 771  * us to emulate logical groups, then we should do that. However, we still do
 772  * implement a capab function so that we can identify ourselves as an overlay
 773  * device to the broader MAC framework. This is done mostly so that a device
 774  * created on top of us can have fanout rings as we don't try to lie about a
 775  * speed for our device.
 776  *
 777  * The other question is what should be done for a device's MTU and margin. We
 778  * set our minimum supported MTU to be the minimum value that an IP network may
 779  * be set to 576 -- which mimics what an etherstub does. On the flip side, we
 780  * have our upper bound set to 8900. This value comes from the fact that a lot
 781  * of jumbo networks use their maximum as 9000. As such, we want to reserve 100
 782  * bytes, which isn't exactly the most accurate number, but it'll be good enough
 783  * for now. Because of that, our default MTU off of these devices is 1400, as
 784  * the default MTU for everything is usually 1500 or whatever the underlying
 785  * device is at; however, this is a bit simpler than asking the netstack what
 786  * are all the IP interfaces at. It also calls into question how PMTU and PMTU
 787  * discovery should work here. The challenge, especially for
 788  * OVERLAY_TARG_DYNAMIC is that the MTU to any of the places will vary and it's
 789  * not clear that if you have a single bad entry that the overall MTU should be
 790  * lowered. Instead, we should figure out a better way of determining these
 791  * kinds of PMTU errors and appropriately alerting the administrator via FMA.
 792  *
 793  * Regarding margin, we allow a margin of up to VLAN_TAGSZ depending on whether
 794  * or not the underlying encapsulation device supports VLAN tags. If it does,
 795  * then we'll set the margin to allow for it, otherwise, we will not.
 796  */
 797 
 798 #include <sys/conf.h>
 799 #include <sys/errno.h>
 800 #include <sys/stat.h>
 801 #include <sys/ddi.h>
 802 #include <sys/sunddi.h>
 803 #include <sys/modctl.h>
 804 #include <sys/policy.h>
 805 #include <sys/stream.h>
 806 #include <sys/strsubr.h>
 807 #include <sys/strsun.h>
 808 #include <sys/types.h>
 809 #include <sys/kmem.h>
 810 #include <sys/param.h>
 811 #include <sys/sysmacros.h>
 812 #include <sys/ddifm.h>
 813 
 814 #include <sys/dls.h>
 815 #include <sys/dld_ioc.h>
 816 #include <sys/mac_provider.h>
 817 #include <sys/mac_client_priv.h>
 818 #include <sys/mac_ether.h>
 819 #include <sys/vlan.h>
 820 
 821 #include <sys/overlay_impl.h>
 822 
 823 dev_info_t *overlay_dip;
 824 static kmutex_t overlay_dev_lock;
 825 static list_t overlay_dev_list;
 826 static uint8_t overlay_macaddr[ETHERADDRL] =
 827         { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 828 
 829 typedef enum overlay_dev_prop {
 830         OVERLAY_DEV_P_MTU = 0,
 831         OVERLAY_DEV_P_VNETID,
 832         OVERLAY_DEV_P_ENCAP,
 833         OVERLAY_DEV_P_VARPDID
 834 } overlay_dev_prop_t;
 835 
 836 #define OVERLAY_DEV_NPROPS      4
 837 static const char *overlay_dev_props[] = {
 838         "mtu",
 839         "vnetid",
 840         "encap",
 841         "varpd/id"
 842 };
 843 
 844 #define OVERLAY_MTU_MIN 576
 845 #define OVERLAY_MTU_DEF 1400
 846 #define OVERLAY_MTU_MAX 8900
 847 
 848 overlay_dev_t *
 849 overlay_hold_by_dlid(datalink_id_t id)
 850 {
 851         overlay_dev_t *o;
 852 
 853         mutex_enter(&overlay_dev_lock);
 854         for (o = list_head(&overlay_dev_list); o != NULL;
 855             o = list_next(&overlay_dev_list, o)) {
 856                 if (id == o->odd_linkid) {
 857                         mutex_enter(&o->odd_lock);
 858                         o->odd_ref++;
 859                         mutex_exit(&o->odd_lock);
 860                         mutex_exit(&overlay_dev_lock);
 861                         return (o);
 862                 }
 863         }
 864 
 865         mutex_exit(&overlay_dev_lock);
 866         return (NULL);
 867 }
 868 
 869 void
 870 overlay_hold_rele(overlay_dev_t *odd)
 871 {
 872         mutex_enter(&odd->odd_lock);
 873         ASSERT(odd->odd_ref > 0);
 874         odd->odd_ref--;
 875         mutex_exit(&odd->odd_lock);
 876 }
 877 
 878 void
 879 overlay_io_start(overlay_dev_t *odd, overlay_dev_flag_t flag)
 880 {
 881         ASSERT(flag == OVERLAY_F_IN_RX || flag == OVERLAY_F_IN_TX);
 882         ASSERT(MUTEX_HELD(&odd->odd_lock));
 883 
 884         if (flag & OVERLAY_F_IN_RX)
 885                 odd->odd_rxcount++;
 886         if (flag & OVERLAY_F_IN_TX)
 887                 odd->odd_txcount++;
 888         odd->odd_flags |= flag;
 889 }
 890 
 891 void
 892 overlay_io_done(overlay_dev_t *odd, overlay_dev_flag_t flag)
 893 {
 894         boolean_t signal = B_FALSE;
 895 
 896         ASSERT(flag == OVERLAY_F_IN_RX || flag == OVERLAY_F_IN_TX);
 897         ASSERT(MUTEX_HELD(&odd->odd_lock));
 898 
 899         if (flag & OVERLAY_F_IN_RX) {
 900                 ASSERT(odd->odd_rxcount > 0);
 901                 odd->odd_rxcount--;
 902                 if (odd->odd_rxcount == 0) {
 903                         signal = B_TRUE;
 904                         odd->odd_flags &= ~OVERLAY_F_IN_RX;
 905                 }
 906         }
 907         if (flag & OVERLAY_F_IN_TX) {
 908                 ASSERT(odd->odd_txcount > 0);
 909                 odd->odd_txcount--;
 910                 if (odd->odd_txcount == 0) {
 911                         signal = B_TRUE;
 912                         odd->odd_flags &= ~OVERLAY_F_IN_TX;
 913                 }
 914         }
 915 
 916         if (signal == B_TRUE)
 917                 cv_broadcast(&odd->odd_iowait);
 918 }
 919 
 920 static void
 921 overlay_io_wait(overlay_dev_t *odd, overlay_dev_flag_t flag)
 922 {
 923         ASSERT((flag & ~OVERLAY_F_IOMASK) == 0);
 924         ASSERT(MUTEX_HELD(&odd->odd_lock));
 925 
 926         while (odd->odd_flags & flag) {
 927                 cv_wait(&odd->odd_iowait, &odd->odd_lock);
 928         }
 929 }
 930 
 931 void
 932 overlay_dev_iter(overlay_dev_iter_f func, void *arg)
 933 {
 934         overlay_dev_t *odd;
 935 
 936         mutex_enter(&overlay_dev_lock);
 937         for (odd = list_head(&overlay_dev_list); odd != NULL;
 938             odd = list_next(&overlay_dev_list, odd)) {
 939                 if (func(odd, arg) != 0) {
 940                         mutex_exit(&overlay_dev_lock);
 941                         return;
 942                 }
 943         }
 944         mutex_exit(&overlay_dev_lock);
 945 }
 946 
 947 /* ARGSUSED */
 948 static int
 949 overlay_m_stat(void *arg, uint_t stat, uint64_t *val)
 950 {
 951         return (ENOTSUP);
 952 }
 953 
 954 static int
 955 overlay_m_start(void *arg)
 956 {
 957         overlay_dev_t *odd = arg;
 958         overlay_mux_t *mux;
 959         int ret, domain, family, prot;
 960         struct sockaddr_storage storage;
 961         socklen_t slen;
 962 
 963         mutex_enter(&odd->odd_lock);
 964         if ((odd->odd_flags & OVERLAY_F_ACTIVATED) == 0) {
 965                 mutex_exit(&odd->odd_lock);
 966                 return (EAGAIN);
 967         }
 968         mutex_exit(&odd->odd_lock);
 969 
 970         ret = odd->odd_plugin->ovp_ops->ovpo_socket(odd->odd_pvoid, &domain,
 971             &family, &prot, (struct sockaddr *)&storage, &slen);
 972         if (ret != 0)
 973                 return (ret);
 974 
 975         mux = overlay_mux_open(odd->odd_plugin, domain, family, prot,
 976             (struct sockaddr *)&storage, slen, &ret);
 977         if (mux == NULL)
 978                 return (ret);
 979 
 980         overlay_mux_add_dev(mux, odd);
 981         odd->odd_mux = mux;
 982         mutex_enter(&odd->odd_lock);
 983         ASSERT(!(odd->odd_flags & OVERLAY_F_IN_MUX));
 984         odd->odd_flags |= OVERLAY_F_IN_MUX;
 985         mutex_exit(&odd->odd_lock);
 986 
 987         return (0);
 988 }
 989 
 990 static void
 991 overlay_m_stop(void *arg)
 992 {
 993         overlay_dev_t *odd = arg;
 994 
 995         /*
 996          * The MAC Perimeter is held here, so we don't have to worry about
 997          * synchornizing this with respect to metadata operations.
