Print this page
    
OS-7184 prototype
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/inet/ip/ip.c
          +++ new/usr/src/uts/common/inet/ip/ip.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  24   24   * Copyright (c) 1990 Mentat Inc.
  25   25   * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
  26   26   * Copyright (c) 2016 by Delphix. All rights reserved.
  27   27   * Copyright (c) 2019 Joyent, Inc. All rights reserved.
  28   28   */
  29   29  
  30   30  #include <sys/types.h>
  31   31  #include <sys/stream.h>
  32   32  #include <sys/dlpi.h>
  33   33  #include <sys/stropts.h>
  34   34  #include <sys/sysmacros.h>
  35   35  #include <sys/strsubr.h>
  36   36  #include <sys/strlog.h>
  37   37  #include <sys/strsun.h>
  38   38  #include <sys/zone.h>
  39   39  #define _SUN_TPI_VERSION 2
  40   40  #include <sys/tihdr.h>
  41   41  #include <sys/xti_inet.h>
  42   42  #include <sys/ddi.h>
  43   43  #include <sys/suntpi.h>
  44   44  #include <sys/cmn_err.h>
  45   45  #include <sys/debug.h>
  46   46  #include <sys/kobj.h>
  47   47  #include <sys/modctl.h>
  48   48  #include <sys/atomic.h>
  49   49  #include <sys/policy.h>
  50   50  #include <sys/priv.h>
  51   51  #include <sys/taskq.h>
  52   52  
  53   53  #include <sys/systm.h>
  54   54  #include <sys/param.h>
  55   55  #include <sys/kmem.h>
  56   56  #include <sys/sdt.h>
  57   57  #include <sys/socket.h>
  58   58  #include <sys/vtrace.h>
  59   59  #include <sys/isa_defs.h>
  60   60  #include <sys/mac.h>
  61   61  #include <net/if.h>
  62   62  #include <net/if_arp.h>
  63   63  #include <net/route.h>
  64   64  #include <sys/sockio.h>
  65   65  #include <netinet/in.h>
  66   66  #include <net/if_dl.h>
  67   67  
  68   68  #include <inet/common.h>
  69   69  #include <inet/mi.h>
  70   70  #include <inet/mib2.h>
  71   71  #include <inet/nd.h>
  72   72  #include <inet/arp.h>
  73   73  #include <inet/snmpcom.h>
  74   74  #include <inet/optcom.h>
  75   75  #include <inet/kstatcom.h>
  76   76  
  77   77  #include <netinet/igmp_var.h>
  78   78  #include <netinet/ip6.h>
  79   79  #include <netinet/icmp6.h>
  80   80  #include <netinet/sctp.h>
  81   81  
  82   82  #include <inet/ip.h>
  83   83  #include <inet/ip_impl.h>
  84   84  #include <inet/ip6.h>
  85   85  #include <inet/ip6_asp.h>
  86   86  #include <inet/tcp.h>
  87   87  #include <inet/tcp_impl.h>
  88   88  #include <inet/ip_multi.h>
  89   89  #include <inet/ip_if.h>
  90   90  #include <inet/ip_ire.h>
  91   91  #include <inet/ip_ftable.h>
  92   92  #include <inet/ip_rts.h>
  93   93  #include <inet/ip_ndp.h>
  94   94  #include <inet/ip_listutils.h>
  95   95  #include <netinet/igmp.h>
  96   96  #include <netinet/ip_mroute.h>
  97   97  #include <inet/ipp_common.h>
  98   98  #include <inet/cc.h>
  99   99  
 100  100  #include <net/pfkeyv2.h>
 101  101  #include <inet/sadb.h>
 102  102  #include <inet/ipsec_impl.h>
 103  103  #include <inet/iptun/iptun_impl.h>
 104  104  #include <inet/ipdrop.h>
 105  105  #include <inet/ip_netinfo.h>
 106  106  #include <inet/ilb_ip.h>
 107  107  
 108  108  #include <sys/ethernet.h>
 109  109  #include <net/if_types.h>
 110  110  #include <sys/cpuvar.h>
 111  111  
 112  112  #include <ipp/ipp.h>
 113  113  #include <ipp/ipp_impl.h>
 114  114  #include <ipp/ipgpc/ipgpc.h>
 115  115  
 116  116  #include <sys/pattr.h>
 117  117  #include <inet/ipclassifier.h>
 118  118  #include <inet/sctp_ip.h>
 119  119  #include <inet/sctp/sctp_impl.h>
 120  120  #include <inet/udp_impl.h>
 121  121  #include <inet/rawip_impl.h>
 122  122  #include <inet/rts_impl.h>
 123  123  
 124  124  #include <sys/tsol/label.h>
 125  125  #include <sys/tsol/tnet.h>
 126  126  
 127  127  #include <sys/squeue_impl.h>
 128  128  #include <inet/ip_arp.h>
 129  129  
 130  130  #include <sys/clock_impl.h>     /* For LBOLT_FASTPATH{,64} */
 131  131  
 132  132  /*
 133  133   * Values for squeue switch:
 134  134   * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
 135  135   * IP_SQUEUE_ENTER: SQ_PROCESS
 136  136   * IP_SQUEUE_FILL: SQ_FILL
 137  137   */
 138  138  int ip_squeue_enter = IP_SQUEUE_ENTER;  /* Setable in /etc/system */
 139  139  
 140  140  int ip_squeue_flag;
 141  141  
 142  142  /*
 143  143   * Setable in /etc/system
 144  144   */
 145  145  int ip_poll_normal_ms = 100;
 146  146  int ip_poll_normal_ticks = 0;
 147  147  int ip_modclose_ackwait_ms = 3000;
 148  148  
 149  149  /*
 150  150   * It would be nice to have these present only in DEBUG systems, but the
 151  151   * current design of the global symbol checking logic requires them to be
 152  152   * unconditionally present.
 153  153   */
 154  154  uint_t ip_thread_data;                  /* TSD key for debug support */
 155  155  krwlock_t ip_thread_rwlock;
 156  156  list_t  ip_thread_list;
 157  157  
 158  158  /*
 159  159   * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
 160  160   */
 161  161  
 162  162  struct listptr_s {
 163  163          mblk_t  *lp_head;       /* pointer to the head of the list */
 164  164          mblk_t  *lp_tail;       /* pointer to the tail of the list */
 165  165  };
 166  166  
 167  167  typedef struct listptr_s listptr_t;
 168  168  
 169  169  /*
 170  170   * This is used by ip_snmp_get_mib2_ip_route_media and
 171  171   * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
 172  172   */
 173  173  typedef struct iproutedata_s {
 174  174          uint_t          ird_idx;
 175  175          uint_t          ird_flags;      /* see below */
 176  176          listptr_t       ird_route;      /* ipRouteEntryTable */
 177  177          listptr_t       ird_netmedia;   /* ipNetToMediaEntryTable */
 178  178          listptr_t       ird_attrs;      /* ipRouteAttributeTable */
 179  179  } iproutedata_t;
 180  180  
 181  181  /* Include ire_testhidden and IRE_IF_CLONE routes */
 182  182  #define IRD_REPORT_ALL  0x01
 183  183  
 184  184  /*
 185  185   * Cluster specific hooks. These should be NULL when booted as a non-cluster
 186  186   */
 187  187  
 188  188  /*
 189  189   * Hook functions to enable cluster networking
 190  190   * On non-clustered systems these vectors must always be NULL.
 191  191   *
 192  192   * Hook function to Check ip specified ip address is a shared ip address
 193  193   * in the cluster
 194  194   *
 195  195   */
 196  196  int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
 197  197      sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
 198  198  
 199  199  /*
 200  200   * Hook function to generate cluster wide ip fragment identifier
 201  201   */
 202  202  uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
 203  203      sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
 204  204      void *args) = NULL;
 205  205  
 206  206  /*
 207  207   * Hook function to generate cluster wide SPI.
 208  208   */
 209  209  void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
 210  210      void *) = NULL;
 211  211  
 212  212  /*
 213  213   * Hook function to verify if the SPI is already utlized.
 214  214   */
 215  215  
 216  216  int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 217  217  
 218  218  /*
 219  219   * Hook function to delete the SPI from the cluster wide repository.
 220  220   */
 221  221  
 222  222  void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 223  223  
 224  224  /*
 225  225   * Hook function to inform the cluster when packet received on an IDLE SA
 226  226   */
 227  227  
 228  228  void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
 229  229      in6_addr_t, in6_addr_t, void *) = NULL;
 230  230  
 231  231  /*
 232  232   * Synchronization notes:
 233  233   *
 234  234   * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
 235  235   * MT level protection given by STREAMS. IP uses a combination of its own
 236  236   * internal serialization mechanism and standard Solaris locking techniques.
 237  237   * The internal serialization is per phyint.  This is used to serialize
 238  238   * plumbing operations, IPMP operations, most set ioctls, etc.
 239  239   *
 240  240   * Plumbing is a long sequence of operations involving message
 241  241   * exchanges between IP, ARP and device drivers. Many set ioctls are typically
 242  242   * involved in plumbing operations. A natural model is to serialize these
 243  243   * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
 244  244   * parallel without any interference. But various set ioctls on hme0 are best
 245  245   * serialized, along with IPMP operations and processing of DLPI control
 246  246   * messages received from drivers on a per phyint basis. This serialization is
 247  247   * provided by the ipsq_t and primitives operating on this. Details can
 248  248   * be found in ip_if.c above the core primitives operating on ipsq_t.
 249  249   *
 250  250   * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
 251  251   * Simiarly lookup of an ire by a thread also returns a refheld ire.
 252  252   * In addition ipif's and ill's referenced by the ire are also indirectly
 253  253   * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
 254  254   * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
 255  255   * address of an ipif has to go through the ipsq_t. This ensures that only
 256  256   * one such exclusive operation proceeds at any time on the ipif. It then
 257  257   * waits for all refcnts
 258  258   * associated with this ipif to come down to zero. The address is changed
 259  259   * only after the ipif has been quiesced. Then the ipif is brought up again.
 260  260   * More details are described above the comment in ip_sioctl_flags.
 261  261   *
 262  262   * Packet processing is based mostly on IREs and are fully multi-threaded
 263  263   * using standard Solaris MT techniques.
 264  264   *
 265  265   * There are explicit locks in IP to handle:
 266  266   * - The ip_g_head list maintained by mi_open_link() and friends.
 267  267   *
 268  268   * - The reassembly data structures (one lock per hash bucket)
 269  269   *
 270  270   * - conn_lock is meant to protect conn_t fields. The fields actually
 271  271   *   protected by conn_lock are documented in the conn_t definition.
 272  272   *
 273  273   * - ire_lock to protect some of the fields of the ire, IRE tables
 274  274   *   (one lock per hash bucket). Refer to ip_ire.c for details.
 275  275   *
 276  276   * - ndp_g_lock and ncec_lock for protecting NCEs.
 277  277   *
 278  278   * - ill_lock protects fields of the ill and ipif. Details in ip.h
 279  279   *
 280  280   * - ill_g_lock: This is a global reader/writer lock. Protects the following
 281  281   *      * The AVL tree based global multi list of all ills.
 282  282   *      * The linked list of all ipifs of an ill
 283  283   *      * The <ipsq-xop> mapping
 284  284   *      * <ill-phyint> association
 285  285   *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
 286  286   *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
 287  287   *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
 288  288   *   writer for the actual duration of the insertion/deletion/change.
 289  289   *
 290  290   * - ill_lock:  This is a per ill mutex.
 291  291   *   It protects some members of the ill_t struct; see ip.h for details.
 292  292   *   It also protects the <ill-phyint> assoc.
 293  293   *   It also protects the list of ipifs hanging off the ill.
 294  294   *
 295  295   * - ipsq_lock: This is a per ipsq_t mutex lock.
 296  296   *   This protects some members of the ipsq_t struct; see ip.h for details.
 297  297   *   It also protects the <ipsq-ipxop> mapping
 298  298   *
 299  299   * - ipx_lock: This is a per ipxop_t mutex lock.
 300  300   *   This protects some members of the ipxop_t struct; see ip.h for details.
 301  301   *
 302  302   * - phyint_lock: This is a per phyint mutex lock. Protects just the
 303  303   *   phyint_flags
 304  304   *
 305  305   * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
 306  306   *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
 307  307   *   uniqueness check also done atomically.
 308  308   *
 309  309   * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
 310  310   *   group list linked by ill_usesrc_grp_next. It also protects the
 311  311   *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
 312  312   *   group is being added or deleted.  This lock is taken as a reader when
 313  313   *   walking the list/group(eg: to get the number of members in a usesrc group).
 314  314   *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
 315  315   *   field is changing state i.e from NULL to non-NULL or vice-versa. For
 316  316   *   example, it is not necessary to take this lock in the initial portion
 317  317   *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
 318  318   *   operations are executed exclusively and that ensures that the "usesrc
 319  319   *   group state" cannot change. The "usesrc group state" change can happen
 320  320   *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
 321  321   *
 322  322   * Changing <ill-phyint>, <ipsq-xop> assocications:
 323  323   *
 324  324   * To change the <ill-phyint> association, the ill_g_lock must be held
 325  325   * as writer, and the ill_locks of both the v4 and v6 instance of the ill
 326  326   * must be held.
 327  327   *
 328  328   * To change the <ipsq-xop> association, the ill_g_lock must be held as
 329  329   * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
 330  330   * This is only done when ills are added or removed from IPMP groups.
 331  331   *
 332  332   * To add or delete an ipif from the list of ipifs hanging off the ill,
 333  333   * ill_g_lock (writer) and ill_lock must be held and the thread must be
 334  334   * a writer on the associated ipsq.
 335  335   *
 336  336   * To add or delete an ill to the system, the ill_g_lock must be held as
 337  337   * writer and the thread must be a writer on the associated ipsq.
 338  338   *
 339  339   * To add or delete an ilm to an ill, the ill_lock must be held and the thread
 340  340   * must be a writer on the associated ipsq.
 341  341   *
 342  342   * Lock hierarchy
 343  343   *
 344  344   * Some lock hierarchy scenarios are listed below.
 345  345   *
 346  346   * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
 347  347   * ill_g_lock -> ill_lock(s) -> phyint_lock
 348  348   * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
 349  349   * ill_g_lock -> ip_addr_avail_lock
 350  350   * conn_lock -> irb_lock -> ill_lock -> ire_lock
 351  351   * ill_g_lock -> ip_g_nd_lock
 352  352   * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
 353  353   * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
 354  354   * arl_lock -> ill_lock
 355  355   * ips_ire_dep_lock -> irb_lock
 356  356   *
 357  357   * When more than 1 ill lock is needed to be held, all ill lock addresses
 358  358   * are sorted on address and locked starting from highest addressed lock
 359  359   * downward.
 360  360   *
 361  361   * Multicast scenarios
 362  362   * ips_ill_g_lock -> ill_mcast_lock
 363  363   * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
 364  364   * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
 365  365   * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
 366  366   * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
 367  367   * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
 368  368   *
 369  369   * IPsec scenarios
 370  370   *
 371  371   * ipsa_lock -> ill_g_lock -> ill_lock
 372  372   * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
 373  373   *
 374  374   * Trusted Solaris scenarios
 375  375   *
 376  376   * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
 377  377   * igsa_lock -> gcdb_lock
 378  378   * gcgrp_rwlock -> ire_lock
 379  379   * gcgrp_rwlock -> gcdb_lock
 380  380   *
 381  381   * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
 382  382   *
 383  383   * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
 384  384   * sq_lock -> conn_lock -> QLOCK(q)
 385  385   * ill_lock -> ft_lock -> fe_lock
 386  386   *
 387  387   * Routing/forwarding table locking notes:
 388  388   *
 389  389   * Lock acquisition order: Radix tree lock, irb_lock.
 390  390   * Requirements:
 391  391   * i.  Walker must not hold any locks during the walker callback.
 392  392   * ii  Walker must not see a truncated tree during the walk because of any node
 393  393   *     deletion.
 394  394   * iii Existing code assumes ire_bucket is valid if it is non-null and is used
 395  395   *     in many places in the code to walk the irb list. Thus even if all the
 396  396   *     ires in a bucket have been deleted, we still can't free the radix node
 397  397   *     until the ires have actually been inactive'd (freed).
 398  398   *
 399  399   * Tree traversal - Need to hold the global tree lock in read mode.
 400  400   * Before dropping the global tree lock, need to either increment the ire_refcnt
 401  401   * to ensure that the radix node can't be deleted.
 402  402   *
 403  403   * Tree add - Need to hold the global tree lock in write mode to add a
 404  404   * radix node. To prevent the node from being deleted, increment the
 405  405   * irb_refcnt, after the node is added to the tree. The ire itself is
 406  406   * added later while holding the irb_lock, but not the tree lock.
 407  407   *
 408  408   * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
 409  409   * All associated ires must be inactive (i.e. freed), and irb_refcnt
 410  410   * must be zero.
 411  411   *
 412  412   * Walker - Increment irb_refcnt before calling the walker callback. Hold the
 413  413   * global tree lock (read mode) for traversal.
 414  414   *
 415  415   * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
 416  416   * hence we will acquire irb_lock while holding ips_ire_dep_lock.
 417  417   *
 418  418   * IPsec notes :
 419  419   *
 420  420   * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
 421  421   * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
 422  422   * ip_xmit_attr_t has the
 423  423   * information used by the IPsec code for applying the right level of
 424  424   * protection. The information initialized by IP in the ip_xmit_attr_t
 425  425   * is determined by the per-socket policy or global policy in the system.
 426  426   * For inbound datagrams, the ip_recv_attr_t
 427  427   * starts out with nothing in it. It gets filled
 428  428   * with the right information if it goes through the AH/ESP code, which
 429  429   * happens if the incoming packet is secure. The information initialized
 430  430   * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
 431  431   * the policy requirements needed by per-socket policy or global policy
 432  432   * is met or not.
 433  433   *
 434  434   * For fully connected sockets i.e dst, src [addr, port] is known,
 435  435   * conn_policy_cached is set indicating that policy has been cached.
 436  436   * conn_in_enforce_policy may or may not be set depending on whether
 437  437   * there is a global policy match or per-socket policy match.
 438  438   * Policy inheriting happpens in ip_policy_set once the destination is known.
 439  439   * Once the right policy is set on the conn_t, policy cannot change for
 440  440   * this socket. This makes life simpler for TCP (UDP ?) where
 441  441   * re-transmissions go out with the same policy. For symmetry, policy
 442  442   * is cached for fully connected UDP sockets also. Thus if policy is cached,
 443  443   * it also implies that policy is latched i.e policy cannot change
 444  444   * on these sockets. As we have the right policy on the conn, we don't
 445  445   * have to lookup global policy for every outbound and inbound datagram
 446  446   * and thus serving as an optimization. Note that a global policy change
 447  447   * does not affect fully connected sockets if they have policy. If fully
 448  448   * connected sockets did not have any policy associated with it, global
 449  449   * policy change may affect them.
 450  450   *
 451  451   * IP Flow control notes:
 452  452   * ---------------------
 453  453   * Non-TCP streams are flow controlled by IP. The way this is accomplished
 454  454   * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
 455  455   * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
 456  456   * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
 457  457   * functions.
 458  458   *
 459  459   * Per Tx ring udp flow control:
 460  460   * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
 461  461   * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
 462  462   *
 463  463   * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
 464  464   * To achieve best performance, outgoing traffic need to be fanned out among
 465  465   * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
 466  466   * traffic out of the NIC and it takes a fanout hint. UDP connections pass
 467  467   * the address of connp as fanout hint to mac_tx(). Under flow controlled
 468  468   * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
 469  469   * cookie points to a specific Tx ring that is blocked. The cookie is used to
 470  470   * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
 471  471   * point to drain_lists (idl_t's). These drain list will store the blocked UDP
 472  472   * connp's. The drain list is not a single list but a configurable number of
 473  473   * lists.
 474  474   *
 475  475   * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
 476  476   * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
 477  477   * which is equal to 128. This array in turn contains a pointer to idl_t[],
 478  478   * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
 479  479   * list will point to the list of connp's that are flow controlled.
 480  480   *
 481  481   *                      ---------------   -------   -------   -------
 482  482   *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 483  483   *                   |  ---------------   -------   -------   -------
 484  484   *                   |  ---------------   -------   -------   -------
 485  485   *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 486  486   * ----------------  |  ---------------   -------   -------   -------
 487  487   * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
 488  488   * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
 489  489   *                   |  ---------------   -------   -------   -------
 490  490   *                   .        .              .         .         .
 491  491   *                   |  ---------------   -------   -------   -------
 492  492   *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 493  493   *                      ---------------   -------   -------   -------
 494  494   *                      ---------------   -------   -------   -------
 495  495   *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 496  496   *                   |  ---------------   -------   -------   -------
 497  497   *                   |  ---------------   -------   -------   -------
 498  498   * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 499  499   * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
 500  500   * ----------------  |        .              .         .         .
 501  501   *                   |  ---------------   -------   -------   -------
 502  502   *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 503  503   *                      ---------------   -------   -------   -------
 504  504   *     .....
 505  505   * ----------------
 506  506   * |idl_tx_list[n]|-> ...
 507  507   * ----------------
 508  508   *
 509  509   * When mac_tx() returns a cookie, the cookie is hashed into an index into
 510  510   * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
 511  511   * to insert the conn onto.  conn_drain_insert() asserts flow control for the
 512  512   * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
 513  513   * Further, conn_blocked is set to indicate that the conn is blocked.
 514  514   *
 515  515   * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
 516  516   * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
 517  517   * is again hashed to locate the appropriate idl_tx_list, which is then
 518  518   * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
 519  519   * the drain list and calls conn_drain_remove() to clear flow control (via
 520  520   * calling su_txq_full() or clearing QFULL), and remove the conn from the
 521  521   * drain list.
 522  522   *
 523  523   * Note that the drain list is not a single list but a (configurable) array of
 524  524   * lists (8 elements by default).  Synchronization between drain insertion and
 525  525   * flow control wakeup is handled by using idl_txl->txl_lock, and only
 526  526   * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
 527  527   *
 528  528   * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
 529  529   * On the send side, if the packet cannot be sent down to the driver by IP
 530  530   * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
 531  531   * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
 532  532   * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
 533  533   * control has been relieved, the blocked conns in the 0'th drain list are
 534  534   * drained as in the non-STREAMS case.
 535  535   *
 536  536   * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
 537  537   * is done when the conn is inserted into the drain list (conn_drain_insert())
 538  538   * and cleared when the conn is removed from the it (conn_drain_remove()).
 539  539   *
 540  540   * IPQOS notes:
 541  541   *
 542  542   * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
 543  543   * and IPQoS modules. IPPF includes hooks in IP at different control points
 544  544   * (callout positions) which direct packets to IPQoS modules for policy
 545  545   * processing. Policies, if present, are global.
 546  546   *
 547  547   * The callout positions are located in the following paths:
 548  548   *              o local_in (packets destined for this host)
 549  549   *              o local_out (packets orginating from this host )
 550  550   *              o fwd_in  (packets forwarded by this m/c - inbound)
 551  551   *              o fwd_out (packets forwarded by this m/c - outbound)
 552  552   * Hooks at these callout points can be enabled/disabled using the ndd variable
 553  553   * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
 554  554   * By default all the callout positions are enabled.
 555  555   *
 556  556   * Outbound (local_out)
 557  557   * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
 558  558   *
 559  559   * Inbound (local_in)
 560  560   * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
 561  561   *
 562  562   * Forwarding (in and out)
 563  563   * Hooks are placed in ire_recv_forward_v4/v6.
 564  564   *
 565  565   * IP Policy Framework processing (IPPF processing)
 566  566   * Policy processing for a packet is initiated by ip_process, which ascertains
 567  567   * that the classifier (ipgpc) is loaded and configured, failing which the
 568  568   * packet resumes normal processing in IP. If the clasifier is present, the
 569  569   * packet is acted upon by one or more IPQoS modules (action instances), per
 570  570   * filters configured in ipgpc and resumes normal IP processing thereafter.
 571  571   * An action instance can drop a packet in course of its processing.
 572  572   *
 573  573   * Zones notes:
 574  574   *
 575  575   * The partitioning rules for networking are as follows:
 576  576   * 1) Packets coming from a zone must have a source address belonging to that
 577  577   * zone.
 578  578   * 2) Packets coming from a zone can only be sent on a physical interface on
 579  579   * which the zone has an IP address.
 580  580   * 3) Between two zones on the same machine, packet delivery is only allowed if
 581  581   * there's a matching route for the destination and zone in the forwarding
 582  582   * table.
 583  583   * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
 584  584   * different zones can bind to the same port with the wildcard address
 585  585   * (INADDR_ANY).
 586  586   *
 587  587   * The granularity of interface partitioning is at the logical interface level.
 588  588   * Therefore, every zone has its own IP addresses, and incoming packets can be
 589  589   * attributed to a zone unambiguously. A logical interface is placed into a zone
 590  590   * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
 591  591   * structure. Rule (1) is implemented by modifying the source address selection
 592  592   * algorithm so that the list of eligible addresses is filtered based on the
 593  593   * sending process zone.
 594  594   *
 595  595   * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
 596  596   * across all zones, depending on their type. Here is the break-up:
 597  597   *
 598  598   * IRE type                             Shared/exclusive
 599  599   * --------                             ----------------
 600  600   * IRE_BROADCAST                        Exclusive
 601  601   * IRE_DEFAULT (default routes)         Shared (*)
 602  602   * IRE_LOCAL                            Exclusive (x)
 603  603   * IRE_LOOPBACK                         Exclusive
 604  604   * IRE_PREFIX (net routes)              Shared (*)
 605  605   * IRE_IF_NORESOLVER (interface routes) Exclusive
 606  606   * IRE_IF_RESOLVER (interface routes)   Exclusive
 607  607   * IRE_IF_CLONE (interface routes)      Exclusive
 608  608   * IRE_HOST (host routes)               Shared (*)
 609  609   *
 610  610   * (*) A zone can only use a default or off-subnet route if the gateway is
 611  611   * directly reachable from the zone, that is, if the gateway's address matches
 612  612   * one of the zone's logical interfaces.
 613  613   *
 614  614   * (x) IRE_LOCAL are handled a bit differently.
 615  615   * When ip_restrict_interzone_loopback is set (the default),
 616  616   * ire_route_recursive restricts loopback using an IRE_LOCAL
 617  617   * between zone to the case when L2 would have conceptually looped the packet
 618  618   * back, i.e. the loopback which is required since neither Ethernet drivers
 619  619   * nor Ethernet hardware loops them back. This is the case when the normal
 620  620   * routes (ignoring IREs with different zoneids) would send out the packet on
 621  621   * the same ill as the ill with which is IRE_LOCAL is associated.
 622  622   *
 623  623   * Multiple zones can share a common broadcast address; typically all zones
 624  624   * share the 255.255.255.255 address. Incoming as well as locally originated
 625  625   * broadcast packets must be dispatched to all the zones on the broadcast
 626  626   * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
 627  627   * since some zones may not be on the 10.16.72/24 network. To handle this, each
 628  628   * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
 629  629   * sent to every zone that has an IRE_BROADCAST entry for the destination
 630  630   * address on the input ill, see ip_input_broadcast().
 631  631   *
 632  632   * Applications in different zones can join the same multicast group address.
 633  633   * The same logic applies for multicast as for broadcast. ip_input_multicast
 634  634   * dispatches packets to all zones that have members on the physical interface.
 635  635   */
 636  636  
 637  637  /*
 638  638   * Squeue Fanout flags:
 639  639   *      0: No fanout.
 640  640   *      1: Fanout across all squeues
 641  641   */
 642  642  boolean_t       ip_squeue_fanout = 0;
 643  643  
 644  644  /*
 645  645   * Maximum dups allowed per packet.
 646  646   */
 647  647  uint_t ip_max_frag_dups = 10;
 648  648  
 649  649  static int      ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
 650  650                      cred_t *credp, boolean_t isv6);
 651  651  static mblk_t   *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
 652  652  
 653  653  static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
 654  654  static void     icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
 655  655  static void     icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
 656  656      ip_recv_attr_t *);
 657  657  static void     icmp_options_update(ipha_t *);
 658  658  static void     icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
 659  659  static void     icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
 660  660  static mblk_t   *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
 661  661  static void     icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
 662  662      ip_recv_attr_t *);
 663  663  static void     icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
 664  664  static void     icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
 665  665      ip_recv_attr_t *);
 666  666  
 667  667  mblk_t          *ip_dlpi_alloc(size_t, t_uscalar_t);
 668  668  char            *ip_dot_addr(ipaddr_t, char *);
 669  669  mblk_t          *ip_carve_mp(mblk_t **, ssize_t);
 670  670  static char     *ip_dot_saddr(uchar_t *, char *);
 671  671  static int      ip_lrput(queue_t *, mblk_t *);
 672  672  ipaddr_t        ip_net_mask(ipaddr_t);
 673  673  char            *ip_nv_lookup(nv_t *, int);
 674  674  int             ip_rput(queue_t *, mblk_t *);
 675  675  static void     ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
 676  676                      void *dummy_arg);
 677  677  int             ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
 678  678  static mblk_t   *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
 679  679                      mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
 680  680  static mblk_t   *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
 681  681                      ip_stack_t *, boolean_t);
 682  682  static mblk_t   *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
 683  683                      boolean_t);
 684  684  static mblk_t   *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 685  685  static mblk_t   *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
 686  686  static mblk_t   *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 687  687  static mblk_t   *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
 688  688  static mblk_t   *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
 689  689                      ip_stack_t *ipst, boolean_t);
 690  690  static mblk_t   *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
 691  691                      ip_stack_t *ipst, boolean_t);
 692  692  static mblk_t   *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
 693  693                      ip_stack_t *ipst);
 694  694  static mblk_t   *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
 695  695                      ip_stack_t *ipst);
 696  696  static mblk_t   *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
 697  697                      ip_stack_t *ipst);
 698  698  static mblk_t   *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
 699  699                      ip_stack_t *ipst);
 700  700  static mblk_t   *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
 701  701                      ip_stack_t *ipst);
 702  702  static mblk_t   *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
 703  703                      ip_stack_t *ipst);
 704  704  static mblk_t   *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
 705  705                      ip_stack_t *ipst);
 706  706  static mblk_t   *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
 707  707                      ip_stack_t *ipst);
 708  708  static void     ip_snmp_get2_v4(ire_t *, iproutedata_t *);
 709  709  static void     ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
 710  710  static void     ip_snmp_get2_v4_media(ncec_t *, void *);
 711  711  static void     ip_snmp_get2_v6_media(ncec_t *, void *);
 712  712  int             ip_snmp_set(queue_t *, int, int, uchar_t *, int);
 713  713  
 714  714  static mblk_t   *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
 715  715                      mblk_t *);
 716  716  
 717  717  static void     conn_drain_init(ip_stack_t *);
 718  718  static void     conn_drain_fini(ip_stack_t *);
 719  719  static void     conn_drain(conn_t *connp, boolean_t closing);
 720  720  
 721  721  static void     conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
 722  722  static void     conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
 723  723  
 724  724  static void     *ip_stack_init(netstackid_t stackid, netstack_t *ns);
 725  725  static void     ip_stack_shutdown(netstackid_t stackid, void *arg);
 726  726  static void     ip_stack_fini(netstackid_t stackid, void *arg);
 727  727  
 728  728  static int      ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
 729  729      const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
 730  730      ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
 731  731      const in6_addr_t *);
 732  732  
 733  733  static int      ip_squeue_switch(int);
 734  734  
 735  735  static void     *ip_kstat_init(netstackid_t, ip_stack_t *);
 736  736  static void     ip_kstat_fini(netstackid_t, kstat_t *);
 737  737  static int      ip_kstat_update(kstat_t *kp, int rw);
 738  738  static void     *icmp_kstat_init(netstackid_t);
 739  739  static void     icmp_kstat_fini(netstackid_t, kstat_t *);
 740  740  static int      icmp_kstat_update(kstat_t *kp, int rw);
 741  741  static void     *ip_kstat2_init(netstackid_t, ip_stat_t *);
 742  742  static void     ip_kstat2_fini(netstackid_t, kstat_t *);
 743  743  
 744  744  static void     ipobs_init(ip_stack_t *);
 745  745  static void     ipobs_fini(ip_stack_t *);
 746  746  
 747  747  static int      ip_tp_cpu_update(cpu_setup_t, int, void *);
 748  748  
 749  749  ipaddr_t        ip_g_all_ones = IP_HOST_MASK;
 750  750  
 751  751  static long ip_rput_pullups;
 752  752  int     dohwcksum = 1;  /* use h/w cksum if supported by the hardware */
 753  753  
 754  754  vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
 755  755  vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
 756  756  
 757  757  int     ip_debug;
 758  758  
 759  759  /*
 760  760   * Multirouting/CGTP stuff
 761  761   */
 762  762  int     ip_cgtp_filter_rev = CGTP_FILTER_REV;   /* CGTP hooks version */
 763  763  
 764  764  /*
 765  765   * IP tunables related declarations. Definitions are in ip_tunables.c
 766  766   */
 767  767  extern mod_prop_info_t ip_propinfo_tbl[];
 768  768  extern int ip_propinfo_count;
 769  769  
 770  770  /*
 771  771   * Table of IP ioctls encoding the various properties of the ioctl and
 772  772   * indexed based on the last byte of the ioctl command. Occasionally there
 773  773   * is a clash, and there is more than 1 ioctl with the same last byte.
 774  774   * In such a case 1 ioctl is encoded in the ndx table and the remaining
 775  775   * ioctls are encoded in the misc table. An entry in the ndx table is
 776  776   * retrieved by indexing on the last byte of the ioctl command and comparing
 777  777   * the ioctl command with the value in the ndx table. In the event of a
 778  778   * mismatch the misc table is then searched sequentially for the desired
 779  779   * ioctl command.
 780  780   *
 781  781   * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
 782  782   */
 783  783  ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
 784  784          /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 785  785          /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 786  786          /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 787  787          /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 788  788          /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 789  789          /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 790  790          /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 791  791          /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 792  792          /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 793  793          /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 794  794  
 795  795          /* 010 */ { SIOCADDRT,  sizeof (struct rtentry), IPI_PRIV,
 796  796                          MISC_CMD, ip_siocaddrt, NULL },
 797  797          /* 011 */ { SIOCDELRT,  sizeof (struct rtentry), IPI_PRIV,
 798  798                          MISC_CMD, ip_siocdelrt, NULL },
 799  799  
 800  800          /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 801  801                          IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 802  802          /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
 803  803                          IF_CMD, ip_sioctl_get_addr, NULL },
 804  804  
 805  805          /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 806  806                          IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 807  807          /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
 808  808                          IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
 809  809  
 810  810          /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
 811  811                          IPI_PRIV | IPI_WR,
 812  812                          IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 813  813          /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
 814  814                          IPI_MODOK | IPI_GET_CMD,
 815  815                          IF_CMD, ip_sioctl_get_flags, NULL },
 816  816  
 817  817          /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 818  818          /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 819  819  
 820  820          /* copyin size cannot be coded for SIOCGIFCONF */
 821  821          /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
 822  822                          MISC_CMD, ip_sioctl_get_ifconf, NULL },
 823  823  
 824  824          /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 825  825                          IF_CMD, ip_sioctl_mtu, NULL },
 826  826          /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
 827  827                          IF_CMD, ip_sioctl_get_mtu, NULL },
 828  828          /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
 829  829                          IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
 830  830          /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 831  831                          IF_CMD, ip_sioctl_brdaddr, NULL },
 832  832          /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
 833  833                          IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
 834  834          /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 835  835                          IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 836  836          /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
 837  837                          IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
 838  838          /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
 839  839                          IF_CMD, ip_sioctl_metric, NULL },
 840  840          /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 841  841  
 842  842          /* See 166-168 below for extended SIOC*XARP ioctls */
 843  843          /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 844  844                          ARP_CMD, ip_sioctl_arp, NULL },
 845  845          /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
 846  846                          ARP_CMD, ip_sioctl_arp, NULL },
 847  847          /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 848  848                          ARP_CMD, ip_sioctl_arp, NULL },
 849  849  
 850  850          /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 851  851          /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 852  852          /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 853  853          /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 854  854          /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 855  855          /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 856  856          /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 857  857          /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 858  858          /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 859  859          /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 860  860          /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 861  861          /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 862  862          /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 863  863          /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 864  864          /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 865  865          /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 866  866          /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 867  867          /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 868  868          /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 869  869          /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 870  870          /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 871  871  
 872  872          /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
 873  873                          MISC_CMD, if_unitsel, if_unitsel_restart },
 874  874  
 875  875          /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 876  876          /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 877  877          /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 878  878          /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 879  879          /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 880  880          /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 881  881          /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 882  882          /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 883  883          /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 884  884          /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 885  885          /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 886  886          /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 887  887          /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 888  888          /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 889  889          /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 890  890          /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 891  891          /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 892  892          /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 893  893  
 894  894          /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
 895  895                          IPI_PRIV | IPI_WR | IPI_MODOK,
 896  896                          IF_CMD, ip_sioctl_sifname, NULL },
 897  897  
 898  898          /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 899  899          /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 900  900          /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 901  901          /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 902  902          /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 903  903          /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 904  904          /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 905  905          /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 906  906          /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 907  907          /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 908  908          /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 909  909          /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 910  910          /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 911  911  
 912  912          /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
 913  913                          MISC_CMD, ip_sioctl_get_ifnum, NULL },
 914  914          /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
 915  915                          IF_CMD, ip_sioctl_get_muxid, NULL },
 916  916          /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
 917  917                          IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
 918  918  
 919  919          /* Both if and lif variants share same func */
 920  920          /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
 921  921                          IF_CMD, ip_sioctl_get_lifindex, NULL },
 922  922          /* Both if and lif variants share same func */
 923  923          /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
 924  924                          IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
 925  925  
 926  926          /* copyin size cannot be coded for SIOCGIFCONF */
 927  927          /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
 928  928                          MISC_CMD, ip_sioctl_get_ifconf, NULL },
 929  929          /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 930  930          /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 931  931          /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 932  932          /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 933  933          /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 934  934          /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 935  935          /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 936  936          /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 937  937          /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 938  938          /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 939  939          /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 940  940          /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 941  941          /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 942  942          /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 943  943          /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 944  944          /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 945  945          /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 946  946  
 947  947          /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
 948  948                          IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
 949  949                          ip_sioctl_removeif_restart },
 950  950          /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
 951  951                          IPI_GET_CMD | IPI_PRIV | IPI_WR,
 952  952                          LIF_CMD, ip_sioctl_addif, NULL },
 953  953  #define SIOCLIFADDR_NDX 112
 954  954          /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 955  955                          LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 956  956          /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
 957  957                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
 958  958          /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 959  959                          LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 960  960          /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
 961  961                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
 962  962          /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
 963  963                          IPI_PRIV | IPI_WR,
 964  964                          LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 965  965          /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
 966  966                          IPI_GET_CMD | IPI_MODOK,
 967  967                          LIF_CMD, ip_sioctl_get_flags, NULL },
 968  968  
 969  969          /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 970  970          /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 971  971  
 972  972          /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
 973  973                          ip_sioctl_get_lifconf, NULL },
 974  974          /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 975  975                          LIF_CMD, ip_sioctl_mtu, NULL },
 976  976          /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
 977  977                          LIF_CMD, ip_sioctl_get_mtu, NULL },
 978  978          /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
 979  979                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
 980  980          /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 981  981                          LIF_CMD, ip_sioctl_brdaddr, NULL },
 982  982          /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
 983  983                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
 984  984          /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 985  985                          LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 986  986          /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
 987  987                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
 988  988          /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 989  989                          LIF_CMD, ip_sioctl_metric, NULL },
 990  990          /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
 991  991                          IPI_PRIV | IPI_WR | IPI_MODOK,
 992  992                          LIF_CMD, ip_sioctl_slifname,
 993  993                          ip_sioctl_slifname_restart },
 994  994  
 995  995          /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
 996  996                          MISC_CMD, ip_sioctl_get_lifnum, NULL },
 997  997          /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
 998  998                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
 999  999          /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1000 1000                          IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1001 1001          /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1002 1002                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1003 1003          /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1004 1004                          IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1005 1005          /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1006 1006                          LIF_CMD, ip_sioctl_token, NULL },
1007 1007          /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1008 1008                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1009 1009          /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1010 1010                          LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1011 1011          /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1012 1012                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1013 1013          /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1014 1014                          LIF_CMD, ip_sioctl_lnkinfo, NULL },
1015 1015  
1016 1016          /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1017 1017                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1018 1018          /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1019 1019                          LIF_CMD, ip_siocdelndp_v6, NULL },
1020 1020          /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1021 1021                          LIF_CMD, ip_siocqueryndp_v6, NULL },
1022 1022          /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1023 1023                          LIF_CMD, ip_siocsetndp_v6, NULL },
1024 1024          /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025 1025                          MISC_CMD, ip_sioctl_tmyaddr, NULL },
1026 1026          /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1027 1027                          MISC_CMD, ip_sioctl_tonlink, NULL },
1028 1028          /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1029 1029                          MISC_CMD, ip_sioctl_tmysite, NULL },
1030 1030          /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 1031          /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 1032  
1033 1033          /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1034 1034          /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 1035          /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 1036          /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 1037          /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 1038  
1039 1039          /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 1040  
1041 1041          /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1042 1042                          LIF_CMD, ip_sioctl_get_binding, NULL },
1043 1043          /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1044 1044                          IPI_PRIV | IPI_WR,
1045 1045                          LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1046 1046          /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1047 1047                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1048 1048          /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1049 1049                          IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1050 1050  
1051 1051          /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1052 1052          /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 1053          /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 1054          /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 1055  
1056 1056          /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 1057  
1058 1058          /* These are handled in ip_sioctl_copyin_setup itself */
1059 1059          /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1060 1060                          MISC_CMD, NULL, NULL },
1061 1061          /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1062 1062                          MISC_CMD, NULL, NULL },
1063 1063          /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1064 1064  
1065 1065          /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1066 1066                          ip_sioctl_get_lifconf, NULL },
1067 1067  
1068 1068          /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069 1069                          XARP_CMD, ip_sioctl_arp, NULL },
1070 1070          /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1071 1071                          XARP_CMD, ip_sioctl_arp, NULL },
1072 1072          /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1073 1073                          XARP_CMD, ip_sioctl_arp, NULL },
1074 1074  
1075 1075          /* SIOCPOPSOCKFS is not handled by IP */
1076 1076          /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1077 1077  
1078 1078          /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1079 1079                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1080 1080          /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1081 1081                          IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1082 1082                          ip_sioctl_slifzone_restart },
1083 1083          /* 172-174 are SCTP ioctls and not handled by IP */
1084 1084          /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085 1085          /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 1086          /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087 1087          /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1088 1088                          IPI_GET_CMD, LIF_CMD,
1089 1089                          ip_sioctl_get_lifusesrc, 0 },
1090 1090          /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1091 1091                          IPI_PRIV | IPI_WR,
1092 1092                          LIF_CMD, ip_sioctl_slifusesrc,
1093 1093                          NULL },
1094 1094          /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1095 1095                          ip_sioctl_get_lifsrcof, NULL },
1096 1096          /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1097 1097                          MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098 1098          /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1099 1099                          MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100 1100          /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1101 1101                          MSFILT_CMD, ip_sioctl_msfilter, NULL },
1102 1102          /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1103 1103                          MSFILT_CMD, ip_sioctl_msfilter, NULL },
1104 1104          /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105 1105          /* SIOCSENABLESDP is handled by SDP */
1106 1106          /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1107 1107          /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1108 1108          /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1109 1109                          IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1110 1110          /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1111 1111          /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1112 1112                          ip_sioctl_ilb_cmd, NULL },
1113 1113          /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1114 1114          /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1115 1115          /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1116 1116                          IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1117 1117          /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1118 1118                          LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1119 1119          /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1120 1120                          LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1121 1121  };
1122 1122  
1123 1123  int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1124 1124  
1125 1125  ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1126 1126          { I_LINK,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 1127          { I_UNLINK,     0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 1128          { I_PLINK,      0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 1129          { I_PUNLINK,    0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130 1130          { ND_GET,       0, 0, 0, NULL, NULL },
1131 1131          { ND_SET,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1132 1132          { IP_IOCTL,     0, 0, 0, NULL, NULL },
1133 1133          { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1134 1134                  MISC_CMD, mrt_ioctl},
1135 1135          { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1136 1136                  MISC_CMD, mrt_ioctl},
1137 1137          { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1138 1138                  MISC_CMD, mrt_ioctl}
1139 1139  };
1140 1140  
1141 1141  int ip_misc_ioctl_count =
1142 1142      sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1143 1143  
1144 1144  int     conn_drain_nthreads;            /* Number of drainers reqd. */
1145 1145                                          /* Settable in /etc/system */
1146 1146  /* Defined in ip_ire.c */
1147 1147  extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1148 1148  extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1149 1149  extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1150 1150  
1151 1151  static nv_t     ire_nv_arr[] = {
1152 1152          { IRE_BROADCAST, "BROADCAST" },
1153 1153          { IRE_LOCAL, "LOCAL" },
1154 1154          { IRE_LOOPBACK, "LOOPBACK" },
1155 1155          { IRE_DEFAULT, "DEFAULT" },
1156 1156          { IRE_PREFIX, "PREFIX" },
1157 1157          { IRE_IF_NORESOLVER, "IF_NORESOL" },
1158 1158          { IRE_IF_RESOLVER, "IF_RESOLV" },
1159 1159          { IRE_IF_CLONE, "IF_CLONE" },
1160 1160          { IRE_HOST, "HOST" },
1161 1161          { IRE_MULTICAST, "MULTICAST" },
1162 1162          { IRE_NOROUTE, "NOROUTE" },
1163 1163          { 0 }
1164 1164  };
1165 1165  
1166 1166  nv_t    *ire_nv_tbl = ire_nv_arr;
1167 1167  
1168 1168  /* Simple ICMP IP Header Template */
1169 1169  static ipha_t icmp_ipha = {
1170 1170          IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1171 1171  };
1172 1172  
1173 1173  struct module_info ip_mod_info = {
1174 1174          IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1175 1175          IP_MOD_LOWAT
1176 1176  };
1177 1177  
1178 1178  /*
1179 1179   * Duplicate static symbols within a module confuses mdb; so we avoid the
1180 1180   * problem by making the symbols here distinct from those in udp.c.
1181 1181   */
1182 1182  
1183 1183  /*
1184 1184   * Entry points for IP as a device and as a module.
1185 1185   * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1186 1186   */
1187 1187  static struct qinit iprinitv4 = {
1188 1188          ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1189 1189  };
1190 1190  
1191 1191  struct qinit iprinitv6 = {
1192 1192          ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info
1193 1193  };
1194 1194  
1195 1195  static struct qinit ipwinit = {
1196 1196          ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info
1197 1197  };
1198 1198  
1199 1199  static struct qinit iplrinit = {
1200 1200          ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1201 1201  };
1202 1202  
1203 1203  static struct qinit iplwinit = {
1204 1204          ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info
1205 1205  };
1206 1206  
1207 1207  /* For AF_INET aka /dev/ip */
1208 1208  struct streamtab ipinfov4 = {
1209 1209          &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1210 1210  };
1211 1211  
1212 1212  /* For AF_INET6 aka /dev/ip6 */
1213 1213  struct streamtab ipinfov6 = {
1214 1214          &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1215 1215  };
1216 1216  
1217 1217  #ifdef  DEBUG
1218 1218  boolean_t skip_sctp_cksum = B_FALSE;
1219 1219  #endif
1220 1220  
1221 1221  /*
1222 1222   * Generate an ICMP fragmentation needed message.
1223 1223   * When called from ip_output side a minimal ip_recv_attr_t needs to be
1224 1224   * constructed by the caller.
1225 1225   */
1226 1226  void
1227 1227  icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1228 1228  {
1229 1229          icmph_t icmph;
1230 1230          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1231 1231  
1232 1232          mp = icmp_pkt_err_ok(mp, ira);
1233 1233          if (mp == NULL)
1234 1234                  return;
1235 1235  
1236 1236          bzero(&icmph, sizeof (icmph_t));
1237 1237          icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1238 1238          icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1239 1239          icmph.icmph_du_mtu = htons((uint16_t)mtu);
1240 1240          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1241 1241          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1242 1242  
1243 1243          icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1244 1244  }
1245 1245  
1246 1246  /*
1247 1247   * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1248 1248   * If the ICMP message is consumed by IP, i.e., it should not be delivered
1249 1249   * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1250 1250   * Likewise, if the ICMP error is misformed (too short, etc), then it
1251 1251   * returns NULL. The caller uses this to determine whether or not to send
1252 1252   * to raw sockets.
1253 1253   *
1254 1254   * All error messages are passed to the matching transport stream.
1255 1255   *
1256 1256   * The following cases are handled by icmp_inbound:
1257 1257   * 1) It needs to send a reply back and possibly delivering it
1258 1258   *    to the "interested" upper clients.
1259 1259   * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1260 1260   * 3) It needs to change some values in IP only.
1261 1261   * 4) It needs to change some values in IP and upper layers e.g TCP
1262 1262   *    by delivering an error to the upper layers.
1263 1263   *
1264 1264   * We handle the above three cases in the context of IPsec in the
1265 1265   * following way :
1266 1266   *
1267 1267   * 1) Send the reply back in the same way as the request came in.
1268 1268   *    If it came in encrypted, it goes out encrypted. If it came in
1269 1269   *    clear, it goes out in clear. Thus, this will prevent chosen
1270 1270   *    plain text attack.
1271 1271   * 2) The client may or may not expect things to come in secure.
1272 1272   *    If it comes in secure, the policy constraints are checked
1273 1273   *    before delivering it to the upper layers. If it comes in
1274 1274   *    clear, ipsec_inbound_accept_clear will decide whether to
1275 1275   *    accept this in clear or not. In both the cases, if the returned
1276 1276   *    message (IP header + 8 bytes) that caused the icmp message has
1277 1277   *    AH/ESP headers, it is sent up to AH/ESP for validation before
1278 1278   *    sending up. If there are only 8 bytes of returned message, then
1279 1279   *    upper client will not be notified.
1280 1280   * 3) Check with global policy to see whether it matches the constaints.
1281 1281   *    But this will be done only if icmp_accept_messages_in_clear is
1282 1282   *    zero.
1283 1283   * 4) If we need to change both in IP and ULP, then the decision taken
1284 1284   *    while affecting the values in IP and while delivering up to TCP
1285 1285   *    should be the same.
1286 1286   *
1287 1287   *      There are two cases.
1288 1288   *
1289 1289   *      a) If we reject data at the IP layer (ipsec_check_global_policy()
1290 1290   *         failed), we will not deliver it to the ULP, even though they
1291 1291   *         are *willing* to accept in *clear*. This is fine as our global
1292 1292   *         disposition to icmp messages asks us reject the datagram.
1293 1293   *
1294 1294   *      b) If we accept data at the IP layer (ipsec_check_global_policy()
1295 1295   *         succeeded or icmp_accept_messages_in_clear is 1), and not able
1296 1296   *         to deliver it to ULP (policy failed), it can lead to
1297 1297   *         consistency problems. The cases known at this time are
1298 1298   *         ICMP_DESTINATION_UNREACHABLE  messages with following code
1299 1299   *         values :
1300 1300   *
1301 1301   *         - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1302 1302   *           and Upper layer rejects. Then the communication will
1303 1303   *           come to a stop. This is solved by making similar decisions
1304 1304   *           at both levels. Currently, when we are unable to deliver
1305 1305   *           to the Upper Layer (due to policy failures) while IP has
1306 1306   *           adjusted dce_pmtu, the next outbound datagram would
1307 1307   *           generate a local ICMP_FRAGMENTATION_NEEDED message - which
1308 1308   *           will be with the right level of protection. Thus the right
1309 1309   *           value will be communicated even if we are not able to
1310 1310   *           communicate when we get from the wire initially. But this
1311 1311   *           assumes there would be at least one outbound datagram after
1312 1312   *           IP has adjusted its dce_pmtu value. To make things
1313 1313   *           simpler, we accept in clear after the validation of
1314 1314   *           AH/ESP headers.
1315 1315   *
1316 1316   *         - Other ICMP ERRORS : We may not be able to deliver it to the
1317 1317   *           upper layer depending on the level of protection the upper
1318 1318   *           layer expects and the disposition in ipsec_inbound_accept_clear().
1319 1319   *           ipsec_inbound_accept_clear() decides whether a given ICMP error
1320 1320   *           should be accepted in clear when the Upper layer expects secure.
1321 1321   *           Thus the communication may get aborted by some bad ICMP
1322 1322   *           packets.
1323 1323   */
1324 1324  mblk_t *
1325 1325  icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1326 1326  {
1327 1327          icmph_t         *icmph;
1328 1328          ipha_t          *ipha;          /* Outer header */
1329 1329          int             ip_hdr_length;  /* Outer header length */
1330 1330          boolean_t       interested;
1331 1331          ipif_t          *ipif;
1332 1332          uint32_t        ts;
1333 1333          uint32_t        *tsp;
1334 1334          timestruc_t     now;
1335 1335          ill_t           *ill = ira->ira_ill;
1336 1336          ip_stack_t      *ipst = ill->ill_ipst;
1337 1337          zoneid_t        zoneid = ira->ira_zoneid;
1338 1338          int             len_needed;
1339 1339          mblk_t          *mp_ret = NULL;
1340 1340  
1341 1341          ipha = (ipha_t *)mp->b_rptr;
1342 1342  
1343 1343          BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1344 1344  
1345 1345          ip_hdr_length = ira->ira_ip_hdr_length;
1346 1346          if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1347 1347                  if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1348 1348                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1349 1349                          ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1350 1350                          freemsg(mp);
1351 1351                          return (NULL);
1352 1352                  }
1353 1353                  /* Last chance to get real. */
1354 1354                  ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1355 1355                  if (ipha == NULL) {
1356 1356                          BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1357 1357                          freemsg(mp);
1358 1358                          return (NULL);
1359 1359                  }
1360 1360          }
1361 1361  
1362 1362          /* The IP header will always be a multiple of four bytes */
1363 1363          icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1364 1364          ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1365 1365              icmph->icmph_code));
1366 1366  
1367 1367          /*
1368 1368           * We will set "interested" to "true" if we should pass a copy to
1369 1369           * the transport or if we handle the packet locally.
1370 1370           */
1371 1371          interested = B_FALSE;
1372 1372          switch (icmph->icmph_type) {
1373 1373          case ICMP_ECHO_REPLY:
1374 1374                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1375 1375                  break;
1376 1376          case ICMP_DEST_UNREACHABLE:
1377 1377                  if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1378 1378                          BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1379 1379                  interested = B_TRUE;    /* Pass up to transport */
1380 1380                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1381 1381                  break;
1382 1382          case ICMP_SOURCE_QUENCH:
1383 1383                  interested = B_TRUE;    /* Pass up to transport */
1384 1384                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1385 1385                  break;
1386 1386          case ICMP_REDIRECT:
1387 1387                  if (!ipst->ips_ip_ignore_redirect)
1388 1388                          interested = B_TRUE;
1389 1389                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1390 1390                  break;
1391 1391          case ICMP_ECHO_REQUEST:
1392 1392                  /*
1393 1393                   * Whether to respond to echo requests that come in as IP
1394 1394                   * broadcasts or as IP multicast is subject to debate
1395 1395                   * (what isn't?).  We aim to please, you pick it.
1396 1396                   * Default is do it.
1397 1397                   */
1398 1398                  if (ira->ira_flags & IRAF_MULTICAST) {
1399 1399                          /* multicast: respond based on tunable */
1400 1400                          interested = ipst->ips_ip_g_resp_to_echo_mcast;
1401 1401                  } else if (ira->ira_flags & IRAF_BROADCAST) {
1402 1402                          /* broadcast: respond based on tunable */
1403 1403                          interested = ipst->ips_ip_g_resp_to_echo_bcast;
1404 1404                  } else {
1405 1405                          /* unicast: always respond */
1406 1406                          interested = B_TRUE;
1407 1407                  }
1408 1408                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1409 1409                  if (!interested) {
1410 1410                          /* We never pass these to RAW sockets */
1411 1411                          freemsg(mp);
1412 1412                          return (NULL);
1413 1413                  }
1414 1414  
1415 1415                  /* Check db_ref to make sure we can modify the packet. */
1416 1416                  if (mp->b_datap->db_ref > 1) {
1417 1417                          mblk_t  *mp1;
1418 1418  
1419 1419                          mp1 = copymsg(mp);
1420 1420                          freemsg(mp);
1421 1421                          if (!mp1) {
1422 1422                                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1423 1423                                  return (NULL);
1424 1424                          }
1425 1425                          mp = mp1;
1426 1426                          ipha = (ipha_t *)mp->b_rptr;
1427 1427                          icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1428 1428                  }
1429 1429                  icmph->icmph_type = ICMP_ECHO_REPLY;
1430 1430                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1431 1431                  icmp_send_reply_v4(mp, ipha, icmph, ira);
1432 1432                  return (NULL);
1433 1433  
1434 1434          case ICMP_ROUTER_ADVERTISEMENT:
1435 1435          case ICMP_ROUTER_SOLICITATION:
1436 1436                  break;
1437 1437          case ICMP_TIME_EXCEEDED:
1438 1438                  interested = B_TRUE;    /* Pass up to transport */
1439 1439                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1440 1440                  break;
1441 1441          case ICMP_PARAM_PROBLEM:
1442 1442                  interested = B_TRUE;    /* Pass up to transport */
1443 1443                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1444 1444                  break;
1445 1445          case ICMP_TIME_STAMP_REQUEST:
1446 1446                  /* Response to Time Stamp Requests is local policy. */
1447 1447                  if (ipst->ips_ip_g_resp_to_timestamp) {
1448 1448                          if (ira->ira_flags & IRAF_MULTIBROADCAST)
1449 1449                                  interested =
1450 1450                                      ipst->ips_ip_g_resp_to_timestamp_bcast;
1451 1451                          else
1452 1452                                  interested = B_TRUE;
1453 1453                  }
1454 1454                  if (!interested) {
1455 1455                          /* We never pass these to RAW sockets */
1456 1456                          freemsg(mp);
1457 1457                          return (NULL);
1458 1458                  }
1459 1459  
1460 1460                  /* Make sure we have enough of the packet */
1461 1461                  len_needed = ip_hdr_length + ICMPH_SIZE +
1462 1462                      3 * sizeof (uint32_t);
1463 1463  
1464 1464                  if (mp->b_wptr - mp->b_rptr < len_needed) {
1465 1465                          ipha = ip_pullup(mp, len_needed, ira);
1466 1466                          if (ipha == NULL) {
1467 1467                                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1468 1468                                  ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1469 1469                                      mp, ill);
1470 1470                                  freemsg(mp);
1471 1471                                  return (NULL);
1472 1472                          }
1473 1473                          /* Refresh following the pullup. */
1474 1474                          icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1475 1475                  }
1476 1476                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1477 1477                  /* Check db_ref to make sure we can modify the packet. */
1478 1478                  if (mp->b_datap->db_ref > 1) {
1479 1479                          mblk_t  *mp1;
1480 1480  
1481 1481                          mp1 = copymsg(mp);
1482 1482                          freemsg(mp);
1483 1483                          if (!mp1) {
1484 1484                                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1485 1485                                  return (NULL);
1486 1486                          }
1487 1487                          mp = mp1;
1488 1488                          ipha = (ipha_t *)mp->b_rptr;
1489 1489                          icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1490 1490                  }
1491 1491                  icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1492 1492                  tsp = (uint32_t *)&icmph[1];
1493 1493                  tsp++;          /* Skip past 'originate time' */
1494 1494                  /* Compute # of milliseconds since midnight */
1495 1495                  gethrestime(&now);
1496 1496                  ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1497 1497                      NSEC2MSEC(now.tv_nsec);
1498 1498                  *tsp++ = htonl(ts);     /* Lay in 'receive time' */
1499 1499                  *tsp++ = htonl(ts);     /* Lay in 'send time' */
1500 1500                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1501 1501                  icmp_send_reply_v4(mp, ipha, icmph, ira);
1502 1502                  return (NULL);
1503 1503  
1504 1504          case ICMP_TIME_STAMP_REPLY:
1505 1505                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1506 1506                  break;
1507 1507          case ICMP_INFO_REQUEST:
1508 1508                  /* Per RFC 1122 3.2.2.7, ignore this. */
1509 1509          case ICMP_INFO_REPLY:
1510 1510                  break;
1511 1511          case ICMP_ADDRESS_MASK_REQUEST:
1512 1512                  if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1513 1513                          interested =
1514 1514                              ipst->ips_ip_respond_to_address_mask_broadcast;
1515 1515                  } else {
1516 1516                          interested = B_TRUE;
1517 1517                  }
1518 1518                  if (!interested) {
1519 1519                          /* We never pass these to RAW sockets */
1520 1520                          freemsg(mp);
1521 1521                          return (NULL);
1522 1522                  }
1523 1523                  len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1524 1524                  if (mp->b_wptr - mp->b_rptr < len_needed) {
1525 1525                          ipha = ip_pullup(mp, len_needed, ira);
1526 1526                          if (ipha == NULL) {
1527 1527                                  BUMP_MIB(ill->ill_ip_mib,
1528 1528                                      ipIfStatsInTruncatedPkts);
1529 1529                                  ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1530 1530                                      ill);
1531 1531                                  freemsg(mp);
1532 1532                                  return (NULL);
1533 1533                          }
1534 1534                          /* Refresh following the pullup. */
1535 1535                          icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1536 1536                  }
1537 1537                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1538 1538                  /* Check db_ref to make sure we can modify the packet. */
1539 1539                  if (mp->b_datap->db_ref > 1) {
1540 1540                          mblk_t  *mp1;
1541 1541  
1542 1542                          mp1 = copymsg(mp);
1543 1543                          freemsg(mp);
1544 1544                          if (!mp1) {
1545 1545                                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1546 1546                                  return (NULL);
1547 1547                          }
1548 1548                          mp = mp1;
1549 1549                          ipha = (ipha_t *)mp->b_rptr;
1550 1550                          icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1551 1551                  }
1552 1552                  /*
1553 1553                   * Need the ipif with the mask be the same as the source
1554 1554                   * address of the mask reply. For unicast we have a specific
1555 1555                   * ipif. For multicast/broadcast we only handle onlink
1556 1556                   * senders, and use the source address to pick an ipif.
1557 1557                   */
1558 1558                  ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1559 1559                  if (ipif == NULL) {
1560 1560                          /* Broadcast or multicast */
1561 1561                          ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1562 1562                          if (ipif == NULL) {
1563 1563                                  freemsg(mp);
1564 1564                                  return (NULL);
1565 1565                          }
1566 1566                  }
1567 1567                  icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1568 1568                  bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1569 1569                  ipif_refrele(ipif);
1570 1570                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1571 1571                  icmp_send_reply_v4(mp, ipha, icmph, ira);
1572 1572                  return (NULL);
1573 1573  
1574 1574          case ICMP_ADDRESS_MASK_REPLY:
1575 1575                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1576 1576                  break;
1577 1577          default:
1578 1578                  interested = B_TRUE;    /* Pass up to transport */
1579 1579                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1580 1580                  break;
1581 1581          }
1582 1582          /*
1583 1583           * See if there is an ICMP client to avoid an extra copymsg/freemsg
1584 1584           * if there isn't one.
1585 1585           */
1586 1586          if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1587 1587                  /* If there is an ICMP client and we want one too, copy it. */
1588 1588  
1589 1589                  if (!interested) {
1590 1590                          /* Caller will deliver to RAW sockets */
1591 1591                          return (mp);
1592 1592                  }
1593 1593                  mp_ret = copymsg(mp);
1594 1594                  if (mp_ret == NULL) {
1595 1595                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1596 1596                          ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1597 1597                  }
1598 1598          } else if (!interested) {
1599 1599                  /* Neither we nor raw sockets are interested. Drop packet now */
1600 1600                  freemsg(mp);
1601 1601                  return (NULL);
1602 1602          }
1603 1603  
1604 1604          /*
1605 1605           * ICMP error or redirect packet. Make sure we have enough of
1606 1606           * the header and that db_ref == 1 since we might end up modifying
1607 1607           * the packet.
1608 1608           */
1609 1609          if (mp->b_cont != NULL) {
1610 1610                  if (ip_pullup(mp, -1, ira) == NULL) {
1611 1611                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1612 1612                          ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1613 1613                              mp, ill);
1614 1614                          freemsg(mp);
1615 1615                          return (mp_ret);
1616 1616                  }
1617 1617          }
1618 1618  
1619 1619          if (mp->b_datap->db_ref > 1) {
1620 1620                  mblk_t  *mp1;
1621 1621  
1622 1622                  mp1 = copymsg(mp);
1623 1623                  if (mp1 == NULL) {
1624 1624                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1625 1625                          ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1626 1626                          freemsg(mp);
1627 1627                          return (mp_ret);
1628 1628                  }
1629 1629                  freemsg(mp);
1630 1630                  mp = mp1;
1631 1631          }
1632 1632  
1633 1633          /*
1634 1634           * In case mp has changed, verify the message before any further
1635 1635           * processes.
1636 1636           */
1637 1637          ipha = (ipha_t *)mp->b_rptr;
1638 1638          icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1639 1639          if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1640 1640                  freemsg(mp);
1641 1641                  return (mp_ret);
1642 1642          }
1643 1643  
1644 1644          switch (icmph->icmph_type) {
1645 1645          case ICMP_REDIRECT:
1646 1646                  icmp_redirect_v4(mp, ipha, icmph, ira);
1647 1647                  break;
1648 1648          case ICMP_DEST_UNREACHABLE:
1649 1649                  if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1650 1650                          /* Update DCE and adjust MTU is icmp header if needed */
1651 1651                          icmp_inbound_too_big_v4(icmph, ira);
1652 1652                  }
1653 1653                  /* FALLTHROUGH */
1654 1654          default:
1655 1655                  icmp_inbound_error_fanout_v4(mp, icmph, ira);
1656 1656                  break;
1657 1657          }
1658 1658          return (mp_ret);
1659 1659  }
1660 1660  
1661 1661  /*
1662 1662   * Send an ICMP echo, timestamp or address mask reply.
1663 1663   * The caller has already updated the payload part of the packet.
1664 1664   * We handle the ICMP checksum, IP source address selection and feed
1665 1665   * the packet into ip_output_simple.
1666 1666   */
1667 1667  static void
1668 1668  icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1669 1669      ip_recv_attr_t *ira)
1670 1670  {
1671 1671          uint_t          ip_hdr_length = ira->ira_ip_hdr_length;
1672 1672          ill_t           *ill = ira->ira_ill;
1673 1673          ip_stack_t      *ipst = ill->ill_ipst;
1674 1674          ip_xmit_attr_t  ixas;
1675 1675  
1676 1676          /* Send out an ICMP packet */
1677 1677          icmph->icmph_checksum = 0;
1678 1678          icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1679 1679          /* Reset time to live. */
1680 1680          ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1681 1681          {
1682 1682                  /* Swap source and destination addresses */
1683 1683                  ipaddr_t tmp;
1684 1684  
1685 1685                  tmp = ipha->ipha_src;
1686 1686                  ipha->ipha_src = ipha->ipha_dst;
1687 1687                  ipha->ipha_dst = tmp;
1688 1688          }
1689 1689          ipha->ipha_ident = 0;
1690 1690          if (!IS_SIMPLE_IPH(ipha))
1691 1691                  icmp_options_update(ipha);
1692 1692  
1693 1693          bzero(&ixas, sizeof (ixas));
1694 1694          ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1695 1695          ixas.ixa_zoneid = ira->ira_zoneid;
1696 1696          ixas.ixa_cred = kcred;
1697 1697          ixas.ixa_cpid = NOPID;
1698 1698          ixas.ixa_tsl = ira->ira_tsl;    /* Behave as a multi-level responder */
1699 1699          ixas.ixa_ifindex = 0;
1700 1700          ixas.ixa_ipst = ipst;
1701 1701          ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1702 1702  
1703 1703          if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1704 1704                  /*
1705 1705                   * This packet should go out the same way as it
1706 1706                   * came in i.e in clear, independent of the IPsec policy
1707 1707                   * for transmitting packets.
1708 1708                   */
1709 1709                  ixas.ixa_flags |= IXAF_NO_IPSEC;
1710 1710          } else {
1711 1711                  if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1712 1712                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1713 1713                          /* Note: mp already consumed and ip_drop_packet done */
1714 1714                          return;
1715 1715                  }
1716 1716          }
1717 1717          if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1718 1718                  /*
1719 1719                   * Not one or our addresses (IRE_LOCALs), thus we let
1720 1720                   * ip_output_simple pick the source.
1721 1721                   */
1722 1722                  ipha->ipha_src = INADDR_ANY;
1723 1723                  ixas.ixa_flags |= IXAF_SET_SOURCE;
1724 1724          }
1725 1725          /* Should we send with DF and use dce_pmtu? */
1726 1726          if (ipst->ips_ipv4_icmp_return_pmtu) {
1727 1727                  ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1728 1728                  ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1729 1729          }
1730 1730  
1731 1731          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1732 1732  
1733 1733          (void) ip_output_simple(mp, &ixas);
1734 1734          ixa_cleanup(&ixas);
1735 1735  }
1736 1736  
1737 1737  /*
1738 1738   * Verify the ICMP messages for either for ICMP error or redirect packet.
1739 1739   * The caller should have fully pulled up the message. If it's a redirect
1740 1740   * packet, only basic checks on IP header will be done; otherwise, verify
1741 1741   * the packet by looking at the included ULP header.
1742 1742   *
1743 1743   * Called before icmp_inbound_error_fanout_v4 is called.
1744 1744   */
1745 1745  static boolean_t
1746 1746  icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1747 1747  {
1748 1748          ill_t           *ill = ira->ira_ill;
1749 1749          int             hdr_length;
1750 1750          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1751 1751          conn_t          *connp;
1752 1752          ipha_t          *ipha;  /* Inner IP header */
1753 1753  
1754 1754          ipha = (ipha_t *)&icmph[1];
1755 1755          if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1756 1756                  goto truncated;
1757 1757  
1758 1758          hdr_length = IPH_HDR_LENGTH(ipha);
1759 1759  
1760 1760          if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1761 1761                  goto discard_pkt;
1762 1762  
1763 1763          if (hdr_length < sizeof (ipha_t))
1764 1764                  goto truncated;
1765 1765  
1766 1766          if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1767 1767                  goto truncated;
1768 1768  
1769 1769          /*
1770 1770           * Stop here for ICMP_REDIRECT.
1771 1771           */
1772 1772          if (icmph->icmph_type == ICMP_REDIRECT)
1773 1773                  return (B_TRUE);
1774 1774  
1775 1775          /*
1776 1776           * ICMP errors only.
1777 1777           */
1778 1778          switch (ipha->ipha_protocol) {
1779 1779          case IPPROTO_UDP:
1780 1780                  /*
1781 1781                   * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1782 1782                   * transport header.
1783 1783                   */
1784 1784                  if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1785 1785                      mp->b_wptr)
1786 1786                          goto truncated;
1787 1787                  break;
1788 1788          case IPPROTO_TCP: {
1789 1789                  tcpha_t         *tcpha;
1790 1790  
1791 1791                  /*
1792 1792                   * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1793 1793                   * transport header.
1794 1794                   */
1795 1795                  if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1796 1796                      mp->b_wptr)
1797 1797                          goto truncated;
1798 1798  
1799 1799                  tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1800 1800                  connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1801 1801                      ipst);
1802 1802                  if (connp == NULL)
1803 1803                          goto discard_pkt;
1804 1804  
1805 1805                  if ((connp->conn_verifyicmp != NULL) &&
1806 1806                      !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1807 1807                          CONN_DEC_REF(connp);
1808 1808                          goto discard_pkt;
1809 1809                  }
1810 1810                  CONN_DEC_REF(connp);
1811 1811                  break;
1812 1812          }
1813 1813          case IPPROTO_SCTP:
1814 1814                  /*
1815 1815                   * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1816 1816                   * transport header.
1817 1817                   */
1818 1818                  if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1819 1819                      mp->b_wptr)
1820 1820                          goto truncated;
1821 1821                  break;
1822 1822          case IPPROTO_ESP:
1823 1823          case IPPROTO_AH:
1824 1824                  break;
1825 1825          case IPPROTO_ENCAP:
1826 1826                  if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1827 1827                      mp->b_wptr)
1828 1828                          goto truncated;
1829 1829                  break;
1830 1830          default:
1831 1831                  break;
1832 1832          }
1833 1833  
1834 1834          return (B_TRUE);
1835 1835  
1836 1836  discard_pkt:
1837 1837          /* Bogus ICMP error. */
1838 1838          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1839 1839          return (B_FALSE);
1840 1840  
1841 1841  truncated:
1842 1842          /* We pulled up everthing already. Must be truncated */
1843 1843          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1844 1844          ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1845 1845          return (B_FALSE);
1846 1846  }
1847 1847  
1848 1848  /* Table from RFC 1191 */
1849 1849  static int icmp_frag_size_table[] =
1850 1850  { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1851 1851  
1852 1852  /*
1853 1853   * Process received ICMP Packet too big.
1854 1854   * Just handles the DCE create/update, including using the above table of
1855 1855   * PMTU guesses. The caller is responsible for validating the packet before
1856 1856   * passing it in and also to fanout the ICMP error to any matching transport
1857 1857   * conns. Assumes the message has been fully pulled up and verified.
1858 1858   *
1859 1859   * Before getting here, the caller has called icmp_inbound_verify_v4()
1860 1860   * that should have verified with ULP to prevent undoing the changes we're
1861 1861   * going to make to DCE. For example, TCP might have verified that the packet
1862 1862   * which generated error is in the send window.
1863 1863   *
1864 1864   * In some cases modified this MTU in the ICMP header packet; the caller
1865 1865   * should pass to the matching ULP after this returns.
1866 1866   */
1867 1867  static void
1868 1868  icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1869 1869  {
1870 1870          dce_t           *dce;
1871 1871          int             old_mtu;
1872 1872          int             mtu, orig_mtu;
1873 1873          ipaddr_t        dst;
1874 1874          boolean_t       disable_pmtud;
1875 1875          ill_t           *ill = ira->ira_ill;
1876 1876          ip_stack_t      *ipst = ill->ill_ipst;
1877 1877          uint_t          hdr_length;
1878 1878          ipha_t          *ipha;
1879 1879  
1880 1880          /* Caller already pulled up everything. */
1881 1881          ipha = (ipha_t *)&icmph[1];
1882 1882          ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1883 1883              icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1884 1884          ASSERT(ill != NULL);
1885 1885  
1886 1886          hdr_length = IPH_HDR_LENGTH(ipha);
1887 1887  
1888 1888          /*
1889 1889           * We handle path MTU for source routed packets since the DCE
1890 1890           * is looked up using the final destination.
1891 1891           */
1892 1892          dst = ip_get_dst(ipha);
1893 1893  
1894 1894          dce = dce_lookup_and_add_v4(dst, ipst);
1895 1895          if (dce == NULL) {
1896 1896                  /* Couldn't add a unique one - ENOMEM */
1897 1897                  ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1898 1898                      ntohl(dst)));
1899 1899                  return;
1900 1900          }
1901 1901  
1902 1902          /* Check for MTU discovery advice as described in RFC 1191 */
1903 1903          mtu = ntohs(icmph->icmph_du_mtu);
1904 1904          orig_mtu = mtu;
1905 1905          disable_pmtud = B_FALSE;
1906 1906  
1907 1907          mutex_enter(&dce->dce_lock);
1908 1908          if (dce->dce_flags & DCEF_PMTU)
1909 1909                  old_mtu = dce->dce_pmtu;
1910 1910          else
1911 1911                  old_mtu = ill->ill_mtu;
1912 1912  
1913 1913          if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1914 1914                  uint32_t length;
1915 1915                  int     i;
1916 1916  
1917 1917                  /*
1918 1918                   * Use the table from RFC 1191 to figure out
1919 1919                   * the next "plateau" based on the length in
1920 1920                   * the original IP packet.
1921 1921                   */
1922 1922                  length = ntohs(ipha->ipha_length);
1923 1923                  DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1924 1924                      uint32_t, length);
1925 1925                  if (old_mtu <= length &&
1926 1926                      old_mtu >= length - hdr_length) {
1927 1927                          /*
1928 1928                           * Handle broken BSD 4.2 systems that
1929 1929                           * return the wrong ipha_length in ICMP
1930 1930                           * errors.
1931 1931                           */
1932 1932                          ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1933 1933                              length, old_mtu));
1934 1934                          length -= hdr_length;
1935 1935                  }
1936 1936                  for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1937 1937                          if (length > icmp_frag_size_table[i])
1938 1938                                  break;
1939 1939                  }
1940 1940                  if (i == A_CNT(icmp_frag_size_table)) {
1941 1941                          /* Smaller than IP_MIN_MTU! */
1942 1942                          ip1dbg(("Too big for packet size %d\n",
1943 1943                              length));
1944 1944                          disable_pmtud = B_TRUE;
1945 1945                          mtu = ipst->ips_ip_pmtu_min;
1946 1946                  } else {
1947 1947                          mtu = icmp_frag_size_table[i];
1948 1948                          ip1dbg(("Calculated mtu %d, packet size %d, "
1949 1949                              "before %d\n", mtu, length, old_mtu));
1950 1950                          if (mtu < ipst->ips_ip_pmtu_min) {
1951 1951                                  mtu = ipst->ips_ip_pmtu_min;
1952 1952                                  disable_pmtud = B_TRUE;
1953 1953                          }
1954 1954                  }
1955 1955          }
1956 1956          if (disable_pmtud)
1957 1957                  dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1958 1958          else
1959 1959                  dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1960 1960  
1961 1961          dce->dce_pmtu = MIN(old_mtu, mtu);
1962 1962          /* Prepare to send the new max frag size for the ULP. */
1963 1963          icmph->icmph_du_zero = 0;
1964 1964          icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1965 1965          DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1966 1966              dce, int, orig_mtu, int, mtu);
1967 1967  
1968 1968          /* We now have a PMTU for sure */
1969 1969          dce->dce_flags |= DCEF_PMTU;
1970 1970          dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1971 1971          mutex_exit(&dce->dce_lock);
1972 1972          /*
1973 1973           * After dropping the lock the new value is visible to everyone.
1974 1974           * Then we bump the generation number so any cached values reinspect
1975 1975           * the dce_t.
1976 1976           */
1977 1977          dce_increment_generation(dce);
1978 1978          dce_refrele(dce);
1979 1979  }
1980 1980  
1981 1981  /*
1982 1982   * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1983 1983   * calls this function.
1984 1984   */
1985 1985  static mblk_t *
1986 1986  icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1987 1987  {
1988 1988          int length;
1989 1989  
1990 1990          ASSERT(mp->b_datap->db_type == M_DATA);
1991 1991  
1992 1992          /* icmp_inbound_v4 has already pulled up the whole error packet */
1993 1993          ASSERT(mp->b_cont == NULL);
1994 1994  
1995 1995          /*
1996 1996           * The length that we want to overlay is the inner header
1997 1997           * and what follows it.
1998 1998           */
1999 1999          length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2000 2000  
2001 2001          /*
2002 2002           * Overlay the inner header and whatever follows it over the
2003 2003           * outer header.
2004 2004           */
2005 2005          bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2006 2006  
2007 2007          /* Adjust for what we removed */
2008 2008          mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2009 2009          return (mp);
2010 2010  }
2011 2011  
2012 2012  /*
2013 2013   * Try to pass the ICMP message upstream in case the ULP cares.
2014 2014   *
2015 2015   * If the packet that caused the ICMP error is secure, we send
2016 2016   * it to AH/ESP to make sure that the attached packet has a
2017 2017   * valid association. ipha in the code below points to the
2018 2018   * IP header of the packet that caused the error.
2019 2019   *
2020 2020   * For IPsec cases, we let the next-layer-up (which has access to
2021 2021   * cached policy on the conn_t, or can query the SPD directly)
2022 2022   * subtract out any IPsec overhead if they must.  We therefore make no
2023 2023   * adjustments here for IPsec overhead.
2024 2024   *
2025 2025   * IFN could have been generated locally or by some router.
2026 2026   *
2027 2027   * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2028 2028   * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2029 2029   *          This happens because IP adjusted its value of MTU on an
2030 2030   *          earlier IFN message and could not tell the upper layer,
2031 2031   *          the new adjusted value of MTU e.g. Packet was encrypted
2032 2032   *          or there was not enough information to fanout to upper
2033 2033   *          layers. Thus on the next outbound datagram, ire_send_wire
2034 2034   *          generates the IFN, where IPsec processing has *not* been
2035 2035   *          done.
2036 2036   *
2037 2037   *          Note that we retain ixa_fragsize across IPsec thus once
2038 2038   *          we have picking ixa_fragsize and entered ipsec_out_process we do
2039 2039   *          no change the fragsize even if the path MTU changes before
2040 2040   *          we reach ip_output_post_ipsec.
2041 2041   *
2042 2042   *          In the local case, IRAF_LOOPBACK will be set indicating
2043 2043   *          that IFN was generated locally.
2044 2044   *
2045 2045   * ROUTER : IFN could be secure or non-secure.
2046 2046   *
2047 2047   *          * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2048 2048   *            packet in error has AH/ESP headers to validate the AH/ESP
2049 2049   *            headers. AH/ESP will verify whether there is a valid SA or
2050 2050   *            not and send it back. We will fanout again if we have more
2051 2051   *            data in the packet.
2052 2052   *
2053 2053   *            If the packet in error does not have AH/ESP, we handle it
2054 2054   *            like any other case.
2055 2055   *
2056 2056   *          * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2057 2057   *            up to AH/ESP for validation. AH/ESP will verify whether there is a
2058 2058   *            valid SA or not and send it back. We will fanout again if
2059 2059   *            we have more data in the packet.
2060 2060   *
2061 2061   *            If the packet in error does not have AH/ESP, we handle it
2062 2062   *            like any other case.
2063 2063   *
2064 2064   * The caller must have called icmp_inbound_verify_v4.
2065 2065   */
2066 2066  static void
2067 2067  icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2068 2068  {
2069 2069          uint16_t        *up;    /* Pointer to ports in ULP header */
2070 2070          uint32_t        ports;  /* reversed ports for fanout */
2071 2071          ipha_t          ripha;  /* With reversed addresses */
2072 2072          ipha_t          *ipha;  /* Inner IP header */
2073 2073          uint_t          hdr_length; /* Inner IP header length */
2074 2074          tcpha_t         *tcpha;
2075 2075          conn_t          *connp;
2076 2076          ill_t           *ill = ira->ira_ill;
2077 2077          ip_stack_t      *ipst = ill->ill_ipst;
2078 2078          ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
2079 2079          ill_t           *rill = ira->ira_rill;
2080 2080  
2081 2081          /* Caller already pulled up everything. */
2082 2082          ipha = (ipha_t *)&icmph[1];
2083 2083          ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2084 2084          ASSERT(mp->b_cont == NULL);
2085 2085  
2086 2086          hdr_length = IPH_HDR_LENGTH(ipha);
2087 2087          ira->ira_protocol = ipha->ipha_protocol;
2088 2088  
2089 2089          /*
2090 2090           * We need a separate IP header with the source and destination
2091 2091           * addresses reversed to do fanout/classification because the ipha in
2092 2092           * the ICMP error is in the form we sent it out.
2093 2093           */
2094 2094          ripha.ipha_src = ipha->ipha_dst;
2095 2095          ripha.ipha_dst = ipha->ipha_src;
2096 2096          ripha.ipha_protocol = ipha->ipha_protocol;
2097 2097          ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2098 2098  
2099 2099          ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2100 2100              ripha.ipha_protocol, ntohl(ipha->ipha_src),
2101 2101              ntohl(ipha->ipha_dst),
2102 2102              icmph->icmph_type, icmph->icmph_code));
2103 2103  
2104 2104          switch (ipha->ipha_protocol) {
2105 2105          case IPPROTO_UDP:
2106 2106                  up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2107 2107  
2108 2108                  /* Attempt to find a client stream based on port. */
2109 2109                  ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2110 2110                      ntohs(up[0]), ntohs(up[1])));
2111 2111  
2112 2112                  /* Note that we send error to all matches. */
2113 2113                  ira->ira_flags |= IRAF_ICMP_ERROR;
2114 2114                  ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2115 2115                  ira->ira_flags &= ~IRAF_ICMP_ERROR;
2116 2116                  return;
2117 2117  
2118 2118          case IPPROTO_TCP:
2119 2119                  /*
2120 2120                   * Find a TCP client stream for this packet.
2121 2121                   * Note that we do a reverse lookup since the header is
2122 2122                   * in the form we sent it out.
2123 2123                   */
2124 2124                  tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2125 2125                  connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2126 2126                      ipst);
2127 2127                  if (connp == NULL)
2128 2128                          goto discard_pkt;
2129 2129  
2130 2130                  if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2131 2131                      (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2132 2132                          mp = ipsec_check_inbound_policy(mp, connp,
2133 2133                              ipha, NULL, ira);
2134 2134                          if (mp == NULL) {
2135 2135                                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2136 2136                                  /* Note that mp is NULL */
2137 2137                                  ip_drop_input("ipIfStatsInDiscards", mp, ill);
2138 2138                                  CONN_DEC_REF(connp);
2139 2139                                  return;
2140 2140                          }
2141 2141                  }
2142 2142  
2143 2143                  ira->ira_flags |= IRAF_ICMP_ERROR;
2144 2144                  ira->ira_ill = ira->ira_rill = NULL;
2145 2145                  if (IPCL_IS_TCP(connp)) {
2146 2146                          SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2147 2147                              connp->conn_recvicmp, connp, ira, SQ_FILL,
2148 2148                              SQTAG_TCP_INPUT_ICMP_ERR);
2149 2149                  } else {
2150 2150                          /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2151 2151                          (connp->conn_recv)(connp, mp, NULL, ira);
2152 2152                          CONN_DEC_REF(connp);
2153 2153                  }
2154 2154                  ira->ira_ill = ill;
2155 2155                  ira->ira_rill = rill;
2156 2156                  ira->ira_flags &= ~IRAF_ICMP_ERROR;
2157 2157                  return;
2158 2158  
2159 2159          case IPPROTO_SCTP:
2160 2160                  up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2161 2161                  /* Find a SCTP client stream for this packet. */
2162 2162                  ((uint16_t *)&ports)[0] = up[1];
2163 2163                  ((uint16_t *)&ports)[1] = up[0];
2164 2164  
2165 2165                  ira->ira_flags |= IRAF_ICMP_ERROR;
2166 2166                  ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2167 2167                  ira->ira_flags &= ~IRAF_ICMP_ERROR;
2168 2168                  return;
2169 2169  
2170 2170          case IPPROTO_ESP:
2171 2171          case IPPROTO_AH:
2172 2172                  if (!ipsec_loaded(ipss)) {
2173 2173                          ip_proto_not_sup(mp, ira);
2174 2174                          return;
2175 2175                  }
2176 2176  
2177 2177                  if (ipha->ipha_protocol == IPPROTO_ESP)
2178 2178                          mp = ipsecesp_icmp_error(mp, ira);
2179 2179                  else
2180 2180                          mp = ipsecah_icmp_error(mp, ira);
2181 2181                  if (mp == NULL)
2182 2182                          return;
2183 2183  
2184 2184                  /* Just in case ipsec didn't preserve the NULL b_cont */
2185 2185                  if (mp->b_cont != NULL) {
2186 2186                          if (!pullupmsg(mp, -1))
2187 2187                                  goto discard_pkt;
2188 2188                  }
2189 2189  
2190 2190                  /*
2191 2191                   * Note that ira_pktlen and ira_ip_hdr_length are no longer
2192 2192                   * correct, but we don't use them any more here.
2193 2193                   *
2194 2194                   * If succesful, the mp has been modified to not include
2195 2195                   * the ESP/AH header so we can fanout to the ULP's icmp
2196 2196                   * error handler.
2197 2197                   */
2198 2198                  if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2199 2199                          goto truncated;
2200 2200  
2201 2201                  /* Verify the modified message before any further processes. */
2202 2202                  ipha = (ipha_t *)mp->b_rptr;
2203 2203                  hdr_length = IPH_HDR_LENGTH(ipha);
2204 2204                  icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2205 2205                  if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2206 2206                          freemsg(mp);
2207 2207                          return;
2208 2208                  }
2209 2209  
2210 2210                  icmp_inbound_error_fanout_v4(mp, icmph, ira);
2211 2211                  return;
2212 2212  
2213 2213          case IPPROTO_ENCAP: {
2214 2214                  /* Look for self-encapsulated packets that caused an error */
2215 2215                  ipha_t *in_ipha;
2216 2216  
2217 2217                  /*
2218 2218                   * Caller has verified that length has to be
2219 2219                   * at least the size of IP header.
2220 2220                   */
2221 2221                  ASSERT(hdr_length >= sizeof (ipha_t));
2222 2222                  /*
2223 2223                   * Check the sanity of the inner IP header like
2224 2224                   * we did for the outer header.
2225 2225                   */
2226 2226                  in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2227 2227                  if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2228 2228                          goto discard_pkt;
2229 2229                  }
2230 2230                  if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2231 2231                          goto discard_pkt;
2232 2232                  }
2233 2233                  /* Check for Self-encapsulated tunnels */
2234 2234                  if (in_ipha->ipha_src == ipha->ipha_src &&
2235 2235                      in_ipha->ipha_dst == ipha->ipha_dst) {
2236 2236  
2237 2237                          mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2238 2238                              in_ipha);
2239 2239                          if (mp == NULL)
2240 2240                                  goto discard_pkt;
2241 2241  
2242 2242                          /*
2243 2243                           * Just in case self_encap didn't preserve the NULL
2244 2244                           * b_cont
2245 2245                           */
2246 2246                          if (mp->b_cont != NULL) {
2247 2247                                  if (!pullupmsg(mp, -1))
2248 2248                                          goto discard_pkt;
2249 2249                          }
2250 2250                          /*
2251 2251                           * Note that ira_pktlen and ira_ip_hdr_length are no
2252 2252                           * longer correct, but we don't use them any more here.
2253 2253                           */
2254 2254                          if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2255 2255                                  goto truncated;
2256 2256  
2257 2257                          /*
2258 2258                           * Verify the modified message before any further
2259 2259                           * processes.
2260 2260                           */
2261 2261                          ipha = (ipha_t *)mp->b_rptr;
2262 2262                          hdr_length = IPH_HDR_LENGTH(ipha);
2263 2263                          icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2264 2264                          if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2265 2265                                  freemsg(mp);
2266 2266                                  return;
2267 2267                          }
2268 2268  
2269 2269                          /*
2270 2270                           * The packet in error is self-encapsualted.
2271 2271                           * And we are finding it further encapsulated
2272 2272                           * which we could not have possibly generated.
2273 2273                           */
2274 2274                          if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2275 2275                                  goto discard_pkt;
2276 2276                          }
2277 2277                          icmp_inbound_error_fanout_v4(mp, icmph, ira);
2278 2278                          return;
2279 2279                  }
2280 2280                  /* No self-encapsulated */
2281 2281          }
2282 2282          /* FALLTHROUGH */
2283 2283          case IPPROTO_IPV6:
2284 2284                  if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2285 2285                      &ripha.ipha_dst, ipst)) != NULL) {
2286 2286                          ira->ira_flags |= IRAF_ICMP_ERROR;
2287 2287                          connp->conn_recvicmp(connp, mp, NULL, ira);
2288 2288                          CONN_DEC_REF(connp);
2289 2289                          ira->ira_flags &= ~IRAF_ICMP_ERROR;
2290 2290                          return;
2291 2291                  }
2292 2292                  /*
2293 2293                   * No IP tunnel is interested, fallthrough and see
2294 2294                   * if a raw socket will want it.
2295 2295                   */
2296 2296                  /* FALLTHROUGH */
2297 2297          default:
2298 2298                  ira->ira_flags |= IRAF_ICMP_ERROR;
2299 2299                  ip_fanout_proto_v4(mp, &ripha, ira);
2300 2300                  ira->ira_flags &= ~IRAF_ICMP_ERROR;
2301 2301                  return;
2302 2302          }
2303 2303          /* NOTREACHED */
2304 2304  discard_pkt:
2305 2305          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2306 2306          ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2307 2307          ip_drop_input("ipIfStatsInDiscards", mp, ill);
2308 2308          freemsg(mp);
2309 2309          return;
2310 2310  
2311 2311  truncated:
2312 2312          /* We pulled up everthing already. Must be truncated */
2313 2313          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2314 2314          ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2315 2315          freemsg(mp);
2316 2316  }
2317 2317  
2318 2318  /*
2319 2319   * Common IP options parser.
2320 2320   *
2321 2321   * Setup routine: fill in *optp with options-parsing state, then
2322 2322   * tail-call ipoptp_next to return the first option.
2323 2323   */
2324 2324  uint8_t
2325 2325  ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2326 2326  {
2327 2327          uint32_t totallen; /* total length of all options */
2328 2328  
2329 2329          totallen = ipha->ipha_version_and_hdr_length -
2330 2330              (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2331 2331          totallen <<= 2;
2332 2332          optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2333 2333          optp->ipoptp_end = optp->ipoptp_next + totallen;
2334 2334          optp->ipoptp_flags = 0;
2335 2335          return (ipoptp_next(optp));
2336 2336  }
2337 2337  
2338 2338  /* Like above but without an ipha_t */
2339 2339  uint8_t
2340 2340  ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2341 2341  {
2342 2342          optp->ipoptp_next = opt;
2343 2343          optp->ipoptp_end = optp->ipoptp_next + totallen;
2344 2344          optp->ipoptp_flags = 0;
2345 2345          return (ipoptp_next(optp));
2346 2346  }
2347 2347  
2348 2348  /*
2349 2349   * Common IP options parser: extract next option.
2350 2350   */
2351 2351  uint8_t
2352 2352  ipoptp_next(ipoptp_t *optp)
2353 2353  {
2354 2354          uint8_t *end = optp->ipoptp_end;
2355 2355          uint8_t *cur = optp->ipoptp_next;
2356 2356          uint8_t opt, len, pointer;
2357 2357  
2358 2358          /*
2359 2359           * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2360 2360           * has been corrupted.
2361 2361           */
2362 2362          ASSERT(cur <= end);
2363 2363  
2364 2364          if (cur == end)
2365 2365                  return (IPOPT_EOL);
2366 2366  
2367 2367          opt = cur[IPOPT_OPTVAL];
2368 2368  
2369 2369          /*
2370 2370           * Skip any NOP options.
2371 2371           */
2372 2372          while (opt == IPOPT_NOP) {
2373 2373                  cur++;
2374 2374                  if (cur == end)
2375 2375                          return (IPOPT_EOL);
2376 2376                  opt = cur[IPOPT_OPTVAL];
2377 2377          }
2378 2378  
2379 2379          if (opt == IPOPT_EOL)
2380 2380                  return (IPOPT_EOL);
2381 2381  
2382 2382          /*
2383 2383           * Option requiring a length.
2384 2384           */
2385 2385          if ((cur + 1) >= end) {
2386 2386                  optp->ipoptp_flags |= IPOPTP_ERROR;
2387 2387                  return (IPOPT_EOL);
2388 2388          }
2389 2389          len = cur[IPOPT_OLEN];
2390 2390          if (len < 2) {
2391 2391                  optp->ipoptp_flags |= IPOPTP_ERROR;
2392 2392                  return (IPOPT_EOL);
2393 2393          }
2394 2394          optp->ipoptp_cur = cur;
2395 2395          optp->ipoptp_len = len;
2396 2396          optp->ipoptp_next = cur + len;
2397 2397          if (cur + len > end) {
2398 2398                  optp->ipoptp_flags |= IPOPTP_ERROR;
2399 2399                  return (IPOPT_EOL);
2400 2400          }
2401 2401  
2402 2402          /*
2403 2403           * For the options which require a pointer field, make sure
2404 2404           * its there, and make sure it points to either something
2405 2405           * inside this option, or the end of the option.
2406 2406           */
2407 2407          switch (opt) {
2408 2408          case IPOPT_RR:
2409 2409          case IPOPT_TS:
2410 2410          case IPOPT_LSRR:
2411 2411          case IPOPT_SSRR:
2412 2412                  if (len <= IPOPT_OFFSET) {
2413 2413                          optp->ipoptp_flags |= IPOPTP_ERROR;
2414 2414                          return (opt);
2415 2415                  }
2416 2416                  pointer = cur[IPOPT_OFFSET];
2417 2417                  if (pointer - 1 > len) {
2418 2418                          optp->ipoptp_flags |= IPOPTP_ERROR;
2419 2419                          return (opt);
2420 2420                  }
2421 2421                  break;
2422 2422          }
2423 2423  
2424 2424          /*
2425 2425           * Sanity check the pointer field based on the type of the
2426 2426           * option.
2427 2427           */
2428 2428          switch (opt) {
2429 2429          case IPOPT_RR:
2430 2430          case IPOPT_SSRR:
2431 2431          case IPOPT_LSRR:
2432 2432                  if (pointer < IPOPT_MINOFF_SR)
2433 2433                          optp->ipoptp_flags |= IPOPTP_ERROR;
2434 2434                  break;
2435 2435          case IPOPT_TS:
2436 2436                  if (pointer < IPOPT_MINOFF_IT)
2437 2437                          optp->ipoptp_flags |= IPOPTP_ERROR;
2438 2438                  /*
2439 2439                   * Note that the Internet Timestamp option also
2440 2440                   * contains two four bit fields (the Overflow field,
2441 2441                   * and the Flag field), which follow the pointer
2442 2442                   * field.  We don't need to check that these fields
2443 2443                   * fall within the length of the option because this
2444 2444                   * was implicitely done above.  We've checked that the
2445 2445                   * pointer value is at least IPOPT_MINOFF_IT, and that
2446 2446                   * it falls within the option.  Since IPOPT_MINOFF_IT >
2447 2447                   * IPOPT_POS_OV_FLG, we don't need the explicit check.
2448 2448                   */
2449 2449                  ASSERT(len > IPOPT_POS_OV_FLG);
2450 2450                  break;
2451 2451          }
2452 2452  
2453 2453          return (opt);
2454 2454  }
2455 2455  
2456 2456  /*
2457 2457   * Use the outgoing IP header to create an IP_OPTIONS option the way
2458 2458   * it was passed down from the application.
2459 2459   *
2460 2460   * This is compatible with BSD in that it returns
2461 2461   * the reverse source route with the final destination
2462 2462   * as the last entry. The first 4 bytes of the option
2463 2463   * will contain the final destination.
2464 2464   */
2465 2465  int
2466 2466  ip_opt_get_user(conn_t *connp, uchar_t *buf)
2467 2467  {
2468 2468          ipoptp_t        opts;
2469 2469          uchar_t         *opt;
2470 2470          uint8_t         optval;
2471 2471          uint8_t         optlen;
2472 2472          uint32_t        len = 0;
2473 2473          uchar_t         *buf1 = buf;
2474 2474          uint32_t        totallen;
2475 2475          ipaddr_t        dst;
2476 2476          ip_pkt_t        *ipp = &connp->conn_xmit_ipp;
2477 2477  
2478 2478          if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2479 2479                  return (0);
2480 2480  
2481 2481          totallen = ipp->ipp_ipv4_options_len;
2482 2482          if (totallen & 0x3)
2483 2483                  return (0);
2484 2484  
2485 2485          buf += IP_ADDR_LEN;     /* Leave room for final destination */
2486 2486          len += IP_ADDR_LEN;
2487 2487          bzero(buf1, IP_ADDR_LEN);
2488 2488  
2489 2489          dst = connp->conn_faddr_v4;
2490 2490  
2491 2491          for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2492 2492              optval != IPOPT_EOL;
2493 2493              optval = ipoptp_next(&opts)) {
2494 2494                  int     off;
2495 2495  
2496 2496                  opt = opts.ipoptp_cur;
2497 2497                  if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2498 2498                          break;
2499 2499                  }
2500 2500                  optlen = opts.ipoptp_len;
2501 2501  
2502 2502                  switch (optval) {
2503 2503                  case IPOPT_SSRR:
2504 2504                  case IPOPT_LSRR:
2505 2505  
2506 2506                          /*
2507 2507                           * Insert destination as the first entry in the source
2508 2508                           * route and move down the entries on step.
2509 2509                           * The last entry gets placed at buf1.
2510 2510                           */
2511 2511                          buf[IPOPT_OPTVAL] = optval;
2512 2512                          buf[IPOPT_OLEN] = optlen;
2513 2513                          buf[IPOPT_OFFSET] = optlen;
2514 2514  
2515 2515                          off = optlen - IP_ADDR_LEN;
2516 2516                          if (off < 0) {
2517 2517                                  /* No entries in source route */
2518 2518                                  break;
2519 2519                          }
2520 2520                          /* Last entry in source route if not already set */
2521 2521                          if (dst == INADDR_ANY)
2522 2522                                  bcopy(opt + off, buf1, IP_ADDR_LEN);
2523 2523                          off -= IP_ADDR_LEN;
2524 2524  
2525 2525                          while (off > 0) {
2526 2526                                  bcopy(opt + off,
2527 2527                                      buf + off + IP_ADDR_LEN,
2528 2528                                      IP_ADDR_LEN);
2529 2529                                  off -= IP_ADDR_LEN;
2530 2530                          }
2531 2531                          /* ipha_dst into first slot */
2532 2532                          bcopy(&dst, buf + off + IP_ADDR_LEN,
2533 2533                              IP_ADDR_LEN);
2534 2534                          buf += optlen;
2535 2535                          len += optlen;
2536 2536                          break;
2537 2537  
2538 2538                  default:
2539 2539                          bcopy(opt, buf, optlen);
2540 2540                          buf += optlen;
2541 2541                          len += optlen;
2542 2542                          break;
2543 2543                  }
2544 2544          }
2545 2545  done:
2546 2546          /* Pad the resulting options */
2547 2547          while (len & 0x3) {
2548 2548                  *buf++ = IPOPT_EOL;
2549 2549                  len++;
2550 2550          }
2551 2551          return (len);
2552 2552  }
2553 2553  
2554 2554  /*
2555 2555   * Update any record route or timestamp options to include this host.
2556 2556   * Reverse any source route option.
2557 2557   * This routine assumes that the options are well formed i.e. that they
2558 2558   * have already been checked.
2559 2559   */
2560 2560  static void
2561 2561  icmp_options_update(ipha_t *ipha)
2562 2562  {
2563 2563          ipoptp_t        opts;
2564 2564          uchar_t         *opt;
2565 2565          uint8_t         optval;
2566 2566          ipaddr_t        src;            /* Our local address */
2567 2567          ipaddr_t        dst;
2568 2568  
2569 2569          ip2dbg(("icmp_options_update\n"));
2570 2570          src = ipha->ipha_src;
2571 2571          dst = ipha->ipha_dst;
2572 2572  
2573 2573          for (optval = ipoptp_first(&opts, ipha);
2574 2574              optval != IPOPT_EOL;
2575 2575              optval = ipoptp_next(&opts)) {
2576 2576                  ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2577 2577                  opt = opts.ipoptp_cur;
2578 2578                  ip2dbg(("icmp_options_update: opt %d, len %d\n",
2579 2579                      optval, opts.ipoptp_len));
2580 2580                  switch (optval) {
2581 2581                          int off1, off2;
2582 2582                  case IPOPT_SSRR:
2583 2583                  case IPOPT_LSRR:
2584 2584                          /*
2585 2585                           * Reverse the source route.  The first entry
2586 2586                           * should be the next to last one in the current
2587 2587                           * source route (the last entry is our address).
2588 2588                           * The last entry should be the final destination.
2589 2589                           */
2590 2590                          off1 = IPOPT_MINOFF_SR - 1;
2591 2591                          off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2592 2592                          if (off2 < 0) {
2593 2593                                  /* No entries in source route */
2594 2594                                  ip1dbg((
2595 2595                                      "icmp_options_update: bad src route\n"));
2596 2596                                  break;
2597 2597                          }
2598 2598                          bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2599 2599                          bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2600 2600                          bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2601 2601                          off2 -= IP_ADDR_LEN;
2602 2602  
2603 2603                          while (off1 < off2) {
2604 2604                                  bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2605 2605                                  bcopy((char *)opt + off2, (char *)opt + off1,
2606 2606                                      IP_ADDR_LEN);
2607 2607                                  bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2608 2608                                  off1 += IP_ADDR_LEN;
2609 2609                                  off2 -= IP_ADDR_LEN;
2610 2610                          }
2611 2611                          opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2612 2612                          break;
2613 2613                  }
2614 2614          }
2615 2615  }
2616 2616  
2617 2617  /*
2618 2618   * Process received ICMP Redirect messages.
2619 2619   * Assumes the caller has verified that the headers are in the pulled up mblk.
2620 2620   * Consumes mp.
2621 2621   */
2622 2622  static void
2623 2623  icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2624 2624  {
2625 2625          ire_t           *ire, *nire;
2626 2626          ire_t           *prev_ire;
2627 2627          ipaddr_t        src, dst, gateway;
2628 2628          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2629 2629          ipha_t          *inner_ipha;    /* Inner IP header */
2630 2630  
2631 2631          /* Caller already pulled up everything. */
2632 2632          inner_ipha = (ipha_t *)&icmph[1];
2633 2633          src = ipha->ipha_src;
2634 2634          dst = inner_ipha->ipha_dst;
2635 2635          gateway = icmph->icmph_rd_gateway;
2636 2636          /* Make sure the new gateway is reachable somehow. */
2637 2637          ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2638 2638              ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2639 2639          /*
2640 2640           * Make sure we had a route for the dest in question and that
2641 2641           * that route was pointing to the old gateway (the source of the
2642 2642           * redirect packet.)
2643 2643           * We do longest match and then compare ire_gateway_addr below.
2644 2644           */
2645 2645          prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2646 2646              NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2647 2647          /*
2648 2648           * Check that
2649 2649           *      the redirect was not from ourselves
2650 2650           *      the new gateway and the old gateway are directly reachable
2651 2651           */
2652 2652          if (prev_ire == NULL || ire == NULL ||
2653 2653              (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2654 2654              (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2655 2655              !(ire->ire_type & IRE_IF_ALL) ||
2656 2656              prev_ire->ire_gateway_addr != src) {
2657 2657                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2658 2658                  ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2659 2659                  freemsg(mp);
2660 2660                  if (ire != NULL)
2661 2661                          ire_refrele(ire);
2662 2662                  if (prev_ire != NULL)
2663 2663                          ire_refrele(prev_ire);
2664 2664                  return;
2665 2665          }
2666 2666  
2667 2667          ire_refrele(prev_ire);
2668 2668          ire_refrele(ire);
2669 2669  
2670 2670          /*
2671 2671           * TODO: more precise handling for cases 0, 2, 3, the latter two
2672 2672           * require TOS routing
2673 2673           */
2674 2674          switch (icmph->icmph_code) {
2675 2675          case 0:
2676 2676          case 1:
2677 2677                  /* TODO: TOS specificity for cases 2 and 3 */
2678 2678          case 2:
2679 2679          case 3:
2680 2680                  break;
2681 2681          default:
2682 2682                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2683 2683                  ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2684 2684                  freemsg(mp);
2685 2685                  return;
2686 2686          }
2687 2687          /*
2688 2688           * Create a Route Association.  This will allow us to remember that
2689 2689           * someone we believe told us to use the particular gateway.
2690 2690           */
2691 2691          ire = ire_create(
2692 2692              (uchar_t *)&dst,                    /* dest addr */
2693 2693              (uchar_t *)&ip_g_all_ones,          /* mask */
2694 2694              (uchar_t *)&gateway,                /* gateway addr */
2695 2695              IRE_HOST,
2696 2696              NULL,                               /* ill */
2697 2697              ALL_ZONES,
2698 2698              (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2699 2699              NULL,                               /* tsol_gc_t */
2700 2700              ipst);
2701 2701  
2702 2702          if (ire == NULL) {
2703 2703                  freemsg(mp);
2704 2704                  return;
2705 2705          }
2706 2706          nire = ire_add(ire);
2707 2707          /* Check if it was a duplicate entry */
2708 2708          if (nire != NULL && nire != ire) {
2709 2709                  ASSERT(nire->ire_identical_ref > 1);
2710 2710                  ire_delete(nire);
2711 2711                  ire_refrele(nire);
2712 2712                  nire = NULL;
2713 2713          }
2714 2714          ire = nire;
2715 2715          if (ire != NULL) {
2716 2716                  ire_refrele(ire);               /* Held in ire_add */
2717 2717  
2718 2718                  /* tell routing sockets that we received a redirect */
2719 2719                  ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2720 2720                      (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2721 2721                      (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2722 2722          }
2723 2723  
2724 2724          /*
2725 2725           * Delete any existing IRE_HOST type redirect ires for this destination.
2726 2726           * This together with the added IRE has the effect of
2727 2727           * modifying an existing redirect.
2728 2728           */
2729 2729          prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2730 2730              ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2731 2731          if (prev_ire != NULL) {
2732 2732                  if (prev_ire ->ire_flags & RTF_DYNAMIC)
2733 2733                          ire_delete(prev_ire);
2734 2734                  ire_refrele(prev_ire);
2735 2735          }
2736 2736  
2737 2737          freemsg(mp);
2738 2738  }
2739 2739  
2740 2740  /*
2741 2741   * Generate an ICMP parameter problem message.
2742 2742   * When called from ip_output side a minimal ip_recv_attr_t needs to be
2743 2743   * constructed by the caller.
2744 2744   */
2745 2745  static void
2746 2746  icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2747 2747  {
2748 2748          icmph_t icmph;
2749 2749          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2750 2750  
2751 2751          mp = icmp_pkt_err_ok(mp, ira);
2752 2752          if (mp == NULL)
2753 2753                  return;
2754 2754  
2755 2755          bzero(&icmph, sizeof (icmph_t));
2756 2756          icmph.icmph_type = ICMP_PARAM_PROBLEM;
2757 2757          icmph.icmph_pp_ptr = ptr;
2758 2758          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2759 2759          icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2760 2760  }
2761 2761  
2762 2762  /*
2763 2763   * Build and ship an IPv4 ICMP message using the packet data in mp, and
2764 2764   * the ICMP header pointed to by "stuff".  (May be called as writer.)
2765 2765   * Note: assumes that icmp_pkt_err_ok has been called to verify that
2766 2766   * an icmp error packet can be sent.
2767 2767   * Assigns an appropriate source address to the packet. If ipha_dst is
2768 2768   * one of our addresses use it for source. Otherwise let ip_output_simple
2769 2769   * pick the source address.
2770 2770   */
2771 2771  static void
2772 2772  icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2773 2773  {
2774 2774          ipaddr_t dst;
2775 2775          icmph_t *icmph;
2776 2776          ipha_t  *ipha;
2777 2777          uint_t  len_needed;
2778 2778          size_t  msg_len;
2779 2779          mblk_t  *mp1;
2780 2780          ipaddr_t src;
2781 2781          ire_t   *ire;
2782 2782          ip_xmit_attr_t ixas;
2783 2783          ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2784 2784  
2785 2785          ipha = (ipha_t *)mp->b_rptr;
2786 2786  
2787 2787          bzero(&ixas, sizeof (ixas));
2788 2788          ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2789 2789          ixas.ixa_zoneid = ira->ira_zoneid;
2790 2790          ixas.ixa_ifindex = 0;
2791 2791          ixas.ixa_ipst = ipst;
2792 2792          ixas.ixa_cred = kcred;
2793 2793          ixas.ixa_cpid = NOPID;
2794 2794          ixas.ixa_tsl = ira->ira_tsl;    /* Behave as a multi-level responder */
2795 2795          ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2796 2796  
2797 2797          if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2798 2798                  /*
2799 2799                   * Apply IPsec based on how IPsec was applied to
2800 2800                   * the packet that had the error.
2801 2801                   *
2802 2802                   * If it was an outbound packet that caused the ICMP
2803 2803                   * error, then the caller will have setup the IRA
2804 2804                   * appropriately.
2805 2805                   */
2806 2806                  if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2807 2807                          BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2808 2808                          /* Note: mp already consumed and ip_drop_packet done */
2809 2809                          return;
2810 2810                  }
2811 2811          } else {
2812 2812                  /*
2813 2813                   * This is in clear. The icmp message we are building
2814 2814                   * here should go out in clear, independent of our policy.
2815 2815                   */
2816 2816                  ixas.ixa_flags |= IXAF_NO_IPSEC;
2817 2817          }
2818 2818  
2819 2819          /* Remember our eventual destination */
2820 2820          dst = ipha->ipha_src;
2821 2821  
2822 2822          /*
2823 2823           * If the packet was for one of our unicast addresses, make
2824 2824           * sure we respond with that as the source. Otherwise
2825 2825           * have ip_output_simple pick the source address.
2826 2826           */
2827 2827          ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2828 2828              (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2829 2829              MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2830 2830          if (ire != NULL) {
2831 2831                  ire_refrele(ire);
2832 2832                  src = ipha->ipha_dst;
2833 2833          } else {
2834 2834                  src = INADDR_ANY;
2835 2835                  ixas.ixa_flags |= IXAF_SET_SOURCE;
2836 2836          }
2837 2837  
2838 2838          /*
2839 2839           * Check if we can send back more then 8 bytes in addition to
2840 2840           * the IP header.  We try to send 64 bytes of data and the internal
2841 2841           * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2842 2842           */
2843 2843          len_needed = IPH_HDR_LENGTH(ipha);
2844 2844          if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2845 2845              ipha->ipha_protocol == IPPROTO_IPV6) {
2846 2846                  if (!pullupmsg(mp, -1)) {
2847 2847                          BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2848 2848                          ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2849 2849                          freemsg(mp);
2850 2850                          return;
2851 2851                  }
2852 2852                  ipha = (ipha_t *)mp->b_rptr;
2853 2853  
2854 2854                  if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2855 2855                          len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2856 2856                              len_needed));
2857 2857                  } else {
2858 2858                          ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2859 2859  
2860 2860                          ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2861 2861                          len_needed += ip_hdr_length_v6(mp, ip6h);
2862 2862                  }
2863 2863          }
2864 2864          len_needed += ipst->ips_ip_icmp_return;
2865 2865          msg_len = msgdsize(mp);
2866 2866          if (msg_len > len_needed) {
2867 2867                  (void) adjmsg(mp, len_needed - msg_len);
2868 2868                  msg_len = len_needed;
2869 2869          }
2870 2870          mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2871 2871          if (mp1 == NULL) {
2872 2872                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2873 2873                  freemsg(mp);
2874 2874                  return;
2875 2875          }
2876 2876          mp1->b_cont = mp;
2877 2877          mp = mp1;
2878 2878  
2879 2879          /*
2880 2880           * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2881 2881           * node generates be accepted in peace by all on-host destinations.
2882 2882           * If we do NOT assume that all on-host destinations trust
2883 2883           * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2884 2884           * (Look for IXAF_TRUSTED_ICMP).
2885 2885           */
2886 2886          ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2887 2887  
2888 2888          ipha = (ipha_t *)mp->b_rptr;
2889 2889          mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2890 2890          *ipha = icmp_ipha;
2891 2891          ipha->ipha_src = src;
2892 2892          ipha->ipha_dst = dst;
2893 2893          ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2894 2894          msg_len += sizeof (icmp_ipha) + len;
2895 2895          if (msg_len > IP_MAXPACKET) {
2896 2896                  (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2897 2897                  msg_len = IP_MAXPACKET;
2898 2898          }
2899 2899          ipha->ipha_length = htons((uint16_t)msg_len);
2900 2900          icmph = (icmph_t *)&ipha[1];
2901 2901          bcopy(stuff, icmph, len);
2902 2902          icmph->icmph_checksum = 0;
2903 2903          icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2904 2904          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2905 2905  
2906 2906          (void) ip_output_simple(mp, &ixas);
2907 2907          ixa_cleanup(&ixas);
2908 2908  }
2909 2909  
2910 2910  /*
2911 2911   * Determine if an ICMP error packet can be sent given the rate limit.
2912 2912   * The limit consists of an average frequency (icmp_pkt_err_interval measured
2913 2913   * in milliseconds) and a burst size. Burst size number of packets can
2914 2914   * be sent arbitrarely closely spaced.
2915 2915   * The state is tracked using two variables to implement an approximate
2916 2916   * token bucket filter:
2917 2917   *      icmp_pkt_err_last - lbolt value when the last burst started
2918 2918   *      icmp_pkt_err_sent - number of packets sent in current burst
2919 2919   */
2920 2920  boolean_t
2921 2921  icmp_err_rate_limit(ip_stack_t *ipst)
2922 2922  {
2923 2923          clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2924 2924          uint_t refilled; /* Number of packets refilled in tbf since last */
2925 2925          /* Guard against changes by loading into local variable */
2926 2926          uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2927 2927  
2928 2928          if (err_interval == 0)
2929 2929                  return (B_FALSE);
2930 2930  
2931 2931          if (ipst->ips_icmp_pkt_err_last > now) {
2932 2932                  /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2933 2933                  ipst->ips_icmp_pkt_err_last = 0;
2934 2934                  ipst->ips_icmp_pkt_err_sent = 0;
2935 2935          }
2936 2936          /*
2937 2937           * If we are in a burst update the token bucket filter.
2938 2938           * Update the "last" time to be close to "now" but make sure
2939 2939           * we don't loose precision.
2940 2940           */
2941 2941          if (ipst->ips_icmp_pkt_err_sent != 0) {
2942 2942                  refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2943 2943                  if (refilled > ipst->ips_icmp_pkt_err_sent) {
2944 2944                          ipst->ips_icmp_pkt_err_sent = 0;
2945 2945                  } else {
2946 2946                          ipst->ips_icmp_pkt_err_sent -= refilled;
2947 2947                          ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2948 2948                  }
2949 2949          }
2950 2950          if (ipst->ips_icmp_pkt_err_sent == 0) {
2951 2951                  /* Start of new burst */
2952 2952                  ipst->ips_icmp_pkt_err_last = now;
2953 2953          }
2954 2954          if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2955 2955                  ipst->ips_icmp_pkt_err_sent++;
2956 2956                  ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2957 2957                      ipst->ips_icmp_pkt_err_sent));
2958 2958                  return (B_FALSE);
2959 2959          }
2960 2960          ip1dbg(("icmp_err_rate_limit: dropped\n"));
2961 2961          return (B_TRUE);
2962 2962  }
2963 2963  
2964 2964  /*
2965 2965   * Check if it is ok to send an IPv4 ICMP error packet in
2966 2966   * response to the IPv4 packet in mp.
2967 2967   * Free the message and return null if no
2968 2968   * ICMP error packet should be sent.
2969 2969   */
2970 2970  static mblk_t *
2971 2971  icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2972 2972  {
2973 2973          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2974 2974          icmph_t *icmph;
2975 2975          ipha_t  *ipha;
2976 2976          uint_t  len_needed;
2977 2977  
2978 2978          if (!mp)
2979 2979                  return (NULL);
2980 2980          ipha = (ipha_t *)mp->b_rptr;
2981 2981          if (ip_csum_hdr(ipha)) {
2982 2982                  BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2983 2983                  ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2984 2984                  freemsg(mp);
2985 2985                  return (NULL);
2986 2986          }
2987 2987          if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2988 2988              ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2989 2989              CLASSD(ipha->ipha_dst) ||
2990 2990              CLASSD(ipha->ipha_src) ||
2991 2991              (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2992 2992                  /* Note: only errors to the fragment with offset 0 */
2993 2993                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2994 2994                  freemsg(mp);
2995 2995                  return (NULL);
2996 2996          }
2997 2997          if (ipha->ipha_protocol == IPPROTO_ICMP) {
2998 2998                  /*
2999 2999                   * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3000 3000                   * errors in response to any ICMP errors.
3001 3001                   */
3002 3002                  len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3003 3003                  if (mp->b_wptr - mp->b_rptr < len_needed) {
3004 3004                          if (!pullupmsg(mp, len_needed)) {
3005 3005                                  BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3006 3006                                  freemsg(mp);
3007 3007                                  return (NULL);
3008 3008                          }
3009 3009                          ipha = (ipha_t *)mp->b_rptr;
3010 3010                  }
3011 3011                  icmph = (icmph_t *)
3012 3012                      (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3013 3013                  switch (icmph->icmph_type) {
3014 3014                  case ICMP_DEST_UNREACHABLE:
3015 3015                  case ICMP_SOURCE_QUENCH:
3016 3016                  case ICMP_TIME_EXCEEDED:
3017 3017                  case ICMP_PARAM_PROBLEM:
3018 3018                  case ICMP_REDIRECT:
3019 3019                          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3020 3020                          freemsg(mp);
3021 3021                          return (NULL);
3022 3022                  default:
3023 3023                          break;
3024 3024                  }
3025 3025          }
3026 3026          /*
3027 3027           * If this is a labeled system, then check to see if we're allowed to
3028 3028           * send a response to this particular sender.  If not, then just drop.
3029 3029           */
3030 3030          if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3031 3031                  ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3032 3032                  BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3033 3033                  freemsg(mp);
3034 3034                  return (NULL);
3035 3035          }
3036 3036          if (icmp_err_rate_limit(ipst)) {
3037 3037                  /*
3038 3038                   * Only send ICMP error packets every so often.
3039 3039                   * This should be done on a per port/source basis,
3040 3040                   * but for now this will suffice.
3041 3041                   */
3042 3042                  freemsg(mp);
3043 3043                  return (NULL);
3044 3044          }
3045 3045          return (mp);
3046 3046  }
3047 3047  
3048 3048  /*
3049 3049   * Called when a packet was sent out the same link that it arrived on.
3050 3050   * Check if it is ok to send a redirect and then send it.
3051 3051   */
3052 3052  void
3053 3053  ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3054 3054      ip_recv_attr_t *ira)
3055 3055  {
3056 3056          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
3057 3057          ipaddr_t        src, nhop;
3058 3058          mblk_t          *mp1;
3059 3059          ire_t           *nhop_ire;
3060 3060  
3061 3061          /*
3062 3062           * Check the source address to see if it originated
3063 3063           * on the same logical subnet it is going back out on.
3064 3064           * If so, we should be able to send it a redirect.
3065 3065           * Avoid sending a redirect if the destination
3066 3066           * is directly connected (i.e., we matched an IRE_ONLINK),
3067 3067           * or if the packet was source routed out this interface.
3068 3068           *
3069 3069           * We avoid sending a redirect if the
3070 3070           * destination is directly connected
3071 3071           * because it is possible that multiple
3072 3072           * IP subnets may have been configured on
3073 3073           * the link, and the source may not
3074 3074           * be on the same subnet as ip destination,
3075 3075           * even though they are on the same
3076 3076           * physical link.
3077 3077           */
3078 3078          if ((ire->ire_type & IRE_ONLINK) ||
3079 3079              ip_source_routed(ipha, ipst))
3080 3080                  return;
3081 3081  
3082 3082          nhop_ire = ire_nexthop(ire);
3083 3083          if (nhop_ire == NULL)
3084 3084                  return;
3085 3085  
3086 3086          nhop = nhop_ire->ire_addr;
3087 3087  
3088 3088          if (nhop_ire->ire_type & IRE_IF_CLONE) {
3089 3089                  ire_t   *ire2;
3090 3090  
3091 3091                  /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3092 3092                  mutex_enter(&nhop_ire->ire_lock);
3093 3093                  ire2 = nhop_ire->ire_dep_parent;
3094 3094                  if (ire2 != NULL)
3095 3095                          ire_refhold(ire2);
3096 3096                  mutex_exit(&nhop_ire->ire_lock);
3097 3097                  ire_refrele(nhop_ire);
3098 3098                  nhop_ire = ire2;
3099 3099          }
3100 3100          if (nhop_ire == NULL)
3101 3101                  return;
3102 3102  
3103 3103          ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3104 3104  
3105 3105          src = ipha->ipha_src;
3106 3106  
3107 3107          /*
3108 3108           * We look at the interface ire for the nexthop,
3109 3109           * to see if ipha_src is in the same subnet
3110 3110           * as the nexthop.
3111 3111           */
3112 3112          if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3113 3113                  /*
3114 3114                   * The source is directly connected.
3115 3115                   */
3116 3116                  mp1 = copymsg(mp);
3117 3117                  if (mp1 != NULL) {
3118 3118                          icmp_send_redirect(mp1, nhop, ira);
3119 3119                  }
3120 3120          }
3121 3121          ire_refrele(nhop_ire);
3122 3122  }
3123 3123  
3124 3124  /*
3125 3125   * Generate an ICMP redirect message.
3126 3126   */
3127 3127  static void
3128 3128  icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3129 3129  {
3130 3130          icmph_t icmph;
3131 3131          ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3132 3132  
3133 3133          mp = icmp_pkt_err_ok(mp, ira);
3134 3134          if (mp == NULL)
3135 3135                  return;
3136 3136  
3137 3137          bzero(&icmph, sizeof (icmph_t));
3138 3138          icmph.icmph_type = ICMP_REDIRECT;
3139 3139          icmph.icmph_code = 1;
3140 3140          icmph.icmph_rd_gateway = gateway;
3141 3141          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3142 3142          icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3143 3143  }
3144 3144  
3145 3145  /*
3146 3146   * Generate an ICMP time exceeded message.
3147 3147   */
3148 3148  void
3149 3149  icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3150 3150  {
3151 3151          icmph_t icmph;
3152 3152          ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3153 3153  
3154 3154          mp = icmp_pkt_err_ok(mp, ira);
3155 3155          if (mp == NULL)
3156 3156                  return;
3157 3157  
3158 3158          bzero(&icmph, sizeof (icmph_t));
3159 3159          icmph.icmph_type = ICMP_TIME_EXCEEDED;
3160 3160          icmph.icmph_code = code;
3161 3161          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3162 3162          icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3163 3163  }
3164 3164  
3165 3165  /*
3166 3166   * Generate an ICMP unreachable message.
3167 3167   * When called from ip_output side a minimal ip_recv_attr_t needs to be
3168 3168   * constructed by the caller.
3169 3169   */
3170 3170  void
3171 3171  icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3172 3172  {
3173 3173          icmph_t icmph;
3174 3174          ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3175 3175  
3176 3176          mp = icmp_pkt_err_ok(mp, ira);
3177 3177          if (mp == NULL)
3178 3178                  return;
3179 3179  
3180 3180          bzero(&icmph, sizeof (icmph_t));
3181 3181          icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3182 3182          icmph.icmph_code = code;
3183 3183          BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3184 3184          icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3185 3185  }
3186 3186  
3187 3187  /*
3188 3188   * Latch in the IPsec state for a stream based the policy in the listener
3189 3189   * and the actions in the ip_recv_attr_t.
3190 3190   * Called directly from TCP and SCTP.
3191 3191   */
3192 3192  boolean_t
3193 3193  ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3194 3194  {
3195 3195          ASSERT(lconnp->conn_policy != NULL);
3196 3196          ASSERT(connp->conn_policy == NULL);
3197 3197  
3198 3198          IPPH_REFHOLD(lconnp->conn_policy);
3199 3199          connp->conn_policy = lconnp->conn_policy;
3200 3200  
3201 3201          if (ira->ira_ipsec_action != NULL) {
3202 3202                  if (connp->conn_latch == NULL) {
3203 3203                          connp->conn_latch = iplatch_create();
3204 3204                          if (connp->conn_latch == NULL)
3205 3205                                  return (B_FALSE);
3206 3206                  }
3207 3207                  ipsec_latch_inbound(connp, ira);
3208 3208          }
3209 3209          return (B_TRUE);
3210 3210  }
3211 3211  
3212 3212  /*
3213 3213   * Verify whether or not the IP address is a valid local address.
3214 3214   * Could be a unicast, including one for a down interface.
3215 3215   * If allow_mcbc then a multicast or broadcast address is also
3216 3216   * acceptable.
3217 3217   *
3218 3218   * In the case of a broadcast/multicast address, however, the
3219 3219   * upper protocol is expected to reset the src address
3220 3220   * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3221 3221   * no packets are emitted with broadcast/multicast address as
3222 3222   * source address (that violates hosts requirements RFC 1122)
3223 3223   * The addresses valid for bind are:
3224 3224   *      (1) - INADDR_ANY (0)
3225 3225   *      (2) - IP address of an UP interface
3226 3226   *      (3) - IP address of a DOWN interface
3227 3227   *      (4) - valid local IP broadcast addresses. In this case
3228 3228   *      the conn will only receive packets destined to
3229 3229   *      the specified broadcast address.
3230 3230   *      (5) - a multicast address. In this case
3231 3231   *      the conn will only receive packets destined to
3232 3232   *      the specified multicast address. Note: the
3233 3233   *      application still has to issue an
3234 3234   *      IP_ADD_MEMBERSHIP socket option.
3235 3235   *
3236 3236   * In all the above cases, the bound address must be valid in the current zone.
3237 3237   * When the address is loopback, multicast or broadcast, there might be many
3238 3238   * matching IREs so bind has to look up based on the zone.
3239 3239   */
3240 3240  ip_laddr_t
3241 3241  ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3242 3242      ip_stack_t *ipst, boolean_t allow_mcbc)
3243 3243  {
3244 3244          ire_t *src_ire;
3245 3245  
3246 3246          ASSERT(src_addr != INADDR_ANY);
3247 3247  
3248 3248          src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3249 3249              NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3250 3250  
3251 3251          /*
3252 3252           * If an address other than in6addr_any is requested,
3253 3253           * we verify that it is a valid address for bind
3254 3254           * Note: Following code is in if-else-if form for
3255 3255           * readability compared to a condition check.
3256 3256           */
3257 3257          if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3258 3258                  /*
3259 3259                   * (2) Bind to address of local UP interface
3260 3260                   */
3261 3261                  ire_refrele(src_ire);
3262 3262                  return (IPVL_UNICAST_UP);
3263 3263          } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3264 3264                  /*
3265 3265                   * (4) Bind to broadcast address
3266 3266                   */
3267 3267                  ire_refrele(src_ire);
3268 3268                  if (allow_mcbc)
3269 3269                          return (IPVL_BCAST);
3270 3270                  else
3271 3271                          return (IPVL_BAD);
3272 3272          } else if (CLASSD(src_addr)) {
3273 3273                  /* (5) bind to multicast address. */
3274 3274                  if (src_ire != NULL)
3275 3275                          ire_refrele(src_ire);
3276 3276  
3277 3277                  if (allow_mcbc)
3278 3278                          return (IPVL_MCAST);
3279 3279                  else
3280 3280                          return (IPVL_BAD);
3281 3281          } else {
3282 3282                  ipif_t *ipif;
3283 3283  
3284 3284                  /*
3285 3285                   * (3) Bind to address of local DOWN interface?
3286 3286                   * (ipif_lookup_addr() looks up all interfaces
3287 3287                   * but we do not get here for UP interfaces
3288 3288                   * - case (2) above)
3289 3289                   */
3290 3290                  if (src_ire != NULL)
3291 3291                          ire_refrele(src_ire);
3292 3292  
3293 3293                  ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3294 3294                  if (ipif == NULL)
3295 3295                          return (IPVL_BAD);
3296 3296  
3297 3297                  /* Not a useful source? */
3298 3298                  if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3299 3299                          ipif_refrele(ipif);
3300 3300                          return (IPVL_BAD);
3301 3301                  }
3302 3302                  ipif_refrele(ipif);
3303 3303                  return (IPVL_UNICAST_DOWN);
3304 3304          }
3305 3305  }
3306 3306  
3307 3307  /*
3308 3308   * Insert in the bind fanout for IPv4 and IPv6.
3309 3309   * The caller should already have used ip_laddr_verify_v*() before calling
3310 3310   * this.
3311 3311   */
3312 3312  int
3313 3313  ip_laddr_fanout_insert(conn_t *connp)
3314 3314  {
3315 3315          int             error;
3316 3316  
3317 3317          /*
3318 3318           * Allow setting new policies. For example, disconnects result
3319 3319           * in us being called. As we would have set conn_policy_cached
3320 3320           * to B_TRUE before, we should set it to B_FALSE, so that policy
3321 3321           * can change after the disconnect.
3322 3322           */
3323 3323          connp->conn_policy_cached = B_FALSE;
3324 3324  
3325 3325          error = ipcl_bind_insert(connp);
3326 3326          if (error != 0) {
3327 3327                  if (connp->conn_anon_port) {
3328 3328                          (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3329 3329                              connp->conn_mlp_type, connp->conn_proto,
3330 3330                              ntohs(connp->conn_lport), B_FALSE);
3331 3331                  }
3332 3332                  connp->conn_mlp_type = mlptSingle;
3333 3333          }
3334 3334          return (error);
3335 3335  }
3336 3336  
3337 3337  /*
3338 3338   * Verify that both the source and destination addresses are valid. If
3339 3339   * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3340 3340   * i.e. have no route to it.  Protocols like TCP want to verify destination
3341 3341   * reachability, while tunnels do not.
3342 3342   *
3343 3343   * Determine the route, the interface, and (optionally) the source address
3344 3344   * to use to reach a given destination.
3345 3345   * Note that we allow connect to broadcast and multicast addresses when
3346 3346   * IPDF_ALLOW_MCBC is set.
3347 3347   * first_hop and dst_addr are normally the same, but if source routing
3348 3348   * they will differ; in that case the first_hop is what we'll use for the
3349 3349   * routing lookup but the dce and label checks will be done on dst_addr,
3350 3350   *
3351 3351   * If uinfo is set, then we fill in the best available information
3352 3352   * we have for the destination. This is based on (in priority order) any
3353 3353   * metrics and path MTU stored in a dce_t, route metrics, and finally the
3354 3354   * ill_mtu/ill_mc_mtu.
3355 3355   *
3356 3356   * Tsol note: If we have a source route then dst_addr != firsthop. But we
3357 3357   * always do the label check on dst_addr.
3358 3358   */
3359 3359  int
3360 3360  ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3361 3361      ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3362 3362  {
3363 3363          ire_t           *ire = NULL;
3364 3364          int             error = 0;
3365 3365          ipaddr_t        setsrc;                         /* RTF_SETSRC */
3366 3366          zoneid_t        zoneid = ixa->ixa_zoneid;       /* Honors SO_ALLZONES */
3367 3367          ip_stack_t      *ipst = ixa->ixa_ipst;
3368 3368          dce_t           *dce;
3369 3369          uint_t          pmtu;
3370 3370          uint_t          generation;
3371 3371          nce_t           *nce;
3372 3372          ill_t           *ill = NULL;
3373 3373          boolean_t       multirt = B_FALSE;
3374 3374  
3375 3375          ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3376 3376  
3377 3377          /*
3378 3378           * We never send to zero; the ULPs map it to the loopback address.
3379 3379           * We can't allow it since we use zero to mean unitialized in some
3380 3380           * places.
3381 3381           */
3382 3382          ASSERT(dst_addr != INADDR_ANY);
3383 3383  
3384 3384          if (is_system_labeled()) {
3385 3385                  ts_label_t *tsl = NULL;
3386 3386  
3387 3387                  error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3388 3388                      mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3389 3389                  if (error != 0)
3390 3390                          return (error);
3391 3391                  if (tsl != NULL) {
3392 3392                          /* Update the label */
3393 3393                          ip_xmit_attr_replace_tsl(ixa, tsl);
3394 3394                  }
3395 3395          }
3396 3396  
3397 3397          setsrc = INADDR_ANY;
3398 3398          /*
3399 3399           * Select a route; For IPMP interfaces, we would only select
3400 3400           * a "hidden" route (i.e., going through a specific under_ill)
3401 3401           * if ixa_ifindex has been specified.
3402 3402           */
3403 3403          ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3404 3404              &generation, &setsrc, &error, &multirt);
3405 3405          ASSERT(ire != NULL);    /* IRE_NOROUTE if none found */
3406 3406          if (error != 0)
3407 3407                  goto bad_addr;
3408 3408  
3409 3409          /*
3410 3410           * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3411 3411           * If IPDF_VERIFY_DST is set, the destination must be reachable;
3412 3412           * Otherwise the destination needn't be reachable.
3413 3413           *
3414 3414           * If we match on a reject or black hole, then we've got a
3415 3415           * local failure.  May as well fail out the connect() attempt,
3416 3416           * since it's never going to succeed.
3417 3417           */
3418 3418          if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3419 3419                  /*
3420 3420                   * If we're verifying destination reachability, we always want
3421 3421                   * to complain here.
3422 3422                   *
3423 3423                   * If we're not verifying destination reachability but the
3424 3424                   * destination has a route, we still want to fail on the
3425 3425                   * temporary address and broadcast address tests.
3426 3426                   *
3427 3427                   * In both cases do we let the code continue so some reasonable
3428 3428                   * information is returned to the caller. That enables the
3429 3429                   * caller to use (and even cache) the IRE. conn_ip_ouput will
3430 3430                   * use the generation mismatch path to check for the unreachable
3431 3431                   * case thereby avoiding any specific check in the main path.
3432 3432                   */
3433 3433                  ASSERT(generation == IRE_GENERATION_VERIFY);
3434 3434                  if (flags & IPDF_VERIFY_DST) {
3435 3435                          /*
3436 3436                           * Set errno but continue to set up ixa_ire to be
3437 3437                           * the RTF_REJECT|RTF_BLACKHOLE IRE.
3438 3438                           * That allows callers to use ip_output to get an
3439 3439                           * ICMP error back.
3440 3440                           */
3441 3441                          if (!(ire->ire_type & IRE_HOST))
3442 3442                                  error = ENETUNREACH;
3443 3443                          else
3444 3444                                  error = EHOSTUNREACH;
3445 3445                  }
3446 3446          }
3447 3447  
3448 3448          if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3449 3449              !(flags & IPDF_ALLOW_MCBC)) {
3450 3450                  ire_refrele(ire);
3451 3451                  ire = ire_reject(ipst, B_FALSE);
3452 3452                  generation = IRE_GENERATION_VERIFY;
3453 3453                  error = ENETUNREACH;
3454 3454          }
3455 3455  
3456 3456          /* Cache things */
3457 3457          if (ixa->ixa_ire != NULL)
3458 3458                  ire_refrele_notr(ixa->ixa_ire);
3459 3459  #ifdef DEBUG
3460 3460          ire_refhold_notr(ire);
3461 3461          ire_refrele(ire);
3462 3462  #endif
3463 3463          ixa->ixa_ire = ire;
3464 3464          ixa->ixa_ire_generation = generation;
3465 3465  
3466 3466          /*
3467 3467           * Ensure that ixa_dce is always set any time that ixa_ire is set,
3468 3468           * since some callers will send a packet to conn_ip_output() even if
3469 3469           * there's an error.
3470 3470           */
3471 3471          if (flags & IPDF_UNIQUE_DCE) {
3472 3472                  /* Fallback to the default dce if allocation fails */
3473 3473                  dce = dce_lookup_and_add_v4(dst_addr, ipst);
3474 3474                  if (dce != NULL)
3475 3475                          generation = dce->dce_generation;
3476 3476                  else
3477 3477                          dce = dce_lookup_v4(dst_addr, ipst, &generation);
3478 3478          } else {
3479 3479                  dce = dce_lookup_v4(dst_addr, ipst, &generation);
3480 3480          }
3481 3481          ASSERT(dce != NULL);
3482 3482          if (ixa->ixa_dce != NULL)
3483 3483                  dce_refrele_notr(ixa->ixa_dce);
3484 3484  #ifdef DEBUG
3485 3485          dce_refhold_notr(dce);
3486 3486          dce_refrele(dce);
3487 3487  #endif
3488 3488          ixa->ixa_dce = dce;
3489 3489          ixa->ixa_dce_generation = generation;
3490 3490  
3491 3491          /*
3492 3492           * For multicast with multirt we have a flag passed back from
3493 3493           * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3494 3494           * possible multicast address.
3495 3495           * We also need a flag for multicast since we can't check
3496 3496           * whether RTF_MULTIRT is set in ixa_ire for multicast.
3497 3497           */
3498 3498          if (multirt) {
3499 3499                  ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3500 3500                  ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3501 3501          } else {
3502 3502                  ixa->ixa_postfragfn = ire->ire_postfragfn;
3503 3503                  ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3504 3504          }
3505 3505          if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3506 3506                  /* Get an nce to cache. */
3507 3507                  nce = ire_to_nce(ire, firsthop, NULL);
3508 3508                  if (nce == NULL) {
3509 3509                          /* Allocation failure? */
3510 3510                          ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3511 3511                  } else {
3512 3512                          if (ixa->ixa_nce != NULL)
3513 3513                                  nce_refrele(ixa->ixa_nce);
3514 3514                          ixa->ixa_nce = nce;
3515 3515                  }
3516 3516          }
3517 3517  
3518 3518          /*
3519 3519           * If the source address is a loopback address, the
3520 3520           * destination had best be local or multicast.
3521 3521           * If we are sending to an IRE_LOCAL using a loopback source then
3522 3522           * it had better be the same zoneid.
3523 3523           */
3524 3524          if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3525 3525                  if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3526 3526                          ire = NULL;     /* Stored in ixa_ire */
3527 3527                          error = EADDRNOTAVAIL;
3528 3528                          goto bad_addr;
3529 3529                  }
3530 3530                  if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3531 3531                          ire = NULL;     /* Stored in ixa_ire */
3532 3532                          error = EADDRNOTAVAIL;
3533 3533                          goto bad_addr;
3534 3534                  }
3535 3535          }
3536 3536          if (ire->ire_type & IRE_BROADCAST) {
3537 3537                  /*
3538 3538                   * If the ULP didn't have a specified source, then we
3539 3539                   * make sure we reselect the source when sending
3540 3540                   * broadcasts out different interfaces.
3541 3541                   */
3542 3542                  if (flags & IPDF_SELECT_SRC)
3543 3543                          ixa->ixa_flags |= IXAF_SET_SOURCE;
3544 3544                  else
3545 3545                          ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3546 3546          }
3547 3547  
3548 3548          /*
3549 3549           * Does the caller want us to pick a source address?
3550 3550           */
3551 3551          if (flags & IPDF_SELECT_SRC) {
3552 3552                  ipaddr_t        src_addr;
3553 3553  
3554 3554                  /*
3555 3555                   * We use use ire_nexthop_ill to avoid the under ipmp
3556 3556                   * interface for source address selection. Note that for ipmp
3557 3557                   * probe packets, ixa_ifindex would have been specified, and
3558 3558                   * the ip_select_route() invocation would have picked an ire
3559 3559                   * will ire_ill pointing at an under interface.
3560 3560                   */
3561 3561                  ill = ire_nexthop_ill(ire);
3562 3562  
3563 3563                  /* If unreachable we have no ill but need some source */
3564 3564                  if (ill == NULL) {
3565 3565                          src_addr = htonl(INADDR_LOOPBACK);
3566 3566                          /* Make sure we look for a better source address */
3567 3567                          generation = SRC_GENERATION_VERIFY;
3568 3568                  } else {
3569 3569                          error = ip_select_source_v4(ill, setsrc, dst_addr,
3570 3570                              ixa->ixa_multicast_ifaddr, zoneid,
3571 3571                              ipst, &src_addr, &generation, NULL);
3572 3572                          if (error != 0) {
3573 3573                                  ire = NULL;     /* Stored in ixa_ire */
3574 3574                                  goto bad_addr;
3575 3575                          }
3576 3576                  }
3577 3577  
3578 3578                  /*
3579 3579                   * We allow the source address to to down.
3580 3580                   * However, we check that we don't use the loopback address
3581 3581                   * as a source when sending out on the wire.
3582 3582                   */
3583 3583                  if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3584 3584                      !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3585 3585                      !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3586 3586                          ire = NULL;     /* Stored in ixa_ire */
3587 3587                          error = EADDRNOTAVAIL;
3588 3588                          goto bad_addr;
3589 3589                  }
3590 3590  
3591 3591                  *src_addrp = src_addr;
3592 3592                  ixa->ixa_src_generation = generation;
3593 3593          }
3594 3594  
3595 3595          /*
3596 3596           * Make sure we don't leave an unreachable ixa_nce in place
3597 3597           * since ip_select_route is used when we unplumb i.e., remove
3598 3598           * references on ixa_ire, ixa_nce, and ixa_dce.
3599 3599           */
3600 3600          nce = ixa->ixa_nce;
3601 3601          if (nce != NULL && nce->nce_is_condemned) {
3602 3602                  nce_refrele(nce);
3603 3603                  ixa->ixa_nce = NULL;
3604 3604                  ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3605 3605          }
3606 3606  
3607 3607          /*
3608 3608           * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3609 3609           * However, we can't do it for IPv4 multicast or broadcast.
3610 3610           */
3611 3611          if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3612 3612                  ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3613 3613  
3614 3614          /*
3615 3615           * Set initial value for fragmentation limit. Either conn_ip_output
3616 3616           * or ULP might updates it when there are routing changes.
3617 3617           * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3618 3618           */
3619 3619          pmtu = ip_get_pmtu(ixa);
3620 3620          ixa->ixa_fragsize = pmtu;
3621 3621          /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3622 3622          if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3623 3623                  ixa->ixa_pmtu = pmtu;
3624 3624  
3625 3625          /*
3626 3626           * Extract information useful for some transports.
3627 3627           * First we look for DCE metrics. Then we take what we have in
3628 3628           * the metrics in the route, where the offlink is used if we have
3629 3629           * one.
3630 3630           */
3631 3631          if (uinfo != NULL) {
3632 3632                  bzero(uinfo, sizeof (*uinfo));
3633 3633  
3634 3634                  if (dce->dce_flags & DCEF_UINFO)
3635 3635                          *uinfo = dce->dce_uinfo;
3636 3636  
3637 3637                  rts_merge_metrics(uinfo, &ire->ire_metrics);
3638 3638  
3639 3639                  /* Allow ire_metrics to decrease the path MTU from above */
3640 3640                  if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3641 3641                          uinfo->iulp_mtu = pmtu;
3642 3642  
3643 3643                  uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3644 3644                  uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3645 3645                  uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3646 3646          }
3647 3647  
3648 3648          if (ill != NULL)
3649 3649                  ill_refrele(ill);
3650 3650  
3651 3651          return (error);
3652 3652  
3653 3653  bad_addr:
3654 3654          if (ire != NULL)
3655 3655                  ire_refrele(ire);
3656 3656  
3657 3657          if (ill != NULL)
3658 3658                  ill_refrele(ill);
3659 3659  
3660 3660          /*
3661 3661           * Make sure we don't leave an unreachable ixa_nce in place
3662 3662           * since ip_select_route is used when we unplumb i.e., remove
3663 3663           * references on ixa_ire, ixa_nce, and ixa_dce.
3664 3664           */
3665 3665          nce = ixa->ixa_nce;
3666 3666          if (nce != NULL && nce->nce_is_condemned) {
3667 3667                  nce_refrele(nce);
3668 3668                  ixa->ixa_nce = NULL;
3669 3669                  ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3670 3670          }
3671 3671  
3672 3672          return (error);
3673 3673  }
3674 3674  
3675 3675  
3676 3676  /*
3677 3677   * Get the base MTU for the case when path MTU discovery is not used.
3678 3678   * Takes the MTU of the IRE into account.
3679 3679   */
3680 3680  uint_t
3681 3681  ip_get_base_mtu(ill_t *ill, ire_t *ire)
3682 3682  {
3683 3683          uint_t mtu;
3684 3684          uint_t iremtu = ire->ire_metrics.iulp_mtu;
3685 3685  
3686 3686          if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3687 3687                  mtu = ill->ill_mc_mtu;
3688 3688          else
3689 3689                  mtu = ill->ill_mtu;
3690 3690  
3691 3691          if (iremtu != 0 && iremtu < mtu)
3692 3692                  mtu = iremtu;
3693 3693  
3694 3694          return (mtu);
3695 3695  }
3696 3696  
3697 3697  /*
3698 3698   * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3699 3699   * Assumes that ixa_ire, dce, and nce have already been set up.
3700 3700   *
3701 3701   * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3702 3702   * We avoid path MTU discovery if it is disabled with ndd.
3703 3703   * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3704 3704   *
3705 3705   * NOTE: We also used to turn it off for source routed packets. That
3706 3706   * is no longer required since the dce is per final destination.
3707 3707   */
3708 3708  uint_t
3709 3709  ip_get_pmtu(ip_xmit_attr_t *ixa)
3710 3710  {
3711 3711          ip_stack_t      *ipst = ixa->ixa_ipst;
3712 3712          dce_t           *dce;
3713 3713          nce_t           *nce;
3714 3714          ire_t           *ire;
3715 3715          uint_t          pmtu;
3716 3716  
3717 3717          ire = ixa->ixa_ire;
3718 3718          dce = ixa->ixa_dce;
3719 3719          nce = ixa->ixa_nce;
3720 3720  
3721 3721          /*
3722 3722           * If path MTU discovery has been turned off by ndd, then we ignore
3723 3723           * any dce_pmtu and for IPv4 we will not set DF.
3724 3724           */
3725 3725          if (!ipst->ips_ip_path_mtu_discovery)
3726 3726                  ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3727 3727  
3728 3728          pmtu = IP_MAXPACKET;
3729 3729          /*
3730 3730           * Decide whether whether IPv4 sets DF
3731 3731           * For IPv6 "no DF" means to use the 1280 mtu
3732 3732           */
3733 3733          if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3734 3734                  ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3735 3735          } else {
3736 3736                  ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3737 3737                  if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3738 3738                          pmtu = IPV6_MIN_MTU;
3739 3739          }
3740 3740  
3741 3741          /* Check if the PMTU is to old before we use it */
3742 3742          if ((dce->dce_flags & DCEF_PMTU) &&
3743 3743              TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3744 3744              ipst->ips_ip_pathmtu_interval) {
3745 3745                  /*
3746 3746                   * Older than 20 minutes. Drop the path MTU information.
3747 3747                   */
3748 3748                  mutex_enter(&dce->dce_lock);
3749 3749                  dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3750 3750                  dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3751 3751                  mutex_exit(&dce->dce_lock);
3752 3752                  dce_increment_generation(dce);
3753 3753          }
3754 3754  
3755 3755          /* The metrics on the route can lower the path MTU */
3756 3756          if (ire->ire_metrics.iulp_mtu != 0 &&
3757 3757              ire->ire_metrics.iulp_mtu < pmtu)
3758 3758                  pmtu = ire->ire_metrics.iulp_mtu;
3759 3759  
3760 3760          /*
3761 3761           * If the path MTU is smaller than some minimum, we still use dce_pmtu
3762 3762           * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3763 3763           * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3764 3764           */
3765 3765          if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3766 3766                  if (dce->dce_flags & DCEF_PMTU) {
3767 3767                          if (dce->dce_pmtu < pmtu)
3768 3768                                  pmtu = dce->dce_pmtu;
3769 3769  
3770 3770                          if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3771 3771                                  ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3772 3772                                  ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3773 3773                          } else {
3774 3774                                  ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3775 3775                                  ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3776 3776                          }
3777 3777                  } else {
3778 3778                          ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3779 3779                          ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3780 3780                  }
3781 3781          }
3782 3782  
3783 3783          /*
3784 3784           * If we have an IRE_LOCAL we use the loopback mtu instead of
3785 3785           * the ill for going out the wire i.e., IRE_LOCAL gets the same
3786 3786           * mtu as IRE_LOOPBACK.
3787 3787           */
3788 3788          if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3789 3789                  uint_t loopback_mtu;
3790 3790  
3791 3791                  loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3792 3792                      ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3793 3793  
3794 3794                  if (loopback_mtu < pmtu)
3795 3795                          pmtu = loopback_mtu;
3796 3796          } else if (nce != NULL) {
3797 3797                  /*
3798 3798                   * Make sure we don't exceed the interface MTU.
3799 3799                   * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3800 3800                   * an ill. We'd use the above IP_MAXPACKET in that case just
3801 3801                   * to tell the transport something larger than zero.
3802 3802                   */
3803 3803                  if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3804 3804                          if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3805 3805                                  pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3806 3806                          if (nce->nce_common->ncec_ill != nce->nce_ill &&
3807 3807                              nce->nce_ill->ill_mc_mtu < pmtu) {
3808 3808                                  /*
3809 3809                                   * for interfaces in an IPMP group, the mtu of
3810 3810                                   * the nce_ill (under_ill) could be different
3811 3811                                   * from the mtu of the ncec_ill, so we take the
3812 3812                                   * min of the two.
3813 3813                                   */
3814 3814                                  pmtu = nce->nce_ill->ill_mc_mtu;
3815 3815                          }
3816 3816                  } else {
3817 3817                          if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3818 3818                                  pmtu = nce->nce_common->ncec_ill->ill_mtu;
3819 3819                          if (nce->nce_common->ncec_ill != nce->nce_ill &&
3820 3820                              nce->nce_ill->ill_mtu < pmtu) {
3821 3821                                  /*
3822 3822                                   * for interfaces in an IPMP group, the mtu of
3823 3823                                   * the nce_ill (under_ill) could be different
3824 3824                                   * from the mtu of the ncec_ill, so we take the
3825 3825                                   * min of the two.
3826 3826                                   */
3827 3827                                  pmtu = nce->nce_ill->ill_mtu;
3828 3828                          }
3829 3829                  }
3830 3830          }
3831 3831  
3832 3832          /*
3833 3833           * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3834 3834           * Only applies to IPv6.
3835 3835           */
3836 3836          if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3837 3837                  if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3838 3838                          switch (ixa->ixa_use_min_mtu) {
3839 3839                          case IPV6_USE_MIN_MTU_MULTICAST:
3840 3840                                  if (ire->ire_type & IRE_MULTICAST)
3841 3841                                          pmtu = IPV6_MIN_MTU;
3842 3842                                  break;
3843 3843                          case IPV6_USE_MIN_MTU_ALWAYS:
3844 3844                                  pmtu = IPV6_MIN_MTU;
3845 3845                                  break;
3846 3846                          case IPV6_USE_MIN_MTU_NEVER:
3847 3847                                  break;
3848 3848                          }
3849 3849                  } else {
3850 3850                          /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3851 3851                          if (ire->ire_type & IRE_MULTICAST)
3852 3852                                  pmtu = IPV6_MIN_MTU;
3853 3853                  }
3854 3854          }
3855 3855  
3856 3856          /*
3857 3857           * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3858 3858           * fragment header in every packet. We compensate for those cases by
3859 3859           * returning a smaller path MTU to the ULP.
3860 3860           *
3861 3861           * In the case of CGTP then ip_output will add a fragment header.
3862 3862           * Make sure there is room for it by telling a smaller number
3863 3863           * to the transport.
3864 3864           *
3865 3865           * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3866 3866           * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3867 3867           * which is the size of the packets it can send.
3868 3868           */
3869 3869          if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3870 3870                  if ((ire->ire_flags & RTF_MULTIRT) ||
3871 3871                      (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3872 3872                          pmtu -= sizeof (ip6_frag_t);
3873 3873                          ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3874 3874                  }
3875 3875          }
3876 3876  
3877 3877          return (pmtu);
3878 3878  }
3879 3879  
3880 3880  /*
3881 3881   * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3882 3882   * the final piece where we don't.  Return a pointer to the first mblk in the
3883 3883   * result, and update the pointer to the next mblk to chew on.  If anything
3884 3884   * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3885 3885   * NULL pointer.