 998          */
 999         mutex_enter(&odd->odd_lock);
1000         VERIFY(odd->odd_flags & OVERLAY_F_IN_MUX);
1001         VERIFY(!(odd->odd_flags & OVERLAY_F_MDDROP));
1002         odd->odd_flags |= OVERLAY_F_MDDROP;
1003         overlay_io_wait(odd, OVERLAY_F_IOMASK);
1004         mutex_exit(&odd->odd_lock);
1005 
1006         overlay_mux_remove_dev(odd->odd_mux, odd);
1007         overlay_mux_close(odd->odd_mux);
1008         odd->odd_mux = NULL;
1009 
1010         mutex_enter(&odd->odd_lock);
1011         odd->odd_flags &= ~OVERLAY_F_IN_MUX;
1012         odd->odd_flags &= ~OVERLAY_F_MDDROP;
1013         VERIFY((odd->odd_flags & OVERLAY_F_STOPMASK) == 0);
1014         mutex_exit(&odd->odd_lock);
1015 }
1016 
1017 /*
1018  * For more info on this, see the big theory statement.
1019  */
1020 /* ARGSUSED */
1021 static int
1022 overlay_m_promisc(void *arg, boolean_t on)
1023 {
1024         return (0);
1025 }
1026 
1027 /*
1028  * For more info on this, see the big theory statement.
1029  */
1030 /* ARGSUSED */
1031 static int
1032 overlay_m_multicast(void *arg, boolean_t add, const uint8_t *addrp)
1033 {
1034         return (0);
1035 }
1036 
1037 /*
1038  * For more info on this, see the big theory statement.
1039  */
1040 /* ARGSUSED */
1041 static int
1042 overlay_m_unicast(void *arg, const uint8_t *macaddr)
1043 {
1044         return (0);
1045 }
1046 
1047 mblk_t *
1048 overlay_m_tx(void *arg, mblk_t *mp_chain)
1049 {
1050         overlay_dev_t *odd = arg;
1051         mblk_t *mp, *ep;
1052         int ret;
1053         ovep_encap_info_t einfo;
1054         struct msghdr hdr;
1055 
1056         mutex_enter(&odd->odd_lock);
1057         if ((odd->odd_flags & OVERLAY_F_MDDROP) ||
1058             !(odd->odd_flags & OVERLAY_F_IN_MUX)) {
1059                 mutex_exit(&odd->odd_lock);
1060                 freemsgchain(mp_chain);
1061                 return (NULL);
1062         }
1063         overlay_io_start(odd, OVERLAY_F_IN_TX);
1064         mutex_exit(&odd->odd_lock);
1065 
1066         bzero(&hdr, sizeof (struct msghdr));
1067 
1068         bzero(&einfo, sizeof (ovep_encap_info_t));
1069         einfo.ovdi_id = odd->odd_vid;
1070         mp = mp_chain;
1071         while (mp != NULL) {
1072                 socklen_t slen;
1073                 struct sockaddr_storage storage;
1074 
1075                 mp_chain = mp->b_next;
1076                 mp->b_next = NULL;
1077                 ep = NULL;
1078 
1079                 ret = overlay_target_lookup(odd, mp,
1080                     (struct sockaddr *)&storage, &slen);
1081                 if (ret != OVERLAY_TARGET_OK) {
1082                         if (ret == OVERLAY_TARGET_DROP)
1083                                 freemsg(mp);
1084                         mp = mp_chain;
1085                         continue;
1086                 }
1087 
1088                 hdr.msg_name = &storage;
1089                 hdr.msg_namelen = slen;
1090 
1091                 ret = odd->odd_plugin->ovp_ops->ovpo_encap(odd->odd_mh, mp,
1092                     &einfo, &ep);
1093                 if (ret != 0 || ep == NULL) {
1094                         freemsg(mp);
1095                         goto out;
1096                 }
1097 
1098                 ASSERT(ep->b_cont == mp || ep == mp);
1099                 ret = overlay_mux_tx(odd->odd_mux, &hdr, ep);
1100                 if (ret != 0)
1101                         goto out;
1102 
1103                 mp = mp_chain;
1104         }
1105 
1106 out:
1107         mutex_enter(&odd->odd_lock);
1108         overlay_io_done(odd, OVERLAY_F_IN_TX);
1109         mutex_exit(&odd->odd_lock);
1110         return (mp_chain);
1111 }
1112 
1113 /* ARGSUSED */
1114 static void
1115 overlay_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1116 {
1117         miocnak(q, mp, 0, ENOTSUP);
1118 }
1119 
1120 /* ARGSUSED */
1121 static boolean_t
1122 overlay_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1123 {
1124         /*
1125          * Tell MAC we're an overlay.