3886 3886   */
3887 3887  mblk_t *
3888 3888  ip_carve_mp(mblk_t **mpp, ssize_t len)
3889 3889  {
3890 3890          mblk_t  *mp0;
3891 3891          mblk_t  *mp1;
3892 3892          mblk_t  *mp2;
3893 3893  
3894 3894          if (!len || !mpp || !(mp0 = *mpp))
3895 3895                  return (NULL);
3896 3896          /* If we aren't going to consume the first mblk, we need a dup. */
3897 3897          if (mp0->b_wptr - mp0->b_rptr > len) {
3898 3898                  mp1 = dupb(mp0);
3899 3899                  if (mp1) {
3900 3900                          /* Partition the data between the two mblks. */
3901 3901                          mp1->b_wptr = mp1->b_rptr + len;
3902 3902                          mp0->b_rptr = mp1->b_wptr;
3903 3903                          /*
3904 3904                           * after adjustments if mblk not consumed is now
3905 3905                           * unaligned, try to align it. If this fails free
3906 3906                           * all messages and let upper layer recover.
3907 3907                           */
3908 3908                          if (!OK_32PTR(mp0->b_rptr)) {
3909 3909                                  if (!pullupmsg(mp0, -1)) {
3910 3910                                          freemsg(mp0);
3911 3911                                          freemsg(mp1);
3912 3912                                          *mpp = NULL;
3913 3913                                          return (NULL);
3914 3914                                  }
3915 3915                          }
3916 3916                  }
3917 3917                  return (mp1);
3918 3918          }
3919 3919          /* Eat through as many mblks as we need to get len bytes. */
3920 3920          len -= mp0->b_wptr - mp0->b_rptr;
3921 3921          for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3922 3922                  if (mp2->b_wptr - mp2->b_rptr > len) {
3923 3923                          /*
3924 3924                           * We won't consume the entire last mblk.  Like
3925 3925                           * above, dup and partition it.
3926 3926                           */
3927 3927                          mp1->b_cont = dupb(mp2);
3928 3928                          mp1 = mp1->b_cont;
3929 3929                          if (!mp1) {
3930 3930                                  /*
3931 3931                                   * Trouble.  Rather than go to a lot of
3932 3932                                   * trouble to clean up, we free the messages.
3933 3933                                   * This won't be any worse than losing it on
3934 3934                                   * the wire.
3935 3935                                   */
3936 3936                                  freemsg(mp0);
3937 3937                                  freemsg(mp2);
3938 3938                                  *mpp = NULL;
3939 3939                                  return (NULL);
3940 3940                          }
3941 3941                          mp1->b_wptr = mp1->b_rptr + len;
3942 3942                          mp2->b_rptr = mp1->b_wptr;
3943 3943                          /*
3944 3944                           * after adjustments if mblk not consumed is now
3945 3945                           * unaligned, try to align it. If this fails free
3946 3946                           * all messages and let upper layer recover.
3947 3947                           */
3948 3948                          if (!OK_32PTR(mp2->b_rptr)) {
3949 3949                                  if (!pullupmsg(mp2, -1)) {
3950 3950                                          freemsg(mp0);
3951 3951                                          freemsg(mp2);
3952 3952                                          *mpp = NULL;
3953 3953                                          return (NULL);
3954 3954                                  }
3955 3955                          }
3956 3956                          *mpp = mp2;
3957 3957                          return (mp0);
3958 3958                  }
3959 3959                  /* Decrement len by the amount we just got. */
3960 3960                  len -= mp2->b_wptr - mp2->b_rptr;
3961 3961          }
3962 3962          /*
3963 3963           * len should be reduced to zero now.  If not our caller has
3964 3964           * screwed up.
3965 3965           */
3966 3966          if (len) {
3967 3967                  /* Shouldn't happen! */
3968 3968                  freemsg(mp0);
3969 3969                  *mpp = NULL;
3970 3970                  return (NULL);
3971 3971          }
3972 3972          /*
3973 3973           * We consumed up to exactly the end of an mblk.  Detach the part
3974 3974           * we are returning from the rest of the chain.
3975 3975           */
3976 3976          mp1->b_cont = NULL;
3977 3977          *mpp = mp2;
3978 3978          return (mp0);
3979 3979  }
3980 3980  
3981 3981  /* The ill stream is being unplumbed. Called from ip_close */
3982 3982  int
3983 3983  ip_modclose(ill_t *ill)
3984 3984  {
3985 3985          boolean_t success;
3986 3986          ipsq_t  *ipsq;
3987 3987          ipif_t  *ipif;
3988 3988          queue_t *q = ill->ill_rq;
3989 3989          ip_stack_t      *ipst = ill->ill_ipst;
3990 3990          int     i;
3991 3991          arl_ill_common_t *ai = ill->ill_common;
3992 3992  
3993 3993          /*
3994 3994           * The punlink prior to this may have initiated a capability
3995 3995           * negotiation. But ipsq_enter will block until that finishes or
3996 3996           * times out.
3997 3997           */
3998 3998          success = ipsq_enter(ill, B_FALSE, NEW_OP);
3999 3999  
4000 4000          /*
4001 4001           * Open/close/push/pop is guaranteed to be single threaded
4002 4002           * per stream by STREAMS. FS guarantees that all references
4003 4003           * from top are gone before close is called. So there can't
4004 4004           * be another close thread that has set CONDEMNED on this ill.
4005 4005           * and cause ipsq_enter to return failure.
4006 4006           */
4007 4007          ASSERT(success);
4008 4008          ipsq = ill->ill_phyint->phyint_ipsq;
4009 4009  
4010 4010          /*
4011 4011           * Mark it condemned. No new reference will be made to this ill.
4012 4012           * Lookup functions will return an error. Threads that try to
4013 4013           * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4014 4014           * that the refcnt will drop down to zero.
4015 4015           */
4016 4016          mutex_enter(&ill->ill_lock);
4017 4017          ill->ill_state_flags |= ILL_CONDEMNED;
4018 4018          for (ipif = ill->ill_ipif; ipif != NULL;
4019 4019              ipif = ipif->ipif_next) {
4020 4020                  ipif->ipif_state_flags |= IPIF_CONDEMNED;
4021 4021          }
4022 4022          /*
4023 4023           * Wake up anybody waiting to enter the ipsq. ipsq_enter
4024 4024           * returns  error if ILL_CONDEMNED is set
4025 4025           */
4026 4026          cv_broadcast(&ill->ill_cv);
4027 4027          mutex_exit(&ill->ill_lock);
4028 4028  
4029 4029          /*
4030 4030           * Send all the deferred DLPI messages downstream which came in
4031 4031           * during the small window right before ipsq_enter(). We do this
4032 4032           * without waiting for the ACKs because all the ACKs for M_PROTO
4033 4033           * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4034 4034           */
4035 4035          ill_dlpi_send_deferred(ill);
4036 4036  
4037 4037          /*
4038 4038           * Shut down fragmentation reassembly.
4039 4039           * ill_frag_timer won't start a timer again.
4040 4040           * Now cancel any existing timer
4041 4041           */
4042 4042          (void) untimeout(ill->ill_frag_timer_id);
4043 4043          (void) ill_frag_timeout(ill, 0);
4044 4044  
4045 4045          /*
4046 4046           * Call ill_delete to bring down the ipifs, ilms and ill on
4047 4047           * this ill. Then wait for the refcnts to drop to zero.
4048 4048           * ill_is_freeable checks whether the ill is really quiescent.
4049 4049           * Then make sure that threads that are waiting to enter the
4050 4050           * ipsq have seen the error returned by ipsq_enter and have
4051 4051           * gone away. Then we call ill_delete_tail which does the
4052 4052           * DL_UNBIND_REQ with the driver and then qprocsoff.
4053 4053           */
4054 4054          ill_delete(ill);
4055 4055          mutex_enter(&ill->ill_lock);
4056 4056          while (!ill_is_freeable(ill))
4057 4057                  cv_wait(&ill->ill_cv, &ill->ill_lock);
4058 4058  
4059 4059          while (ill->ill_waiters)
4060 4060                  cv_wait(&ill->ill_cv, &ill->ill_lock);
4061 4061  
4062 4062          mutex_exit(&ill->ill_lock);
4063 4063  
4064 4064          /*
4065 4065           * ill_delete_tail drops reference on ill_ipst, but we need to keep
4066 4066           * it held until the end of the function since the cleanup
4067 4067           * below needs to be able to use the ip_stack_t.
4068 4068           */
4069 4069          netstack_hold(ipst->ips_netstack);
4070 4070  
4071 4071          /* qprocsoff is done via ill_delete_tail */
4072 4072          ill_delete_tail(ill);
4073 4073          /*
4074 4074           * synchronously wait for arp stream to unbind. After this, we
4075 4075           * cannot get any data packets up from the driver.
4076 4076           */
4077 4077          arp_unbind_complete(ill);
4078 4078          ASSERT(ill->ill_ipst == NULL);
4079 4079  
4080 4080          /*
4081 4081           * Walk through all conns and qenable those that have queued data.
4082 4082           * Close synchronization needs this to
4083 4083           * be done to ensure that all upper layers blocked
4084 4084           * due to flow control to the closing device
4085 4085           * get unblocked.
4086 4086           */
4087 4087          ip1dbg(("ip_wsrv: walking\n"));
4088 4088          for (i = 0; i < TX_FANOUT_SIZE; i++) {
4089 4089                  conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4090 4090          }
4091 4091  
4092 4092          /*
4093 4093           * ai can be null if this is an IPv6 ill, or if the IPv4
4094 4094           * stream is being torn down before ARP was plumbed (e.g.,
4095 4095           * /sbin/ifconfig plumbing a stream twice, and encountering
4096 4096           * an error
4097 4097           */
4098 4098          if (ai != NULL) {
4099 4099                  ASSERT(!ill->ill_isv6);
4100 4100                  mutex_enter(&ai->ai_lock);
4101 4101                  ai->ai_ill = NULL;
4102 4102                  if (ai->ai_arl == NULL) {
4103 4103                          mutex_destroy(&ai->ai_lock);
4104 4104                          kmem_free(ai, sizeof (*ai));
4105 4105                  } else {
4106 4106                          cv_signal(&ai->ai_ill_unplumb_done);
4107 4107                          mutex_exit(&ai->ai_lock);
4108 4108                  }
4109 4109          }
4110 4110  
4111 4111          mutex_enter(&ipst->ips_ip_mi_lock);
4112 4112          mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4113 4113          mutex_exit(&ipst->ips_ip_mi_lock);
4114 4114  
4115 4115          /*
4116 4116           * credp could be null if the open didn't succeed and ip_modopen
  
    | 
      ↓ open down ↓ | 
    4116 lines elided | 
    
      ↑ open up ↑ | 
  
4117 4117           * itself calls ip_close.
4118 4118           */
4119 4119          if (ill->ill_credp != NULL)
4120 4120                  crfree(ill->ill_credp);
4121 4121  
4122 4122          mutex_destroy(&ill->ill_saved_ire_lock);
4123 4123          mutex_destroy(&ill->ill_lock);
4124 4124          rw_destroy(&ill->ill_mcast_lock);
4125 4125          mutex_destroy(&ill->ill_mcast_serializer);
4126 4126          list_destroy(&ill->ill_nce);
4127      -        cv_destroy(&ill->ill_dlpi_capab_cv);
4128      -        mutex_destroy(&ill->ill_dlpi_capab_lock);
4129 4127  
4130 4128          /*
4131 4129           * Now we are done with the module close pieces that
4132 4130           * need the netstack_t.
4133 4131           */
4134 4132          netstack_rele(ipst->ips_netstack);
4135 4133  
4136 4134          mi_close_free((IDP)ill);
4137 4135          q->q_ptr = WR(q)->q_ptr = NULL;
4138 4136  
4139 4137          ipsq_exit(ipsq);
4140 4138  
4141 4139          return (0);
4142 4140  }
4143 4141  
4144 4142  /*
4145 4143   * This is called as part of close() for IP, UDP, ICMP, and RTS
4146 4144   * in order to quiesce the conn.
4147 4145   */
4148 4146  void
4149 4147  ip_quiesce_conn(conn_t *connp)
4150 4148  {
4151 4149          boolean_t       drain_cleanup_reqd = B_FALSE;
4152 4150          boolean_t       conn_ioctl_cleanup_reqd = B_FALSE;
4153 4151          boolean_t       ilg_cleanup_reqd = B_FALSE;
4154 4152          ip_stack_t      *ipst;
4155 4153  
4156 4154          ASSERT(!IPCL_IS_TCP(connp));
4157 4155          ipst = connp->conn_netstack->netstack_ip;
4158 4156  
4159 4157          /*
4160 4158           * Mark the conn as closing, and this conn must not be
4161 4159           * inserted in future into any list. Eg. conn_drain_insert(),
4162 4160           * won't insert this conn into the conn_drain_list.
4163 4161           *
4164 4162           * conn_idl, and conn_ilg cannot get set henceforth.
4165 4163           */
4166 4164          mutex_enter(&connp->conn_lock);
4167 4165          ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4168 4166          connp->conn_state_flags |= CONN_CLOSING;
4169 4167          if (connp->conn_idl != NULL)
4170 4168                  drain_cleanup_reqd = B_TRUE;
4171 4169          if (connp->conn_oper_pending_ill != NULL)
4172 4170                  conn_ioctl_cleanup_reqd = B_TRUE;
4173 4171          if (connp->conn_dhcpinit_ill != NULL) {
4174 4172                  ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4175 4173                  atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4176 4174                  ill_set_inputfn(connp->conn_dhcpinit_ill);
4177 4175                  connp->conn_dhcpinit_ill = NULL;
4178 4176          }
4179 4177          if (connp->conn_ilg != NULL)
4180 4178                  ilg_cleanup_reqd = B_TRUE;
4181 4179          mutex_exit(&connp->conn_lock);
4182 4180  
4183 4181          if (conn_ioctl_cleanup_reqd)
4184 4182                  conn_ioctl_cleanup(connp);
4185 4183  
4186 4184          if (is_system_labeled() && connp->conn_anon_port) {
4187 4185                  (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4188 4186                      connp->conn_mlp_type, connp->conn_proto,
4189 4187                      ntohs(connp->conn_lport), B_FALSE);
4190 4188                  connp->conn_anon_port = 0;
4191 4189          }
4192 4190          connp->conn_mlp_type = mlptSingle;
4193 4191  
4194 4192          /*
4195 4193           * Remove this conn from any fanout list it is on.
4196 4194           * and then wait for any threads currently operating
4197 4195           * on this endpoint to finish
4198 4196           */
4199 4197          ipcl_hash_remove(connp);
4200 4198  
4201 4199          /*
4202 4200           * Remove this conn from the drain list, and do any other cleanup that
4203 4201           * may be required.  (TCP conns are never flow controlled, and
4204 4202           * conn_idl will be NULL.)
4205 4203           */
4206 4204          if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4207 4205                  idl_t *idl = connp->conn_idl;
4208 4206  
4209 4207                  mutex_enter(&idl->idl_lock);
4210 4208                  conn_drain(connp, B_TRUE);
4211 4209                  mutex_exit(&idl->idl_lock);
4212 4210          }
4213 4211  
4214 4212          if (connp == ipst->ips_ip_g_mrouter)
4215 4213                  (void) ip_mrouter_done(ipst);
4216 4214  
4217 4215          if (ilg_cleanup_reqd)
4218 4216                  ilg_delete_all(connp);
4219 4217  
4220 4218          /*
4221 4219           * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4222 4220           * callers from write side can't be there now because close
4223 4221           * is in progress. The only other caller is ipcl_walk
4224 4222           * which checks for the condemned flag.
4225 4223           */
4226 4224          mutex_enter(&connp->conn_lock);
4227 4225          connp->conn_state_flags |= CONN_CONDEMNED;
4228 4226          while (connp->conn_ref != 1)
4229 4227                  cv_wait(&connp->conn_cv, &connp->conn_lock);
4230 4228          connp->conn_state_flags |= CONN_QUIESCED;
4231 4229          mutex_exit(&connp->conn_lock);
4232 4230  }
4233 4231  
4234 4232  /* ARGSUSED */
4235 4233  int
4236 4234  ip_close(queue_t *q, int flags, cred_t *credp __unused)
4237 4235  {
4238 4236          conn_t          *connp;
4239 4237  
4240 4238          /*
4241 4239           * Call the appropriate delete routine depending on whether this is
4242 4240           * a module or device.
4243 4241           */
4244 4242          if (WR(q)->q_next != NULL) {
4245 4243                  /* This is a module close */
4246 4244                  return (ip_modclose((ill_t *)q->q_ptr));
4247 4245          }
4248 4246  
4249 4247          connp = q->q_ptr;
4250 4248          ip_quiesce_conn(connp);
4251 4249  
4252 4250          qprocsoff(q);
4253 4251  
4254 4252          /*
4255 4253           * Now we are truly single threaded on this stream, and can
4256 4254           * delete the things hanging off the connp, and finally the connp.
4257 4255           * We removed this connp from the fanout list, it cannot be
4258 4256           * accessed thru the fanouts, and we already waited for the
4259 4257           * conn_ref to drop to 0. We are already in close, so
4260 4258           * there cannot be any other thread from the top. qprocsoff
4261 4259           * has completed, and service has completed or won't run in
4262 4260           * future.
4263 4261           */
4264 4262          ASSERT(connp->conn_ref == 1);
4265 4263  
4266 4264          inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4267 4265  
4268 4266          connp->conn_ref--;
4269 4267          ipcl_conn_destroy(connp);
4270 4268  
4271 4269          q->q_ptr = WR(q)->q_ptr = NULL;
4272 4270          return (0);
4273 4271  }
4274 4272  
4275 4273  /*
4276 4274   * Wapper around putnext() so that ip_rts_request can merely use
4277 4275   * conn_recv.
4278 4276   */
4279 4277  /*ARGSUSED2*/
4280 4278  static void
4281 4279  ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4282 4280  {
4283 4281          conn_t *connp = (conn_t *)arg1;
4284 4282  
4285 4283          putnext(connp->conn_rq, mp);
4286 4284  }
4287 4285  
4288 4286  /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4289 4287  /* ARGSUSED */
4290 4288  static void
4291 4289  ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4292 4290  {
4293 4291          freemsg(mp);
4294 4292  }
4295 4293  
4296 4294  /*
4297 4295   * Called when the module is about to be unloaded
4298 4296   */
4299 4297  void
4300 4298  ip_ddi_destroy(void)
4301 4299  {
4302 4300          /* This needs to be called before destroying any transports. */
4303 4301          mutex_enter(&cpu_lock);
4304 4302          unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4305 4303          mutex_exit(&cpu_lock);
4306 4304  
4307 4305          tnet_fini();
4308 4306  
4309 4307          icmp_ddi_g_destroy();
4310 4308          rts_ddi_g_destroy();
4311 4309          udp_ddi_g_destroy();
4312 4310          sctp_ddi_g_destroy();
4313 4311          tcp_ddi_g_destroy();
4314 4312          ilb_ddi_g_destroy();
4315 4313          dce_g_destroy();
4316 4314          ipsec_policy_g_destroy();
4317 4315          ipcl_g_destroy();
4318 4316          ip_net_g_destroy();
4319 4317          ip_ire_g_fini();
4320 4318          inet_minor_destroy(ip_minor_arena_sa);
4321 4319  #if defined(_LP64)
4322 4320          inet_minor_destroy(ip_minor_arena_la);
4323 4321  #endif
4324 4322  
4325 4323  #ifdef DEBUG
4326 4324          list_destroy(&ip_thread_list);
4327 4325          rw_destroy(&ip_thread_rwlock);
4328 4326          tsd_destroy(&ip_thread_data);
4329 4327  #endif
4330 4328  
4331 4329          netstack_unregister(NS_IP);
4332 4330  }
4333 4331  
4334 4332  /*
4335 4333   * First step in cleanup.
4336 4334   */
4337 4335  /* ARGSUSED */
4338 4336  static void
4339 4337  ip_stack_shutdown(netstackid_t stackid, void *arg)
4340 4338  {
4341 4339          ip_stack_t *ipst = (ip_stack_t *)arg;
4342 4340          kt_did_t ktid;
4343 4341  
4344 4342  #ifdef NS_DEBUG
4345 4343          printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4346 4344  #endif
4347 4345  
4348 4346          /*
4349 4347           * Perform cleanup for special interfaces (loopback and IPMP).
4350 4348           */
4351 4349          ip_interface_cleanup(ipst);
4352 4350  
4353 4351          /*
4354 4352           * The *_hook_shutdown()s start the process of notifying any
4355 4353           * consumers that things are going away.... nothing is destroyed.
4356 4354           */
4357 4355          ipv4_hook_shutdown(ipst);
4358 4356          ipv6_hook_shutdown(ipst);
4359 4357          arp_hook_shutdown(ipst);
4360 4358  
4361 4359          mutex_enter(&ipst->ips_capab_taskq_lock);
4362 4360          ktid = ipst->ips_capab_taskq_thread->t_did;
4363 4361          ipst->ips_capab_taskq_quit = B_TRUE;
4364 4362          cv_signal(&ipst->ips_capab_taskq_cv);
4365 4363          mutex_exit(&ipst->ips_capab_taskq_lock);
4366 4364  
4367 4365          /*
4368 4366           * In rare occurrences, particularly on virtual hardware where CPUs can
4369 4367           * be de-scheduled, the thread that we just signaled will not run until
4370 4368           * after we have gotten through parts of ip_stack_fini. If that happens
4371 4369           * then we'll try to grab the ips_capab_taskq_lock as part of returning
4372 4370           * from cv_wait which no longer exists.
4373 4371           */
4374 4372          thread_join(ktid);
4375 4373  }
4376 4374  
4377 4375  /*
4378 4376   * Free the IP stack instance.
4379 4377   */
4380 4378  static void
4381 4379  ip_stack_fini(netstackid_t stackid, void *arg)
4382 4380  {
4383 4381          ip_stack_t *ipst = (ip_stack_t *)arg;
4384 4382          int ret;
4385 4383  
4386 4384  #ifdef NS_DEBUG
4387 4385          printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4388 4386  #endif
4389 4387          /*
4390 4388           * At this point, all of the notifications that the events and
4391 4389           * protocols are going away have been run, meaning that we can
4392 4390           * now set about starting to clean things up.
4393 4391           */
4394 4392          ipobs_fini(ipst);
4395 4393          ipv4_hook_destroy(ipst);
4396 4394          ipv6_hook_destroy(ipst);
4397 4395          arp_hook_destroy(ipst);
4398 4396          ip_net_destroy(ipst);
4399 4397  
4400 4398          ipmp_destroy(ipst);
4401 4399  
4402 4400          ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4403 4401          ipst->ips_ip_mibkp = NULL;
4404 4402          icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4405 4403          ipst->ips_icmp_mibkp = NULL;
4406 4404          ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4407 4405          ipst->ips_ip_kstat = NULL;
4408 4406          bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4409 4407          ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4410 4408          ipst->ips_ip6_kstat = NULL;
4411 4409          bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4412 4410  
4413 4411          kmem_free(ipst->ips_propinfo_tbl,
4414 4412              ip_propinfo_count * sizeof (mod_prop_info_t));
4415 4413          ipst->ips_propinfo_tbl = NULL;
4416 4414  
4417 4415          dce_stack_destroy(ipst);
4418 4416          ip_mrouter_stack_destroy(ipst);
4419 4417  
4420 4418          /*
4421 4419           * Quiesce all of our timers. Note we set the quiesce flags before we
4422 4420           * call untimeout. The slowtimers may actually kick off another instance
4423 4421           * of the non-slow timers.
4424 4422           */
4425 4423          mutex_enter(&ipst->ips_igmp_timer_lock);
4426 4424          ipst->ips_igmp_timer_quiesce = B_TRUE;
4427 4425          mutex_exit(&ipst->ips_igmp_timer_lock);
4428 4426  
4429 4427          mutex_enter(&ipst->ips_mld_timer_lock);
4430 4428          ipst->ips_mld_timer_quiesce = B_TRUE;
4431 4429          mutex_exit(&ipst->ips_mld_timer_lock);
4432 4430  
4433 4431          mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4434 4432          ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4435 4433          mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4436 4434  
4437 4435          mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4438 4436          ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4439 4437          mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4440 4438  
4441 4439          ret = untimeout(ipst->ips_igmp_timeout_id);
4442 4440          if (ret == -1) {
4443 4441                  ASSERT(ipst->ips_igmp_timeout_id == 0);
4444 4442          } else {
4445 4443                  ASSERT(ipst->ips_igmp_timeout_id != 0);
4446 4444                  ipst->ips_igmp_timeout_id = 0;
4447 4445          }
4448 4446          ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4449 4447          if (ret == -1) {
4450 4448                  ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4451 4449          } else {
4452 4450                  ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4453 4451                  ipst->ips_igmp_slowtimeout_id = 0;
4454 4452          }
4455 4453          ret = untimeout(ipst->ips_mld_timeout_id);
4456 4454          if (ret == -1) {
4457 4455                  ASSERT(ipst->ips_mld_timeout_id == 0);
4458 4456          } else {
4459 4457                  ASSERT(ipst->ips_mld_timeout_id != 0);
4460 4458                  ipst->ips_mld_timeout_id = 0;
4461 4459          }
4462 4460          ret = untimeout(ipst->ips_mld_slowtimeout_id);
4463 4461          if (ret == -1) {
4464 4462                  ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4465 4463          } else {
4466 4464                  ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4467 4465                  ipst->ips_mld_slowtimeout_id = 0;
4468 4466          }
4469 4467  
4470 4468          ip_ire_fini(ipst);
4471 4469          ip6_asp_free(ipst);
4472 4470          conn_drain_fini(ipst);
4473 4471          ipcl_destroy(ipst);
4474 4472  
4475 4473          mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4476 4474          mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4477 4475          kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4478 4476          ipst->ips_ndp4 = NULL;
4479 4477          kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4480 4478          ipst->ips_ndp6 = NULL;
4481 4479  
4482 4480          if (ipst->ips_loopback_ksp != NULL) {
4483 4481                  kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4484 4482                  ipst->ips_loopback_ksp = NULL;
4485 4483          }
4486 4484  
4487 4485          mutex_destroy(&ipst->ips_capab_taskq_lock);
4488 4486          cv_destroy(&ipst->ips_capab_taskq_cv);
4489 4487  
4490 4488          rw_destroy(&ipst->ips_srcid_lock);
4491 4489  
4492 4490          mutex_destroy(&ipst->ips_ip_mi_lock);
4493 4491          rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4494 4492  
4495 4493          mutex_destroy(&ipst->ips_igmp_timer_lock);
4496 4494          mutex_destroy(&ipst->ips_mld_timer_lock);
4497 4495          mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4498 4496          mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4499 4497          mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4500 4498          rw_destroy(&ipst->ips_ill_g_lock);
4501 4499  
4502 4500          kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4503 4501          ipst->ips_phyint_g_list = NULL;
4504 4502          kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4505 4503          ipst->ips_ill_g_heads = NULL;
4506 4504  
4507 4505          ldi_ident_release(ipst->ips_ldi_ident);
4508 4506          kmem_free(ipst, sizeof (*ipst));
4509 4507  }
4510 4508  
4511 4509  /*
4512 4510   * This function is called from the TSD destructor, and is used to debug
4513 4511   * reference count issues in IP. See block comment in <inet/ip_if.h> for
4514 4512   * details.
4515 4513   */
4516 4514  static void
4517 4515  ip_thread_exit(void *phash)
4518 4516  {
4519 4517          th_hash_t *thh = phash;
4520 4518  
4521 4519          rw_enter(&ip_thread_rwlock, RW_WRITER);
4522 4520          list_remove(&ip_thread_list, thh);
4523 4521          rw_exit(&ip_thread_rwlock);
4524 4522          mod_hash_destroy_hash(thh->thh_hash);
4525 4523          kmem_free(thh, sizeof (*thh));
4526 4524  }
4527 4525  
4528 4526  /*
4529 4527   * Called when the IP kernel module is loaded into the kernel
4530 4528   */
4531 4529  void
4532 4530  ip_ddi_init(void)
4533 4531  {
4534 4532          ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4535 4533  
4536 4534          /*
4537 4535           * For IP and TCP the minor numbers should start from 2 since we have 4
4538 4536           * initial devices: ip, ip6, tcp, tcp6.
4539 4537           */
4540 4538          /*
4541 4539           * If this is a 64-bit kernel, then create two separate arenas -
4542 4540           * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4543 4541           * other for socket apps in the range 2^^18 through 2^^32-1.
4544 4542           */
4545 4543          ip_minor_arena_la = NULL;
4546 4544          ip_minor_arena_sa = NULL;
4547 4545  #if defined(_LP64)
4548 4546          if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4549 4547              INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4550 4548                  cmn_err(CE_PANIC,
4551 4549                      "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4552 4550          }
4553 4551          if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4554 4552              MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4555 4553                  cmn_err(CE_PANIC,
4556 4554                      "ip_ddi_init: ip_minor_arena_la creation failed\n");
4557 4555          }
4558 4556  #else
4559 4557          if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4560 4558              INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4561 4559                  cmn_err(CE_PANIC,
4562 4560                      "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4563 4561          }
4564 4562  #endif
4565 4563          ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4566 4564  
4567 4565          ipcl_g_init();
4568 4566          ip_ire_g_init();
4569 4567          ip_net_g_init();
4570 4568  
4571 4569  #ifdef DEBUG
4572 4570          tsd_create(&ip_thread_data, ip_thread_exit);
4573 4571          rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4574 4572          list_create(&ip_thread_list, sizeof (th_hash_t),
4575 4573              offsetof(th_hash_t, thh_link));
4576 4574  #endif
4577 4575          ipsec_policy_g_init();
4578 4576          tcp_ddi_g_init();
4579 4577          sctp_ddi_g_init();
4580 4578          dce_g_init();
4581 4579  
4582 4580          /*
4583 4581           * We want to be informed each time a stack is created or
4584 4582           * destroyed in the kernel, so we can maintain the
4585 4583           * set of udp_stack_t's.
4586 4584           */
4587 4585          netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4588 4586              ip_stack_fini);
4589 4587  
4590 4588          tnet_init();
4591 4589  
4592 4590          udp_ddi_g_init();
4593 4591          rts_ddi_g_init();
4594 4592          icmp_ddi_g_init();
4595 4593          ilb_ddi_g_init();
4596 4594  
4597 4595          /* This needs to be called after all transports are initialized. */
4598 4596          mutex_enter(&cpu_lock);
4599 4597          register_cpu_setup_func(ip_tp_cpu_update, NULL);
4600 4598          mutex_exit(&cpu_lock);
4601 4599  }
4602 4600  
4603 4601  /*
4604 4602   * Initialize the IP stack instance.
4605 4603   */
4606 4604  static void *
4607 4605  ip_stack_init(netstackid_t stackid, netstack_t *ns)
4608 4606  {
4609 4607          ip_stack_t      *ipst;
4610 4608          size_t          arrsz;
4611 4609          major_t         major;
4612 4610  
4613 4611  #ifdef NS_DEBUG
4614 4612          printf("ip_stack_init(stack %d)\n", stackid);
4615 4613  #endif
4616 4614  
4617 4615          ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4618 4616          ipst->ips_netstack = ns;
4619 4617  
4620 4618          ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4621 4619              KM_SLEEP);
4622 4620          ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4623 4621              KM_SLEEP);
4624 4622          ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4625 4623          ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4626 4624          mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4627 4625          mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4628 4626  
4629 4627          mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4630 4628          ipst->ips_igmp_deferred_next = INFINITY;
4631 4629          mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4632 4630          ipst->ips_mld_deferred_next = INFINITY;
4633 4631          mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4634 4632          mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4635 4633          mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4636 4634          mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4637 4635          rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4638 4636          rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4639 4637  
4640 4638          ipcl_init(ipst);
4641 4639          ip_ire_init(ipst);
4642 4640          ip6_asp_init(ipst);
4643 4641          ipif_init(ipst);
4644 4642          conn_drain_init(ipst);
4645 4643          ip_mrouter_stack_init(ipst);
4646 4644          dce_stack_init(ipst);
4647 4645  
4648 4646          ipst->ips_ip_multirt_log_interval = 1000;
4649 4647  
4650 4648          ipst->ips_ill_index = 1;
4651 4649  
4652 4650          ipst->ips_saved_ip_forwarding = -1;
4653 4651          ipst->ips_reg_vif_num = ALL_VIFS;       /* Index to Register vif */
4654 4652  
4655 4653          arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4656 4654          ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4657 4655          bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4658 4656  
4659 4657          ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4660 4658          ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4661 4659          ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4662 4660          ipst->ips_ip6_kstat =
4663 4661              ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4664 4662  
4665 4663          ipst->ips_ip_src_id = 1;
4666 4664          rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4667 4665  
4668 4666          ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4669 4667  
4670 4668          ip_net_init(ipst, ns);
4671 4669          ipv4_hook_init(ipst);
4672 4670          ipv6_hook_init(ipst);
4673 4671          arp_hook_init(ipst);
4674 4672          ipmp_init(ipst);
4675 4673          ipobs_init(ipst);
4676 4674  
4677 4675          /*
4678 4676           * Create the taskq dispatcher thread and initialize related stuff.
4679 4677           */
4680 4678          mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4681 4679          cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4682 4680          ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4683 4681              ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4684 4682  
4685 4683          major = mod_name_to_major(INET_NAME);
4686 4684          (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4687 4685          return (ipst);
4688 4686  }
4689 4687  
4690 4688  /*
4691 4689   * Allocate and initialize a DLPI template of the specified length.  (May be
4692 4690   * called as writer.)
4693 4691   */
4694 4692  mblk_t *
4695 4693  ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4696 4694  {
4697 4695          mblk_t  *mp;
4698 4696  
4699 4697          mp = allocb(len, BPRI_MED);
4700 4698          if (!mp)
4701 4699                  return (NULL);
4702 4700  
4703 4701          /*
4704 4702           * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4705 4703           * of which we don't seem to use) are sent with M_PCPROTO, and
4706 4704           * that other DLPI are M_PROTO.
4707 4705           */
4708 4706          if (prim == DL_INFO_REQ) {
4709 4707                  mp->b_datap->db_type = M_PCPROTO;
4710 4708          } else {
4711 4709                  mp->b_datap->db_type = M_PROTO;
4712 4710          }
4713 4711  
4714 4712          mp->b_wptr = mp->b_rptr + len;
4715 4713          bzero(mp->b_rptr, len);
4716 4714          ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4717 4715          return (mp);
4718 4716  }
4719 4717  
4720 4718  /*
4721 4719   * Allocate and initialize a DLPI notification.  (May be called as writer.)
4722 4720   */
4723 4721  mblk_t *
4724 4722  ip_dlnotify_alloc(uint_t notification, uint_t data)
4725 4723  {
4726 4724          dl_notify_ind_t *notifyp;
4727 4725          mblk_t          *mp;
4728 4726  
4729 4727          if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4730 4728                  return (NULL);
4731 4729  
4732 4730          notifyp = (dl_notify_ind_t *)mp->b_rptr;
4733 4731          notifyp->dl_notification = notification;
4734 4732          notifyp->dl_data = data;
4735 4733          return (mp);
4736 4734  }
4737 4735  
4738 4736  mblk_t *
4739 4737  ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4740 4738  {
4741 4739          dl_notify_ind_t *notifyp;
4742 4740          mblk_t          *mp;
4743 4741  
4744 4742          if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4745 4743                  return (NULL);
4746 4744  
4747 4745          notifyp = (dl_notify_ind_t *)mp->b_rptr;
4748 4746          notifyp->dl_notification = notification;
4749 4747          notifyp->dl_data1 = data1;
4750 4748          notifyp->dl_data2 = data2;
4751 4749          return (mp);
4752 4750  }
4753 4751  
4754 4752  /*
4755 4753   * Debug formatting routine.  Returns a character string representation of the
4756 4754   * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4757 4755   * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4758 4756   *
4759 4757   * Once the ndd table-printing interfaces are removed, this can be changed to
4760 4758   * standard dotted-decimal form.
4761 4759   */
4762 4760  char *
4763 4761  ip_dot_addr(ipaddr_t addr, char *buf)
4764 4762  {
4765 4763          uint8_t *ap = (uint8_t *)&addr;
4766 4764  
4767 4765          (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4768 4766              ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4769 4767          return (buf);
4770 4768  }
4771 4769  
4772 4770  /*
4773 4771   * Write the given MAC address as a printable string in the usual colon-
4774 4772   * separated format.
4775 4773   */
4776 4774  const char *
4777 4775  mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4778 4776  {
4779 4777          char *bp;
4780 4778  
4781 4779          if (alen == 0 || buflen < 4)
4782 4780                  return ("?");
4783 4781          bp = buf;
4784 4782          for (;;) {
4785 4783                  /*
4786 4784                   * If there are more MAC address bytes available, but we won't
4787 4785                   * have any room to print them, then add "..." to the string
4788 4786                   * instead.  See below for the 'magic number' explanation.
4789 4787                   */
4790 4788                  if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4791 4789                          (void) strcpy(bp, "...");
4792 4790                          break;
4793 4791                  }
4794 4792                  (void) sprintf(bp, "%02x", *addr++);
4795 4793                  bp += 2;
4796 4794                  if (--alen == 0)
4797 4795                          break;
4798 4796                  *bp++ = ':';
4799 4797                  buflen -= 3;
4800 4798                  /*
4801 4799                   * At this point, based on the first 'if' statement above,
4802 4800                   * either alen == 1 and buflen >= 3, or alen > 1 and
4803 4801                   * buflen >= 4.  The first case leaves room for the final "xx"
4804 4802                   * number and trailing NUL byte.  The second leaves room for at
4805 4803                   * least "...".  Thus the apparently 'magic' numbers chosen for
4806 4804                   * that statement.
4807 4805                   */
4808 4806          }
4809 4807          return (buf);
4810 4808  }
4811 4809  
4812 4810  /*
4813 4811   * Called when it is conceptually a ULP that would sent the packet
4814 4812   * e.g., port unreachable and protocol unreachable. Check that the packet
4815 4813   * would have passed the IPsec global policy before sending the error.
4816 4814   *
4817 4815   * Send an ICMP error after patching up the packet appropriately.
4818 4816   * Uses ip_drop_input and bumps the appropriate MIB.
4819 4817   */
4820 4818  void
4821 4819  ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4822 4820      ip_recv_attr_t *ira)
4823 4821  {
4824 4822          ipha_t          *ipha;
4825 4823          boolean_t       secure;
4826 4824          ill_t           *ill = ira->ira_ill;
4827 4825          ip_stack_t      *ipst = ill->ill_ipst;
4828 4826          netstack_t      *ns = ipst->ips_netstack;
4829 4827          ipsec_stack_t   *ipss = ns->netstack_ipsec;
4830 4828  
4831 4829          secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4832 4830  
4833 4831          /*
4834 4832           * We are generating an icmp error for some inbound packet.
4835 4833           * Called from all ip_fanout_(udp, tcp, proto) functions.
4836 4834           * Before we generate an error, check with global policy
4837 4835           * to see whether this is allowed to enter the system. As
4838 4836           * there is no "conn", we are checking with global policy.
4839 4837           */
4840 4838          ipha = (ipha_t *)mp->b_rptr;
4841 4839          if (secure || ipss->ipsec_inbound_v4_policy_present) {
4842 4840                  mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4843 4841                  if (mp == NULL)
4844 4842                          return;
4845 4843          }
4846 4844  
4847 4845          /* We never send errors for protocols that we do implement */
4848 4846          if (ira->ira_protocol == IPPROTO_ICMP ||
4849 4847              ira->ira_protocol == IPPROTO_IGMP) {
4850 4848                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4851 4849                  ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4852 4850                  freemsg(mp);
4853 4851                  return;
4854 4852          }
4855 4853          /*
4856 4854           * Have to correct checksum since
4857 4855           * the packet might have been
4858 4856           * fragmented and the reassembly code in ip_rput
4859 4857           * does not restore the IP checksum.
4860 4858           */
4861 4859          ipha->ipha_hdr_checksum = 0;
4862 4860          ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4863 4861  
4864 4862          switch (icmp_type) {
4865 4863          case ICMP_DEST_UNREACHABLE:
4866 4864                  switch (icmp_code) {
4867 4865                  case ICMP_PROTOCOL_UNREACHABLE:
4868 4866                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4869 4867                          ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4870 4868                          break;
4871 4869                  case ICMP_PORT_UNREACHABLE:
4872 4870                          BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4873 4871                          ip_drop_input("ipIfStatsNoPorts", mp, ill);
4874 4872                          break;
4875 4873                  }
4876 4874  
4877 4875                  icmp_unreachable(mp, icmp_code, ira);
4878 4876                  break;
4879 4877          default:
4880 4878  #ifdef DEBUG
4881 4879                  panic("ip_fanout_send_icmp_v4: wrong type");
4882 4880                  /*NOTREACHED*/
4883 4881  #else
4884 4882                  freemsg(mp);
4885 4883                  break;
4886 4884  #endif
4887 4885          }
4888 4886  }
4889 4887  
4890 4888  /*
4891 4889   * Used to send an ICMP error message when a packet is received for
4892 4890   * a protocol that is not supported. The mblk passed as argument
4893 4891   * is consumed by this function.
4894 4892   */
4895 4893  void
4896 4894  ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4897 4895  {
4898 4896          ipha_t          *ipha;
4899 4897  
4900 4898          ipha = (ipha_t *)mp->b_rptr;
4901 4899          if (ira->ira_flags & IRAF_IS_IPV4) {
4902 4900                  ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4903 4901                  ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4904 4902                      ICMP_PROTOCOL_UNREACHABLE, ira);
4905 4903          } else {
4906 4904                  ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4907 4905                  ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4908 4906                      ICMP6_PARAMPROB_NEXTHEADER, ira);
4909 4907          }
4910 4908  }
4911 4909  
4912 4910  /*
4913 4911   * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4914 4912   * Handles IPv4 and IPv6.
4915 4913   * We are responsible for disposing of mp, such as by freemsg() or putnext()
4916 4914   * Caller is responsible for dropping references to the conn.
4917 4915   */
4918 4916  void
4919 4917  ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4920 4918      ip_recv_attr_t *ira)
4921 4919  {
4922 4920          ill_t           *ill = ira->ira_ill;
4923 4921          ip_stack_t      *ipst = ill->ill_ipst;
4924 4922          ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
4925 4923          boolean_t       secure;
4926 4924          uint_t          protocol = ira->ira_protocol;
4927 4925          iaflags_t       iraflags = ira->ira_flags;
4928 4926          queue_t         *rq;
4929 4927  
4930 4928          secure = iraflags & IRAF_IPSEC_SECURE;
4931 4929  
4932 4930          rq = connp->conn_rq;
4933 4931          if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4934 4932                  switch (protocol) {
4935 4933                  case IPPROTO_ICMPV6:
4936 4934                          BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4937 4935                          break;
4938 4936                  case IPPROTO_ICMP:
4939 4937                          BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4940 4938                          break;
4941 4939                  default:
4942 4940                          BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4943 4941                          break;
4944 4942                  }
4945 4943                  freemsg(mp);
4946 4944                  return;
4947 4945          }
4948 4946  
4949 4947          ASSERT(!(IPCL_IS_IPTUN(connp)));
4950 4948  
4951 4949          if (((iraflags & IRAF_IS_IPV4) ?
4952 4950              CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4953 4951              CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4954 4952              secure) {
4955 4953                  mp = ipsec_check_inbound_policy(mp, connp, ipha,
4956 4954                      ip6h, ira);
4957 4955                  if (mp == NULL) {
4958 4956                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4959 4957                          /* Note that mp is NULL */
4960 4958                          ip_drop_input("ipIfStatsInDiscards", mp, ill);
4961 4959                          return;
4962 4960                  }
4963 4961          }
4964 4962  
4965 4963          if (iraflags & IRAF_ICMP_ERROR) {
4966 4964                  (connp->conn_recvicmp)(connp, mp, NULL, ira);
4967 4965          } else {
4968 4966                  ill_t *rill = ira->ira_rill;
4969 4967  
4970 4968                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4971 4969                  ira->ira_ill = ira->ira_rill = NULL;
4972 4970                  /* Send it upstream */
4973 4971                  (connp->conn_recv)(connp, mp, NULL, ira);
4974 4972                  ira->ira_ill = ill;
4975 4973                  ira->ira_rill = rill;
4976 4974          }
4977 4975  }
4978 4976  
4979 4977  /*
4980 4978   * Handle protocols with which IP is less intimate.  There
4981 4979   * can be more than one stream bound to a particular
4982 4980   * protocol.  When this is the case, normally each one gets a copy
4983 4981   * of any incoming packets.
4984 4982   *
4985 4983   * IPsec NOTE :
4986 4984   *
4987 4985   * Don't allow a secure packet going up a non-secure connection.
4988 4986   * We don't allow this because
4989 4987   *
4990 4988   * 1) Reply might go out in clear which will be dropped at
4991 4989   *    the sending side.
4992 4990   * 2) If the reply goes out in clear it will give the
4993 4991   *    adversary enough information for getting the key in
4994 4992   *    most of the cases.
4995 4993   *
4996 4994   * Moreover getting a secure packet when we expect clear
4997 4995   * implies that SA's were added without checking for
4998 4996   * policy on both ends. This should not happen once ISAKMP
4999 4997   * is used to negotiate SAs as SAs will be added only after
5000 4998   * verifying the policy.
5001 4999   *
5002 5000   * Zones notes:
5003 5001   * Earlier in ip_input on a system with multiple shared-IP zones we
5004 5002   * duplicate the multicast and broadcast packets and send them up
5005 5003   * with each explicit zoneid that exists on that ill.
5006 5004   * This means that here we can match the zoneid with SO_ALLZONES being special.
5007 5005   */
5008 5006  void
5009 5007  ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5010 5008  {
5011 5009          mblk_t          *mp1;
5012 5010          ipaddr_t        laddr;
5013 5011          conn_t          *connp, *first_connp, *next_connp;
5014 5012          connf_t         *connfp;
5015 5013          ill_t           *ill = ira->ira_ill;
5016 5014          ip_stack_t      *ipst = ill->ill_ipst;
5017 5015  
5018 5016          laddr = ipha->ipha_dst;
5019 5017  
5020 5018          connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5021 5019          mutex_enter(&connfp->connf_lock);
5022 5020          connp = connfp->connf_head;
5023 5021          for (connp = connfp->connf_head; connp != NULL;
5024 5022              connp = connp->conn_next) {
5025 5023                  /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5026 5024                  if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5027 5025                      (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5028 5026                      tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5029 5027                          break;
5030 5028                  }
5031 5029          }
5032 5030  
5033 5031          if (connp == NULL) {
5034 5032                  /*
5035 5033                   * No one bound to these addresses.  Is
5036 5034                   * there a client that wants all
5037 5035                   * unclaimed datagrams?
5038 5036                   */
5039 5037                  mutex_exit(&connfp->connf_lock);
5040 5038                  ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5041 5039                      ICMP_PROTOCOL_UNREACHABLE, ira);
5042 5040                  return;
5043 5041          }
5044 5042  
5045 5043          ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5046 5044  
5047 5045          CONN_INC_REF(connp);
5048 5046          first_connp = connp;
5049 5047          connp = connp->conn_next;
5050 5048  
5051 5049          for (;;) {
5052 5050                  while (connp != NULL) {
5053 5051                          /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5054 5052                          if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5055 5053                              (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5056 5054                              tsol_receive_local(mp, &laddr, IPV4_VERSION,
5057 5055                              ira, connp)))
5058 5056                                  break;
5059 5057                          connp = connp->conn_next;
5060 5058                  }
5061 5059  
5062 5060                  if (connp == NULL) {
5063 5061                          /* No more interested clients */
5064 5062                          connp = first_connp;
5065 5063                          break;
5066 5064                  }
5067 5065                  if (((mp1 = dupmsg(mp)) == NULL) &&
5068 5066                      ((mp1 = copymsg(mp)) == NULL)) {
5069 5067                          /* Memory allocation failed */
5070 5068                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5071 5069                          ip_drop_input("ipIfStatsInDiscards", mp, ill);
5072 5070                          connp = first_connp;
5073 5071                          break;
5074 5072                  }
5075 5073  
5076 5074                  CONN_INC_REF(connp);
5077 5075                  mutex_exit(&connfp->connf_lock);
5078 5076  
5079 5077                  ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5080 5078                      ira);
5081 5079  
5082 5080                  mutex_enter(&connfp->connf_lock);
5083 5081                  /* Follow the next pointer before releasing the conn. */
5084 5082                  next_connp = connp->conn_next;
5085 5083                  CONN_DEC_REF(connp);
5086 5084                  connp = next_connp;
5087 5085          }
5088 5086  
5089 5087          /* Last one.  Send it upstream. */
5090 5088          mutex_exit(&connfp->connf_lock);
5091 5089  
5092 5090          ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5093 5091  
5094 5092          CONN_DEC_REF(connp);
5095 5093  }
5096 5094  
5097 5095  /*
5098 5096   * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5099 5097   * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5100 5098   * is not consumed.
5101 5099   *
5102 5100   * One of three things can happen, all of which affect the passed-in mblk:
5103 5101   *
5104 5102   * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5105 5103   *
5106 5104   * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5107 5105   *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5108 5106   *
5109 5107   * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5110 5108   */
5111 5109  mblk_t *
5112 5110  zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5113 5111  {
5114 5112          int shift, plen, iph_len;
5115 5113          ipha_t *ipha;
5116 5114          udpha_t *udpha;
5117 5115          uint32_t *spi;
5118 5116          uint32_t esp_ports;
5119 5117          uint8_t *orptr;
5120 5118          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
5121 5119          ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5122 5120  
5123 5121          ipha = (ipha_t *)mp->b_rptr;
5124 5122          iph_len = ira->ira_ip_hdr_length;
5125 5123          plen = ira->ira_pktlen;
5126 5124  
5127 5125          if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5128 5126                  /*
5129 5127                   * Most likely a keepalive for the benefit of an intervening
5130 5128                   * NAT.  These aren't for us, per se, so drop it.
5131 5129                   *
5132 5130                   * RFC 3947/8 doesn't say for sure what to do for 2-3
5133 5131                   * byte packets (keepalives are 1-byte), but we'll drop them
5134 5132                   * also.
5135 5133                   */
5136 5134                  ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5137 5135                      DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5138 5136                  return (NULL);
5139 5137          }
5140 5138  
5141 5139          if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5142 5140                  /* might as well pull it all up - it might be ESP. */
5143 5141                  if (!pullupmsg(mp, -1)) {
5144 5142                          ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5145 5143                              DROPPER(ipss, ipds_esp_nomem),
5146 5144                              &ipss->ipsec_dropper);
5147 5145                          return (NULL);
5148 5146                  }
5149 5147  
5150 5148                  ipha = (ipha_t *)mp->b_rptr;
5151 5149          }
5152 5150          spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5153 5151          if (*spi == 0) {
5154 5152                  /* UDP packet - remove 0-spi. */
5155 5153                  shift = sizeof (uint32_t);
5156 5154          } else {
5157 5155                  /* ESP-in-UDP packet - reduce to ESP. */
5158 5156                  ipha->ipha_protocol = IPPROTO_ESP;
5159 5157                  shift = sizeof (udpha_t);
5160 5158          }
5161 5159  
5162 5160          /* Fix IP header */
5163 5161          ira->ira_pktlen = (plen - shift);
5164 5162          ipha->ipha_length = htons(ira->ira_pktlen);
5165 5163          ipha->ipha_hdr_checksum = 0;
5166 5164  
5167 5165          orptr = mp->b_rptr;
5168 5166          mp->b_rptr += shift;
5169 5167  
5170 5168          udpha = (udpha_t *)(orptr + iph_len);
5171 5169          if (*spi == 0) {
5172 5170                  ASSERT((uint8_t *)ipha == orptr);
5173 5171                  udpha->uha_length = htons(plen - shift - iph_len);
5174 5172                  iph_len += sizeof (udpha_t);    /* For the call to ovbcopy(). */
5175 5173                  esp_ports = 0;
5176 5174          } else {
5177 5175                  esp_ports = *((uint32_t *)udpha);
5178 5176                  ASSERT(esp_ports != 0);
5179 5177          }
5180 5178          ovbcopy(orptr, orptr + shift, iph_len);
5181 5179          if (esp_ports != 0) /* Punt up for ESP processing. */ {
5182 5180                  ipha = (ipha_t *)(orptr + shift);
5183 5181  
5184 5182                  ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5185 5183                  ira->ira_esp_udp_ports = esp_ports;
5186 5184                  ip_fanout_v4(mp, ipha, ira);
5187 5185                  return (NULL);
5188 5186          }
5189 5187          return (mp);
5190 5188  }
5191 5189  
5192 5190  /*
5193 5191   * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5194 5192   * Handles IPv4 and IPv6.
5195 5193   * We are responsible for disposing of mp, such as by freemsg() or putnext()
5196 5194   * Caller is responsible for dropping references to the conn.
5197 5195   */
5198 5196  void
5199 5197  ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5200 5198      ip_recv_attr_t *ira)
5201 5199  {
5202 5200          ill_t           *ill = ira->ira_ill;
5203 5201          ip_stack_t      *ipst = ill->ill_ipst;
5204 5202          ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5205 5203          boolean_t       secure;
5206 5204          iaflags_t       iraflags = ira->ira_flags;
5207 5205  
5208 5206          secure = iraflags & IRAF_IPSEC_SECURE;
5209 5207  
5210 5208          if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5211 5209              !canputnext(connp->conn_rq)) {
5212 5210                  BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5213 5211                  freemsg(mp);
5214 5212                  return;
5215 5213          }
5216 5214  
5217 5215          if (((iraflags & IRAF_IS_IPV4) ?
5218 5216              CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5219 5217              CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5220 5218              secure) {
5221 5219                  mp = ipsec_check_inbound_policy(mp, connp, ipha,
5222 5220                      ip6h, ira);
5223 5221                  if (mp == NULL) {
5224 5222                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5225 5223                          /* Note that mp is NULL */
5226 5224                          ip_drop_input("ipIfStatsInDiscards", mp, ill);
5227 5225                          return;
5228 5226                  }
5229 5227          }
5230 5228  
5231 5229          /*
5232 5230           * Since this code is not used for UDP unicast we don't need a NAT_T
5233 5231           * check. Only ip_fanout_v4 has that check.
5234 5232           */
5235 5233          if (ira->ira_flags & IRAF_ICMP_ERROR) {
5236 5234                  (connp->conn_recvicmp)(connp, mp, NULL, ira);
5237 5235          } else {
5238 5236                  ill_t *rill = ira->ira_rill;
5239 5237  
5240 5238                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5241 5239                  ira->ira_ill = ira->ira_rill = NULL;
5242 5240                  /* Send it upstream */
5243 5241                  (connp->conn_recv)(connp, mp, NULL, ira);
5244 5242                  ira->ira_ill = ill;
5245 5243                  ira->ira_rill = rill;
5246 5244          }
5247 5245  }
5248 5246  
5249 5247  /*
5250 5248   * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5251 5249   * (Unicast fanout is handled in ip_input_v4.)
5252 5250   *
5253 5251   * If SO_REUSEADDR is set all multicast and broadcast packets
5254 5252   * will be delivered to all conns bound to the same port.
5255 5253   *
5256 5254   * If there is at least one matching AF_INET receiver, then we will
5257 5255   * ignore any AF_INET6 receivers.
5258 5256   * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5259 5257   * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5260 5258   * packets.
5261 5259   *
5262 5260   * Zones notes:
5263 5261   * Earlier in ip_input on a system with multiple shared-IP zones we
5264 5262   * duplicate the multicast and broadcast packets and send them up
5265 5263   * with each explicit zoneid that exists on that ill.
5266 5264   * This means that here we can match the zoneid with SO_ALLZONES being special.
5267 5265   */
5268 5266  void
5269 5267  ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5270 5268      ip_recv_attr_t *ira)
5271 5269  {
5272 5270          ipaddr_t        laddr;
5273 5271          in6_addr_t      v6faddr;
5274 5272          conn_t          *connp;
5275 5273          connf_t         *connfp;
5276 5274          ipaddr_t        faddr;
5277 5275          ill_t           *ill = ira->ira_ill;
5278 5276          ip_stack_t      *ipst = ill->ill_ipst;
5279 5277  
5280 5278          ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5281 5279  
5282 5280          laddr = ipha->ipha_dst;
5283 5281          faddr = ipha->ipha_src;
5284 5282  
5285 5283          connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5286 5284          mutex_enter(&connfp->connf_lock);
5287 5285          connp = connfp->connf_head;
5288 5286  
5289 5287          /*
5290 5288           * If SO_REUSEADDR has been set on the first we send the
5291 5289           * packet to all clients that have joined the group and
5292 5290           * match the port.
5293 5291           */
5294 5292          while (connp != NULL) {
5295 5293                  if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5296 5294                      conn_wantpacket(connp, ira, ipha) &&
5297 5295                      (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5298 5296                      tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5299 5297                          break;
5300 5298                  connp = connp->conn_next;
5301 5299          }
5302 5300  
5303 5301          if (connp == NULL)
5304 5302                  goto notfound;
5305 5303  
5306 5304          CONN_INC_REF(connp);
5307 5305  
5308 5306          if (connp->conn_reuseaddr) {
5309 5307                  conn_t          *first_connp = connp;
5310 5308                  conn_t          *next_connp;
5311 5309                  mblk_t          *mp1;
5312 5310  
5313 5311                  connp = connp->conn_next;
5314 5312                  for (;;) {
5315 5313                          while (connp != NULL) {
5316 5314                                  if (IPCL_UDP_MATCH(connp, lport, laddr,
5317 5315                                      fport, faddr) &&
5318 5316                                      conn_wantpacket(connp, ira, ipha) &&
5319 5317                                      (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5320 5318                                      tsol_receive_local(mp, &laddr, IPV4_VERSION,
5321 5319                                      ira, connp)))
5322 5320                                          break;
5323 5321                                  connp = connp->conn_next;
5324 5322                          }
5325 5323                          if (connp == NULL) {
5326 5324                                  /* No more interested clients */
5327 5325                                  connp = first_connp;
5328 5326                                  break;
5329 5327                          }
5330 5328                          if (((mp1 = dupmsg(mp)) == NULL) &&
5331 5329                              ((mp1 = copymsg(mp)) == NULL)) {
5332 5330                                  /* Memory allocation failed */
5333 5331                                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5334 5332                                  ip_drop_input("ipIfStatsInDiscards", mp, ill);
5335 5333                                  connp = first_connp;
5336 5334                                  break;
5337 5335                          }
5338 5336                          CONN_INC_REF(connp);
5339 5337                          mutex_exit(&connfp->connf_lock);
5340 5338  
5341 5339                          IP_STAT(ipst, ip_udp_fanmb);
5342 5340                          ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5343 5341                              NULL, ira);
5344 5342                          mutex_enter(&connfp->connf_lock);
5345 5343                          /* Follow the next pointer before releasing the conn */
5346 5344                          next_connp = connp->conn_next;
5347 5345                          CONN_DEC_REF(connp);
5348 5346                          connp = next_connp;
5349 5347                  }
5350 5348          }
5351 5349  
5352 5350          /* Last one.  Send it upstream. */
5353 5351          mutex_exit(&connfp->connf_lock);
5354 5352          IP_STAT(ipst, ip_udp_fanmb);
5355 5353          ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5356 5354          CONN_DEC_REF(connp);
5357 5355          return;
5358 5356  
5359 5357  notfound:
5360 5358          mutex_exit(&connfp->connf_lock);
5361 5359          /*
5362 5360           * IPv6 endpoints bound to multicast IPv4-mapped addresses
5363 5361           * have already been matched above, since they live in the IPv4
5364 5362           * fanout tables. This implies we only need to
5365 5363           * check for IPv6 in6addr_any endpoints here.
5366 5364           * Thus we compare using ipv6_all_zeros instead of the destination
5367 5365           * address, except for the multicast group membership lookup which
5368 5366           * uses the IPv4 destination.
5369 5367           */
5370 5368          IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5371 5369          connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5372 5370          mutex_enter(&connfp->connf_lock);
5373 5371          connp = connfp->connf_head;
5374 5372          /*
5375 5373           * IPv4 multicast packet being delivered to an AF_INET6
5376 5374           * in6addr_any endpoint.
5377 5375           * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5378 5376           * and not conn_wantpacket_v6() since any multicast membership is
5379 5377           * for an IPv4-mapped multicast address.
5380 5378           */
5381 5379          while (connp != NULL) {
5382 5380                  if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5383 5381                      fport, v6faddr) &&
5384 5382                      conn_wantpacket(connp, ira, ipha) &&
5385 5383                      (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5386 5384                      tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5387 5385                          break;
5388 5386                  connp = connp->conn_next;
5389 5387          }
5390 5388  
5391 5389          if (connp == NULL) {
5392 5390                  /*
5393 5391                   * No one bound to this port.  Is
5394 5392                   * there a client that wants all
5395 5393                   * unclaimed datagrams?
5396 5394                   */
5397 5395                  mutex_exit(&connfp->connf_lock);
5398 5396  
5399 5397                  if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5400 5398                      NULL) {
5401 5399                          ASSERT(ira->ira_protocol == IPPROTO_UDP);
5402 5400                          ip_fanout_proto_v4(mp, ipha, ira);
5403 5401                  } else {
5404 5402                          /*
5405 5403                           * We used to attempt to send an icmp error here, but
5406 5404                           * since this is known to be a multicast packet
5407 5405                           * and we don't send icmp errors in response to
5408 5406                           * multicast, just drop the packet and give up sooner.
5409 5407                           */
5410 5408                          BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5411 5409                          freemsg(mp);
5412 5410                  }
5413 5411                  return;
5414 5412          }
5415 5413          CONN_INC_REF(connp);
5416 5414          ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5417 5415  
5418 5416          /*
5419 5417           * If SO_REUSEADDR has been set on the first we send the
5420 5418           * packet to all clients that have joined the group and
5421 5419           * match the port.
5422 5420           */
5423 5421          if (connp->conn_reuseaddr) {
5424 5422                  conn_t          *first_connp = connp;
5425 5423                  conn_t          *next_connp;
5426 5424                  mblk_t          *mp1;
5427 5425  
5428 5426                  connp = connp->conn_next;
5429 5427                  for (;;) {
5430 5428                          while (connp != NULL) {
5431 5429                                  if (IPCL_UDP_MATCH_V6(connp, lport,
5432 5430                                      ipv6_all_zeros, fport, v6faddr) &&
5433 5431                                      conn_wantpacket(connp, ira, ipha) &&
5434 5432                                      (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5435 5433                                      tsol_receive_local(mp, &laddr, IPV4_VERSION,
5436 5434                                      ira, connp)))
5437 5435                                          break;
5438 5436                                  connp = connp->conn_next;
5439 5437                          }
5440 5438                          if (connp == NULL) {
5441 5439                                  /* No more interested clients */
5442 5440                                  connp = first_connp;
5443 5441                                  break;
5444 5442                          }
5445 5443                          if (((mp1 = dupmsg(mp)) == NULL) &&
5446 5444                              ((mp1 = copymsg(mp)) == NULL)) {
5447 5445                                  /* Memory allocation failed */
5448 5446                                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5449 5447                                  ip_drop_input("ipIfStatsInDiscards", mp, ill);
5450 5448                                  connp = first_connp;
5451 5449                                  break;
5452 5450                          }
5453 5451                          CONN_INC_REF(connp);
5454 5452                          mutex_exit(&connfp->connf_lock);
5455 5453  
5456 5454                          IP_STAT(ipst, ip_udp_fanmb);
5457 5455                          ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5458 5456                              NULL, ira);
5459 5457                          mutex_enter(&connfp->connf_lock);
5460 5458                          /* Follow the next pointer before releasing the conn */
5461 5459                          next_connp = connp->conn_next;
5462 5460                          CONN_DEC_REF(connp);
5463 5461                          connp = next_connp;
5464 5462                  }
5465 5463          }
5466 5464  
5467 5465          /* Last one.  Send it upstream. */
5468 5466          mutex_exit(&connfp->connf_lock);
5469 5467          IP_STAT(ipst, ip_udp_fanmb);
5470 5468          ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5471 5469          CONN_DEC_REF(connp);
5472 5470  }
5473 5471  
5474 5472  /*
5475 5473   * Split an incoming packet's IPv4 options into the label and the other options.
5476 5474   * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5477 5475   * clearing out any leftover label or options.
5478 5476   * Otherwise it just makes ipp point into the packet.
5479 5477   *
5480 5478   * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5481 5479   */
5482 5480  int
5483 5481  ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5484 5482  {
5485 5483          uchar_t         *opt;
5486 5484          uint32_t        totallen;
5487 5485          uint32_t        optval;
5488 5486          uint32_t        optlen;
5489 5487  
5490 5488          ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5491 5489          ipp->ipp_hoplimit = ipha->ipha_ttl;
5492 5490          ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5493 5491          IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5494 5492  
5495 5493          /*
5496 5494           * Get length (in 4 byte octets) of IP header options.
5497 5495           */
5498 5496          totallen = ipha->ipha_version_and_hdr_length -
5499 5497              (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5500 5498  
5501 5499          if (totallen == 0) {
5502 5500                  if (!allocate)
5503 5501                          return (0);
5504 5502  
5505 5503                  /* Clear out anything from a previous packet */
5506 5504                  if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5507 5505                          kmem_free(ipp->ipp_ipv4_options,
5508 5506                              ipp->ipp_ipv4_options_len);
5509 5507                          ipp->ipp_ipv4_options = NULL;
5510 5508                          ipp->ipp_ipv4_options_len = 0;
5511 5509                          ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5512 5510                  }
5513 5511                  if (ipp->ipp_fields & IPPF_LABEL_V4) {
5514 5512                          kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5515 5513                          ipp->ipp_label_v4 = NULL;
5516 5514                          ipp->ipp_label_len_v4 = 0;
5517 5515                          ipp->ipp_fields &= ~IPPF_LABEL_V4;
5518 5516                  }
5519 5517                  return (0);
5520 5518          }
5521 5519  
5522 5520          totallen <<= 2;
5523 5521          opt = (uchar_t *)&ipha[1];
5524 5522          if (!is_system_labeled()) {
5525 5523  
5526 5524          copyall:
5527 5525                  if (!allocate) {
5528 5526                          if (totallen != 0) {
5529 5527                                  ipp->ipp_ipv4_options = opt;
5530 5528                                  ipp->ipp_ipv4_options_len = totallen;
5531 5529                                  ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5532 5530                          }
5533 5531                          return (0);
5534 5532                  }
5535 5533                  /* Just copy all of options */
5536 5534                  if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5537 5535                          if (totallen == ipp->ipp_ipv4_options_len) {
5538 5536                                  bcopy(opt, ipp->ipp_ipv4_options, totallen);
5539 5537                                  return (0);
5540 5538                          }
5541 5539                          kmem_free(ipp->ipp_ipv4_options,
5542 5540                              ipp->ipp_ipv4_options_len);
5543 5541                          ipp->ipp_ipv4_options = NULL;
5544 5542                          ipp->ipp_ipv4_options_len = 0;
5545 5543                          ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5546 5544                  }
5547 5545                  if (totallen == 0)
5548 5546                          return (0);
5549 5547  
5550 5548                  ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5551 5549                  if (ipp->ipp_ipv4_options == NULL)
5552 5550                          return (ENOMEM);
5553 5551                  ipp->ipp_ipv4_options_len = totallen;
5554 5552                  ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5555 5553                  bcopy(opt, ipp->ipp_ipv4_options, totallen);
5556 5554                  return (0);
5557 5555          }
5558 5556  
5559 5557          if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5560 5558                  kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5561 5559                  ipp->ipp_label_v4 = NULL;
5562 5560                  ipp->ipp_label_len_v4 = 0;
5563 5561                  ipp->ipp_fields &= ~IPPF_LABEL_V4;
5564 5562          }
5565 5563  
5566 5564          /*
5567 5565           * Search for CIPSO option.
5568 5566           * We assume CIPSO is first in options if it is present.
5569 5567           * If it isn't, then ipp_opt_ipv4_options will not include the options
5570 5568           * prior to the CIPSO option.
5571 5569           */
5572 5570          while (totallen != 0) {
5573 5571                  switch (optval = opt[IPOPT_OPTVAL]) {
5574 5572                  case IPOPT_EOL:
5575 5573                          return (0);
5576 5574                  case IPOPT_NOP:
5577 5575                          optlen = 1;
5578 5576                          break;
5579 5577                  default:
5580 5578                          if (totallen <= IPOPT_OLEN)
5581 5579                                  return (EINVAL);
5582 5580                          optlen = opt[IPOPT_OLEN];
5583 5581                          if (optlen < 2)
5584 5582                                  return (EINVAL);
5585 5583                  }
5586 5584                  if (optlen > totallen)
5587 5585                          return (EINVAL);
5588 5586  
5589 5587                  switch (optval) {
5590 5588                  case IPOPT_COMSEC:
5591 5589                          if (!allocate) {
5592 5590                                  ipp->ipp_label_v4 = opt;
5593 5591                                  ipp->ipp_label_len_v4 = optlen;
5594 5592                                  ipp->ipp_fields |= IPPF_LABEL_V4;
5595 5593                          } else {
5596 5594                                  ipp->ipp_label_v4 = kmem_alloc(optlen,
5597 5595                                      KM_NOSLEEP);
5598 5596                                  if (ipp->ipp_label_v4 == NULL)
5599 5597                                          return (ENOMEM);
5600 5598                                  ipp->ipp_label_len_v4 = optlen;
5601 5599                                  ipp->ipp_fields |= IPPF_LABEL_V4;
5602 5600                                  bcopy(opt, ipp->ipp_label_v4, optlen);
5603 5601                          }
5604 5602                          totallen -= optlen;
5605 5603                          opt += optlen;
5606 5604  
5607 5605                          /* Skip padding bytes until we get to a multiple of 4 */
5608 5606                          while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5609 5607                                  totallen--;
5610 5608                                  opt++;
5611 5609                          }
5612 5610                          /* Remaining as ipp_ipv4_options */
5613 5611                          goto copyall;
5614 5612                  }
5615 5613                  totallen -= optlen;
5616 5614                  opt += optlen;
5617 5615          }
5618 5616          /* No CIPSO found; return everything as ipp_ipv4_options */
5619 5617          totallen = ipha->ipha_version_and_hdr_length -
5620 5618              (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5621 5619          totallen <<= 2;
5622 5620          opt = (uchar_t *)&ipha[1];
5623 5621          goto copyall;
5624 5622  }
5625 5623  
5626 5624  /*
5627 5625   * Efficient versions of lookup for an IRE when we only
5628 5626   * match the address.
5629 5627   * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5630 5628   * Does not handle multicast addresses.
5631 5629   */
5632 5630  uint_t
5633 5631  ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5634 5632  {
5635 5633          ire_t *ire;
5636 5634          uint_t result;
5637 5635  
5638 5636          ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5639 5637          ASSERT(ire != NULL);
5640 5638          if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5641 5639                  result = IRE_NOROUTE;
5642 5640          else
5643 5641                  result = ire->ire_type;
5644 5642          ire_refrele(ire);
5645 5643          return (result);
5646 5644  }
5647 5645  
5648 5646  /*
5649 5647   * Efficient versions of lookup for an IRE when we only
5650 5648   * match the address.
5651 5649   * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5652 5650   * Does not handle multicast addresses.
5653 5651   */
5654 5652  uint_t
5655 5653  ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5656 5654  {
5657 5655          ire_t *ire;
5658 5656          uint_t result;
5659 5657  
5660 5658          ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5661 5659          ASSERT(ire != NULL);
5662 5660          if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5663 5661                  result = IRE_NOROUTE;
5664 5662          else
5665 5663                  result = ire->ire_type;
5666 5664          ire_refrele(ire);
5667 5665          return (result);
5668 5666  }
5669 5667  
5670 5668  /*
5671 5669   * Nobody should be sending
5672 5670   * packets up this stream
5673 5671   */
5674 5672  static int
5675 5673  ip_lrput(queue_t *q, mblk_t *mp)
5676 5674  {
5677 5675          switch (mp->b_datap->db_type) {
5678 5676          case M_FLUSH:
5679 5677                  /* Turn around */
5680 5678                  if (*mp->b_rptr & FLUSHW) {
5681 5679                          *mp->b_rptr &= ~FLUSHR;
5682 5680                          qreply(q, mp);
5683 5681                          return (0);
5684 5682                  }
5685 5683                  break;
5686 5684          }
5687 5685          freemsg(mp);
5688 5686          return (0);
5689 5687  }
5690 5688  
5691 5689  /* Nobody should be sending packets down this stream */
5692 5690  /* ARGSUSED */
5693 5691  int
5694 5692  ip_lwput(queue_t *q, mblk_t *mp)
5695 5693  {
5696 5694          freemsg(mp);
5697 5695          return (0);
5698 5696  }
5699 5697  
5700 5698  /*
5701 5699   * Move the first hop in any source route to ipha_dst and remove that part of
5702 5700   * the source route.  Called by other protocols.  Errors in option formatting
5703 5701   * are ignored - will be handled by ip_output_options. Return the final
5704 5702   * destination (either ipha_dst or the last entry in a source route.)
5705 5703   */
5706 5704  ipaddr_t
5707 5705  ip_massage_options(ipha_t *ipha, netstack_t *ns)
5708 5706  {
5709 5707          ipoptp_t        opts;
5710 5708          uchar_t         *opt;
5711 5709          uint8_t         optval;
5712 5710          uint8_t         optlen;
5713 5711          ipaddr_t        dst;
5714 5712          int             i;
5715 5713          ip_stack_t      *ipst = ns->netstack_ip;
5716 5714  
5717 5715          ip2dbg(("ip_massage_options\n"));
5718 5716          dst = ipha->ipha_dst;
5719 5717          for (optval = ipoptp_first(&opts, ipha);
5720 5718              optval != IPOPT_EOL;
5721 5719              optval = ipoptp_next(&opts)) {
5722 5720                  opt = opts.ipoptp_cur;
5723 5721                  switch (optval) {
5724 5722                          uint8_t off;
5725 5723                  case IPOPT_SSRR:
5726 5724                  case IPOPT_LSRR:
5727 5725                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5728 5726                                  ip1dbg(("ip_massage_options: bad src route\n"));
5729 5727                                  break;
5730 5728                          }
5731 5729                          optlen = opts.ipoptp_len;
5732 5730                          off = opt[IPOPT_OFFSET];
5733 5731                          off--;
5734 5732                  redo_srr:
5735 5733                          if (optlen < IP_ADDR_LEN ||
5736 5734                              off > optlen - IP_ADDR_LEN) {
5737 5735                                  /* End of source route */
5738 5736                                  ip1dbg(("ip_massage_options: end of SR\n"));
5739 5737                                  break;
5740 5738                          }
5741 5739                          bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5742 5740                          ip1dbg(("ip_massage_options: next hop 0x%x\n",
5743 5741                              ntohl(dst)));
5744 5742                          /*
5745 5743                           * Check if our address is present more than
5746 5744                           * once as consecutive hops in source route.
5747 5745                           * XXX verify per-interface ip_forwarding
5748 5746                           * for source route?
5749 5747                           */
5750 5748                          if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5751 5749                                  off += IP_ADDR_LEN;
5752 5750                                  goto redo_srr;
5753 5751                          }
5754 5752                          if (dst == htonl(INADDR_LOOPBACK)) {
5755 5753                                  ip1dbg(("ip_massage_options: loopback addr in "
5756 5754                                      "source route!\n"));
5757 5755                                  break;
5758 5756                          }
5759 5757                          /*
5760 5758                           * Update ipha_dst to be the first hop and remove the
5761 5759                           * first hop from the source route (by overwriting
5762 5760                           * part of the option with NOP options).
5763 5761                           */
5764 5762                          ipha->ipha_dst = dst;
5765 5763                          /* Put the last entry in dst */
5766 5764                          off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5767 5765                              3;
5768 5766                          bcopy(&opt[off], &dst, IP_ADDR_LEN);
5769 5767  
5770 5768                          ip1dbg(("ip_massage_options: last hop 0x%x\n",
5771 5769                              ntohl(dst)));
5772 5770                          /* Move down and overwrite */
5773 5771                          opt[IP_ADDR_LEN] = opt[0];
5774 5772                          opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5775 5773                          opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5776 5774                          for (i = 0; i < IP_ADDR_LEN; i++)
5777 5775                                  opt[i] = IPOPT_NOP;
5778 5776                          break;
5779 5777                  }
5780 5778          }
5781 5779          return (dst);
5782 5780  }
5783 5781  
5784 5782  /*
5785 5783   * Return the network mask
5786 5784   * associated with the specified address.
5787 5785   */
5788 5786  ipaddr_t
5789 5787  ip_net_mask(ipaddr_t addr)
5790 5788  {
5791 5789          uchar_t *up = (uchar_t *)&addr;
5792 5790          ipaddr_t mask = 0;
5793 5791          uchar_t *maskp = (uchar_t *)&mask;
5794 5792  
5795 5793  #if defined(__i386) || defined(__amd64)
5796 5794  #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5797 5795  #endif
5798 5796  #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5799 5797          maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5800 5798  #endif
5801 5799          if (CLASSD(addr)) {
5802 5800                  maskp[0] = 0xF0;
5803 5801                  return (mask);
5804 5802          }
5805 5803  
5806 5804          /* We assume Class E default netmask to be 32 */
5807 5805          if (CLASSE(addr))
5808 5806                  return (0xffffffffU);
5809 5807  
5810 5808          if (addr == 0)
5811 5809                  return (0);
5812 5810          maskp[0] = 0xFF;
5813 5811          if ((up[0] & 0x80) == 0)
5814 5812                  return (mask);
5815 5813  
5816 5814          maskp[1] = 0xFF;
5817 5815          if ((up[0] & 0xC0) == 0x80)
5818 5816                  return (mask);
5819 5817  
5820 5818          maskp[2] = 0xFF;
5821 5819          if ((up[0] & 0xE0) == 0xC0)
5822 5820                  return (mask);
5823 5821  
5824 5822          /* Otherwise return no mask */
5825 5823          return ((ipaddr_t)0);
5826 5824  }
5827 5825  
5828 5826  /* Name/Value Table Lookup Routine */
5829 5827  char *
5830 5828  ip_nv_lookup(nv_t *nv, int value)
5831 5829  {
5832 5830          if (!nv)
5833 5831                  return (NULL);
5834 5832          for (; nv->nv_name; nv++) {
5835 5833                  if (nv->nv_value == value)
5836 5834                          return (nv->nv_name);
5837 5835          }
5838 5836          return ("unknown");
5839 5837  }
5840 5838  
5841 5839  static int
5842 5840  ip_wait_for_info_ack(ill_t *ill)
5843 5841  {
5844 5842          int err;
5845 5843  
5846 5844          mutex_enter(&ill->ill_lock);
5847 5845          while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5848 5846                  /*
5849 5847                   * Return value of 0 indicates a pending signal.