1126          */
1127         if (cap == MAC_CAPAB_OVERLAY)
1128                 return (B_TRUE);
1129         return (B_FALSE);
1130 }
1131 
1132 /* ARGSUSED */
1133 static int
1134 overlay_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1135     uint_t pr_valsize, const void *pr_val)
1136 {
1137         uint32_t mtu, old;
1138         int err;
1139         overlay_dev_t *odd = arg;
1140 
1141         if (pr_num != MAC_PROP_MTU)
1142                 return (ENOTSUP);
1143 
1144         bcopy(pr_val, &mtu, sizeof (mtu));
1145         if (mtu < OVERLAY_MTU_MIN || mtu > OVERLAY_MTU_MAX)
1146                 return (EINVAL);
1147 
1148         mutex_enter(&odd->odd_lock);
1149         old = odd->odd_mtu;
1150         odd->odd_mtu = mtu;
1151         err = mac_maxsdu_update(odd->odd_mh, mtu);
1152         if (err != 0)
1153                 odd->odd_mtu = old;
1154         mutex_exit(&odd->odd_lock);
1155 
1156         return (err);
1157 }
1158 
1159 /* ARGSUSED */
1160 static int
1161 overlay_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1162     uint_t pr_valsize, void *pr_val)
1163 {
1164         return (ENOTSUP);
1165 }
1166 
1167 /* ARGSUSED */
1168 static void
1169 overlay_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1170     mac_prop_info_handle_t prh)
1171 {
1172         if (pr_num != MAC_PROP_MTU)
1173                 return;
1174 
1175         mac_prop_info_set_default_uint32(prh, OVERLAY_MTU_DEF);
1176         mac_prop_info_set_range_uint32(prh, OVERLAY_MTU_MIN, OVERLAY_MTU_MAX);
1177 }
1178 
1179 static mac_callbacks_t overlay_m_callbacks = {
1180         .mc_callbacks = (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP |
1181             MC_PROPINFO),
1182         .mc_getstat = overlay_m_stat,
1183         .mc_start = overlay_m_start,
1184         .mc_stop = overlay_m_stop,
1185         .mc_setpromisc = overlay_m_promisc,
1186         .mc_multicst = overlay_m_multicast,
1187         .mc_unicst = overlay_m_unicast,
1188         .mc_tx = overlay_m_tx,
1189         .mc_ioctl = overlay_m_ioctl,
1190         .mc_getcapab = overlay_m_getcapab,
1191         .mc_getprop = overlay_m_getprop,
1192         .mc_setprop = overlay_m_setprop,
1193         .mc_propinfo = overlay_m_propinfo
1194 };
1195 
1196 static boolean_t
1197 overlay_valid_name(const char *name, size_t buflen)
1198 {
1199         size_t actlen;
1200         int err, i;
1201 
1202         for (i = 0; i < buflen; i++) {
1203                 if (name[i] == '\0')
1204                         break;
1205         }
1206 
1207         if (i == 0 || i == buflen)
1208                 return (B_FALSE);
1209         actlen = i;
1210         if (strchr(name, '/') != NULL)
1211                 return (B_FALSE);
1212         if (u8_validate((char *)name, actlen, NULL,
1213             U8_VALIDATE_ENTIRE, &err) < 0)
1214                 return (B_FALSE);
1215         return (B_TRUE);
1216 }
1217 
1218 /* ARGSUSED */
1219 static int
1220 overlay_i_create(void *karg, intptr_t arg, int mode, cred_t *cred, int *rvalp)
1221 {
1222         int err;
1223         uint64_t maxid;
1224         overlay_dev_t *odd, *o;
1225         mac_register_t *mac;
1226         overlay_ioc_create_t *oicp = karg;
1227 
1228         if (overlay_valid_name(oicp->oic_encap, MAXLINKNAMELEN) == B_FALSE)
1229                 return (EINVAL);
1230 
1231         odd = kmem_zalloc(sizeof (overlay_dev_t), KM_SLEEP);
1232         odd->odd_linkid = oicp->oic_linkid;
1233         odd->odd_plugin = overlay_plugin_lookup(oicp->oic_encap);
1234         if (odd->odd_plugin == NULL) {
1235                 kmem_free(odd, sizeof (overlay_dev_t));
1236                 return (ENOENT);
1237         }
1238         err = odd->odd_plugin->ovp_ops->ovpo_init((overlay_handle_t)odd,
1239             &odd->odd_pvoid);
1240         if (err != 0) {
1241                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1242                 overlay_plugin_rele(odd->odd_plugin);
1243                 kmem_free(odd, sizeof (overlay_dev_t));
1244                 return (EINVAL);
1245         }
1246 
1247         /*
1248          * Make sure that our virtual network id is valid for the given plugin
1249          * that we're working with.
1250          */
1251         ASSERT(odd->odd_plugin->ovp_id_size <= 8);
1252         maxid = UINT64_MAX;
1253         if (odd->odd_plugin->ovp_id_size != 8)
1254                 maxid = (1ULL << (odd->odd_plugin->ovp_id_size * 8)) - 1ULL;
1255         if (oicp->oic_vnetid > maxid) {
1256                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1257                 overlay_plugin_rele(odd->odd_plugin);
1258                 kmem_free(odd, sizeof (overlay_dev_t));
1259                 return (EINVAL);
1260         }
1261         odd->odd_vid = oicp->oic_vnetid;
1262 
1263         mac = mac_alloc(MAC_VERSION);
1264         if (mac == NULL) {
1265                 mutex_exit(&overlay_dev_lock);
1266                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1267                 overlay_plugin_rele(odd->odd_plugin);
1268                 kmem_free(odd, sizeof (overlay_dev_t));
1269                 return (EINVAL);
1270         }
1271 
1272         mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
1273         mac->m_driver = odd;
1274         mac->m_dip = overlay_dip;
1275         mac->m_dst_addr = NULL;
1276         mac->m_callbacks = &overlay_m_callbacks;
1277         mac->m_pdata = NULL;
1278         mac->m_pdata_size = 0;
1279 
1280         mac->m_priv_props = NULL;
1281 
1282         /* Let mac handle this itself. */
1283         mac->m_instance = (uint_t)-1;
1284 
1285         /*
1286          * There is no real source address that should be used here, but saying
1287          * that we're not ethernet is going to cause its own problems. At the
1288          * end of the say, this is fine.
1289          */
1290         mac->m_src_addr = overlay_macaddr;
1291 
1292         /*
1293          * Start with the default MTU as the max SDU. If the MTU is changed, the
1294          * SDU will be changed to reflect that.
1295          */
1296         mac->m_min_sdu = 1;
1297         mac->m_max_sdu = OVERLAY_MTU_DEF;
1298         mac->m_multicast_sdu = 0;
1299 
1300         /*
1301          * The underlying device doesn't matter, instead this comes from the
1302          * encapsulation protocol and whether or not they allow VLAN tags.
1303          */
1304         if (odd->odd_plugin->ovp_flags & OVEP_F_VLAN_TAG) {
1305                 mac->m_margin = VLAN_TAGSZ;
1306         } else {
1307                 mac->m_margin = 0;
1308         }
1309 
1310         /*
1311          * Today, we have no MAC virtualization, it may make sense in the future
1312          * to go ahead and emulate some subset of this, but it doesn't today.
1313          */
1314         mac->m_v12n = MAC_VIRT_NONE;
1315 
1316         mutex_enter(&overlay_dev_lock);
1317         for (o = list_head(&overlay_dev_list); o != NULL;
1318             o = list_next(&overlay_dev_list, o)) {
1319                 if (o->odd_linkid == oicp->oic_linkid) {
1320                         mutex_exit(&overlay_dev_lock);
1321                         odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1322                         overlay_plugin_rele(odd->odd_plugin);
1323                         kmem_free(odd, sizeof (overlay_dev_t));
1324                         return (EEXIST);
1325                 }
1326 
1327                 if (o->odd_vid == oicp->oic_vnetid &&
1328                     o->odd_plugin == odd->odd_plugin) {
1329                         mutex_exit(&overlay_dev_lock);
1330                         odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1331                         overlay_plugin_rele(odd->odd_plugin);
1332                         kmem_free(odd, sizeof (overlay_dev_t));
1333                         return (EEXIST);
1334                 }
1335         }
1336 
1337         err = mac_register(mac, &odd->odd_mh);
1338         mac_free(mac);
1339         if (err != 0) {
1340                 mutex_exit(&overlay_dev_lock);
1341                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1342                 overlay_plugin_rele(odd->odd_plugin);
1343                 kmem_free(odd, sizeof (overlay_dev_t));
1344                 return (err);
1345         }
1346 
1347         err = dls_devnet_create(odd->odd_mh, odd->odd_linkid,
1348             crgetzoneid(cred));
1349         if (err != 0) {
1350                 mutex_exit(&overlay_dev_lock);
1351                 (void) mac_unregister(odd->odd_mh);
1352                 odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1353                 overlay_plugin_rele(odd->odd_plugin);
1354                 kmem_free(odd, sizeof (overlay_dev_t));
1355                 return (err);
1356         }
1357 
1358         mutex_init(&odd->odd_lock, NULL, MUTEX_DRIVER, NULL);
1359         cv_init(&odd->odd_iowait, NULL, CV_DRIVER, NULL);
1360         odd->odd_ref = 0;
1361         odd->odd_flags = 0;
1362         list_insert_tail(&overlay_dev_list, odd);
1363         mutex_exit(&overlay_dev_lock);
1364 
1365         return (0);
1366 }
1367 
1368 /* ARGSUSED */
1369 static int
1370 overlay_i_activate(void *karg, intptr_t arg, int mode, cred_t *cred, int *rvalp)
1371 {
1372         int i, ret;
1373         overlay_dev_t *odd;
1374         mac_perim_handle_t mph;
1375         overlay_ioc_activate_t *oiap = karg;
1376         overlay_ioc_propinfo_t *infop;
1377         overlay_ioc_prop_t *oip;
1378         overlay_prop_handle_t phdl;
1379 
1380         odd = overlay_hold_by_dlid(oiap->oia_linkid);
1381         if (odd == NULL)
1382                 return (ENOENT);
1383 
1384         infop = kmem_alloc(sizeof (overlay_ioc_propinfo_t), KM_SLEEP);
1385         oip = kmem_alloc(sizeof (overlay_ioc_prop_t), KM_SLEEP);
1386         phdl = (overlay_prop_handle_t)infop;
1387 
1388         mac_perim_enter_by_mh(odd->odd_mh, &mph);
1389         mutex_enter(&odd->odd_lock);
1390         if (odd->odd_flags & OVERLAY_F_ACTIVATED) {
1391                 mutex_exit(&odd->odd_lock);
1392                 mac_perim_exit(mph);
1393                 overlay_hold_rele(odd);
1394                 kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1395                 kmem_free(oip, sizeof (overlay_ioc_prop_t));
1396                 return (EEXIST);
1397         }
1398         mutex_exit(&odd->odd_lock);
1399 
1400         for (i = 0; i < odd->odd_plugin->ovp_nprops; i++) {
1401                 const char *pname = odd->odd_plugin->ovp_props[i];
1402                 bzero(infop, sizeof (overlay_ioc_propinfo_t));
1403                 overlay_prop_init(phdl);
1404                 ret = odd->odd_plugin->ovp_ops->ovpo_propinfo(pname, phdl);
1405                 if (ret != 0) {
1406                         mac_perim_exit(mph);
1407                         overlay_hold_rele(odd);
1408                         kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1409                         kmem_free(oip, sizeof (overlay_ioc_prop_t));
1410                         return (ret);
1411                 }
1412 
1413                 if ((infop->oipi_prot & OVERLAY_PROP_PERM_REQ) == 0)
1414                         continue;
1415                 bzero(oip, sizeof (overlay_ioc_prop_t));
1416                 oip->oip_size = sizeof (oip->oip_value);
1417                 ret = odd->odd_plugin->ovp_ops->ovpo_getprop(odd->odd_pvoid,
1418                     pname, oip->oip_value, &oip->oip_size);
1419                 if (ret != 0) {
1420                         mac_perim_exit(mph);
1421                         overlay_hold_rele(odd);
1422                         kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1423                         kmem_free(oip, sizeof (overlay_ioc_prop_t));
1424                         return (ret);
1425                 }
1426                 if (oip->oip_size == 0) {
1427                         mac_perim_exit(mph);
1428                         overlay_hold_rele(odd);
1429                         kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1430                         kmem_free(oip, sizeof (overlay_ioc_prop_t));
1431                         return (EINVAL);
1432                 }
1433         }
1434 
1435         mutex_enter(&odd->odd_lock);
1436         if ((odd->odd_flags & OVERLAY_F_VARPD) == 0) {
1437                 mutex_exit(&odd->odd_lock);
1438                 mac_perim_exit(mph);
1439                 overlay_hold_rele(odd);
1440                 kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1441                 kmem_free(oip, sizeof (overlay_ioc_prop_t));
1442                 return (ENXIO);
1443         }
1444 
1445         ASSERT((odd->odd_flags & OVERLAY_F_ACTIVATED) == 0);
1446         odd->odd_flags |= OVERLAY_F_ACTIVATED;
1447 
1448         /*
1449          * Now that we've activated ourselves, we should indicate to the world
1450          * that we're up. Note that we may not be able to perform lookups at
1451          * this time, but our notion of being 'up' isn't dependent on that
1452          * ability.
1453          */
1454         mac_link_update(odd->odd_mh, LINK_STATE_UP);
1455         mutex_exit(&odd->odd_lock);
1456 
1457         mac_perim_exit(mph);
1458         overlay_hold_rele(odd);
1459         kmem_free(infop, sizeof (overlay_ioc_propinfo_t));
1460         kmem_free(oip, sizeof (overlay_ioc_prop_t));
1461 
1462         return (0);
1463 }
1464 
1465 /* ARGSUSED */
1466 static int
1467 overlay_i_delete(void *karg, intptr_t arg, int mode, cred_t *cred, int *rvalp)
1468 {
1469         overlay_ioc_delete_t *oidp = karg;
1470         overlay_dev_t *odd;
1471         datalink_id_t tid;
1472         int ret;
1473 
1474         odd = overlay_hold_by_dlid(oidp->oid_linkid);
1475         if (odd == NULL) {
1476                 return (ENOENT);
1477         }
1478 
1479         mutex_enter(&odd->odd_lock);
1480         /* If we're not the only hold, we're busy */
1481         if (odd->odd_ref != 1) {
1482                 mutex_exit(&odd->odd_lock);
1483                 overlay_hold_rele(odd);
1484                 return (EBUSY);
1485         }
1486 
1487         if (odd->odd_flags & OVERLAY_F_IN_MUX) {
1488                 mutex_exit(&odd->odd_lock);
1489                 overlay_hold_rele(odd);
1490                 return (EBUSY);
1491         }
1492 
1493         /*
1494          * To remove this, we need to first remove it from dls and then remove
1495          * it from mac. The act of removing it from mac will check if there are
1496          * devices on top of this, eg. vnics. If there are, then that will fail
1497          * and we'll have to go through and recreate the dls entry. Only after
1498          * mac_unregister has succeeded, then we'll go through and actually free
1499          * everything and drop the dev lock.