5850 5848                   */
5851 5849                  err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5852 5850                  if (err == 0) {
5853 5851                          mutex_exit(&ill->ill_lock);
5854 5852                          return (EINTR);
5855 5853                  }
5856 5854          }
5857 5855          mutex_exit(&ill->ill_lock);
5858 5856          /*
5859 5857           * ip_rput_other could have set an error  in ill_error on
5860 5858           * receipt of M_ERROR.
5861 5859           */
5862 5860          return (ill->ill_error);
5863 5861  }
5864 5862  
5865 5863  /*
5866 5864   * This is a module open, i.e. this is a control stream for access
5867 5865   * to a DLPI device.  We allocate an ill_t as the instance data in
5868 5866   * this case.
5869 5867   */
5870 5868  static int
5871 5869  ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5872 5870  {
5873 5871          ill_t   *ill;
5874 5872          int     err;
5875 5873          zoneid_t zoneid;
5876 5874          netstack_t *ns;
5877 5875          ip_stack_t *ipst;
5878 5876  
5879 5877          /*
5880 5878           * Prevent unprivileged processes from pushing IP so that
5881 5879           * they can't send raw IP.
5882 5880           */
5883 5881          if (secpolicy_net_rawaccess(credp) != 0)
5884 5882                  return (EPERM);
5885 5883  
5886 5884          ns = netstack_find_by_cred(credp);
5887 5885          ASSERT(ns != NULL);
5888 5886          ipst = ns->netstack_ip;
5889 5887          ASSERT(ipst != NULL);
5890 5888  
5891 5889          /*
5892 5890           * For exclusive stacks we set the zoneid to zero
5893 5891           * to make IP operate as if in the global zone.
5894 5892           */
5895 5893          if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5896 5894                  zoneid = GLOBAL_ZONEID;
5897 5895          else
5898 5896                  zoneid = crgetzoneid(credp);
5899 5897  
5900 5898          ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5901 5899          q->q_ptr = WR(q)->q_ptr = ill;
5902 5900          ill->ill_ipst = ipst;
5903 5901          ill->ill_zoneid = zoneid;
5904 5902  
5905 5903          /*
5906 5904           * ill_init initializes the ill fields and then sends down
5907 5905           * down a DL_INFO_REQ after calling qprocson.
5908 5906           */
5909 5907          err = ill_init(q, ill);
5910 5908  
5911 5909          if (err != 0) {
5912 5910                  mi_free(ill);
5913 5911                  netstack_rele(ipst->ips_netstack);
5914 5912                  q->q_ptr = NULL;
5915 5913                  WR(q)->q_ptr = NULL;
5916 5914                  return (err);
5917 5915          }
5918 5916  
5919 5917          /*
5920 5918           * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5921 5919           *
5922 5920           * ill_init initializes the ipsq marking this thread as
5923 5921           * writer
5924 5922           */
5925 5923          ipsq_exit(ill->ill_phyint->phyint_ipsq);
5926 5924          err = ip_wait_for_info_ack(ill);
5927 5925          if (err == 0)
5928 5926                  ill->ill_credp = credp;
5929 5927          else
5930 5928                  goto fail;
5931 5929  
5932 5930          crhold(credp);
5933 5931  
5934 5932          mutex_enter(&ipst->ips_ip_mi_lock);
5935 5933          err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5936 5934              sflag, credp);
5937 5935          mutex_exit(&ipst->ips_ip_mi_lock);
5938 5936  fail:
5939 5937          if (err) {
5940 5938                  (void) ip_close(q, 0, credp);
5941 5939                  return (err);
5942 5940          }
5943 5941          return (0);
5944 5942  }
5945 5943  
5946 5944  /* For /dev/ip aka AF_INET open */
5947 5945  int
5948 5946  ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5949 5947  {
5950 5948          return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5951 5949  }
5952 5950  
5953 5951  /* For /dev/ip6 aka AF_INET6 open */
5954 5952  int
5955 5953  ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5956 5954  {
5957 5955          return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5958 5956  }
5959 5957  
5960 5958  /* IP open routine. */
5961 5959  int
5962 5960  ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5963 5961      boolean_t isv6)
5964 5962  {
5965 5963          conn_t          *connp;
5966 5964          major_t         maj;
5967 5965          zoneid_t        zoneid;
5968 5966          netstack_t      *ns;
5969 5967          ip_stack_t      *ipst;
5970 5968  
5971 5969          /* Allow reopen. */
5972 5970          if (q->q_ptr != NULL)
5973 5971                  return (0);
5974 5972  
5975 5973          if (sflag & MODOPEN) {
5976 5974                  /* This is a module open */
5977 5975                  return (ip_modopen(q, devp, flag, sflag, credp));
5978 5976          }
5979 5977  
5980 5978          if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5981 5979                  /*
5982 5980                   * Non streams based socket looking for a stream
5983 5981                   * to access IP
5984 5982                   */
5985 5983                  return (ip_helper_stream_setup(q, devp, flag, sflag,
5986 5984                      credp, isv6));
5987 5985          }
5988 5986  
5989 5987          ns = netstack_find_by_cred(credp);
5990 5988          ASSERT(ns != NULL);
5991 5989          ipst = ns->netstack_ip;
5992 5990          ASSERT(ipst != NULL);
5993 5991  
5994 5992          /*
5995 5993           * For exclusive stacks we set the zoneid to zero
5996 5994           * to make IP operate as if in the global zone.
5997 5995           */
5998 5996          if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5999 5997                  zoneid = GLOBAL_ZONEID;
6000 5998          else
6001 5999                  zoneid = crgetzoneid(credp);
6002 6000  
6003 6001          /*
6004 6002           * We are opening as a device. This is an IP client stream, and we
6005 6003           * allocate an conn_t as the instance data.
6006 6004           */
6007 6005          connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6008 6006  
6009 6007          /*
6010 6008           * ipcl_conn_create did a netstack_hold. Undo the hold that was
6011 6009           * done by netstack_find_by_cred()
6012 6010           */
6013 6011          netstack_rele(ipst->ips_netstack);
6014 6012  
6015 6013          connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6016 6014          /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6017 6015          connp->conn_ixa->ixa_zoneid = zoneid;
6018 6016          connp->conn_zoneid = zoneid;
6019 6017  
6020 6018          connp->conn_rq = q;
6021 6019          q->q_ptr = WR(q)->q_ptr = connp;
6022 6020  
6023 6021          /* Minor tells us which /dev entry was opened */
6024 6022          if (isv6) {
6025 6023                  connp->conn_family = AF_INET6;
6026 6024                  connp->conn_ipversion = IPV6_VERSION;
6027 6025                  connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6028 6026                  connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6029 6027          } else {
6030 6028                  connp->conn_family = AF_INET;
6031 6029                  connp->conn_ipversion = IPV4_VERSION;
6032 6030                  connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6033 6031          }
6034 6032  
6035 6033          if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6036 6034              ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6037 6035                  connp->conn_minor_arena = ip_minor_arena_la;
6038 6036          } else {
6039 6037                  /*
6040 6038                   * Either minor numbers in the large arena were exhausted
6041 6039                   * or a non socket application is doing the open.
6042 6040                   * Try to allocate from the small arena.
6043 6041                   */
6044 6042                  if ((connp->conn_dev =
6045 6043                      inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6046 6044                          /* CONN_DEC_REF takes care of netstack_rele() */
6047 6045                          q->q_ptr = WR(q)->q_ptr = NULL;
6048 6046                          CONN_DEC_REF(connp);
6049 6047                          return (EBUSY);
6050 6048                  }
6051 6049                  connp->conn_minor_arena = ip_minor_arena_sa;
6052 6050          }
6053 6051  
6054 6052          maj = getemajor(*devp);
6055 6053          *devp = makedevice(maj, (minor_t)connp->conn_dev);
6056 6054  
6057 6055          /*
6058 6056           * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6059 6057           */
6060 6058          connp->conn_cred = credp;
6061 6059          connp->conn_cpid = curproc->p_pid;
6062 6060          /* Cache things in ixa without an extra refhold */
6063 6061          ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6064 6062          connp->conn_ixa->ixa_cred = connp->conn_cred;
6065 6063          connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6066 6064          if (is_system_labeled())
6067 6065                  connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6068 6066  
6069 6067          /*
6070 6068           * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6071 6069           */
6072 6070          connp->conn_recv = ip_conn_input;
6073 6071          connp->conn_recvicmp = ip_conn_input_icmp;
6074 6072  
6075 6073          crhold(connp->conn_cred);
6076 6074  
6077 6075          /*
6078 6076           * If the caller has the process-wide flag set, then default to MAC
6079 6077           * exempt mode.  This allows read-down to unlabeled hosts.
6080 6078           */
6081 6079          if (getpflags(NET_MAC_AWARE, credp) != 0)
6082 6080                  connp->conn_mac_mode = CONN_MAC_AWARE;
6083 6081  
6084 6082          connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6085 6083  
6086 6084          connp->conn_rq = q;
6087 6085          connp->conn_wq = WR(q);
6088 6086  
6089 6087          /* Non-zero default values */
6090 6088          connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6091 6089  
6092 6090          /*
6093 6091           * Make the conn globally visible to walkers
6094 6092           */
6095 6093          ASSERT(connp->conn_ref == 1);
6096 6094          mutex_enter(&connp->conn_lock);
6097 6095          connp->conn_state_flags &= ~CONN_INCIPIENT;
6098 6096          mutex_exit(&connp->conn_lock);
6099 6097  
6100 6098          qprocson(q);
6101 6099  
6102 6100          return (0);
6103 6101  }
6104 6102  
6105 6103  /*
6106 6104   * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6107 6105   * all of them are copied to the conn_t. If the req is "zero", the policy is
6108 6106   * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6109 6107   * fields.
6110 6108   * We keep only the latest setting of the policy and thus policy setting
6111 6109   * is not incremental/cumulative.
6112 6110   *
6113 6111   * Requests to set policies with multiple alternative actions will
6114 6112   * go through a different API.
6115 6113   */
6116 6114  int
6117 6115  ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6118 6116  {
6119 6117          uint_t ah_req = 0;
6120 6118          uint_t esp_req = 0;
6121 6119          uint_t se_req = 0;
6122 6120          ipsec_act_t *actp = NULL;
6123 6121          uint_t nact;
6124 6122          ipsec_policy_head_t *ph;
6125 6123          boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6126 6124          int error = 0;
6127 6125          netstack_t      *ns = connp->conn_netstack;
6128 6126          ip_stack_t      *ipst = ns->netstack_ip;
6129 6127          ipsec_stack_t   *ipss = ns->netstack_ipsec;
6130 6128  
6131 6129  #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6132 6130  
6133 6131          /*
6134 6132           * The IP_SEC_OPT option does not allow variable length parameters,
6135 6133           * hence a request cannot be NULL.
6136 6134           */
6137 6135          if (req == NULL)
6138 6136                  return (EINVAL);
6139 6137  
6140 6138          ah_req = req->ipsr_ah_req;
6141 6139          esp_req = req->ipsr_esp_req;
6142 6140          se_req = req->ipsr_self_encap_req;
6143 6141  
6144 6142          /* Don't allow setting self-encap without one or more of AH/ESP. */
6145 6143          if (se_req != 0 && esp_req == 0 && ah_req == 0)
6146 6144                  return (EINVAL);
6147 6145  
6148 6146          /*
6149 6147           * Are we dealing with a request to reset the policy (i.e.
6150 6148           * zero requests).
6151 6149           */
6152 6150          is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6153 6151              (esp_req & REQ_MASK) == 0 &&
6154 6152              (se_req & REQ_MASK) == 0);
6155 6153  
6156 6154          if (!is_pol_reset) {
6157 6155                  /*
6158 6156                   * If we couldn't load IPsec, fail with "protocol
6159 6157                   * not supported".
6160 6158                   * IPsec may not have been loaded for a request with zero
6161 6159                   * policies, so we don't fail in this case.
6162 6160                   */
6163 6161                  mutex_enter(&ipss->ipsec_loader_lock);
6164 6162                  if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6165 6163                          mutex_exit(&ipss->ipsec_loader_lock);
6166 6164                          return (EPROTONOSUPPORT);
6167 6165                  }
6168 6166                  mutex_exit(&ipss->ipsec_loader_lock);
6169 6167  
6170 6168                  /*
6171 6169                   * Test for valid requests. Invalid algorithms
6172 6170                   * need to be tested by IPsec code because new
6173 6171                   * algorithms can be added dynamically.
6174 6172                   */
6175 6173                  if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6176 6174                      (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6177 6175                      (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6178 6176                          return (EINVAL);
6179 6177                  }
6180 6178  
6181 6179                  /*
6182 6180                   * Only privileged users can issue these
6183 6181                   * requests.
6184 6182                   */
6185 6183                  if (((ah_req & IPSEC_PREF_NEVER) ||
6186 6184                      (esp_req & IPSEC_PREF_NEVER) ||
6187 6185                      (se_req & IPSEC_PREF_NEVER)) &&
6188 6186                      secpolicy_ip_config(cr, B_FALSE) != 0) {
6189 6187                          return (EPERM);
6190 6188                  }
6191 6189  
6192 6190                  /*
6193 6191                   * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6194 6192                   * are mutually exclusive.
6195 6193                   */
6196 6194                  if (((ah_req & REQ_MASK) == REQ_MASK) ||
6197 6195                      ((esp_req & REQ_MASK) == REQ_MASK) ||
6198 6196                      ((se_req & REQ_MASK) == REQ_MASK)) {
6199 6197                          /* Both of them are set */
6200 6198                          return (EINVAL);
6201 6199                  }
6202 6200          }
6203 6201  
6204 6202          ASSERT(MUTEX_HELD(&connp->conn_lock));
6205 6203  
6206 6204          /*
6207 6205           * If we have already cached policies in conn_connect(), don't
6208 6206           * let them change now. We cache policies for connections
6209 6207           * whose src,dst [addr, port] is known.
6210 6208           */
6211 6209          if (connp->conn_policy_cached) {
6212 6210                  return (EINVAL);
6213 6211          }
6214 6212  
6215 6213          /*
6216 6214           * We have a zero policies, reset the connection policy if already
6217 6215           * set. This will cause the connection to inherit the
6218 6216           * global policy, if any.
6219 6217           */
6220 6218          if (is_pol_reset) {
6221 6219                  if (connp->conn_policy != NULL) {
6222 6220                          IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6223 6221                          connp->conn_policy = NULL;
6224 6222                  }
6225 6223                  connp->conn_in_enforce_policy = B_FALSE;
6226 6224                  connp->conn_out_enforce_policy = B_FALSE;
6227 6225                  return (0);
6228 6226          }
6229 6227  
6230 6228          ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6231 6229              ipst->ips_netstack);
6232 6230          if (ph == NULL)
6233 6231                  goto enomem;
6234 6232  
6235 6233          ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6236 6234          if (actp == NULL)
6237 6235                  goto enomem;
6238 6236  
6239 6237          /*
6240 6238           * Always insert IPv4 policy entries, since they can also apply to
6241 6239           * ipv6 sockets being used in ipv4-compat mode.
6242 6240           */
6243 6241          if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6244 6242              IPSEC_TYPE_INBOUND, ns))
6245 6243                  goto enomem;
6246 6244          is_pol_inserted = B_TRUE;
6247 6245          if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6248 6246              IPSEC_TYPE_OUTBOUND, ns))
6249 6247                  goto enomem;
6250 6248  
6251 6249          /*
6252 6250           * We're looking at a v6 socket, also insert the v6-specific
6253 6251           * entries.
6254 6252           */
6255 6253          if (connp->conn_family == AF_INET6) {
6256 6254                  if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6257 6255                      IPSEC_TYPE_INBOUND, ns))
6258 6256                          goto enomem;
6259 6257                  if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6260 6258                      IPSEC_TYPE_OUTBOUND, ns))
6261 6259                          goto enomem;
6262 6260          }
6263 6261  
6264 6262          ipsec_actvec_free(actp, nact);
6265 6263  
6266 6264          /*
6267 6265           * If the requests need security, set enforce_policy.
6268 6266           * If the requests are IPSEC_PREF_NEVER, one should
6269 6267           * still set conn_out_enforce_policy so that ip_set_destination
6270 6268           * marks the ip_xmit_attr_t appropriatly. This is needed so that
6271 6269           * for connections that we don't cache policy in at connect time,
6272 6270           * if global policy matches in ip_output_attach_policy, we
6273 6271           * don't wrongly inherit global policy. Similarly, we need
6274 6272           * to set conn_in_enforce_policy also so that we don't verify
6275 6273           * policy wrongly.
6276 6274           */
6277 6275          if ((ah_req & REQ_MASK) != 0 ||
6278 6276              (esp_req & REQ_MASK) != 0 ||
6279 6277              (se_req & REQ_MASK) != 0) {
6280 6278                  connp->conn_in_enforce_policy = B_TRUE;
6281 6279                  connp->conn_out_enforce_policy = B_TRUE;
6282 6280          }
6283 6281  
6284 6282          return (error);
6285 6283  #undef REQ_MASK
6286 6284  
6287 6285          /*
6288 6286           * Common memory-allocation-failure exit path.
6289 6287           */
6290 6288  enomem:
6291 6289          if (actp != NULL)
6292 6290                  ipsec_actvec_free(actp, nact);
6293 6291          if (is_pol_inserted)
6294 6292                  ipsec_polhead_flush(ph, ns);
6295 6293          return (ENOMEM);
6296 6294  }
6297 6295  
6298 6296  /*
6299 6297   * Set socket options for joining and leaving multicast groups.
6300 6298   * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6301 6299   * The caller has already check that the option name is consistent with
6302 6300   * the address family of the socket.
6303 6301   */
6304 6302  int
6305 6303  ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6306 6304      uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6307 6305  {
6308 6306          int             *i1 = (int *)invalp;
6309 6307          int             error = 0;
6310 6308          ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6311 6309          struct ip_mreq  *v4_mreqp;
6312 6310          struct ipv6_mreq *v6_mreqp;
6313 6311          struct group_req *greqp;
6314 6312          ire_t *ire;
6315 6313          boolean_t done = B_FALSE;
6316 6314          ipaddr_t ifaddr;
6317 6315          in6_addr_t v6group;
6318 6316          uint_t ifindex;
6319 6317          boolean_t mcast_opt = B_TRUE;
6320 6318          mcast_record_t fmode;
6321 6319          int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6322 6320              ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6323 6321  
6324 6322          switch (name) {
6325 6323          case IP_ADD_MEMBERSHIP:
6326 6324          case IPV6_JOIN_GROUP:
6327 6325                  mcast_opt = B_FALSE;
6328 6326                  /* FALLTHROUGH */
6329 6327          case MCAST_JOIN_GROUP:
6330 6328                  fmode = MODE_IS_EXCLUDE;
6331 6329                  optfn = ip_opt_add_group;
6332 6330                  break;
6333 6331  
6334 6332          case IP_DROP_MEMBERSHIP:
6335 6333          case IPV6_LEAVE_GROUP:
6336 6334                  mcast_opt = B_FALSE;
6337 6335                  /* FALLTHROUGH */
6338 6336          case MCAST_LEAVE_GROUP:
6339 6337                  fmode = MODE_IS_INCLUDE;
6340 6338                  optfn = ip_opt_delete_group;
6341 6339                  break;
6342 6340          default:
6343 6341                  ASSERT(0);
6344 6342          }
6345 6343  
6346 6344          if (mcast_opt) {
6347 6345                  struct sockaddr_in *sin;
6348 6346                  struct sockaddr_in6 *sin6;
6349 6347  
6350 6348                  greqp = (struct group_req *)i1;
6351 6349                  if (greqp->gr_group.ss_family == AF_INET) {
6352 6350                          sin = (struct sockaddr_in *)&(greqp->gr_group);
6353 6351                          IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6354 6352                  } else {
6355 6353                          if (!inet6)
6356 6354                                  return (EINVAL);        /* Not on INET socket */
6357 6355  
6358 6356                          sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6359 6357                          v6group = sin6->sin6_addr;
6360 6358                  }
6361 6359                  ifaddr = INADDR_ANY;
6362 6360                  ifindex = greqp->gr_interface;
6363 6361          } else if (inet6) {
6364 6362                  v6_mreqp = (struct ipv6_mreq *)i1;
6365 6363                  v6group = v6_mreqp->ipv6mr_multiaddr;
6366 6364                  ifaddr = INADDR_ANY;
6367 6365                  ifindex = v6_mreqp->ipv6mr_interface;
6368 6366          } else {
6369 6367                  v4_mreqp = (struct ip_mreq *)i1;
6370 6368                  IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6371 6369                  ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6372 6370                  ifindex = 0;
6373 6371          }
6374 6372  
6375 6373          /*
6376 6374           * In the multirouting case, we need to replicate
6377 6375           * the request on all interfaces that will take part
6378 6376           * in replication.  We do so because multirouting is
6379 6377           * reflective, thus we will probably receive multi-
6380 6378           * casts on those interfaces.
6381 6379           * The ip_multirt_apply_membership() succeeds if
6382 6380           * the operation succeeds on at least one interface.
6383 6381           */
6384 6382          if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6385 6383                  ipaddr_t group;
6386 6384  
6387 6385                  IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6388 6386  
6389 6387                  ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6390 6388                      IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6391 6389                      MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6392 6390          } else {
6393 6391                  ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6394 6392                      IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6395 6393                      MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6396 6394          }
6397 6395          if (ire != NULL) {
6398 6396                  if (ire->ire_flags & RTF_MULTIRT) {
6399 6397                          error = ip_multirt_apply_membership(optfn, ire, connp,
6400 6398                              checkonly, &v6group, fmode, &ipv6_all_zeros);
6401 6399                          done = B_TRUE;
6402 6400                  }
6403 6401                  ire_refrele(ire);
6404 6402          }
6405 6403  
6406 6404          if (!done) {
6407 6405                  error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6408 6406                      fmode, &ipv6_all_zeros);
6409 6407          }
6410 6408          return (error);
6411 6409  }
6412 6410  
6413 6411  /*
6414 6412   * Set socket options for joining and leaving multicast groups
6415 6413   * for specific sources.
6416 6414   * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6417 6415   * The caller has already check that the option name is consistent with
6418 6416   * the address family of the socket.
6419 6417   */
6420 6418  int
6421 6419  ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6422 6420      uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6423 6421  {
6424 6422          int             *i1 = (int *)invalp;
6425 6423          int             error = 0;
6426 6424          ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6427 6425          struct ip_mreq_source *imreqp;
6428 6426          struct group_source_req *gsreqp;
6429 6427          in6_addr_t v6group, v6src;
6430 6428          uint32_t ifindex;
6431 6429          ipaddr_t ifaddr;
6432 6430          boolean_t mcast_opt = B_TRUE;
6433 6431          mcast_record_t fmode;
6434 6432          ire_t *ire;
6435 6433          boolean_t done = B_FALSE;
6436 6434          int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6437 6435              ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6438 6436  
6439 6437          switch (name) {
6440 6438          case IP_BLOCK_SOURCE:
6441 6439                  mcast_opt = B_FALSE;
6442 6440                  /* FALLTHROUGH */
6443 6441          case MCAST_BLOCK_SOURCE:
6444 6442                  fmode = MODE_IS_EXCLUDE;
6445 6443                  optfn = ip_opt_add_group;
6446 6444                  break;
6447 6445  
6448 6446          case IP_UNBLOCK_SOURCE:
6449 6447                  mcast_opt = B_FALSE;
6450 6448                  /* FALLTHROUGH */
6451 6449          case MCAST_UNBLOCK_SOURCE:
6452 6450                  fmode = MODE_IS_EXCLUDE;
6453 6451                  optfn = ip_opt_delete_group;
6454 6452                  break;
6455 6453  
6456 6454          case IP_ADD_SOURCE_MEMBERSHIP:
6457 6455                  mcast_opt = B_FALSE;
6458 6456                  /* FALLTHROUGH */
6459 6457          case MCAST_JOIN_SOURCE_GROUP:
6460 6458                  fmode = MODE_IS_INCLUDE;
6461 6459                  optfn = ip_opt_add_group;
6462 6460                  break;
6463 6461  
6464 6462          case IP_DROP_SOURCE_MEMBERSHIP:
6465 6463                  mcast_opt = B_FALSE;
6466 6464                  /* FALLTHROUGH */
6467 6465          case MCAST_LEAVE_SOURCE_GROUP:
6468 6466                  fmode = MODE_IS_INCLUDE;
6469 6467                  optfn = ip_opt_delete_group;
6470 6468                  break;
6471 6469          default:
6472 6470                  ASSERT(0);
6473 6471          }
6474 6472  
6475 6473          if (mcast_opt) {
6476 6474                  gsreqp = (struct group_source_req *)i1;
6477 6475                  ifindex = gsreqp->gsr_interface;
6478 6476                  if (gsreqp->gsr_group.ss_family == AF_INET) {
6479 6477                          struct sockaddr_in *s;
6480 6478                          s = (struct sockaddr_in *)&gsreqp->gsr_group;
6481 6479                          IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6482 6480                          s = (struct sockaddr_in *)&gsreqp->gsr_source;
6483 6481                          IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6484 6482                  } else {
6485 6483                          struct sockaddr_in6 *s6;
6486 6484  
6487 6485                          if (!inet6)
6488 6486                                  return (EINVAL);        /* Not on INET socket */
6489 6487  
6490 6488                          s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6491 6489                          v6group = s6->sin6_addr;
6492 6490                          s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6493 6491                          v6src = s6->sin6_addr;
6494 6492                  }
6495 6493                  ifaddr = INADDR_ANY;
6496 6494          } else {
6497 6495                  imreqp = (struct ip_mreq_source *)i1;
6498 6496                  IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6499 6497                  IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6500 6498                  ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6501 6499                  ifindex = 0;
6502 6500          }
6503 6501  
6504 6502          /*
6505 6503           * Handle src being mapped INADDR_ANY by changing it to unspecified.
6506 6504           */
6507 6505          if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6508 6506                  v6src = ipv6_all_zeros;
6509 6507  
6510 6508          /*
6511 6509           * In the multirouting case, we need to replicate
6512 6510           * the request as noted in the mcast cases above.
6513 6511           */
6514 6512          if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6515 6513                  ipaddr_t group;
6516 6514  
6517 6515                  IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6518 6516  
6519 6517                  ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6520 6518                      IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6521 6519                      MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6522 6520          } else {
6523 6521                  ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6524 6522                      IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6525 6523                      MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6526 6524          }
6527 6525          if (ire != NULL) {
6528 6526                  if (ire->ire_flags & RTF_MULTIRT) {
6529 6527                          error = ip_multirt_apply_membership(optfn, ire, connp,
6530 6528                              checkonly, &v6group, fmode, &v6src);
6531 6529                          done = B_TRUE;
6532 6530                  }
6533 6531                  ire_refrele(ire);
6534 6532          }
6535 6533          if (!done) {
6536 6534                  error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6537 6535                      fmode, &v6src);
6538 6536          }
6539 6537          return (error);
6540 6538  }
6541 6539  
6542 6540  /*
6543 6541   * Given a destination address and a pointer to where to put the information
6544 6542   * this routine fills in the mtuinfo.
6545 6543   * The socket must be connected.
6546 6544   * For sctp conn_faddr is the primary address.
6547 6545   */
6548 6546  int
6549 6547  ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6550 6548  {
6551 6549          uint32_t        pmtu = IP_MAXPACKET;
6552 6550          uint_t          scopeid;
6553 6551  
6554 6552          if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6555 6553                  return (-1);
6556 6554  
6557 6555          /* In case we never sent or called ip_set_destination_v4/v6 */
6558 6556          if (ixa->ixa_ire != NULL)
6559 6557                  pmtu = ip_get_pmtu(ixa);
6560 6558  
6561 6559          if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6562 6560                  scopeid = ixa->ixa_scopeid;
6563 6561          else
6564 6562                  scopeid = 0;
6565 6563  
6566 6564          bzero(mtuinfo, sizeof (*mtuinfo));
6567 6565          mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6568 6566          mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6569 6567          mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6570 6568          mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6571 6569          mtuinfo->ip6m_mtu = pmtu;
6572 6570  
6573 6571          return (sizeof (struct ip6_mtuinfo));
6574 6572  }
6575 6573  
6576 6574  /*
6577 6575   * When the src multihoming is changed from weak to [strong, preferred]
6578 6576   * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6579 6577   * and identify routes that were created by user-applications in the
6580 6578   * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6581 6579   * currently defined. These routes are then 'rebound', i.e., their ire_ill
6582 6580   * is selected by finding an interface route for the gateway.
6583 6581   */
6584 6582  /* ARGSUSED */
6585 6583  void
6586 6584  ip_ire_rebind_walker(ire_t *ire, void *notused)
6587 6585  {
6588 6586          if (!ire->ire_unbound || ire->ire_ill != NULL)
6589 6587                  return;
6590 6588          ire_rebind(ire);
6591 6589          ire_delete(ire);
6592 6590  }
6593 6591  
6594 6592  /*
6595 6593   * When the src multihoming is changed from  [strong, preferred] to weak,
6596 6594   * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6597 6595   * set any entries that were created by user-applications in the unbound state
6598 6596   * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6599 6597   */
6600 6598  /* ARGSUSED */
6601 6599  void
6602 6600  ip_ire_unbind_walker(ire_t *ire, void *notused)
6603 6601  {
6604 6602          ire_t *new_ire;
6605 6603  
6606 6604          if (!ire->ire_unbound || ire->ire_ill == NULL)
6607 6605                  return;
6608 6606          if (ire->ire_ipversion == IPV6_VERSION) {
6609 6607                  new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6610 6608                      &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6611 6609                      ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6612 6610          } else {
6613 6611                  new_ire = ire_create((uchar_t *)&ire->ire_addr,
6614 6612                      (uchar_t *)&ire->ire_mask,
6615 6613                      (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6616 6614                      ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6617 6615          }
6618 6616          if (new_ire == NULL)
6619 6617                  return;
6620 6618          new_ire->ire_unbound = B_TRUE;
6621 6619          /*
6622 6620           * The bound ire must first be deleted so that we don't return
6623 6621           * the existing one on the attempt to add the unbound new_ire.
6624 6622           */
6625 6623          ire_delete(ire);
6626 6624          new_ire = ire_add(new_ire);
6627 6625          if (new_ire != NULL)
6628 6626                  ire_refrele(new_ire);
6629 6627  }
6630 6628  
6631 6629  /*
6632 6630   * When the settings of ip*_strict_src_multihoming tunables are changed,
6633 6631   * all cached routes need to be recomputed. This recomputation needs to be
6634 6632   * done when going from weaker to stronger modes so that the cached ire
6635 6633   * for the connection does not violate the current ip*_strict_src_multihoming
6636 6634   * setting. It also needs to be done when going from stronger to weaker modes,
6637 6635   * so that we fall back to matching on the longest-matching-route (as opposed
6638 6636   * to a shorter match that may have been selected in the strong mode
6639 6637   * to satisfy src_multihoming settings).
6640 6638   *
6641 6639   * The cached ixa_ire entires for all conn_t entries are marked as
6642 6640   * "verify" so that they will be recomputed for the next packet.
6643 6641   */
6644 6642  void
6645 6643  conn_ire_revalidate(conn_t *connp, void *arg)
6646 6644  {
6647 6645          boolean_t isv6 = (boolean_t)arg;
6648 6646  
6649 6647          if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6650 6648              (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6651 6649                  return;
6652 6650          connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6653 6651  }
6654 6652  
6655 6653  /*
6656 6654   * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6657 6655   * When an ipf is passed here for the first time, if
6658 6656   * we already have in-order fragments on the queue, we convert from the fast-
6659 6657   * path reassembly scheme to the hard-case scheme.  From then on, additional
6660 6658   * fragments are reassembled here.  We keep track of the start and end offsets
6661 6659   * of each piece, and the number of holes in the chain.  When the hole count
6662 6660   * goes to zero, we are done!
6663 6661   *
6664 6662   * The ipf_count will be updated to account for any mblk(s) added (pointed to
6665 6663   * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6666 6664   * ipfb_count and ill_frag_count by the difference of ipf_count before and
6667 6665   * after the call to ip_reassemble().
6668 6666   */
6669 6667  int
6670 6668  ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6671 6669      size_t msg_len)
6672 6670  {
6673 6671          uint_t  end;
6674 6672          mblk_t  *next_mp;
6675 6673          mblk_t  *mp1;
6676 6674          uint_t  offset;
6677 6675          boolean_t incr_dups = B_TRUE;
6678 6676          boolean_t offset_zero_seen = B_FALSE;
6679 6677          boolean_t pkt_boundary_checked = B_FALSE;
6680 6678  
6681 6679          /* If start == 0 then ipf_nf_hdr_len has to be set. */
6682 6680          ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6683 6681  
6684 6682          /* Add in byte count */
6685 6683          ipf->ipf_count += msg_len;
6686 6684          if (ipf->ipf_end) {
6687 6685                  /*
6688 6686                   * We were part way through in-order reassembly, but now there
6689 6687                   * is a hole.  We walk through messages already queued, and
6690 6688                   * mark them for hard case reassembly.  We know that up till
6691 6689                   * now they were in order starting from offset zero.
6692 6690                   */
6693 6691                  offset = 0;
6694 6692                  for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6695 6693                          IP_REASS_SET_START(mp1, offset);
6696 6694                          if (offset == 0) {
6697 6695                                  ASSERT(ipf->ipf_nf_hdr_len != 0);
6698 6696                                  offset = -ipf->ipf_nf_hdr_len;
6699 6697                          }
6700 6698                          offset += mp1->b_wptr - mp1->b_rptr;
6701 6699                          IP_REASS_SET_END(mp1, offset);
6702 6700                  }
6703 6701                  /* One hole at the end. */
6704 6702                  ipf->ipf_hole_cnt = 1;
6705 6703                  /* Brand it as a hard case, forever. */
6706 6704                  ipf->ipf_end = 0;
6707 6705          }
6708 6706          /* Walk through all the new pieces. */
6709 6707          do {
6710 6708                  end = start + (mp->b_wptr - mp->b_rptr);
6711 6709                  /*
6712 6710                   * If start is 0, decrease 'end' only for the first mblk of
6713 6711                   * the fragment. Otherwise 'end' can get wrong value in the
6714 6712                   * second pass of the loop if first mblk is exactly the
6715 6713                   * size of ipf_nf_hdr_len.
6716 6714                   */
6717 6715                  if (start == 0 && !offset_zero_seen) {
6718 6716                          /* First segment */
6719 6717                          ASSERT(ipf->ipf_nf_hdr_len != 0);
6720 6718                          end -= ipf->ipf_nf_hdr_len;
6721 6719                          offset_zero_seen = B_TRUE;
6722 6720                  }
6723 6721                  next_mp = mp->b_cont;
6724 6722                  /*
6725 6723                   * We are checking to see if there is any interesing data
6726 6724                   * to process.  If there isn't and the mblk isn't the
6727 6725                   * one which carries the unfragmentable header then we
6728 6726                   * drop it.  It's possible to have just the unfragmentable
6729 6727                   * header come through without any data.  That needs to be
6730 6728                   * saved.
6731 6729                   *
6732 6730                   * If the assert at the top of this function holds then the
6733 6731                   * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6734 6732                   * is infrequently traveled enough that the test is left in
6735 6733                   * to protect against future code changes which break that
6736 6734                   * invariant.
6737 6735                   */
6738 6736                  if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6739 6737                          /* Empty.  Blast it. */
6740 6738                          IP_REASS_SET_START(mp, 0);
6741 6739                          IP_REASS_SET_END(mp, 0);
6742 6740                          /*
6743 6741                           * If the ipf points to the mblk we are about to free,
6744 6742                           * update ipf to point to the next mblk (or NULL
6745 6743                           * if none).
6746 6744                           */
6747 6745                          if (ipf->ipf_mp->b_cont == mp)
6748 6746                                  ipf->ipf_mp->b_cont = next_mp;
6749 6747                          freeb(mp);
6750 6748                          continue;
6751 6749                  }
6752 6750                  mp->b_cont = NULL;
6753 6751                  IP_REASS_SET_START(mp, start);
6754 6752                  IP_REASS_SET_END(mp, end);
6755 6753                  if (!ipf->ipf_tail_mp) {
6756 6754                          ipf->ipf_tail_mp = mp;
6757 6755                          ipf->ipf_mp->b_cont = mp;
6758 6756                          if (start == 0 || !more) {
6759 6757                                  ipf->ipf_hole_cnt = 1;
6760 6758                                  /*
6761 6759                                   * if the first fragment comes in more than one
6762 6760                                   * mblk, this loop will be executed for each
6763 6761                                   * mblk. Need to adjust hole count so exiting
6764 6762                                   * this routine will leave hole count at 1.
6765 6763                                   */
6766 6764                                  if (next_mp)
6767 6765                                          ipf->ipf_hole_cnt++;
6768 6766                          } else
6769 6767                                  ipf->ipf_hole_cnt = 2;
6770 6768                          continue;
6771 6769                  } else if (ipf->ipf_last_frag_seen && !more &&
6772 6770                      !pkt_boundary_checked) {
6773 6771                          /*
6774 6772                           * We check datagram boundary only if this fragment
6775 6773                           * claims to be the last fragment and we have seen a
6776 6774                           * last fragment in the past too. We do this only
6777 6775                           * once for a given fragment.
6778 6776                           *
6779 6777                           * start cannot be 0 here as fragments with start=0
6780 6778                           * and MF=0 gets handled as a complete packet. These
6781 6779                           * fragments should not reach here.
6782 6780                           */
6783 6781  
6784 6782                          if (start + msgdsize(mp) !=
6785 6783                              IP_REASS_END(ipf->ipf_tail_mp)) {
6786 6784                                  /*
6787 6785                                   * We have two fragments both of which claim
6788 6786                                   * to be the last fragment but gives conflicting
6789 6787                                   * information about the whole datagram size.
6790 6788                                   * Something fishy is going on. Drop the
6791 6789                                   * fragment and free up the reassembly list.
6792 6790                                   */
6793 6791                                  return (IP_REASS_FAILED);
6794 6792                          }
6795 6793  
6796 6794                          /*
6797 6795                           * We shouldn't come to this code block again for this
6798 6796                           * particular fragment.
6799 6797                           */
6800 6798                          pkt_boundary_checked = B_TRUE;
6801 6799                  }
6802 6800  
6803 6801                  /* New stuff at or beyond tail? */
6804 6802                  offset = IP_REASS_END(ipf->ipf_tail_mp);
6805 6803                  if (start >= offset) {
6806 6804                          if (ipf->ipf_last_frag_seen) {
6807 6805                                  /* current fragment is beyond last fragment */
6808 6806                                  return (IP_REASS_FAILED);
6809 6807                          }
6810 6808                          /* Link it on end. */
6811 6809                          ipf->ipf_tail_mp->b_cont = mp;
6812 6810                          ipf->ipf_tail_mp = mp;
6813 6811                          if (more) {
6814 6812                                  if (start != offset)
6815 6813                                          ipf->ipf_hole_cnt++;
6816 6814                          } else if (start == offset && next_mp == NULL)
6817 6815                                          ipf->ipf_hole_cnt--;
6818 6816                          continue;
6819 6817                  }
6820 6818                  mp1 = ipf->ipf_mp->b_cont;
6821 6819                  offset = IP_REASS_START(mp1);
6822 6820                  /* New stuff at the front? */
6823 6821                  if (start < offset) {
6824 6822                          if (start == 0) {
6825 6823                                  if (end >= offset) {
6826 6824                                          /* Nailed the hole at the begining. */
6827 6825                                          ipf->ipf_hole_cnt--;
6828 6826                                  }
6829 6827                          } else if (end < offset) {
6830 6828                                  /*
6831 6829                                   * A hole, stuff, and a hole where there used
6832 6830                                   * to be just a hole.
6833 6831                                   */
6834 6832                                  ipf->ipf_hole_cnt++;
6835 6833                          }
6836 6834                          mp->b_cont = mp1;
6837 6835                          /* Check for overlap. */
6838 6836                          while (end > offset) {
6839 6837                                  if (end < IP_REASS_END(mp1)) {
6840 6838                                          mp->b_wptr -= end - offset;
6841 6839                                          IP_REASS_SET_END(mp, offset);
6842 6840                                          BUMP_MIB(ill->ill_ip_mib,
6843 6841                                              ipIfStatsReasmPartDups);
6844 6842                                          break;
6845 6843                                  }
6846 6844                                  /* Did we cover another hole? */
6847 6845                                  if ((mp1->b_cont &&
6848 6846                                      IP_REASS_END(mp1) !=
6849 6847                                      IP_REASS_START(mp1->b_cont) &&
6850 6848                                      end >= IP_REASS_START(mp1->b_cont)) ||
6851 6849                                      (!ipf->ipf_last_frag_seen && !more)) {
6852 6850                                          ipf->ipf_hole_cnt--;
6853 6851                                  }
6854 6852                                  /* Clip out mp1. */
6855 6853                                  if ((mp->b_cont = mp1->b_cont) == NULL) {
6856 6854                                          /*
6857 6855                                           * After clipping out mp1, this guy
6858 6856                                           * is now hanging off the end.
6859 6857                                           */
6860 6858                                          ipf->ipf_tail_mp = mp;
6861 6859                                  }
6862 6860                                  IP_REASS_SET_START(mp1, 0);
6863 6861                                  IP_REASS_SET_END(mp1, 0);
6864 6862                                  /* Subtract byte count */
6865 6863                                  ipf->ipf_count -= mp1->b_datap->db_lim -
6866 6864                                      mp1->b_datap->db_base;
6867 6865                                  freeb(mp1);
6868 6866                                  BUMP_MIB(ill->ill_ip_mib,
6869 6867                                      ipIfStatsReasmPartDups);
6870 6868                                  mp1 = mp->b_cont;
6871 6869                                  if (!mp1)
6872 6870                                          break;
6873 6871                                  offset = IP_REASS_START(mp1);
6874 6872                          }
6875 6873                          ipf->ipf_mp->b_cont = mp;
6876 6874                          continue;
6877 6875                  }
6878 6876                  /*
6879 6877                   * The new piece starts somewhere between the start of the head
6880 6878                   * and before the end of the tail.
6881 6879                   */
6882 6880                  for (; mp1; mp1 = mp1->b_cont) {
6883 6881                          offset = IP_REASS_END(mp1);
6884 6882                          if (start < offset) {
6885 6883                                  if (end <= offset) {
6886 6884                                          /* Nothing new. */
6887 6885                                          IP_REASS_SET_START(mp, 0);
6888 6886                                          IP_REASS_SET_END(mp, 0);
6889 6887                                          /* Subtract byte count */
6890 6888                                          ipf->ipf_count -= mp->b_datap->db_lim -
6891 6889                                              mp->b_datap->db_base;
6892 6890                                          if (incr_dups) {
6893 6891                                                  ipf->ipf_num_dups++;
6894 6892                                                  incr_dups = B_FALSE;
6895 6893                                          }
6896 6894                                          freeb(mp);
6897 6895                                          BUMP_MIB(ill->ill_ip_mib,
6898 6896                                              ipIfStatsReasmDuplicates);
6899 6897                                          break;
6900 6898                                  }
6901 6899                                  /*
6902 6900                                   * Trim redundant stuff off beginning of new
6903 6901                                   * piece.
6904 6902                                   */
6905 6903                                  IP_REASS_SET_START(mp, offset);
6906 6904                                  mp->b_rptr += offset - start;
6907 6905                                  BUMP_MIB(ill->ill_ip_mib,
6908 6906                                      ipIfStatsReasmPartDups);
6909 6907                                  start = offset;
6910 6908                                  if (!mp1->b_cont) {
6911 6909                                          /*
6912 6910                                           * After trimming, this guy is now
6913 6911                                           * hanging off the end.
6914 6912                                           */
6915 6913                                          mp1->b_cont = mp;
6916 6914                                          ipf->ipf_tail_mp = mp;
6917 6915                                          if (!more) {
6918 6916                                                  ipf->ipf_hole_cnt--;
6919 6917                                          }
6920 6918                                          break;
6921 6919                                  }
6922 6920                          }
6923 6921                          if (start >= IP_REASS_START(mp1->b_cont))
6924 6922                                  continue;
6925 6923                          /* Fill a hole */
6926 6924                          if (start > offset)
6927 6925                                  ipf->ipf_hole_cnt++;
6928 6926                          mp->b_cont = mp1->b_cont;
6929 6927                          mp1->b_cont = mp;
6930 6928                          mp1 = mp->b_cont;
6931 6929                          offset = IP_REASS_START(mp1);
6932 6930                          if (end >= offset) {
6933 6931                                  ipf->ipf_hole_cnt--;
6934 6932                                  /* Check for overlap. */
6935 6933                                  while (end > offset) {
6936 6934                                          if (end < IP_REASS_END(mp1)) {
6937 6935                                                  mp->b_wptr -= end - offset;
6938 6936                                                  IP_REASS_SET_END(mp, offset);
6939 6937                                                  /*
6940 6938                                                   * TODO we might bump
6941 6939                                                   * this up twice if there is
6942 6940                                                   * overlap at both ends.
6943 6941                                                   */
6944 6942                                                  BUMP_MIB(ill->ill_ip_mib,
6945 6943                                                      ipIfStatsReasmPartDups);
6946 6944                                                  break;
6947 6945                                          }
6948 6946                                          /* Did we cover another hole? */
6949 6947                                          if ((mp1->b_cont &&
6950 6948                                              IP_REASS_END(mp1)
6951 6949                                              != IP_REASS_START(mp1->b_cont) &&
6952 6950                                              end >=
6953 6951                                              IP_REASS_START(mp1->b_cont)) ||
6954 6952                                              (!ipf->ipf_last_frag_seen &&
6955 6953                                              !more)) {
6956 6954                                                  ipf->ipf_hole_cnt--;
6957 6955                                          }
6958 6956                                          /* Clip out mp1. */
6959 6957                                          if ((mp->b_cont = mp1->b_cont) ==
6960 6958                                              NULL) {
6961 6959                                                  /*
6962 6960                                                   * After clipping out mp1,
6963 6961                                                   * this guy is now hanging
6964 6962                                                   * off the end.
6965 6963                                                   */
6966 6964                                                  ipf->ipf_tail_mp = mp;
6967 6965                                          }
6968 6966                                          IP_REASS_SET_START(mp1, 0);
6969 6967                                          IP_REASS_SET_END(mp1, 0);
6970 6968                                          /* Subtract byte count */
6971 6969                                          ipf->ipf_count -=
6972 6970                                              mp1->b_datap->db_lim -
6973 6971                                              mp1->b_datap->db_base;
6974 6972                                          freeb(mp1);
6975 6973                                          BUMP_MIB(ill->ill_ip_mib,
6976 6974                                              ipIfStatsReasmPartDups);
6977 6975                                          mp1 = mp->b_cont;
6978 6976                                          if (!mp1)
6979 6977                                                  break;
6980 6978                                          offset = IP_REASS_START(mp1);
6981 6979                                  }
6982 6980                          }
6983 6981                          break;
6984 6982                  }
6985 6983          } while (start = end, mp = next_mp);
6986 6984  
6987 6985          /* Fragment just processed could be the last one. Remember this fact */
6988 6986          if (!more)
6989 6987                  ipf->ipf_last_frag_seen = B_TRUE;
6990 6988  
6991 6989          /* Still got holes? */
6992 6990          if (ipf->ipf_hole_cnt)
6993 6991                  return (IP_REASS_PARTIAL);
6994 6992          /* Clean up overloaded fields to avoid upstream disasters. */
6995 6993          for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6996 6994                  IP_REASS_SET_START(mp1, 0);
6997 6995                  IP_REASS_SET_END(mp1, 0);
6998 6996          }
6999 6997          return (IP_REASS_COMPLETE);
7000 6998  }
7001 6999  
7002 7000  /*
7003 7001   * Fragmentation reassembly.  Each ILL has a hash table for
7004 7002   * queuing packets undergoing reassembly for all IPIFs
7005 7003   * associated with the ILL.  The hash is based on the packet
7006 7004   * IP ident field.  The ILL frag hash table was allocated
7007 7005   * as a timer block at the time the ILL was created.  Whenever
7008 7006   * there is anything on the reassembly queue, the timer will
7009 7007   * be running.  Returns the reassembled packet if reassembly completes.
7010 7008   */
7011 7009  mblk_t *
7012 7010  ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7013 7011  {
7014 7012          uint32_t        frag_offset_flags;
7015 7013          mblk_t          *t_mp;
7016 7014          ipaddr_t        dst;
7017 7015          uint8_t         proto = ipha->ipha_protocol;
7018 7016          uint32_t        sum_val;
7019 7017          uint16_t        sum_flags;
7020 7018          ipf_t           *ipf;
7021 7019          ipf_t           **ipfp;
7022 7020          ipfb_t          *ipfb;
7023 7021          uint16_t        ident;
7024 7022          uint32_t        offset;
7025 7023          ipaddr_t        src;
7026 7024          uint_t          hdr_length;
7027 7025          uint32_t        end;
7028 7026          mblk_t          *mp1;
7029 7027          mblk_t          *tail_mp;
7030 7028          size_t          count;
7031 7029          size_t          msg_len;
7032 7030          uint8_t         ecn_info = 0;
7033 7031          uint32_t        packet_size;
7034 7032          boolean_t       pruned = B_FALSE;
7035 7033          ill_t           *ill = ira->ira_ill;
7036 7034          ip_stack_t      *ipst = ill->ill_ipst;
7037 7035  
7038 7036          /*
7039 7037           * Drop the fragmented as early as possible, if
7040 7038           * we don't have resource(s) to re-assemble.
7041 7039           */
7042 7040          if (ipst->ips_ip_reass_queue_bytes == 0) {
7043 7041                  freemsg(mp);
7044 7042                  return (NULL);
7045 7043          }
7046 7044  
7047 7045          /* Check for fragmentation offset; return if there's none */
7048 7046          if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7049 7047              (IPH_MF | IPH_OFFSET)) == 0)
7050 7048                  return (mp);
7051 7049  
7052 7050          /*
7053 7051           * We utilize hardware computed checksum info only for UDP since
7054 7052           * IP fragmentation is a normal occurrence for the protocol.  In
7055 7053           * addition, checksum offload support for IP fragments carrying
7056 7054           * UDP payload is commonly implemented across network adapters.
7057 7055           */
7058 7056          ASSERT(ira->ira_rill != NULL);
7059 7057          if (proto == IPPROTO_UDP && dohwcksum &&
7060 7058              ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7061 7059              (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7062 7060                  mblk_t *mp1 = mp->b_cont;
7063 7061                  int32_t len;
7064 7062  
7065 7063                  /* Record checksum information from the packet */
7066 7064                  sum_val = (uint32_t)DB_CKSUM16(mp);
7067 7065                  sum_flags = DB_CKSUMFLAGS(mp);
7068 7066  
7069 7067                  /* IP payload offset from beginning of mblk */
7070 7068                  offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7071 7069  
7072 7070                  if ((sum_flags & HCK_PARTIALCKSUM) &&
7073 7071                      (mp1 == NULL || mp1->b_cont == NULL) &&
7074 7072                      offset >= DB_CKSUMSTART(mp) &&
7075 7073                      ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7076 7074                          uint32_t adj;
7077 7075                          /*
7078 7076                           * Partial checksum has been calculated by hardware
7079 7077                           * and attached to the packet; in addition, any
7080 7078                           * prepended extraneous data is even byte aligned.
7081 7079                           * If any such data exists, we adjust the checksum;
7082 7080                           * this would also handle any postpended data.
7083 7081                           */
7084 7082                          IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7085 7083                              mp, mp1, len, adj);
7086 7084  
7087 7085                          /* One's complement subtract extraneous checksum */
7088 7086                          if (adj >= sum_val)
7089 7087                                  sum_val = ~(adj - sum_val) & 0xFFFF;
7090 7088                          else
7091 7089                                  sum_val -= adj;
7092 7090                  }
7093 7091          } else {
7094 7092                  sum_val = 0;
7095 7093                  sum_flags = 0;
7096 7094          }
7097 7095  
7098 7096          /* Clear hardware checksumming flag */
7099 7097          DB_CKSUMFLAGS(mp) = 0;
7100 7098  
7101 7099          ident = ipha->ipha_ident;
7102 7100          offset = (frag_offset_flags << 3) & 0xFFFF;
7103 7101          src = ipha->ipha_src;
7104 7102          dst = ipha->ipha_dst;
7105 7103          hdr_length = IPH_HDR_LENGTH(ipha);
7106 7104          end = ntohs(ipha->ipha_length) - hdr_length;
7107 7105  
7108 7106          /* If end == 0 then we have a packet with no data, so just free it */
7109 7107          if (end == 0) {
7110 7108                  freemsg(mp);
7111 7109                  return (NULL);
7112 7110          }
7113 7111  
7114 7112          /* Record the ECN field info. */
7115 7113          ecn_info = (ipha->ipha_type_of_service & 0x3);
7116 7114          if (offset != 0) {
7117 7115                  /*
7118 7116                   * If this isn't the first piece, strip the header, and
7119 7117                   * add the offset to the end value.
7120 7118                   */
7121 7119                  mp->b_rptr += hdr_length;
7122 7120                  end += offset;
7123 7121          }
7124 7122  
7125 7123          /* Handle vnic loopback of fragments */
7126 7124          if (mp->b_datap->db_ref > 2)
7127 7125                  msg_len = 0;
7128 7126          else
7129 7127                  msg_len = MBLKSIZE(mp);
7130 7128  
7131 7129          tail_mp = mp;
7132 7130          while (tail_mp->b_cont != NULL) {
7133 7131                  tail_mp = tail_mp->b_cont;
7134 7132                  if (tail_mp->b_datap->db_ref <= 2)
7135 7133                          msg_len += MBLKSIZE(tail_mp);
7136 7134          }
7137 7135  
7138 7136          /* If the reassembly list for this ILL will get too big, prune it */
7139 7137          if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7140 7138              ipst->ips_ip_reass_queue_bytes) {
7141 7139                  DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7142 7140                      uint_t, ill->ill_frag_count,
7143 7141                      uint_t, ipst->ips_ip_reass_queue_bytes);
7144 7142                  ill_frag_prune(ill,
7145 7143                      (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7146 7144                      (ipst->ips_ip_reass_queue_bytes - msg_len));
7147 7145                  pruned = B_TRUE;
7148 7146          }
7149 7147  
7150 7148          ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7151 7149          mutex_enter(&ipfb->ipfb_lock);
7152 7150  
7153 7151          ipfp = &ipfb->ipfb_ipf;
7154 7152          /* Try to find an existing fragment queue for this packet. */
7155 7153          for (;;) {
7156 7154                  ipf = ipfp[0];
7157 7155                  if (ipf != NULL) {
7158 7156                          /*
7159 7157                           * It has to match on ident and src/dst address.
7160 7158                           */
7161 7159                          if (ipf->ipf_ident == ident &&
7162 7160                              ipf->ipf_src == src &&
7163 7161                              ipf->ipf_dst == dst &&
7164 7162                              ipf->ipf_protocol == proto) {
7165 7163                                  /*
7166 7164                                   * If we have received too many
7167 7165                                   * duplicate fragments for this packet
7168 7166                                   * free it.
7169 7167                                   */
7170 7168                                  if (ipf->ipf_num_dups > ip_max_frag_dups) {
7171 7169                                          ill_frag_free_pkts(ill, ipfb, ipf, 1);
7172 7170                                          freemsg(mp);
7173 7171                                          mutex_exit(&ipfb->ipfb_lock);
7174 7172                                          return (NULL);
7175 7173                                  }
7176 7174                                  /* Found it. */
7177 7175                                  break;
7178 7176                          }
7179 7177                          ipfp = &ipf->ipf_hash_next;
7180 7178                          continue;
7181 7179                  }
7182 7180  
7183 7181                  /*
7184 7182                   * If we pruned the list, do we want to store this new
7185 7183                   * fragment?. We apply an optimization here based on the
7186 7184                   * fact that most fragments will be received in order.
7187 7185                   * So if the offset of this incoming fragment is zero,
7188 7186                   * it is the first fragment of a new packet. We will
7189 7187                   * keep it.  Otherwise drop the fragment, as we have
7190 7188                   * probably pruned the packet already (since the
7191 7189                   * packet cannot be found).
7192 7190                   */
7193 7191                  if (pruned && offset != 0) {
7194 7192                          mutex_exit(&ipfb->ipfb_lock);
7195 7193                          freemsg(mp);
7196 7194                          return (NULL);
7197 7195                  }
7198 7196  
7199 7197                  if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7200 7198                          /*
7201 7199                           * Too many fragmented packets in this hash
7202 7200                           * bucket. Free the oldest.
7203 7201                           */
7204 7202                          ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7205 7203                  }
7206 7204  
7207 7205                  /* New guy.  Allocate a frag message. */
7208 7206                  mp1 = allocb(sizeof (*ipf), BPRI_MED);
7209 7207                  if (mp1 == NULL) {
7210 7208                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7211 7209                          ip_drop_input("ipIfStatsInDiscards", mp, ill);
7212 7210                          freemsg(mp);
7213 7211  reass_done:
7214 7212                          mutex_exit(&ipfb->ipfb_lock);
7215 7213                          return (NULL);
7216 7214                  }
7217 7215  
7218 7216                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7219 7217                  mp1->b_cont = mp;
7220 7218  
7221 7219                  /* Initialize the fragment header. */
7222 7220                  ipf = (ipf_t *)mp1->b_rptr;
7223 7221                  ipf->ipf_mp = mp1;
7224 7222                  ipf->ipf_ptphn = ipfp;
7225 7223                  ipfp[0] = ipf;
7226 7224                  ipf->ipf_hash_next = NULL;
7227 7225                  ipf->ipf_ident = ident;
7228 7226                  ipf->ipf_protocol = proto;
7229 7227                  ipf->ipf_src = src;
7230 7228                  ipf->ipf_dst = dst;
7231 7229                  ipf->ipf_nf_hdr_len = 0;
7232 7230                  /* Record reassembly start time. */
7233 7231                  ipf->ipf_timestamp = gethrestime_sec();
7234 7232                  /* Record ipf generation and account for frag header */
7235 7233                  ipf->ipf_gen = ill->ill_ipf_gen++;
7236 7234                  ipf->ipf_count = MBLKSIZE(mp1);
7237 7235                  ipf->ipf_last_frag_seen = B_FALSE;
7238 7236                  ipf->ipf_ecn = ecn_info;
7239 7237                  ipf->ipf_num_dups = 0;
7240 7238                  ipfb->ipfb_frag_pkts++;
7241 7239                  ipf->ipf_checksum = 0;
7242 7240                  ipf->ipf_checksum_flags = 0;
7243 7241  
7244 7242                  /* Store checksum value in fragment header */
7245 7243                  if (sum_flags != 0) {
7246 7244                          sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7247 7245                          sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7248 7246                          ipf->ipf_checksum = sum_val;
7249 7247                          ipf->ipf_checksum_flags = sum_flags;
7250 7248                  }
7251 7249  
7252 7250                  /*
7253 7251                   * We handle reassembly two ways.  In the easy case,
7254 7252                   * where all the fragments show up in order, we do
7255 7253                   * minimal bookkeeping, and just clip new pieces on
7256 7254                   * the end.  If we ever see a hole, then we go off
7257 7255                   * to ip_reassemble which has to mark the pieces and
7258 7256                   * keep track of the number of holes, etc.  Obviously,
7259 7257                   * the point of having both mechanisms is so we can
7260 7258                   * handle the easy case as efficiently as possible.
7261 7259                   */
7262 7260                  if (offset == 0) {
7263 7261                          /* Easy case, in-order reassembly so far. */
7264 7262                          ipf->ipf_count += msg_len;
7265 7263                          ipf->ipf_tail_mp = tail_mp;
7266 7264                          /*
7267 7265                           * Keep track of next expected offset in
7268 7266                           * ipf_end.
7269 7267                           */
7270 7268                          ipf->ipf_end = end;
7271 7269                          ipf->ipf_nf_hdr_len = hdr_length;
7272 7270                  } else {
7273 7271                          /* Hard case, hole at the beginning. */
7274 7272                          ipf->ipf_tail_mp = NULL;
7275 7273                          /*
7276 7274                           * ipf_end == 0 means that we have given up
7277 7275                           * on easy reassembly.
7278 7276                           */
7279 7277                          ipf->ipf_end = 0;
7280 7278  
7281 7279                          /* Forget checksum offload from now on */
7282 7280                          ipf->ipf_checksum_flags = 0;
7283 7281  
7284 7282                          /*
7285 7283                           * ipf_hole_cnt is set by ip_reassemble.
7286 7284                           * ipf_count is updated by ip_reassemble.
7287 7285                           * No need to check for return value here
7288 7286                           * as we don't expect reassembly to complete
7289 7287                           * or fail for the first fragment itself.
7290 7288                           */
7291 7289                          (void) ip_reassemble(mp, ipf,
7292 7290                              (frag_offset_flags & IPH_OFFSET) << 3,
7293 7291                              (frag_offset_flags & IPH_MF), ill, msg_len);
7294 7292                  }
7295 7293                  /* Update per ipfb and ill byte counts */
7296 7294                  ipfb->ipfb_count += ipf->ipf_count;
7297 7295                  ASSERT(ipfb->ipfb_count > 0);   /* Wraparound */
7298 7296                  atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7299 7297                  /* If the frag timer wasn't already going, start it. */
7300 7298                  mutex_enter(&ill->ill_lock);
7301 7299                  ill_frag_timer_start(ill);
7302 7300                  mutex_exit(&ill->ill_lock);
7303 7301                  goto reass_done;
7304 7302          }
7305 7303  
7306 7304          /*
7307 7305           * If the packet's flag has changed (it could be coming up
7308 7306           * from an interface different than the previous, therefore
7309 7307           * possibly different checksum capability), then forget about
7310 7308           * any stored checksum states.  Otherwise add the value to
7311 7309           * the existing one stored in the fragment header.
7312 7310           */
7313 7311          if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7314 7312                  sum_val += ipf->ipf_checksum;
7315 7313                  sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7316 7314                  sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7317 7315                  ipf->ipf_checksum = sum_val;
7318 7316          } else if (ipf->ipf_checksum_flags != 0) {
7319 7317                  /* Forget checksum offload from now on */
7320 7318                  ipf->ipf_checksum_flags = 0;
7321 7319          }
7322 7320  
7323 7321          /*
7324 7322           * We have a new piece of a datagram which is already being
7325 7323           * reassembled.  Update the ECN info if all IP fragments
7326 7324           * are ECN capable.  If there is one which is not, clear
7327 7325           * all the info.  If there is at least one which has CE
7328 7326           * code point, IP needs to report that up to transport.
7329 7327           */
7330 7328          if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7331 7329                  if (ecn_info == IPH_ECN_CE)
7332 7330                          ipf->ipf_ecn = IPH_ECN_CE;
7333 7331          } else {
7334 7332                  ipf->ipf_ecn = IPH_ECN_NECT;
7335 7333          }
7336 7334          if (offset && ipf->ipf_end == offset) {
7337 7335                  /* The new fragment fits at the end */
7338 7336                  ipf->ipf_tail_mp->b_cont = mp;
7339 7337                  /* Update the byte count */
7340 7338                  ipf->ipf_count += msg_len;
7341 7339                  /* Update per ipfb and ill byte counts */
7342 7340                  ipfb->ipfb_count += msg_len;
7343 7341                  ASSERT(ipfb->ipfb_count > 0);   /* Wraparound */
7344 7342                  atomic_add_32(&ill->ill_frag_count, msg_len);
7345 7343                  if (frag_offset_flags & IPH_MF) {
7346 7344                          /* More to come. */
7347 7345                          ipf->ipf_end = end;
7348 7346                          ipf->ipf_tail_mp = tail_mp;
7349 7347                          goto reass_done;
7350 7348                  }
7351 7349          } else {
7352 7350                  /* Go do the hard cases. */
7353 7351                  int ret;
7354 7352  
7355 7353                  if (offset == 0)
7356 7354                          ipf->ipf_nf_hdr_len = hdr_length;
7357 7355  
7358 7356                  /* Save current byte count */
7359 7357                  count = ipf->ipf_count;
7360 7358                  ret = ip_reassemble(mp, ipf,
7361 7359                      (frag_offset_flags & IPH_OFFSET) << 3,
7362 7360                      (frag_offset_flags & IPH_MF), ill, msg_len);
7363 7361                  /* Count of bytes added and subtracted (freeb()ed) */
7364 7362                  count = ipf->ipf_count - count;
7365 7363                  if (count) {
7366 7364                          /* Update per ipfb and ill byte counts */
7367 7365                          ipfb->ipfb_count += count;
7368 7366                          ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7369 7367                          atomic_add_32(&ill->ill_frag_count, count);
7370 7368                  }
7371 7369                  if (ret == IP_REASS_PARTIAL) {
7372 7370                          goto reass_done;
7373 7371                  } else if (ret == IP_REASS_FAILED) {
7374 7372                          /* Reassembly failed. Free up all resources */
7375 7373                          ill_frag_free_pkts(ill, ipfb, ipf, 1);
7376 7374                          for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7377 7375                                  IP_REASS_SET_START(t_mp, 0);
7378 7376                                  IP_REASS_SET_END(t_mp, 0);
7379 7377                          }
7380 7378                          freemsg(mp);
7381 7379                          goto reass_done;
7382 7380                  }
7383 7381                  /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7384 7382          }
7385 7383          /*
7386 7384           * We have completed reassembly.  Unhook the frag header from
7387 7385           * the reassembly list.
7388 7386           *
7389 7387           * Before we free the frag header, record the ECN info
7390 7388           * to report back to the transport.
7391 7389           */
7392 7390          ecn_info = ipf->ipf_ecn;
7393 7391          BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7394 7392          ipfp = ipf->ipf_ptphn;
7395 7393  
7396 7394          /* We need to supply these to caller */
7397 7395          if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7398 7396                  sum_val = ipf->ipf_checksum;
7399 7397          else
7400 7398                  sum_val = 0;
7401 7399  
7402 7400          mp1 = ipf->ipf_mp;
7403 7401          count = ipf->ipf_count;
7404 7402          ipf = ipf->ipf_hash_next;
7405 7403          if (ipf != NULL)
7406 7404                  ipf->ipf_ptphn = ipfp;
7407 7405          ipfp[0] = ipf;
7408 7406          atomic_add_32(&ill->ill_frag_count, -count);
7409 7407          ASSERT(ipfb->ipfb_count >= count);
7410 7408          ipfb->ipfb_count -= count;
7411 7409          ipfb->ipfb_frag_pkts--;
7412 7410          mutex_exit(&ipfb->ipfb_lock);
7413 7411          /* Ditch the frag header. */
7414 7412          mp = mp1->b_cont;
7415 7413  
7416 7414          freeb(mp1);
7417 7415  
7418 7416          /* Restore original IP length in header. */
7419 7417          packet_size = (uint32_t)msgdsize(mp);
7420 7418          if (packet_size > IP_MAXPACKET) {
7421 7419                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7422 7420                  ip_drop_input("Reassembled packet too large", mp, ill);
7423 7421                  freemsg(mp);
7424 7422                  return (NULL);
7425 7423          }
7426 7424  
7427 7425          if (DB_REF(mp) > 1) {
7428 7426                  mblk_t *mp2 = copymsg(mp);
7429 7427  
7430 7428                  if (mp2 == NULL) {
7431 7429                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7432 7430                          ip_drop_input("ipIfStatsInDiscards", mp, ill);
7433 7431                          freemsg(mp);
7434 7432                          return (NULL);
7435 7433                  }
7436 7434                  freemsg(mp);
7437 7435                  mp = mp2;
7438 7436          }
7439 7437          ipha = (ipha_t *)mp->b_rptr;
7440 7438  
7441 7439          ipha->ipha_length = htons((uint16_t)packet_size);
7442 7440          /* We're now complete, zip the frag state */
7443 7441          ipha->ipha_fragment_offset_and_flags = 0;
7444 7442          /* Record the ECN info. */
7445 7443          ipha->ipha_type_of_service &= 0xFC;
7446 7444          ipha->ipha_type_of_service |= ecn_info;
7447 7445  
7448 7446          /* Update the receive attributes */
7449 7447          ira->ira_pktlen = packet_size;
7450 7448          ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7451 7449  
7452 7450          /* Reassembly is successful; set checksum information in packet */
7453 7451          DB_CKSUM16(mp) = (uint16_t)sum_val;
7454 7452          DB_CKSUMFLAGS(mp) = sum_flags;
7455 7453          DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7456 7454  
7457 7455          return (mp);
7458 7456  }
7459 7457  
7460 7458  /*
7461 7459   * Pullup function that should be used for IP input in order to
7462 7460   * ensure we do not loose the L2 source address; we need the l2 source
7463 7461   * address for IP_RECVSLLA and for ndp_input.
7464 7462   *
7465 7463   * We return either NULL or b_rptr.
7466 7464   */
7467 7465  void *
7468 7466  ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7469 7467  {
7470 7468          ill_t           *ill = ira->ira_ill;
7471 7469  
7472 7470          if (ip_rput_pullups++ == 0) {
7473 7471                  (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7474 7472                      "ip_pullup: %s forced us to "
7475 7473                      " pullup pkt, hdr len %ld, hdr addr %p",
7476 7474                      ill->ill_name, len, (void *)mp->b_rptr);
7477 7475          }
7478 7476          if (!(ira->ira_flags & IRAF_L2SRC_SET))
7479 7477                  ip_setl2src(mp, ira, ira->ira_rill);
7480 7478          ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7481 7479          if (!pullupmsg(mp, len))
7482 7480                  return (NULL);
7483 7481          else
7484 7482                  return (mp->b_rptr);
7485 7483  }
7486 7484  
7487 7485  /*
7488 7486   * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7489 7487   * When called from the ULP ira_rill will be NULL hence the caller has to
7490 7488   * pass in the ill.
7491 7489   */
7492 7490  /* ARGSUSED */
7493 7491  void
7494 7492  ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7495 7493  {
7496 7494          const uchar_t *addr;
7497 7495          int alen;
7498 7496  
7499 7497          if (ira->ira_flags & IRAF_L2SRC_SET)
7500 7498                  return;
7501 7499  
7502 7500          ASSERT(ill != NULL);
7503 7501          alen = ill->ill_phys_addr_length;
7504 7502          ASSERT(alen <= sizeof (ira->ira_l2src));
7505 7503          if (ira->ira_mhip != NULL &&
7506 7504              (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7507 7505                  bcopy(addr, ira->ira_l2src, alen);
7508 7506          } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7509 7507              (addr = ill->ill_phys_addr) != NULL) {
7510 7508                  bcopy(addr, ira->ira_l2src, alen);
7511 7509          } else {
7512 7510                  bzero(ira->ira_l2src, alen);
7513 7511          }
7514 7512          ira->ira_flags |= IRAF_L2SRC_SET;
7515 7513  }
7516 7514  
7517 7515  /*
7518 7516   * check ip header length and align it.
7519 7517   */
7520 7518  mblk_t *
7521 7519  ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7522 7520  {
7523 7521          ill_t   *ill = ira->ira_ill;
7524 7522          ssize_t len;
7525 7523  
7526 7524          len = MBLKL(mp);
7527 7525  
7528 7526          if (!OK_32PTR(mp->b_rptr))
7529 7527                  IP_STAT(ill->ill_ipst, ip_notaligned);
7530 7528          else
7531 7529                  IP_STAT(ill->ill_ipst, ip_recv_pullup);
7532 7530  
7533 7531          /* Guard against bogus device drivers */
7534 7532          if (len < 0) {
7535 7533                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7536 7534                  ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7537 7535                  freemsg(mp);
7538 7536                  return (NULL);
7539 7537          }
7540 7538  
7541 7539          if (len == 0) {
7542 7540                  /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7543 7541                  mblk_t *mp1 = mp->b_cont;
7544 7542  
7545 7543                  if (!(ira->ira_flags & IRAF_L2SRC_SET))
7546 7544                          ip_setl2src(mp, ira, ira->ira_rill);
7547 7545                  ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7548 7546  
7549 7547                  freeb(mp);
7550 7548                  mp = mp1;
7551 7549                  if (mp == NULL)
7552 7550                          return (NULL);
7553 7551  
7554 7552                  if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7555 7553                          return (mp);
7556 7554          }
7557 7555          if (ip_pullup(mp, min_size, ira) == NULL) {
7558 7556                  if (msgdsize(mp) < min_size) {
7559 7557                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7560 7558                          ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7561 7559                  } else {
7562 7560                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7563 7561                          ip_drop_input("ipIfStatsInDiscards", mp, ill);
7564 7562                  }
7565 7563                  freemsg(mp);
7566 7564                  return (NULL);
7567 7565          }
7568 7566          return (mp);
7569 7567  }
7570 7568  
7571 7569  /*
7572 7570   * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7573 7571   */
7574 7572  mblk_t *
7575 7573  ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7576 7574      uint_t min_size, ip_recv_attr_t *ira)
7577 7575  {
7578 7576          ill_t   *ill = ira->ira_ill;
7579 7577  
7580 7578          /*
7581 7579           * Make sure we have data length consistent
7582 7580           * with the IP header.
7583 7581           */
7584 7582          if (mp->b_cont == NULL) {
7585 7583                  /* pkt_len is based on ipha_len, not the mblk length */
7586 7584                  if (pkt_len < min_size) {
7587 7585                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7588 7586                          ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7589 7587                          freemsg(mp);
7590 7588                          return (NULL);
7591 7589                  }
7592 7590                  if (len < 0) {
7593 7591                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7594 7592                          ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7595 7593                          freemsg(mp);
7596 7594                          return (NULL);
7597 7595                  }
7598 7596                  /* Drop any pad */
7599 7597                  mp->b_wptr = rptr + pkt_len;
7600 7598          } else if ((len += msgdsize(mp->b_cont)) != 0) {
7601 7599                  ASSERT(pkt_len >= min_size);
7602 7600                  if (pkt_len < min_size) {
7603 7601                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7604 7602                          ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7605 7603                          freemsg(mp);
7606 7604                          return (NULL);
7607 7605                  }
7608 7606                  if (len < 0) {
7609 7607                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7610 7608                          ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7611 7609                          freemsg(mp);
7612 7610                          return (NULL);
7613 7611                  }
7614 7612                  /* Drop any pad */
7615 7613                  (void) adjmsg(mp, -len);
7616 7614                  /*
7617 7615                   * adjmsg may have freed an mblk from the chain, hence
7618 7616                   * invalidate any hw checksum here. This will force IP to
7619 7617                   * calculate the checksum in sw, but only for this packet.
7620 7618                   */
7621 7619                  DB_CKSUMFLAGS(mp) = 0;
7622 7620                  IP_STAT(ill->ill_ipst, ip_multimblk);
7623 7621          }
7624 7622          return (mp);
7625 7623  }
7626 7624  
7627 7625  /*
7628 7626   * Check that the IPv4 opt_len is consistent with the packet and pullup
7629 7627   * the options.
7630 7628   */
7631 7629  mblk_t *
7632 7630  ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7633 7631      ip_recv_attr_t *ira)
7634 7632  {
7635 7633          ill_t   *ill = ira->ira_ill;
7636 7634          ssize_t len;
7637 7635  
7638 7636          /* Assume no IPv6 packets arrive over the IPv4 queue */
7639 7637          if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7640 7638                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7641 7639                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7642 7640                  ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7643 7641                  freemsg(mp);
7644 7642                  return (NULL);
7645 7643          }
7646 7644  
7647 7645          if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7648 7646                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7649 7647                  ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7650 7648                  freemsg(mp);
7651 7649                  return (NULL);
7652 7650          }
7653 7651          /*
7654 7652           * Recompute complete header length and make sure we
7655 7653           * have access to all of it.
7656 7654           */
7657 7655          len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7658 7656          if (len > (mp->b_wptr - mp->b_rptr)) {
7659 7657                  if (len > pkt_len) {
7660 7658                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7661 7659                          ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7662 7660                          freemsg(mp);
7663 7661                          return (NULL);
7664 7662                  }
7665 7663                  if (ip_pullup(mp, len, ira) == NULL) {
7666 7664                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7667 7665                          ip_drop_input("ipIfStatsInDiscards", mp, ill);
7668 7666                          freemsg(mp);
7669 7667                          return (NULL);
7670 7668                  }
7671 7669          }
7672 7670          return (mp);
7673 7671  }
7674 7672  
7675 7673  /*
7676 7674   * Returns a new ire, or the same ire, or NULL.
7677 7675   * If a different IRE is returned, then it is held; the caller
7678 7676   * needs to release it.
7679 7677   * In no case is there any hold/release on the ire argument.
7680 7678   */
7681 7679  ire_t *
7682 7680  ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7683 7681  {
7684 7682          ire_t           *new_ire;
7685 7683          ill_t           *ire_ill;
7686 7684          uint_t          ifindex;
7687 7685          ip_stack_t      *ipst = ill->ill_ipst;
7688 7686          boolean_t       strict_check = B_FALSE;
7689 7687  
7690 7688          /*
7691 7689           * IPMP common case: if IRE and ILL are in the same group, there's no
7692 7690           * issue (e.g. packet received on an underlying interface matched an
7693 7691           * IRE_LOCAL on its associated group interface).
7694 7692           */
7695 7693          ASSERT(ire->ire_ill != NULL);
7696 7694          if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7697 7695                  return (ire);
7698 7696  
7699 7697          /*
7700 7698           * Do another ire lookup here, using the ingress ill, to see if the
7701 7699           * interface is in a usesrc group.
7702 7700           * As long as the ills belong to the same group, we don't consider
7703 7701           * them to be arriving on the wrong interface. Thus, if the switch
7704 7702           * is doing inbound load spreading, we won't drop packets when the
7705 7703           * ip*_strict_dst_multihoming switch is on.
7706 7704           * We also need to check for IPIF_UNNUMBERED point2point interfaces
7707 7705           * where the local address may not be unique. In this case we were
7708 7706           * at the mercy of the initial ire lookup and the IRE_LOCAL it
7709 7707           * actually returned. The new lookup, which is more specific, should
7710 7708           * only find the IRE_LOCAL associated with the ingress ill if one
7711 7709           * exists.
7712 7710           */
7713 7711          if (ire->ire_ipversion == IPV4_VERSION) {
7714 7712                  if (ipst->ips_ip_strict_dst_multihoming)
7715 7713                          strict_check = B_TRUE;
7716 7714                  new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7717 7715                      IRE_LOCAL, ill, ALL_ZONES, NULL,
7718 7716                      (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7719 7717          } else {
7720 7718                  ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7721 7719                  if (ipst->ips_ipv6_strict_dst_multihoming)
7722 7720                          strict_check = B_TRUE;
7723 7721                  new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7724 7722                      IRE_LOCAL, ill, ALL_ZONES, NULL,
7725 7723                      (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7726 7724          }
7727 7725          /*
7728 7726           * If the same ire that was returned in ip_input() is found then this
7729 7727           * is an indication that usesrc groups are in use. The packet
7730 7728           * arrived on a different ill in the group than the one associated with
7731 7729           * the destination address.  If a different ire was found then the same
7732 7730           * IP address must be hosted on multiple ills. This is possible with
7733 7731           * unnumbered point2point interfaces. We switch to use this new ire in
7734 7732           * order to have accurate interface statistics.
7735 7733           */
7736 7734          if (new_ire != NULL) {
7737 7735                  /* Note: held in one case but not the other? Caller handles */
7738 7736                  if (new_ire != ire)
7739 7737                          return (new_ire);
7740 7738                  /* Unchanged */
7741 7739                  ire_refrele(new_ire);
7742 7740                  return (ire);
7743 7741          }
7744 7742  
7745 7743          /*
7746 7744           * Chase pointers once and store locally.
7747 7745           */
7748 7746          ASSERT(ire->ire_ill != NULL);
7749 7747          ire_ill = ire->ire_ill;
7750 7748          ifindex = ill->ill_usesrc_ifindex;
7751 7749  
7752 7750          /*
7753 7751           * Check if it's a legal address on the 'usesrc' interface.
7754 7752           * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7755 7753           * can just check phyint_ifindex.
7756 7754           */
7757 7755          if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7758 7756                  return (ire);
7759 7757          }
7760 7758  
7761 7759          /*
7762 7760           * If the ip*_strict_dst_multihoming switch is on then we can
7763 7761           * only accept this packet if the interface is marked as routing.
7764 7762           */
7765 7763          if (!(strict_check))
7766 7764                  return (ire);
7767 7765  
7768 7766          if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7769 7767                  return (ire);
7770 7768          }
7771 7769          return (NULL);
7772 7770  }
7773 7771  
7774 7772  /*
7775 7773   * This function is used to construct a mac_header_info_s from a
7776 7774   * DL_UNITDATA_IND message.
7777 7775   * The address fields in the mhi structure points into the message,
7778 7776   * thus the caller can't use those fields after freeing the message.
7779 7777   *
7780 7778   * We determine whether the packet received is a non-unicast packet
7781 7779   * and in doing so, determine whether or not it is broadcast vs multicast.
7782 7780   * For it to be a broadcast packet, we must have the appropriate mblk_t
7783 7781   * hanging off the ill_t.  If this is either not present or doesn't match
7784 7782   * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7785 7783   * to be multicast.  Thus NICs that have no broadcast address (or no
7786 7784   * capability for one, such as point to point links) cannot return as
7787 7785   * the packet being broadcast.
7788 7786   */
7789 7787  void
7790 7788  ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7791 7789  {
7792 7790          dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7793 7791          mblk_t *bmp;
7794 7792          uint_t extra_offset;
7795 7793  
7796 7794          bzero(mhip, sizeof (struct mac_header_info_s));
7797 7795  
7798 7796          mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7799 7797  
7800 7798          if (ill->ill_sap_length < 0)
7801 7799                  extra_offset = 0;
7802 7800          else
7803 7801                  extra_offset = ill->ill_sap_length;
7804 7802  
7805 7803          mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7806 7804              extra_offset;
7807 7805          mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7808 7806              extra_offset;
7809 7807  
7810 7808          if (!ind->dl_group_address)
7811 7809                  return;
7812 7810  
7813 7811          /* Multicast or broadcast */
7814 7812          mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7815 7813  
7816 7814          if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7817 7815              ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7818 7816              (bmp = ill->ill_bcast_mp) != NULL) {
7819 7817                  dl_unitdata_req_t *dlur;
7820 7818                  uint8_t *bphys_addr;
7821 7819  
7822 7820                  dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7823 7821                  bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7824 7822                      extra_offset;
7825 7823  
7826 7824                  if (bcmp(mhip->mhi_daddr, bphys_addr,
7827 7825                      ind->dl_dest_addr_length) == 0)
7828 7826                          mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7829 7827          }
7830 7828  }
7831 7829  
7832 7830  /*
7833 7831   * This function is used to construct a mac_header_info_s from a
7834 7832   * M_DATA fastpath message from a DLPI driver.
7835 7833   * The address fields in the mhi structure points into the message,
7836 7834   * thus the caller can't use those fields after freeing the message.
7837 7835   *
7838 7836   * We determine whether the packet received is a non-unicast packet
7839 7837   * and in doing so, determine whether or not it is broadcast vs multicast.
7840 7838   * For it to be a broadcast packet, we must have the appropriate mblk_t
7841 7839   * hanging off the ill_t.  If this is either not present or doesn't match
7842 7840   * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7843 7841   * to be multicast.  Thus NICs that have no broadcast address (or no
7844 7842   * capability for one, such as point to point links) cannot return as
7845 7843   * the packet being broadcast.
7846 7844   */
7847 7845  void
7848 7846  ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7849 7847  {
7850 7848          mblk_t *bmp;
7851 7849          struct ether_header *pether;
7852 7850  
7853 7851          bzero(mhip, sizeof (struct mac_header_info_s));
7854 7852  
7855 7853          mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7856 7854  
7857 7855          pether = (struct ether_header *)((char *)mp->b_rptr
7858 7856              - sizeof (struct ether_header));
7859 7857  
7860 7858          /*
7861 7859           * Make sure the interface is an ethernet type, since we don't
7862 7860           * know the header format for anything but Ethernet. Also make
7863 7861           * sure we are pointing correctly above db_base.
7864 7862           */
7865 7863          if (ill->ill_type != IFT_ETHER)
7866 7864                  return;
7867 7865  
7868 7866  retry:
7869 7867          if ((uchar_t *)pether < mp->b_datap->db_base)
7870 7868                  return;
7871 7869  
7872 7870          /* Is there a VLAN tag? */
7873 7871          if (ill->ill_isv6) {
7874 7872                  if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7875 7873                          pether = (struct ether_header *)((char *)pether - 4);
7876 7874                          goto retry;
7877 7875                  }
7878 7876          } else {
7879 7877                  if (pether->ether_type != htons(ETHERTYPE_IP)) {
7880 7878                          pether = (struct ether_header *)((char *)pether - 4);
7881 7879                          goto retry;
7882 7880                  }
7883 7881          }
7884 7882          mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7885 7883          mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7886 7884  
7887 7885          if (!(mhip->mhi_daddr[0] & 0x01))
7888 7886                  return;
7889 7887  
7890 7888          /* Multicast or broadcast */
7891 7889          mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7892 7890  
7893 7891          if ((bmp = ill->ill_bcast_mp) != NULL) {
7894 7892                  dl_unitdata_req_t *dlur;
7895 7893                  uint8_t *bphys_addr;
7896 7894                  uint_t  addrlen;
7897 7895  
7898 7896                  dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7899 7897                  addrlen = dlur->dl_dest_addr_length;
7900 7898                  if (ill->ill_sap_length < 0) {
7901 7899                          bphys_addr = (uchar_t *)dlur +
7902 7900                              dlur->dl_dest_addr_offset;
7903 7901                          addrlen += ill->ill_sap_length;
7904 7902                  } else {
7905 7903                          bphys_addr = (uchar_t *)dlur +
7906 7904                              dlur->dl_dest_addr_offset +
7907 7905                              ill->ill_sap_length;
7908 7906                          addrlen -= ill->ill_sap_length;
7909 7907                  }
7910 7908                  if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7911 7909                          mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7912 7910          }
7913 7911  }
7914 7912  
7915 7913  /*
7916 7914   * Handle anything but M_DATA messages
7917 7915   * We see the DL_UNITDATA_IND which are part
7918 7916   * of the data path, and also the other messages from the driver.
7919 7917   */
7920 7918  void
7921 7919  ip_rput_notdata(ill_t *ill, mblk_t *mp)
7922 7920  {
7923 7921          mblk_t          *first_mp;
7924 7922          struct iocblk   *iocp;
7925 7923          struct mac_header_info_s mhi;
7926 7924  
7927 7925          switch (DB_TYPE(mp)) {
7928 7926          case M_PROTO:
7929 7927          case M_PCPROTO: {
7930 7928                  if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7931 7929                      DL_UNITDATA_IND) {
7932 7930                          /* Go handle anything other than data elsewhere. */
7933 7931                          ip_rput_dlpi(ill, mp);
7934 7932                          return;
7935 7933                  }
7936 7934  
7937 7935                  first_mp = mp;
7938 7936                  mp = first_mp->b_cont;
7939 7937                  first_mp->b_cont = NULL;
7940 7938  
7941 7939                  if (mp == NULL) {
7942 7940                          freeb(first_mp);
7943 7941                          return;
7944 7942                  }
7945 7943                  ip_dlur_to_mhi(ill, first_mp, &mhi);
7946 7944                  if (ill->ill_isv6)
7947 7945                          ip_input_v6(ill, NULL, mp, &mhi);
7948 7946                  else
7949 7947                          ip_input(ill, NULL, mp, &mhi);
7950 7948  
7951 7949                  /* Ditch the DLPI header. */
7952 7950                  freeb(first_mp);
7953 7951                  return;
7954 7952          }
7955 7953          case M_IOCACK:
7956 7954                  iocp = (struct iocblk *)mp->b_rptr;
7957 7955                  switch (iocp->ioc_cmd) {
7958 7956                  case DL_IOC_HDR_INFO:
7959 7957                          ill_fastpath_ack(ill, mp);
7960 7958                          return;
7961 7959                  default:
7962 7960                          putnext(ill->ill_rq, mp);
7963 7961                          return;
7964 7962                  }
7965 7963                  /* FALLTHROUGH */
7966 7964          case M_ERROR:
7967 7965          case M_HANGUP:
7968 7966                  mutex_enter(&ill->ill_lock);
7969 7967                  if (ill->ill_state_flags & ILL_CONDEMNED) {
7970 7968                          mutex_exit(&ill->ill_lock);
7971 7969                          freemsg(mp);
7972 7970                          return;
7973 7971                  }
7974 7972                  ill_refhold_locked(ill);
7975 7973                  mutex_exit(&ill->ill_lock);
7976 7974                  qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7977 7975                      B_FALSE);
7978 7976                  return;
7979 7977          case M_CTL:
7980 7978                  putnext(ill->ill_rq, mp);
7981 7979                  return;
7982 7980          case M_IOCNAK:
7983 7981                  ip1dbg(("got iocnak "));
7984 7982                  iocp = (struct iocblk *)mp->b_rptr;
7985 7983                  switch (iocp->ioc_cmd) {
7986 7984                  case DL_IOC_HDR_INFO:
7987 7985                          ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7988 7986                          return;
7989 7987                  default:
7990 7988                          break;
7991 7989                  }
7992 7990                  /* FALLTHROUGH */
7993 7991          default:
7994 7992                  putnext(ill->ill_rq, mp);
7995 7993                  return;
7996 7994          }
7997 7995  }
7998 7996  
7999 7997  /* Read side put procedure.  Packets coming from the wire arrive here. */
8000 7998  int
8001 7999  ip_rput(queue_t *q, mblk_t *mp)
8002 8000  {
8003 8001          ill_t   *ill;
8004 8002          union DL_primitives *dl;
8005 8003  
8006 8004          ill = (ill_t *)q->q_ptr;
8007 8005  
8008 8006          if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8009 8007                  /*
8010 8008                   * If things are opening or closing, only accept high-priority
8011 8009                   * DLPI messages.  (On open ill->ill_ipif has not yet been
8012 8010                   * created; on close, things hanging off the ill may have been
8013 8011                   * freed already.)
8014 8012                   */
8015 8013                  dl = (union DL_primitives *)mp->b_rptr;
8016 8014                  if (DB_TYPE(mp) != M_PCPROTO ||
8017 8015                      dl->dl_primitive == DL_UNITDATA_IND) {
8018 8016                          inet_freemsg(mp);
8019 8017                          return (0);
8020 8018                  }
8021 8019          }
8022 8020          if (DB_TYPE(mp) == M_DATA) {
8023 8021                  struct mac_header_info_s mhi;
8024 8022  
8025 8023                  ip_mdata_to_mhi(ill, mp, &mhi);
8026 8024                  ip_input(ill, NULL, mp, &mhi);
8027 8025          } else {
8028 8026                  ip_rput_notdata(ill, mp);
8029 8027          }
8030 8028          return (0);
8031 8029  }
8032 8030  
8033 8031  /*
8034 8032   * Move the information to a copy.
8035 8033   */
8036 8034  mblk_t *
8037 8035  ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8038 8036  {
8039 8037          mblk_t          *mp1;
8040 8038          ill_t           *ill = ira->ira_ill;
8041 8039          ip_stack_t      *ipst = ill->ill_ipst;
8042 8040  
8043 8041          IP_STAT(ipst, ip_db_ref);
8044 8042  
8045 8043          /* Make sure we have ira_l2src before we loose the original mblk */
8046 8044          if (!(ira->ira_flags & IRAF_L2SRC_SET))
8047 8045                  ip_setl2src(mp, ira, ira->ira_rill);
8048 8046  
8049 8047          mp1 = copymsg(mp);
8050 8048          if (mp1 == NULL) {
8051 8049                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8052 8050                  ip_drop_input("ipIfStatsInDiscards", mp, ill);
8053 8051                  freemsg(mp);
8054 8052                  return (NULL);
8055 8053          }
8056 8054          /* preserve the hardware checksum flags and data, if present */
8057 8055          if (DB_CKSUMFLAGS(mp) != 0) {
8058 8056                  DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8059 8057                  DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8060 8058                  DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8061 8059                  DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8062 8060                  DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8063 8061          }
8064 8062          freemsg(mp);
8065 8063          return (mp1);
8066 8064  }
8067 8065  
8068 8066  static void
8069 8067  ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8070 8068      t_uscalar_t err)
8071 8069  {
8072 8070          if (dl_err == DL_SYSERR) {
8073 8071                  (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8074 8072                      "%s: %s failed: DL_SYSERR (errno %u)\n",
8075 8073                      ill->ill_name, dl_primstr(prim), err);
8076 8074                  return;
8077 8075          }
8078 8076  
8079 8077          (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8080 8078              "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8081 8079              dl_errstr(dl_err));
8082 8080  }
8083 8081  
8084 8082  /*
8085 8083   * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8086 8084   * than DL_UNITDATA_IND messages. If we need to process this message
8087 8085   * exclusively, we call qwriter_ip, in which case we also need to call
8088 8086   * ill_refhold before that, since qwriter_ip does an ill_refrele.
8089 8087   */
8090 8088  void
8091 8089  ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8092 8090  {
8093 8091          dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8094 8092          dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8095 8093          queue_t         *q = ill->ill_rq;
8096 8094          t_uscalar_t     prim = dloa->dl_primitive;
8097 8095          t_uscalar_t     reqprim = DL_PRIM_INVAL;
8098 8096  
8099 8097          DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8100 8098              char *, dl_primstr(prim), ill_t *, ill);
8101 8099          ip1dbg(("ip_rput_dlpi"));
8102 8100  
8103 8101          /*
8104 8102           * If we received an ACK but didn't send a request for it, then it
8105 8103           * can't be part of any pending operation; discard up-front.
8106 8104           */
8107 8105          switch (prim) {
8108 8106          case DL_ERROR_ACK:
8109 8107                  reqprim = dlea->dl_error_primitive;
8110 8108                  ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8111 8109                      "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8112 8110                      reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8113 8111                      dlea->dl_unix_errno));
8114 8112                  break;
8115 8113          case DL_OK_ACK:
8116 8114                  reqprim = dloa->dl_correct_primitive;
8117 8115                  break;
8118 8116          case DL_INFO_ACK:
8119 8117                  reqprim = DL_INFO_REQ;
8120 8118                  break;
8121 8119          case DL_BIND_ACK:
8122 8120                  reqprim = DL_BIND_REQ;
8123 8121                  break;
8124 8122          case DL_PHYS_ADDR_ACK:
8125 8123                  reqprim = DL_PHYS_ADDR_REQ;
8126 8124                  break;
8127 8125          case DL_NOTIFY_ACK:
8128 8126                  reqprim = DL_NOTIFY_REQ;
8129 8127                  break;
8130 8128          case DL_CAPABILITY_ACK:
8131 8129                  reqprim = DL_CAPABILITY_REQ;
8132 8130                  break;
8133 8131          }
8134 8132  
8135 8133          if (prim != DL_NOTIFY_IND) {
8136 8134                  if (reqprim == DL_PRIM_INVAL ||
8137 8135                      !ill_dlpi_pending(ill, reqprim)) {
8138 8136                          /* Not a DLPI message we support or expected */
8139 8137                          freemsg(mp);
8140 8138                          return;
8141 8139                  }
8142 8140                  ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8143 8141                      dl_primstr(reqprim)));
8144 8142          }
8145 8143  
8146 8144          switch (reqprim) {
8147 8145          case DL_UNBIND_REQ:
8148 8146                  /*
8149 8147                   * NOTE: we mark the unbind as complete even if we got a
8150 8148                   * DL_ERROR_ACK, since there's not much else we can do.
8151 8149                   */
8152 8150                  mutex_enter(&ill->ill_lock);
8153 8151                  ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8154 8152                  cv_signal(&ill->ill_cv);
8155 8153                  mutex_exit(&ill->ill_lock);
8156 8154                  break;
8157 8155  
8158 8156          case DL_ENABMULTI_REQ:
8159 8157                  if (prim == DL_OK_ACK) {
8160 8158                          if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8161 8159                                  ill->ill_dlpi_multicast_state = IDS_OK;
8162 8160                  }
8163 8161                  break;
8164 8162          }
8165 8163  
8166 8164          /*
8167 8165           * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8168 8166           * need to become writer to continue to process it.  Because an
8169 8167           * exclusive operation doesn't complete until replies to all queued
8170 8168           * DLPI messages have been received, we know we're in the middle of an
8171 8169           * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8172 8170           *
8173 8171           * As required by qwriter_ip(), we refhold the ill; it will refrele.
8174 8172           * Since this is on the ill stream we unconditionally bump up the
8175 8173           * refcount without doing ILL_CAN_LOOKUP().
8176 8174           */
8177 8175          ill_refhold(ill);
8178 8176          if (prim == DL_NOTIFY_IND)
8179 8177                  qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8180 8178          else
8181 8179                  qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8182 8180  }
8183 8181  
8184 8182  /*
8185 8183   * Handling of DLPI messages that require exclusive access to the ipsq.
8186 8184   *
8187 8185   * Need to do ipsq_pending_mp_get on ioctl completion, which could
8188 8186   * happen here. (along with mi_copy_done)
8189 8187   */
8190 8188  /* ARGSUSED */
8191 8189  static void
8192 8190  ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8193 8191  {
8194 8192          dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8195 8193          dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8196 8194          int             err = 0;
8197 8195          ill_t           *ill = (ill_t *)q->q_ptr;
8198 8196          ipif_t          *ipif = NULL;
8199 8197          mblk_t          *mp1 = NULL;
8200 8198          conn_t          *connp = NULL;
8201 8199          t_uscalar_t     paddrreq;
8202 8200          mblk_t          *mp_hw;
8203 8201          boolean_t       ioctl_aborted = B_FALSE;
8204 8202          boolean_t       log = B_TRUE;
8205 8203  
8206 8204          DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8207 8205              char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8208 8206  
8209 8207          ip1dbg(("ip_rput_dlpi_writer .."));
8210 8208          ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8211 8209          ASSERT(IAM_WRITER_ILL(ill));
8212 8210  
8213 8211          ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8214 8212          /*
8215 8213           * The current ioctl could have been aborted by the user and a new
8216 8214           * ioctl to bring up another ill could have started. We could still
8217 8215           * get a response from the driver later.
8218 8216           */
8219 8217          if (ipif != NULL && ipif->ipif_ill != ill)
8220 8218                  ioctl_aborted = B_TRUE;
8221 8219  
8222 8220          switch (dloa->dl_primitive) {
8223 8221          case DL_ERROR_ACK:
8224 8222                  ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8225 8223                      dl_primstr(dlea->dl_error_primitive)));
8226 8224  
8227 8225                  DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8228 8226                      char *, dl_primstr(dlea->dl_error_primitive),
8229 8227                      ill_t *, ill);
8230 8228  
8231 8229                  switch (dlea->dl_error_primitive) {
8232 8230                  case DL_DISABMULTI_REQ:
8233 8231                          ill_dlpi_done(ill, dlea->dl_error_primitive);
8234 8232                          break;
8235 8233                  case DL_PROMISCON_REQ:
8236 8234                  case DL_PROMISCOFF_REQ:
8237 8235                  case DL_UNBIND_REQ:
8238 8236                  case DL_ATTACH_REQ:
8239 8237                  case DL_INFO_REQ:
8240 8238                          ill_dlpi_done(ill, dlea->dl_error_primitive);
8241 8239                          break;
8242 8240                  case DL_NOTIFY_REQ:
8243 8241                          ill_dlpi_done(ill, DL_NOTIFY_REQ);
8244 8242                          log = B_FALSE;
8245 8243                          break;
8246 8244                  case DL_PHYS_ADDR_REQ:
8247 8245                          /*
8248 8246                           * For IPv6 only, there are two additional
8249 8247                           * phys_addr_req's sent to the driver to get the
8250 8248                           * IPv6 token and lla. This allows IP to acquire
8251 8249                           * the hardware address format for a given interface
8252 8250                           * without having built in knowledge of the hardware
8253 8251                           * address. ill_phys_addr_pend keeps track of the last
8254 8252                           * DL_PAR sent so we know which response we are
8255 8253                           * dealing with. ill_dlpi_done will update
8256 8254                           * ill_phys_addr_pend when it sends the next req.
8257 8255                           * We don't complete the IOCTL until all three DL_PARs
8258 8256                           * have been attempted, so set *_len to 0 and break.
8259 8257                           */
8260 8258                          paddrreq = ill->ill_phys_addr_pend;
8261 8259                          ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8262 8260                          if (paddrreq == DL_IPV6_TOKEN) {
8263 8261                                  ill->ill_token_length = 0;
8264 8262                                  log = B_FALSE;
8265 8263                                  break;
8266 8264                          } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8267 8265                                  ill->ill_nd_lla_len = 0;
8268 8266                                  log = B_FALSE;
8269 8267                                  break;
8270 8268                          }
8271 8269                          /*
8272 8270                           * Something went wrong with the DL_PHYS_ADDR_REQ.
8273 8271                           * We presumably have an IOCTL hanging out waiting
8274 8272                           * for completion. Find it and complete the IOCTL
8275 8273                           * with the error noted.
8276 8274                           * However, ill_dl_phys was called on an ill queue
8277 8275                           * (from SIOCSLIFNAME), thus conn_pending_ill is not
8278 8276                           * set. But the ioctl is known to be pending on ill_wq.
8279 8277                           */
8280 8278                          if (!ill->ill_ifname_pending)
8281 8279                                  break;
8282 8280                          ill->ill_ifname_pending = 0;
8283 8281                          if (!ioctl_aborted)
8284 8282                                  mp1 = ipsq_pending_mp_get(ipsq, &connp);
8285 8283                          if (mp1 != NULL) {
8286 8284                                  /*
8287 8285                                   * This operation (SIOCSLIFNAME) must have
8288 8286                                   * happened on the ill. Assert there is no conn
8289 8287                                   */
8290 8288                                  ASSERT(connp == NULL);
8291 8289                                  q = ill->ill_wq;
8292 8290                          }
8293 8291                          break;
8294 8292                  case DL_BIND_REQ:
8295 8293                          ill_dlpi_done(ill, DL_BIND_REQ);
8296 8294                          if (ill->ill_ifname_pending)
8297 8295                                  break;
8298 8296                          mutex_enter(&ill->ill_lock);
8299 8297                          ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8300 8298                          mutex_exit(&ill->ill_lock);
8301 8299                          /*
8302 8300                           * Something went wrong with the bind. If this was the
8303 8301                           * result of a DL_NOTE_REPLUMB, then we presumably
8304 8302                           * have an IOCTL hanging out waiting for completion.
8305 8303                           * Find it, take down the interface that was coming
8306 8304                           * up, and complete the IOCTL with the error noted.
8307 8305                           */
8308 8306                          if (!ioctl_aborted)
8309 8307                                  mp1 = ipsq_pending_mp_get(ipsq, &connp);
8310 8308                          if (mp1 != NULL) {
8311 8309                                  /*
8312 8310                                   * This might be a result of a DL_NOTE_REPLUMB
8313 8311                                   * notification. In that case, connp is NULL.
8314 8312                                   */
8315 8313                                  if (connp != NULL)
8316 8314                                          q = CONNP_TO_WQ(connp);
8317 8315  
8318 8316                                  (void) ipif_down(ipif, NULL, NULL);
8319 8317                                  /* error is set below the switch */
8320 8318                          } else {
8321 8319                                  /*
8322 8320                                   * There's no pending IOCTL, so the bind was
8323 8321                                   * most likely started by ill_dl_up(). We save
8324 8322                                   * the error and let it take care of responding
8325 8323                                   * to the IOCTL.
8326 8324                                   */
8327 8325                                  ill->ill_dl_bind_err = dlea->dl_unix_errno ?
8328 8326                                      dlea->dl_unix_errno : ENXIO;
8329 8327                          }
8330 8328                          break;
8331 8329                  case DL_ENABMULTI_REQ:
8332 8330                          ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8333 8331  
8334 8332                          if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8335 8333                                  ill->ill_dlpi_multicast_state = IDS_FAILED;
8336 8334                          if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8337 8335  
8338 8336                                  printf("ip: joining multicasts failed (%d)"
8339 8337                                      " on %s - will use link layer "
8340 8338                                      "broadcasts for multicast\n",
8341 8339                                      dlea->dl_errno, ill->ill_name);
8342 8340  
8343 8341                                  /*
8344 8342                                   * Set up for multi_bcast; We are the
8345 8343                                   * writer, so ok to access ill->ill_ipif
8346 8344                                   * without any lock.
8347 8345                                   */
8348 8346                                  mutex_enter(&ill->ill_phyint->phyint_lock);
8349 8347                                  ill->ill_phyint->phyint_flags |=
8350 8348                                      PHYI_MULTI_BCAST;
8351 8349                                  mutex_exit(&ill->ill_phyint->phyint_lock);
8352 8350  
8353 8351                          }
8354 8352                          freemsg(mp);    /* Don't want to pass this up */
8355 8353                          return;
8356 8354                  case DL_CAPABILITY_REQ:
8357 8355                          ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8358 8356                              "DL_CAPABILITY REQ\n"));
8359 8357                          if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8360 8358                                  ill->ill_dlpi_capab_state = IDCS_FAILED;
8361 8359                          ill_capability_done(ill);
8362 8360                          freemsg(mp);
8363 8361                          return;
8364 8362                  }
8365 8363                  /*
8366 8364                   * Note the error for IOCTL completion (mp1 is set when
8367 8365                   * ready to complete ioctl). If ill_ifname_pending_err is
8368 8366                   * set, an error occured during plumbing (ill_ifname_pending),
8369 8367                   * so we want to report that error.
8370 8368                   *
8371 8369                   * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8372 8370                   * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8373 8371                   * expected to get errack'd if the driver doesn't support
8374 8372                   * these flags (e.g. ethernet). log will be set to B_FALSE
8375 8373                   * if these error conditions are encountered.
8376 8374                   */
8377 8375                  if (mp1 != NULL) {
8378 8376                          if (ill->ill_ifname_pending_err != 0)  {
8379 8377                                  err = ill->ill_ifname_pending_err;
8380 8378                                  ill->ill_ifname_pending_err = 0;
8381 8379                          } else {
8382 8380                                  err = dlea->dl_unix_errno ?
8383 8381                                      dlea->dl_unix_errno : ENXIO;
8384 8382                          }
8385 8383                  /*
8386 8384                   * If we're plumbing an interface and an error hasn't already
8387 8385                   * been saved, set ill_ifname_pending_err to the error passed
8388 8386                   * up. Ignore the error if log is B_FALSE (see comment above).
8389 8387                   */
8390 8388                  } else if (log && ill->ill_ifname_pending &&
8391 8389                      ill->ill_ifname_pending_err == 0) {
8392 8390                          ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8393 8391                              dlea->dl_unix_errno : ENXIO;
8394 8392                  }
8395 8393  
8396 8394                  if (log)
8397 8395                          ip_dlpi_error(ill, dlea->dl_error_primitive,
8398 8396                              dlea->dl_errno, dlea->dl_unix_errno);
8399 8397                  break;
8400 8398          case DL_CAPABILITY_ACK:
8401 8399                  ill_capability_ack(ill, mp);
8402 8400                  /*
8403 8401                   * The message has been handed off to ill_capability_ack
8404 8402                   * and must not be freed below
8405 8403                   */
8406 8404                  mp = NULL;
8407 8405                  break;
8408 8406  
8409 8407          case DL_INFO_ACK:
8410 8408                  /* Call a routine to handle this one. */
8411 8409                  ill_dlpi_done(ill, DL_INFO_REQ);
8412 8410                  ip_ll_subnet_defaults(ill, mp);
8413 8411                  ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8414 8412                  return;
8415 8413          case DL_BIND_ACK:
8416 8414                  /*
8417 8415                   * We should have an IOCTL waiting on this unless
8418 8416                   * sent by ill_dl_phys, in which case just return
8419 8417                   */
8420 8418                  ill_dlpi_done(ill, DL_BIND_REQ);
8421 8419  
8422 8420                  if (ill->ill_ifname_pending) {
8423 8421                          DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8424 8422                              ill_t *, ill, mblk_t *, mp);
8425 8423                          break;
8426 8424                  }
8427 8425                  mutex_enter(&ill->ill_lock);
8428 8426                  ill->ill_dl_up = 1;
8429 8427                  ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8430 8428                  mutex_exit(&ill->ill_lock);
8431 8429  
8432 8430                  if (!ioctl_aborted)
8433 8431                          mp1 = ipsq_pending_mp_get(ipsq, &connp);
8434 8432                  if (mp1 == NULL) {
8435 8433                          DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8436 8434                          break;
8437 8435                  }
8438 8436                  /*
8439 8437                   * mp1 was added by ill_dl_up(). if that is a result of
8440 8438                   * a DL_NOTE_REPLUMB notification, connp could be NULL.
8441 8439                   */
8442 8440                  if (connp != NULL)
8443 8441                          q = CONNP_TO_WQ(connp);
8444 8442                  /*
8445 8443                   * We are exclusive. So nothing can change even after
8446 8444                   * we get the pending mp.
8447 8445                   */
8448 8446                  ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8449 8447                  DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8450 8448                  ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8451 8449  
8452 8450                  if (ill->ill_up_ipifs) {
8453 8451                          err = ill_up_ipifs(ill, q, mp1);
8454 8452                          if (err == EINPROGRESS) {
8455 8453                                  freemsg(mp);
8456 8454                                  return;
8457 8455                          }
8458 8456                  }
8459 8457  
8460 8458                  break;
8461 8459  
8462 8460          case DL_NOTIFY_IND: {
8463 8461                  dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8464 8462                  uint_t orig_mtu, orig_mc_mtu;
8465 8463  
8466 8464                  switch (notify->dl_notification) {
8467 8465                  case DL_NOTE_PHYS_ADDR:
8468 8466                          err = ill_set_phys_addr(ill, mp);
8469 8467                          break;
8470 8468  
8471 8469                  case DL_NOTE_REPLUMB:
8472 8470                          /*
8473 8471                           * Directly return after calling ill_replumb().
8474 8472                           * Note that we should not free mp as it is reused
8475 8473                           * in the ill_replumb() function.
8476 8474                           */
8477 8475                          err = ill_replumb(ill, mp);
8478 8476                          return;
8479 8477  
8480 8478                  case DL_NOTE_FASTPATH_FLUSH:
8481 8479                          nce_flush(ill, B_FALSE);
8482 8480                          break;
8483 8481  
8484 8482                  case DL_NOTE_SDU_SIZE:
8485 8483                  case DL_NOTE_SDU_SIZE2:
8486 8484                          /*
8487 8485                           * The dce and fragmentation code can cope with
8488 8486                           * this changing while packets are being sent.
8489 8487                           * When packets are sent ip_output will discover
8490 8488                           * a change.
8491 8489                           *
8492 8490                           * Change the MTU size of the interface.
8493 8491                           */
8494 8492                          mutex_enter(&ill->ill_lock);
8495 8493                          orig_mtu = ill->ill_mtu;
8496 8494                          orig_mc_mtu = ill->ill_mc_mtu;
8497 8495                          switch (notify->dl_notification) {
8498 8496                          case DL_NOTE_SDU_SIZE:
8499 8497                                  ill->ill_current_frag =
8500 8498                                      (uint_t)notify->dl_data;
8501 8499                                  ill->ill_mc_mtu = (uint_t)notify->dl_data;
8502 8500                                  break;
8503 8501                          case DL_NOTE_SDU_SIZE2:
8504 8502                                  ill->ill_current_frag =
8505 8503                                      (uint_t)notify->dl_data1;
8506 8504                                  ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8507 8505                                  break;
8508 8506                          }
8509 8507                          if (ill->ill_current_frag > ill->ill_max_frag)
8510 8508                                  ill->ill_max_frag = ill->ill_current_frag;
8511 8509  
8512 8510                          if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8513 8511                                  ill->ill_mtu = ill->ill_current_frag;
8514 8512  
8515 8513                                  /*
8516 8514                                   * If ill_user_mtu was set (via
8517 8515                                   * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8518 8516                                   */
8519 8517                                  if (ill->ill_user_mtu != 0 &&
8520 8518                                      ill->ill_user_mtu < ill->ill_mtu)
8521 8519                                          ill->ill_mtu = ill->ill_user_mtu;
8522 8520  
8523 8521                                  if (ill->ill_user_mtu != 0 &&
8524 8522                                      ill->ill_user_mtu < ill->ill_mc_mtu)
8525 8523                                          ill->ill_mc_mtu = ill->ill_user_mtu;
8526 8524  
8527 8525                                  if (ill->ill_isv6) {
8528 8526                                          if (ill->ill_mtu < IPV6_MIN_MTU)
8529 8527                                                  ill->ill_mtu = IPV6_MIN_MTU;
8530 8528                                          if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8531 8529                                                  ill->ill_mc_mtu = IPV6_MIN_MTU;
8532 8530                                  } else {
8533 8531                                          if (ill->ill_mtu < IP_MIN_MTU)
8534 8532                                                  ill->ill_mtu = IP_MIN_MTU;
8535 8533                                          if (ill->ill_mc_mtu < IP_MIN_MTU)
8536 8534                                                  ill->ill_mc_mtu = IP_MIN_MTU;
8537 8535                                  }
8538 8536                          } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8539 8537                                  ill->ill_mc_mtu = ill->ill_mtu;
8540 8538                          }
8541 8539  
8542 8540                          mutex_exit(&ill->ill_lock);
8543 8541                          /*
8544 8542                           * Make sure all dce_generation checks find out
8545 8543                           * that ill_mtu/ill_mc_mtu has changed.
8546 8544                           */
8547 8545                          if (orig_mtu != ill->ill_mtu ||
8548 8546                              orig_mc_mtu != ill->ill_mc_mtu) {
8549 8547                                  dce_increment_all_generations(ill->ill_isv6,
8550 8548                                      ill->ill_ipst);
8551 8549                          }
8552 8550  
8553 8551                          /*
8554 8552                           * Refresh IPMP meta-interface MTU if necessary.
8555 8553                           */
8556 8554                          if (IS_UNDER_IPMP(ill))
8557 8555                                  ipmp_illgrp_refresh_mtu(ill->ill_grp);
8558 8556                          break;
8559 8557  
8560 8558                  case DL_NOTE_LINK_UP:
8561 8559                  case DL_NOTE_LINK_DOWN: {
8562 8560                          /*
8563 8561                           * We are writer. ill / phyint / ipsq assocs stable.
8564 8562                           * The RUNNING flag reflects the state of the link.
8565 8563                           */
8566 8564                          phyint_t *phyint = ill->ill_phyint;
8567 8565                          uint64_t new_phyint_flags;
8568 8566                          boolean_t changed = B_FALSE;
8569 8567                          boolean_t went_up;
8570 8568  
8571 8569                          went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8572 8570                          mutex_enter(&phyint->phyint_lock);
8573 8571  
8574 8572                          new_phyint_flags = went_up ?
8575 8573                              phyint->phyint_flags | PHYI_RUNNING :
8576 8574                              phyint->phyint_flags & ~PHYI_RUNNING;
8577 8575  
8578 8576                          if (IS_IPMP(ill)) {
8579 8577                                  new_phyint_flags = went_up ?
8580 8578                                      new_phyint_flags & ~PHYI_FAILED :
8581 8579                                      new_phyint_flags | PHYI_FAILED;
8582 8580                          }
8583 8581  
8584 8582                          if (new_phyint_flags != phyint->phyint_flags) {
8585 8583                                  phyint->phyint_flags = new_phyint_flags;
8586 8584                                  changed = B_TRUE;
8587 8585                          }
8588 8586                          mutex_exit(&phyint->phyint_lock);
8589 8587                          /*
8590 8588                           * ill_restart_dad handles the DAD restart and routing
8591 8589                           * socket notification logic.
8592 8590                           */
8593 8591                          if (changed) {
8594 8592                                  ill_restart_dad(phyint->phyint_illv4, went_up);
8595 8593                                  ill_restart_dad(phyint->phyint_illv6, went_up);
8596 8594                          }
8597 8595                          break;
8598 8596                  }
8599 8597                  case DL_NOTE_PROMISC_ON_PHYS: {
8600 8598                          phyint_t *phyint = ill->ill_phyint;
8601 8599  
8602 8600                          mutex_enter(&phyint->phyint_lock);
8603 8601                          phyint->phyint_flags |= PHYI_PROMISC;
8604 8602                          mutex_exit(&phyint->phyint_lock);
8605 8603                          break;
8606 8604                  }
8607 8605                  case DL_NOTE_PROMISC_OFF_PHYS: {
8608 8606                          phyint_t *phyint = ill->ill_phyint;
8609 8607  
8610 8608                          mutex_enter(&phyint->phyint_lock);
8611 8609                          phyint->phyint_flags &= ~PHYI_PROMISC;
8612 8610                          mutex_exit(&phyint->phyint_lock);
8613 8611                          break;
8614 8612                  }
8615 8613                  case DL_NOTE_CAPAB_RENEG:
8616 8614                          /*
8617 8615                           * Something changed on the driver side.
8618 8616                           * It wants us to renegotiate the capabilities
8619 8617                           * on this ill. One possible cause is the aggregation
8620 8618                           * interface under us where a port got added or
8621 8619                           * went away.
8622 8620                           *
8623 8621                           * If the capability negotiation is already done
8624 8622                           * or is in progress, reset the capabilities and
8625 8623                           * mark the ill's ill_capab_reneg to be B_TRUE,
8626 8624                           * so that when the ack comes back, we can start
8627 8625                           * the renegotiation process.
8628 8626                           *
8629 8627                           * Note that if ill_capab_reneg is already B_TRUE
8630 8628                           * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8631 8629                           * the capability resetting request has been sent
8632 8630                           * and the renegotiation has not been started yet;
8633 8631                           * nothing needs to be done in this case.
8634 8632                           */
8635 8633                          ipsq_current_start(ipsq, ill->ill_ipif, 0);
8636 8634                          ill_capability_reset(ill, B_TRUE);
8637 8635                          ipsq_current_finish(ipsq);
8638 8636                          break;
8639 8637  
8640 8638                  case DL_NOTE_ALLOWED_IPS:
8641 8639                          ill_set_allowed_ips(ill, mp);
8642 8640                          break;
8643 8641                  default:
8644 8642                          ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8645 8643                              "type 0x%x for DL_NOTIFY_IND\n",
8646 8644                              notify->dl_notification));
8647 8645                          break;
8648 8646                  }
8649 8647  
8650 8648                  /*
8651 8649                   * As this is an asynchronous operation, we
8652 8650                   * should not call ill_dlpi_done
8653 8651                   */
8654 8652                  break;
8655 8653          }
8656 8654          case DL_NOTIFY_ACK: {
8657 8655                  dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8658 8656  
8659 8657                  if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8660 8658                          ill->ill_note_link = 1;
8661 8659                  ill_dlpi_done(ill, DL_NOTIFY_REQ);
8662 8660                  break;
8663 8661          }
8664 8662          case DL_PHYS_ADDR_ACK: {
8665 8663                  /*
8666 8664                   * As part of plumbing the interface via SIOCSLIFNAME,
8667 8665                   * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8668 8666                   * whose answers we receive here.  As each answer is received,
8669 8667                   * we call ill_dlpi_done() to dispatch the next request as
8670 8668                   * we're processing the current one.  Once all answers have
8671 8669                   * been received, we use ipsq_pending_mp_get() to dequeue the
8672 8670                   * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8673 8671                   * is invoked from an ill queue, conn_oper_pending_ill is not
8674 8672                   * available, but we know the ioctl is pending on ill_wq.)
8675 8673                   */
8676 8674                  uint_t  paddrlen, paddroff;
8677 8675                  uint8_t *addr;
8678 8676  
8679 8677                  paddrreq = ill->ill_phys_addr_pend;
8680 8678                  paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8681 8679                  paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8682 8680                  addr = mp->b_rptr + paddroff;
8683 8681  
8684 8682                  ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8685 8683                  if (paddrreq == DL_IPV6_TOKEN) {
8686 8684                          /*
8687 8685                           * bcopy to low-order bits of ill_token
8688 8686                           *
8689 8687                           * XXX Temporary hack - currently, all known tokens
8690 8688                           * are 64 bits, so I'll cheat for the moment.
8691 8689                           */
8692 8690                          bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8693 8691                          ill->ill_token_length = paddrlen;
8694 8692                          break;
8695 8693                  } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8696 8694                          ASSERT(ill->ill_nd_lla_mp == NULL);
8697 8695                          ill_set_ndmp(ill, mp, paddroff, paddrlen);
8698 8696                          mp = NULL;
8699 8697                          break;
8700 8698                  } else if (paddrreq == DL_CURR_DEST_ADDR) {
8701 8699                          ASSERT(ill->ill_dest_addr_mp == NULL);
8702 8700                          ill->ill_dest_addr_mp = mp;
8703 8701                          ill->ill_dest_addr = addr;
8704 8702                          mp = NULL;
8705 8703                          if (ill->ill_isv6) {
8706 8704                                  ill_setdesttoken(ill);
8707 8705                                  ipif_setdestlinklocal(ill->ill_ipif);
8708 8706                          }
8709 8707                          break;
8710 8708                  }
8711 8709  
8712 8710                  ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8713 8711                  ASSERT(ill->ill_phys_addr_mp == NULL);
8714 8712                  if (!ill->ill_ifname_pending)
8715 8713                          break;
8716 8714                  ill->ill_ifname_pending = 0;
8717 8715                  if (!ioctl_aborted)
8718 8716                          mp1 = ipsq_pending_mp_get(ipsq, &connp);
8719 8717                  if (mp1 != NULL) {
8720 8718                          ASSERT(connp == NULL);
8721 8719                          q = ill->ill_wq;
8722 8720                  }
8723 8721                  /*
8724 8722                   * If any error acks received during the plumbing sequence,
8725 8723                   * ill_ifname_pending_err will be set. Break out and send up
8726 8724                   * the error to the pending ioctl.
8727 8725                   */
8728 8726                  if (ill->ill_ifname_pending_err != 0) {
8729 8727                          err = ill->ill_ifname_pending_err;
8730 8728                          ill->ill_ifname_pending_err = 0;
8731 8729                          break;
8732 8730                  }
8733 8731  
8734 8732                  ill->ill_phys_addr_mp = mp;
8735 8733                  ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8736 8734                  mp = NULL;
8737 8735  
8738 8736                  /*
8739 8737                   * If paddrlen or ill_phys_addr_length is zero, the DLPI
8740 8738                   * provider doesn't support physical addresses.  We check both
8741 8739                   * paddrlen and ill_phys_addr_length because sppp (PPP) does
8742 8740                   * not have physical addresses, but historically adversises a
8743 8741                   * physical address length of 0 in its DL_INFO_ACK, but 6 in
8744 8742                   * its DL_PHYS_ADDR_ACK.
8745 8743                   */
8746 8744                  if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8747 8745                          ill->ill_phys_addr = NULL;
8748 8746                  } else if (paddrlen != ill->ill_phys_addr_length) {
8749 8747                          ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8750 8748                              paddrlen, ill->ill_phys_addr_length));
8751 8749                          err = EINVAL;
8752 8750                          break;
8753 8751                  }
8754 8752  
8755 8753                  if (ill->ill_nd_lla_mp == NULL) {
8756 8754                          if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8757 8755                                  err = ENOMEM;
8758 8756                                  break;
8759 8757                          }
8760 8758                          ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8761 8759                  }
8762 8760  
8763 8761                  if (ill->ill_isv6) {
8764 8762                          ill_setdefaulttoken(ill);
8765 8763                          ipif_setlinklocal(ill->ill_ipif);
8766 8764                  }
8767 8765                  break;
8768 8766          }
8769 8767          case DL_OK_ACK:
8770 8768                  ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8771 8769                      dl_primstr((int)dloa->dl_correct_primitive),
8772 8770                      dloa->dl_correct_primitive));
8773 8771                  DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8774 8772                      char *, dl_primstr(dloa->dl_correct_primitive),
8775 8773                      ill_t *, ill);
8776 8774  
8777 8775                  switch (dloa->dl_correct_primitive) {
8778 8776                  case DL_ENABMULTI_REQ:
8779 8777                  case DL_DISABMULTI_REQ:
8780 8778                          ill_dlpi_done(ill, dloa->dl_correct_primitive);
8781 8779                          break;
8782 8780                  case DL_PROMISCON_REQ:
8783 8781                  case DL_PROMISCOFF_REQ:
8784 8782                  case DL_UNBIND_REQ:
8785 8783                  case DL_ATTACH_REQ:
8786 8784                          ill_dlpi_done(ill, dloa->dl_correct_primitive);
8787 8785                          break;
8788 8786                  }
8789 8787                  break;
8790 8788          default:
8791 8789                  break;
8792 8790          }
8793 8791  
8794 8792          freemsg(mp);
8795 8793          if (mp1 == NULL)
8796 8794                  return;
8797 8795  
8798 8796          /*
8799 8797           * The operation must complete without EINPROGRESS since
8800 8798           * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8801 8799           * the operation will be stuck forever inside the IPSQ.
8802 8800           */
8803 8801          ASSERT(err != EINPROGRESS);
8804 8802  
8805 8803          DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8806 8804              int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8807 8805              ipif_t *, NULL);
8808 8806  
8809 8807          switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8810 8808          case 0:
8811 8809                  ipsq_current_finish(ipsq);
8812 8810                  break;
8813 8811  
8814 8812          case SIOCSLIFNAME:
8815 8813          case IF_UNITSEL: {
8816 8814                  ill_t *ill_other = ILL_OTHER(ill);
8817 8815  
8818 8816                  /*
8819 8817                   * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8820 8818                   * ill has a peer which is in an IPMP group, then place ill
8821 8819                   * into the same group.  One catch: although ifconfig plumbs
8822 8820                   * the appropriate IPMP meta-interface prior to plumbing this
8823 8821                   * ill, it is possible for multiple ifconfig applications to
8824 8822                   * race (or for another application to adjust plumbing), in
8825 8823                   * which case the IPMP meta-interface we need will be missing.
8826 8824                   * If so, kick the phyint out of the group.
8827 8825                   */
8828 8826                  if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8829 8827                          ipmp_grp_t      *grp = ill->ill_phyint->phyint_grp;
8830 8828                          ipmp_illgrp_t   *illg;
8831 8829  
8832 8830                          illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8833 8831                          if (illg == NULL)
8834 8832                                  ipmp_phyint_leave_grp(ill->ill_phyint);
8835 8833                          else
8836 8834                                  ipmp_ill_join_illgrp(ill, illg);
8837 8835                  }
8838 8836  
8839 8837                  if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8840 8838                          ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8841 8839                  else
8842 8840                          ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8843 8841                  break;
8844 8842          }
8845 8843          case SIOCLIFADDIF:
8846 8844                  ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8847 8845                  break;
8848 8846  
8849 8847          default:
8850 8848                  ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8851 8849                  break;
8852 8850          }
8853 8851  }
8854 8852  
8855 8853  /*
8856 8854   * ip_rput_other is called by ip_rput to handle messages modifying the global
8857 8855   * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8858 8856   */
8859 8857  /* ARGSUSED */
8860 8858  void
8861 8859  ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8862 8860  {
8863 8861          ill_t           *ill = q->q_ptr;
8864 8862          struct iocblk   *iocp;
8865 8863  
8866 8864          ip1dbg(("ip_rput_other "));
8867 8865          if (ipsq != NULL) {
8868 8866                  ASSERT(IAM_WRITER_IPSQ(ipsq));
8869 8867                  ASSERT(ipsq->ipsq_xop ==
8870 8868                      ill->ill_phyint->phyint_ipsq->ipsq_xop);
8871 8869          }
8872 8870  
8873 8871          switch (mp->b_datap->db_type) {
8874 8872          case M_ERROR:
8875 8873          case M_HANGUP:
8876 8874                  /*
8877 8875                   * The device has a problem.  We force the ILL down.  It can
8878 8876                   * be brought up again manually using SIOCSIFFLAGS (via
8879 8877                   * ifconfig or equivalent).
8880 8878                   */
8881 8879                  ASSERT(ipsq != NULL);
8882 8880                  if (mp->b_rptr < mp->b_wptr)
8883 8881                          ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8884 8882                  if (ill->ill_error == 0)
8885 8883                          ill->ill_error = ENXIO;
8886 8884                  if (!ill_down_start(q, mp))
8887 8885                          return;
8888 8886                  ipif_all_down_tail(ipsq, q, mp, NULL);
8889 8887                  break;
8890 8888          case M_IOCNAK: {
8891 8889                  iocp = (struct iocblk *)mp->b_rptr;
8892 8890  
8893 8891                  ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8894 8892                  /*
8895 8893                   * If this was the first attempt, turn off the fastpath
8896 8894                   * probing.
8897 8895                   */
8898 8896                  mutex_enter(&ill->ill_lock);
8899 8897                  if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8900 8898                          ill->ill_dlpi_fastpath_state = IDS_FAILED;
8901 8899                          mutex_exit(&ill->ill_lock);
8902 8900                          /*
8903 8901                           * don't flush the nce_t entries: we use them
8904 8902                           * as an index to the ncec itself.
8905 8903                           */
8906 8904                          ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8907 8905                              ill->ill_name));
8908 8906                  } else {
8909 8907                          mutex_exit(&ill->ill_lock);
8910 8908                  }
8911 8909                  freemsg(mp);
8912 8910                  break;
8913 8911          }
8914 8912          default:
8915 8913                  ASSERT(0);
8916 8914                  break;
8917 8915          }
8918 8916  }
8919 8917  
8920 8918  /*
8921 8919   * Update any source route, record route or timestamp options
8922 8920   * When it fails it has consumed the message and BUMPed the MIB.
8923 8921   */
8924 8922  boolean_t
8925 8923  ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8926 8924      ip_recv_attr_t *ira)
8927 8925  {
8928 8926          ipoptp_t        opts;
8929 8927          uchar_t         *opt;
8930 8928          uint8_t         optval;
8931 8929          uint8_t         optlen;
8932 8930          ipaddr_t        dst;
8933 8931          ipaddr_t        ifaddr;
8934 8932          uint32_t        ts;
8935 8933          timestruc_t     now;
8936 8934          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
8937 8935  
8938 8936          ip2dbg(("ip_forward_options\n"));
8939 8937          dst = ipha->ipha_dst;
8940 8938          for (optval = ipoptp_first(&opts, ipha);
8941 8939              optval != IPOPT_EOL;
8942 8940              optval = ipoptp_next(&opts)) {
8943 8941                  ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8944 8942                  opt = opts.ipoptp_cur;
8945 8943                  optlen = opts.ipoptp_len;
8946 8944                  ip2dbg(("ip_forward_options: opt %d, len %d\n",
8947 8945                      optval, opts.ipoptp_len));
8948 8946                  switch (optval) {
8949 8947                          uint32_t off;
8950 8948                  case IPOPT_SSRR:
8951 8949                  case IPOPT_LSRR:
8952 8950                          /* Check if adminstratively disabled */
8953 8951                          if (!ipst->ips_ip_forward_src_routed) {
8954 8952                                  BUMP_MIB(dst_ill->ill_ip_mib,
8955 8953                                      ipIfStatsForwProhibits);
8956 8954                                  ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8957 8955                                      mp, dst_ill);
8958 8956                                  icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8959 8957                                      ira);
8960 8958                                  return (B_FALSE);
8961 8959                          }
8962 8960                          if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8963 8961                                  /*
8964 8962                                   * Must be partial since ip_input_options
8965 8963                                   * checked for strict.
8966 8964                                   */
8967 8965                                  break;
8968 8966                          }
8969 8967                          off = opt[IPOPT_OFFSET];
8970 8968                          off--;
8971 8969                  redo_srr:
8972 8970                          if (optlen < IP_ADDR_LEN ||
8973 8971                              off > optlen - IP_ADDR_LEN) {
8974 8972                                  /* End of source route */
8975 8973                                  ip1dbg((
8976 8974                                      "ip_forward_options: end of SR\n"));
8977 8975                                  break;
8978 8976                          }
8979 8977                          /* Pick a reasonable address on the outbound if */
8980 8978                          ASSERT(dst_ill != NULL);
8981 8979                          if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
8982 8980                              INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
8983 8981                              NULL) != 0) {
8984 8982                                  /* No source! Shouldn't happen */
8985 8983                                  ifaddr = INADDR_ANY;
8986 8984                          }
8987 8985                          bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
8988 8986                          bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
8989 8987                          ip1dbg(("ip_forward_options: next hop 0x%x\n",
8990 8988                              ntohl(dst)));
8991 8989  
8992 8990                          /*
8993 8991                           * Check if our address is present more than
8994 8992                           * once as consecutive hops in source route.
8995 8993                           */
8996 8994                          if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
8997 8995                                  off += IP_ADDR_LEN;
8998 8996                                  opt[IPOPT_OFFSET] += IP_ADDR_LEN;
8999 8997                                  goto redo_srr;
9000 8998                          }
9001 8999                          ipha->ipha_dst = dst;
9002 9000                          opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9003 9001                          break;
9004 9002                  case IPOPT_RR:
9005 9003                          off = opt[IPOPT_OFFSET];
9006 9004                          off--;
9007 9005                          if (optlen < IP_ADDR_LEN ||
9008 9006                              off > optlen - IP_ADDR_LEN) {
9009 9007                                  /* No more room - ignore */
9010 9008                                  ip1dbg((
9011 9009                                      "ip_forward_options: end of RR\n"));
9012 9010                                  break;
9013 9011                          }
9014 9012                          /* Pick a reasonable address on the outbound if */
9015 9013                          ASSERT(dst_ill != NULL);
9016 9014                          if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9017 9015                              INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9018 9016                              NULL) != 0) {
9019 9017                                  /* No source! Shouldn't happen */
9020 9018                                  ifaddr = INADDR_ANY;
9021 9019                          }
9022 9020                          bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9023 9021                          opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9024 9022                          break;
9025 9023                  case IPOPT_TS:
9026 9024                          /* Insert timestamp if there is room */
9027 9025                          switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9028 9026                          case IPOPT_TS_TSONLY:
9029 9027                                  off = IPOPT_TS_TIMELEN;
9030 9028                                  break;
9031 9029                          case IPOPT_TS_PRESPEC:
9032 9030                          case IPOPT_TS_PRESPEC_RFC791:
9033 9031                                  /* Verify that the address matched */
9034 9032                                  off = opt[IPOPT_OFFSET] - 1;
9035 9033                                  bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9036 9034                                  if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9037 9035                                          /* Not for us */
9038 9036                                          break;
9039 9037                                  }
9040 9038                                  /* FALLTHROUGH */
9041 9039                          case IPOPT_TS_TSANDADDR:
9042 9040                                  off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9043 9041                                  break;
9044 9042                          default:
9045 9043                                  /*
9046 9044                                   * ip_*put_options should have already
9047 9045                                   * dropped this packet.
9048 9046                                   */
9049 9047                                  cmn_err(CE_PANIC, "ip_forward_options: "
9050 9048                                      "unknown IT - bug in ip_input_options?\n");
9051 9049                          }
9052 9050                          if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9053 9051                                  /* Increase overflow counter */
9054 9052                                  off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9055 9053                                  opt[IPOPT_POS_OV_FLG] =
9056 9054                                      (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9057 9055                                      (off << 4));
9058 9056                                  break;
9059 9057                          }
9060 9058                          off = opt[IPOPT_OFFSET] - 1;
9061 9059                          switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9062 9060                          case IPOPT_TS_PRESPEC:
9063 9061                          case IPOPT_TS_PRESPEC_RFC791:
9064 9062                          case IPOPT_TS_TSANDADDR:
9065 9063                                  /* Pick a reasonable addr on the outbound if */
9066 9064                                  ASSERT(dst_ill != NULL);
9067 9065                                  if (ip_select_source_v4(dst_ill, INADDR_ANY,
9068 9066                                      dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9069 9067                                      NULL, NULL) != 0) {
9070 9068                                          /* No source! Shouldn't happen */
9071 9069                                          ifaddr = INADDR_ANY;
9072 9070                                  }
9073 9071                                  bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9074 9072                                  opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9075 9073                                  /* FALLTHROUGH */
9076 9074                          case IPOPT_TS_TSONLY:
9077 9075                                  off = opt[IPOPT_OFFSET] - 1;
9078 9076                                  /* Compute # of milliseconds since midnight */
9079 9077                                  gethrestime(&now);
9080 9078                                  ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9081 9079                                      NSEC2MSEC(now.tv_nsec);
9082 9080                                  bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9083 9081                                  opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9084 9082                                  break;
9085 9083                          }
9086 9084                          break;
9087 9085                  }
9088 9086          }
9089 9087          return (B_TRUE);
9090 9088  }
9091 9089  
9092 9090  /*
9093 9091   * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9094 9092   * returns 'true' if there are still fragments left on the queue, in
9095 9093   * which case we restart the timer.
9096 9094   */
9097 9095  void
9098 9096  ill_frag_timer(void *arg)
9099 9097  {
9100 9098          ill_t   *ill = (ill_t *)arg;
9101 9099          boolean_t frag_pending;
9102 9100          ip_stack_t *ipst = ill->ill_ipst;
9103 9101          time_t  timeout;
9104 9102  
9105 9103          mutex_enter(&ill->ill_lock);
9106 9104          ASSERT(!ill->ill_fragtimer_executing);
9107 9105          if (ill->ill_state_flags & ILL_CONDEMNED) {
9108 9106                  ill->ill_frag_timer_id = 0;
9109 9107                  mutex_exit(&ill->ill_lock);
9110 9108                  return;
9111 9109          }
9112 9110          ill->ill_fragtimer_executing = 1;
9113 9111          mutex_exit(&ill->ill_lock);
9114 9112  
9115 9113          timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9116 9114              ipst->ips_ip_reassembly_timeout);
9117 9115  
9118 9116          frag_pending = ill_frag_timeout(ill, timeout);
9119 9117  
9120 9118          /*
9121 9119           * Restart the timer, if we have fragments pending or if someone
9122 9120           * wanted us to be scheduled again.
9123 9121           */
9124 9122          mutex_enter(&ill->ill_lock);
9125 9123          ill->ill_fragtimer_executing = 0;
9126 9124          ill->ill_frag_timer_id = 0;
9127 9125          if (frag_pending || ill->ill_fragtimer_needrestart)
9128 9126                  ill_frag_timer_start(ill);
9129 9127          mutex_exit(&ill->ill_lock);
9130 9128  }
9131 9129  
9132 9130  void
9133 9131  ill_frag_timer_start(ill_t *ill)
9134 9132  {
9135 9133          ip_stack_t *ipst = ill->ill_ipst;
9136 9134          clock_t timeo_ms;
9137 9135  
9138 9136          ASSERT(MUTEX_HELD(&ill->ill_lock));
9139 9137  
9140 9138          /* If the ill is closing or opening don't proceed */
9141 9139          if (ill->ill_state_flags & ILL_CONDEMNED)
9142 9140                  return;
9143 9141  
9144 9142          if (ill->ill_fragtimer_executing) {
9145 9143                  /*
9146 9144                   * ill_frag_timer is currently executing. Just record the
9147 9145                   * the fact that we want the timer to be restarted.
9148 9146                   * ill_frag_timer will post a timeout before it returns,
9149 9147                   * ensuring it will be called again.
9150 9148                   */
9151 9149                  ill->ill_fragtimer_needrestart = 1;
9152 9150                  return;
9153 9151          }
9154 9152  
9155 9153          if (ill->ill_frag_timer_id == 0) {
9156 9154                  timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9157 9155                      ipst->ips_ip_reassembly_timeout) * SECONDS;
9158 9156  
9159 9157                  /*
9160 9158                   * The timer is neither running nor is the timeout handler
9161 9159                   * executing. Post a timeout so that ill_frag_timer will be
9162 9160                   * called
9163 9161                   */
9164 9162                  ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9165 9163                      MSEC_TO_TICK(timeo_ms >> 1));
9166 9164                  ill->ill_fragtimer_needrestart = 0;
9167 9165          }
9168 9166  }
9169 9167  
9170 9168  /*
9171 9169   * Update any source route, record route or timestamp options.
9172 9170   * Check that we are at end of strict source route.
9173 9171   * The options have already been checked for sanity in ip_input_options().
9174 9172   */
9175 9173  boolean_t
9176 9174  ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9177 9175  {
9178 9176          ipoptp_t        opts;
9179 9177          uchar_t         *opt;
9180 9178          uint8_t         optval;
9181 9179          uint8_t         optlen;
9182 9180          ipaddr_t        dst;
9183 9181          ipaddr_t        ifaddr;
9184 9182          uint32_t        ts;
9185 9183          timestruc_t     now;
9186 9184          ill_t           *ill = ira->ira_ill;
9187 9185          ip_stack_t      *ipst = ill->ill_ipst;
9188 9186  
9189 9187          ip2dbg(("ip_input_local_options\n"));
9190 9188  
9191 9189          for (optval = ipoptp_first(&opts, ipha);
9192 9190              optval != IPOPT_EOL;
9193 9191              optval = ipoptp_next(&opts)) {
9194 9192                  ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9195 9193                  opt = opts.ipoptp_cur;
9196 9194                  optlen = opts.ipoptp_len;
9197 9195                  ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9198 9196                      optval, optlen));
9199 9197                  switch (optval) {
9200 9198                          uint32_t off;
9201 9199                  case IPOPT_SSRR:
9202 9200                  case IPOPT_LSRR:
9203 9201                          off = opt[IPOPT_OFFSET];
9204 9202                          off--;
9205 9203                          if (optlen < IP_ADDR_LEN ||
9206 9204                              off > optlen - IP_ADDR_LEN) {
9207 9205                                  /* End of source route */
9208 9206                                  ip1dbg(("ip_input_local_options: end of SR\n"));
9209 9207                                  break;
9210 9208                          }
9211 9209                          /*
9212 9210                           * This will only happen if two consecutive entries
9213 9211                           * in the source route contains our address or if
9214 9212                           * it is a packet with a loose source route which
9215 9213                           * reaches us before consuming the whole source route
9216 9214                           */
9217 9215                          ip1dbg(("ip_input_local_options: not end of SR\n"));
9218 9216                          if (optval == IPOPT_SSRR) {
9219 9217                                  goto bad_src_route;
9220 9218                          }
9221 9219                          /*
9222 9220                           * Hack: instead of dropping the packet truncate the
9223 9221                           * source route to what has been used by filling the
9224 9222                           * rest with IPOPT_NOP.
9225 9223                           */
9226 9224                          opt[IPOPT_OLEN] = (uint8_t)off;
9227 9225                          while (off < optlen) {
9228 9226                                  opt[off++] = IPOPT_NOP;
9229 9227                          }
9230 9228                          break;
9231 9229                  case IPOPT_RR:
9232 9230                          off = opt[IPOPT_OFFSET];
9233 9231                          off--;
9234 9232                          if (optlen < IP_ADDR_LEN ||
9235 9233                              off > optlen - IP_ADDR_LEN) {
9236 9234                                  /* No more room - ignore */
9237 9235                                  ip1dbg((
9238 9236                                      "ip_input_local_options: end of RR\n"));
9239 9237                                  break;
9240 9238                          }
9241 9239                          /* Pick a reasonable address on the outbound if */
9242 9240                          if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9243 9241                              INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9244 9242                              NULL) != 0) {
9245 9243                                  /* No source! Shouldn't happen */
9246 9244                                  ifaddr = INADDR_ANY;
9247 9245                          }
9248 9246                          bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9249 9247                          opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9250 9248                          break;
9251 9249                  case IPOPT_TS:
9252 9250                          /* Insert timestamp if there is romm */
9253 9251                          switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9254 9252                          case IPOPT_TS_TSONLY:
9255 9253                                  off = IPOPT_TS_TIMELEN;
9256 9254                                  break;
9257 9255                          case IPOPT_TS_PRESPEC:
9258 9256                          case IPOPT_TS_PRESPEC_RFC791:
9259 9257                                  /* Verify that the address matched */
9260 9258                                  off = opt[IPOPT_OFFSET] - 1;
9261 9259                                  bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9262 9260                                  if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9263 9261                                          /* Not for us */
9264 9262                                          break;
9265 9263                                  }
9266 9264                                  /* FALLTHROUGH */
9267 9265                          case IPOPT_TS_TSANDADDR:
9268 9266                                  off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9269 9267                                  break;
9270 9268                          default:
9271 9269                                  /*
9272 9270                                   * ip_*put_options should have already
9273 9271                                   * dropped this packet.
9274 9272                                   */
9275 9273                                  cmn_err(CE_PANIC, "ip_input_local_options: "
9276 9274                                      "unknown IT - bug in ip_input_options?\n");
9277 9275                          }
9278 9276                          if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9279 9277                                  /* Increase overflow counter */
9280 9278                                  off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9281 9279                                  opt[IPOPT_POS_OV_FLG] =
9282 9280                                      (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9283 9281                                      (off << 4));
9284 9282                                  break;
9285 9283                          }
9286 9284                          off = opt[IPOPT_OFFSET] - 1;
9287 9285                          switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9288 9286                          case IPOPT_TS_PRESPEC:
9289 9287                          case IPOPT_TS_PRESPEC_RFC791:
9290 9288                          case IPOPT_TS_TSANDADDR:
9291 9289                                  /* Pick a reasonable addr on the outbound if */
9292 9290                                  if (ip_select_source_v4(ill, INADDR_ANY,
9293 9291                                      ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9294 9292                                      &ifaddr, NULL, NULL) != 0) {
9295 9293                                          /* No source! Shouldn't happen */
9296 9294                                          ifaddr = INADDR_ANY;
9297 9295                                  }
9298 9296                                  bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9299 9297                                  opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9300 9298                                  /* FALLTHROUGH */
9301 9299                          case IPOPT_TS_TSONLY:
9302 9300                                  off = opt[IPOPT_OFFSET] - 1;
9303 9301                                  /* Compute # of milliseconds since midnight */
9304 9302                                  gethrestime(&now);
9305 9303                                  ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9306 9304                                      NSEC2MSEC(now.tv_nsec);
9307 9305                                  bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9308 9306                                  opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9309 9307                                  break;
9310 9308                          }
9311 9309                          break;
9312 9310                  }
9313 9311          }
9314 9312          return (B_TRUE);
9315 9313  
9316 9314  bad_src_route:
9317 9315          /* make sure we clear any indication of a hardware checksum */
9318 9316          DB_CKSUMFLAGS(mp) = 0;
9319 9317          ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9320 9318          icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9321 9319          return (B_FALSE);
9322 9320  
9323 9321  }
9324 9322  
9325 9323  /*
9326 9324   * Process IP options in an inbound packet.  Always returns the nexthop.
9327 9325   * Normally this is the passed in nexthop, but if there is an option
9328 9326   * that effects the nexthop (such as a source route) that will be returned.
9329 9327   * Sets *errorp if there is an error, in which case an ICMP error has been sent
9330 9328   * and mp freed.
9331 9329   */
9332 9330  ipaddr_t
9333 9331  ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9334 9332      ip_recv_attr_t *ira, int *errorp)
9335 9333  {
9336 9334          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
9337 9335          ipoptp_t        opts;
9338 9336          uchar_t         *opt;
9339 9337          uint8_t         optval;
9340 9338          uint8_t         optlen;
9341 9339          intptr_t        code = 0;
9342 9340          ire_t           *ire;
9343 9341  
9344 9342          ip2dbg(("ip_input_options\n"));
9345 9343          *errorp = 0;
9346 9344          for (optval = ipoptp_first(&opts, ipha);
9347 9345              optval != IPOPT_EOL;
9348 9346              optval = ipoptp_next(&opts)) {
9349 9347                  opt = opts.ipoptp_cur;
9350 9348                  optlen = opts.ipoptp_len;
9351 9349                  ip2dbg(("ip_input_options: opt %d, len %d\n",
9352 9350                      optval, optlen));
9353 9351                  /*
9354 9352                   * Note: we need to verify the checksum before we
9355 9353                   * modify anything thus this routine only extracts the next
9356 9354                   * hop dst from any source route.
9357 9355                   */
9358 9356                  switch (optval) {
9359 9357                          uint32_t off;
9360 9358                  case IPOPT_SSRR:
9361 9359                  case IPOPT_LSRR:
9362 9360                          if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9363 9361                                  if (optval == IPOPT_SSRR) {
9364 9362                                          ip1dbg(("ip_input_options: not next"
9365 9363                                              " strict source route 0x%x\n",
9366 9364                                              ntohl(dst)));
9367 9365                                          code = (char *)&ipha->ipha_dst -
9368 9366                                              (char *)ipha;
9369 9367                                          goto param_prob; /* RouterReq's */
9370 9368                                  }
9371 9369                                  ip2dbg(("ip_input_options: "
9372 9370                                      "not next source route 0x%x\n",
9373 9371                                      ntohl(dst)));
9374 9372                                  break;
9375 9373                          }
9376 9374  
9377 9375                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9378 9376                                  ip1dbg((
9379 9377                                      "ip_input_options: bad option offset\n"));
9380 9378                                  code = (char *)&opt[IPOPT_OLEN] -
9381 9379                                      (char *)ipha;
9382 9380                                  goto param_prob;
9383 9381                          }
9384 9382                          off = opt[IPOPT_OFFSET];
9385 9383                          off--;
9386 9384                  redo_srr:
9387 9385                          if (optlen < IP_ADDR_LEN ||
9388 9386                              off > optlen - IP_ADDR_LEN) {
9389 9387                                  /* End of source route */
9390 9388                                  ip1dbg(("ip_input_options: end of SR\n"));
9391 9389                                  break;
9392 9390                          }
9393 9391                          bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9394 9392                          ip1dbg(("ip_input_options: next hop 0x%x\n",
9395 9393                              ntohl(dst)));
9396 9394  
9397 9395                          /*
9398 9396                           * Check if our address is present more than
9399 9397                           * once as consecutive hops in source route.
9400 9398                           * XXX verify per-interface ip_forwarding
9401 9399                           * for source route?
9402 9400                           */
9403 9401                          if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9404 9402                                  off += IP_ADDR_LEN;
9405 9403                                  goto redo_srr;
9406 9404                          }
9407 9405  
9408 9406                          if (dst == htonl(INADDR_LOOPBACK)) {
9409 9407                                  ip1dbg(("ip_input_options: loopback addr in "
9410 9408                                      "source route!\n"));
9411 9409                                  goto bad_src_route;
9412 9410                          }
9413 9411                          /*
9414 9412                           * For strict: verify that dst is directly
9415 9413                           * reachable.
9416 9414                           */
9417 9415                          if (optval == IPOPT_SSRR) {
9418 9416                                  ire = ire_ftable_lookup_v4(dst, 0, 0,
9419 9417                                      IRE_INTERFACE, NULL, ALL_ZONES,
9420 9418                                      ira->ira_tsl,
9421 9419                                      MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9422 9420                                      NULL);
9423 9421                                  if (ire == NULL) {
9424 9422                                          ip1dbg(("ip_input_options: SSRR not "
9425 9423                                              "directly reachable: 0x%x\n",
9426 9424                                              ntohl(dst)));
9427 9425                                          goto bad_src_route;
9428 9426                                  }
9429 9427                                  ire_refrele(ire);
9430 9428                          }
9431 9429                          /*
9432 9430                           * Defer update of the offset and the record route
9433 9431                           * until the packet is forwarded.
9434 9432                           */
9435 9433                          break;
9436 9434                  case IPOPT_RR:
9437 9435                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9438 9436                                  ip1dbg((
9439 9437                                      "ip_input_options: bad option offset\n"));
9440 9438                                  code = (char *)&opt[IPOPT_OLEN] -
9441 9439                                      (char *)ipha;
9442 9440                                  goto param_prob;
9443 9441                          }
9444 9442                          break;
9445 9443                  case IPOPT_TS:
9446 9444                          /*
9447 9445                           * Verify that length >= 5 and that there is either
9448 9446                           * room for another timestamp or that the overflow
9449 9447                           * counter is not maxed out.
9450 9448                           */
9451 9449                          code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9452 9450                          if (optlen < IPOPT_MINLEN_IT) {
9453 9451                                  goto param_prob;
9454 9452                          }
9455 9453                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9456 9454                                  ip1dbg((
9457 9455                                      "ip_input_options: bad option offset\n"));
9458 9456                                  code = (char *)&opt[IPOPT_OFFSET] -
9459 9457                                      (char *)ipha;
9460 9458                                  goto param_prob;
9461 9459                          }
9462 9460                          switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9463 9461                          case IPOPT_TS_TSONLY:
9464 9462                                  off = IPOPT_TS_TIMELEN;
9465 9463                                  break;
9466 9464                          case IPOPT_TS_TSANDADDR:
9467 9465                          case IPOPT_TS_PRESPEC:
9468 9466                          case IPOPT_TS_PRESPEC_RFC791:
9469 9467                                  off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9470 9468                                  break;
9471 9469                          default:
9472 9470                                  code = (char *)&opt[IPOPT_POS_OV_FLG] -
9473 9471                                      (char *)ipha;
9474 9472                                  goto param_prob;
9475 9473                          }
9476 9474                          if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9477 9475                              (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9478 9476                                  /*
9479 9477                                   * No room and the overflow counter is 15
9480 9478                                   * already.
9481 9479                                   */
9482 9480                                  goto param_prob;
9483 9481                          }
9484 9482                          break;
9485 9483                  }
9486 9484          }
9487 9485  
9488 9486          if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9489 9487                  return (dst);
9490 9488          }
9491 9489  
9492 9490          ip1dbg(("ip_input_options: error processing IP options."));
9493 9491          code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9494 9492  
9495 9493  param_prob:
9496 9494          /* make sure we clear any indication of a hardware checksum */
9497 9495          DB_CKSUMFLAGS(mp) = 0;
9498 9496          ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9499 9497          icmp_param_problem(mp, (uint8_t)code, ira);
9500 9498          *errorp = -1;
9501 9499          return (dst);
9502 9500  
9503 9501  bad_src_route:
9504 9502          /* make sure we clear any indication of a hardware checksum */
9505 9503          DB_CKSUMFLAGS(mp) = 0;
9506 9504          ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9507 9505          icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9508 9506          *errorp = -1;
9509 9507          return (dst);
9510 9508  }
9511 9509  
9512 9510  /*
9513 9511   * IP & ICMP info in >=14 msg's ...
9514 9512   *  - ip fixed part (mib2_ip_t)
9515 9513   *  - icmp fixed part (mib2_icmp_t)
9516 9514   *  - ipAddrEntryTable (ip 20)          all IPv4 ipifs
9517 9515   *  - ipRouteEntryTable (ip 21)         all IPv4 IREs
9518 9516   *  - ipNetToMediaEntryTable (ip 22)    all IPv4 Neighbor Cache entries
9519 9517   *  - ipRouteAttributeTable (ip 102)    labeled routes
9520 9518   *  - ip multicast membership (ip_member_t)
9521 9519   *  - ip multicast source filtering (ip_grpsrc_t)
9522 9520   *  - igmp fixed part (struct igmpstat)
9523 9521   *  - multicast routing stats (struct mrtstat)
9524 9522   *  - multicast routing vifs (array of struct vifctl)
9525 9523   *  - multicast routing routes (array of struct mfcctl)
9526 9524   *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9527 9525   *                                      One per ill plus one generic
9528 9526   *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9529 9527   *                                      One per ill plus one generic
9530 9528   *  - ipv6RouteEntry                    all IPv6 IREs
9531 9529   *  - ipv6RouteAttributeTable (ip6 102) labeled routes
9532 9530   *  - ipv6NetToMediaEntry               all IPv6 Neighbor Cache entries
9533 9531   *  - ipv6AddrEntry                     all IPv6 ipifs
9534 9532   *  - ipv6 multicast membership (ipv6_member_t)
9535 9533   *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9536 9534   *
9537 9535   * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9538 9536   * already filled in by the caller.