1500          */
1501         ret = dls_devnet_destroy(odd->odd_mh, &tid, B_TRUE);
1502         if (ret != 0) {
1503                 overlay_hold_rele(odd);
1504                 return (ret);
1505         }
1506 
1507         ASSERT(oidp->oid_linkid == tid);
1508         ret = mac_disable(odd->odd_mh);
1509         if (ret != 0) {
1510                 (void) dls_devnet_create(odd->odd_mh, odd->odd_linkid,
1511                     crgetzoneid(cred));
1512                 overlay_hold_rele(odd);
1513                 return (ret);
1514         }
1515 
1516         overlay_target_quiesce(odd->odd_target);
1517 
1518         mutex_enter(&overlay_dev_lock);
1519         list_remove(&overlay_dev_list, odd);
1520         mutex_exit(&overlay_dev_lock);
1521 
1522         cv_destroy(&odd->odd_iowait);
1523         mutex_destroy(&odd->odd_lock);
1524         overlay_target_free(odd);
1525         odd->odd_plugin->ovp_ops->ovpo_fini(odd->odd_pvoid);
1526         overlay_plugin_rele(odd->odd_plugin);
1527         kmem_free(odd, sizeof (overlay_dev_t));
1528 
1529         return (0);
1530 }
1531 
1532 /* ARGSUSED */
1533 static int
1534 overlay_i_nprops(void *karg, intptr_t arg, int mode, cred_t *cred,
1535     int *rvalp)
1536 {
1537         overlay_dev_t *odd;
1538         overlay_ioc_nprops_t *on = karg;
1539 
1540         odd = overlay_hold_by_dlid(on->oipn_linkid);
1541         if (odd == NULL)
1542                 return (ENOENT);
1543         on->oipn_nprops = odd->odd_plugin->ovp_nprops + OVERLAY_DEV_NPROPS;
1544         overlay_hold_rele(odd);
1545 
1546         return (0);
1547 }
1548 
1549 static int
1550 overlay_propinfo_plugin_cb(overlay_plugin_t *opp, void *arg)
1551 {
1552         overlay_prop_handle_t phdl = arg;
1553         overlay_prop_set_range_str(phdl, opp->ovp_name);
1554         return (0);
1555 }
1556 
1557 static int
1558 overlay_i_name_to_propid(overlay_dev_t *odd, const char *name, uint_t *id)
1559 {
1560         int i;
1561 
1562         for (i = 0; i < OVERLAY_DEV_NPROPS; i++) {
1563                 if (strcmp(overlay_dev_props[i], name) == 0) {
1564                         *id = i;
1565                         return (0);
1566                 }
1567         }
1568 
1569         for (i = 0; i < odd->odd_plugin->ovp_nprops; i++) {
1570                 if (strcmp(odd->odd_plugin->ovp_props[i], name) == 0) {
1571                         *id = i + OVERLAY_DEV_NPROPS;
1572                         return (0);
1573                 }
1574         }
1575 
1576         return (ENOENT);
1577 }
1578 
1579 static void
1580 overlay_i_propinfo_mtu(overlay_dev_t *odd, overlay_prop_handle_t phdl)
1581 {
1582         uint32_t def;
1583         mac_propval_range_t range;
1584         uint_t perm;
1585 
1586         ASSERT(MAC_PERIM_HELD(odd->odd_mh));
1587 
1588         bzero(&range, sizeof (mac_propval_range_t));
1589         range.mpr_count = 1;
1590         if (mac_prop_info(odd->odd_mh, MAC_PROP_MTU, "mtu", &def,
1591             sizeof (def), &range, &perm) != 0)
1592                 return;
1593 
1594         if (perm == MAC_PROP_PERM_READ)
1595                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_READ);
1596         else if (perm == MAC_PROP_PERM_WRITE)
1597                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_WRITE);
1598         else if (perm == MAC_PROP_PERM_RW)
1599                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_RW);
1600 
1601         overlay_prop_set_type(phdl, OVERLAY_PROP_T_UINT);
1602         overlay_prop_set_default(phdl, &def, sizeof (def));
1603         overlay_prop_set_range_uint32(phdl, range.mpr_range_uint32[0].mpur_min,
1604             range.mpr_range_uint32[0].mpur_max);
1605 }
1606 
1607 /* ARGSUSED */
1608 static int
1609 overlay_i_propinfo(void *karg, intptr_t arg, int mode, cred_t *cred,
1610     int *rvalp)
1611 {
1612         overlay_dev_t *odd;
1613         int ret;
1614         mac_perim_handle_t mph;
1615         uint_t propid = UINT_MAX;
1616         overlay_ioc_propinfo_t *oip = karg;
1617         overlay_prop_handle_t phdl = (overlay_prop_handle_t)oip;
1618 
1619         odd = overlay_hold_by_dlid(oip->oipi_linkid);
1620         if (odd == NULL)
1621                 return (ENOENT);
1622 
1623         overlay_prop_init(phdl);
1624         mac_perim_enter_by_mh(odd->odd_mh, &mph);
1625 
1626         /*
1627          * If the id is -1, then the property that we're looking for is named in
1628          * oipi_name and we should fill in its id. Otherwise, we've been given
1629          * an id and we need to turn that into a name for our plugin's sake. The
1630          * id is our own fabrication for property discovery.
1631          */
1632         if (oip->oipi_id == -1) {
1633                 /*
1634                  * Determine if it's a known generic property or it belongs to a
1635                  * module by checking against the list of known names.
1636                  */
1637                 oip->oipi_name[OVERLAY_PROP_NAMELEN-1] = '\0';
1638                 if ((ret = overlay_i_name_to_propid(odd, oip->oipi_name,
1639                     &propid)) != 0) {
1640                         overlay_hold_rele(odd);
1641                         mac_perim_exit(mph);
1642                         return (ret);
1643                 }
1644                 oip->oipi_id = propid;
1645                 if (propid >= OVERLAY_DEV_NPROPS) {
1646                         ret = odd->odd_plugin->ovp_ops->ovpo_propinfo(
1647                             oip->oipi_name, phdl);
1648                         overlay_hold_rele(odd);
1649                         mac_perim_exit(mph);
1650                         return (ret);
1651 
1652                 }
1653         } else if (oip->oipi_id >= OVERLAY_DEV_NPROPS) {
1654                 uint_t id = oip->oipi_id - OVERLAY_DEV_NPROPS;
1655 
1656                 if (id >= odd->odd_plugin->ovp_nprops) {
1657                         overlay_hold_rele(odd);
1658                         mac_perim_exit(mph);
1659                         return (EINVAL);
1660                 }
1661                 ret = odd->odd_plugin->ovp_ops->ovpo_propinfo(
1662                     odd->odd_plugin->ovp_props[id], phdl);
1663                 overlay_hold_rele(odd);
1664                 mac_perim_exit(mph);
1665                 return (ret);
1666         } else if (oip->oipi_id < -1) {
1667                 overlay_hold_rele(odd);
1668                 mac_perim_exit(mph);
1669                 return (EINVAL);
1670         } else {
1671                 ASSERT(oip->oipi_id < OVERLAY_DEV_NPROPS);
1672                 ASSERT(oip->oipi_id >= 0);
1673                 propid = oip->oipi_id;
1674                 (void) strlcpy(oip->oipi_name, overlay_dev_props[propid],
1675                     sizeof (oip->oipi_name));
1676         }
1677 
1678         switch (propid) {
1679         case OVERLAY_DEV_P_MTU:
1680                 overlay_i_propinfo_mtu(odd, phdl);
1681                 break;
1682         case OVERLAY_DEV_P_VNETID:
1683                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_RW);
1684                 overlay_prop_set_type(phdl, OVERLAY_PROP_T_UINT);
1685                 overlay_prop_set_nodefault(phdl);
1686                 break;
1687         case OVERLAY_DEV_P_ENCAP:
1688                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_READ);
1689                 overlay_prop_set_type(phdl, OVERLAY_PROP_T_STRING);
1690                 overlay_prop_set_nodefault(phdl);
1691                 overlay_plugin_walk(overlay_propinfo_plugin_cb, phdl);
1692                 break;
1693         case OVERLAY_DEV_P_VARPDID:
1694                 overlay_prop_set_prot(phdl, OVERLAY_PROP_PERM_READ);
1695                 overlay_prop_set_type(phdl, OVERLAY_PROP_T_UINT);
1696                 overlay_prop_set_nodefault(phdl);
1697                 break;
1698         default:
1699                 overlay_hold_rele(odd);
1700                 mac_perim_exit(mph);
1701                 return (ENOENT);
1702         }
1703 
1704         overlay_hold_rele(odd);
1705         mac_perim_exit(mph);
1706         return (0);
1707 }
1708 
1709 /* ARGSUSED */
1710 static int
1711 overlay_i_getprop(void *karg, intptr_t arg, int mode, cred_t *cred,
1712     int *rvalp)
1713 {
1714         int ret;
1715         overlay_dev_t *odd;
1716         mac_perim_handle_t mph;
1717         overlay_ioc_prop_t *oip = karg;
1718         uint_t propid, mtu;
1719 
1720         odd = overlay_hold_by_dlid(oip->oip_linkid);
1721         if (odd == NULL)
1722                 return (ENOENT);
1723 
1724         mac_perim_enter_by_mh(odd->odd_mh, &mph);
1725         oip->oip_size = OVERLAY_PROP_SIZEMAX;
1726         oip->oip_name[OVERLAY_PROP_NAMELEN-1] = '\0';
1727         if (oip->oip_id == -1) {
1728                 int i;
1729 
1730                 for (i = 0; i < OVERLAY_DEV_NPROPS; i++) {
1731                         if (strcmp(overlay_dev_props[i], oip->oip_name) == 0)
1732                                 break;
1733                         if (i == OVERLAY_DEV_NPROPS) {
1734                                 ret = odd->odd_plugin->ovp_ops->ovpo_getprop(
1735                                     odd->odd_pvoid, oip->oip_name,
1736                                     oip->oip_value, &oip->oip_size);
1737                                 overlay_hold_rele(odd);
1738                                 mac_perim_exit(mph);
1739                                 return (ret);
1740                         }
1741                 }
1742 
1743                 propid = i;
1744         } else if (oip->oip_id >= OVERLAY_DEV_NPROPS) {
1745                 uint_t id = oip->oip_id - OVERLAY_DEV_NPROPS;
1746 
1747                 if (id > odd->odd_plugin->ovp_nprops) {
1748                         overlay_hold_rele(odd);
1749                         mac_perim_exit(mph);
1750                         return (EINVAL);
1751                 }
1752                 ret = odd->odd_plugin->ovp_ops->ovpo_getprop(odd->odd_pvoid,
1753                     odd->odd_plugin->ovp_props[id], oip->oip_value,
1754                     &oip->oip_size);
1755                 overlay_hold_rele(odd);
1756                 mac_perim_exit(mph);
1757                 return (ret);
1758         } else if (oip->oip_id < -1) {
1759                 overlay_hold_rele(odd);
1760                 mac_perim_exit(mph);
1761                 return (EINVAL);
1762         } else {
1763                 ASSERT(oip->oip_id < OVERLAY_DEV_NPROPS);
1764                 ASSERT(oip->oip_id >= 0);
1765                 propid = oip->oip_id;
1766         }
1767 
1768         ret = 0;
1769         switch (propid) {
1770         case OVERLAY_DEV_P_MTU:
1771                 /*
1772                  * The MTU is always set and retrieved through MAC, to allow for
1773                  * MAC to do whatever it wants, as really that property belongs
1774                  * to MAC. This is important for things where vnics have hold on
1775                  * the MTU.
1776                  */
1777                 mac_sdu_get(odd->odd_mh, NULL, &mtu);
1778                 bcopy(&mtu, oip->oip_value, sizeof (uint_t));
1779                 oip->oip_size = sizeof (uint_t);
1780                 break;
1781         case OVERLAY_DEV_P_VNETID:
1782                 /*
1783                  * While it's read-only while inside of a mux, we're not in a
1784                  * context that can guarantee that. Therefore we always grab the
1785                  * overlay_dev_t's odd_lock.
1786                  */
1787                 mutex_enter(&odd->odd_lock);
1788                 bcopy(&odd->odd_vid, oip->oip_value, sizeof (uint64_t));
1789                 mutex_exit(&odd->odd_lock);
1790                 oip->oip_size = sizeof (uint64_t);
1791                 break;
1792         case OVERLAY_DEV_P_ENCAP:
1793                 oip->oip_size = strlcpy((char *)oip->oip_value,
1794                     odd->odd_plugin->ovp_name, oip->oip_size);
1795                 break;
1796         case OVERLAY_DEV_P_VARPDID:
1797                 mutex_enter(&odd->odd_lock);
1798                 if (odd->odd_flags & OVERLAY_F_VARPD) {
1799                         const uint64_t val = odd->odd_target->ott_id;
1800                         bcopy(&val, oip->oip_value, sizeof (uint64_t));
1801                         oip->oip_size = sizeof (uint64_t);
1802                 } else {
1803                         oip->oip_size = 0;
1804                 }
1805                 mutex_exit(&odd->odd_lock);
1806                 break;
1807         default:
1808                 ret = ENOENT;
1809         }
1810 
1811         overlay_hold_rele(odd);
1812         mac_perim_exit(mph);
1813         return (ret);
1814 }
1815 
1816 static void
1817 overlay_setprop_vnetid(overlay_dev_t *odd, uint64_t vnetid)
1818 {
1819         mutex_enter(&odd->odd_lock);
1820 
1821         /* Simple case, not active */
1822         if (!(odd->odd_flags & OVERLAY_F_IN_MUX)) {
1823                 odd->odd_vid = vnetid;
1824                 mutex_exit(&odd->odd_lock);
1825                 return;
1826         }
1827 
1828         /*
1829          * In the hard case, we need to set the drop flag, quiesce I/O and then
1830          * we can go ahead and do everything.