9539 9537   * If legacy_req is true then MIB structures needs to be truncated to their
9540 9538   * legacy sizes before being returned.
9541 9539   * Return value of 0 indicates that no messages were sent and caller
9542 9540   * should free mpctl.
9543 9541   */
9544 9542  int
9545 9543  ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9546 9544  {
9547 9545          ip_stack_t *ipst;
9548 9546          sctp_stack_t *sctps;
9549 9547  
9550 9548          if (q->q_next != NULL) {
9551 9549                  ipst = ILLQ_TO_IPST(q);
9552 9550          } else {
9553 9551                  ipst = CONNQ_TO_IPST(q);
9554 9552          }
9555 9553          ASSERT(ipst != NULL);
9556 9554          sctps = ipst->ips_netstack->netstack_sctp;
9557 9555  
9558 9556          if (mpctl == NULL || mpctl->b_cont == NULL) {
9559 9557                  return (0);
9560 9558          }
9561 9559  
9562 9560          /*
9563 9561           * For the purposes of the (broken) packet shell use
9564 9562           * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9565 9563           * to make TCP and UDP appear first in the list of mib items.
9566 9564           * TBD: We could expand this and use it in netstat so that
9567 9565           * the kernel doesn't have to produce large tables (connections,
9568 9566           * routes, etc) when netstat only wants the statistics or a particular
9569 9567           * table.
9570 9568           */
9571 9569          if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9572 9570                  if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9573 9571                          return (1);
9574 9572                  }
9575 9573          }
9576 9574  
9577 9575          if (level != MIB2_TCP) {
9578 9576                  if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9579 9577                          return (1);
9580 9578                  }
9581 9579                  if (level == MIB2_UDP) {
9582 9580                          goto done;
9583 9581                  }
9584 9582          }
9585 9583  
9586 9584          if (level != MIB2_UDP) {
9587 9585                  if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9588 9586                          return (1);
9589 9587                  }
9590 9588                  if (level == MIB2_TCP) {
9591 9589                          goto done;
9592 9590                  }
9593 9591          }
9594 9592  
9595 9593          if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9596 9594              ipst, legacy_req)) == NULL) {
9597 9595                  return (1);
9598 9596          }
9599 9597  
9600 9598          if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9601 9599              legacy_req)) == NULL) {
9602 9600                  return (1);
9603 9601          }
9604 9602  
9605 9603          if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9606 9604                  return (1);
9607 9605          }
9608 9606  
9609 9607          if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9610 9608                  return (1);
9611 9609          }
9612 9610  
9613 9611          if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9614 9612                  return (1);
9615 9613          }
9616 9614  
9617 9615          if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9618 9616                  return (1);
9619 9617          }
9620 9618  
9621 9619          if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9622 9620              legacy_req)) == NULL) {
9623 9621                  return (1);
9624 9622          }
9625 9623  
9626 9624          if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9627 9625              legacy_req)) == NULL) {
9628 9626                  return (1);
9629 9627          }
9630 9628  
9631 9629          if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9632 9630                  return (1);
9633 9631          }
9634 9632  
9635 9633          if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9636 9634                  return (1);
9637 9635          }
9638 9636  
9639 9637          if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9640 9638                  return (1);
9641 9639          }
9642 9640  
9643 9641          if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9644 9642                  return (1);
9645 9643          }
9646 9644  
9647 9645          if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9648 9646                  return (1);
9649 9647          }
9650 9648  
9651 9649          if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9652 9650                  return (1);
9653 9651          }
9654 9652  
9655 9653          mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9656 9654          if (mpctl == NULL)
9657 9655                  return (1);
9658 9656  
9659 9657          mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9660 9658          if (mpctl == NULL)
9661 9659                  return (1);
9662 9660  
9663 9661          if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9664 9662                  return (1);
9665 9663          }
9666 9664          if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9667 9665                  return (1);
9668 9666          }
9669 9667  done:
9670 9668          freemsg(mpctl);
9671 9669          return (1);
9672 9670  }
9673 9671  
9674 9672  /* Get global (legacy) IPv4 statistics */
9675 9673  static mblk_t *
9676 9674  ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9677 9675      ip_stack_t *ipst, boolean_t legacy_req)
9678 9676  {
9679 9677          mib2_ip_t               old_ip_mib;
9680 9678          struct opthdr           *optp;
9681 9679          mblk_t                  *mp2ctl;
9682 9680          mib2_ipAddrEntry_t      mae;
9683 9681  
9684 9682          /*
9685 9683           * make a copy of the original message
9686 9684           */
9687 9685          mp2ctl = copymsg(mpctl);
9688 9686  
9689 9687          /* fixed length IP structure... */
9690 9688          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9691 9689          optp->level = MIB2_IP;
9692 9690          optp->name = 0;
9693 9691          SET_MIB(old_ip_mib.ipForwarding,
9694 9692              (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9695 9693          SET_MIB(old_ip_mib.ipDefaultTTL,
9696 9694              (uint32_t)ipst->ips_ip_def_ttl);
9697 9695          SET_MIB(old_ip_mib.ipReasmTimeout,
9698 9696              ipst->ips_ip_reassembly_timeout);
9699 9697          SET_MIB(old_ip_mib.ipAddrEntrySize,
9700 9698              (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9701 9699              sizeof (mib2_ipAddrEntry_t));
9702 9700          SET_MIB(old_ip_mib.ipRouteEntrySize,
9703 9701              sizeof (mib2_ipRouteEntry_t));
9704 9702          SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9705 9703              sizeof (mib2_ipNetToMediaEntry_t));
9706 9704          SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9707 9705          SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9708 9706          SET_MIB(old_ip_mib.ipRouteAttributeSize,
9709 9707              sizeof (mib2_ipAttributeEntry_t));
9710 9708          SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9711 9709          SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9712 9710  
9713 9711          /*
9714 9712           * Grab the statistics from the new IP MIB
9715 9713           */
9716 9714          SET_MIB(old_ip_mib.ipInReceives,
9717 9715              (uint32_t)ipmib->ipIfStatsHCInReceives);
9718 9716          SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9719 9717          SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9720 9718          SET_MIB(old_ip_mib.ipForwDatagrams,
9721 9719              (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9722 9720          SET_MIB(old_ip_mib.ipInUnknownProtos,
9723 9721              ipmib->ipIfStatsInUnknownProtos);
9724 9722          SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9725 9723          SET_MIB(old_ip_mib.ipInDelivers,
9726 9724              (uint32_t)ipmib->ipIfStatsHCInDelivers);
9727 9725          SET_MIB(old_ip_mib.ipOutRequests,
9728 9726              (uint32_t)ipmib->ipIfStatsHCOutRequests);
9729 9727          SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9730 9728          SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9731 9729          SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9732 9730          SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9733 9731          SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9734 9732          SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9735 9733          SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9736 9734          SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9737 9735  
9738 9736          /* ipRoutingDiscards is not being used */
9739 9737          SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9740 9738          SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9741 9739          SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9742 9740          SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9743 9741          SET_MIB(old_ip_mib.ipReasmDuplicates,
9744 9742              ipmib->ipIfStatsReasmDuplicates);
9745 9743          SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9746 9744          SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9747 9745          SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9748 9746          SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9749 9747          SET_MIB(old_ip_mib.rawipInOverflows,
9750 9748              ipmib->rawipIfStatsInOverflows);
9751 9749  
9752 9750          SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9753 9751          SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9754 9752          SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9755 9753          SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9756 9754          SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9757 9755              ipmib->ipIfStatsOutSwitchIPVersion);
9758 9756  
9759 9757          if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9760 9758              (int)sizeof (old_ip_mib))) {
9761 9759                  ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9762 9760                      (uint_t)sizeof (old_ip_mib)));
9763 9761          }
9764 9762  
9765 9763          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9766 9764          ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9767 9765              (int)optp->level, (int)optp->name, (int)optp->len));
9768 9766          qreply(q, mpctl);
9769 9767          return (mp2ctl);
9770 9768  }
9771 9769  
9772 9770  /* Per interface IPv4 statistics */
9773 9771  static mblk_t *
9774 9772  ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9775 9773      boolean_t legacy_req)
9776 9774  {
9777 9775          struct opthdr           *optp;
9778 9776          mblk_t                  *mp2ctl;
9779 9777          ill_t                   *ill;
9780 9778          ill_walk_context_t      ctx;
9781 9779          mblk_t                  *mp_tail = NULL;
9782 9780          mib2_ipIfStatsEntry_t   global_ip_mib;
9783 9781          mib2_ipAddrEntry_t      mae;
9784 9782  
9785 9783          /*
9786 9784           * Make a copy of the original message
9787 9785           */
9788 9786          mp2ctl = copymsg(mpctl);
9789 9787  
9790 9788          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9791 9789          optp->level = MIB2_IP;
9792 9790          optp->name = MIB2_IP_TRAFFIC_STATS;
9793 9791          /* Include "unknown interface" ip_mib */
9794 9792          ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9795 9793          ipst->ips_ip_mib.ipIfStatsIfIndex =
9796 9794              MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9797 9795          SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9798 9796              (ipst->ips_ip_forwarding ? 1 : 2));
9799 9797          SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9800 9798              (uint32_t)ipst->ips_ip_def_ttl);
9801 9799          SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9802 9800              sizeof (mib2_ipIfStatsEntry_t));
9803 9801          SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9804 9802              sizeof (mib2_ipAddrEntry_t));
9805 9803          SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9806 9804              sizeof (mib2_ipRouteEntry_t));
9807 9805          SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9808 9806              sizeof (mib2_ipNetToMediaEntry_t));
9809 9807          SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9810 9808              sizeof (ip_member_t));
9811 9809          SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9812 9810              sizeof (ip_grpsrc_t));
9813 9811  
9814 9812          bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9815 9813  
9816 9814          if (legacy_req) {
9817 9815                  SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9818 9816                      LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9819 9817          }
9820 9818  
9821 9819          if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9822 9820              (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9823 9821                  ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9824 9822                      "failed to allocate %u bytes\n",
9825 9823                      (uint_t)sizeof (global_ip_mib)));
9826 9824          }
9827 9825  
9828 9826          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9829 9827          ill = ILL_START_WALK_V4(&ctx, ipst);
9830 9828          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9831 9829                  ill->ill_ip_mib->ipIfStatsIfIndex =
9832 9830                      ill->ill_phyint->phyint_ifindex;
9833 9831                  SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9834 9832                      (ipst->ips_ip_forwarding ? 1 : 2));
9835 9833                  SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9836 9834                      (uint32_t)ipst->ips_ip_def_ttl);
9837 9835  
9838 9836                  ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9839 9837                  if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9840 9838                      (char *)ill->ill_ip_mib,
9841 9839                      (int)sizeof (*ill->ill_ip_mib))) {
9842 9840                          ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9843 9841                              "failed to allocate %u bytes\n",
9844 9842                              (uint_t)sizeof (*ill->ill_ip_mib)));
9845 9843                  }
9846 9844          }
9847 9845          rw_exit(&ipst->ips_ill_g_lock);
9848 9846  
9849 9847          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9850 9848          ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9851 9849              "level %d, name %d, len %d\n",
9852 9850              (int)optp->level, (int)optp->name, (int)optp->len));
9853 9851          qreply(q, mpctl);
9854 9852  
9855 9853          if (mp2ctl == NULL)
9856 9854                  return (NULL);
9857 9855  
9858 9856          return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9859 9857              legacy_req));
9860 9858  }
9861 9859  
9862 9860  /* Global IPv4 ICMP statistics */
9863 9861  static mblk_t *
9864 9862  ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9865 9863  {
9866 9864          struct opthdr           *optp;
9867 9865          mblk_t                  *mp2ctl;
9868 9866  
9869 9867          /*
9870 9868           * Make a copy of the original message
9871 9869           */
9872 9870          mp2ctl = copymsg(mpctl);
9873 9871  
9874 9872          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9875 9873          optp->level = MIB2_ICMP;
9876 9874          optp->name = 0;
9877 9875          if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9878 9876              (int)sizeof (ipst->ips_icmp_mib))) {
9879 9877                  ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9880 9878                      (uint_t)sizeof (ipst->ips_icmp_mib)));
9881 9879          }
9882 9880          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9883 9881          ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9884 9882              (int)optp->level, (int)optp->name, (int)optp->len));
9885 9883          qreply(q, mpctl);
9886 9884          return (mp2ctl);
9887 9885  }
9888 9886  
9889 9887  /* Global IPv4 IGMP statistics */
9890 9888  static mblk_t *
9891 9889  ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9892 9890  {
9893 9891          struct opthdr           *optp;
9894 9892          mblk_t                  *mp2ctl;
9895 9893  
9896 9894          /*
9897 9895           * make a copy of the original message
9898 9896           */
9899 9897          mp2ctl = copymsg(mpctl);
9900 9898  
9901 9899          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9902 9900          optp->level = EXPER_IGMP;
9903 9901          optp->name = 0;
9904 9902          if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9905 9903              (int)sizeof (ipst->ips_igmpstat))) {
9906 9904                  ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9907 9905                      (uint_t)sizeof (ipst->ips_igmpstat)));
9908 9906          }
9909 9907          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9910 9908          ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9911 9909              (int)optp->level, (int)optp->name, (int)optp->len));
9912 9910          qreply(q, mpctl);
9913 9911          return (mp2ctl);
9914 9912  }
9915 9913  
9916 9914  /* Global IPv4 Multicast Routing statistics */
9917 9915  static mblk_t *
9918 9916  ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9919 9917  {
9920 9918          struct opthdr           *optp;
9921 9919          mblk_t                  *mp2ctl;
9922 9920  
9923 9921          /*
9924 9922           * make a copy of the original message
9925 9923           */
9926 9924          mp2ctl = copymsg(mpctl);
9927 9925  
9928 9926          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9929 9927          optp->level = EXPER_DVMRP;
9930 9928          optp->name = 0;
9931 9929          if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9932 9930                  ip0dbg(("ip_mroute_stats: failed\n"));
9933 9931          }
9934 9932          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9935 9933          ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9936 9934              (int)optp->level, (int)optp->name, (int)optp->len));
9937 9935          qreply(q, mpctl);
9938 9936          return (mp2ctl);
9939 9937  }
9940 9938  
9941 9939  /* IPv4 address information */
9942 9940  static mblk_t *
9943 9941  ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9944 9942      boolean_t legacy_req)
9945 9943  {
9946 9944          struct opthdr           *optp;
9947 9945          mblk_t                  *mp2ctl;
9948 9946          mblk_t                  *mp_tail = NULL;
9949 9947          ill_t                   *ill;
9950 9948          ipif_t                  *ipif;
9951 9949          uint_t                  bitval;
9952 9950          mib2_ipAddrEntry_t      mae;
9953 9951          size_t                  mae_size;
9954 9952          zoneid_t                zoneid;
9955 9953          ill_walk_context_t      ctx;
9956 9954  
9957 9955          /*
9958 9956           * make a copy of the original message
9959 9957           */
9960 9958          mp2ctl = copymsg(mpctl);
9961 9959  
9962 9960          mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9963 9961              sizeof (mib2_ipAddrEntry_t);
9964 9962  
9965 9963          /* ipAddrEntryTable */
9966 9964  
9967 9965          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9968 9966          optp->level = MIB2_IP;
9969 9967          optp->name = MIB2_IP_ADDR;
9970 9968          zoneid = Q_TO_CONN(q)->conn_zoneid;
9971 9969  
9972 9970          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9973 9971          ill = ILL_START_WALK_V4(&ctx, ipst);
9974 9972          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9975 9973                  for (ipif = ill->ill_ipif; ipif != NULL;
9976 9974                      ipif = ipif->ipif_next) {
9977 9975                          if (ipif->ipif_zoneid != zoneid &&
9978 9976                              ipif->ipif_zoneid != ALL_ZONES)
9979 9977                                  continue;
9980 9978                          /* Sum of count from dead IRE_LO* and our current */
9981 9979                          mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
9982 9980                          if (ipif->ipif_ire_local != NULL) {
9983 9981                                  mae.ipAdEntInfo.ae_ibcnt +=
9984 9982                                      ipif->ipif_ire_local->ire_ib_pkt_count;
9985 9983                          }
9986 9984                          mae.ipAdEntInfo.ae_obcnt = 0;
9987 9985                          mae.ipAdEntInfo.ae_focnt = 0;
9988 9986  
9989 9987                          ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
9990 9988                              OCTET_LENGTH);
9991 9989                          mae.ipAdEntIfIndex.o_length =
9992 9990                              mi_strlen(mae.ipAdEntIfIndex.o_bytes);
9993 9991                          mae.ipAdEntAddr = ipif->ipif_lcl_addr;
9994 9992                          mae.ipAdEntNetMask = ipif->ipif_net_mask;
9995 9993                          mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
9996 9994                          mae.ipAdEntInfo.ae_subnet_len =
9997 9995                              ip_mask_to_plen(ipif->ipif_net_mask);
9998 9996                          mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
9999 9997                          for (bitval = 1;
10000 9998                              bitval &&
10001 9999                              !(bitval & ipif->ipif_brd_addr);
10002 10000                              bitval <<= 1)
10003 10001                                  noop;
10004 10002                          mae.ipAdEntBcastAddr = bitval;
10005 10003                          mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10006 10004                          mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10007 10005                          mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10008 10006                          mae.ipAdEntInfo.ae_broadcast_addr =
10009 10007                              ipif->ipif_brd_addr;
10010 10008                          mae.ipAdEntInfo.ae_pp_dst_addr =
10011 10009                              ipif->ipif_pp_dst_addr;
10012 10010                          mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10013 10011                              ill->ill_flags | ill->ill_phyint->phyint_flags;
10014 10012                          mae.ipAdEntRetransmitTime =
10015 10013                              ill->ill_reachable_retrans_time;
10016 10014  
10017 10015                          if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10018 10016                              (char *)&mae, (int)mae_size)) {
10019 10017                                  ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10020 10018                                      "allocate %u bytes\n", (uint_t)mae_size));
10021 10019                          }
10022 10020                  }
10023 10021          }
10024 10022          rw_exit(&ipst->ips_ill_g_lock);
10025 10023  
10026 10024          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10027 10025          ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10028 10026              (int)optp->level, (int)optp->name, (int)optp->len));
10029 10027          qreply(q, mpctl);
10030 10028          return (mp2ctl);
10031 10029  }
10032 10030  
10033 10031  /* IPv6 address information */
10034 10032  static mblk_t *
10035 10033  ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10036 10034      boolean_t legacy_req)
10037 10035  {
10038 10036          struct opthdr           *optp;
10039 10037          mblk_t                  *mp2ctl;
10040 10038          mblk_t                  *mp_tail = NULL;
10041 10039          ill_t                   *ill;
10042 10040          ipif_t                  *ipif;
10043 10041          mib2_ipv6AddrEntry_t    mae6;
10044 10042          size_t                  mae6_size;
10045 10043          zoneid_t                zoneid;
10046 10044          ill_walk_context_t      ctx;
10047 10045  
10048 10046          /*
10049 10047           * make a copy of the original message
10050 10048           */
10051 10049          mp2ctl = copymsg(mpctl);
10052 10050  
10053 10051          mae6_size = (legacy_req) ?
10054 10052              LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10055 10053              sizeof (mib2_ipv6AddrEntry_t);
10056 10054  
10057 10055          /* ipv6AddrEntryTable */
10058 10056  
10059 10057          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10060 10058          optp->level = MIB2_IP6;
10061 10059          optp->name = MIB2_IP6_ADDR;
10062 10060          zoneid = Q_TO_CONN(q)->conn_zoneid;
10063 10061  
10064 10062          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10065 10063          ill = ILL_START_WALK_V6(&ctx, ipst);
10066 10064          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10067 10065                  for (ipif = ill->ill_ipif; ipif != NULL;
10068 10066                      ipif = ipif->ipif_next) {
10069 10067                          if (ipif->ipif_zoneid != zoneid &&
10070 10068                              ipif->ipif_zoneid != ALL_ZONES)
10071 10069                                  continue;
10072 10070                          /* Sum of count from dead IRE_LO* and our current */
10073 10071                          mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10074 10072                          if (ipif->ipif_ire_local != NULL) {
10075 10073                                  mae6.ipv6AddrInfo.ae_ibcnt +=
10076 10074                                      ipif->ipif_ire_local->ire_ib_pkt_count;
10077 10075                          }
10078 10076                          mae6.ipv6AddrInfo.ae_obcnt = 0;
10079 10077                          mae6.ipv6AddrInfo.ae_focnt = 0;
10080 10078  
10081 10079                          ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10082 10080                              OCTET_LENGTH);
10083 10081                          mae6.ipv6AddrIfIndex.o_length =
10084 10082                              mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10085 10083                          mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10086 10084                          mae6.ipv6AddrPfxLength =
10087 10085                              ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10088 10086                          mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10089 10087                          mae6.ipv6AddrInfo.ae_subnet_len =
10090 10088                              mae6.ipv6AddrPfxLength;
10091 10089                          mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10092 10090  
10093 10091                          /* Type: stateless(1), stateful(2), unknown(3) */
10094 10092                          if (ipif->ipif_flags & IPIF_ADDRCONF)
10095 10093                                  mae6.ipv6AddrType = 1;
10096 10094                          else
10097 10095                                  mae6.ipv6AddrType = 2;
10098 10096                          /* Anycast: true(1), false(2) */
10099 10097                          if (ipif->ipif_flags & IPIF_ANYCAST)
10100 10098                                  mae6.ipv6AddrAnycastFlag = 1;
10101 10099                          else
10102 10100                                  mae6.ipv6AddrAnycastFlag = 2;
10103 10101  
10104 10102                          /*
10105 10103                           * Address status: preferred(1), deprecated(2),
10106 10104                           * invalid(3), inaccessible(4), unknown(5)
10107 10105                           */
10108 10106                          if (ipif->ipif_flags & IPIF_NOLOCAL)
10109 10107                                  mae6.ipv6AddrStatus = 3;
10110 10108                          else if (ipif->ipif_flags & IPIF_DEPRECATED)
10111 10109                                  mae6.ipv6AddrStatus = 2;
10112 10110                          else
10113 10111                                  mae6.ipv6AddrStatus = 1;
10114 10112                          mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10115 10113                          mae6.ipv6AddrInfo.ae_metric  =
10116 10114                              ipif->ipif_ill->ill_metric;
10117 10115                          mae6.ipv6AddrInfo.ae_pp_dst_addr =
10118 10116                              ipif->ipif_v6pp_dst_addr;
10119 10117                          mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10120 10118                              ill->ill_flags | ill->ill_phyint->phyint_flags;
10121 10119                          mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10122 10120                          mae6.ipv6AddrIdentifier = ill->ill_token;
10123 10121                          mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10124 10122                          mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10125 10123                          mae6.ipv6AddrRetransmitTime =
10126 10124                              ill->ill_reachable_retrans_time;
10127 10125                          if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10128 10126                              (char *)&mae6, (int)mae6_size)) {
10129 10127                                  ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10130 10128                                      "allocate %u bytes\n",
10131 10129                                      (uint_t)mae6_size));
10132 10130                          }
10133 10131                  }
10134 10132          }
10135 10133          rw_exit(&ipst->ips_ill_g_lock);
10136 10134  
10137 10135          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10138 10136          ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10139 10137              (int)optp->level, (int)optp->name, (int)optp->len));
10140 10138          qreply(q, mpctl);
10141 10139          return (mp2ctl);
10142 10140  }
10143 10141  
10144 10142  /* IPv4 multicast group membership. */
10145 10143  static mblk_t *
10146 10144  ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10147 10145  {
10148 10146          struct opthdr           *optp;
10149 10147          mblk_t                  *mp2ctl;
10150 10148          ill_t                   *ill;
10151 10149          ipif_t                  *ipif;
10152 10150          ilm_t                   *ilm;
10153 10151          ip_member_t             ipm;
10154 10152          mblk_t                  *mp_tail = NULL;
10155 10153          ill_walk_context_t      ctx;
10156 10154          zoneid_t                zoneid;
10157 10155  
10158 10156          /*
10159 10157           * make a copy of the original message
10160 10158           */
10161 10159          mp2ctl = copymsg(mpctl);
10162 10160          zoneid = Q_TO_CONN(q)->conn_zoneid;
10163 10161  
10164 10162          /* ipGroupMember table */
10165 10163          optp = (struct opthdr *)&mpctl->b_rptr[
10166 10164              sizeof (struct T_optmgmt_ack)];
10167 10165          optp->level = MIB2_IP;
10168 10166          optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10169 10167  
10170 10168          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10171 10169          ill = ILL_START_WALK_V4(&ctx, ipst);
10172 10170          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10173 10171                  /* Make sure the ill isn't going away. */
10174 10172                  if (!ill_check_and_refhold(ill))
10175 10173                          continue;
10176 10174                  rw_exit(&ipst->ips_ill_g_lock);
10177 10175                  rw_enter(&ill->ill_mcast_lock, RW_READER);
10178 10176                  for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10179 10177                          if (ilm->ilm_zoneid != zoneid &&
10180 10178                              ilm->ilm_zoneid != ALL_ZONES)
10181 10179                                  continue;
10182 10180  
10183 10181                          /* Is there an ipif for ilm_ifaddr? */
10184 10182                          for (ipif = ill->ill_ipif; ipif != NULL;
10185 10183                              ipif = ipif->ipif_next) {
10186 10184                                  if (!IPIF_IS_CONDEMNED(ipif) &&
10187 10185                                      ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10188 10186                                      ilm->ilm_ifaddr != INADDR_ANY)
10189 10187                                          break;
10190 10188                          }
10191 10189                          if (ipif != NULL) {
10192 10190                                  ipif_get_name(ipif,
10193 10191                                      ipm.ipGroupMemberIfIndex.o_bytes,
10194 10192                                      OCTET_LENGTH);
10195 10193                          } else {
10196 10194                                  ill_get_name(ill,
10197 10195                                      ipm.ipGroupMemberIfIndex.o_bytes,
10198 10196                                      OCTET_LENGTH);
10199 10197                          }
10200 10198                          ipm.ipGroupMemberIfIndex.o_length =
10201 10199                              mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10202 10200  
10203 10201                          ipm.ipGroupMemberAddress = ilm->ilm_addr;
10204 10202                          ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10205 10203                          ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10206 10204                          if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10207 10205                              (char *)&ipm, (int)sizeof (ipm))) {
10208 10206                                  ip1dbg(("ip_snmp_get_mib2_ip_group: "
10209 10207                                      "failed to allocate %u bytes\n",
10210 10208                                      (uint_t)sizeof (ipm)));
10211 10209                          }
10212 10210                  }
10213 10211                  rw_exit(&ill->ill_mcast_lock);
10214 10212                  ill_refrele(ill);
10215 10213                  rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10216 10214          }
10217 10215          rw_exit(&ipst->ips_ill_g_lock);
10218 10216          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10219 10217          ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10220 10218              (int)optp->level, (int)optp->name, (int)optp->len));
10221 10219          qreply(q, mpctl);
10222 10220          return (mp2ctl);
10223 10221  }
10224 10222  
10225 10223  /* IPv6 multicast group membership. */
10226 10224  static mblk_t *
10227 10225  ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10228 10226  {
10229 10227          struct opthdr           *optp;
10230 10228          mblk_t                  *mp2ctl;
10231 10229          ill_t                   *ill;
10232 10230          ilm_t                   *ilm;
10233 10231          ipv6_member_t           ipm6;
10234 10232          mblk_t                  *mp_tail = NULL;
10235 10233          ill_walk_context_t      ctx;
10236 10234          zoneid_t                zoneid;
10237 10235  
10238 10236          /*
10239 10237           * make a copy of the original message
10240 10238           */
10241 10239          mp2ctl = copymsg(mpctl);
10242 10240          zoneid = Q_TO_CONN(q)->conn_zoneid;
10243 10241  
10244 10242          /* ip6GroupMember table */
10245 10243          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10246 10244          optp->level = MIB2_IP6;
10247 10245          optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10248 10246  
10249 10247          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10250 10248          ill = ILL_START_WALK_V6(&ctx, ipst);
10251 10249          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10252 10250                  /* Make sure the ill isn't going away. */
10253 10251                  if (!ill_check_and_refhold(ill))
10254 10252                          continue;
10255 10253                  rw_exit(&ipst->ips_ill_g_lock);
10256 10254                  /*
10257 10255                   * Normally we don't have any members on under IPMP interfaces.
10258 10256                   * We report them as a debugging aid.
10259 10257                   */
10260 10258                  rw_enter(&ill->ill_mcast_lock, RW_READER);
10261 10259                  ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10262 10260                  for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10263 10261                          if (ilm->ilm_zoneid != zoneid &&
10264 10262                              ilm->ilm_zoneid != ALL_ZONES)
10265 10263                                  continue;       /* not this zone */
10266 10264                          ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10267 10265                          ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10268 10266                          ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10269 10267                          if (!snmp_append_data2(mpctl->b_cont,
10270 10268                              &mp_tail,
10271 10269                              (char *)&ipm6, (int)sizeof (ipm6))) {
10272 10270                                  ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10273 10271                                      "failed to allocate %u bytes\n",
10274 10272                                      (uint_t)sizeof (ipm6)));
10275 10273                          }
10276 10274                  }
10277 10275                  rw_exit(&ill->ill_mcast_lock);
10278 10276                  ill_refrele(ill);
10279 10277                  rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10280 10278          }
10281 10279          rw_exit(&ipst->ips_ill_g_lock);
10282 10280  
10283 10281          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10284 10282          ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10285 10283              (int)optp->level, (int)optp->name, (int)optp->len));
10286 10284          qreply(q, mpctl);
10287 10285          return (mp2ctl);
10288 10286  }
10289 10287  
10290 10288  /* IP multicast filtered sources */
10291 10289  static mblk_t *
10292 10290  ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10293 10291  {
10294 10292          struct opthdr           *optp;
10295 10293          mblk_t                  *mp2ctl;
10296 10294          ill_t                   *ill;
10297 10295          ipif_t                  *ipif;
10298 10296          ilm_t                   *ilm;
10299 10297          ip_grpsrc_t             ips;
10300 10298          mblk_t                  *mp_tail = NULL;
10301 10299          ill_walk_context_t      ctx;
10302 10300          zoneid_t                zoneid;
10303 10301          int                     i;
10304 10302          slist_t                 *sl;
10305 10303  
10306 10304          /*
10307 10305           * make a copy of the original message
10308 10306           */
10309 10307          mp2ctl = copymsg(mpctl);
10310 10308          zoneid = Q_TO_CONN(q)->conn_zoneid;
10311 10309  
10312 10310          /* ipGroupSource table */
10313 10311          optp = (struct opthdr *)&mpctl->b_rptr[
10314 10312              sizeof (struct T_optmgmt_ack)];
10315 10313          optp->level = MIB2_IP;
10316 10314          optp->name = EXPER_IP_GROUP_SOURCES;
10317 10315  
10318 10316          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10319 10317          ill = ILL_START_WALK_V4(&ctx, ipst);
10320 10318          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10321 10319                  /* Make sure the ill isn't going away. */
10322 10320                  if (!ill_check_and_refhold(ill))
10323 10321                          continue;
10324 10322                  rw_exit(&ipst->ips_ill_g_lock);
10325 10323                  rw_enter(&ill->ill_mcast_lock, RW_READER);
10326 10324                  for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10327 10325                          sl = ilm->ilm_filter;
10328 10326                          if (ilm->ilm_zoneid != zoneid &&
10329 10327                              ilm->ilm_zoneid != ALL_ZONES)
10330 10328                                  continue;
10331 10329                          if (SLIST_IS_EMPTY(sl))
10332 10330                                  continue;
10333 10331  
10334 10332                          /* Is there an ipif for ilm_ifaddr? */
10335 10333                          for (ipif = ill->ill_ipif; ipif != NULL;
10336 10334                              ipif = ipif->ipif_next) {
10337 10335                                  if (!IPIF_IS_CONDEMNED(ipif) &&
10338 10336                                      ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10339 10337                                      ilm->ilm_ifaddr != INADDR_ANY)
10340 10338                                          break;
10341 10339                          }
10342 10340                          if (ipif != NULL) {
10343 10341                                  ipif_get_name(ipif,
10344 10342                                      ips.ipGroupSourceIfIndex.o_bytes,
10345 10343                                      OCTET_LENGTH);
10346 10344                          } else {
10347 10345                                  ill_get_name(ill,
10348 10346                                      ips.ipGroupSourceIfIndex.o_bytes,
10349 10347                                      OCTET_LENGTH);
10350 10348                          }
10351 10349                          ips.ipGroupSourceIfIndex.o_length =
10352 10350                              mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10353 10351  
10354 10352                          ips.ipGroupSourceGroup = ilm->ilm_addr;
10355 10353                          for (i = 0; i < sl->sl_numsrc; i++) {
10356 10354                                  if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10357 10355                                          continue;
10358 10356                                  IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10359 10357                                      ips.ipGroupSourceAddress);
10360 10358                                  if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10361 10359                                      (char *)&ips, (int)sizeof (ips)) == 0) {
10362 10360                                          ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10363 10361                                              " failed to allocate %u bytes\n",
10364 10362                                              (uint_t)sizeof (ips)));
10365 10363                                  }
10366 10364                          }
10367 10365                  }
10368 10366                  rw_exit(&ill->ill_mcast_lock);
10369 10367                  ill_refrele(ill);
10370 10368                  rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10371 10369          }
10372 10370          rw_exit(&ipst->ips_ill_g_lock);
10373 10371          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10374 10372          ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10375 10373              (int)optp->level, (int)optp->name, (int)optp->len));
10376 10374          qreply(q, mpctl);
10377 10375          return (mp2ctl);
10378 10376  }
10379 10377  
10380 10378  /* IPv6 multicast filtered sources. */
10381 10379  static mblk_t *
10382 10380  ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10383 10381  {
10384 10382          struct opthdr           *optp;
10385 10383          mblk_t                  *mp2ctl;
10386 10384          ill_t                   *ill;
10387 10385          ilm_t                   *ilm;
10388 10386          ipv6_grpsrc_t           ips6;
10389 10387          mblk_t                  *mp_tail = NULL;
10390 10388          ill_walk_context_t      ctx;
10391 10389          zoneid_t                zoneid;
10392 10390          int                     i;
10393 10391          slist_t                 *sl;
10394 10392  
10395 10393          /*
10396 10394           * make a copy of the original message
10397 10395           */
10398 10396          mp2ctl = copymsg(mpctl);
10399 10397          zoneid = Q_TO_CONN(q)->conn_zoneid;
10400 10398  
10401 10399          /* ip6GroupMember table */
10402 10400          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10403 10401          optp->level = MIB2_IP6;
10404 10402          optp->name = EXPER_IP6_GROUP_SOURCES;
10405 10403  
10406 10404          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10407 10405          ill = ILL_START_WALK_V6(&ctx, ipst);
10408 10406          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10409 10407                  /* Make sure the ill isn't going away. */
10410 10408                  if (!ill_check_and_refhold(ill))
10411 10409                          continue;
10412 10410                  rw_exit(&ipst->ips_ill_g_lock);
10413 10411                  /*
10414 10412                   * Normally we don't have any members on under IPMP interfaces.
10415 10413                   * We report them as a debugging aid.
10416 10414                   */
10417 10415                  rw_enter(&ill->ill_mcast_lock, RW_READER);
10418 10416                  ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10419 10417                  for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10420 10418                          sl = ilm->ilm_filter;
10421 10419                          if (ilm->ilm_zoneid != zoneid &&
10422 10420                              ilm->ilm_zoneid != ALL_ZONES)
10423 10421                                  continue;
10424 10422                          if (SLIST_IS_EMPTY(sl))
10425 10423                                  continue;
10426 10424                          ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10427 10425                          for (i = 0; i < sl->sl_numsrc; i++) {
10428 10426                                  ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10429 10427                                  if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10430 10428                                      (char *)&ips6, (int)sizeof (ips6))) {
10431 10429                                          ip1dbg(("ip_snmp_get_mib2_ip6_"
10432 10430                                              "group_src: failed to allocate "
10433 10431                                              "%u bytes\n",
10434 10432                                              (uint_t)sizeof (ips6)));
10435 10433                                  }
10436 10434                          }
10437 10435                  }
10438 10436                  rw_exit(&ill->ill_mcast_lock);
10439 10437                  ill_refrele(ill);
10440 10438                  rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10441 10439          }
10442 10440          rw_exit(&ipst->ips_ill_g_lock);
10443 10441  
10444 10442          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10445 10443          ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10446 10444              (int)optp->level, (int)optp->name, (int)optp->len));
10447 10445          qreply(q, mpctl);
10448 10446          return (mp2ctl);
10449 10447  }
10450 10448  
10451 10449  /* Multicast routing virtual interface table. */
10452 10450  static mblk_t *
10453 10451  ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10454 10452  {
10455 10453          struct opthdr           *optp;
10456 10454          mblk_t                  *mp2ctl;
10457 10455  
10458 10456          /*
10459 10457           * make a copy of the original message
10460 10458           */
10461 10459          mp2ctl = copymsg(mpctl);
10462 10460  
10463 10461          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10464 10462          optp->level = EXPER_DVMRP;
10465 10463          optp->name = EXPER_DVMRP_VIF;
10466 10464          if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10467 10465                  ip0dbg(("ip_mroute_vif: failed\n"));
10468 10466          }
10469 10467          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10470 10468          ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10471 10469              (int)optp->level, (int)optp->name, (int)optp->len));
10472 10470          qreply(q, mpctl);
10473 10471          return (mp2ctl);
10474 10472  }
10475 10473  
10476 10474  /* Multicast routing table. */
10477 10475  static mblk_t *
10478 10476  ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10479 10477  {
10480 10478          struct opthdr           *optp;
10481 10479          mblk_t                  *mp2ctl;
10482 10480  
10483 10481          /*
10484 10482           * make a copy of the original message
10485 10483           */
10486 10484          mp2ctl = copymsg(mpctl);
10487 10485  
10488 10486          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10489 10487          optp->level = EXPER_DVMRP;
10490 10488          optp->name = EXPER_DVMRP_MRT;
10491 10489          if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10492 10490                  ip0dbg(("ip_mroute_mrt: failed\n"));
10493 10491          }
10494 10492          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10495 10493          ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10496 10494              (int)optp->level, (int)optp->name, (int)optp->len));
10497 10495          qreply(q, mpctl);
10498 10496          return (mp2ctl);
10499 10497  }
10500 10498  
10501 10499  /*
10502 10500   * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10503 10501   * in one IRE walk.
10504 10502   */
10505 10503  static mblk_t *
10506 10504  ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10507 10505      ip_stack_t *ipst)
10508 10506  {
10509 10507          struct opthdr   *optp;
10510 10508          mblk_t          *mp2ctl;        /* Returned */
10511 10509          mblk_t          *mp3ctl;        /* nettomedia */
10512 10510          mblk_t          *mp4ctl;        /* routeattrs */
10513 10511          iproutedata_t   ird;
10514 10512          zoneid_t        zoneid;
10515 10513  
10516 10514          /*
10517 10515           * make copies of the original message
10518 10516           *      - mp2ctl is returned unchanged to the caller for its use
10519 10517           *      - mpctl is sent upstream as ipRouteEntryTable
10520 10518           *      - mp3ctl is sent upstream as ipNetToMediaEntryTable
10521 10519           *      - mp4ctl is sent upstream as ipRouteAttributeTable
10522 10520           */
10523 10521          mp2ctl = copymsg(mpctl);
10524 10522          mp3ctl = copymsg(mpctl);
10525 10523          mp4ctl = copymsg(mpctl);
10526 10524          if (mp3ctl == NULL || mp4ctl == NULL) {
10527 10525                  freemsg(mp4ctl);
10528 10526                  freemsg(mp3ctl);
10529 10527                  freemsg(mp2ctl);
10530 10528                  freemsg(mpctl);
10531 10529                  return (NULL);
10532 10530          }
10533 10531  
10534 10532          bzero(&ird, sizeof (ird));
10535 10533  
10536 10534          ird.ird_route.lp_head = mpctl->b_cont;
10537 10535          ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10538 10536          ird.ird_attrs.lp_head = mp4ctl->b_cont;
10539 10537          /*
10540 10538           * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10541 10539           * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10542 10540           * intended a temporary solution until a proper MIB API is provided
10543 10541           * that provides complete filtering/caller-opt-in.
10544 10542           */
10545 10543          if (level == EXPER_IP_AND_ALL_IRES)
10546 10544                  ird.ird_flags |= IRD_REPORT_ALL;
10547 10545  
10548 10546          zoneid = Q_TO_CONN(q)->conn_zoneid;
10549 10547          ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10550 10548  
10551 10549          /* ipRouteEntryTable in mpctl */
10552 10550          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10553 10551          optp->level = MIB2_IP;
10554 10552          optp->name = MIB2_IP_ROUTE;
10555 10553          optp->len = msgdsize(ird.ird_route.lp_head);
10556 10554          ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10557 10555              (int)optp->level, (int)optp->name, (int)optp->len));
10558 10556          qreply(q, mpctl);
10559 10557  
10560 10558          /* ipNetToMediaEntryTable in mp3ctl */
10561 10559          ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10562 10560  
10563 10561          optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10564 10562          optp->level = MIB2_IP;
10565 10563          optp->name = MIB2_IP_MEDIA;
10566 10564          optp->len = msgdsize(ird.ird_netmedia.lp_head);
10567 10565          ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10568 10566              (int)optp->level, (int)optp->name, (int)optp->len));
10569 10567          qreply(q, mp3ctl);
10570 10568  
10571 10569          /* ipRouteAttributeTable in mp4ctl */
10572 10570          optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10573 10571          optp->level = MIB2_IP;
10574 10572          optp->name = EXPER_IP_RTATTR;
10575 10573          optp->len = msgdsize(ird.ird_attrs.lp_head);
10576 10574          ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10577 10575              (int)optp->level, (int)optp->name, (int)optp->len));
10578 10576          if (optp->len == 0)
10579 10577                  freemsg(mp4ctl);
10580 10578          else
10581 10579                  qreply(q, mp4ctl);
10582 10580  
10583 10581          return (mp2ctl);
10584 10582  }
10585 10583  
10586 10584  /*
10587 10585   * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10588 10586   * ipv6NetToMediaEntryTable in an NDP walk.
10589 10587   */
10590 10588  static mblk_t *
10591 10589  ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10592 10590      ip_stack_t *ipst)
10593 10591  {
10594 10592          struct opthdr   *optp;
10595 10593          mblk_t          *mp2ctl;        /* Returned */
10596 10594          mblk_t          *mp3ctl;        /* nettomedia */
10597 10595          mblk_t          *mp4ctl;        /* routeattrs */
10598 10596          iproutedata_t   ird;
10599 10597          zoneid_t        zoneid;
10600 10598  
10601 10599          /*
10602 10600           * make copies of the original message
10603 10601           *      - mp2ctl is returned unchanged to the caller for its use
10604 10602           *      - mpctl is sent upstream as ipv6RouteEntryTable
10605 10603           *      - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10606 10604           *      - mp4ctl is sent upstream as ipv6RouteAttributeTable
10607 10605           */
10608 10606          mp2ctl = copymsg(mpctl);
10609 10607          mp3ctl = copymsg(mpctl);
10610 10608          mp4ctl = copymsg(mpctl);
10611 10609          if (mp3ctl == NULL || mp4ctl == NULL) {
10612 10610                  freemsg(mp4ctl);
10613 10611                  freemsg(mp3ctl);
10614 10612                  freemsg(mp2ctl);
10615 10613                  freemsg(mpctl);
10616 10614                  return (NULL);
10617 10615          }
10618 10616  
10619 10617          bzero(&ird, sizeof (ird));
10620 10618  
10621 10619          ird.ird_route.lp_head = mpctl->b_cont;
10622 10620          ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10623 10621          ird.ird_attrs.lp_head = mp4ctl->b_cont;
10624 10622          /*
10625 10623           * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10626 10624           * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10627 10625           * intended a temporary solution until a proper MIB API is provided
10628 10626           * that provides complete filtering/caller-opt-in.
10629 10627           */
10630 10628          if (level == EXPER_IP_AND_ALL_IRES)
10631 10629                  ird.ird_flags |= IRD_REPORT_ALL;
10632 10630  
10633 10631          zoneid = Q_TO_CONN(q)->conn_zoneid;
10634 10632          ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10635 10633  
10636 10634          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10637 10635          optp->level = MIB2_IP6;
10638 10636          optp->name = MIB2_IP6_ROUTE;
10639 10637          optp->len = msgdsize(ird.ird_route.lp_head);
10640 10638          ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10641 10639              (int)optp->level, (int)optp->name, (int)optp->len));
10642 10640          qreply(q, mpctl);
10643 10641  
10644 10642          /* ipv6NetToMediaEntryTable in mp3ctl */
10645 10643          ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10646 10644  
10647 10645          optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10648 10646          optp->level = MIB2_IP6;
10649 10647          optp->name = MIB2_IP6_MEDIA;
10650 10648          optp->len = msgdsize(ird.ird_netmedia.lp_head);
10651 10649          ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10652 10650              (int)optp->level, (int)optp->name, (int)optp->len));
10653 10651          qreply(q, mp3ctl);
10654 10652  
10655 10653          /* ipv6RouteAttributeTable in mp4ctl */
10656 10654          optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10657 10655          optp->level = MIB2_IP6;
10658 10656          optp->name = EXPER_IP_RTATTR;
10659 10657          optp->len = msgdsize(ird.ird_attrs.lp_head);
10660 10658          ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10661 10659              (int)optp->level, (int)optp->name, (int)optp->len));
10662 10660          if (optp->len == 0)
10663 10661                  freemsg(mp4ctl);
10664 10662          else
10665 10663                  qreply(q, mp4ctl);
10666 10664  
10667 10665          return (mp2ctl);
10668 10666  }
10669 10667  
10670 10668  /*
10671 10669   * IPv6 mib: One per ill
10672 10670   */
10673 10671  static mblk_t *
10674 10672  ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10675 10673      boolean_t legacy_req)
10676 10674  {
10677 10675          struct opthdr           *optp;
10678 10676          mblk_t                  *mp2ctl;
10679 10677          ill_t                   *ill;
10680 10678          ill_walk_context_t      ctx;
10681 10679          mblk_t                  *mp_tail = NULL;
10682 10680          mib2_ipv6AddrEntry_t    mae6;
10683 10681          mib2_ipIfStatsEntry_t   *ise;
10684 10682          size_t                  ise_size, iae_size;
10685 10683  
10686 10684          /*
10687 10685           * Make a copy of the original message
10688 10686           */
10689 10687          mp2ctl = copymsg(mpctl);
10690 10688  
10691 10689          /* fixed length IPv6 structure ... */
10692 10690  
10693 10691          if (legacy_req) {
10694 10692                  ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10695 10693                      mib2_ipIfStatsEntry_t);
10696 10694                  iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10697 10695          } else {
10698 10696                  ise_size = sizeof (mib2_ipIfStatsEntry_t);
10699 10697                  iae_size = sizeof (mib2_ipv6AddrEntry_t);
10700 10698          }
10701 10699  
10702 10700          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10703 10701          optp->level = MIB2_IP6;
10704 10702          optp->name = 0;
10705 10703          /* Include "unknown interface" ip6_mib */
10706 10704          ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10707 10705          ipst->ips_ip6_mib.ipIfStatsIfIndex =
10708 10706              MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10709 10707          SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10710 10708              ipst->ips_ipv6_forwarding ? 1 : 2);
10711 10709          SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10712 10710              ipst->ips_ipv6_def_hops);
10713 10711          SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10714 10712              sizeof (mib2_ipIfStatsEntry_t));
10715 10713          SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10716 10714              sizeof (mib2_ipv6AddrEntry_t));
10717 10715          SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10718 10716              sizeof (mib2_ipv6RouteEntry_t));
10719 10717          SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10720 10718              sizeof (mib2_ipv6NetToMediaEntry_t));
10721 10719          SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10722 10720              sizeof (ipv6_member_t));
10723 10721          SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10724 10722              sizeof (ipv6_grpsrc_t));
10725 10723  
10726 10724          /*
10727 10725           * Synchronize 64- and 32-bit counters
10728 10726           */
10729 10727          SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10730 10728              ipIfStatsHCInReceives);
10731 10729          SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10732 10730              ipIfStatsHCInDelivers);
10733 10731          SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10734 10732              ipIfStatsHCOutRequests);
10735 10733          SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10736 10734              ipIfStatsHCOutForwDatagrams);
10737 10735          SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10738 10736              ipIfStatsHCOutMcastPkts);
10739 10737          SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10740 10738              ipIfStatsHCInMcastPkts);
10741 10739  
10742 10740          if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10743 10741              (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10744 10742                  ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10745 10743                      (uint_t)ise_size));
10746 10744          } else if (legacy_req) {
10747 10745                  /* Adjust the EntrySize fields for legacy requests. */
10748 10746                  ise =
10749 10747                      (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10750 10748                  SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10751 10749                  SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10752 10750          }
10753 10751  
10754 10752          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10755 10753          ill = ILL_START_WALK_V6(&ctx, ipst);
10756 10754          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10757 10755                  ill->ill_ip_mib->ipIfStatsIfIndex =
10758 10756                      ill->ill_phyint->phyint_ifindex;
10759 10757                  SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10760 10758                      ipst->ips_ipv6_forwarding ? 1 : 2);
10761 10759                  SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10762 10760                      ill->ill_max_hops);
10763 10761  
10764 10762                  /*
10765 10763                   * Synchronize 64- and 32-bit counters
10766 10764                   */
10767 10765                  SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10768 10766                      ipIfStatsHCInReceives);
10769 10767                  SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10770 10768                      ipIfStatsHCInDelivers);
10771 10769                  SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10772 10770                      ipIfStatsHCOutRequests);
10773 10771                  SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10774 10772                      ipIfStatsHCOutForwDatagrams);
10775 10773                  SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10776 10774                      ipIfStatsHCOutMcastPkts);
10777 10775                  SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10778 10776                      ipIfStatsHCInMcastPkts);
10779 10777  
10780 10778                  if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10781 10779                      (char *)ill->ill_ip_mib, (int)ise_size)) {
10782 10780                          ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10783 10781                          "%u bytes\n", (uint_t)ise_size));
10784 10782                  } else if (legacy_req) {
10785 10783                          /* Adjust the EntrySize fields for legacy requests. */
10786 10784                          ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10787 10785                              (int)ise_size);
10788 10786                          SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10789 10787                          SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10790 10788                  }
10791 10789          }
10792 10790          rw_exit(&ipst->ips_ill_g_lock);
10793 10791  
10794 10792          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10795 10793          ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10796 10794              (int)optp->level, (int)optp->name, (int)optp->len));
10797 10795          qreply(q, mpctl);
10798 10796          return (mp2ctl);
10799 10797  }
10800 10798  
10801 10799  /*
10802 10800   * ICMPv6 mib: One per ill
10803 10801   */
10804 10802  static mblk_t *
10805 10803  ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10806 10804  {
10807 10805          struct opthdr           *optp;
10808 10806          mblk_t                  *mp2ctl;
10809 10807          ill_t                   *ill;
10810 10808          ill_walk_context_t      ctx;
10811 10809          mblk_t                  *mp_tail = NULL;
10812 10810          /*
10813 10811           * Make a copy of the original message
10814 10812           */
10815 10813          mp2ctl = copymsg(mpctl);
10816 10814  
10817 10815          /* fixed length ICMPv6 structure ... */
10818 10816  
10819 10817          optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10820 10818          optp->level = MIB2_ICMP6;
10821 10819          optp->name = 0;
10822 10820          /* Include "unknown interface" icmp6_mib */
10823 10821          ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10824 10822              MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10825 10823          ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10826 10824              sizeof (mib2_ipv6IfIcmpEntry_t);
10827 10825          if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10828 10826              (char *)&ipst->ips_icmp6_mib,
10829 10827              (int)sizeof (ipst->ips_icmp6_mib))) {
10830 10828                  ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10831 10829                      (uint_t)sizeof (ipst->ips_icmp6_mib)));
10832 10830          }
10833 10831  
10834 10832          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10835 10833          ill = ILL_START_WALK_V6(&ctx, ipst);
10836 10834          for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10837 10835                  ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10838 10836                      ill->ill_phyint->phyint_ifindex;
10839 10837                  if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10840 10838                      (char *)ill->ill_icmp6_mib,
10841 10839                      (int)sizeof (*ill->ill_icmp6_mib))) {
10842 10840                          ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10843 10841                              "%u bytes\n",
10844 10842                              (uint_t)sizeof (*ill->ill_icmp6_mib)));
10845 10843                  }
10846 10844          }
10847 10845          rw_exit(&ipst->ips_ill_g_lock);
10848 10846  
10849 10847          optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10850 10848          ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10851 10849              (int)optp->level, (int)optp->name, (int)optp->len));
10852 10850          qreply(q, mpctl);
10853 10851          return (mp2ctl);
10854 10852  }
10855 10853  
10856 10854  /*
10857 10855   * ire_walk routine to create both ipRouteEntryTable and
10858 10856   * ipRouteAttributeTable in one IRE walk
10859 10857   */
10860 10858  static void
10861 10859  ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10862 10860  {
10863 10861          ill_t                           *ill;
10864 10862          mib2_ipRouteEntry_t             *re;
10865 10863          mib2_ipAttributeEntry_t         iaes;
10866 10864          tsol_ire_gw_secattr_t           *attrp;
10867 10865          tsol_gc_t                       *gc = NULL;
10868 10866          tsol_gcgrp_t                    *gcgrp = NULL;
10869 10867          ip_stack_t                      *ipst = ire->ire_ipst;
10870 10868  
10871 10869          ASSERT(ire->ire_ipversion == IPV4_VERSION);
10872 10870  
10873 10871          if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10874 10872                  if (ire->ire_testhidden)
10875 10873                          return;
10876 10874                  if (ire->ire_type & IRE_IF_CLONE)
10877 10875                          return;
10878 10876          }
10879 10877  
10880 10878          if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10881 10879                  return;
10882 10880  
10883 10881          if ((attrp = ire->ire_gw_secattr) != NULL) {
10884 10882                  mutex_enter(&attrp->igsa_lock);
10885 10883                  if ((gc = attrp->igsa_gc) != NULL) {
10886 10884                          gcgrp = gc->gc_grp;
10887 10885                          ASSERT(gcgrp != NULL);
10888 10886                          rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10889 10887                  }
10890 10888                  mutex_exit(&attrp->igsa_lock);
10891 10889          }
10892 10890          /*
10893 10891           * Return all IRE types for route table... let caller pick and choose
10894 10892           */
10895 10893          re->ipRouteDest = ire->ire_addr;
10896 10894          ill = ire->ire_ill;
10897 10895          re->ipRouteIfIndex.o_length = 0;
10898 10896          if (ill != NULL) {
10899 10897                  ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10900 10898                  re->ipRouteIfIndex.o_length =
10901 10899                      mi_strlen(re->ipRouteIfIndex.o_bytes);
10902 10900          }
10903 10901          re->ipRouteMetric1 = -1;
10904 10902          re->ipRouteMetric2 = -1;
10905 10903          re->ipRouteMetric3 = -1;
10906 10904          re->ipRouteMetric4 = -1;
10907 10905  
10908 10906          re->ipRouteNextHop = ire->ire_gateway_addr;
10909 10907          /* indirect(4), direct(3), or invalid(2) */
10910 10908          if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10911 10909                  re->ipRouteType = 2;
10912 10910          else if (ire->ire_type & IRE_ONLINK)
10913 10911                  re->ipRouteType = 3;
10914 10912          else
10915 10913                  re->ipRouteType = 4;
10916 10914  
10917 10915          re->ipRouteProto = -1;
10918 10916          re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10919 10917          re->ipRouteMask = ire->ire_mask;
10920 10918          re->ipRouteMetric5 = -1;
10921 10919          re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10922 10920          if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10923 10921                  re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10924 10922  
10925 10923          re->ipRouteInfo.re_frag_flag    = 0;
10926 10924          re->ipRouteInfo.re_rtt          = 0;
10927 10925          re->ipRouteInfo.re_src_addr     = 0;
10928 10926          re->ipRouteInfo.re_ref          = ire->ire_refcnt;
10929 10927          re->ipRouteInfo.re_obpkt        = ire->ire_ob_pkt_count;
10930 10928          re->ipRouteInfo.re_ibpkt        = ire->ire_ib_pkt_count;
10931 10929          re->ipRouteInfo.re_flags        = ire->ire_flags;
10932 10930  
10933 10931          /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10934 10932          if (ire->ire_type & IRE_INTERFACE) {
10935 10933                  ire_t *child;
10936 10934  
10937 10935                  rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10938 10936                  child = ire->ire_dep_children;
10939 10937                  while (child != NULL) {
10940 10938                          re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10941 10939                          re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10942 10940                          child = child->ire_dep_sib_next;
10943 10941                  }
10944 10942                  rw_exit(&ipst->ips_ire_dep_lock);
10945 10943          }
10946 10944  
10947 10945          if (ire->ire_flags & RTF_DYNAMIC) {
10948 10946                  re->ipRouteInfo.re_ire_type     = IRE_HOST_REDIRECT;
10949 10947          } else {
10950 10948                  re->ipRouteInfo.re_ire_type     = ire->ire_type;
10951 10949          }
10952 10950  
10953 10951          if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10954 10952              (char *)re, (int)sizeof (*re))) {
10955 10953                  ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10956 10954                      (uint_t)sizeof (*re)));
10957 10955          }
10958 10956  
10959 10957          if (gc != NULL) {
10960 10958                  iaes.iae_routeidx = ird->ird_idx;
10961 10959                  iaes.iae_doi = gc->gc_db->gcdb_doi;
10962 10960                  iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10963 10961  
10964 10962                  if (!snmp_append_data2(ird->ird_attrs.lp_head,
10965 10963                      &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10966 10964                          ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
10967 10965                              "bytes\n", (uint_t)sizeof (iaes)));
10968 10966                  }
10969 10967          }
10970 10968  
10971 10969          /* bump route index for next pass */
10972 10970          ird->ird_idx++;
10973 10971  
10974 10972          kmem_free(re, sizeof (*re));
10975 10973          if (gcgrp != NULL)
10976 10974                  rw_exit(&gcgrp->gcgrp_rwlock);
10977 10975  }
10978 10976  
10979 10977  /*
10980 10978   * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
10981 10979   */
10982 10980  static void
10983 10981  ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
10984 10982  {
10985 10983          ill_t                           *ill;
10986 10984          mib2_ipv6RouteEntry_t           *re;
10987 10985          mib2_ipAttributeEntry_t         iaes;
10988 10986          tsol_ire_gw_secattr_t           *attrp;
10989 10987          tsol_gc_t                       *gc = NULL;
10990 10988          tsol_gcgrp_t                    *gcgrp = NULL;
10991 10989          ip_stack_t                      *ipst = ire->ire_ipst;
10992 10990  
10993 10991          ASSERT(ire->ire_ipversion == IPV6_VERSION);
10994 10992  
10995 10993          if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10996 10994                  if (ire->ire_testhidden)
10997 10995                          return;
10998 10996                  if (ire->ire_type & IRE_IF_CLONE)
10999 10997                          return;
11000 10998          }
11001 10999  
11002 11000          if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11003 11001                  return;
11004 11002  
11005 11003          if ((attrp = ire->ire_gw_secattr) != NULL) {
11006 11004                  mutex_enter(&attrp->igsa_lock);
11007 11005                  if ((gc = attrp->igsa_gc) != NULL) {
11008 11006                          gcgrp = gc->gc_grp;
11009 11007                          ASSERT(gcgrp != NULL);
11010 11008                          rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11011 11009                  }
11012 11010                  mutex_exit(&attrp->igsa_lock);
11013 11011          }
11014 11012          /*
11015 11013           * Return all IRE types for route table... let caller pick and choose
11016 11014           */
11017 11015          re->ipv6RouteDest = ire->ire_addr_v6;
11018 11016          re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11019 11017          re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */
11020 11018          re->ipv6RouteIfIndex.o_length = 0;
11021 11019          ill = ire->ire_ill;
11022 11020          if (ill != NULL) {
11023 11021                  ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11024 11022                  re->ipv6RouteIfIndex.o_length =
11025 11023                      mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11026 11024          }
11027 11025  
11028 11026          ASSERT(!(ire->ire_type & IRE_BROADCAST));
11029 11027  
11030 11028          mutex_enter(&ire->ire_lock);
11031 11029          re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11032 11030          mutex_exit(&ire->ire_lock);
11033 11031  
11034 11032          /* remote(4), local(3), or discard(2) */
11035 11033          if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11036 11034                  re->ipv6RouteType = 2;
11037 11035          else if (ire->ire_type & IRE_ONLINK)
11038 11036                  re->ipv6RouteType = 3;
11039 11037          else
11040 11038                  re->ipv6RouteType = 4;
11041 11039  
11042 11040          re->ipv6RouteProtocol   = -1;
11043 11041          re->ipv6RoutePolicy     = 0;
11044 11042          re->ipv6RouteAge        = gethrestime_sec() - ire->ire_create_time;
11045 11043          re->ipv6RouteNextHopRDI = 0;
11046 11044          re->ipv6RouteWeight     = 0;
11047 11045          re->ipv6RouteMetric     = 0;
11048 11046          re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11049 11047          if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11050 11048                  re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11051 11049  
11052 11050          re->ipv6RouteInfo.re_frag_flag  = 0;
11053 11051          re->ipv6RouteInfo.re_rtt        = 0;
11054 11052          re->ipv6RouteInfo.re_src_addr   = ipv6_all_zeros;
11055 11053          re->ipv6RouteInfo.re_obpkt      = ire->ire_ob_pkt_count;
11056 11054          re->ipv6RouteInfo.re_ibpkt      = ire->ire_ib_pkt_count;
11057 11055          re->ipv6RouteInfo.re_ref        = ire->ire_refcnt;
11058 11056          re->ipv6RouteInfo.re_flags      = ire->ire_flags;
11059 11057  
11060 11058          /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11061 11059          if (ire->ire_type & IRE_INTERFACE) {
11062 11060                  ire_t *child;
11063 11061  
11064 11062                  rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11065 11063                  child = ire->ire_dep_children;
11066 11064                  while (child != NULL) {
11067 11065                          re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11068 11066                          re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11069 11067                          child = child->ire_dep_sib_next;
11070 11068                  }
11071 11069                  rw_exit(&ipst->ips_ire_dep_lock);
11072 11070          }
11073 11071          if (ire->ire_flags & RTF_DYNAMIC) {
11074 11072                  re->ipv6RouteInfo.re_ire_type   = IRE_HOST_REDIRECT;
11075 11073          } else {
11076 11074                  re->ipv6RouteInfo.re_ire_type   = ire->ire_type;
11077 11075          }
11078 11076  
11079 11077          if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11080 11078              (char *)re, (int)sizeof (*re))) {
11081 11079                  ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11082 11080                      (uint_t)sizeof (*re)));
11083 11081          }
11084 11082  
11085 11083          if (gc != NULL) {
11086 11084                  iaes.iae_routeidx = ird->ird_idx;
11087 11085                  iaes.iae_doi = gc->gc_db->gcdb_doi;
11088 11086                  iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11089 11087  
11090 11088                  if (!snmp_append_data2(ird->ird_attrs.lp_head,
11091 11089                      &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11092 11090                          ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11093 11091                              "bytes\n", (uint_t)sizeof (iaes)));
11094 11092                  }
11095 11093          }
11096 11094  
11097 11095          /* bump route index for next pass */
11098 11096          ird->ird_idx++;
11099 11097  
11100 11098          kmem_free(re, sizeof (*re));
11101 11099          if (gcgrp != NULL)
11102 11100                  rw_exit(&gcgrp->gcgrp_rwlock);
11103 11101  }
11104 11102  
11105 11103  /*
11106 11104   * ncec_walk routine to create ipv6NetToMediaEntryTable
11107 11105   */
11108 11106  static void
11109 11107  ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr)
11110 11108  {
11111 11109          iproutedata_t *ird              = ptr;
11112 11110          ill_t                           *ill;
11113 11111          mib2_ipv6NetToMediaEntry_t      ntme;
11114 11112  
11115 11113          ill = ncec->ncec_ill;
11116 11114          /* skip arpce entries, and loopback ncec entries */
11117 11115          if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11118 11116                  return;
11119 11117          /*
11120 11118           * Neighbor cache entry attached to IRE with on-link
11121 11119           * destination.
11122 11120           * We report all IPMP groups on ncec_ill which is normally the upper.
11123 11121           */
11124 11122          ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11125 11123          ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11126 11124          ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11127 11125          if (ncec->ncec_lladdr != NULL) {
11128 11126                  bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11129 11127                      ntme.ipv6NetToMediaPhysAddress.o_length);
11130 11128          }
11131 11129          /*
11132 11130           * Note: Returns ND_* states. Should be:
11133 11131           * reachable(1), stale(2), delay(3), probe(4),
11134 11132           * invalid(5), unknown(6)
11135 11133           */
11136 11134          ntme.ipv6NetToMediaState = ncec->ncec_state;
11137 11135          ntme.ipv6NetToMediaLastUpdated = 0;
11138 11136  
11139 11137          /* other(1), dynamic(2), static(3), local(4) */
11140 11138          if (NCE_MYADDR(ncec)) {
11141 11139                  ntme.ipv6NetToMediaType = 4;
11142 11140          } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11143 11141                  ntme.ipv6NetToMediaType = 1; /* proxy */
11144 11142          } else if (ncec->ncec_flags & NCE_F_STATIC) {
11145 11143                  ntme.ipv6NetToMediaType = 3;
11146 11144          } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11147 11145                  ntme.ipv6NetToMediaType = 1;
11148 11146          } else {
11149 11147                  ntme.ipv6NetToMediaType = 2;
11150 11148          }
11151 11149  
11152 11150          if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11153 11151              &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11154 11152                  ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11155 11153                      (uint_t)sizeof (ntme)));
11156 11154          }
11157 11155  }
11158 11156  
11159 11157  int
11160 11158  nce2ace(ncec_t *ncec)
11161 11159  {
11162 11160          int flags = 0;
11163 11161  
11164 11162          if (NCE_ISREACHABLE(ncec))
11165 11163                  flags |= ACE_F_RESOLVED;
11166 11164          if (ncec->ncec_flags & NCE_F_AUTHORITY)
11167 11165                  flags |= ACE_F_AUTHORITY;
11168 11166          if (ncec->ncec_flags & NCE_F_PUBLISH)
11169 11167                  flags |= ACE_F_PUBLISH;
11170 11168          if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11171 11169                  flags |= ACE_F_PERMANENT;
11172 11170          if (NCE_MYADDR(ncec))
11173 11171                  flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11174 11172          if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11175 11173                  flags |= ACE_F_UNVERIFIED;
11176 11174          if (ncec->ncec_flags & NCE_F_AUTHORITY)
11177 11175                  flags |= ACE_F_AUTHORITY;
11178 11176          if (ncec->ncec_flags & NCE_F_DELAYED)
11179 11177                  flags |= ACE_F_DELAYED;
11180 11178          return (flags);
11181 11179  }
11182 11180  
11183 11181  /*
11184 11182   * ncec_walk routine to create ipNetToMediaEntryTable
11185 11183   */
11186 11184  static void
11187 11185  ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr)
11188 11186  {
11189 11187          iproutedata_t *ird              = ptr;
11190 11188          ill_t                           *ill;
11191 11189          mib2_ipNetToMediaEntry_t        ntme;
11192 11190          const char                      *name = "unknown";
11193 11191          ipaddr_t                        ncec_addr;
11194 11192  
11195 11193          ill = ncec->ncec_ill;
11196 11194          if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11197 11195              ill->ill_net_type == IRE_LOOPBACK)
11198 11196                  return;
11199 11197  
11200 11198          /* We report all IPMP groups on ncec_ill which is normally the upper. */
11201 11199          name = ill->ill_name;
11202 11200          /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11203 11201          if (NCE_MYADDR(ncec)) {
11204 11202                  ntme.ipNetToMediaType = 4;
11205 11203          } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11206 11204                  ntme.ipNetToMediaType = 1;
11207 11205          } else {
11208 11206                  ntme.ipNetToMediaType = 3;
11209 11207          }
11210 11208          ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11211 11209          bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11212 11210              ntme.ipNetToMediaIfIndex.o_length);
11213 11211  
11214 11212          IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11215 11213          bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11216 11214  
11217 11215          ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11218 11216          ncec_addr = INADDR_BROADCAST;
11219 11217          bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11220 11218              sizeof (ncec_addr));
11221 11219          /*
11222 11220           * map all the flags to the ACE counterpart.
11223 11221           */
11224 11222          ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11225 11223  
11226 11224          ntme.ipNetToMediaPhysAddress.o_length =
11227 11225              MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11228 11226  
11229 11227          if (!NCE_ISREACHABLE(ncec))
11230 11228                  ntme.ipNetToMediaPhysAddress.o_length = 0;
11231 11229          else {
11232 11230                  if (ncec->ncec_lladdr != NULL) {
11233 11231                          bcopy(ncec->ncec_lladdr,
11234 11232                              ntme.ipNetToMediaPhysAddress.o_bytes,
11235 11233                              ntme.ipNetToMediaPhysAddress.o_length);
11236 11234                  }
11237 11235          }
11238 11236  
11239 11237          if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11240 11238              &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11241 11239                  ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11242 11240                      (uint_t)sizeof (ntme)));
11243 11241          }
11244 11242  }
11245 11243  
11246 11244  /*
11247 11245   * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11248 11246   */
11249 11247  /* ARGSUSED */
11250 11248  int
11251 11249  ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11252 11250  {
11253 11251          switch (level) {
11254 11252          case MIB2_IP:
11255 11253          case MIB2_ICMP:
11256 11254                  switch (name) {
11257 11255                  default:
11258 11256                          break;
11259 11257                  }
11260 11258                  return (1);
11261 11259          default:
11262 11260                  return (1);
11263 11261          }
11264 11262  }
11265 11263  
11266 11264  /*
11267 11265   * When there exists both a 64- and 32-bit counter of a particular type
11268 11266   * (i.e., InReceives), only the 64-bit counters are added.
11269 11267   */
11270 11268  void
11271 11269  ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11272 11270  {
11273 11271          UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11274 11272          UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11275 11273          UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11276 11274          UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11277 11275          UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11278 11276          UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11279 11277          UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11280 11278          UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11281 11279          UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11282 11280          UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11283 11281          UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11284 11282          UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11285 11283          UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11286 11284          UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11287 11285          UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11288 11286          UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11289 11287          UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11290 11288          UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11291 11289          UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11292 11290          UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11293 11291          UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11294 11292          UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11295 11293              o2->ipIfStatsInWrongIPVersion);
11296 11294          UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11297 11295              o2->ipIfStatsInWrongIPVersion);
11298 11296          UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11299 11297              o2->ipIfStatsOutSwitchIPVersion);
11300 11298          UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11301 11299          UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11302 11300          UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11303 11301              o2->ipIfStatsHCInForwDatagrams);
11304 11302          UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11305 11303          UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11306 11304          UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11307 11305              o2->ipIfStatsHCOutForwDatagrams);
11308 11306          UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11309 11307          UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11310 11308          UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11311 11309          UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11312 11310          UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11313 11311          UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11314 11312          UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11315 11313              o2->ipIfStatsHCOutMcastOctets);
11316 11314          UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11317 11315          UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11318 11316          UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11319 11317          UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11320 11318          UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11321 11319          UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11322 11320          UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11323 11321  }
11324 11322  
11325 11323  void
11326 11324  ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11327 11325  {
11328 11326          UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11329 11327          UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11330 11328          UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11331 11329          UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11332 11330          UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11333 11331          UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11334 11332          UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11335 11333          UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11336 11334          UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11337 11335          UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11338 11336              o2->ipv6IfIcmpInRouterSolicits);
11339 11337          UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11340 11338              o2->ipv6IfIcmpInRouterAdvertisements);
11341 11339          UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11342 11340              o2->ipv6IfIcmpInNeighborSolicits);
11343 11341          UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11344 11342              o2->ipv6IfIcmpInNeighborAdvertisements);
11345 11343          UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11346 11344          UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11347 11345              o2->ipv6IfIcmpInGroupMembQueries);
11348 11346          UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11349 11347              o2->ipv6IfIcmpInGroupMembResponses);
11350 11348          UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11351 11349              o2->ipv6IfIcmpInGroupMembReductions);
11352 11350          UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11353 11351          UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11354 11352          UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11355 11353              o2->ipv6IfIcmpOutDestUnreachs);
11356 11354          UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11357 11355              o2->ipv6IfIcmpOutAdminProhibs);
11358 11356          UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11359 11357          UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11360 11358              o2->ipv6IfIcmpOutParmProblems);
11361 11359          UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11362 11360          UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11363 11361          UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11364 11362          UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11365 11363              o2->ipv6IfIcmpOutRouterSolicits);
11366 11364          UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11367 11365              o2->ipv6IfIcmpOutRouterAdvertisements);
11368 11366          UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11369 11367              o2->ipv6IfIcmpOutNeighborSolicits);
11370 11368          UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11371 11369              o2->ipv6IfIcmpOutNeighborAdvertisements);
11372 11370          UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11373 11371          UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11374 11372              o2->ipv6IfIcmpOutGroupMembQueries);
11375 11373          UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11376 11374              o2->ipv6IfIcmpOutGroupMembResponses);
11377 11375          UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11378 11376              o2->ipv6IfIcmpOutGroupMembReductions);
11379 11377          UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11380 11378          UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11381 11379          UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11382 11380              o2->ipv6IfIcmpInBadNeighborAdvertisements);
11383 11381          UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11384 11382              o2->ipv6IfIcmpInBadNeighborSolicitations);
11385 11383          UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11386 11384          UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11387 11385              o2->ipv6IfIcmpInGroupMembTotal);
11388 11386          UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11389 11387              o2->ipv6IfIcmpInGroupMembBadQueries);
11390 11388          UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11391 11389              o2->ipv6IfIcmpInGroupMembBadReports);
11392 11390          UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11393 11391              o2->ipv6IfIcmpInGroupMembOurReports);
11394 11392  }
11395 11393  
11396 11394  /*
11397 11395   * Called before the options are updated to check if this packet will
11398 11396   * be source routed from here.
11399 11397   * This routine assumes that the options are well formed i.e. that they
11400 11398   * have already been checked.
11401 11399   */
11402 11400  boolean_t
11403 11401  ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11404 11402  {
11405 11403          ipoptp_t        opts;
11406 11404          uchar_t         *opt;
11407 11405          uint8_t         optval;
11408 11406          uint8_t         optlen;
11409 11407          ipaddr_t        dst;
11410 11408  
11411 11409          if (IS_SIMPLE_IPH(ipha)) {
11412 11410                  ip2dbg(("not source routed\n"));
11413 11411                  return (B_FALSE);
11414 11412          }
11415 11413          dst = ipha->ipha_dst;
11416 11414          for (optval = ipoptp_first(&opts, ipha);
11417 11415              optval != IPOPT_EOL;
11418 11416              optval = ipoptp_next(&opts)) {
11419 11417                  ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11420 11418                  opt = opts.ipoptp_cur;
11421 11419                  optlen = opts.ipoptp_len;
11422 11420                  ip2dbg(("ip_source_routed: opt %d, len %d\n",
11423 11421                      optval, optlen));
11424 11422                  switch (optval) {
11425 11423                          uint32_t off;
11426 11424                  case IPOPT_SSRR:
11427 11425                  case IPOPT_LSRR:
11428 11426                          /*
11429 11427                           * If dst is one of our addresses and there are some
11430 11428                           * entries left in the source route return (true).
11431 11429                           */
11432 11430                          if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11433 11431                                  ip2dbg(("ip_source_routed: not next"
11434 11432                                      " source route 0x%x\n",
11435 11433                                      ntohl(dst)));
11436 11434                                  return (B_FALSE);
11437 11435                          }
11438 11436                          off = opt[IPOPT_OFFSET];
11439 11437                          off--;
11440 11438                          if (optlen < IP_ADDR_LEN ||
11441 11439                              off > optlen - IP_ADDR_LEN) {
11442 11440                                  /* End of source route */
11443 11441                                  ip1dbg(("ip_source_routed: end of SR\n"));
11444 11442                                  return (B_FALSE);
11445 11443                          }
11446 11444                          return (B_TRUE);
11447 11445                  }
11448 11446          }
11449 11447          ip2dbg(("not source routed\n"));
11450 11448          return (B_FALSE);
11451 11449  }
11452 11450  
11453 11451  /*
11454 11452   * ip_unbind is called by the transports to remove a conn from
11455 11453   * the fanout table.
11456 11454   */
11457 11455  void
11458 11456  ip_unbind(conn_t *connp)
11459 11457  {
11460 11458  
11461 11459          ASSERT(!MUTEX_HELD(&connp->conn_lock));
11462 11460  
11463 11461          if (is_system_labeled() && connp->conn_anon_port) {
11464 11462                  (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11465 11463                      connp->conn_mlp_type, connp->conn_proto,
11466 11464                      ntohs(connp->conn_lport), B_FALSE);
11467 11465                  connp->conn_anon_port = 0;
11468 11466          }
11469 11467          connp->conn_mlp_type = mlptSingle;
11470 11468  
11471 11469          ipcl_hash_remove(connp);
11472 11470  }
11473 11471  
11474 11472  /*
11475 11473   * Used for deciding the MSS size for the upper layer. Thus
11476 11474   * we need to check the outbound policy values in the conn.