1831          */
1832         odd->odd_flags |= OVERLAY_F_MDDROP;
1833         overlay_io_wait(odd, OVERLAY_F_IOMASK);
1834         mutex_exit(&odd->odd_lock);
1835 
1836         overlay_mux_remove_dev(odd->odd_mux, odd);
1837         mutex_enter(&odd->odd_lock);
1838         odd->odd_vid = vnetid;
1839         mutex_exit(&odd->odd_lock);
1840         overlay_mux_add_dev(odd->odd_mux, odd);
1841 
1842         mutex_enter(&odd->odd_lock);
1843         ASSERT(odd->odd_flags & OVERLAY_F_IN_MUX);
1844         odd->odd_flags &= ~OVERLAY_F_IN_MUX;
1845         mutex_exit(&odd->odd_lock);
1846 }
1847 
1848 /* ARGSUSED */
1849 static int
1850 overlay_i_setprop(void *karg, intptr_t arg, int mode, cred_t *cred,
1851     int *rvalp)
1852 {
1853         int ret;
1854         overlay_dev_t *odd;
1855         overlay_ioc_prop_t *oip = karg;
1856         uint_t propid = UINT_MAX;
1857         mac_perim_handle_t mph;
1858         uint64_t maxid, *vidp;
1859 
1860         if (oip->oip_size > OVERLAY_PROP_SIZEMAX)
1861                 return (EINVAL);
1862 
1863         odd = overlay_hold_by_dlid(oip->oip_linkid);
1864         if (odd == NULL)
1865                 return (ENOENT);
1866 
1867         oip->oip_name[OVERLAY_PROP_NAMELEN-1] = '\0';
1868         mac_perim_enter_by_mh(odd->odd_mh, &mph);
1869         mutex_enter(&odd->odd_lock);
1870         if (odd->odd_flags & OVERLAY_F_ACTIVATED) {
1871                 mac_perim_exit(mph);
1872                 mutex_exit(&odd->odd_lock);
1873                 return (ENOTSUP);
1874         }
1875         mutex_exit(&odd->odd_lock);
1876         if (oip->oip_id == -1) {
1877                 int i;
1878 
1879                 for (i = 0; i < OVERLAY_DEV_NPROPS; i++) {
1880                         if (strcmp(overlay_dev_props[i], oip->oip_name) == 0)
1881                                 break;
1882                         if (i == OVERLAY_DEV_NPROPS) {
1883                                 ret = odd->odd_plugin->ovp_ops->ovpo_setprop(
1884                                     odd->odd_pvoid, oip->oip_name,
1885                                     oip->oip_value, oip->oip_size);
1886                                 overlay_hold_rele(odd);
1887                                 mac_perim_exit(mph);
1888                                 return (ret);
1889                         }
1890                 }
1891 
1892                 propid = i;
1893         } else if (oip->oip_id >= OVERLAY_DEV_NPROPS) {
1894                 uint_t id = oip->oip_id - OVERLAY_DEV_NPROPS;
1895 
1896                 if (id > odd->odd_plugin->ovp_nprops) {
1897                         mac_perim_exit(mph);
1898                         overlay_hold_rele(odd);
1899                         return (EINVAL);
1900                 }
1901                 ret = odd->odd_plugin->ovp_ops->ovpo_setprop(odd->odd_pvoid,
1902                     odd->odd_plugin->ovp_props[id], oip->oip_value,
1903                     oip->oip_size);
1904                 mac_perim_exit(mph);
1905                 overlay_hold_rele(odd);
1906                 return (ret);
1907         } else if (oip->oip_id < -1) {
1908                 mac_perim_exit(mph);
1909                 overlay_hold_rele(odd);
1910                 return (EINVAL);
1911         } else {
1912                 ASSERT(oip->oip_id < OVERLAY_DEV_NPROPS);
1913                 ASSERT(oip->oip_id >= 0);
1914                 propid = oip->oip_id;
1915         }
1916 
1917         ret = 0;
1918         switch (propid) {
1919         case OVERLAY_DEV_P_MTU:
1920                 ret = mac_set_prop(odd->odd_mh, MAC_PROP_MTU, "mtu",
1921                     oip->oip_value, oip->oip_size);
1922                 break;
1923         case OVERLAY_DEV_P_VNETID:
1924                 if (oip->oip_size != sizeof (uint64_t)) {
1925                         ret = EINVAL;
1926                         break;
1927                 }
1928                 vidp = (uint64_t *)oip->oip_value;
1929                 ASSERT(odd->odd_plugin->ovp_id_size <= 8);
1930                 maxid = UINT64_MAX;
1931                 if (odd->odd_plugin->ovp_id_size != 8)
1932                         maxid = (1ULL << (odd->odd_plugin->ovp_id_size * 8)) -
1933                             1ULL;
1934                 if (*vidp >= maxid) {
1935                         ret = EINVAL;
1936                         break;
1937                 }
1938                 overlay_setprop_vnetid(odd, *vidp);
1939                 break;
1940         case OVERLAY_DEV_P_ENCAP:
1941         case OVERLAY_DEV_P_VARPDID:
1942                 ret = EPERM;
1943                 break;
1944         default:
1945                 ret = ENOENT;
1946         }
1947 
1948         mac_perim_exit(mph);
1949         overlay_hold_rele(odd);
1950         return (ret);
1951 }
1952 
1953 /* ARGSUSED */
1954 static int
1955 overlay_i_status(void *karg, intptr_t arg, int mode, cred_t *cred,
1956     int *rvalp)
1957 {
1958         overlay_dev_t *odd;
1959         overlay_ioc_status_t *os = karg;
1960 
1961         odd = overlay_hold_by_dlid(os->ois_linkid);
1962         if (odd == NULL)
1963                 return (ENOENT);
1964 
1965         mutex_enter(&odd->odd_lock);
1966         if ((odd->odd_flags & OVERLAY_F_DEGRADED) != 0) {
1967                 os->ois_status = OVERLAY_I_DEGRADED;
1968                 if (odd->odd_fmamsg != NULL) {
1969                         (void) strlcpy(os->ois_message, odd->odd_fmamsg,
1970                             OVERLAY_STATUS_BUFLEN);
1971                 } else {
1972                         os->ois_message[0] = '\0';
1973                 }
1974 
1975         } else {
1976                 os->ois_status = OVERLAY_I_OK;
1977                 os->ois_message[0] = '\0';
1978         }
1979         mutex_exit(&odd->odd_lock);
1980         overlay_hold_rele(odd);
1981 
1982         return (0);
1983 }
1984 
1985 static dld_ioc_info_t overlay_ioc_list[] = {
1986         { OVERLAY_IOC_CREATE, DLDCOPYIN, sizeof (overlay_ioc_create_t),
1987                 overlay_i_create, secpolicy_dl_config },
1988         { OVERLAY_IOC_ACTIVATE, DLDCOPYIN, sizeof (overlay_ioc_activate_t),
1989                 overlay_i_activate, secpolicy_dl_config },
1990         { OVERLAY_IOC_DELETE, DLDCOPYIN, sizeof (overlay_ioc_delete_t),
1991                 overlay_i_delete, secpolicy_dl_config },
1992         { OVERLAY_IOC_PROPINFO, DLDCOPYIN | DLDCOPYOUT,