11477 11475   */
11478 11476  int
11479 11477  conn_ipsec_length(conn_t *connp)
11480 11478  {
11481 11479          ipsec_latch_t *ipl;
11482 11480  
11483 11481          ipl = connp->conn_latch;
11484 11482          if (ipl == NULL)
11485 11483                  return (0);
11486 11484  
11487 11485          if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11488 11486                  return (0);
11489 11487  
11490 11488          return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11491 11489  }
11492 11490  
11493 11491  /*
11494 11492   * Returns an estimate of the IPsec headers size. This is used if
11495 11493   * we don't want to call into IPsec to get the exact size.
11496 11494   */
11497 11495  int
11498 11496  ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11499 11497  {
11500 11498          ipsec_action_t *a;
11501 11499  
11502 11500          if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11503 11501                  return (0);
11504 11502  
11505 11503          a = ixa->ixa_ipsec_action;
11506 11504          if (a == NULL) {
11507 11505                  ASSERT(ixa->ixa_ipsec_policy != NULL);
11508 11506                  a = ixa->ixa_ipsec_policy->ipsp_act;
11509 11507          }
11510 11508          ASSERT(a != NULL);
11511 11509  
11512 11510          return (a->ipa_ovhd);
11513 11511  }
11514 11512  
11515 11513  /*
11516 11514   * If there are any source route options, return the true final
11517 11515   * destination. Otherwise, return the destination.
11518 11516   */
11519 11517  ipaddr_t
11520 11518  ip_get_dst(ipha_t *ipha)
11521 11519  {
11522 11520          ipoptp_t        opts;
11523 11521          uchar_t         *opt;
11524 11522          uint8_t         optval;
11525 11523          uint8_t         optlen;
11526 11524          ipaddr_t        dst;
11527 11525          uint32_t off;
11528 11526  
11529 11527          dst = ipha->ipha_dst;
11530 11528  
11531 11529          if (IS_SIMPLE_IPH(ipha))
11532 11530                  return (dst);
11533 11531  
11534 11532          for (optval = ipoptp_first(&opts, ipha);
11535 11533              optval != IPOPT_EOL;
11536 11534              optval = ipoptp_next(&opts)) {
11537 11535                  opt = opts.ipoptp_cur;
11538 11536                  optlen = opts.ipoptp_len;
11539 11537                  ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11540 11538                  switch (optval) {
11541 11539                  case IPOPT_SSRR:
11542 11540                  case IPOPT_LSRR:
11543 11541                          off = opt[IPOPT_OFFSET];
11544 11542                          /*
11545 11543                           * If one of the conditions is true, it means
11546 11544                           * end of options and dst already has the right
11547 11545                           * value.
11548 11546                           */
11549 11547                          if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11550 11548                                  off = optlen - IP_ADDR_LEN;
11551 11549                                  bcopy(&opt[off], &dst, IP_ADDR_LEN);
11552 11550                          }
11553 11551                          return (dst);
11554 11552                  default:
11555 11553                          break;
11556 11554                  }
11557 11555          }
11558 11556  
11559 11557          return (dst);
11560 11558  }
11561 11559  
11562 11560  /*
11563 11561   * Outbound IP fragmentation routine.
11564 11562   * Assumes the caller has checked whether or not fragmentation should
11565 11563   * be allowed. Here we copy the DF bit from the header to all the generated
11566 11564   * fragments.
11567 11565   */
11568 11566  int
11569 11567  ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11570 11568      uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11571 11569      zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11572 11570  {
11573 11571          int             i1;
11574 11572          int             hdr_len;
11575 11573          mblk_t          *hdr_mp;
11576 11574          ipha_t          *ipha;
11577 11575          int             ip_data_end;
11578 11576          int             len;
11579 11577          mblk_t          *mp = mp_orig;
11580 11578          int             offset;
11581 11579          ill_t           *ill = nce->nce_ill;
11582 11580          ip_stack_t      *ipst = ill->ill_ipst;
11583 11581          mblk_t          *carve_mp;
11584 11582          uint32_t        frag_flag;
11585 11583          uint_t          priority = mp->b_band;
11586 11584          int             error = 0;
11587 11585  
11588 11586          BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11589 11587  
11590 11588          if (pkt_len != msgdsize(mp)) {
11591 11589                  ip0dbg(("Packet length mismatch: %d, %ld\n",
11592 11590                      pkt_len, msgdsize(mp)));
11593 11591                  freemsg(mp);
11594 11592                  return (EINVAL);
11595 11593          }
11596 11594  
11597 11595          if (max_frag == 0) {
11598 11596                  ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11599 11597                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11600 11598                  ip_drop_output("FragFails: zero max_frag", mp, ill);
11601 11599                  freemsg(mp);
11602 11600                  return (EINVAL);
11603 11601          }
11604 11602  
11605 11603          ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11606 11604          ipha = (ipha_t *)mp->b_rptr;
11607 11605          ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11608 11606          frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11609 11607  
11610 11608          /*
11611 11609           * Establish the starting offset.  May not be zero if we are fragging
11612 11610           * a fragment that is being forwarded.
11613 11611           */
11614 11612          offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11615 11613  
11616 11614          /* TODO why is this test needed? */
11617 11615          if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11618 11616                  /* TODO: notify ulp somehow */
11619 11617                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11620 11618                  ip_drop_output("FragFails: bad starting offset", mp, ill);
11621 11619                  freemsg(mp);
11622 11620                  return (EINVAL);
11623 11621          }
11624 11622  
11625 11623          hdr_len = IPH_HDR_LENGTH(ipha);
11626 11624          ipha->ipha_hdr_checksum = 0;
11627 11625  
11628 11626          /*
11629 11627           * Establish the number of bytes maximum per frag, after putting
11630 11628           * in the header.
11631 11629           */
11632 11630          len = (max_frag - hdr_len) & ~7;
11633 11631  
11634 11632          /* Get a copy of the header for the trailing frags */
11635 11633          hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11636 11634              mp);
11637 11635          if (hdr_mp == NULL) {
11638 11636                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11639 11637                  ip_drop_output("FragFails: no hdr_mp", mp, ill);
11640 11638                  freemsg(mp);
11641 11639                  return (ENOBUFS);
11642 11640          }
11643 11641  
11644 11642          /* Store the starting offset, with the MoreFrags flag. */
11645 11643          i1 = offset | IPH_MF | frag_flag;
11646 11644          ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11647 11645  
11648 11646          /* Establish the ending byte offset, based on the starting offset. */
11649 11647          offset <<= 3;
11650 11648          ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11651 11649  
11652 11650          /* Store the length of the first fragment in the IP header. */
11653 11651          i1 = len + hdr_len;
11654 11652          ASSERT(i1 <= IP_MAXPACKET);
11655 11653          ipha->ipha_length = htons((uint16_t)i1);
11656 11654  
11657 11655          /*
11658 11656           * Compute the IP header checksum for the first frag.  We have to
11659 11657           * watch out that we stop at the end of the header.
11660 11658           */
11661 11659          ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11662 11660  
11663 11661          /*
11664 11662           * Now carve off the first frag.  Note that this will include the
11665 11663           * original IP header.
11666 11664           */
11667 11665          if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11668 11666                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11669 11667                  ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11670 11668                  freeb(hdr_mp);
11671 11669                  freemsg(mp_orig);
11672 11670                  return (ENOBUFS);
11673 11671          }
11674 11672  
11675 11673          BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11676 11674  
11677 11675          error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11678 11676              ixa_cookie);
11679 11677          if (error != 0 && error != EWOULDBLOCK) {
11680 11678                  /* No point in sending the other fragments */
11681 11679                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11682 11680                  ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11683 11681                  freeb(hdr_mp);
11684 11682                  freemsg(mp_orig);
11685 11683                  return (error);
11686 11684          }
11687 11685  
11688 11686          /* No need to redo state machine in loop */
11689 11687          ixaflags &= ~IXAF_REACH_CONF;
11690 11688  
11691 11689          /* Advance the offset to the second frag starting point. */
11692 11690          offset += len;
11693 11691          /*
11694 11692           * Update hdr_len from the copied header - there might be less options
11695 11693           * in the later fragments.
11696 11694           */
11697 11695          hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11698 11696          /* Loop until done. */
11699 11697          for (;;) {
11700 11698                  uint16_t        offset_and_flags;
11701 11699                  uint16_t        ip_len;
11702 11700  
11703 11701                  if (ip_data_end - offset > len) {
11704 11702                          /*
11705 11703                           * Carve off the appropriate amount from the original
11706 11704                           * datagram.
11707 11705                           */
11708 11706                          if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11709 11707                                  mp = NULL;
11710 11708                                  break;
11711 11709                          }
11712 11710                          /*
11713 11711                           * More frags after this one.  Get another copy
11714 11712                           * of the header.
11715 11713                           */
11716 11714                          if (carve_mp->b_datap->db_ref == 1 &&
11717 11715                              hdr_mp->b_wptr - hdr_mp->b_rptr <
11718 11716                              carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11719 11717                                  /* Inline IP header */
11720 11718                                  carve_mp->b_rptr -= hdr_mp->b_wptr -
11721 11719                                      hdr_mp->b_rptr;
11722 11720                                  bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11723 11721                                      hdr_mp->b_wptr - hdr_mp->b_rptr);
11724 11722                                  mp = carve_mp;
11725 11723                          } else {
11726 11724                                  if (!(mp = copyb(hdr_mp))) {
11727 11725                                          freemsg(carve_mp);
11728 11726                                          break;
11729 11727                                  }
11730 11728                                  /* Get priority marking, if any. */
11731 11729                                  mp->b_band = priority;
11732 11730                                  mp->b_cont = carve_mp;
11733 11731                          }
11734 11732                          ipha = (ipha_t *)mp->b_rptr;
11735 11733                          offset_and_flags = IPH_MF;
11736 11734                  } else {
11737 11735                          /*
11738 11736                           * Last frag.  Consume the header. Set len to
11739 11737                           * the length of this last piece.
11740 11738                           */
11741 11739                          len = ip_data_end - offset;
11742 11740  
11743 11741                          /*
11744 11742                           * Carve off the appropriate amount from the original
11745 11743                           * datagram.
11746 11744                           */
11747 11745                          if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11748 11746                                  mp = NULL;
11749 11747                                  break;
11750 11748                          }
11751 11749                          if (carve_mp->b_datap->db_ref == 1 &&
11752 11750                              hdr_mp->b_wptr - hdr_mp->b_rptr <
11753 11751                              carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11754 11752                                  /* Inline IP header */
11755 11753                                  carve_mp->b_rptr -= hdr_mp->b_wptr -
11756 11754                                      hdr_mp->b_rptr;
11757 11755                                  bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11758 11756                                      hdr_mp->b_wptr - hdr_mp->b_rptr);
11759 11757                                  mp = carve_mp;
11760 11758                                  freeb(hdr_mp);
11761 11759                                  hdr_mp = mp;
11762 11760                          } else {
11763 11761                                  mp = hdr_mp;
11764 11762                                  /* Get priority marking, if any. */
11765 11763                                  mp->b_band = priority;
11766 11764                                  mp->b_cont = carve_mp;
11767 11765                          }
11768 11766                          ipha = (ipha_t *)mp->b_rptr;
11769 11767                          /* A frag of a frag might have IPH_MF non-zero */
11770 11768                          offset_and_flags =
11771 11769                              ntohs(ipha->ipha_fragment_offset_and_flags) &
11772 11770                              IPH_MF;
11773 11771                  }
11774 11772                  offset_and_flags |= (uint16_t)(offset >> 3);
11775 11773                  offset_and_flags |= (uint16_t)frag_flag;
11776 11774                  /* Store the offset and flags in the IP header. */
11777 11775                  ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11778 11776  
11779 11777                  /* Store the length in the IP header. */
11780 11778                  ip_len = (uint16_t)(len + hdr_len);
11781 11779                  ipha->ipha_length = htons(ip_len);
11782 11780  
11783 11781                  /*
11784 11782                   * Set the IP header checksum.  Note that mp is just
11785 11783                   * the header, so this is easy to pass to ip_csum.
11786 11784                   */
11787 11785                  ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11788 11786  
11789 11787                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11790 11788  
11791 11789                  error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11792 11790                      nolzid, ixa_cookie);
11793 11791                  /* All done if we just consumed the hdr_mp. */
11794 11792                  if (mp == hdr_mp) {
11795 11793                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11796 11794                          return (error);
11797 11795                  }
11798 11796                  if (error != 0 && error != EWOULDBLOCK) {
11799 11797                          DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11800 11798                              mblk_t *, hdr_mp);
11801 11799                          /* No point in sending the other fragments */
11802 11800                          break;
11803 11801                  }
11804 11802  
11805 11803                  /* Otherwise, advance and loop. */
11806 11804                  offset += len;
11807 11805          }
11808 11806          /* Clean up following allocation failure. */
11809 11807          BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11810 11808          ip_drop_output("FragFails: loop ended", NULL, ill);
11811 11809          if (mp != hdr_mp)
11812 11810                  freeb(hdr_mp);
11813 11811          if (mp != mp_orig)
11814 11812                  freemsg(mp_orig);
11815 11813          return (error);
11816 11814  }
11817 11815  
11818 11816  /*
11819 11817   * Copy the header plus those options which have the copy bit set
11820 11818   */
11821 11819  static mblk_t *
11822 11820  ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11823 11821      mblk_t *src)
11824 11822  {
11825 11823          mblk_t  *mp;
11826 11824          uchar_t *up;
11827 11825  
11828 11826          /*
11829 11827           * Quick check if we need to look for options without the copy bit
11830 11828           * set
11831 11829           */
11832 11830          mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11833 11831          if (!mp)
11834 11832                  return (mp);
11835 11833          mp->b_rptr += ipst->ips_ip_wroff_extra;
11836 11834          if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11837 11835                  bcopy(rptr, mp->b_rptr, hdr_len);
11838 11836                  mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11839 11837                  return (mp);
11840 11838          }
11841 11839          up  = mp->b_rptr;
11842 11840          bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11843 11841          up += IP_SIMPLE_HDR_LENGTH;
11844 11842          rptr += IP_SIMPLE_HDR_LENGTH;
11845 11843          hdr_len -= IP_SIMPLE_HDR_LENGTH;
11846 11844          while (hdr_len > 0) {
11847 11845                  uint32_t optval;
11848 11846                  uint32_t optlen;
11849 11847  
11850 11848                  optval = *rptr;
11851 11849                  if (optval == IPOPT_EOL)
11852 11850                          break;
11853 11851                  if (optval == IPOPT_NOP)
11854 11852                          optlen = 1;
11855 11853                  else
11856 11854                          optlen = rptr[1];
11857 11855                  if (optval & IPOPT_COPY) {
11858 11856                          bcopy(rptr, up, optlen);
11859 11857                          up += optlen;
11860 11858                  }
11861 11859                  rptr += optlen;
11862 11860                  hdr_len -= optlen;
11863 11861          }
11864 11862          /*
11865 11863           * Make sure that we drop an even number of words by filling
11866 11864           * with EOL to the next word boundary.
11867 11865           */
11868 11866          for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11869 11867              hdr_len & 0x3; hdr_len++)
11870 11868                  *up++ = IPOPT_EOL;
11871 11869          mp->b_wptr = up;
11872 11870          /* Update header length */
11873 11871          mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11874 11872          return (mp);
11875 11873  }
11876 11874  
11877 11875  /*
11878 11876   * Update any source route, record route, or timestamp options when
11879 11877   * sending a packet back to ourselves.
11880 11878   * Check that we are at end of strict source route.
11881 11879   * The options have been sanity checked by ip_output_options().
11882 11880   */
11883 11881  void
11884 11882  ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11885 11883  {
11886 11884          ipoptp_t        opts;
11887 11885          uchar_t         *opt;
11888 11886          uint8_t         optval;
11889 11887          uint8_t         optlen;
11890 11888          ipaddr_t        dst;
11891 11889          uint32_t        ts;
11892 11890          timestruc_t     now;
11893 11891  
11894 11892          for (optval = ipoptp_first(&opts, ipha);
11895 11893              optval != IPOPT_EOL;
11896 11894              optval = ipoptp_next(&opts)) {
11897 11895                  opt = opts.ipoptp_cur;
11898 11896                  optlen = opts.ipoptp_len;
11899 11897                  ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11900 11898                  switch (optval) {
11901 11899                          uint32_t off;
11902 11900                  case IPOPT_SSRR:
11903 11901                  case IPOPT_LSRR:
11904 11902                          off = opt[IPOPT_OFFSET];
11905 11903                          off--;
11906 11904                          if (optlen < IP_ADDR_LEN ||
11907 11905                              off > optlen - IP_ADDR_LEN) {
11908 11906                                  /* End of source route */
11909 11907                                  break;
11910 11908                          }
11911 11909                          /*
11912 11910                           * This will only happen if two consecutive entries
11913 11911                           * in the source route contains our address or if
11914 11912                           * it is a packet with a loose source route which
11915 11913                           * reaches us before consuming the whole source route
11916 11914                           */
11917 11915  
11918 11916                          if (optval == IPOPT_SSRR) {
11919 11917                                  return;
11920 11918                          }
11921 11919                          /*
11922 11920                           * Hack: instead of dropping the packet truncate the
11923 11921                           * source route to what has been used by filling the
11924 11922                           * rest with IPOPT_NOP.
11925 11923                           */
11926 11924                          opt[IPOPT_OLEN] = (uint8_t)off;
11927 11925                          while (off < optlen) {
11928 11926                                  opt[off++] = IPOPT_NOP;
11929 11927                          }
11930 11928                          break;
11931 11929                  case IPOPT_RR:
11932 11930                          off = opt[IPOPT_OFFSET];
11933 11931                          off--;
11934 11932                          if (optlen < IP_ADDR_LEN ||
11935 11933                              off > optlen - IP_ADDR_LEN) {
11936 11934                                  /* No more room - ignore */
11937 11935                                  ip1dbg((
11938 11936                                      "ip_output_local_options: end of RR\n"));
11939 11937                                  break;
11940 11938                          }
11941 11939                          dst = htonl(INADDR_LOOPBACK);
11942 11940                          bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11943 11941                          opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11944 11942                          break;
11945 11943                  case IPOPT_TS:
11946 11944                          /* Insert timestamp if there is romm */
11947 11945                          switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11948 11946                          case IPOPT_TS_TSONLY:
11949 11947                                  off = IPOPT_TS_TIMELEN;
11950 11948                                  break;
11951 11949                          case IPOPT_TS_PRESPEC:
11952 11950                          case IPOPT_TS_PRESPEC_RFC791:
11953 11951                                  /* Verify that the address matched */
11954 11952                                  off = opt[IPOPT_OFFSET] - 1;
11955 11953                                  bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11956 11954                                  if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11957 11955                                          /* Not for us */
11958 11956                                          break;
11959 11957                                  }
11960 11958                                  /* FALLTHROUGH */
11961 11959                          case IPOPT_TS_TSANDADDR:
11962 11960                                  off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11963 11961                                  break;
11964 11962                          default:
11965 11963                                  /*
11966 11964                                   * ip_*put_options should have already
11967 11965                                   * dropped this packet.
11968 11966                                   */
11969 11967                                  cmn_err(CE_PANIC, "ip_output_local_options: "
11970 11968                                      "unknown IT - bug in ip_output_options?\n");
11971 11969                          }
11972 11970                          if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
11973 11971                                  /* Increase overflow counter */
11974 11972                                  off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
11975 11973                                  opt[IPOPT_POS_OV_FLG] = (uint8_t)
11976 11974                                      (opt[IPOPT_POS_OV_FLG] & 0x0F) |
11977 11975                                      (off << 4);
11978 11976                                  break;
11979 11977                          }
11980 11978                          off = opt[IPOPT_OFFSET] - 1;
11981 11979                          switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11982 11980                          case IPOPT_TS_PRESPEC:
11983 11981                          case IPOPT_TS_PRESPEC_RFC791:
11984 11982                          case IPOPT_TS_TSANDADDR:
11985 11983                                  dst = htonl(INADDR_LOOPBACK);
11986 11984                                  bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11987 11985                                  opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11988 11986                                  /* FALLTHROUGH */
11989 11987                          case IPOPT_TS_TSONLY:
11990 11988                                  off = opt[IPOPT_OFFSET] - 1;
11991 11989                                  /* Compute # of milliseconds since midnight */
11992 11990                                  gethrestime(&now);
11993 11991                                  ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
11994 11992                                      NSEC2MSEC(now.tv_nsec);
11995 11993                                  bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
11996 11994                                  opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
11997 11995                                  break;
11998 11996                          }
11999 11997                          break;
12000 11998                  }
12001 11999          }
12002 12000  }
12003 12001  
12004 12002  /*
12005 12003   * Prepend an M_DATA fastpath header, and if none present prepend a
12006 12004   * DL_UNITDATA_REQ. Frees the mblk on failure.
12007 12005   *
12008 12006   * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12009 12007   * If there is a change to them, the nce will be deleted (condemned) and
12010 12008   * a new nce_t will be created when packets are sent. Thus we need no locks
12011 12009   * to access those fields.
12012 12010   *
12013 12011   * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12014 12012   * we place b_band in dl_priority.dl_max.
12015 12013   */
12016 12014  static mblk_t *
12017 12015  ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12018 12016  {
12019 12017          uint_t  hlen;
12020 12018          mblk_t *mp1;
12021 12019          uint_t  priority;
12022 12020          uchar_t *rptr;
12023 12021  
12024 12022          rptr = mp->b_rptr;
12025 12023  
12026 12024          ASSERT(DB_TYPE(mp) == M_DATA);
12027 12025          priority = mp->b_band;
12028 12026  
12029 12027          ASSERT(nce != NULL);
12030 12028          if ((mp1 = nce->nce_fp_mp) != NULL) {
12031 12029                  hlen = MBLKL(mp1);
12032 12030                  /*
12033 12031                   * Check if we have enough room to prepend fastpath
12034 12032                   * header
12035 12033                   */
12036 12034                  if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12037 12035                          rptr -= hlen;
12038 12036                          bcopy(mp1->b_rptr, rptr, hlen);
12039 12037                          /*
12040 12038                           * Set the b_rptr to the start of the link layer
12041 12039                           * header
12042 12040                           */
12043 12041                          mp->b_rptr = rptr;
12044 12042                          return (mp);
12045 12043                  }
12046 12044                  mp1 = copyb(mp1);
12047 12045                  if (mp1 == NULL) {
12048 12046                          ill_t *ill = nce->nce_ill;
12049 12047  
12050 12048                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12051 12049                          ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12052 12050                          freemsg(mp);
12053 12051                          return (NULL);
12054 12052                  }
12055 12053                  mp1->b_band = priority;
12056 12054                  mp1->b_cont = mp;
12057 12055                  DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12058 12056                  DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12059 12057                  DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12060 12058                  DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12061 12059                  DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12062 12060                  DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12063 12061                  /*
12064 12062                   * XXX disable ICK_VALID and compute checksum
12065 12063                   * here; can happen if nce_fp_mp changes and
12066 12064                   * it can't be copied now due to insufficient
12067 12065                   * space. (unlikely, fp mp can change, but it
12068 12066                   * does not increase in length)
12069 12067                   */
12070 12068                  return (mp1);
12071 12069          }
12072 12070          mp1 = copyb(nce->nce_dlur_mp);
12073 12071  
12074 12072          if (mp1 == NULL) {
12075 12073                  ill_t *ill = nce->nce_ill;
12076 12074  
12077 12075                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12078 12076                  ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12079 12077                  freemsg(mp);
12080 12078                  return (NULL);
12081 12079          }
12082 12080          mp1->b_cont = mp;
12083 12081          if (priority != 0) {
12084 12082                  mp1->b_band = priority;
12085 12083                  ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12086 12084                      priority;
12087 12085          }
12088 12086          return (mp1);
12089 12087  }
12090 12088  
12091 12089  /*
12092 12090   * Finish the outbound IPsec processing. This function is called from
12093 12091   * ipsec_out_process() if the IPsec packet was processed
12094 12092   * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12095 12093   * asynchronously.
12096 12094   *
12097 12095   * This is common to IPv4 and IPv6.
12098 12096   */
12099 12097  int
12100 12098  ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12101 12099  {
12102 12100          iaflags_t       ixaflags = ixa->ixa_flags;
12103 12101          uint_t          pktlen;
12104 12102  
12105 12103  
12106 12104          /* AH/ESP don't update ixa_pktlen when they modify the packet */
12107 12105          if (ixaflags & IXAF_IS_IPV4) {
12108 12106                  ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12109 12107  
12110 12108                  ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12111 12109                  pktlen = ntohs(ipha->ipha_length);
12112 12110          } else {
12113 12111                  ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12114 12112  
12115 12113                  ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12116 12114                  pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12117 12115          }
12118 12116  
12119 12117          /*
12120 12118           * We release any hard reference on the SAs here to make
12121 12119           * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12122 12120           * on the SAs.
12123 12121           * If in the future we want the hard latching of the SAs in the
12124 12122           * ip_xmit_attr_t then we should remove this.
12125 12123           */
12126 12124          if (ixa->ixa_ipsec_esp_sa != NULL) {
12127 12125                  IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12128 12126                  ixa->ixa_ipsec_esp_sa = NULL;
12129 12127          }
12130 12128          if (ixa->ixa_ipsec_ah_sa != NULL) {
12131 12129                  IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12132 12130                  ixa->ixa_ipsec_ah_sa = NULL;
12133 12131          }
12134 12132  
12135 12133          /* Do we need to fragment? */
12136 12134          if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12137 12135              pktlen > ixa->ixa_fragsize) {
12138 12136                  if (ixaflags & IXAF_IS_IPV4) {
12139 12137                          ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12140 12138                          /*
12141 12139                           * We check for the DF case in ipsec_out_process
12142 12140                           * hence this only handles the non-DF case.
12143 12141                           */
12144 12142                          return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12145 12143                              pktlen, ixa->ixa_fragsize,
12146 12144                              ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12147 12145                              ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12148 12146                              &ixa->ixa_cookie));
12149 12147                  } else {
12150 12148                          mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12151 12149                          if (mp == NULL) {
12152 12150                                  /* MIB and ip_drop_output already done */
12153 12151                                  return (ENOMEM);
12154 12152                          }
12155 12153                          pktlen += sizeof (ip6_frag_t);
12156 12154                          if (pktlen > ixa->ixa_fragsize) {
12157 12155                                  return (ip_fragment_v6(mp, ixa->ixa_nce,
12158 12156                                      ixa->ixa_flags, pktlen,
12159 12157                                      ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12160 12158                                      ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12161 12159                                      ixa->ixa_postfragfn, &ixa->ixa_cookie));
12162 12160                          }
12163 12161                  }
12164 12162          }
12165 12163          return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12166 12164              pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12167 12165              ixa->ixa_no_loop_zoneid, NULL));
12168 12166  }
12169 12167  
12170 12168  /*
12171 12169   * Finish the inbound IPsec processing. This function is called from
12172 12170   * ipsec_out_process() if the IPsec packet was processed
12173 12171   * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12174 12172   * asynchronously.
12175 12173   *
12176 12174   * This is common to IPv4 and IPv6.
12177 12175   */
12178 12176  void
12179 12177  ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12180 12178  {
12181 12179          iaflags_t       iraflags = ira->ira_flags;
12182 12180  
12183 12181          /* Length might have changed */
12184 12182          if (iraflags & IRAF_IS_IPV4) {
12185 12183                  ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12186 12184  
12187 12185                  ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12188 12186                  ira->ira_pktlen = ntohs(ipha->ipha_length);
12189 12187                  ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12190 12188                  ira->ira_protocol = ipha->ipha_protocol;
12191 12189  
12192 12190                  ip_fanout_v4(mp, ipha, ira);
12193 12191          } else {
12194 12192                  ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12195 12193                  uint8_t         *nexthdrp;
12196 12194  
12197 12195                  ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12198 12196                  ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12199 12197                  if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12200 12198                      &nexthdrp)) {
12201 12199                          /* Malformed packet */
12202 12200                          BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12203 12201                          ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12204 12202                          freemsg(mp);
12205 12203                          return;
12206 12204                  }
12207 12205                  ira->ira_protocol = *nexthdrp;
12208 12206                  ip_fanout_v6(mp, ip6h, ira);
12209 12207          }
12210 12208  }
12211 12209  
12212 12210  /*
12213 12211   * Select which AH & ESP SA's to use (if any) for the outbound packet.
12214 12212   *
12215 12213   * If this function returns B_TRUE, the requested SA's have been filled
12216 12214   * into the ixa_ipsec_*_sa pointers.
12217 12215   *
12218 12216   * If the function returns B_FALSE, the packet has been "consumed", most
12219 12217   * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12220 12218   *
12221 12219   * The SA references created by the protocol-specific "select"
12222 12220   * function will be released in ip_output_post_ipsec.
12223 12221   */
12224 12222  static boolean_t
12225 12223  ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12226 12224  {
12227 12225          boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12228 12226          ipsec_policy_t *pp;
12229 12227          ipsec_action_t *ap;
12230 12228  
12231 12229          ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12232 12230          ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12233 12231              (ixa->ixa_ipsec_action != NULL));
12234 12232  
12235 12233          ap = ixa->ixa_ipsec_action;
12236 12234          if (ap == NULL) {
12237 12235                  pp = ixa->ixa_ipsec_policy;
12238 12236                  ASSERT(pp != NULL);
12239 12237                  ap = pp->ipsp_act;
12240 12238                  ASSERT(ap != NULL);
12241 12239          }
12242 12240  
12243 12241          /*
12244 12242           * We have an action.  now, let's select SA's.
12245 12243           * A side effect of setting ixa_ipsec_*_sa is that it will
12246 12244           * be cached in the conn_t.
12247 12245           */
12248 12246          if (ap->ipa_want_esp) {
12249 12247                  if (ixa->ixa_ipsec_esp_sa == NULL) {
12250 12248                          need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12251 12249                              IPPROTO_ESP);
12252 12250                  }
12253 12251                  ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12254 12252          }
12255 12253  
12256 12254          if (ap->ipa_want_ah) {
12257 12255                  if (ixa->ixa_ipsec_ah_sa == NULL) {
12258 12256                          need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12259 12257                              IPPROTO_AH);
12260 12258                  }
12261 12259                  ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12262 12260                  /*
12263 12261                   * The ESP and AH processing order needs to be preserved
12264 12262                   * when both protocols are required (ESP should be applied
12265 12263                   * before AH for an outbound packet). Force an ESP ACQUIRE
12266 12264                   * when both ESP and AH are required, and an AH ACQUIRE
12267 12265                   * is needed.
12268 12266                   */
12269 12267                  if (ap->ipa_want_esp && need_ah_acquire)
12270 12268                          need_esp_acquire = B_TRUE;
12271 12269          }
12272 12270  
12273 12271          /*
12274 12272           * Send an ACQUIRE (extended, regular, or both) if we need one.
12275 12273           * Release SAs that got referenced, but will not be used until we
12276 12274           * acquire _all_ of the SAs we need.
12277 12275           */
12278 12276          if (need_ah_acquire || need_esp_acquire) {
12279 12277                  if (ixa->ixa_ipsec_ah_sa != NULL) {
12280 12278                          IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12281 12279                          ixa->ixa_ipsec_ah_sa = NULL;
12282 12280                  }
12283 12281                  if (ixa->ixa_ipsec_esp_sa != NULL) {
12284 12282                          IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12285 12283                          ixa->ixa_ipsec_esp_sa = NULL;
12286 12284                  }
12287 12285  
12288 12286                  sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12289 12287                  return (B_FALSE);
12290 12288          }
12291 12289  
12292 12290          return (B_TRUE);
12293 12291  }
12294 12292  
12295 12293  /*
12296 12294   * Handle IPsec output processing.
12297 12295   * This function is only entered once for a given packet.
12298 12296   * We try to do things synchronously, but if we need to have user-level
12299 12297   * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12300 12298   * will be completed
12301 12299   *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12302 12300   *  - when asynchronous ESP is done it will do AH
12303 12301   *
12304 12302   * In all cases we come back in ip_output_post_ipsec() to fragment and
12305 12303   * send out the packet.
12306 12304   */
12307 12305  int
12308 12306  ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12309 12307  {
12310 12308          ill_t           *ill = ixa->ixa_nce->nce_ill;
12311 12309          ip_stack_t      *ipst = ixa->ixa_ipst;
12312 12310          ipsec_stack_t   *ipss;
12313 12311          ipsec_policy_t  *pp;
12314 12312          ipsec_action_t  *ap;
12315 12313  
12316 12314          ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12317 12315  
12318 12316          ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12319 12317              (ixa->ixa_ipsec_action != NULL));
12320 12318  
12321 12319          ipss = ipst->ips_netstack->netstack_ipsec;
12322 12320          if (!ipsec_loaded(ipss)) {
12323 12321                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12324 12322                  ip_drop_packet(mp, B_TRUE, ill,
12325 12323                      DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12326 12324                      &ipss->ipsec_dropper);
12327 12325                  return (ENOTSUP);
12328 12326          }
12329 12327  
12330 12328          ap = ixa->ixa_ipsec_action;
12331 12329          if (ap == NULL) {
12332 12330                  pp = ixa->ixa_ipsec_policy;
12333 12331                  ASSERT(pp != NULL);
12334 12332                  ap = pp->ipsp_act;
12335 12333                  ASSERT(ap != NULL);
12336 12334          }
12337 12335  
12338 12336          /* Handle explicit drop action and bypass. */
12339 12337          switch (ap->ipa_act.ipa_type) {
12340 12338          case IPSEC_ACT_DISCARD:
12341 12339          case IPSEC_ACT_REJECT:
12342 12340                  ip_drop_packet(mp, B_FALSE, ill,
12343 12341                      DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12344 12342                  return (EHOSTUNREACH);  /* IPsec policy failure */
12345 12343          case IPSEC_ACT_BYPASS:
12346 12344                  return (ip_output_post_ipsec(mp, ixa));
12347 12345          }
12348 12346  
12349 12347          /*
12350 12348           * The order of processing is first insert a IP header if needed.
12351 12349           * Then insert the ESP header and then the AH header.
12352 12350           */
12353 12351          if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12354 12352                  /*
12355 12353                   * First get the outer IP header before sending
12356 12354                   * it to ESP.
12357 12355                   */
12358 12356                  ipha_t *oipha, *iipha;
12359 12357                  mblk_t *outer_mp, *inner_mp;
12360 12358  
12361 12359                  if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12362 12360                          (void) mi_strlog(ill->ill_rq, 0,
12363 12361                              SL_ERROR|SL_TRACE|SL_CONSOLE,
12364 12362                              "ipsec_out_process: "
12365 12363                              "Self-Encapsulation failed: Out of memory\n");
12366 12364                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12367 12365                          ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12368 12366                          freemsg(mp);
12369 12367                          return (ENOBUFS);
12370 12368                  }
12371 12369                  inner_mp = mp;
12372 12370                  ASSERT(inner_mp->b_datap->db_type == M_DATA);
12373 12371                  oipha = (ipha_t *)outer_mp->b_rptr;
12374 12372                  iipha = (ipha_t *)inner_mp->b_rptr;
12375 12373                  *oipha = *iipha;
12376 12374                  outer_mp->b_wptr += sizeof (ipha_t);
12377 12375                  oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12378 12376                      sizeof (ipha_t));
12379 12377                  oipha->ipha_protocol = IPPROTO_ENCAP;
12380 12378                  oipha->ipha_version_and_hdr_length =
12381 12379                      IP_SIMPLE_HDR_VERSION;
12382 12380                  oipha->ipha_hdr_checksum = 0;
12383 12381                  oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12384 12382                  outer_mp->b_cont = inner_mp;
12385 12383                  mp = outer_mp;
12386 12384  
12387 12385                  ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12388 12386          }
12389 12387  
12390 12388          /* If we need to wait for a SA then we can't return any errno */
12391 12389          if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12392 12390              (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12393 12391              !ipsec_out_select_sa(mp, ixa))
12394 12392                  return (0);
12395 12393  
12396 12394          /*
12397 12395           * By now, we know what SA's to use.  Toss over to ESP & AH
12398 12396           * to do the heavy lifting.
12399 12397           */
12400 12398          if (ap->ipa_want_esp) {
12401 12399                  ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12402 12400  
12403 12401                  mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12404 12402                  if (mp == NULL) {
12405 12403                          /*
12406 12404                           * Either it failed or is pending. In the former case
12407 12405                           * ipIfStatsInDiscards was increased.
12408 12406                           */
12409 12407                          return (0);
12410 12408                  }
12411 12409          }
12412 12410  
12413 12411          if (ap->ipa_want_ah) {
12414 12412                  ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12415 12413  
12416 12414                  mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12417 12415                  if (mp == NULL) {
12418 12416                          /*
12419 12417                           * Either it failed or is pending. In the former case
12420 12418                           * ipIfStatsInDiscards was increased.
12421 12419                           */
12422 12420                          return (0);
12423 12421                  }
12424 12422          }
12425 12423          /*
12426 12424           * We are done with IPsec processing. Send it over
12427 12425           * the wire.
12428 12426           */
12429 12427          return (ip_output_post_ipsec(mp, ixa));
12430 12428  }
12431 12429  
12432 12430  /*
12433 12431   * ioctls that go through a down/up sequence may need to wait for the down
12434 12432   * to complete. This involves waiting for the ire and ipif refcnts to go down
12435 12433   * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12436 12434   */
12437 12435  /* ARGSUSED */
12438 12436  void
12439 12437  ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12440 12438  {
12441 12439          struct iocblk *iocp;
12442 12440          mblk_t *mp1;
12443 12441          ip_ioctl_cmd_t *ipip;
12444 12442          int err;
12445 12443          sin_t   *sin;
12446 12444          struct lifreq *lifr;
12447 12445          struct ifreq *ifr;
12448 12446  
12449 12447          iocp = (struct iocblk *)mp->b_rptr;
12450 12448          ASSERT(ipsq != NULL);
12451 12449          /* Existence of mp1 verified in ip_wput_nondata */
12452 12450          mp1 = mp->b_cont->b_cont;
12453 12451          ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12454 12452          if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12455 12453                  /*
12456 12454                   * Special case where ipx_current_ipif is not set:
12457 12455                   * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12458 12456                   * We are here as were not able to complete the operation in
12459 12457                   * ipif_set_values because we could not become exclusive on
12460 12458                   * the new ipsq.
12461 12459                   */
12462 12460                  ill_t *ill = q->q_ptr;
12463 12461                  ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12464 12462          }
12465 12463          ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12466 12464  
12467 12465          if (ipip->ipi_cmd_type == IF_CMD) {
12468 12466                  /* This a old style SIOC[GS]IF* command */
12469 12467                  ifr = (struct ifreq *)mp1->b_rptr;
12470 12468                  sin = (sin_t *)&ifr->ifr_addr;
12471 12469          } else if (ipip->ipi_cmd_type == LIF_CMD) {
12472 12470                  /* This a new style SIOC[GS]LIF* command */
12473 12471                  lifr = (struct lifreq *)mp1->b_rptr;
12474 12472                  sin = (sin_t *)&lifr->lifr_addr;
12475 12473          } else {
12476 12474                  sin = NULL;
12477 12475          }
12478 12476  
12479 12477          err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12480 12478              q, mp, ipip, mp1->b_rptr);
12481 12479  
12482 12480          DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12483 12481              int, ipip->ipi_cmd,
12484 12482              ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12485 12483              ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12486 12484  
12487 12485          ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12488 12486  }
12489 12487  
12490 12488  /*
12491 12489   * ioctl processing
12492 12490   *
12493 12491   * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12494 12492   * the ioctl command in the ioctl tables, determines the copyin data size
12495 12493   * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12496 12494   *
12497 12495   * ioctl processing then continues when the M_IOCDATA makes its way down to
12498 12496   * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12499 12497   * associated 'conn' is refheld till the end of the ioctl and the general
12500 12498   * ioctl processing function ip_process_ioctl() is called to extract the
12501 12499   * arguments and process the ioctl.  To simplify extraction, ioctl commands
12502 12500   * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12503 12501   * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12504 12502   * is used to extract the ioctl's arguments.
12505 12503   *
12506 12504   * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12507 12505   * so goes thru the serialization primitive ipsq_try_enter. Then the
12508 12506   * appropriate function to handle the ioctl is called based on the entry in
12509 12507   * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12510 12508   * which also refreleases the 'conn' that was refheld at the start of the
12511 12509   * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12512 12510   *
12513 12511   * Many exclusive ioctls go thru an internal down up sequence as part of
12514 12512   * the operation. For example an attempt to change the IP address of an
12515 12513   * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12516 12514   * does all the cleanup such as deleting all ires that use this address.
12517 12515   * Then we need to wait till all references to the interface go away.
12518 12516   */
12519 12517  void
12520 12518  ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12521 12519  {
12522 12520          struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12523 12521          ip_ioctl_cmd_t *ipip = arg;
12524 12522          ip_extract_func_t *extract_funcp;
12525 12523          ill_t *ill;
12526 12524          cmd_info_t ci;
12527 12525          int err;
12528 12526          boolean_t entered_ipsq = B_FALSE;
12529 12527  
12530 12528          ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12531 12529  
12532 12530          if (ipip == NULL)
12533 12531                  ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12534 12532  
12535 12533          /*
12536 12534           * SIOCLIFADDIF needs to go thru a special path since the
12537 12535           * ill may not exist yet. This happens in the case of lo0
12538 12536           * which is created using this ioctl.
12539 12537           */
12540 12538          if (ipip->ipi_cmd == SIOCLIFADDIF) {
12541 12539                  err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12542 12540                  DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12543 12541                      int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12544 12542                  ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12545 12543                  return;
12546 12544          }
12547 12545  
12548 12546          ci.ci_ipif = NULL;
12549 12547          switch (ipip->ipi_cmd_type) {
12550 12548          case MISC_CMD:
12551 12549          case MSFILT_CMD:
12552 12550                  /*
12553 12551                   * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12554 12552                   */
12555 12553                  if (ipip->ipi_cmd == IF_UNITSEL) {
12556 12554                          /* ioctl comes down the ill */
12557 12555                          ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12558 12556                          ipif_refhold(ci.ci_ipif);
12559 12557                  }
12560 12558                  err = 0;
12561 12559                  ci.ci_sin = NULL;
12562 12560                  ci.ci_sin6 = NULL;
12563 12561                  ci.ci_lifr = NULL;
12564 12562                  extract_funcp = NULL;
12565 12563                  break;
12566 12564  
12567 12565          case IF_CMD:
12568 12566          case LIF_CMD:
12569 12567                  extract_funcp = ip_extract_lifreq;
12570 12568                  break;
12571 12569  
12572 12570          case ARP_CMD:
12573 12571          case XARP_CMD:
12574 12572                  extract_funcp = ip_extract_arpreq;
12575 12573                  break;
12576 12574  
12577 12575          default:
12578 12576                  ASSERT(0);
12579 12577          }
12580 12578  
12581 12579          if (extract_funcp != NULL) {
12582 12580                  err = (*extract_funcp)(q, mp, ipip, &ci);
12583 12581                  if (err != 0) {
12584 12582                          DTRACE_PROBE4(ipif__ioctl,
12585 12583                              char *, "ip_process_ioctl finish err",
12586 12584                              int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12587 12585                          ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12588 12586                          return;
12589 12587                  }
12590 12588  
12591 12589                  /*
12592 12590                   * All of the extraction functions return a refheld ipif.
12593 12591                   */
12594 12592                  ASSERT(ci.ci_ipif != NULL);
12595 12593          }
12596 12594  
12597 12595          if (!(ipip->ipi_flags & IPI_WR)) {
12598 12596                  /*
12599 12597                   * A return value of EINPROGRESS means the ioctl is
12600 12598                   * either queued and waiting for some reason or has
12601 12599                   * already completed.
12602 12600                   */
12603 12601                  err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12604 12602                      ci.ci_lifr);
12605 12603                  if (ci.ci_ipif != NULL) {
12606 12604                          DTRACE_PROBE4(ipif__ioctl,
12607 12605                              char *, "ip_process_ioctl finish RD",
12608 12606                              int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12609 12607                              ipif_t *, ci.ci_ipif);
12610 12608                          ipif_refrele(ci.ci_ipif);
12611 12609                  } else {
12612 12610                          DTRACE_PROBE4(ipif__ioctl,
12613 12611                              char *, "ip_process_ioctl finish RD",
12614 12612                              int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12615 12613                  }
12616 12614                  ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12617 12615                  return;
12618 12616          }
12619 12617  
12620 12618          ASSERT(ci.ci_ipif != NULL);
12621 12619  
12622 12620          /*
12623 12621           * If ipsq is non-NULL, we are already being called exclusively
12624 12622           */
12625 12623          ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12626 12624          if (ipsq == NULL) {
12627 12625                  ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12628 12626                      NEW_OP, B_TRUE);
12629 12627                  if (ipsq == NULL) {
12630 12628                          ipif_refrele(ci.ci_ipif);
12631 12629                          return;
12632 12630                  }
12633 12631                  entered_ipsq = B_TRUE;
12634 12632          }
12635 12633          /*
12636 12634           * Release the ipif so that ipif_down and friends that wait for
12637 12635           * references to go away are not misled about the current ipif_refcnt
12638 12636           * values. We are writer so we can access the ipif even after releasing
12639 12637           * the ipif.
12640 12638           */
12641 12639          ipif_refrele(ci.ci_ipif);
12642 12640  
12643 12641          ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12644 12642  
12645 12643          /*
12646 12644           * We need to cache the ill_t that we're going to use as the argument
12647 12645           * to the ipif-ioctl DTrace probe (below) because the ci_ipif can be
12648 12646           * blown away by calling ipi_func.
12649 12647           */
12650 12648          ill = ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill;
12651 12649  
12652 12650          /*
12653 12651           * A return value of EINPROGRESS means the ioctl is
12654 12652           * either queued and waiting for some reason or has
12655 12653           * already completed.
12656 12654           */
12657 12655          err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12658 12656  
12659 12657          DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12660 12658              int, ipip->ipi_cmd, ill_t *, ill, ipif_t *, ci.ci_ipif);
12661 12659          ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12662 12660  
12663 12661          if (entered_ipsq)
12664 12662                  ipsq_exit(ipsq);
12665 12663  }
12666 12664  
12667 12665  /*
12668 12666   * Complete the ioctl. Typically ioctls use the mi package and need to
12669 12667   * do mi_copyout/mi_copy_done.
12670 12668   */
12671 12669  void
12672 12670  ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12673 12671  {
12674 12672          conn_t  *connp = NULL;
12675 12673  
12676 12674          if (err == EINPROGRESS)
12677 12675                  return;
12678 12676  
12679 12677          if (CONN_Q(q)) {
12680 12678                  connp = Q_TO_CONN(q);
12681 12679                  ASSERT(connp->conn_ref >= 2);
12682 12680          }
12683 12681  
12684 12682          switch (mode) {
12685 12683          case COPYOUT:
12686 12684                  if (err == 0)
12687 12685                          mi_copyout(q, mp);
12688 12686                  else
12689 12687                          mi_copy_done(q, mp, err);
12690 12688                  break;
12691 12689  
12692 12690          case NO_COPYOUT:
12693 12691                  mi_copy_done(q, mp, err);
12694 12692                  break;
12695 12693  
12696 12694          default:
12697 12695                  ASSERT(mode == CONN_CLOSE);     /* aborted through CONN_CLOSE */
12698 12696                  break;
12699 12697          }
12700 12698  
12701 12699          /*
12702 12700           * The conn refhold and ioctlref placed on the conn at the start of the
12703 12701           * ioctl are released here.
12704 12702           */
12705 12703          if (connp != NULL) {
12706 12704                  CONN_DEC_IOCTLREF(connp);
12707 12705                  CONN_OPER_PENDING_DONE(connp);
12708 12706          }
12709 12707  
12710 12708          if (ipsq != NULL)
12711 12709                  ipsq_current_finish(ipsq);
12712 12710  }
12713 12711  
12714 12712  /* Handles all non data messages */
12715 12713  int
12716 12714  ip_wput_nondata(queue_t *q, mblk_t *mp)
12717 12715  {
12718 12716          mblk_t          *mp1;
12719 12717          struct iocblk   *iocp;
12720 12718          ip_ioctl_cmd_t  *ipip;
12721 12719          conn_t          *connp;
12722 12720          cred_t          *cr;
12723 12721          char            *proto_str;
12724 12722  
12725 12723          if (CONN_Q(q))
12726 12724                  connp = Q_TO_CONN(q);
12727 12725          else
12728 12726                  connp = NULL;
12729 12727  
12730 12728          switch (DB_TYPE(mp)) {
12731 12729          case M_IOCTL:
12732 12730                  /*
12733 12731                   * IOCTL processing begins in ip_sioctl_copyin_setup which
12734 12732                   * will arrange to copy in associated control structures.
12735 12733                   */
12736 12734                  ip_sioctl_copyin_setup(q, mp);
12737 12735                  return (0);
12738 12736          case M_IOCDATA:
12739 12737                  /*
12740 12738                   * Ensure that this is associated with one of our trans-
12741 12739                   * parent ioctls.  If it's not ours, discard it if we're
12742 12740                   * running as a driver, or pass it on if we're a module.
12743 12741                   */
12744 12742                  iocp = (struct iocblk *)mp->b_rptr;
12745 12743                  ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12746 12744                  if (ipip == NULL) {
12747 12745                          if (q->q_next == NULL) {
12748 12746                                  goto nak;
12749 12747                          } else {
12750 12748                                  putnext(q, mp);
12751 12749                          }
12752 12750                          return (0);
12753 12751                  }
12754 12752                  if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12755 12753                          /*
12756 12754                           * The ioctl is one we recognise, but is not consumed
12757 12755                           * by IP as a module and we are a module, so we drop
12758 12756                           */
12759 12757                          goto nak;
12760 12758                  }
12761 12759  
12762 12760                  /* IOCTL continuation following copyin or copyout. */
12763 12761                  if (mi_copy_state(q, mp, NULL) == -1) {
12764 12762                          /*
12765 12763                           * The copy operation failed.  mi_copy_state already
12766 12764                           * cleaned up, so we're out of here.
12767 12765                           */
12768 12766                          return (0);
12769 12767                  }
12770 12768                  /*
12771 12769                   * If we just completed a copy in, we become writer and
12772 12770                   * continue processing in ip_sioctl_copyin_done.  If it
12773 12771                   * was a copy out, we call mi_copyout again.  If there is
12774 12772                   * nothing more to copy out, it will complete the IOCTL.
12775 12773                   */
12776 12774                  if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12777 12775                          if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12778 12776                                  mi_copy_done(q, mp, EPROTO);
12779 12777                                  return (0);
12780 12778                          }
12781 12779                          /*
12782 12780                           * Check for cases that need more copying.  A return
12783 12781                           * value of 0 means a second copyin has been started,
12784 12782                           * so we return; a return value of 1 means no more
12785 12783                           * copying is needed, so we continue.
12786 12784                           */
12787 12785                          if (ipip->ipi_cmd_type == MSFILT_CMD &&
12788 12786                              MI_COPY_COUNT(mp) == 1) {
12789 12787                                  if (ip_copyin_msfilter(q, mp) == 0)
12790 12788                                          return (0);
12791 12789                          }
12792 12790                          /*
12793 12791                           * Refhold the conn, till the ioctl completes. This is
12794 12792                           * needed in case the ioctl ends up in the pending mp
12795 12793                           * list. Every mp in the ipx_pending_mp list must have
12796 12794                           * a refhold on the conn to resume processing. The
12797 12795                           * refhold is released when the ioctl completes
12798 12796                           * (whether normally or abnormally). An ioctlref is also
12799 12797                           * placed on the conn to prevent TCP from removing the
12800 12798                           * queue needed to send the ioctl reply back.
12801 12799                           * In all cases ip_ioctl_finish is called to finish
12802 12800                           * the ioctl and release the refholds.
12803 12801                           */
12804 12802                          if (connp != NULL) {
12805 12803                                  /* This is not a reentry */
12806 12804                                  CONN_INC_REF(connp);
12807 12805                                  CONN_INC_IOCTLREF(connp);
12808 12806                          } else {
12809 12807                                  if (!(ipip->ipi_flags & IPI_MODOK)) {
12810 12808                                          mi_copy_done(q, mp, EINVAL);
12811 12809                                          return (0);
12812 12810                                  }
12813 12811                          }
12814 12812  
12815 12813                          ip_process_ioctl(NULL, q, mp, ipip);
12816 12814  
12817 12815                  } else {
12818 12816                          mi_copyout(q, mp);
12819 12817                  }
12820 12818                  return (0);
12821 12819  
12822 12820          case M_IOCNAK:
12823 12821                  /*
12824 12822                   * The only way we could get here is if a resolver didn't like
12825 12823                   * an IOCTL we sent it.  This shouldn't happen.
12826 12824                   */
12827 12825                  (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12828 12826                      "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12829 12827                      ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12830 12828                  freemsg(mp);
12831 12829                  return (0);
12832 12830          case M_IOCACK:
12833 12831                  /* /dev/ip shouldn't see this */
12834 12832                  goto nak;
12835 12833          case M_FLUSH:
12836 12834                  if (*mp->b_rptr & FLUSHW)
12837 12835                          flushq(q, FLUSHALL);
12838 12836                  if (q->q_next) {
12839 12837                          putnext(q, mp);
12840 12838                          return (0);
12841 12839                  }
12842 12840                  if (*mp->b_rptr & FLUSHR) {
12843 12841                          *mp->b_rptr &= ~FLUSHW;
12844 12842                          qreply(q, mp);
12845 12843                          return (0);
12846 12844                  }
12847 12845                  freemsg(mp);
12848 12846                  return (0);
12849 12847          case M_CTL:
12850 12848                  break;
12851 12849          case M_PROTO:
12852 12850          case M_PCPROTO:
12853 12851                  /*
12854 12852                   * The only PROTO messages we expect are SNMP-related.
12855 12853                   */
12856 12854                  switch (((union T_primitives *)mp->b_rptr)->type) {
12857 12855                  case T_SVR4_OPTMGMT_REQ:
12858 12856                          ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12859 12857                              "flags %x\n",
12860 12858                              ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12861 12859  
12862 12860                          if (connp == NULL) {
12863 12861                                  proto_str = "T_SVR4_OPTMGMT_REQ";
12864 12862                                  goto protonak;
12865 12863                          }
12866 12864  
12867 12865                          /*
12868 12866                           * All Solaris components should pass a db_credp
12869 12867                           * for this TPI message, hence we ASSERT.
12870 12868                           * But in case there is some other M_PROTO that looks
12871 12869                           * like a TPI message sent by some other kernel
12872 12870                           * component, we check and return an error.
12873 12871                           */
12874 12872                          cr = msg_getcred(mp, NULL);
12875 12873                          ASSERT(cr != NULL);
12876 12874                          if (cr == NULL) {
12877 12875                                  mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12878 12876                                  if (mp != NULL)
12879 12877                                          qreply(q, mp);
12880 12878                                  return (0);
12881 12879                          }
12882 12880  
12883 12881                          if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12884 12882                                  proto_str = "Bad SNMPCOM request?";
12885 12883                                  goto protonak;
12886 12884                          }
12887 12885                          return (0);
12888 12886                  default:
12889 12887                          ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12890 12888                              (int)*(uint_t *)mp->b_rptr));
12891 12889                          freemsg(mp);
12892 12890                          return (0);
12893 12891                  }
12894 12892          default:
12895 12893                  break;
12896 12894          }
12897 12895          if (q->q_next) {
12898 12896                  putnext(q, mp);
12899 12897          } else
12900 12898                  freemsg(mp);
12901 12899          return (0);
12902 12900  
12903 12901  nak:
12904 12902          iocp->ioc_error = EINVAL;
12905 12903          mp->b_datap->db_type = M_IOCNAK;
12906 12904          iocp->ioc_count = 0;
12907 12905          qreply(q, mp);
12908 12906          return (0);
12909 12907  
12910 12908  protonak:
12911 12909          cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12912 12910          if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12913 12911                  qreply(q, mp);
12914 12912          return (0);
12915 12913  }
12916 12914  
12917 12915  /*
12918 12916   * Process IP options in an outbound packet.  Verify that the nexthop in a
12919 12917   * strict source route is onlink.
12920 12918   * Returns non-zero if something fails in which case an ICMP error has been
12921 12919   * sent and mp freed.
12922 12920   *
12923 12921   * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12924 12922   */
12925 12923  int
12926 12924  ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12927 12925  {
12928 12926          ipoptp_t        opts;
12929 12927          uchar_t         *opt;
12930 12928          uint8_t         optval;
12931 12929          uint8_t         optlen;
12932 12930          ipaddr_t        dst;
12933 12931          intptr_t        code = 0;
12934 12932          ire_t           *ire;
12935 12933          ip_stack_t      *ipst = ixa->ixa_ipst;
12936 12934          ip_recv_attr_t  iras;
12937 12935  
12938 12936          ip2dbg(("ip_output_options\n"));
12939 12937  
12940 12938          dst = ipha->ipha_dst;
12941 12939          for (optval = ipoptp_first(&opts, ipha);
12942 12940              optval != IPOPT_EOL;
12943 12941              optval = ipoptp_next(&opts)) {
12944 12942                  opt = opts.ipoptp_cur;
12945 12943                  optlen = opts.ipoptp_len;
12946 12944                  ip2dbg(("ip_output_options: opt %d, len %d\n",
12947 12945                      optval, optlen));
12948 12946                  switch (optval) {
12949 12947                          uint32_t off;
12950 12948                  case IPOPT_SSRR:
12951 12949                  case IPOPT_LSRR:
12952 12950                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12953 12951                                  ip1dbg((
12954 12952                                      "ip_output_options: bad option offset\n"));
12955 12953                                  code = (char *)&opt[IPOPT_OLEN] -
12956 12954                                      (char *)ipha;
12957 12955                                  goto param_prob;
12958 12956                          }
12959 12957                          off = opt[IPOPT_OFFSET];
12960 12958                          ip1dbg(("ip_output_options: next hop 0x%x\n",
12961 12959                              ntohl(dst)));
12962 12960                          /*
12963 12961                           * For strict: verify that dst is directly
12964 12962                           * reachable.
12965 12963                           */
12966 12964                          if (optval == IPOPT_SSRR) {
12967 12965                                  ire = ire_ftable_lookup_v4(dst, 0, 0,
12968 12966                                      IRE_INTERFACE, NULL, ALL_ZONES,
12969 12967                                      ixa->ixa_tsl,
12970 12968                                      MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12971 12969                                      NULL);
12972 12970                                  if (ire == NULL) {
12973 12971                                          ip1dbg(("ip_output_options: SSRR not"
12974 12972                                              " directly reachable: 0x%x\n",
12975 12973                                              ntohl(dst)));
12976 12974                                          goto bad_src_route;
12977 12975                                  }
12978 12976                                  ire_refrele(ire);
12979 12977                          }
12980 12978                          break;
12981 12979                  case IPOPT_RR:
12982 12980                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12983 12981                                  ip1dbg((
12984 12982                                      "ip_output_options: bad option offset\n"));
12985 12983                                  code = (char *)&opt[IPOPT_OLEN] -
12986 12984                                      (char *)ipha;
12987 12985                                  goto param_prob;
12988 12986                          }
12989 12987                          break;
12990 12988                  case IPOPT_TS:
12991 12989                          /*
12992 12990                           * Verify that length >=5 and that there is either
12993 12991                           * room for another timestamp or that the overflow
12994 12992                           * counter is not maxed out.
12995 12993                           */
12996 12994                          code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
12997 12995                          if (optlen < IPOPT_MINLEN_IT) {
12998 12996                                  goto param_prob;
12999 12997                          }
13000 12998                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13001 12999                                  ip1dbg((
13002 13000                                      "ip_output_options: bad option offset\n"));
13003 13001                                  code = (char *)&opt[IPOPT_OFFSET] -
13004 13002                                      (char *)ipha;
13005 13003                                  goto param_prob;
13006 13004                          }
13007 13005                          switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13008 13006                          case IPOPT_TS_TSONLY:
13009 13007                                  off = IPOPT_TS_TIMELEN;
13010 13008                                  break;
13011 13009                          case IPOPT_TS_TSANDADDR:
13012 13010                          case IPOPT_TS_PRESPEC:
13013 13011                          case IPOPT_TS_PRESPEC_RFC791:
13014 13012                                  off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13015 13013                                  break;
13016 13014                          default:
13017 13015                                  code = (char *)&opt[IPOPT_POS_OV_FLG] -
13018 13016                                      (char *)ipha;
13019 13017                                  goto param_prob;
13020 13018                          }
13021 13019                          if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13022 13020                              (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13023 13021                                  /*
13024 13022                                   * No room and the overflow counter is 15
13025 13023                                   * already.
13026 13024                                   */
13027 13025                                  goto param_prob;
13028 13026                          }
13029 13027                          break;
13030 13028                  }
13031 13029          }
13032 13030  
13033 13031          if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13034 13032                  return (0);
13035 13033  
13036 13034          ip1dbg(("ip_output_options: error processing IP options."));
13037 13035          code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13038 13036  
13039 13037  param_prob:
13040 13038          bzero(&iras, sizeof (iras));
13041 13039          iras.ira_ill = iras.ira_rill = ill;
13042 13040          iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13043 13041          iras.ira_rifindex = iras.ira_ruifindex;
13044 13042          iras.ira_flags = IRAF_IS_IPV4;
13045 13043  
13046 13044          ip_drop_output("ip_output_options", mp, ill);
13047 13045          icmp_param_problem(mp, (uint8_t)code, &iras);
13048 13046          ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13049 13047          return (-1);
13050 13048  
13051 13049  bad_src_route:
13052 13050          bzero(&iras, sizeof (iras));
13053 13051          iras.ira_ill = iras.ira_rill = ill;
13054 13052          iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13055 13053          iras.ira_rifindex = iras.ira_ruifindex;
13056 13054          iras.ira_flags = IRAF_IS_IPV4;
13057 13055  
13058 13056          ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13059 13057          icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13060 13058          ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13061 13059          return (-1);
13062 13060  }
13063 13061  
13064 13062  /*
13065 13063   * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13066 13064   * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13067 13065   * thru /etc/system.
13068 13066   */
13069 13067  #define CONN_MAXDRAINCNT        64
13070 13068  
13071 13069  static void
13072 13070  conn_drain_init(ip_stack_t *ipst)
13073 13071  {
13074 13072          int i, j;
13075 13073          idl_tx_list_t *itl_tx;
13076 13074  
13077 13075          ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13078 13076  
13079 13077          if ((ipst->ips_conn_drain_list_cnt == 0) ||
13080 13078              (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13081 13079                  /*
13082 13080                   * Default value of the number of drainers is the
13083 13081                   * number of cpus, subject to maximum of 8 drainers.
13084 13082                   */
13085 13083                  if (boot_max_ncpus != -1)
13086 13084                          ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13087 13085                  else
13088 13086                          ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13089 13087          }
13090 13088  
13091 13089          ipst->ips_idl_tx_list =
13092 13090              kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13093 13091          for (i = 0; i < TX_FANOUT_SIZE; i++) {
13094 13092                  itl_tx =  &ipst->ips_idl_tx_list[i];
13095 13093                  itl_tx->txl_drain_list =
13096 13094                      kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13097 13095                      sizeof (idl_t), KM_SLEEP);
13098 13096                  mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13099 13097                  for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13100 13098                          mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13101 13099                              MUTEX_DEFAULT, NULL);
13102 13100                          itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13103 13101                  }
13104 13102          }
13105 13103  }
13106 13104  
13107 13105  static void
13108 13106  conn_drain_fini(ip_stack_t *ipst)
13109 13107  {
13110 13108          int i;
13111 13109          idl_tx_list_t *itl_tx;
13112 13110  
13113 13111          for (i = 0; i < TX_FANOUT_SIZE; i++) {
13114 13112                  itl_tx =  &ipst->ips_idl_tx_list[i];
13115 13113                  kmem_free(itl_tx->txl_drain_list,
13116 13114                      ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13117 13115          }
13118 13116          kmem_free(ipst->ips_idl_tx_list,
13119 13117              TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13120 13118          ipst->ips_idl_tx_list = NULL;
13121 13119  }
13122 13120  
13123 13121  /*
13124 13122   * Flow control has blocked us from proceeding.  Insert the given conn in one
13125 13123   * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13126 13124   * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13127 13125   * will call conn_walk_drain().  See the flow control notes at the top of this
13128 13126   * file for more details.
13129 13127   */
13130 13128  void
13131 13129  conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13132 13130  {
13133 13131          idl_t   *idl = tx_list->txl_drain_list;
13134 13132          uint_t  index;
13135 13133          ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
13136 13134  
13137 13135          mutex_enter(&connp->conn_lock);
13138 13136          if (connp->conn_state_flags & CONN_CLOSING) {
13139 13137                  /*
13140 13138                   * The conn is closing as a result of which CONN_CLOSING
13141 13139                   * is set. Return.
13142 13140                   */
13143 13141                  mutex_exit(&connp->conn_lock);
13144 13142                  return;
13145 13143          } else if (connp->conn_idl == NULL) {
13146 13144                  /*
13147 13145                   * Assign the next drain list round robin. We dont' use
13148 13146                   * a lock, and thus it may not be strictly round robin.
13149 13147                   * Atomicity of load/stores is enough to make sure that
13150 13148                   * conn_drain_list_index is always within bounds.
13151 13149                   */
13152 13150                  index = tx_list->txl_drain_index;
13153 13151                  ASSERT(index < ipst->ips_conn_drain_list_cnt);
13154 13152                  connp->conn_idl = &tx_list->txl_drain_list[index];
13155 13153                  index++;
13156 13154                  if (index == ipst->ips_conn_drain_list_cnt)
13157 13155                          index = 0;
13158 13156                  tx_list->txl_drain_index = index;
13159 13157          } else {
13160 13158                  ASSERT(connp->conn_idl->idl_itl == tx_list);
13161 13159          }
13162 13160          mutex_exit(&connp->conn_lock);
13163 13161  
13164 13162          idl = connp->conn_idl;
13165 13163          mutex_enter(&idl->idl_lock);
13166 13164          if ((connp->conn_drain_prev != NULL) ||
13167 13165              (connp->conn_state_flags & CONN_CLOSING)) {
13168 13166                  /*
13169 13167                   * The conn is either already in the drain list or closing.
13170 13168                   * (We needed to check for CONN_CLOSING again since close can
13171 13169                   * sneak in between dropping conn_lock and acquiring idl_lock.)
13172 13170                   */
13173 13171                  mutex_exit(&idl->idl_lock);
13174 13172                  return;
13175 13173          }
13176 13174  
13177 13175          /*
13178 13176           * The conn is not in the drain list. Insert it at the
13179 13177           * tail of the drain list. The drain list is circular
13180 13178           * and doubly linked. idl_conn points to the 1st element
13181 13179           * in the list.
13182 13180           */
13183 13181          if (idl->idl_conn == NULL) {
13184 13182                  idl->idl_conn = connp;
13185 13183                  connp->conn_drain_next = connp;
13186 13184                  connp->conn_drain_prev = connp;
13187 13185          } else {
13188 13186                  conn_t *head = idl->idl_conn;
13189 13187  
13190 13188                  connp->conn_drain_next = head;
13191 13189                  connp->conn_drain_prev = head->conn_drain_prev;
13192 13190                  head->conn_drain_prev->conn_drain_next = connp;
13193 13191                  head->conn_drain_prev = connp;
13194 13192          }
13195 13193          /*
13196 13194           * For non streams based sockets assert flow control.
13197 13195           */
13198 13196          conn_setqfull(connp, NULL);
13199 13197          mutex_exit(&idl->idl_lock);
13200 13198  }
13201 13199  
13202 13200  static void
13203 13201  conn_drain_remove(conn_t *connp)
13204 13202  {
13205 13203          idl_t *idl = connp->conn_idl;
13206 13204  
13207 13205          if (idl != NULL) {
13208 13206                  /*
13209 13207                   * Remove ourself from the drain list.
13210 13208                   */
13211 13209                  if (connp->conn_drain_next == connp) {
13212 13210                          /* Singleton in the list */
13213 13211                          ASSERT(connp->conn_drain_prev == connp);
13214 13212                          idl->idl_conn = NULL;
13215 13213                  } else {
13216 13214                          connp->conn_drain_prev->conn_drain_next =
13217 13215                              connp->conn_drain_next;
13218 13216                          connp->conn_drain_next->conn_drain_prev =
13219 13217                              connp->conn_drain_prev;
13220 13218                          if (idl->idl_conn == connp)
13221 13219                                  idl->idl_conn = connp->conn_drain_next;
13222 13220                  }
13223 13221  
13224 13222                  /*
13225 13223                   * NOTE: because conn_idl is associated with a specific drain
13226 13224                   * list which in turn is tied to the index the TX ring
13227 13225                   * (txl_cookie) hashes to, and because the TX ring can change
13228 13226                   * over the lifetime of the conn_t, we must clear conn_idl so
13229 13227                   * a subsequent conn_drain_insert() will set conn_idl again
13230 13228                   * based on the latest txl_cookie.
13231 13229                   */
13232 13230                  connp->conn_idl = NULL;
13233 13231          }
13234 13232          connp->conn_drain_next = NULL;
13235 13233          connp->conn_drain_prev = NULL;
13236 13234  
13237 13235          conn_clrqfull(connp, NULL);
13238 13236          /*
13239 13237           * For streams based sockets open up flow control.
13240 13238           */
13241 13239          if (!IPCL_IS_NONSTR(connp))
13242 13240                  enableok(connp->conn_wq);
13243 13241  }
13244 13242  
13245 13243  /*
13246 13244   * This conn is closing, and we are called from ip_close. OR
13247 13245   * this conn is draining because flow-control on the ill has been relieved.
13248 13246   *
13249 13247   * We must also need to remove conn's on this idl from the list, and also
13250 13248   * inform the sockfs upcalls about the change in flow-control.
13251 13249   */
13252 13250  static void
13253 13251  conn_drain(conn_t *connp, boolean_t closing)
13254 13252  {
13255 13253          idl_t *idl;
13256 13254          conn_t *next_connp;
13257 13255  
13258 13256          /*
13259 13257           * connp->conn_idl is stable at this point, and no lock is needed
13260 13258           * to check it. If we are called from ip_close, close has already
13261 13259           * set CONN_CLOSING, thus freezing the value of conn_idl, and
13262 13260           * called us only because conn_idl is non-null. If we are called thru
13263 13261           * service, conn_idl could be null, but it cannot change because
13264 13262           * service is single-threaded per queue, and there cannot be another
13265 13263           * instance of service trying to call conn_drain_insert on this conn
13266 13264           * now.
13267 13265           */
13268 13266          ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13269 13267  
13270 13268          /*
13271 13269           * If the conn doesn't exist or is not on a drain list, bail.
13272 13270           */
13273 13271          if (connp == NULL || connp->conn_idl == NULL ||
13274 13272              connp->conn_drain_prev == NULL) {
13275 13273                  return;
13276 13274          }
13277 13275  
13278 13276          idl = connp->conn_idl;
13279 13277          ASSERT(MUTEX_HELD(&idl->idl_lock));
13280 13278  
13281 13279          if (!closing) {
13282 13280                  next_connp = connp->conn_drain_next;
13283 13281                  while (next_connp != connp) {
13284 13282                          conn_t *delconnp = next_connp;
13285 13283  
13286 13284                          next_connp = next_connp->conn_drain_next;
13287 13285                          conn_drain_remove(delconnp);
13288 13286                  }
13289 13287                  ASSERT(connp->conn_drain_next == idl->idl_conn);
13290 13288          }
13291 13289          conn_drain_remove(connp);
13292 13290  }
13293 13291  
13294 13292  /*
13295 13293   * Write service routine. Shared perimeter entry point.
13296 13294   * The device queue's messages has fallen below the low water mark and STREAMS
13297 13295   * has backenabled the ill_wq. Send sockfs notification about flow-control on
13298 13296   * each waiting conn.
13299 13297   */
13300 13298  int
13301 13299  ip_wsrv(queue_t *q)
13302 13300  {
13303 13301          ill_t   *ill;
13304 13302  
13305 13303          ill = (ill_t *)q->q_ptr;
13306 13304          if (ill->ill_state_flags == 0) {
13307 13305                  ip_stack_t *ipst = ill->ill_ipst;
13308 13306  
13309 13307                  /*
13310 13308                   * The device flow control has opened up.
13311 13309                   * Walk through conn drain lists and qenable the
13312 13310                   * first conn in each list. This makes sense only
13313 13311                   * if the stream is fully plumbed and setup.
13314 13312                   * Hence the ill_state_flags check above.
13315 13313                   */
13316 13314                  ip1dbg(("ip_wsrv: walking\n"));
13317 13315                  conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13318 13316                  enableok(ill->ill_wq);
13319 13317          }
13320 13318          return (0);
13321 13319  }
13322 13320  
13323 13321  /*
13324 13322   * Callback to disable flow control in IP.
13325 13323   *
13326 13324   * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13327 13325   * is enabled.
13328 13326   *
13329 13327   * When MAC_TX() is not able to send any more packets, dld sets its queue
13330 13328   * to QFULL and enable the STREAMS flow control. Later, when the underlying
13331 13329   * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13332 13330   * function and wakes up corresponding mac worker threads, which in turn
13333 13331   * calls this callback function, and disables flow control.
13334 13332   */
13335 13333  void
13336 13334  ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13337 13335  {
13338 13336          ill_t *ill = (ill_t *)arg;
13339 13337          ip_stack_t *ipst = ill->ill_ipst;
13340 13338          idl_tx_list_t *idl_txl;
13341 13339  
13342 13340          idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13343 13341          mutex_enter(&idl_txl->txl_lock);
13344 13342          /* add code to to set a flag to indicate idl_txl is enabled */
13345 13343          conn_walk_drain(ipst, idl_txl);
13346 13344          mutex_exit(&idl_txl->txl_lock);
13347 13345  }
13348 13346  
13349 13347  /*
13350 13348   * Flow control has been relieved and STREAMS has backenabled us; drain
13351 13349   * all the conn lists on `tx_list'.
13352 13350   */
13353 13351  static void
13354 13352  conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13355 13353  {
13356 13354          int i;
13357 13355          idl_t *idl;
13358 13356  
13359 13357          IP_STAT(ipst, ip_conn_walk_drain);
13360 13358  
13361 13359          for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13362 13360                  idl = &tx_list->txl_drain_list[i];
13363 13361                  mutex_enter(&idl->idl_lock);
13364 13362                  conn_drain(idl->idl_conn, B_FALSE);
13365 13363                  mutex_exit(&idl->idl_lock);
13366 13364          }
13367 13365  }
13368 13366  
13369 13367  /*
13370 13368   * Determine if the ill and multicast aspects of that packets
13371 13369   * "matches" the conn.
13372 13370   */
13373 13371  boolean_t
13374 13372  conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13375 13373  {
13376 13374          ill_t           *ill = ira->ira_rill;
13377 13375          zoneid_t        zoneid = ira->ira_zoneid;
13378 13376          uint_t          in_ifindex;
13379 13377          ipaddr_t        dst, src;
13380 13378  
13381 13379          dst = ipha->ipha_dst;
13382 13380          src = ipha->ipha_src;
13383 13381  
13384 13382          /*
13385 13383           * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13386 13384           * unicast, broadcast and multicast reception to
13387 13385           * conn_incoming_ifindex.
13388 13386           * conn_wantpacket is called for unicast, broadcast and
13389 13387           * multicast packets.
13390 13388           */
13391 13389          in_ifindex = connp->conn_incoming_ifindex;
13392 13390  
13393 13391          /* mpathd can bind to the under IPMP interface, which we allow */
13394 13392          if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13395 13393                  if (!IS_UNDER_IPMP(ill))
13396 13394                          return (B_FALSE);
13397 13395  
13398 13396                  if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13399 13397                          return (B_FALSE);
13400 13398          }
13401 13399  
13402 13400          if (!IPCL_ZONE_MATCH(connp, zoneid))
13403 13401                  return (B_FALSE);
13404 13402  
13405 13403          if (!(ira->ira_flags & IRAF_MULTICAST))
13406 13404                  return (B_TRUE);
13407 13405  
13408 13406          if (connp->conn_multi_router) {
13409 13407                  /* multicast packet and multicast router socket: send up */
13410 13408                  return (B_TRUE);
13411 13409          }
13412 13410  
13413 13411          if (ipha->ipha_protocol == IPPROTO_PIM ||
13414 13412              ipha->ipha_protocol == IPPROTO_RSVP)
13415 13413                  return (B_TRUE);
13416 13414  
13417 13415          return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13418 13416  }
13419 13417  
13420 13418  void
13421 13419  conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13422 13420  {
13423 13421          if (IPCL_IS_NONSTR(connp)) {
13424 13422                  (*connp->conn_upcalls->su_txq_full)
13425 13423                      (connp->conn_upper_handle, B_TRUE);
13426 13424                  if (flow_stopped != NULL)
13427 13425                          *flow_stopped = B_TRUE;
13428 13426          } else {
13429 13427                  queue_t *q = connp->conn_wq;
13430 13428  
13431 13429                  ASSERT(q != NULL);
13432 13430                  if (!(q->q_flag & QFULL)) {
13433 13431                          mutex_enter(QLOCK(q));
13434 13432                          if (!(q->q_flag & QFULL)) {
13435 13433                                  /* still need to set QFULL */
13436 13434                                  q->q_flag |= QFULL;
13437 13435                                  /* set flow_stopped to true under QLOCK */
13438 13436                                  if (flow_stopped != NULL)
13439 13437                                          *flow_stopped = B_TRUE;
13440 13438                                  mutex_exit(QLOCK(q));
13441 13439                          } else {
13442 13440                                  /* flow_stopped is left unchanged */
13443 13441                                  mutex_exit(QLOCK(q));
13444 13442                          }
13445 13443                  }
13446 13444          }
13447 13445  }
13448 13446  
13449 13447  void
13450 13448  conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13451 13449  {
13452 13450          if (IPCL_IS_NONSTR(connp)) {
13453 13451                  (*connp->conn_upcalls->su_txq_full)
13454 13452                      (connp->conn_upper_handle, B_FALSE);
13455 13453                  if (flow_stopped != NULL)
13456 13454                          *flow_stopped = B_FALSE;
13457 13455          } else {
13458 13456                  queue_t *q = connp->conn_wq;
13459 13457  
13460 13458                  ASSERT(q != NULL);
13461 13459                  if (q->q_flag & QFULL) {
13462 13460                          mutex_enter(QLOCK(q));
13463 13461                          if (q->q_flag & QFULL) {
13464 13462                                  q->q_flag &= ~QFULL;
13465 13463                                  /* set flow_stopped to false under QLOCK */
13466 13464                                  if (flow_stopped != NULL)
13467 13465                                          *flow_stopped = B_FALSE;
13468 13466                                  mutex_exit(QLOCK(q));
13469 13467                                  if (q->q_flag & QWANTW)
13470 13468                                          qbackenable(q, 0);
13471 13469                          } else {
13472 13470                                  /* flow_stopped is left unchanged */
13473 13471                                  mutex_exit(QLOCK(q));
13474 13472                          }
13475 13473                  }
13476 13474          }
13477 13475  
13478 13476          mutex_enter(&connp->conn_lock);
13479 13477          connp->conn_blocked = B_FALSE;
13480 13478          mutex_exit(&connp->conn_lock);
13481 13479  }
13482 13480  
13483 13481  /*
13484 13482   * Return the length in bytes of the IPv4 headers (base header, label, and
13485 13483   * other IP options) that will be needed based on the
13486 13484   * ip_pkt_t structure passed by the caller.