1993                 sizeof (overlay_ioc_propinfo_t), overlay_i_propinfo,
1994                 secpolicy_dl_config },
1995         { OVERLAY_IOC_GETPROP, DLDCOPYIN | DLDCOPYOUT,
1996                 sizeof (overlay_ioc_prop_t), overlay_i_getprop,
1997                 secpolicy_dl_config },
1998         { OVERLAY_IOC_SETPROP, DLDCOPYIN,
1999                 sizeof (overlay_ioc_prop_t), overlay_i_setprop,
2000                 secpolicy_dl_config },
2001         { OVERLAY_IOC_NPROPS, DLDCOPYIN | DLDCOPYOUT,
2002                 sizeof (overlay_ioc_nprops_t), overlay_i_nprops,
2003                 secpolicy_dl_config },
2004         { OVERLAY_IOC_STATUS, DLDCOPYIN | DLDCOPYOUT,
2005                 sizeof (overlay_ioc_status_t), overlay_i_status,
2006                 NULL }
2007 };
2008 
2009 static int
2010 overlay_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2011 {
2012         int fmcap = DDI_FM_EREPORT_CAPABLE;
2013         if (cmd != DDI_ATTACH)
2014                 return (DDI_FAILURE);
2015 
2016         if (overlay_dip != NULL || ddi_get_instance(dip) != 0)
2017                 return (DDI_FAILURE);
2018 
2019         ddi_fm_init(dip, &fmcap, NULL);
2020 
2021         if (ddi_create_minor_node(dip, OVERLAY_CTL, S_IFCHR,
2022             ddi_get_instance(dip), DDI_PSEUDO, 0) == DDI_FAILURE)
2023                 return (DDI_FAILURE);
2024 
2025         if (dld_ioc_register(OVERLAY_IOC, overlay_ioc_list,
2026             DLDIOCCNT(overlay_ioc_list)) != 0) {
2027                 ddi_remove_minor_node(dip, OVERLAY_CTL);
2028                 return (DDI_FAILURE);
2029         }
2030 
2031         overlay_dip = dip;
2032         return (DDI_SUCCESS);
2033 }
2034 
2035 /* ARGSUSED */
2036 static int
2037 overlay_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resp)
2038 {
2039         int error;
2040 
2041         switch (cmd) {
2042         case DDI_INFO_DEVT2DEVINFO:
2043                 *resp = (void *)overlay_dip;
2044                 error = DDI_SUCCESS;
2045                 break;
2046         case DDI_INFO_DEVT2INSTANCE:
2047                 *resp = (void *)0;
2048                 error = DDI_SUCCESS;
2049                 break;
2050         default:
2051                 error = DDI_FAILURE;
2052                 break;
2053         }
2054 
2055         return (error);
2056 }
2057 
2058 static int
2059 overlay_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2060 {
2061         if (cmd != DDI_DETACH)
2062                 return (DDI_FAILURE);
2063 
2064         mutex_enter(&overlay_dev_lock);
2065         if (!list_is_empty(&overlay_dev_list) || overlay_target_busy()) {
2066                 mutex_exit(&overlay_dev_lock);
2067                 return (EBUSY);
2068         }
2069         mutex_exit(&overlay_dev_lock);
2070 
2071 
2072         dld_ioc_unregister(OVERLAY_IOC);
2073         ddi_remove_minor_node(dip, OVERLAY_CTL);
2074         ddi_fm_fini(dip);
2075         overlay_dip = NULL;
2076         return (DDI_SUCCESS);
2077 }
2078 
2079 static struct cb_ops overlay_cbops = {
2080         overlay_target_open,    /* cb_open */
2081         overlay_target_close,   /* cb_close */
2082         nodev,                  /* cb_strategy */
2083         nodev,                  /* cb_print */
2084         nodev,                  /* cb_dump */
2085         nodev,                  /* cb_read */
2086         nodev,                  /* cb_write */
2087         overlay_target_ioctl,   /* cb_ioctl */
2088         nodev,                  /* cb_devmap */
2089         nodev,                  /* cb_mmap */
2090         nodev,                  /* cb_segmap */
2091         nochpoll,               /* cb_chpoll */
2092         ddi_prop_op,            /* cb_prop_op */
2093         NULL,                   /* cb_stream */
2094         D_MP,                   /* cb_flag */
2095         CB_REV,                 /* cb_rev */
2096         nodev,                  /* cb_aread */
2097         nodev,                  /* cb_awrite */
2098 };
2099 
2100 static struct dev_ops overlay_dev_ops = {
2101         DEVO_REV,               /* devo_rev */
2102         0,                      /* devo_refcnt */
2103         overlay_getinfo,        /* devo_getinfo */
2104         nulldev,                /* devo_identify */
2105         nulldev,                /* devo_probe */
2106         overlay_attach,         /* devo_attach */
2107         overlay_detach,         /* devo_detach */
2108         nulldev,                /* devo_reset */
2109         &overlay_cbops,             /* devo_cb_ops */
2110         NULL,                   /* devo_bus_ops */
2111         NULL,                   /* devo_power */
2112         ddi_quiesce_not_supported       /* devo_quiesce */
2113 };
2114 
2115 static struct modldrv overlay_modldrv = {
2116         &mod_driverops,
2117         "Overlay Network Driver",
2118         &overlay_dev_ops
2119 };
2120 
2121 static struct modlinkage overlay_linkage = {
2122         MODREV_1,
2123         &overlay_modldrv
2124 };
2125 
2126 static int
2127 overlay_init(void)
2128 {
2129         mutex_init(&overlay_dev_lock, NULL, MUTEX_DRIVER, NULL);
2130         list_create(&overlay_dev_list, sizeof (overlay_dev_t),
2131             offsetof(overlay_dev_t, odd_link));
2132         overlay_mux_init();
2133         overlay_plugin_init();
2134         overlay_target_init();
2135 
2136         return (DDI_SUCCESS);
2137 }
2138 
2139 static void
2140 overlay_fini(void)
2141 {
2142         overlay_target_fini();
2143         overlay_plugin_fini();
2144         overlay_mux_fini();
2145         mutex_destroy(&overlay_dev_lock);
2146         list_destroy(&overlay_dev_list);
2147 }
2148 
2149 int
2150 _init(void)
2151 {
2152         int err;
2153 
2154         if ((err = overlay_init()) != DDI_SUCCESS)
2155                 return (err);
2156 
2157         mac_init_ops(NULL, "overlay");
2158         err = mod_install(&overlay_linkage);
2159         if (err != DDI_SUCCESS) {
2160                 overlay_fini();
2161                 return (err);
2162         }
2163 
2164         return (0);
2165 }
2166 
2167 int
2168 _info(struct modinfo *modinfop)
2169 {
2170         return (mod_info(&overlay_linkage, modinfop));
2171 }
2172 
2173 int
2174 _fini(void)
2175 {
2176         int err;
2177 
2178         err = mod_remove(&overlay_linkage);
2179         if (err != 0)
2180                 return (err);
2181 
2182         overlay_fini();
2183         return (0);
2184 }