13487 13485   *
13488 13486   * The returned length does not include the length of the upper level
13489 13487   * protocol (ULP) header.
13490 13488   * The caller needs to check that the length doesn't exceed the max for IPv4.
13491 13489   */
13492 13490  int
13493 13491  ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13494 13492  {
13495 13493          int len;
13496 13494  
13497 13495          len = IP_SIMPLE_HDR_LENGTH;
13498 13496          if (ipp->ipp_fields & IPPF_LABEL_V4) {
13499 13497                  ASSERT(ipp->ipp_label_len_v4 != 0);
13500 13498                  /* We need to round up here */
13501 13499                  len += (ipp->ipp_label_len_v4 + 3) & ~3;
13502 13500          }
13503 13501  
13504 13502          if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13505 13503                  ASSERT(ipp->ipp_ipv4_options_len != 0);
13506 13504                  ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13507 13505                  len += ipp->ipp_ipv4_options_len;
13508 13506          }
13509 13507          return (len);
13510 13508  }
13511 13509  
13512 13510  /*
13513 13511   * All-purpose routine to build an IPv4 header with options based
13514 13512   * on the abstract ip_pkt_t.
13515 13513   *
13516 13514   * The caller has to set the source and destination address as well as
13517 13515   * ipha_length. The caller has to massage any source route and compensate
13518 13516   * for the ULP pseudo-header checksum due to the source route.
13519 13517   */
13520 13518  void
13521 13519  ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13522 13520      uint8_t protocol)
13523 13521  {
13524 13522          ipha_t  *ipha = (ipha_t *)buf;
13525 13523          uint8_t *cp;
13526 13524  
13527 13525          /* Initialize IPv4 header */
13528 13526          ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13529 13527          ipha->ipha_length = 0;  /* Caller will set later */
13530 13528          ipha->ipha_ident = 0;
13531 13529          ipha->ipha_fragment_offset_and_flags = 0;
13532 13530          ipha->ipha_ttl = ipp->ipp_unicast_hops;
13533 13531          ipha->ipha_protocol = protocol;
13534 13532          ipha->ipha_hdr_checksum = 0;
13535 13533  
13536 13534          if ((ipp->ipp_fields & IPPF_ADDR) &&
13537 13535              IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13538 13536                  ipha->ipha_src = ipp->ipp_addr_v4;
13539 13537  
13540 13538          cp = (uint8_t *)&ipha[1];
13541 13539          if (ipp->ipp_fields & IPPF_LABEL_V4) {
13542 13540                  ASSERT(ipp->ipp_label_len_v4 != 0);
13543 13541                  bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13544 13542                  cp += ipp->ipp_label_len_v4;
13545 13543                  /* We need to round up here */
13546 13544                  while ((uintptr_t)cp & 0x3) {
13547 13545                          *cp++ = IPOPT_NOP;
13548 13546                  }
13549 13547          }
13550 13548  
13551 13549          if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13552 13550                  ASSERT(ipp->ipp_ipv4_options_len != 0);
13553 13551                  ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13554 13552                  bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13555 13553                  cp += ipp->ipp_ipv4_options_len;
13556 13554          }
13557 13555          ipha->ipha_version_and_hdr_length =
13558 13556              (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13559 13557  
13560 13558          ASSERT((int)(cp - buf) == buf_len);
13561 13559  }
13562 13560  
13563 13561  /* Allocate the private structure */
13564 13562  static int
13565 13563  ip_priv_alloc(void **bufp)
13566 13564  {
13567 13565          void    *buf;
13568 13566  
13569 13567          if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13570 13568                  return (ENOMEM);
13571 13569  
13572 13570          *bufp = buf;
13573 13571          return (0);
13574 13572  }
13575 13573  
13576 13574  /* Function to delete the private structure */
13577 13575  void
13578 13576  ip_priv_free(void *buf)
13579 13577  {
13580 13578          ASSERT(buf != NULL);
13581 13579          kmem_free(buf, sizeof (ip_priv_t));
13582 13580  }
13583 13581  
13584 13582  /*
13585 13583   * The entry point for IPPF processing.
13586 13584   * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13587 13585   * routine just returns.
13588 13586   *
13589 13587   * When called, ip_process generates an ipp_packet_t structure
13590 13588   * which holds the state information for this packet and invokes the
13591 13589   * the classifier (via ipp_packet_process). The classification, depending on
13592 13590   * configured filters, results in a list of actions for this packet. Invoking
13593 13591   * an action may cause the packet to be dropped, in which case we return NULL.
13594 13592   * proc indicates the callout position for
13595 13593   * this packet and ill is the interface this packet arrived on or will leave
13596 13594   * on (inbound and outbound resp.).
13597 13595   *
13598 13596   * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13599 13597   * on the ill corrsponding to the destination IP address.
13600 13598   */
13601 13599  mblk_t *
13602 13600  ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13603 13601  {
13604 13602          ip_priv_t       *priv;
13605 13603          ipp_action_id_t aid;
13606 13604          int             rc = 0;
13607 13605          ipp_packet_t    *pp;
13608 13606  
13609 13607          /* If the classifier is not loaded, return  */
13610 13608          if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13611 13609                  return (mp);
13612 13610          }
13613 13611  
13614 13612          ASSERT(mp != NULL);
13615 13613  
13616 13614          /* Allocate the packet structure */
13617 13615          rc = ipp_packet_alloc(&pp, "ip", aid);
13618 13616          if (rc != 0)
13619 13617                  goto drop;
13620 13618  
13621 13619          /* Allocate the private structure */
13622 13620          rc = ip_priv_alloc((void **)&priv);
13623 13621          if (rc != 0) {
13624 13622                  ipp_packet_free(pp);
13625 13623                  goto drop;
13626 13624          }
13627 13625          priv->proc = proc;
13628 13626          priv->ill_index = ill_get_upper_ifindex(rill);
13629 13627  
13630 13628          ipp_packet_set_private(pp, priv, ip_priv_free);
13631 13629          ipp_packet_set_data(pp, mp);
13632 13630  
13633 13631          /* Invoke the classifier */
13634 13632          rc = ipp_packet_process(&pp);
13635 13633          if (pp != NULL) {
13636 13634                  mp = ipp_packet_get_data(pp);
13637 13635                  ipp_packet_free(pp);
13638 13636                  if (rc != 0)
13639 13637                          goto drop;
13640 13638                  return (mp);
13641 13639          } else {
13642 13640                  /* No mp to trace in ip_drop_input/ip_drop_output  */
13643 13641                  mp = NULL;
13644 13642          }
13645 13643  drop:
13646 13644          if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13647 13645                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13648 13646                  ip_drop_input("ip_process", mp, ill);
13649 13647          } else {
13650 13648                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13651 13649                  ip_drop_output("ip_process", mp, ill);
13652 13650          }
13653 13651          freemsg(mp);
13654 13652          return (NULL);
13655 13653  }
13656 13654  
13657 13655  /*
13658 13656   * Propagate a multicast group membership operation (add/drop) on
13659 13657   * all the interfaces crossed by the related multirt routes.
13660 13658   * The call is considered successful if the operation succeeds
13661 13659   * on at least one interface.
13662 13660   *
13663 13661   * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13664 13662   * multicast addresses with the ire argument being the first one.
13665 13663   * We walk the bucket to find all the of those.
13666 13664   *
13667 13665   * Common to IPv4 and IPv6.
13668 13666   */
13669 13667  static int
13670 13668  ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13671 13669      const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13672 13670      ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13673 13671      mcast_record_t fmode, const in6_addr_t *v6src)
13674 13672  {
13675 13673          ire_t           *ire_gw;
13676 13674          irb_t           *irb;
13677 13675          int             ifindex;
13678 13676          int             error = 0;
13679 13677          int             result;
13680 13678          ip_stack_t      *ipst = ire->ire_ipst;
13681 13679          ipaddr_t        group;
13682 13680          boolean_t       isv6;
13683 13681          int             match_flags;
13684 13682  
13685 13683          if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13686 13684                  IN6_V4MAPPED_TO_IPADDR(v6group, group);
13687 13685                  isv6 = B_FALSE;
13688 13686          } else {
13689 13687                  isv6 = B_TRUE;
13690 13688          }
13691 13689  
13692 13690          irb = ire->ire_bucket;
13693 13691          ASSERT(irb != NULL);
13694 13692  
13695 13693          result = 0;
13696 13694          irb_refhold(irb);
13697 13695          for (; ire != NULL; ire = ire->ire_next) {
13698 13696                  if ((ire->ire_flags & RTF_MULTIRT) == 0)
13699 13697                          continue;
13700 13698  
13701 13699                  /* We handle -ifp routes by matching on the ill if set */
13702 13700                  match_flags = MATCH_IRE_TYPE;
13703 13701                  if (ire->ire_ill != NULL)
13704 13702                          match_flags |= MATCH_IRE_ILL;
13705 13703  
13706 13704                  if (isv6) {
13707 13705                          if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13708 13706                                  continue;
13709 13707  
13710 13708                          ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13711 13709                              0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13712 13710                              match_flags, 0, ipst, NULL);
13713 13711                  } else {
13714 13712                          if (ire->ire_addr != group)
13715 13713                                  continue;
13716 13714  
13717 13715                          ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13718 13716                              0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13719 13717                              match_flags, 0, ipst, NULL);
13720 13718                  }
13721 13719                  /* No interface route exists for the gateway; skip this ire. */
13722 13720                  if (ire_gw == NULL)
13723 13721                          continue;
13724 13722                  if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13725 13723                          ire_refrele(ire_gw);
13726 13724                          continue;
13727 13725                  }
13728 13726                  ASSERT(ire_gw->ire_ill != NULL);        /* IRE_INTERFACE */
13729 13727                  ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13730 13728  
13731 13729                  /*
13732 13730                   * The operation is considered a success if
13733 13731                   * it succeeds at least once on any one interface.
13734 13732                   */
13735 13733                  error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13736 13734                      fmode, v6src);
13737 13735                  if (error == 0)
13738 13736                          result = CGTP_MCAST_SUCCESS;
13739 13737  
13740 13738                  ire_refrele(ire_gw);
13741 13739          }
13742 13740          irb_refrele(irb);
13743 13741          /*
13744 13742           * Consider the call as successful if we succeeded on at least
13745 13743           * one interface. Otherwise, return the last encountered error.
13746 13744           */
13747 13745          return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13748 13746  }
13749 13747  
13750 13748  /*
13751 13749   * Return the expected CGTP hooks version number.
13752 13750   */
13753 13751  int
13754 13752  ip_cgtp_filter_supported(void)
13755 13753  {
13756 13754          return (ip_cgtp_filter_rev);
13757 13755  }
13758 13756  
13759 13757  /*
13760 13758   * CGTP hooks can be registered by invoking this function.
13761 13759   * Checks that the version number matches.
13762 13760   */
13763 13761  int
13764 13762  ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13765 13763  {
13766 13764          netstack_t *ns;
13767 13765          ip_stack_t *ipst;
13768 13766  
13769 13767          if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13770 13768                  return (ENOTSUP);
13771 13769  
13772 13770          ns = netstack_find_by_stackid(stackid);
13773 13771          if (ns == NULL)
13774 13772                  return (EINVAL);
13775 13773          ipst = ns->netstack_ip;
13776 13774          ASSERT(ipst != NULL);
13777 13775  
13778 13776          if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13779 13777                  netstack_rele(ns);
13780 13778                  return (EALREADY);
13781 13779          }
13782 13780  
13783 13781          ipst->ips_ip_cgtp_filter_ops = ops;
13784 13782  
13785 13783          ill_set_inputfn_all(ipst);
13786 13784  
13787 13785          netstack_rele(ns);
13788 13786          return (0);
13789 13787  }
13790 13788  
13791 13789  /*
13792 13790   * CGTP hooks can be unregistered by invoking this function.
13793 13791   * Returns ENXIO if there was no registration.
13794 13792   * Returns EBUSY if the ndd variable has not been turned off.
13795 13793   */
13796 13794  int
13797 13795  ip_cgtp_filter_unregister(netstackid_t stackid)
13798 13796  {
13799 13797          netstack_t *ns;
13800 13798          ip_stack_t *ipst;
13801 13799  
13802 13800          ns = netstack_find_by_stackid(stackid);
13803 13801          if (ns == NULL)
13804 13802                  return (EINVAL);
13805 13803          ipst = ns->netstack_ip;
13806 13804          ASSERT(ipst != NULL);
13807 13805  
13808 13806          if (ipst->ips_ip_cgtp_filter) {
13809 13807                  netstack_rele(ns);
13810 13808                  return (EBUSY);
13811 13809          }
13812 13810  
13813 13811          if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13814 13812                  netstack_rele(ns);
13815 13813                  return (ENXIO);
13816 13814          }
13817 13815          ipst->ips_ip_cgtp_filter_ops = NULL;
13818 13816  
13819 13817          ill_set_inputfn_all(ipst);
13820 13818  
13821 13819          netstack_rele(ns);
13822 13820          return (0);
13823 13821  }
13824 13822  
13825 13823  /*
13826 13824   * Check whether there is a CGTP filter registration.
13827 13825   * Returns non-zero if there is a registration, otherwise returns zero.
13828 13826   * Note: returns zero if bad stackid.
13829 13827   */
13830 13828  int
13831 13829  ip_cgtp_filter_is_registered(netstackid_t stackid)
13832 13830  {
13833 13831          netstack_t *ns;
13834 13832          ip_stack_t *ipst;
13835 13833          int ret;
13836 13834  
13837 13835          ns = netstack_find_by_stackid(stackid);
13838 13836          if (ns == NULL)
13839 13837                  return (0);
13840 13838          ipst = ns->netstack_ip;
13841 13839          ASSERT(ipst != NULL);
13842 13840  
13843 13841          if (ipst->ips_ip_cgtp_filter_ops != NULL)
13844 13842                  ret = 1;
13845 13843          else
13846 13844                  ret = 0;
13847 13845  
13848 13846          netstack_rele(ns);
13849 13847          return (ret);
13850 13848  }
13851 13849  
13852 13850  static int
13853 13851  ip_squeue_switch(int val)
13854 13852  {
13855 13853          int rval;
13856 13854  
13857 13855          switch (val) {
13858 13856          case IP_SQUEUE_ENTER_NODRAIN:
13859 13857                  rval = SQ_NODRAIN;
13860 13858                  break;
13861 13859          case IP_SQUEUE_ENTER:
13862 13860                  rval = SQ_PROCESS;
13863 13861                  break;
13864 13862          case IP_SQUEUE_FILL:
13865 13863          default:
13866 13864                  rval = SQ_FILL;
13867 13865                  break;
13868 13866          }
13869 13867          return (rval);
13870 13868  }
13871 13869  
13872 13870  static void *
13873 13871  ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13874 13872  {
13875 13873          kstat_t *ksp;
13876 13874  
13877 13875          ip_stat_t template = {
13878 13876                  { "ip_udp_fannorm",             KSTAT_DATA_UINT64 },
13879 13877                  { "ip_udp_fanmb",               KSTAT_DATA_UINT64 },
13880 13878                  { "ip_recv_pullup",             KSTAT_DATA_UINT64 },
13881 13879                  { "ip_db_ref",                  KSTAT_DATA_UINT64 },
13882 13880                  { "ip_notaligned",              KSTAT_DATA_UINT64 },
13883 13881                  { "ip_multimblk",               KSTAT_DATA_UINT64 },
13884 13882                  { "ip_opt",                     KSTAT_DATA_UINT64 },
13885 13883                  { "ipsec_proto_ahesp",          KSTAT_DATA_UINT64 },
13886 13884                  { "ip_conn_flputbq",            KSTAT_DATA_UINT64 },
13887 13885                  { "ip_conn_walk_drain",         KSTAT_DATA_UINT64 },
13888 13886                  { "ip_out_sw_cksum",            KSTAT_DATA_UINT64 },
13889 13887                  { "ip_out_sw_cksum_bytes",      KSTAT_DATA_UINT64 },
13890 13888                  { "ip_in_sw_cksum",             KSTAT_DATA_UINT64 },
13891 13889                  { "ip_ire_reclaim_calls",       KSTAT_DATA_UINT64 },
13892 13890                  { "ip_ire_reclaim_deleted",     KSTAT_DATA_UINT64 },
13893 13891                  { "ip_nce_reclaim_calls",       KSTAT_DATA_UINT64 },
13894 13892                  { "ip_nce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13895 13893                  { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 },
13896 13894                  { "ip_nce_mcast_reclaim_deleted",       KSTAT_DATA_UINT64 },
13897 13895                  { "ip_nce_mcast_reclaim_tqfail",        KSTAT_DATA_UINT64 },
13898 13896                  { "ip_dce_reclaim_calls",       KSTAT_DATA_UINT64 },
13899 13897                  { "ip_dce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13900 13898                  { "ip_tcp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13901 13899                  { "ip_tcp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13902 13900                  { "ip_tcp_in_sw_cksum_err",             KSTAT_DATA_UINT64 },
13903 13901                  { "ip_udp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13904 13902                  { "ip_udp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13905 13903                  { "ip_udp_in_sw_cksum_err",     KSTAT_DATA_UINT64 },
13906 13904                  { "conn_in_recvdstaddr",        KSTAT_DATA_UINT64 },
13907 13905                  { "conn_in_recvopts",           KSTAT_DATA_UINT64 },
13908 13906                  { "conn_in_recvif",             KSTAT_DATA_UINT64 },
13909 13907                  { "conn_in_recvslla",           KSTAT_DATA_UINT64 },
13910 13908                  { "conn_in_recvucred",          KSTAT_DATA_UINT64 },
13911 13909                  { "conn_in_recvttl",            KSTAT_DATA_UINT64 },
13912 13910                  { "conn_in_recvhopopts",        KSTAT_DATA_UINT64 },
13913 13911                  { "conn_in_recvhoplimit",       KSTAT_DATA_UINT64 },
13914 13912                  { "conn_in_recvdstopts",        KSTAT_DATA_UINT64 },
13915 13913                  { "conn_in_recvrthdrdstopts",   KSTAT_DATA_UINT64 },
13916 13914                  { "conn_in_recvrthdr",          KSTAT_DATA_UINT64 },
13917 13915                  { "conn_in_recvpktinfo",        KSTAT_DATA_UINT64 },
13918 13916                  { "conn_in_recvtclass",         KSTAT_DATA_UINT64 },
13919 13917                  { "conn_in_timestamp",          KSTAT_DATA_UINT64 },
13920 13918          };
13921 13919  
13922 13920          ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13923 13921              KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13924 13922              KSTAT_FLAG_VIRTUAL, stackid);
13925 13923  
13926 13924          if (ksp == NULL)
13927 13925                  return (NULL);
13928 13926  
13929 13927          bcopy(&template, ip_statisticsp, sizeof (template));
13930 13928          ksp->ks_data = (void *)ip_statisticsp;
13931 13929          ksp->ks_private = (void *)(uintptr_t)stackid;
13932 13930  
13933 13931          kstat_install(ksp);
13934 13932          return (ksp);
13935 13933  }
13936 13934  
13937 13935  static void
13938 13936  ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13939 13937  {
13940 13938          if (ksp != NULL) {
13941 13939                  ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13942 13940                  kstat_delete_netstack(ksp, stackid);
13943 13941          }
13944 13942  }
13945 13943  
13946 13944  static void *
13947 13945  ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13948 13946  {
13949 13947          kstat_t *ksp;
13950 13948  
13951 13949          ip_named_kstat_t template = {
13952 13950                  { "forwarding",         KSTAT_DATA_UINT32, 0 },
13953 13951                  { "defaultTTL",         KSTAT_DATA_UINT32, 0 },
13954 13952                  { "inReceives",         KSTAT_DATA_UINT64, 0 },
13955 13953                  { "inHdrErrors",        KSTAT_DATA_UINT32, 0 },
13956 13954                  { "inAddrErrors",       KSTAT_DATA_UINT32, 0 },
13957 13955                  { "forwDatagrams",      KSTAT_DATA_UINT64, 0 },
13958 13956                  { "inUnknownProtos",    KSTAT_DATA_UINT32, 0 },
13959 13957                  { "inDiscards",         KSTAT_DATA_UINT32, 0 },
13960 13958                  { "inDelivers",         KSTAT_DATA_UINT64, 0 },
13961 13959                  { "outRequests",        KSTAT_DATA_UINT64, 0 },
13962 13960                  { "outDiscards",        KSTAT_DATA_UINT32, 0 },
13963 13961                  { "outNoRoutes",        KSTAT_DATA_UINT32, 0 },
13964 13962                  { "reasmTimeout",       KSTAT_DATA_UINT32, 0 },
13965 13963                  { "reasmReqds",         KSTAT_DATA_UINT32, 0 },
13966 13964                  { "reasmOKs",           KSTAT_DATA_UINT32, 0 },
13967 13965                  { "reasmFails",         KSTAT_DATA_UINT32, 0 },
13968 13966                  { "fragOKs",            KSTAT_DATA_UINT32, 0 },
13969 13967                  { "fragFails",          KSTAT_DATA_UINT32, 0 },
13970 13968                  { "fragCreates",        KSTAT_DATA_UINT32, 0 },
13971 13969                  { "addrEntrySize",      KSTAT_DATA_INT32, 0 },
13972 13970                  { "routeEntrySize",     KSTAT_DATA_INT32, 0 },
13973 13971                  { "netToMediaEntrySize",        KSTAT_DATA_INT32, 0 },
13974 13972                  { "routingDiscards",    KSTAT_DATA_UINT32, 0 },
13975 13973                  { "inErrs",             KSTAT_DATA_UINT32, 0 },
13976 13974                  { "noPorts",            KSTAT_DATA_UINT32, 0 },
13977 13975                  { "inCksumErrs",        KSTAT_DATA_UINT32, 0 },
13978 13976                  { "reasmDuplicates",    KSTAT_DATA_UINT32, 0 },
13979 13977                  { "reasmPartDups",      KSTAT_DATA_UINT32, 0 },
13980 13978                  { "forwProhibits",      KSTAT_DATA_UINT32, 0 },
13981 13979                  { "udpInCksumErrs",     KSTAT_DATA_UINT32, 0 },
13982 13980                  { "udpInOverflows",     KSTAT_DATA_UINT32, 0 },
13983 13981                  { "rawipInOverflows",   KSTAT_DATA_UINT32, 0 },
13984 13982                  { "ipsecInSucceeded",   KSTAT_DATA_UINT32, 0 },
13985 13983                  { "ipsecInFailed",      KSTAT_DATA_INT32, 0 },
13986 13984                  { "memberEntrySize",    KSTAT_DATA_INT32, 0 },
13987 13985                  { "inIPv6",             KSTAT_DATA_UINT32, 0 },
13988 13986                  { "outIPv6",            KSTAT_DATA_UINT32, 0 },
13989 13987                  { "outSwitchIPv6",      KSTAT_DATA_UINT32, 0 },
13990 13988          };
13991 13989  
13992 13990          ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
13993 13991              NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
13994 13992          if (ksp == NULL || ksp->ks_data == NULL)
13995 13993                  return (NULL);
13996 13994  
13997 13995          template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
13998 13996          template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
13999 13997          template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14000 13998          template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14001 13999          template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14002 14000  
14003 14001          template.netToMediaEntrySize.value.i32 =
14004 14002              sizeof (mib2_ipNetToMediaEntry_t);
14005 14003  
14006 14004          template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14007 14005  
14008 14006          bcopy(&template, ksp->ks_data, sizeof (template));
14009 14007          ksp->ks_update = ip_kstat_update;
14010 14008          ksp->ks_private = (void *)(uintptr_t)stackid;
14011 14009  
14012 14010          kstat_install(ksp);
14013 14011          return (ksp);
14014 14012  }
14015 14013  
14016 14014  static void
14017 14015  ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14018 14016  {
14019 14017          if (ksp != NULL) {
14020 14018                  ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14021 14019                  kstat_delete_netstack(ksp, stackid);
14022 14020          }
14023 14021  }
14024 14022  
14025 14023  static int
14026 14024  ip_kstat_update(kstat_t *kp, int rw)
14027 14025  {
14028 14026          ip_named_kstat_t *ipkp;
14029 14027          mib2_ipIfStatsEntry_t ipmib;
14030 14028          ill_walk_context_t ctx;
14031 14029          ill_t *ill;
14032 14030          netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14033 14031          netstack_t      *ns;
14034 14032          ip_stack_t      *ipst;
14035 14033  
14036 14034          if (kp->ks_data == NULL)
14037 14035                  return (EIO);
14038 14036  
14039 14037          if (rw == KSTAT_WRITE)
14040 14038                  return (EACCES);
14041 14039  
14042 14040          ns = netstack_find_by_stackid(stackid);
14043 14041          if (ns == NULL)
14044 14042                  return (-1);
14045 14043          ipst = ns->netstack_ip;
14046 14044          if (ipst == NULL) {
14047 14045                  netstack_rele(ns);
14048 14046                  return (-1);
14049 14047          }
14050 14048          ipkp = (ip_named_kstat_t *)kp->ks_data;
14051 14049  
14052 14050          bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14053 14051          rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14054 14052          ill = ILL_START_WALK_V4(&ctx, ipst);
14055 14053          for (; ill != NULL; ill = ill_next(&ctx, ill))
14056 14054                  ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14057 14055          rw_exit(&ipst->ips_ill_g_lock);
14058 14056  
14059 14057          ipkp->forwarding.value.ui32 =           ipmib.ipIfStatsForwarding;
14060 14058          ipkp->defaultTTL.value.ui32 =           ipmib.ipIfStatsDefaultTTL;
14061 14059          ipkp->inReceives.value.ui64 =           ipmib.ipIfStatsHCInReceives;
14062 14060          ipkp->inHdrErrors.value.ui32 =          ipmib.ipIfStatsInHdrErrors;
14063 14061          ipkp->inAddrErrors.value.ui32 =         ipmib.ipIfStatsInAddrErrors;
14064 14062          ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14065 14063          ipkp->inUnknownProtos.value.ui32 =      ipmib.ipIfStatsInUnknownProtos;
14066 14064          ipkp->inDiscards.value.ui32 =           ipmib.ipIfStatsInDiscards;
14067 14065          ipkp->inDelivers.value.ui64 =           ipmib.ipIfStatsHCInDelivers;
14068 14066          ipkp->outRequests.value.ui64 =          ipmib.ipIfStatsHCOutRequests;
14069 14067          ipkp->outDiscards.value.ui32 =          ipmib.ipIfStatsOutDiscards;
14070 14068          ipkp->outNoRoutes.value.ui32 =          ipmib.ipIfStatsOutNoRoutes;
14071 14069          ipkp->reasmTimeout.value.ui32 =         ipst->ips_ip_reassembly_timeout;
14072 14070          ipkp->reasmReqds.value.ui32 =           ipmib.ipIfStatsReasmReqds;
14073 14071          ipkp->reasmOKs.value.ui32 =             ipmib.ipIfStatsReasmOKs;
14074 14072          ipkp->reasmFails.value.ui32 =           ipmib.ipIfStatsReasmFails;
14075 14073          ipkp->fragOKs.value.ui32 =              ipmib.ipIfStatsOutFragOKs;
14076 14074          ipkp->fragFails.value.ui32 =            ipmib.ipIfStatsOutFragFails;
14077 14075          ipkp->fragCreates.value.ui32 =          ipmib.ipIfStatsOutFragCreates;
14078 14076  
14079 14077          ipkp->routingDiscards.value.ui32 =      0;
14080 14078          ipkp->inErrs.value.ui32 =               ipmib.tcpIfStatsInErrs;
14081 14079          ipkp->noPorts.value.ui32 =              ipmib.udpIfStatsNoPorts;
14082 14080          ipkp->inCksumErrs.value.ui32 =          ipmib.ipIfStatsInCksumErrs;
14083 14081          ipkp->reasmDuplicates.value.ui32 =      ipmib.ipIfStatsReasmDuplicates;
14084 14082          ipkp->reasmPartDups.value.ui32 =        ipmib.ipIfStatsReasmPartDups;
14085 14083          ipkp->forwProhibits.value.ui32 =        ipmib.ipIfStatsForwProhibits;
14086 14084          ipkp->udpInCksumErrs.value.ui32 =       ipmib.udpIfStatsInCksumErrs;
14087 14085          ipkp->udpInOverflows.value.ui32 =       ipmib.udpIfStatsInOverflows;
14088 14086          ipkp->rawipInOverflows.value.ui32 =     ipmib.rawipIfStatsInOverflows;
14089 14087          ipkp->ipsecInSucceeded.value.ui32 =     ipmib.ipsecIfStatsInSucceeded;
14090 14088          ipkp->ipsecInFailed.value.i32 =         ipmib.ipsecIfStatsInFailed;
14091 14089  
14092 14090          ipkp->inIPv6.value.ui32 =       ipmib.ipIfStatsInWrongIPVersion;
14093 14091          ipkp->outIPv6.value.ui32 =      ipmib.ipIfStatsOutWrongIPVersion;
14094 14092          ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14095 14093  
14096 14094          netstack_rele(ns);
14097 14095  
14098 14096          return (0);
14099 14097  }
14100 14098  
14101 14099  static void *
14102 14100  icmp_kstat_init(netstackid_t stackid)
14103 14101  {
14104 14102          kstat_t *ksp;
14105 14103  
14106 14104          icmp_named_kstat_t template = {
14107 14105                  { "inMsgs",             KSTAT_DATA_UINT32 },
14108 14106                  { "inErrors",           KSTAT_DATA_UINT32 },
14109 14107                  { "inDestUnreachs",     KSTAT_DATA_UINT32 },
14110 14108                  { "inTimeExcds",        KSTAT_DATA_UINT32 },
14111 14109                  { "inParmProbs",        KSTAT_DATA_UINT32 },
14112 14110                  { "inSrcQuenchs",       KSTAT_DATA_UINT32 },
14113 14111                  { "inRedirects",        KSTAT_DATA_UINT32 },
14114 14112                  { "inEchos",            KSTAT_DATA_UINT32 },
14115 14113                  { "inEchoReps",         KSTAT_DATA_UINT32 },
14116 14114                  { "inTimestamps",       KSTAT_DATA_UINT32 },
14117 14115                  { "inTimestampReps",    KSTAT_DATA_UINT32 },
14118 14116                  { "inAddrMasks",        KSTAT_DATA_UINT32 },
14119 14117                  { "inAddrMaskReps",     KSTAT_DATA_UINT32 },
14120 14118                  { "outMsgs",            KSTAT_DATA_UINT32 },
14121 14119                  { "outErrors",          KSTAT_DATA_UINT32 },
14122 14120                  { "outDestUnreachs",    KSTAT_DATA_UINT32 },
14123 14121                  { "outTimeExcds",       KSTAT_DATA_UINT32 },
14124 14122                  { "outParmProbs",       KSTAT_DATA_UINT32 },
14125 14123                  { "outSrcQuenchs",      KSTAT_DATA_UINT32 },
14126 14124                  { "outRedirects",       KSTAT_DATA_UINT32 },
14127 14125                  { "outEchos",           KSTAT_DATA_UINT32 },
14128 14126                  { "outEchoReps",        KSTAT_DATA_UINT32 },
14129 14127                  { "outTimestamps",      KSTAT_DATA_UINT32 },
14130 14128                  { "outTimestampReps",   KSTAT_DATA_UINT32 },
14131 14129                  { "outAddrMasks",       KSTAT_DATA_UINT32 },
14132 14130                  { "outAddrMaskReps",    KSTAT_DATA_UINT32 },
14133 14131                  { "inChksumErrs",       KSTAT_DATA_UINT32 },
14134 14132                  { "inUnknowns",         KSTAT_DATA_UINT32 },
14135 14133                  { "inFragNeeded",       KSTAT_DATA_UINT32 },
14136 14134                  { "outFragNeeded",      KSTAT_DATA_UINT32 },
14137 14135                  { "outDrops",           KSTAT_DATA_UINT32 },
14138 14136                  { "inOverFlows",        KSTAT_DATA_UINT32 },
14139 14137                  { "inBadRedirects",     KSTAT_DATA_UINT32 },
14140 14138          };
14141 14139  
14142 14140          ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14143 14141              NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14144 14142          if (ksp == NULL || ksp->ks_data == NULL)
14145 14143                  return (NULL);
14146 14144  
14147 14145          bcopy(&template, ksp->ks_data, sizeof (template));
14148 14146  
14149 14147          ksp->ks_update = icmp_kstat_update;
14150 14148          ksp->ks_private = (void *)(uintptr_t)stackid;
14151 14149  
14152 14150          kstat_install(ksp);
14153 14151          return (ksp);
14154 14152  }
14155 14153  
14156 14154  static void
14157 14155  icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14158 14156  {
14159 14157          if (ksp != NULL) {
14160 14158                  ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14161 14159                  kstat_delete_netstack(ksp, stackid);
14162 14160          }
14163 14161  }
14164 14162  
14165 14163  static int
14166 14164  icmp_kstat_update(kstat_t *kp, int rw)
14167 14165  {
14168 14166          icmp_named_kstat_t *icmpkp;
14169 14167          netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14170 14168          netstack_t      *ns;
14171 14169          ip_stack_t      *ipst;
14172 14170  
14173 14171          if (kp->ks_data == NULL)
14174 14172                  return (EIO);
14175 14173  
14176 14174          if (rw == KSTAT_WRITE)
14177 14175                  return (EACCES);
14178 14176  
14179 14177          ns = netstack_find_by_stackid(stackid);
14180 14178          if (ns == NULL)
14181 14179                  return (-1);
14182 14180          ipst = ns->netstack_ip;
14183 14181          if (ipst == NULL) {
14184 14182                  netstack_rele(ns);
14185 14183                  return (-1);
14186 14184          }
14187 14185          icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14188 14186  
14189 14187          icmpkp->inMsgs.value.ui32 =         ipst->ips_icmp_mib.icmpInMsgs;
14190 14188          icmpkp->inErrors.value.ui32 =       ipst->ips_icmp_mib.icmpInErrors;
14191 14189          icmpkp->inDestUnreachs.value.ui32 =
14192 14190              ipst->ips_icmp_mib.icmpInDestUnreachs;
14193 14191          icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14194 14192          icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14195 14193          icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14196 14194          icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14197 14195          icmpkp->inEchos.value.ui32 =        ipst->ips_icmp_mib.icmpInEchos;
14198 14196          icmpkp->inEchoReps.value.ui32 =     ipst->ips_icmp_mib.icmpInEchoReps;
14199 14197          icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14200 14198          icmpkp->inTimestampReps.value.ui32 =
14201 14199              ipst->ips_icmp_mib.icmpInTimestampReps;
14202 14200          icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14203 14201          icmpkp->inAddrMaskReps.value.ui32 =
14204 14202              ipst->ips_icmp_mib.icmpInAddrMaskReps;
14205 14203          icmpkp->outMsgs.value.ui32 =        ipst->ips_icmp_mib.icmpOutMsgs;
14206 14204          icmpkp->outErrors.value.ui32 =      ipst->ips_icmp_mib.icmpOutErrors;
14207 14205          icmpkp->outDestUnreachs.value.ui32 =
14208 14206              ipst->ips_icmp_mib.icmpOutDestUnreachs;
14209 14207          icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14210 14208          icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14211 14209          icmpkp->outSrcQuenchs.value.ui32 =
14212 14210              ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14213 14211          icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14214 14212          icmpkp->outEchos.value.ui32 =       ipst->ips_icmp_mib.icmpOutEchos;
14215 14213          icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14216 14214          icmpkp->outTimestamps.value.ui32 =
14217 14215              ipst->ips_icmp_mib.icmpOutTimestamps;
14218 14216          icmpkp->outTimestampReps.value.ui32 =
14219 14217              ipst->ips_icmp_mib.icmpOutTimestampReps;
14220 14218          icmpkp->outAddrMasks.value.ui32 =
14221 14219              ipst->ips_icmp_mib.icmpOutAddrMasks;
14222 14220          icmpkp->outAddrMaskReps.value.ui32 =
14223 14221              ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14224 14222          icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14225 14223          icmpkp->inUnknowns.value.ui32 =     ipst->ips_icmp_mib.icmpInUnknowns;
14226 14224          icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14227 14225          icmpkp->outFragNeeded.value.ui32 =
14228 14226              ipst->ips_icmp_mib.icmpOutFragNeeded;
14229 14227          icmpkp->outDrops.value.ui32 =       ipst->ips_icmp_mib.icmpOutDrops;
14230 14228          icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14231 14229          icmpkp->inBadRedirects.value.ui32 =
14232 14230              ipst->ips_icmp_mib.icmpInBadRedirects;
14233 14231  
14234 14232          netstack_rele(ns);
14235 14233          return (0);
14236 14234  }
14237 14235  
14238 14236  /*
14239 14237   * This is the fanout function for raw socket opened for SCTP.  Note
14240 14238   * that it is called after SCTP checks that there is no socket which
14241 14239   * wants a packet.  Then before SCTP handles this out of the blue packet,
14242 14240   * this function is called to see if there is any raw socket for SCTP.
14243 14241   * If there is and it is bound to the correct address, the packet will
14244 14242   * be sent to that socket.  Note that only one raw socket can be bound to
14245 14243   * a port.  This is assured in ipcl_sctp_hash_insert();
14246 14244   */
14247 14245  void
14248 14246  ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14249 14247      ip_recv_attr_t *ira)
14250 14248  {
14251 14249          conn_t          *connp;
14252 14250          queue_t         *rq;
14253 14251          boolean_t       secure;
14254 14252          ill_t           *ill = ira->ira_ill;
14255 14253          ip_stack_t      *ipst = ill->ill_ipst;
14256 14254          ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
14257 14255          sctp_stack_t    *sctps = ipst->ips_netstack->netstack_sctp;
14258 14256          iaflags_t       iraflags = ira->ira_flags;
14259 14257          ill_t           *rill = ira->ira_rill;
14260 14258  
14261 14259          secure = iraflags & IRAF_IPSEC_SECURE;
14262 14260  
14263 14261          connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14264 14262              ira, ipst);
14265 14263          if (connp == NULL) {
14266 14264                  /*
14267 14265                   * Although raw sctp is not summed, OOB chunks must be.
14268 14266                   * Drop the packet here if the sctp checksum failed.
14269 14267                   */
14270 14268                  if (iraflags & IRAF_SCTP_CSUM_ERR) {
14271 14269                          SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14272 14270                          freemsg(mp);
14273 14271                          return;
14274 14272                  }
14275 14273                  ira->ira_ill = ira->ira_rill = NULL;
14276 14274                  sctp_ootb_input(mp, ira, ipst);
14277 14275                  ira->ira_ill = ill;
14278 14276                  ira->ira_rill = rill;
14279 14277                  return;
14280 14278          }
14281 14279          rq = connp->conn_rq;
14282 14280          if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14283 14281                  CONN_DEC_REF(connp);
14284 14282                  BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14285 14283                  freemsg(mp);
14286 14284                  return;
14287 14285          }
14288 14286          if (((iraflags & IRAF_IS_IPV4) ?
14289 14287              CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14290 14288              CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14291 14289              secure) {
14292 14290                  mp = ipsec_check_inbound_policy(mp, connp, ipha,
14293 14291                      ip6h, ira);
14294 14292                  if (mp == NULL) {
14295 14293                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14296 14294                          /* Note that mp is NULL */
14297 14295                          ip_drop_input("ipIfStatsInDiscards", mp, ill);
14298 14296                          CONN_DEC_REF(connp);
14299 14297                          return;
14300 14298                  }
14301 14299          }
14302 14300  
14303 14301          if (iraflags & IRAF_ICMP_ERROR) {
14304 14302                  (connp->conn_recvicmp)(connp, mp, NULL, ira);
14305 14303          } else {
14306 14304                  ill_t *rill = ira->ira_rill;
14307 14305  
14308 14306                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14309 14307                  /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14310 14308                  ira->ira_ill = ira->ira_rill = NULL;
14311 14309                  (connp->conn_recv)(connp, mp, NULL, ira);
14312 14310                  ira->ira_ill = ill;
14313 14311                  ira->ira_rill = rill;
14314 14312          }
14315 14313          CONN_DEC_REF(connp);
14316 14314  }
14317 14315  
14318 14316  /*
14319 14317   * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14320 14318   * header before the ip payload.
14321 14319   */
14322 14320  static void
14323 14321  ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14324 14322  {
14325 14323          int len = (mp->b_wptr - mp->b_rptr);
14326 14324          mblk_t *ip_mp;
14327 14325  
14328 14326          BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14329 14327          if (is_fp_mp || len != fp_mp_len) {
14330 14328                  if (len > fp_mp_len) {
14331 14329                          /*
14332 14330                           * fastpath header and ip header in the first mblk
14333 14331                           */
14334 14332                          mp->b_rptr += fp_mp_len;
14335 14333                  } else {
14336 14334                          /*
14337 14335                           * ip_xmit_attach_llhdr had to prepend an mblk to
14338 14336                           * attach the fastpath header before ip header.
14339 14337                           */
14340 14338                          ip_mp = mp->b_cont;
14341 14339                          freeb(mp);
14342 14340                          mp = ip_mp;
14343 14341                          mp->b_rptr += (fp_mp_len - len);
14344 14342                  }
14345 14343          } else {
14346 14344                  ip_mp = mp->b_cont;
14347 14345                  freeb(mp);
14348 14346                  mp = ip_mp;
14349 14347          }
14350 14348          ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14351 14349          freemsg(mp);
14352 14350  }
14353 14351  
14354 14352  /*
14355 14353   * Normal post fragmentation function.
14356 14354   *
14357 14355   * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14358 14356   * using the same state machine.
14359 14357   *
14360 14358   * We return an error on failure. In particular we return EWOULDBLOCK
14361 14359   * when the driver flow controls. In that case this ensures that ip_wsrv runs
14362 14360   * (currently by canputnext failure resulting in backenabling from GLD.)
14363 14361   * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14364 14362   * indication that they can flow control until ip_wsrv() tells then to restart.
14365 14363   *
14366 14364   * If the nce passed by caller is incomplete, this function
14367 14365   * queues the packet and if necessary, sends ARP request and bails.
14368 14366   * If the Neighbor Cache passed is fully resolved, we simply prepend
14369 14367   * the link-layer header to the packet, do ipsec hw acceleration
14370 14368   * work if necessary, and send the packet out on the wire.
14371 14369   */
14372 14370  /* ARGSUSED6 */
14373 14371  int
14374 14372  ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14375 14373      uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14376 14374  {
14377 14375          queue_t         *wq;
14378 14376          ill_t           *ill = nce->nce_ill;
14379 14377          ip_stack_t      *ipst = ill->ill_ipst;
14380 14378          uint64_t        delta;
14381 14379          boolean_t       isv6 = ill->ill_isv6;
14382 14380          boolean_t       fp_mp;
14383 14381          ncec_t          *ncec = nce->nce_common;
14384 14382          int64_t         now = LBOLT_FASTPATH64;
14385 14383          boolean_t       is_probe;
14386 14384  
14387 14385          DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14388 14386  
14389 14387          ASSERT(mp != NULL);
14390 14388          ASSERT(mp->b_datap->db_type == M_DATA);
14391 14389          ASSERT(pkt_len == msgdsize(mp));
14392 14390  
14393 14391          /*
14394 14392           * If we have already been here and are coming back after ARP/ND.
14395 14393           * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14396 14394           * in that case since they have seen the packet when it came here
14397 14395           * the first time.
14398 14396           */
14399 14397          if (ixaflags & IXAF_NO_TRACE)
14400 14398                  goto sendit;
14401 14399  
14402 14400          if (ixaflags & IXAF_IS_IPV4) {
14403 14401                  ipha_t *ipha = (ipha_t *)mp->b_rptr;
14404 14402  
14405 14403                  ASSERT(!isv6);
14406 14404                  ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14407 14405                  if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14408 14406                      !(ixaflags & IXAF_NO_PFHOOK)) {
14409 14407                          int     error;
14410 14408  
14411 14409                          FW_HOOKS(ipst->ips_ip4_physical_out_event,
14412 14410                              ipst->ips_ipv4firewall_physical_out,
14413 14411                              NULL, ill, ipha, mp, mp, 0, ipst, error);
14414 14412                          DTRACE_PROBE1(ip4__physical__out__end,
14415 14413                              mblk_t *, mp);
14416 14414                          if (mp == NULL)
14417 14415                                  return (error);
14418 14416  
14419 14417                          /* The length could have changed */
14420 14418                          pkt_len = msgdsize(mp);
14421 14419                  }
14422 14420                  if (ipst->ips_ip4_observe.he_interested) {
14423 14421                          /*
14424 14422                           * Note that for TX the zoneid is the sending
14425 14423                           * zone, whether or not MLP is in play.
14426 14424                           * Since the szone argument is the IP zoneid (i.e.,
14427 14425                           * zero for exclusive-IP zones) and ipobs wants
14428 14426                           * the system zoneid, we map it here.
14429 14427                           */
14430 14428                          szone = IP_REAL_ZONEID(szone, ipst);
14431 14429  
14432 14430                          /*
14433 14431                           * On the outbound path the destination zone will be
14434 14432                           * unknown as we're sending this packet out on the
14435 14433                           * wire.
14436 14434                           */
14437 14435                          ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14438 14436                              ill, ipst);
14439 14437                  }
14440 14438                  DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14441 14439                      void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14442 14440                      ipha_t *, ipha, ip6_t *, NULL, int, 0);
14443 14441          } else {
14444 14442                  ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14445 14443  
14446 14444                  ASSERT(isv6);
14447 14445                  ASSERT(pkt_len ==
14448 14446                      ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14449 14447                  if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14450 14448                      !(ixaflags & IXAF_NO_PFHOOK)) {
14451 14449                          int     error;
14452 14450  
14453 14451                          FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14454 14452                              ipst->ips_ipv6firewall_physical_out,
14455 14453                              NULL, ill, ip6h, mp, mp, 0, ipst, error);
14456 14454                          DTRACE_PROBE1(ip6__physical__out__end,
14457 14455                              mblk_t *, mp);
14458 14456                          if (mp == NULL)
14459 14457                                  return (error);
14460 14458  
14461 14459                          /* The length could have changed */
14462 14460                          pkt_len = msgdsize(mp);
14463 14461                  }
14464 14462                  if (ipst->ips_ip6_observe.he_interested) {
14465 14463                          /* See above */
14466 14464                          szone = IP_REAL_ZONEID(szone, ipst);
14467 14465  
14468 14466                          ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14469 14467                              ill, ipst);
14470 14468                  }
14471 14469                  DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14472 14470                      void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14473 14471                      ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14474 14472          }
14475 14473  
14476 14474  sendit:
14477 14475          /*
14478 14476           * We check the state without a lock because the state can never
14479 14477           * move "backwards" to initial or incomplete.
14480 14478           */
14481 14479          switch (ncec->ncec_state) {
14482 14480          case ND_REACHABLE:
14483 14481          case ND_STALE:
14484 14482          case ND_DELAY:
14485 14483          case ND_PROBE:
14486 14484                  mp = ip_xmit_attach_llhdr(mp, nce);
14487 14485                  if (mp == NULL) {
14488 14486                          /*
14489 14487                           * ip_xmit_attach_llhdr has increased
14490 14488                           * ipIfStatsOutDiscards and called ip_drop_output()
14491 14489                           */
14492 14490                          return (ENOBUFS);
14493 14491                  }
14494 14492                  /*
14495 14493                   * check if nce_fastpath completed and we tagged on a
14496 14494                   * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14497 14495                   */
14498 14496                  fp_mp = (mp->b_datap->db_type == M_DATA);
14499 14497  
14500 14498                  if (fp_mp &&
14501 14499                      (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14502 14500                          ill_dld_direct_t *idd;
14503 14501  
14504 14502                          idd = &ill->ill_dld_capab->idc_direct;
14505 14503                          /*
14506 14504                           * Send the packet directly to DLD, where it
14507 14505                           * may be queued depending on the availability
14508 14506                           * of transmit resources at the media layer.
14509 14507                           * Return value should be taken into
14510 14508                           * account and flow control the TCP.
14511 14509                           */
14512 14510                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14513 14511                          UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14514 14512                              pkt_len);
14515 14513  
14516 14514                          if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14517 14515                                  (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14518 14516                                      (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14519 14517                          } else {
14520 14518                                  uintptr_t cookie;
14521 14519  
14522 14520                                  if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14523 14521                                      mp, (uintptr_t)xmit_hint, 0)) != 0) {
14524 14522                                          if (ixacookie != NULL)
14525 14523                                                  *ixacookie = cookie;
14526 14524                                          return (EWOULDBLOCK);
14527 14525                                  }
14528 14526                          }
14529 14527                  } else {
14530 14528                          wq = ill->ill_wq;
14531 14529  
14532 14530                          if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14533 14531                              !canputnext(wq)) {
14534 14532                                  if (ixacookie != NULL)
14535 14533                                          *ixacookie = 0;
14536 14534                                  ip_xmit_flowctl_drop(ill, mp, fp_mp,
14537 14535                                      nce->nce_fp_mp != NULL ?
14538 14536                                      MBLKL(nce->nce_fp_mp) : 0);
14539 14537                                  return (EWOULDBLOCK);
14540 14538                          }
14541 14539                          BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14542 14540                          UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14543 14541                              pkt_len);
14544 14542                          putnext(wq, mp);
14545 14543                  }
14546 14544  
14547 14545                  /*
14548 14546                   * The rest of this function implements Neighbor Unreachability
14549 14547                   * detection. Determine if the ncec is eligible for NUD.
14550 14548                   */
14551 14549                  if (ncec->ncec_flags & NCE_F_NONUD)
14552 14550                          return (0);
14553 14551  
14554 14552                  ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14555 14553  
14556 14554                  /*
14557 14555                   * Check for upper layer advice
14558 14556                   */
14559 14557                  if (ixaflags & IXAF_REACH_CONF) {
14560 14558                          timeout_id_t tid;
14561 14559  
14562 14560                          /*
14563 14561                           * It should be o.k. to check the state without
14564 14562                           * a lock here, at most we lose an advice.
14565 14563                           */
14566 14564                          ncec->ncec_last = TICK_TO_MSEC(now);
14567 14565                          if (ncec->ncec_state != ND_REACHABLE) {
14568 14566                                  mutex_enter(&ncec->ncec_lock);
14569 14567                                  ncec->ncec_state = ND_REACHABLE;
14570 14568                                  tid = ncec->ncec_timeout_id;
14571 14569                                  ncec->ncec_timeout_id = 0;
14572 14570                                  mutex_exit(&ncec->ncec_lock);
14573 14571                                  (void) untimeout(tid);
14574 14572                                  if (ip_debug > 2) {
14575 14573                                          /* ip1dbg */
14576 14574                                          pr_addr_dbg("ip_xmit: state"
14577 14575                                              " for %s changed to"
14578 14576                                              " REACHABLE\n", AF_INET6,
14579 14577                                              &ncec->ncec_addr);
14580 14578                                  }
14581 14579                          }
14582 14580                          return (0);
14583 14581                  }
14584 14582  
14585 14583                  delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14586 14584                  ip1dbg(("ip_xmit: delta = %" PRId64
14587 14585                      " ill_reachable_time = %d \n", delta,
14588 14586                      ill->ill_reachable_time));
14589 14587                  if (delta > (uint64_t)ill->ill_reachable_time) {
14590 14588                          mutex_enter(&ncec->ncec_lock);
14591 14589                          switch (ncec->ncec_state) {
14592 14590                          case ND_REACHABLE:
14593 14591                                  ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14594 14592                                  /* FALLTHROUGH */
14595 14593                          case ND_STALE:
14596 14594                                  /*
14597 14595                                   * ND_REACHABLE is identical to
14598 14596                                   * ND_STALE in this specific case. If
14599 14597                                   * reachable time has expired for this
14600 14598                                   * neighbor (delta is greater than
14601 14599                                   * reachable time), conceptually, the
14602 14600                                   * neighbor cache is no longer in
14603 14601                                   * REACHABLE state, but already in
14604 14602                                   * STALE state.  So the correct
14605 14603                                   * transition here is to ND_DELAY.
14606 14604                                   */
14607 14605                                  ncec->ncec_state = ND_DELAY;
14608 14606                                  mutex_exit(&ncec->ncec_lock);
14609 14607                                  nce_restart_timer(ncec,
14610 14608                                      ipst->ips_delay_first_probe_time);
14611 14609                                  if (ip_debug > 3) {
14612 14610                                          /* ip2dbg */
14613 14611                                          pr_addr_dbg("ip_xmit: state"
14614 14612                                              " for %s changed to"
14615 14613                                              " DELAY\n", AF_INET6,
14616 14614                                              &ncec->ncec_addr);
14617 14615                                  }
14618 14616                                  break;
14619 14617                          case ND_DELAY:
14620 14618                          case ND_PROBE:
14621 14619                                  mutex_exit(&ncec->ncec_lock);
14622 14620                                  /* Timers have already started */
14623 14621                                  break;
14624 14622                          case ND_UNREACHABLE:
14625 14623                                  /*
14626 14624                                   * nce_timer has detected that this ncec
14627 14625                                   * is unreachable and initiated deleting
14628 14626                                   * this ncec.
14629 14627                                   * This is a harmless race where we found the
14630 14628                                   * ncec before it was deleted and have
14631 14629                                   * just sent out a packet using this
14632 14630                                   * unreachable ncec.
14633 14631                                   */
14634 14632                                  mutex_exit(&ncec->ncec_lock);
14635 14633                                  break;
14636 14634                          default:
14637 14635                                  ASSERT(0);
14638 14636                                  mutex_exit(&ncec->ncec_lock);
14639 14637                          }
14640 14638                  }
14641 14639                  return (0);
14642 14640  
14643 14641          case ND_INCOMPLETE:
14644 14642                  /*
14645 14643                   * the state could have changed since we didn't hold the lock.
14646 14644                   * Re-verify state under lock.
14647 14645                   */
14648 14646                  is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14649 14647                  mutex_enter(&ncec->ncec_lock);
14650 14648                  if (NCE_ISREACHABLE(ncec)) {
14651 14649                          mutex_exit(&ncec->ncec_lock);
14652 14650                          goto sendit;
14653 14651                  }
14654 14652                  /* queue the packet */
14655 14653                  nce_queue_mp(ncec, mp, is_probe);
14656 14654                  mutex_exit(&ncec->ncec_lock);
14657 14655                  DTRACE_PROBE2(ip__xmit__incomplete,
14658 14656                      (ncec_t *), ncec, (mblk_t *), mp);
14659 14657                  return (0);
14660 14658  
14661 14659          case ND_INITIAL:
14662 14660                  /*
14663 14661                   * State could have changed since we didn't hold the lock, so
14664 14662                   * re-verify state.
14665 14663                   */
14666 14664                  is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14667 14665                  mutex_enter(&ncec->ncec_lock);
14668 14666                  if (NCE_ISREACHABLE(ncec))  {
14669 14667                          mutex_exit(&ncec->ncec_lock);
14670 14668                          goto sendit;
14671 14669                  }
14672 14670                  nce_queue_mp(ncec, mp, is_probe);
14673 14671                  if (ncec->ncec_state == ND_INITIAL) {
14674 14672                          ncec->ncec_state = ND_INCOMPLETE;
14675 14673                          mutex_exit(&ncec->ncec_lock);
14676 14674                          /*
14677 14675                           * figure out the source we want to use
14678 14676                           * and resolve it.
14679 14677                           */
14680 14678                          ip_ndp_resolve(ncec);
14681 14679                  } else  {
14682 14680                          mutex_exit(&ncec->ncec_lock);
14683 14681                  }
14684 14682                  return (0);
14685 14683  
14686 14684          case ND_UNREACHABLE:
14687 14685                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14688 14686                  ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14689 14687                      mp, ill);
14690 14688                  freemsg(mp);
14691 14689                  return (0);
14692 14690  
14693 14691          default:
14694 14692                  ASSERT(0);
14695 14693                  BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14696 14694                  ip_drop_output("ipIfStatsOutDiscards - ND_other",
14697 14695                      mp, ill);
14698 14696                  freemsg(mp);
14699 14697                  return (ENETUNREACH);
14700 14698          }
14701 14699  }
14702 14700  
14703 14701  /*
14704 14702   * Return B_TRUE if the buffers differ in length or content.
14705 14703   * This is used for comparing extension header buffers.
14706 14704   * Note that an extension header would be declared different
14707 14705   * even if all that changed was the next header value in that header i.e.
14708 14706   * what really changed is the next extension header.
14709 14707   */
14710 14708  boolean_t
14711 14709  ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14712 14710      uint_t blen)
14713 14711  {
14714 14712          if (!b_valid)
14715 14713                  blen = 0;
14716 14714  
14717 14715          if (alen != blen)
14718 14716                  return (B_TRUE);
14719 14717          if (alen == 0)
14720 14718                  return (B_FALSE);       /* Both zero length */
14721 14719          return (bcmp(abuf, bbuf, alen));
14722 14720  }
14723 14721  
14724 14722  /*
14725 14723   * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14726 14724   * Return B_FALSE if memory allocation fails - don't change any state!
14727 14725   */
14728 14726  boolean_t
14729 14727  ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14730 14728      const void *src, uint_t srclen)
14731 14729  {
14732 14730          void *dst;
14733 14731  
14734 14732          if (!src_valid)
14735 14733                  srclen = 0;
14736 14734  
14737 14735          ASSERT(*dstlenp == 0);
14738 14736          if (src != NULL && srclen != 0) {
14739 14737                  dst = mi_alloc(srclen, BPRI_MED);
14740 14738                  if (dst == NULL)
14741 14739                          return (B_FALSE);
14742 14740          } else {
14743 14741                  dst = NULL;
14744 14742          }
14745 14743          if (*dstp != NULL)
14746 14744                  mi_free(*dstp);
14747 14745          *dstp = dst;
14748 14746          *dstlenp = dst == NULL ? 0 : srclen;
14749 14747          return (B_TRUE);
14750 14748  }
14751 14749  
14752 14750  /*
14753 14751   * Replace what is in *dst, *dstlen with the source.
14754 14752   * Assumes ip_allocbuf has already been called.
14755 14753   */
14756 14754  void
14757 14755  ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14758 14756      const void *src, uint_t srclen)
14759 14757  {
14760 14758          if (!src_valid)
14761 14759                  srclen = 0;
14762 14760  
14763 14761          ASSERT(*dstlenp == srclen);
14764 14762          if (src != NULL && srclen != 0)
14765 14763                  bcopy(src, *dstp, srclen);
14766 14764  }
14767 14765  
14768 14766  /*
14769 14767   * Free the storage pointed to by the members of an ip_pkt_t.
14770 14768   */
14771 14769  void
14772 14770  ip_pkt_free(ip_pkt_t *ipp)
14773 14771  {
14774 14772          uint_t  fields = ipp->ipp_fields;
14775 14773  
14776 14774          if (fields & IPPF_HOPOPTS) {
14777 14775                  kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14778 14776                  ipp->ipp_hopopts = NULL;
14779 14777                  ipp->ipp_hopoptslen = 0;
14780 14778          }
14781 14779          if (fields & IPPF_RTHDRDSTOPTS) {
14782 14780                  kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14783 14781                  ipp->ipp_rthdrdstopts = NULL;
14784 14782                  ipp->ipp_rthdrdstoptslen = 0;
14785 14783          }
14786 14784          if (fields & IPPF_DSTOPTS) {
14787 14785                  kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14788 14786                  ipp->ipp_dstopts = NULL;
14789 14787                  ipp->ipp_dstoptslen = 0;
14790 14788          }
14791 14789          if (fields & IPPF_RTHDR) {
14792 14790                  kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14793 14791                  ipp->ipp_rthdr = NULL;
14794 14792                  ipp->ipp_rthdrlen = 0;
14795 14793          }
14796 14794          if (fields & IPPF_IPV4_OPTIONS) {
14797 14795                  kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14798 14796                  ipp->ipp_ipv4_options = NULL;
14799 14797                  ipp->ipp_ipv4_options_len = 0;
14800 14798          }
14801 14799          if (fields & IPPF_LABEL_V4) {
14802 14800                  kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14803 14801                  ipp->ipp_label_v4 = NULL;
14804 14802                  ipp->ipp_label_len_v4 = 0;
14805 14803          }
14806 14804          if (fields & IPPF_LABEL_V6) {
14807 14805                  kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14808 14806                  ipp->ipp_label_v6 = NULL;
14809 14807                  ipp->ipp_label_len_v6 = 0;
14810 14808          }
14811 14809          ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14812 14810              IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14813 14811  }
14814 14812  
14815 14813  /*
14816 14814   * Copy from src to dst and allocate as needed.
14817 14815   * Returns zero or ENOMEM.
14818 14816   *
14819 14817   * The caller must initialize dst to zero.
14820 14818   */
14821 14819  int
14822 14820  ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14823 14821  {
14824 14822          uint_t  fields = src->ipp_fields;
14825 14823  
14826 14824          /* Start with fields that don't require memory allocation */
14827 14825          dst->ipp_fields = fields &
14828 14826              ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14829 14827              IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14830 14828  
14831 14829          dst->ipp_addr = src->ipp_addr;
14832 14830          dst->ipp_unicast_hops = src->ipp_unicast_hops;
14833 14831          dst->ipp_hoplimit = src->ipp_hoplimit;
14834 14832          dst->ipp_tclass = src->ipp_tclass;
14835 14833          dst->ipp_type_of_service = src->ipp_type_of_service;
14836 14834  
14837 14835          if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14838 14836              IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14839 14837                  return (0);
14840 14838  
14841 14839          if (fields & IPPF_HOPOPTS) {
14842 14840                  dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14843 14841                  if (dst->ipp_hopopts == NULL) {
14844 14842                          ip_pkt_free(dst);
14845 14843                          return (ENOMEM);
14846 14844                  }
14847 14845                  dst->ipp_fields |= IPPF_HOPOPTS;
14848 14846                  bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14849 14847                      src->ipp_hopoptslen);
14850 14848                  dst->ipp_hopoptslen = src->ipp_hopoptslen;
14851 14849          }
14852 14850          if (fields & IPPF_RTHDRDSTOPTS) {
14853 14851                  dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14854 14852                      kmflag);
14855 14853                  if (dst->ipp_rthdrdstopts == NULL) {
14856 14854                          ip_pkt_free(dst);
14857 14855                          return (ENOMEM);
14858 14856                  }
14859 14857                  dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14860 14858                  bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14861 14859                      src->ipp_rthdrdstoptslen);
14862 14860                  dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14863 14861          }
14864 14862          if (fields & IPPF_DSTOPTS) {
14865 14863                  dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14866 14864                  if (dst->ipp_dstopts == NULL) {
14867 14865                          ip_pkt_free(dst);
14868 14866                          return (ENOMEM);
14869 14867                  }
14870 14868                  dst->ipp_fields |= IPPF_DSTOPTS;
14871 14869                  bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14872 14870                      src->ipp_dstoptslen);
14873 14871                  dst->ipp_dstoptslen = src->ipp_dstoptslen;
14874 14872          }
14875 14873          if (fields & IPPF_RTHDR) {
14876 14874                  dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14877 14875                  if (dst->ipp_rthdr == NULL) {
14878 14876                          ip_pkt_free(dst);
14879 14877                          return (ENOMEM);
14880 14878                  }
14881 14879                  dst->ipp_fields |= IPPF_RTHDR;
14882 14880                  bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14883 14881                      src->ipp_rthdrlen);
14884 14882                  dst->ipp_rthdrlen = src->ipp_rthdrlen;
14885 14883          }
14886 14884          if (fields & IPPF_IPV4_OPTIONS) {
14887 14885                  dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14888 14886                      kmflag);
14889 14887                  if (dst->ipp_ipv4_options == NULL) {
14890 14888                          ip_pkt_free(dst);
14891 14889                          return (ENOMEM);
14892 14890                  }
14893 14891                  dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14894 14892                  bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14895 14893                      src->ipp_ipv4_options_len);
14896 14894                  dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14897 14895          }
14898 14896          if (fields & IPPF_LABEL_V4) {
14899 14897                  dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14900 14898                  if (dst->ipp_label_v4 == NULL) {
14901 14899                          ip_pkt_free(dst);
14902 14900                          return (ENOMEM);
14903 14901                  }
14904 14902                  dst->ipp_fields |= IPPF_LABEL_V4;
14905 14903                  bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14906 14904                      src->ipp_label_len_v4);
14907 14905                  dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14908 14906          }
14909 14907          if (fields & IPPF_LABEL_V6) {
14910 14908                  dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14911 14909                  if (dst->ipp_label_v6 == NULL) {
14912 14910                          ip_pkt_free(dst);
14913 14911                          return (ENOMEM);
14914 14912                  }
14915 14913                  dst->ipp_fields |= IPPF_LABEL_V6;
14916 14914                  bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14917 14915                      src->ipp_label_len_v6);
14918 14916                  dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14919 14917          }
14920 14918          if (fields & IPPF_FRAGHDR) {
14921 14919                  dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14922 14920                  if (dst->ipp_fraghdr == NULL) {
14923 14921                          ip_pkt_free(dst);
14924 14922                          return (ENOMEM);
14925 14923                  }
14926 14924                  dst->ipp_fields |= IPPF_FRAGHDR;
14927 14925                  bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14928 14926                      src->ipp_fraghdrlen);
14929 14927                  dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14930 14928          }
14931 14929          return (0);
14932 14930  }
14933 14931  
14934 14932  /*
14935 14933   * Returns INADDR_ANY if no source route
14936 14934   */
14937 14935  ipaddr_t
14938 14936  ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14939 14937  {
14940 14938          ipaddr_t        nexthop = INADDR_ANY;
14941 14939          ipoptp_t        opts;
14942 14940          uchar_t         *opt;
14943 14941          uint8_t         optval;
14944 14942          uint8_t         optlen;
14945 14943          uint32_t        totallen;
14946 14944  
14947 14945          if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14948 14946                  return (INADDR_ANY);
14949 14947  
14950 14948          totallen = ipp->ipp_ipv4_options_len;
14951 14949          if (totallen & 0x3)
14952 14950                  return (INADDR_ANY);
14953 14951  
14954 14952          for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14955 14953              optval != IPOPT_EOL;
14956 14954              optval = ipoptp_next(&opts)) {
14957 14955                  opt = opts.ipoptp_cur;
14958 14956                  switch (optval) {
14959 14957                          uint8_t off;
14960 14958                  case IPOPT_SSRR:
14961 14959                  case IPOPT_LSRR:
14962 14960                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14963 14961                                  break;
14964 14962                          }
14965 14963                          optlen = opts.ipoptp_len;
14966 14964                          off = opt[IPOPT_OFFSET];
14967 14965                          off--;
14968 14966                          if (optlen < IP_ADDR_LEN ||
14969 14967                              off > optlen - IP_ADDR_LEN) {
14970 14968                                  /* End of source route */
14971 14969                                  break;
14972 14970                          }
14973 14971                          bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14974 14972                          if (nexthop == htonl(INADDR_LOOPBACK)) {
14975 14973                                  /* Ignore */
14976 14974                                  nexthop = INADDR_ANY;
14977 14975                                  break;
14978 14976                          }
14979 14977                          break;
14980 14978                  }
14981 14979          }
14982 14980          return (nexthop);
14983 14981  }
14984 14982  
14985 14983  /*
14986 14984   * Reverse a source route.
14987 14985   */
14988 14986  void
14989 14987  ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
14990 14988  {
14991 14989          ipaddr_t        tmp;
14992 14990          ipoptp_t        opts;
14993 14991          uchar_t         *opt;
14994 14992          uint8_t         optval;
14995 14993          uint32_t        totallen;
14996 14994  
14997 14995          if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14998 14996                  return;
14999 14997  
15000 14998          totallen = ipp->ipp_ipv4_options_len;
15001 14999          if (totallen & 0x3)
15002 15000                  return;
15003 15001  
15004 15002          for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15005 15003              optval != IPOPT_EOL;
15006 15004              optval = ipoptp_next(&opts)) {
15007 15005                  uint8_t off1, off2;
15008 15006  
15009 15007                  opt = opts.ipoptp_cur;
15010 15008                  switch (optval) {
15011 15009                  case IPOPT_SSRR:
15012 15010                  case IPOPT_LSRR:
15013 15011                          if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15014 15012                                  break;
15015 15013                          }
15016 15014                          off1 = IPOPT_MINOFF_SR - 1;
15017 15015                          off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15018 15016                          while (off2 > off1) {
15019 15017                                  bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15020 15018                                  bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15021 15019                                  bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15022 15020                                  off2 -= IP_ADDR_LEN;
15023 15021                                  off1 += IP_ADDR_LEN;
15024 15022                          }
15025 15023                          opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15026 15024                          break;
15027 15025                  }
15028 15026          }
15029 15027  }
15030 15028  
15031 15029  /*
15032 15030   * Returns NULL if no routing header
15033 15031   */
15034 15032  in6_addr_t *
15035 15033  ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15036 15034  {
15037 15035          in6_addr_t      *nexthop = NULL;
15038 15036          ip6_rthdr0_t    *rthdr;
15039 15037  
15040 15038          if (!(ipp->ipp_fields & IPPF_RTHDR))
15041 15039                  return (NULL);
15042 15040  
15043 15041          rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15044 15042          if (rthdr->ip6r0_segleft == 0)
15045 15043                  return (NULL);
15046 15044  
15047 15045          nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15048 15046          return (nexthop);
15049 15047  }
15050 15048  
15051 15049  zoneid_t
15052 15050  ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15053 15051      zoneid_t lookup_zoneid)
15054 15052  {
15055 15053          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15056 15054          ire_t           *ire;
15057 15055          int             ire_flags = MATCH_IRE_TYPE;
15058 15056          zoneid_t        zoneid = ALL_ZONES;
15059 15057  
15060 15058          if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15061 15059                  return (ALL_ZONES);
15062 15060  
15063 15061          if (lookup_zoneid != ALL_ZONES)
15064 15062                  ire_flags |= MATCH_IRE_ZONEONLY;
15065 15063          ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK,
15066 15064              NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15067 15065          if (ire != NULL) {
15068 15066                  zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15069 15067                  ire_refrele(ire);
15070 15068          }
15071 15069          return (zoneid);
15072 15070  }
15073 15071  
15074 15072  zoneid_t
15075 15073  ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15076 15074      ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15077 15075  {
15078 15076          ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15079 15077          ire_t           *ire;
15080 15078          int             ire_flags = MATCH_IRE_TYPE;
15081 15079          zoneid_t        zoneid = ALL_ZONES;
15082 15080  
15083 15081          if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15084 15082                  return (ALL_ZONES);
15085 15083  
15086 15084          if (IN6_IS_ADDR_LINKLOCAL(addr))
15087 15085                  ire_flags |= MATCH_IRE_ILL;
15088 15086  
15089 15087          if (lookup_zoneid != ALL_ZONES)
15090 15088                  ire_flags |= MATCH_IRE_ZONEONLY;
15091 15089          ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15092 15090              ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15093 15091          if (ire != NULL) {
15094 15092                  zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15095 15093                  ire_refrele(ire);
15096 15094          }
15097 15095          return (zoneid);
15098 15096  }
15099 15097  
15100 15098  /*
15101 15099   * IP obserability hook support functions.
15102 15100   */
15103 15101  static void
15104 15102  ipobs_init(ip_stack_t *ipst)
15105 15103  {
15106 15104          netid_t id;
15107 15105  
15108 15106          id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15109 15107  
15110 15108          ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15111 15109          VERIFY(ipst->ips_ip4_observe_pr != NULL);
15112 15110  
15113 15111          ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15114 15112          VERIFY(ipst->ips_ip6_observe_pr != NULL);
15115 15113  }
15116 15114  
15117 15115  static void
15118 15116  ipobs_fini(ip_stack_t *ipst)
15119 15117  {
15120 15118  
15121 15119          VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15122 15120          VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15123 15121  }
15124 15122  
15125 15123  /*
15126 15124   * hook_pkt_observe_t is composed in network byte order so that the
15127 15125   * entire mblk_t chain handed into hook_run can be used as-is.
15128 15126   * The caveat is that use of the fields, such as the zone fields,
15129 15127   * requires conversion into host byte order first.
15130 15128   */
15131 15129  void
15132 15130  ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15133 15131      const ill_t *ill, ip_stack_t *ipst)
15134 15132  {
15135 15133          hook_pkt_observe_t *hdr;
15136 15134          uint64_t grifindex;
15137 15135          mblk_t *imp;
15138 15136  
15139 15137          imp = allocb(sizeof (*hdr), BPRI_HI);
15140 15138          if (imp == NULL)
15141 15139                  return;
15142 15140  
15143 15141          hdr = (hook_pkt_observe_t *)imp->b_rptr;
15144 15142          /*
15145 15143           * b_wptr is set to make the apparent size of the data in the mblk_t
15146 15144           * to exclude the pointers at the end of hook_pkt_observer_t.
15147 15145           */
15148 15146          imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15149 15147          imp->b_cont = mp;
15150 15148  
15151 15149          ASSERT(DB_TYPE(mp) == M_DATA);
15152 15150  
15153 15151          if (IS_UNDER_IPMP(ill))
15154 15152                  grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15155 15153          else
15156 15154                  grifindex = 0;
15157 15155  
15158 15156          hdr->hpo_version = 1;
15159 15157          hdr->hpo_htype = htons(htype);
15160 15158          hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15161 15159          hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15162 15160          hdr->hpo_grifindex = htonl(grifindex);
15163 15161          hdr->hpo_zsrc = htonl(zsrc);
15164 15162          hdr->hpo_zdst = htonl(zdst);
15165 15163          hdr->hpo_pkt = imp;
15166 15164          hdr->hpo_ctx = ipst->ips_netstack;
15167 15165  
15168 15166          if (ill->ill_isv6) {
15169 15167                  hdr->hpo_family = AF_INET6;
15170 15168                  (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15171 15169                      ipst->ips_ipv6observing, (hook_data_t)hdr);
15172 15170          } else {
15173 15171                  hdr->hpo_family = AF_INET;
15174 15172                  (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15175 15173                      ipst->ips_ipv4observing, (hook_data_t)hdr);
15176 15174          }
15177 15175  
15178 15176          imp->b_cont = NULL;
15179 15177          freemsg(imp);
15180 15178  }
15181 15179  
15182 15180  /*
15183 15181   * Utility routine that checks if `v4srcp' is a valid address on underlying
15184 15182   * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15185 15183   * associated with `v4srcp' on success.  NOTE: if this is not called from
15186 15184   * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15187 15185   * group during or after this lookup.
15188 15186   */
15189 15187  boolean_t
15190 15188  ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15191 15189  {
15192 15190          ipif_t *ipif;
15193 15191  
15194 15192          ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15195 15193          if (ipif != NULL) {
15196 15194                  if (ipifp != NULL)
15197 15195                          *ipifp = ipif;
15198 15196                  else
15199 15197                          ipif_refrele(ipif);
15200 15198                  return (B_TRUE);
15201 15199          }
15202 15200  
15203 15201          ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15204 15202              *v4srcp));
15205 15203          return (B_FALSE);
15206 15204  }
15207 15205  
15208 15206  /*
15209 15207   * Transport protocol call back function for CPU state change.
15210 15208   */
15211 15209  /* ARGSUSED */
15212 15210  static int
15213 15211  ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15214 15212  {
15215 15213          processorid_t cpu_seqid;
15216 15214          netstack_handle_t nh;
15217 15215          netstack_t *ns;
15218 15216  
15219 15217          ASSERT(MUTEX_HELD(&cpu_lock));
15220 15218  
15221 15219          switch (what) {
15222 15220          case CPU_CONFIG:
15223 15221          case CPU_ON:
15224 15222          case CPU_INIT:
15225 15223          case CPU_CPUPART_IN:
15226 15224                  cpu_seqid = cpu[id]->cpu_seqid;
15227 15225                  netstack_next_init(&nh);
15228 15226                  while ((ns = netstack_next(&nh)) != NULL) {
15229 15227                          tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15230 15228                          sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15231 15229                          udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15232 15230                          netstack_rele(ns);
15233 15231                  }
15234 15232                  netstack_next_fini(&nh);
15235 15233                  break;
15236 15234          case CPU_UNCONFIG:
15237 15235          case CPU_OFF:
15238 15236          case CPU_CPUPART_OUT:
15239 15237                  /*
15240 15238                   * Nothing to do.  We don't remove the per CPU stats from
15241 15239                   * the IP stack even when the CPU goes offline.
15242 15240                   */
15243 15241                  break;
15244 15242          default:
15245 15243                  break;
15246 15244          }
15247 15245          return (0);
15248 15246  }
  
    | 
      ↓ open down ↓ | 
    11110 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX