1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2015 Joyent, Inc.
27 * Copyright 2017 Nexenta Systems, Inc.
28 */
29
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kmem.h>
45 #include <sys/taskq.h>
46 #include <sys/uio.h>
47 #include <sys/vmsystm.h>
48 #include <sys/atomic.h>
49 #include <sys/vm.h>
50 #include <vm/seg_vn.h>
51 #include <vm/pvn.h>
52 #include <vm/as.h>
53 #include <vm/kpm.h>
54 #include <vm/seg_kpm.h>
55 #include <sys/mman.h>
56 #include <sys/pathname.h>
57 #include <sys/cmn_err.h>
58 #include <sys/errno.h>
59 #include <sys/unistd.h>
60 #include <sys/zfs_dir.h>
61 #include <sys/zfs_acl.h>
62 #include <sys/zfs_ioctl.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/dmu.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa.h>
67 #include <sys/txg.h>
68 #include <sys/dbuf.h>
69 #include <sys/zap.h>
70 #include <sys/sa.h>
71 #include <sys/dirent.h>
72 #include <sys/policy.h>
73 #include <sys/sunddi.h>
74 #include <sys/filio.h>
75 #include <sys/sid.h>
76 #include "fs/fs_subr.h"
77 #include <sys/zfs_ctldir.h>
78 #include <sys/zfs_fuid.h>
79 #include <sys/zfs_sa.h>
80 #include <sys/dnlc.h>
81 #include <sys/zfs_rlock.h>
82 #include <sys/extdirent.h>
83 #include <sys/kidmap.h>
84 #include <sys/cred.h>
85 #include <sys/attr.h>
86 #include <sys/zil.h>
87
88 /*
89 * Programming rules.
90 *
91 * Each vnode op performs some logical unit of work. To do this, the ZPL must
92 * properly lock its in-core state, create a DMU transaction, do the work,
93 * record this work in the intent log (ZIL), commit the DMU transaction,
94 * and wait for the intent log to commit if it is a synchronous operation.
95 * Moreover, the vnode ops must work in both normal and log replay context.
96 * The ordering of events is important to avoid deadlocks and references
97 * to freed memory. The example below illustrates the following Big Rules:
98 *
99 * (1) A check must be made in each zfs thread for a mounted file system.
100 * This is done avoiding races using ZFS_ENTER(zfsvfs).
101 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
102 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
103 * can return EIO from the calling function.
104 *
105 * (2) VN_RELE() should always be the last thing except for zil_commit()
106 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
107 * First, if it's the last reference, the vnode/znode
108 * can be freed, so the zp may point to freed memory. Second, the last
109 * reference will call zfs_zinactive(), which may induce a lot of work --
110 * pushing cached pages (which acquires range locks) and syncing out
111 * cached atime changes. Third, zfs_zinactive() may require a new tx,
112 * which could deadlock the system if you were already holding one.
113 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
114 *
115 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
116 * as they can span dmu_tx_assign() calls.
117 *
118 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
119 * dmu_tx_assign(). This is critical because we don't want to block
120 * while holding locks.
121 *
122 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
123 * reduces lock contention and CPU usage when we must wait (note that if
124 * throughput is constrained by the storage, nearly every transaction
125 * must wait).
126 *
127 * Note, in particular, that if a lock is sometimes acquired before
128 * the tx assigns, and sometimes after (e.g. z_lock), then failing
129 * to use a non-blocking assign can deadlock the system. The scenario:
130 *
131 * Thread A has grabbed a lock before calling dmu_tx_assign().
132 * Thread B is in an already-assigned tx, and blocks for this lock.
133 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
134 * forever, because the previous txg can't quiesce until B's tx commits.
135 *
136 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
137 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
138 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
139 * to indicate that this operation has already called dmu_tx_wait().
140 * This will ensure that we don't retry forever, waiting a short bit
141 * each time.
142 *
143 * (5) If the operation succeeded, generate the intent log entry for it
144 * before dropping locks. This ensures that the ordering of events
145 * in the intent log matches the order in which they actually occurred.
146 * During ZIL replay the zfs_log_* functions will update the sequence
147 * number to indicate the zil transaction has replayed.
148 *
149 * (6) At the end of each vnode op, the DMU tx must always commit,
150 * regardless of whether there were any errors.
151 *
152 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
153 * to ensure that synchronous semantics are provided when necessary.
154 *
155 * In general, this is how things should be ordered in each vnode op:
156 *
157 * ZFS_ENTER(zfsvfs); // exit if unmounted
158 * top:
159 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
160 * rw_enter(...); // grab any other locks you need
161 * tx = dmu_tx_create(...); // get DMU tx
162 * dmu_tx_hold_*(); // hold each object you might modify
163 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
164 * if (error) {
165 * rw_exit(...); // drop locks
166 * zfs_dirent_unlock(dl); // unlock directory entry
167 * VN_RELE(...); // release held vnodes
168 * if (error == ERESTART) {
169 * waited = B_TRUE;
170 * dmu_tx_wait(tx);
171 * dmu_tx_abort(tx);
172 * goto top;
173 * }
174 * dmu_tx_abort(tx); // abort DMU tx
175 * ZFS_EXIT(zfsvfs); // finished in zfs
176 * return (error); // really out of space
177 * }
178 * error = do_real_work(); // do whatever this VOP does
179 * if (error == 0)
180 * zfs_log_*(...); // on success, make ZIL entry
181 * dmu_tx_commit(tx); // commit DMU tx -- error or not
182 * rw_exit(...); // drop locks
183 * zfs_dirent_unlock(dl); // unlock directory entry
184 * VN_RELE(...); // release held vnodes
185 * zil_commit(zilog, foid); // synchronous when necessary
186 * ZFS_EXIT(zfsvfs); // finished in zfs
187 * return (error); // done, report error
188 */
189
190 /* ARGSUSED */
191 static int
192 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
193 {
194 znode_t *zp = VTOZ(*vpp);
195 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
196
197 ZFS_ENTER(zfsvfs);
198 ZFS_VERIFY_ZP(zp);
199
200 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
201 ((flag & FAPPEND) == 0)) {
202 ZFS_EXIT(zfsvfs);
203 return (SET_ERROR(EPERM));
204 }
205
206 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
207 ZTOV(zp)->v_type == VREG &&
208 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
209 if (fs_vscan(*vpp, cr, 0) != 0) {
210 ZFS_EXIT(zfsvfs);
211 return (SET_ERROR(EACCES));
212 }
213 }
214
215 /* Keep a count of the synchronous opens in the znode */
216 if (flag & (FSYNC | FDSYNC))
217 atomic_inc_32(&zp->z_sync_cnt);
218
219 ZFS_EXIT(zfsvfs);
220 return (0);
221 }
222
223 /* ARGSUSED */
224 static int
225 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
226 caller_context_t *ct)
227 {
228 znode_t *zp = VTOZ(vp);
229 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
230
231 /*
232 * Clean up any locks held by this process on the vp.
233 */
234 cleanlocks(vp, ddi_get_pid(), 0);
235 cleanshares(vp, ddi_get_pid());
236
237 ZFS_ENTER(zfsvfs);
238 ZFS_VERIFY_ZP(zp);
239
240 /* Decrement the synchronous opens in the znode */
241 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
242 atomic_dec_32(&zp->z_sync_cnt);
243
244 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
245 ZTOV(zp)->v_type == VREG &&
246 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
247 VERIFY(fs_vscan(vp, cr, 1) == 0);
248
249 ZFS_EXIT(zfsvfs);
250 return (0);
251 }
252
253 /*
254 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
255 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
256 */
257 static int
258 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
259 {
260 znode_t *zp = VTOZ(vp);
261 uint64_t noff = (uint64_t)*off; /* new offset */
262 uint64_t file_sz;
263 int error;
264 boolean_t hole;
265
266 file_sz = zp->z_size;
267 if (noff >= file_sz) {
268 return (SET_ERROR(ENXIO));
269 }
270
271 if (cmd == _FIO_SEEK_HOLE)
272 hole = B_TRUE;
273 else
274 hole = B_FALSE;
275
276 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
277
278 if (error == ESRCH)
279 return (SET_ERROR(ENXIO));
280
281 /*
282 * We could find a hole that begins after the logical end-of-file,
283 * because dmu_offset_next() only works on whole blocks. If the
284 * EOF falls mid-block, then indicate that the "virtual hole"
285 * at the end of the file begins at the logical EOF, rather than
286 * at the end of the last block.
287 */
288 if (noff > file_sz) {
289 ASSERT(hole);
290 noff = file_sz;
291 }
292
293 if (noff < *off)
294 return (error);
295 *off = noff;
296 return (error);
297 }
298
299 /* ARGSUSED */
300 static int
301 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
302 int *rvalp, caller_context_t *ct)
303 {
304 offset_t off;
305 offset_t ndata;
306 dmu_object_info_t doi;
307 int error;
308 zfsvfs_t *zfsvfs;
309 znode_t *zp;
310
311 switch (com) {
312 case _FIOFFS:
313 {
314 return (zfs_sync(vp->v_vfsp, 0, cred));
315
316 /*
317 * The following two ioctls are used by bfu. Faking out,
318 * necessary to avoid bfu errors.
319 */
320 }
321 case _FIOGDIO:
322 case _FIOSDIO:
323 {
324 return (0);
325 }
326
327 case _FIO_SEEK_DATA:
328 case _FIO_SEEK_HOLE:
329 {
330 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
331 return (SET_ERROR(EFAULT));
332
333 zp = VTOZ(vp);
334 zfsvfs = zp->z_zfsvfs;
335 ZFS_ENTER(zfsvfs);
336 ZFS_VERIFY_ZP(zp);
337
338 /* offset parameter is in/out */
339 error = zfs_holey(vp, com, &off);
340 ZFS_EXIT(zfsvfs);
341 if (error)
342 return (error);
343 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
344 return (SET_ERROR(EFAULT));
345 return (0);
346 }
347 case _FIO_COUNT_FILLED:
348 {
349 /*
350 * _FIO_COUNT_FILLED adds a new ioctl command which
351 * exposes the number of filled blocks in a
352 * ZFS object.
353 */
354 zp = VTOZ(vp);
355 zfsvfs = zp->z_zfsvfs;
356 ZFS_ENTER(zfsvfs);
357 ZFS_VERIFY_ZP(zp);
358
359 /*
360 * Wait for all dirty blocks for this object
361 * to get synced out to disk, and the DMU info
362 * updated.
363 */
364 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
365 if (error) {
366 ZFS_EXIT(zfsvfs);
367 return (error);
368 }
369
370 /*
371 * Retrieve fill count from DMU object.
372 */
373 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
374 if (error) {
375 ZFS_EXIT(zfsvfs);
376 return (error);
377 }
378
379 ndata = doi.doi_fill_count;
380
381 ZFS_EXIT(zfsvfs);
382 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
383 return (SET_ERROR(EFAULT));
384 return (0);
385 }
386 }
387 return (SET_ERROR(ENOTTY));
388 }
389
390 /*
391 * Utility functions to map and unmap a single physical page. These
392 * are used to manage the mappable copies of ZFS file data, and therefore
393 * do not update ref/mod bits.
394 */
395 caddr_t
396 zfs_map_page(page_t *pp, enum seg_rw rw)
397 {
398 if (kpm_enable)
399 return (hat_kpm_mapin(pp, 0));
400 ASSERT(rw == S_READ || rw == S_WRITE);
401 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
402 (caddr_t)-1));
403 }
404
405 void
406 zfs_unmap_page(page_t *pp, caddr_t addr)
407 {
408 if (kpm_enable) {
409 hat_kpm_mapout(pp, 0, addr);
410 } else {
411 ppmapout(addr);
412 }
413 }
414
415 /*
416 * When a file is memory mapped, we must keep the IO data synchronized
417 * between the DMU cache and the memory mapped pages. What this means:
418 *
419 * On Write: If we find a memory mapped page, we write to *both*
420 * the page and the dmu buffer.
421 */
422 static void
423 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
424 {
425 int64_t off;
426
427 off = start & PAGEOFFSET;
428 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
429 page_t *pp;
430 uint64_t nbytes = MIN(PAGESIZE - off, len);
431
432 if (pp = page_lookup(vp, start, SE_SHARED)) {
433 caddr_t va;
434
435 va = zfs_map_page(pp, S_WRITE);
436 (void) dmu_read(os, oid, start+off, nbytes, va+off,
437 DMU_READ_PREFETCH);
438 zfs_unmap_page(pp, va);
439 page_unlock(pp);
440 }
441 len -= nbytes;
442 off = 0;
443 }
444 }
445
446 /*
447 * When a file is memory mapped, we must keep the IO data synchronized
448 * between the DMU cache and the memory mapped pages. What this means:
449 *
450 * On Read: We "read" preferentially from memory mapped pages,
451 * else we default from the dmu buffer.
452 *
453 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
454 * the file is memory mapped.
455 */
456 static int
457 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
458 {
459 znode_t *zp = VTOZ(vp);
460 int64_t start, off;
461 int len = nbytes;
462 int error = 0;
463
464 start = uio->uio_loffset;
465 off = start & PAGEOFFSET;
466 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
467 page_t *pp;
468 uint64_t bytes = MIN(PAGESIZE - off, len);
469
470 if (pp = page_lookup(vp, start, SE_SHARED)) {
471 caddr_t va;
472
473 va = zfs_map_page(pp, S_READ);
474 error = uiomove(va + off, bytes, UIO_READ, uio);
475 zfs_unmap_page(pp, va);
476 page_unlock(pp);
477 } else {
478 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
479 uio, bytes);
480 }
481 len -= bytes;
482 off = 0;
483 if (error)
484 break;
485 }
486 return (error);
487 }
488
489 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
490
491 /*
492 * Read bytes from specified file into supplied buffer.
493 *
494 * IN: vp - vnode of file to be read from.
495 * uio - structure supplying read location, range info,
496 * and return buffer.
497 * ioflag - SYNC flags; used to provide FRSYNC semantics.
498 * cr - credentials of caller.
499 * ct - caller context
500 *
501 * OUT: uio - updated offset and range, buffer filled.
502 *
503 * RETURN: 0 on success, error code on failure.
504 *
505 * Side Effects:
506 * vp - atime updated if byte count > 0
507 */
508 /* ARGSUSED */
509 static int
510 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
511 {
512 znode_t *zp = VTOZ(vp);
513 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
514 ssize_t n, nbytes;
515 int error = 0;
516 xuio_t *xuio = NULL;
517
518 ZFS_ENTER(zfsvfs);
519 ZFS_VERIFY_ZP(zp);
520
521 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
522 ZFS_EXIT(zfsvfs);
523 return (SET_ERROR(EACCES));
524 }
525
526 /*
527 * Validate file offset
528 */
529 if (uio->uio_loffset < (offset_t)0) {
530 ZFS_EXIT(zfsvfs);
531 return (SET_ERROR(EINVAL));
532 }
533
534 /*
535 * Fasttrack empty reads
536 */
537 if (uio->uio_resid == 0) {
538 ZFS_EXIT(zfsvfs);
539 return (0);
540 }
541
542 /*
543 * Check for mandatory locks
544 */
545 if (MANDMODE(zp->z_mode)) {
546 if (error = chklock(vp, FREAD,
547 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
548 ZFS_EXIT(zfsvfs);
549 return (error);
550 }
551 }
552
553 /*
554 * If we're in FRSYNC mode, sync out this znode before reading it.
555 */
556 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
557 zil_commit(zfsvfs->z_log, zp->z_id);
558
559 /*
560 * Lock the range against changes.
561 */
562 locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
563 uio->uio_loffset, uio->uio_resid, RL_READER);
564
565 /*
566 * If we are reading past end-of-file we can skip
567 * to the end; but we might still need to set atime.
568 */
569 if (uio->uio_loffset >= zp->z_size) {
570 error = 0;
571 goto out;
572 }
573
574 ASSERT(uio->uio_loffset < zp->z_size);
575 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
576
577 if ((uio->uio_extflg == UIO_XUIO) &&
578 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
579 int nblk;
580 int blksz = zp->z_blksz;
581 uint64_t offset = uio->uio_loffset;
582
583 xuio = (xuio_t *)uio;
584 if ((ISP2(blksz))) {
585 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
586 blksz)) / blksz;
587 } else {
588 ASSERT(offset + n <= blksz);
589 nblk = 1;
590 }
591 (void) dmu_xuio_init(xuio, nblk);
592
593 if (vn_has_cached_data(vp)) {
594 /*
595 * For simplicity, we always allocate a full buffer
596 * even if we only expect to read a portion of a block.
597 */
598 while (--nblk >= 0) {
599 (void) dmu_xuio_add(xuio,
600 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
601 blksz), 0, blksz);
602 }
603 }
604 }
605
606 while (n > 0) {
607 nbytes = MIN(n, zfs_read_chunk_size -
608 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
609
610 if (vn_has_cached_data(vp)) {
611 error = mappedread(vp, nbytes, uio);
612 } else {
613 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
614 uio, nbytes);
615 }
616 if (error) {
617 /* convert checksum errors into IO errors */
618 if (error == ECKSUM)
619 error = SET_ERROR(EIO);
620 break;
621 }
622
623 n -= nbytes;
624 }
625 out:
626 rangelock_exit(lr);
627
628 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
629 ZFS_EXIT(zfsvfs);
630 return (error);
631 }
632
633 /*
634 * Write the bytes to a file.
635 *
636 * IN: vp - vnode of file to be written to.
637 * uio - structure supplying write location, range info,
638 * and data buffer.
639 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
640 * set if in append mode.
641 * cr - credentials of caller.
642 * ct - caller context (NFS/CIFS fem monitor only)
643 *
644 * OUT: uio - updated offset and range.
645 *
646 * RETURN: 0 on success, error code on failure.
647 *
648 * Timestamps:
649 * vp - ctime|mtime updated if byte count > 0
650 */
651
652 /* ARGSUSED */
653 static int
654 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
655 {
656 znode_t *zp = VTOZ(vp);
657 rlim64_t limit = uio->uio_llimit;
658 ssize_t start_resid = uio->uio_resid;
659 ssize_t tx_bytes;
660 uint64_t end_size;
661 dmu_tx_t *tx;
662 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
663 zilog_t *zilog;
664 offset_t woff;
665 ssize_t n, nbytes;
666 int max_blksz = zfsvfs->z_max_blksz;
667 int error = 0;
668 int prev_error;
669 arc_buf_t *abuf;
670 iovec_t *aiov = NULL;
671 xuio_t *xuio = NULL;
672 int i_iov = 0;
673 int iovcnt = uio->uio_iovcnt;
674 iovec_t *iovp = uio->uio_iov;
675 int write_eof;
676 int count = 0;
677 sa_bulk_attr_t bulk[4];
678 uint64_t mtime[2], ctime[2];
679
680 /*
681 * Fasttrack empty write
682 */
683 n = start_resid;
684 if (n == 0)
685 return (0);
686
687 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
688 limit = MAXOFFSET_T;
689
690 ZFS_ENTER(zfsvfs);
691 ZFS_VERIFY_ZP(zp);
692
693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
695 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
696 &zp->z_size, 8);
697 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
698 &zp->z_pflags, 8);
699
700 /*
701 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
702 * callers might not be able to detect properly that we are read-only,
703 * so check it explicitly here.
704 */
705 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
706 ZFS_EXIT(zfsvfs);
707 return (SET_ERROR(EROFS));
708 }
709
710 /*
711 * If immutable or not appending then return EPERM.
712 * Intentionally allow ZFS_READONLY through here.
713 * See zfs_zaccess_common()
714 */
715 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
716 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
717 (uio->uio_loffset < zp->z_size))) {
718 ZFS_EXIT(zfsvfs);
719 return (SET_ERROR(EPERM));
720 }
721
722 zilog = zfsvfs->z_log;
723
724 /*
725 * Validate file offset
726 */
727 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
728 if (woff < 0) {
729 ZFS_EXIT(zfsvfs);
730 return (SET_ERROR(EINVAL));
731 }
732
733 /*
734 * Check for mandatory locks before calling rangelock_enter()
735 * in order to prevent a deadlock with locks set via fcntl().
736 */
737 if (MANDMODE((mode_t)zp->z_mode) &&
738 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
739 ZFS_EXIT(zfsvfs);
740 return (error);
741 }
742
743 /*
744 * Pre-fault the pages to ensure slow (eg NFS) pages
745 * don't hold up txg.
746 * Skip this if uio contains loaned arc_buf.
747 */
748 if ((uio->uio_extflg == UIO_XUIO) &&
749 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
750 xuio = (xuio_t *)uio;
751 else
752 uio_prefaultpages(MIN(n, max_blksz), uio);
753
754 /*
755 * If in append mode, set the io offset pointer to eof.
756 */
757 locked_range_t *lr;
758 if (ioflag & FAPPEND) {
759 /*
760 * Obtain an appending range lock to guarantee file append
761 * semantics. We reset the write offset once we have the lock.
762 */
763 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
764 woff = lr->lr_offset;
765 if (lr->lr_length == UINT64_MAX) {
766 /*
767 * We overlocked the file because this write will cause
768 * the file block size to increase.
769 * Note that zp_size cannot change with this lock held.
770 */
771 woff = zp->z_size;
772 }
773 uio->uio_loffset = woff;
774 } else {
775 /*
776 * Note that if the file block size will change as a result of
777 * this write, then this range lock will lock the entire file
778 * so that we can re-write the block safely.
779 */
780 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
781 }
782
783 if (woff >= limit) {
784 rangelock_exit(lr);
785 ZFS_EXIT(zfsvfs);
786 return (SET_ERROR(EFBIG));
787 }
788
789 if ((woff + n) > limit || woff > (limit - n))
790 n = limit - woff;
791
792 /* Will this write extend the file length? */
793 write_eof = (woff + n > zp->z_size);
794
795 end_size = MAX(zp->z_size, woff + n);
796
797 /*
798 * Write the file in reasonable size chunks. Each chunk is written
799 * in a separate transaction; this keeps the intent log records small
800 * and allows us to do more fine-grained space accounting.
801 */
802 while (n > 0) {
803 abuf = NULL;
804 woff = uio->uio_loffset;
805 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
806 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
807 if (abuf != NULL)
808 dmu_return_arcbuf(abuf);
809 error = SET_ERROR(EDQUOT);
810 break;
811 }
812
813 if (xuio && abuf == NULL) {
814 ASSERT(i_iov < iovcnt);
815 aiov = &iovp[i_iov];
816 abuf = dmu_xuio_arcbuf(xuio, i_iov);
817 dmu_xuio_clear(xuio, i_iov);
818 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
819 iovec_t *, aiov, arc_buf_t *, abuf);
820 ASSERT((aiov->iov_base == abuf->b_data) ||
821 ((char *)aiov->iov_base - (char *)abuf->b_data +
822 aiov->iov_len == arc_buf_size(abuf)));
823 i_iov++;
824 } else if (abuf == NULL && n >= max_blksz &&
825 woff >= zp->z_size &&
826 P2PHASE(woff, max_blksz) == 0 &&
827 zp->z_blksz == max_blksz) {
828 /*
829 * This write covers a full block. "Borrow" a buffer
830 * from the dmu so that we can fill it before we enter
831 * a transaction. This avoids the possibility of
832 * holding up the transaction if the data copy hangs
833 * up on a pagefault (e.g., from an NFS server mapping).
834 */
835 size_t cbytes;
836
837 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
838 max_blksz);
839 ASSERT(abuf != NULL);
840 ASSERT(arc_buf_size(abuf) == max_blksz);
841 if (error = uiocopy(abuf->b_data, max_blksz,
842 UIO_WRITE, uio, &cbytes)) {
843 dmu_return_arcbuf(abuf);
844 break;
845 }
846 ASSERT(cbytes == max_blksz);
847 }
848
849 /*
850 * Start a transaction.
851 */
852 tx = dmu_tx_create(zfsvfs->z_os);
853 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
854 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
855 zfs_sa_upgrade_txholds(tx, zp);
856 error = dmu_tx_assign(tx, TXG_WAIT);
857 if (error) {
858 dmu_tx_abort(tx);
859 if (abuf != NULL)
860 dmu_return_arcbuf(abuf);
861 break;
862 }
863
864 /*
865 * If rangelock_enter() over-locked we grow the blocksize
866 * and then reduce the lock range. This will only happen
867 * on the first iteration since rangelock_reduce() will
868 * shrink down lr_length to the appropriate size.
869 */
870 if (lr->lr_length == UINT64_MAX) {
871 uint64_t new_blksz;
872
873 if (zp->z_blksz > max_blksz) {
874 /*
875 * File's blocksize is already larger than the
876 * "recordsize" property. Only let it grow to
877 * the next power of 2.
878 */
879 ASSERT(!ISP2(zp->z_blksz));
880 new_blksz = MIN(end_size,
881 1 << highbit64(zp->z_blksz));
882 } else {
883 new_blksz = MIN(end_size, max_blksz);
884 }
885 zfs_grow_blocksize(zp, new_blksz, tx);
886 rangelock_reduce(lr, woff, n);
887 }
888
889 /*
890 * XXX - should we really limit each write to z_max_blksz?
891 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
892 */
893 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
894
895 if (abuf == NULL) {
896 tx_bytes = uio->uio_resid;
897 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
898 uio, nbytes, tx);
899 tx_bytes -= uio->uio_resid;
900 } else {
901 tx_bytes = nbytes;
902 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
903 /*
904 * If this is not a full block write, but we are
905 * extending the file past EOF and this data starts
906 * block-aligned, use assign_arcbuf(). Otherwise,
907 * write via dmu_write().
908 */
909 if (tx_bytes < max_blksz && (!write_eof ||
910 aiov->iov_base != abuf->b_data)) {
911 ASSERT(xuio);
912 dmu_write(zfsvfs->z_os, zp->z_id, woff,
913 aiov->iov_len, aiov->iov_base, tx);
914 dmu_return_arcbuf(abuf);
915 xuio_stat_wbuf_copied();
916 } else {
917 ASSERT(xuio || tx_bytes == max_blksz);
918 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
919 woff, abuf, tx);
920 }
921 ASSERT(tx_bytes <= uio->uio_resid);
922 uioskip(uio, tx_bytes);
923 }
924 if (tx_bytes && vn_has_cached_data(vp)) {
925 update_pages(vp, woff,
926 tx_bytes, zfsvfs->z_os, zp->z_id);
927 }
928
929 /*
930 * If we made no progress, we're done. If we made even
931 * partial progress, update the znode and ZIL accordingly.
932 */
933 if (tx_bytes == 0) {
934 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
935 (void *)&zp->z_size, sizeof (uint64_t), tx);
936 dmu_tx_commit(tx);
937 ASSERT(error != 0);
938 break;
939 }
940
941 /*
942 * Clear Set-UID/Set-GID bits on successful write if not
943 * privileged and at least one of the excute bits is set.
944 *
945 * It would be nice to to this after all writes have
946 * been done, but that would still expose the ISUID/ISGID
947 * to another app after the partial write is committed.
948 *
949 * Note: we don't call zfs_fuid_map_id() here because
950 * user 0 is not an ephemeral uid.
951 */
952 mutex_enter(&zp->z_acl_lock);
953 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
954 (S_IXUSR >> 6))) != 0 &&
955 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
956 secpolicy_vnode_setid_retain(cr,
957 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
958 uint64_t newmode;
959 zp->z_mode &= ~(S_ISUID | S_ISGID);
960 newmode = zp->z_mode;
961 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
962 (void *)&newmode, sizeof (uint64_t), tx);
963 }
964 mutex_exit(&zp->z_acl_lock);
965
966 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
967 B_TRUE);
968
969 /*
970 * Update the file size (zp_size) if it has changed;
971 * account for possible concurrent updates.
972 */
973 while ((end_size = zp->z_size) < uio->uio_loffset) {
974 (void) atomic_cas_64(&zp->z_size, end_size,
975 uio->uio_loffset);
976 }
977 /*
978 * If we are replaying and eof is non zero then force
979 * the file size to the specified eof. Note, there's no
980 * concurrency during replay.
981 */
982 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
983 zp->z_size = zfsvfs->z_replay_eof;
984
985 /*
986 * Keep track of a possible pre-existing error from a partial
987 * write via dmu_write_uio_dbuf above.
988 */
989 prev_error = error;
990 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
991
992 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
993 dmu_tx_commit(tx);
994
995 if (prev_error != 0 || error != 0)
996 break;
997 ASSERT(tx_bytes == nbytes);
998 n -= nbytes;
999
1000 if (!xuio && n > 0)
1001 uio_prefaultpages(MIN(n, max_blksz), uio);
1002 }
1003
1004 rangelock_exit(lr);
1005
1006 /*
1007 * If we're in replay mode, or we made no progress, return error.
1008 * Otherwise, it's at least a partial write, so it's successful.
1009 */
1010 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1011 ZFS_EXIT(zfsvfs);
1012 return (error);
1013 }
1014
1015 if (ioflag & (FSYNC | FDSYNC) ||
1016 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1017 zil_commit(zilog, zp->z_id);
1018
1019 ZFS_EXIT(zfsvfs);
1020 return (0);
1021 }
1022
1023 /* ARGSUSED */
1024 void
1025 zfs_get_done(zgd_t *zgd, int error)
1026 {
1027 znode_t *zp = zgd->zgd_private;
1028 objset_t *os = zp->z_zfsvfs->z_os;
1029
1030 if (zgd->zgd_db)
1031 dmu_buf_rele(zgd->zgd_db, zgd);
1032
1033 rangelock_exit(zgd->zgd_lr);
1034
1035 /*
1036 * Release the vnode asynchronously as we currently have the
1037 * txg stopped from syncing.
1038 */
1039 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1040
1041 kmem_free(zgd, sizeof (zgd_t));
1042 }
1043
1044 #ifdef DEBUG
1045 static int zil_fault_io = 0;
1046 #endif
1047
1048 /*
1049 * Get data to generate a TX_WRITE intent log record.
1050 */
1051 int
1052 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1053 {
1054 zfsvfs_t *zfsvfs = arg;
1055 objset_t *os = zfsvfs->z_os;
1056 znode_t *zp;
1057 uint64_t object = lr->lr_foid;
1058 uint64_t offset = lr->lr_offset;
1059 uint64_t size = lr->lr_length;
1060 dmu_buf_t *db;
1061 zgd_t *zgd;
1062 int error = 0;
1063
1064 ASSERT3P(lwb, !=, NULL);
1065 ASSERT3P(zio, !=, NULL);
1066 ASSERT3U(size, !=, 0);
1067
1068 /*
1069 * Nothing to do if the file has been removed
1070 */
1071 if (zfs_zget(zfsvfs, object, &zp) != 0)
1072 return (SET_ERROR(ENOENT));
1073 if (zp->z_unlinked) {
1074 /*
1075 * Release the vnode asynchronously as we currently have the
1076 * txg stopped from syncing.
1077 */
1078 VN_RELE_ASYNC(ZTOV(zp),
1079 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1080 return (SET_ERROR(ENOENT));
1081 }
1082
1083 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1084 zgd->zgd_lwb = lwb;
1085 zgd->zgd_private = zp;
1086
1087 /*
1088 * Write records come in two flavors: immediate and indirect.
1089 * For small writes it's cheaper to store the data with the
1090 * log record (immediate); for large writes it's cheaper to
1091 * sync the data and get a pointer to it (indirect) so that
1092 * we don't have to write the data twice.
1093 */
1094 if (buf != NULL) { /* immediate write */
1095 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1096 offset, size, RL_READER);
1097 /* test for truncation needs to be done while range locked */
1098 if (offset >= zp->z_size) {
1099 error = SET_ERROR(ENOENT);
1100 } else {
1101 error = dmu_read(os, object, offset, size, buf,
1102 DMU_READ_NO_PREFETCH);
1103 }
1104 ASSERT(error == 0 || error == ENOENT);
1105 } else { /* indirect write */
1106 /*
1107 * Have to lock the whole block to ensure when it's
1108 * written out and its checksum is being calculated
1109 * that no one can change the data. We need to re-check
1110 * blocksize after we get the lock in case it's changed!
1111 */
1112 for (;;) {
1113 uint64_t blkoff;
1114 size = zp->z_blksz;
1115 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1116 offset -= blkoff;
1117 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1118 offset, size, RL_READER);
1119 if (zp->z_blksz == size)
1120 break;
1121 offset += blkoff;
1122 rangelock_exit(zgd->zgd_lr);
1123 }
1124 /* test for truncation needs to be done while range locked */
1125 if (lr->lr_offset >= zp->z_size)
1126 error = SET_ERROR(ENOENT);
1127 #ifdef DEBUG
1128 if (zil_fault_io) {
1129 error = SET_ERROR(EIO);
1130 zil_fault_io = 0;
1131 }
1132 #endif
1133 if (error == 0)
1134 error = dmu_buf_hold(os, object, offset, zgd, &db,
1135 DMU_READ_NO_PREFETCH);
1136
1137 if (error == 0) {
1138 blkptr_t *bp = &lr->lr_blkptr;
1139
1140 zgd->zgd_db = db;
1141 zgd->zgd_bp = bp;
1142
1143 ASSERT(db->db_offset == offset);
1144 ASSERT(db->db_size == size);
1145
1146 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1147 zfs_get_done, zgd);
1148 ASSERT(error || lr->lr_length <= size);
1149
1150 /*
1151 * On success, we need to wait for the write I/O
1152 * initiated by dmu_sync() to complete before we can
1153 * release this dbuf. We will finish everything up
1154 * in the zfs_get_done() callback.
1155 */
1156 if (error == 0)
1157 return (0);
1158
1159 if (error == EALREADY) {
1160 lr->lr_common.lrc_txtype = TX_WRITE2;
1161 /*
1162 * TX_WRITE2 relies on the data previously
1163 * written by the TX_WRITE that caused
1164 * EALREADY. We zero out the BP because
1165 * it is the old, currently-on-disk BP.
1166 */
1167 zgd->zgd_bp = NULL;
1168 BP_ZERO(bp);
1169 error = 0;
1170 }
1171 }
1172 }
1173
1174 zfs_get_done(zgd, error);
1175
1176 return (error);
1177 }
1178
1179 /*ARGSUSED*/
1180 static int
1181 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1182 caller_context_t *ct)
1183 {
1184 znode_t *zp = VTOZ(vp);
1185 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1186 int error;
1187
1188 ZFS_ENTER(zfsvfs);
1189 ZFS_VERIFY_ZP(zp);
1190
1191 if (flag & V_ACE_MASK)
1192 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1193 else
1194 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1195
1196 ZFS_EXIT(zfsvfs);
1197 return (error);
1198 }
1199
1200 /*
1201 * If vnode is for a device return a specfs vnode instead.
1202 */
1203 static int
1204 specvp_check(vnode_t **vpp, cred_t *cr)
1205 {
1206 int error = 0;
1207
1208 if (IS_DEVVP(*vpp)) {
1209 struct vnode *svp;
1210
1211 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1212 VN_RELE(*vpp);
1213 if (svp == NULL)
1214 error = SET_ERROR(ENOSYS);
1215 *vpp = svp;
1216 }
1217 return (error);
1218 }
1219
1220
1221 /*
1222 * Lookup an entry in a directory, or an extended attribute directory.
1223 * If it exists, return a held vnode reference for it.
1224 *
1225 * IN: dvp - vnode of directory to search.
1226 * nm - name of entry to lookup.
1227 * pnp - full pathname to lookup [UNUSED].
1228 * flags - LOOKUP_XATTR set if looking for an attribute.
1229 * rdir - root directory vnode [UNUSED].
1230 * cr - credentials of caller.
1231 * ct - caller context
1232 * direntflags - directory lookup flags
1233 * realpnp - returned pathname.
1234 *
1235 * OUT: vpp - vnode of located entry, NULL if not found.
1236 *
1237 * RETURN: 0 on success, error code on failure.
1238 *
1239 * Timestamps:
1240 * NA
1241 */
1242 /* ARGSUSED */
1243 static int
1244 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1245 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1246 int *direntflags, pathname_t *realpnp)
1247 {
1248 znode_t *zdp = VTOZ(dvp);
1249 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1250 int error = 0;
1251
1252 /*
1253 * Fast path lookup, however we must skip DNLC lookup
1254 * for case folding or normalizing lookups because the
1255 * DNLC code only stores the passed in name. This means
1256 * creating 'a' and removing 'A' on a case insensitive
1257 * file system would work, but DNLC still thinks 'a'
1258 * exists and won't let you create it again on the next
1259 * pass through fast path.
1260 */
1261 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1262
1263 if (dvp->v_type != VDIR) {
1264 return (SET_ERROR(ENOTDIR));
1265 } else if (zdp->z_sa_hdl == NULL) {
1266 return (SET_ERROR(EIO));
1267 }
1268
1269 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1270 error = zfs_fastaccesschk_execute(zdp, cr);
1271 if (!error) {
1272 *vpp = dvp;
1273 VN_HOLD(*vpp);
1274 return (0);
1275 }
1276 return (error);
1277 } else if (!zdp->z_zfsvfs->z_norm &&
1278 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1279
1280 vnode_t *tvp = dnlc_lookup(dvp, nm);
1281
1282 if (tvp) {
1283 error = zfs_fastaccesschk_execute(zdp, cr);
1284 if (error) {
1285 VN_RELE(tvp);
1286 return (error);
1287 }
1288 if (tvp == DNLC_NO_VNODE) {
1289 VN_RELE(tvp);
1290 return (SET_ERROR(ENOENT));
1291 } else {
1292 *vpp = tvp;
1293 return (specvp_check(vpp, cr));
1294 }
1295 }
1296 }
1297 }
1298
1299 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1300
1301 ZFS_ENTER(zfsvfs);
1302 ZFS_VERIFY_ZP(zdp);
1303
1304 *vpp = NULL;
1305
1306 if (flags & LOOKUP_XATTR) {
1307 /*
1308 * If the xattr property is off, refuse the lookup request.
1309 */
1310 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1311 ZFS_EXIT(zfsvfs);
1312 return (SET_ERROR(EINVAL));
1313 }
1314
1315 /*
1316 * We don't allow recursive attributes..
1317 * Maybe someday we will.
1318 */
1319 if (zdp->z_pflags & ZFS_XATTR) {
1320 ZFS_EXIT(zfsvfs);
1321 return (SET_ERROR(EINVAL));
1322 }
1323
1324 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1325 ZFS_EXIT(zfsvfs);
1326 return (error);
1327 }
1328
1329 /*
1330 * Do we have permission to get into attribute directory?
1331 */
1332
1333 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1334 B_FALSE, cr)) {
1335 VN_RELE(*vpp);
1336 *vpp = NULL;
1337 }
1338
1339 ZFS_EXIT(zfsvfs);
1340 return (error);
1341 }
1342
1343 if (dvp->v_type != VDIR) {
1344 ZFS_EXIT(zfsvfs);
1345 return (SET_ERROR(ENOTDIR));
1346 }
1347
1348 /*
1349 * Check accessibility of directory.
1350 */
1351
1352 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1353 ZFS_EXIT(zfsvfs);
1354 return (error);
1355 }
1356
1357 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1358 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1359 ZFS_EXIT(zfsvfs);
1360 return (SET_ERROR(EILSEQ));
1361 }
1362
1363 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1364 if (error == 0)
1365 error = specvp_check(vpp, cr);
1366
1367 ZFS_EXIT(zfsvfs);
1368 return (error);
1369 }
1370
1371 /*
1372 * Attempt to create a new entry in a directory. If the entry
1373 * already exists, truncate the file if permissible, else return
1374 * an error. Return the vp of the created or trunc'd file.
1375 *
1376 * IN: dvp - vnode of directory to put new file entry in.
1377 * name - name of new file entry.
1378 * vap - attributes of new file.
1379 * excl - flag indicating exclusive or non-exclusive mode.
1380 * mode - mode to open file with.
1381 * cr - credentials of caller.
1382 * flag - large file flag [UNUSED].
1383 * ct - caller context
1384 * vsecp - ACL to be set
1385 *
1386 * OUT: vpp - vnode of created or trunc'd entry.
1387 *
1388 * RETURN: 0 on success, error code on failure.
1389 *
1390 * Timestamps:
1391 * dvp - ctime|mtime updated if new entry created
1392 * vp - ctime|mtime always, atime if new
1393 */
1394
1395 /* ARGSUSED */
1396 static int
1397 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1398 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1399 vsecattr_t *vsecp)
1400 {
1401 znode_t *zp, *dzp = VTOZ(dvp);
1402 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1403 zilog_t *zilog;
1404 objset_t *os;
1405 zfs_dirlock_t *dl;
1406 dmu_tx_t *tx;
1407 int error;
1408 ksid_t *ksid;
1409 uid_t uid;
1410 gid_t gid = crgetgid(cr);
1411 zfs_acl_ids_t acl_ids;
1412 boolean_t fuid_dirtied;
1413 boolean_t have_acl = B_FALSE;
1414 boolean_t waited = B_FALSE;
1415
1416 /*
1417 * If we have an ephemeral id, ACL, or XVATTR then
1418 * make sure file system is at proper version
1419 */
1420
1421 ksid = crgetsid(cr, KSID_OWNER);
1422 if (ksid)
1423 uid = ksid_getid(ksid);
1424 else
1425 uid = crgetuid(cr);
1426
1427 if (zfsvfs->z_use_fuids == B_FALSE &&
1428 (vsecp || (vap->va_mask & AT_XVATTR) ||
1429 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1430 return (SET_ERROR(EINVAL));
1431
1432 ZFS_ENTER(zfsvfs);
1433 ZFS_VERIFY_ZP(dzp);
1434 os = zfsvfs->z_os;
1435 zilog = zfsvfs->z_log;
1436
1437 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1438 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1439 ZFS_EXIT(zfsvfs);
1440 return (SET_ERROR(EILSEQ));
1441 }
1442
1443 if (vap->va_mask & AT_XVATTR) {
1444 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1445 crgetuid(cr), cr, vap->va_type)) != 0) {
1446 ZFS_EXIT(zfsvfs);
1447 return (error);
1448 }
1449 }
1450 top:
1451 *vpp = NULL;
1452
1453 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1454 vap->va_mode &= ~VSVTX;
1455
1456 if (*name == '\0') {
1457 /*
1458 * Null component name refers to the directory itself.
1459 */
1460 VN_HOLD(dvp);
1461 zp = dzp;
1462 dl = NULL;
1463 error = 0;
1464 } else {
1465 /* possible VN_HOLD(zp) */
1466 int zflg = 0;
1467
1468 if (flag & FIGNORECASE)
1469 zflg |= ZCILOOK;
1470
1471 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1472 NULL, NULL);
1473 if (error) {
1474 if (have_acl)
1475 zfs_acl_ids_free(&acl_ids);
1476 if (strcmp(name, "..") == 0)
1477 error = SET_ERROR(EISDIR);
1478 ZFS_EXIT(zfsvfs);
1479 return (error);
1480 }
1481 }
1482
1483 if (zp == NULL) {
1484 uint64_t txtype;
1485
1486 /*
1487 * Create a new file object and update the directory
1488 * to reference it.
1489 */
1490 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1491 if (have_acl)
1492 zfs_acl_ids_free(&acl_ids);
1493 goto out;
1494 }
1495
1496 /*
1497 * We only support the creation of regular files in
1498 * extended attribute directories.
1499 */
1500
1501 if ((dzp->z_pflags & ZFS_XATTR) &&
1502 (vap->va_type != VREG)) {
1503 if (have_acl)
1504 zfs_acl_ids_free(&acl_ids);
1505 error = SET_ERROR(EINVAL);
1506 goto out;
1507 }
1508
1509 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1510 cr, vsecp, &acl_ids)) != 0)
1511 goto out;
1512 have_acl = B_TRUE;
1513
1514 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1515 zfs_acl_ids_free(&acl_ids);
1516 error = SET_ERROR(EDQUOT);
1517 goto out;
1518 }
1519
1520 tx = dmu_tx_create(os);
1521
1522 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1523 ZFS_SA_BASE_ATTR_SIZE);
1524
1525 fuid_dirtied = zfsvfs->z_fuid_dirty;
1526 if (fuid_dirtied)
1527 zfs_fuid_txhold(zfsvfs, tx);
1528 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1529 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1530 if (!zfsvfs->z_use_sa &&
1531 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1532 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1533 0, acl_ids.z_aclp->z_acl_bytes);
1534 }
1535 error = dmu_tx_assign(tx,
1536 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1537 if (error) {
1538 zfs_dirent_unlock(dl);
1539 if (error == ERESTART) {
1540 waited = B_TRUE;
1541 dmu_tx_wait(tx);
1542 dmu_tx_abort(tx);
1543 goto top;
1544 }
1545 zfs_acl_ids_free(&acl_ids);
1546 dmu_tx_abort(tx);
1547 ZFS_EXIT(zfsvfs);
1548 return (error);
1549 }
1550 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1551
1552 if (fuid_dirtied)
1553 zfs_fuid_sync(zfsvfs, tx);
1554
1555 (void) zfs_link_create(dl, zp, tx, ZNEW);
1556 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1557 if (flag & FIGNORECASE)
1558 txtype |= TX_CI;
1559 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1560 vsecp, acl_ids.z_fuidp, vap);
1561 zfs_acl_ids_free(&acl_ids);
1562 dmu_tx_commit(tx);
1563 } else {
1564 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1565
1566 if (have_acl)
1567 zfs_acl_ids_free(&acl_ids);
1568 have_acl = B_FALSE;
1569
1570 /*
1571 * A directory entry already exists for this name.
1572 */
1573 /*
1574 * Can't truncate an existing file if in exclusive mode.
1575 */
1576 if (excl == EXCL) {
1577 error = SET_ERROR(EEXIST);
1578 goto out;
1579 }
1580 /*
1581 * Can't open a directory for writing.
1582 */
1583 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1584 error = SET_ERROR(EISDIR);
1585 goto out;
1586 }
1587 /*
1588 * Verify requested access to file.
1589 */
1590 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1591 goto out;
1592 }
1593
1594 mutex_enter(&dzp->z_lock);
1595 dzp->z_seq++;
1596 mutex_exit(&dzp->z_lock);
1597
1598 /*
1599 * Truncate regular files if requested.
1600 */
1601 if ((ZTOV(zp)->v_type == VREG) &&
1602 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1603 /* we can't hold any locks when calling zfs_freesp() */
1604 zfs_dirent_unlock(dl);
1605 dl = NULL;
1606 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1607 if (error == 0) {
1608 vnevent_create(ZTOV(zp), ct);
1609 }
1610 }
1611 }
1612 out:
1613
1614 if (dl)
1615 zfs_dirent_unlock(dl);
1616
1617 if (error) {
1618 if (zp)
1619 VN_RELE(ZTOV(zp));
1620 } else {
1621 *vpp = ZTOV(zp);
1622 error = specvp_check(vpp, cr);
1623 }
1624
1625 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1626 zil_commit(zilog, 0);
1627
1628 ZFS_EXIT(zfsvfs);
1629 return (error);
1630 }
1631
1632 /*
1633 * Remove an entry from a directory.
1634 *
1635 * IN: dvp - vnode of directory to remove entry from.
1636 * name - name of entry to remove.
1637 * cr - credentials of caller.
1638 * ct - caller context
1639 * flags - case flags
1640 *
1641 * RETURN: 0 on success, error code on failure.
1642 *
1643 * Timestamps:
1644 * dvp - ctime|mtime
1645 * vp - ctime (if nlink > 0)
1646 */
1647
1648 uint64_t null_xattr = 0;
1649
1650 /*ARGSUSED*/
1651 static int
1652 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1653 int flags)
1654 {
1655 znode_t *zp, *dzp = VTOZ(dvp);
1656 znode_t *xzp;
1657 vnode_t *vp;
1658 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1659 zilog_t *zilog;
1660 uint64_t acl_obj, xattr_obj;
1661 uint64_t xattr_obj_unlinked = 0;
1662 uint64_t obj = 0;
1663 zfs_dirlock_t *dl;
1664 dmu_tx_t *tx;
1665 boolean_t may_delete_now, delete_now = FALSE;
1666 boolean_t unlinked, toobig = FALSE;
1667 uint64_t txtype;
1668 pathname_t *realnmp = NULL;
1669 pathname_t realnm;
1670 int error;
1671 int zflg = ZEXISTS;
1672 boolean_t waited = B_FALSE;
1673
1674 ZFS_ENTER(zfsvfs);
1675 ZFS_VERIFY_ZP(dzp);
1676 zilog = zfsvfs->z_log;
1677
1678 if (flags & FIGNORECASE) {
1679 zflg |= ZCILOOK;
1680 pn_alloc(&realnm);
1681 realnmp = &realnm;
1682 }
1683
1684 top:
1685 xattr_obj = 0;
1686 xzp = NULL;
1687 /*
1688 * Attempt to lock directory; fail if entry doesn't exist.
1689 */
1690 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1691 NULL, realnmp)) {
1692 if (realnmp)
1693 pn_free(realnmp);
1694 ZFS_EXIT(zfsvfs);
1695 return (error);
1696 }
1697
1698 vp = ZTOV(zp);
1699
1700 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1701 goto out;
1702 }
1703
1704 /*
1705 * Need to use rmdir for removing directories.
1706 */
1707 if (vp->v_type == VDIR) {
1708 error = SET_ERROR(EPERM);
1709 goto out;
1710 }
1711
1712 vnevent_remove(vp, dvp, name, ct);
1713
1714 if (realnmp)
1715 dnlc_remove(dvp, realnmp->pn_buf);
1716 else
1717 dnlc_remove(dvp, name);
1718
1719 mutex_enter(&vp->v_lock);
1720 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1721 mutex_exit(&vp->v_lock);
1722
1723 /*
1724 * We may delete the znode now, or we may put it in the unlinked set;
1725 * it depends on whether we're the last link, and on whether there are
1726 * other holds on the vnode. So we dmu_tx_hold() the right things to
1727 * allow for either case.
1728 */
1729 obj = zp->z_id;
1730 tx = dmu_tx_create(zfsvfs->z_os);
1731 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1732 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1733 zfs_sa_upgrade_txholds(tx, zp);
1734 zfs_sa_upgrade_txholds(tx, dzp);
1735 if (may_delete_now) {
1736 toobig =
1737 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1738 /* if the file is too big, only hold_free a token amount */
1739 dmu_tx_hold_free(tx, zp->z_id, 0,
1740 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1741 }
1742
1743 /* are there any extended attributes? */
1744 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1745 &xattr_obj, sizeof (xattr_obj));
1746 if (error == 0 && xattr_obj) {
1747 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1748 ASSERT0(error);
1749 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1750 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1751 }
1752
1753 mutex_enter(&zp->z_lock);
1754 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1755 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1756 mutex_exit(&zp->z_lock);
1757
1758 /* charge as an update -- would be nice not to charge at all */
1759 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1760
1761 /*
1762 * Mark this transaction as typically resulting in a net free of space
1763 */
1764 dmu_tx_mark_netfree(tx);
1765
1766 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1767 if (error) {
1768 zfs_dirent_unlock(dl);
1769 VN_RELE(vp);
1770 if (xzp)
1771 VN_RELE(ZTOV(xzp));
1772 if (error == ERESTART) {
1773 waited = B_TRUE;
1774 dmu_tx_wait(tx);
1775 dmu_tx_abort(tx);
1776 goto top;
1777 }
1778 if (realnmp)
1779 pn_free(realnmp);
1780 dmu_tx_abort(tx);
1781 ZFS_EXIT(zfsvfs);
1782 return (error);
1783 }
1784
1785 /*
1786 * Remove the directory entry.
1787 */
1788 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1789
1790 if (error) {
1791 dmu_tx_commit(tx);
1792 goto out;
1793 }
1794
1795 if (unlinked) {
1796 /*
1797 * Hold z_lock so that we can make sure that the ACL obj
1798 * hasn't changed. Could have been deleted due to
1799 * zfs_sa_upgrade().
1800 */
1801 mutex_enter(&zp->z_lock);
1802 mutex_enter(&vp->v_lock);
1803 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1804 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1805 delete_now = may_delete_now && !toobig &&
1806 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1807 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1808 acl_obj;
1809 mutex_exit(&vp->v_lock);
1810 }
1811
1812 if (delete_now) {
1813 if (xattr_obj_unlinked) {
1814 ASSERT3U(xzp->z_links, ==, 2);
1815 mutex_enter(&xzp->z_lock);
1816 xzp->z_unlinked = 1;
1817 xzp->z_links = 0;
1818 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1819 &xzp->z_links, sizeof (xzp->z_links), tx);
1820 ASSERT3U(error, ==, 0);
1821 mutex_exit(&xzp->z_lock);
1822 zfs_unlinked_add(xzp, tx);
1823
1824 if (zp->z_is_sa)
1825 error = sa_remove(zp->z_sa_hdl,
1826 SA_ZPL_XATTR(zfsvfs), tx);
1827 else
1828 error = sa_update(zp->z_sa_hdl,
1829 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1830 sizeof (uint64_t), tx);
1831 ASSERT0(error);
1832 }
1833 mutex_enter(&vp->v_lock);
1834 VN_RELE_LOCKED(vp);
1835 ASSERT0(vp->v_count);
1836 mutex_exit(&vp->v_lock);
1837 mutex_exit(&zp->z_lock);
1838 zfs_znode_delete(zp, tx);
1839 } else if (unlinked) {
1840 mutex_exit(&zp->z_lock);
1841 zfs_unlinked_add(zp, tx);
1842 }
1843
1844 txtype = TX_REMOVE;
1845 if (flags & FIGNORECASE)
1846 txtype |= TX_CI;
1847 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1848
1849 dmu_tx_commit(tx);
1850 out:
1851 if (realnmp)
1852 pn_free(realnmp);
1853
1854 zfs_dirent_unlock(dl);
1855
1856 if (!delete_now)
1857 VN_RELE(vp);
1858 if (xzp)
1859 VN_RELE(ZTOV(xzp));
1860
1861 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1862 zil_commit(zilog, 0);
1863
1864 ZFS_EXIT(zfsvfs);
1865 return (error);
1866 }
1867
1868 /*
1869 * Create a new directory and insert it into dvp using the name
1870 * provided. Return a pointer to the inserted directory.
1871 *
1872 * IN: dvp - vnode of directory to add subdir to.
1873 * dirname - name of new directory.
1874 * vap - attributes of new directory.
1875 * cr - credentials of caller.
1876 * ct - caller context
1877 * flags - case flags
1878 * vsecp - ACL to be set
1879 *
1880 * OUT: vpp - vnode of created directory.
1881 *
1882 * RETURN: 0 on success, error code on failure.
1883 *
1884 * Timestamps:
1885 * dvp - ctime|mtime updated
1886 * vp - ctime|mtime|atime updated
1887 */
1888 /*ARGSUSED*/
1889 static int
1890 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1891 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1892 {
1893 znode_t *zp, *dzp = VTOZ(dvp);
1894 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1895 zilog_t *zilog;
1896 zfs_dirlock_t *dl;
1897 uint64_t txtype;
1898 dmu_tx_t *tx;
1899 int error;
1900 int zf = ZNEW;
1901 ksid_t *ksid;
1902 uid_t uid;
1903 gid_t gid = crgetgid(cr);
1904 zfs_acl_ids_t acl_ids;
1905 boolean_t fuid_dirtied;
1906 boolean_t waited = B_FALSE;
1907
1908 ASSERT(vap->va_type == VDIR);
1909
1910 /*
1911 * If we have an ephemeral id, ACL, or XVATTR then
1912 * make sure file system is at proper version
1913 */
1914
1915 ksid = crgetsid(cr, KSID_OWNER);
1916 if (ksid)
1917 uid = ksid_getid(ksid);
1918 else
1919 uid = crgetuid(cr);
1920 if (zfsvfs->z_use_fuids == B_FALSE &&
1921 (vsecp || (vap->va_mask & AT_XVATTR) ||
1922 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1923 return (SET_ERROR(EINVAL));
1924
1925 ZFS_ENTER(zfsvfs);
1926 ZFS_VERIFY_ZP(dzp);
1927 zilog = zfsvfs->z_log;
1928
1929 if (dzp->z_pflags & ZFS_XATTR) {
1930 ZFS_EXIT(zfsvfs);
1931 return (SET_ERROR(EINVAL));
1932 }
1933
1934 if (zfsvfs->z_utf8 && u8_validate(dirname,
1935 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1936 ZFS_EXIT(zfsvfs);
1937 return (SET_ERROR(EILSEQ));
1938 }
1939 if (flags & FIGNORECASE)
1940 zf |= ZCILOOK;
1941
1942 if (vap->va_mask & AT_XVATTR) {
1943 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1944 crgetuid(cr), cr, vap->va_type)) != 0) {
1945 ZFS_EXIT(zfsvfs);
1946 return (error);
1947 }
1948 }
1949
1950 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1951 vsecp, &acl_ids)) != 0) {
1952 ZFS_EXIT(zfsvfs);
1953 return (error);
1954 }
1955 /*
1956 * First make sure the new directory doesn't exist.
1957 *
1958 * Existence is checked first to make sure we don't return
1959 * EACCES instead of EEXIST which can cause some applications
1960 * to fail.
1961 */
1962 top:
1963 *vpp = NULL;
1964
1965 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1966 NULL, NULL)) {
1967 zfs_acl_ids_free(&acl_ids);
1968 ZFS_EXIT(zfsvfs);
1969 return (error);
1970 }
1971
1972 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1973 zfs_acl_ids_free(&acl_ids);
1974 zfs_dirent_unlock(dl);
1975 ZFS_EXIT(zfsvfs);
1976 return (error);
1977 }
1978
1979 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1980 zfs_acl_ids_free(&acl_ids);
1981 zfs_dirent_unlock(dl);
1982 ZFS_EXIT(zfsvfs);
1983 return (SET_ERROR(EDQUOT));
1984 }
1985
1986 /*
1987 * Add a new entry to the directory.
1988 */
1989 tx = dmu_tx_create(zfsvfs->z_os);
1990 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1991 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1992 fuid_dirtied = zfsvfs->z_fuid_dirty;
1993 if (fuid_dirtied)
1994 zfs_fuid_txhold(zfsvfs, tx);
1995 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1996 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1997 acl_ids.z_aclp->z_acl_bytes);
1998 }
1999
2000 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2001 ZFS_SA_BASE_ATTR_SIZE);
2002
2003 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2004 if (error) {
2005 zfs_dirent_unlock(dl);
2006 if (error == ERESTART) {
2007 waited = B_TRUE;
2008 dmu_tx_wait(tx);
2009 dmu_tx_abort(tx);
2010 goto top;
2011 }
2012 zfs_acl_ids_free(&acl_ids);
2013 dmu_tx_abort(tx);
2014 ZFS_EXIT(zfsvfs);
2015 return (error);
2016 }
2017
2018 /*
2019 * Create new node.
2020 */
2021 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2022
2023 if (fuid_dirtied)
2024 zfs_fuid_sync(zfsvfs, tx);
2025
2026 /*
2027 * Now put new name in parent dir.
2028 */
2029 (void) zfs_link_create(dl, zp, tx, ZNEW);
2030
2031 *vpp = ZTOV(zp);
2032
2033 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2034 if (flags & FIGNORECASE)
2035 txtype |= TX_CI;
2036 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2037 acl_ids.z_fuidp, vap);
2038
2039 zfs_acl_ids_free(&acl_ids);
2040
2041 dmu_tx_commit(tx);
2042
2043 zfs_dirent_unlock(dl);
2044
2045 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2046 zil_commit(zilog, 0);
2047
2048 ZFS_EXIT(zfsvfs);
2049 return (0);
2050 }
2051
2052 /*
2053 * Remove a directory subdir entry. If the current working
2054 * directory is the same as the subdir to be removed, the
2055 * remove will fail.
2056 *
2057 * IN: dvp - vnode of directory to remove from.
2058 * name - name of directory to be removed.
2059 * cwd - vnode of current working directory.
2060 * cr - credentials of caller.
2061 * ct - caller context
2062 * flags - case flags
2063 *
2064 * RETURN: 0 on success, error code on failure.
2065 *
2066 * Timestamps:
2067 * dvp - ctime|mtime updated
2068 */
2069 /*ARGSUSED*/
2070 static int
2071 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2072 caller_context_t *ct, int flags)
2073 {
2074 znode_t *dzp = VTOZ(dvp);
2075 znode_t *zp;
2076 vnode_t *vp;
2077 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2078 zilog_t *zilog;
2079 zfs_dirlock_t *dl;
2080 dmu_tx_t *tx;
2081 int error;
2082 int zflg = ZEXISTS;
2083 boolean_t waited = B_FALSE;
2084
2085 ZFS_ENTER(zfsvfs);
2086 ZFS_VERIFY_ZP(dzp);
2087 zilog = zfsvfs->z_log;
2088
2089 if (flags & FIGNORECASE)
2090 zflg |= ZCILOOK;
2091 top:
2092 zp = NULL;
2093
2094 /*
2095 * Attempt to lock directory; fail if entry doesn't exist.
2096 */
2097 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2098 NULL, NULL)) {
2099 ZFS_EXIT(zfsvfs);
2100 return (error);
2101 }
2102
2103 vp = ZTOV(zp);
2104
2105 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2106 goto out;
2107 }
2108
2109 if (vp->v_type != VDIR) {
2110 error = SET_ERROR(ENOTDIR);
2111 goto out;
2112 }
2113
2114 if (vp == cwd) {
2115 error = SET_ERROR(EINVAL);
2116 goto out;
2117 }
2118
2119 vnevent_rmdir(vp, dvp, name, ct);
2120
2121 /*
2122 * Grab a lock on the directory to make sure that noone is
2123 * trying to add (or lookup) entries while we are removing it.
2124 */
2125 rw_enter(&zp->z_name_lock, RW_WRITER);
2126
2127 /*
2128 * Grab a lock on the parent pointer to make sure we play well
2129 * with the treewalk and directory rename code.
2130 */
2131 rw_enter(&zp->z_parent_lock, RW_WRITER);
2132
2133 tx = dmu_tx_create(zfsvfs->z_os);
2134 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2135 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2136 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2137 zfs_sa_upgrade_txholds(tx, zp);
2138 zfs_sa_upgrade_txholds(tx, dzp);
2139 dmu_tx_mark_netfree(tx);
2140 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2141 if (error) {
2142 rw_exit(&zp->z_parent_lock);
2143 rw_exit(&zp->z_name_lock);
2144 zfs_dirent_unlock(dl);
2145 VN_RELE(vp);
2146 if (error == ERESTART) {
2147 waited = B_TRUE;
2148 dmu_tx_wait(tx);
2149 dmu_tx_abort(tx);
2150 goto top;
2151 }
2152 dmu_tx_abort(tx);
2153 ZFS_EXIT(zfsvfs);
2154 return (error);
2155 }
2156
2157 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2158
2159 if (error == 0) {
2160 uint64_t txtype = TX_RMDIR;
2161 if (flags & FIGNORECASE)
2162 txtype |= TX_CI;
2163 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2164 }
2165
2166 dmu_tx_commit(tx);
2167
2168 rw_exit(&zp->z_parent_lock);
2169 rw_exit(&zp->z_name_lock);
2170 out:
2171 zfs_dirent_unlock(dl);
2172
2173 VN_RELE(vp);
2174
2175 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2176 zil_commit(zilog, 0);
2177
2178 ZFS_EXIT(zfsvfs);
2179 return (error);
2180 }
2181
2182 /*
2183 * Read as many directory entries as will fit into the provided
2184 * buffer from the given directory cursor position (specified in
2185 * the uio structure).
2186 *
2187 * IN: vp - vnode of directory to read.
2188 * uio - structure supplying read location, range info,
2189 * and return buffer.
2190 * cr - credentials of caller.
2191 * ct - caller context
2192 * flags - case flags
2193 *
2194 * OUT: uio - updated offset and range, buffer filled.
2195 * eofp - set to true if end-of-file detected.
2196 *
2197 * RETURN: 0 on success, error code on failure.
2198 *
2199 * Timestamps:
2200 * vp - atime updated
2201 *
2202 * Note that the low 4 bits of the cookie returned by zap is always zero.
2203 * This allows us to use the low range for "special" directory entries:
2204 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2205 * we use the offset 2 for the '.zfs' directory.
2206 */
2207 /* ARGSUSED */
2208 static int
2209 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2210 caller_context_t *ct, int flags)
2211 {
2212 znode_t *zp = VTOZ(vp);
2213 iovec_t *iovp;
2214 edirent_t *eodp;
2215 dirent64_t *odp;
2216 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2217 objset_t *os;
2218 caddr_t outbuf;
2219 size_t bufsize;
2220 zap_cursor_t zc;
2221 zap_attribute_t zap;
2222 uint_t bytes_wanted;
2223 uint64_t offset; /* must be unsigned; checks for < 1 */
2224 uint64_t parent;
2225 int local_eof;
2226 int outcount;
2227 int error;
2228 uint8_t prefetch;
2229 boolean_t check_sysattrs;
2230
2231 ZFS_ENTER(zfsvfs);
2232 ZFS_VERIFY_ZP(zp);
2233
2234 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2235 &parent, sizeof (parent))) != 0) {
2236 ZFS_EXIT(zfsvfs);
2237 return (error);
2238 }
2239
2240 /*
2241 * If we are not given an eof variable,
2242 * use a local one.
2243 */
2244 if (eofp == NULL)
2245 eofp = &local_eof;
2246
2247 /*
2248 * Check for valid iov_len.
2249 */
2250 if (uio->uio_iov->iov_len <= 0) {
2251 ZFS_EXIT(zfsvfs);
2252 return (SET_ERROR(EINVAL));
2253 }
2254
2255 /*
2256 * Quit if directory has been removed (posix)
2257 */
2258 if ((*eofp = zp->z_unlinked) != 0) {
2259 ZFS_EXIT(zfsvfs);
2260 return (0);
2261 }
2262
2263 error = 0;
2264 os = zfsvfs->z_os;
2265 offset = uio->uio_loffset;
2266 prefetch = zp->z_zn_prefetch;
2267
2268 /*
2269 * Initialize the iterator cursor.
2270 */
2271 if (offset <= 3) {
2272 /*
2273 * Start iteration from the beginning of the directory.
2274 */
2275 zap_cursor_init(&zc, os, zp->z_id);
2276 } else {
2277 /*
2278 * The offset is a serialized cursor.
2279 */
2280 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2281 }
2282
2283 /*
2284 * Get space to change directory entries into fs independent format.
2285 */
2286 iovp = uio->uio_iov;
2287 bytes_wanted = iovp->iov_len;
2288 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2289 bufsize = bytes_wanted;
2290 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2291 odp = (struct dirent64 *)outbuf;
2292 } else {
2293 bufsize = bytes_wanted;
2294 outbuf = NULL;
2295 odp = (struct dirent64 *)iovp->iov_base;
2296 }
2297 eodp = (struct edirent *)odp;
2298
2299 /*
2300 * If this VFS supports the system attribute view interface; and
2301 * we're looking at an extended attribute directory; and we care
2302 * about normalization conflicts on this vfs; then we must check
2303 * for normalization conflicts with the sysattr name space.
2304 */
2305 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2306 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2307 (flags & V_RDDIR_ENTFLAGS);
2308
2309 /*
2310 * Transform to file-system independent format
2311 */
2312 outcount = 0;
2313 while (outcount < bytes_wanted) {
2314 ino64_t objnum;
2315 ushort_t reclen;
2316 off64_t *next = NULL;
2317
2318 /*
2319 * Special case `.', `..', and `.zfs'.
2320 */
2321 if (offset == 0) {
2322 (void) strcpy(zap.za_name, ".");
2323 zap.za_normalization_conflict = 0;
2324 objnum = zp->z_id;
2325 } else if (offset == 1) {
2326 (void) strcpy(zap.za_name, "..");
2327 zap.za_normalization_conflict = 0;
2328 objnum = parent;
2329 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2330 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2331 zap.za_normalization_conflict = 0;
2332 objnum = ZFSCTL_INO_ROOT;
2333 } else {
2334 /*
2335 * Grab next entry.
2336 */
2337 if (error = zap_cursor_retrieve(&zc, &zap)) {
2338 if ((*eofp = (error == ENOENT)) != 0)
2339 break;
2340 else
2341 goto update;
2342 }
2343
2344 if (zap.za_integer_length != 8 ||
2345 zap.za_num_integers != 1) {
2346 cmn_err(CE_WARN, "zap_readdir: bad directory "
2347 "entry, obj = %lld, offset = %lld\n",
2348 (u_longlong_t)zp->z_id,
2349 (u_longlong_t)offset);
2350 error = SET_ERROR(ENXIO);
2351 goto update;
2352 }
2353
2354 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2355 /*
2356 * MacOS X can extract the object type here such as:
2357 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2358 */
2359
2360 if (check_sysattrs && !zap.za_normalization_conflict) {
2361 zap.za_normalization_conflict =
2362 xattr_sysattr_casechk(zap.za_name);
2363 }
2364 }
2365
2366 if (flags & V_RDDIR_ACCFILTER) {
2367 /*
2368 * If we have no access at all, don't include
2369 * this entry in the returned information
2370 */
2371 znode_t *ezp;
2372 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2373 goto skip_entry;
2374 if (!zfs_has_access(ezp, cr)) {
2375 VN_RELE(ZTOV(ezp));
2376 goto skip_entry;
2377 }
2378 VN_RELE(ZTOV(ezp));
2379 }
2380
2381 if (flags & V_RDDIR_ENTFLAGS)
2382 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2383 else
2384 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2385
2386 /*
2387 * Will this entry fit in the buffer?
2388 */
2389 if (outcount + reclen > bufsize) {
2390 /*
2391 * Did we manage to fit anything in the buffer?
2392 */
2393 if (!outcount) {
2394 error = SET_ERROR(EINVAL);
2395 goto update;
2396 }
2397 break;
2398 }
2399 if (flags & V_RDDIR_ENTFLAGS) {
2400 /*
2401 * Add extended flag entry:
2402 */
2403 eodp->ed_ino = objnum;
2404 eodp->ed_reclen = reclen;
2405 /* NOTE: ed_off is the offset for the *next* entry */
2406 next = &(eodp->ed_off);
2407 eodp->ed_eflags = zap.za_normalization_conflict ?
2408 ED_CASE_CONFLICT : 0;
2409 (void) strncpy(eodp->ed_name, zap.za_name,
2410 EDIRENT_NAMELEN(reclen));
2411 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2412 } else {
2413 /*
2414 * Add normal entry:
2415 */
2416 odp->d_ino = objnum;
2417 odp->d_reclen = reclen;
2418 /* NOTE: d_off is the offset for the *next* entry */
2419 next = &(odp->d_off);
2420 (void) strncpy(odp->d_name, zap.za_name,
2421 DIRENT64_NAMELEN(reclen));
2422 odp = (dirent64_t *)((intptr_t)odp + reclen);
2423 }
2424 outcount += reclen;
2425
2426 ASSERT(outcount <= bufsize);
2427
2428 /* Prefetch znode */
2429 if (prefetch)
2430 dmu_prefetch(os, objnum, 0, 0, 0,
2431 ZIO_PRIORITY_SYNC_READ);
2432
2433 skip_entry:
2434 /*
2435 * Move to the next entry, fill in the previous offset.
2436 */
2437 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2438 zap_cursor_advance(&zc);
2439 offset = zap_cursor_serialize(&zc);
2440 } else {
2441 offset += 1;
2442 }
2443 if (next)
2444 *next = offset;
2445 }
2446 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2447
2448 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2449 iovp->iov_base += outcount;
2450 iovp->iov_len -= outcount;
2451 uio->uio_resid -= outcount;
2452 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2453 /*
2454 * Reset the pointer.
2455 */
2456 offset = uio->uio_loffset;
2457 }
2458
2459 update:
2460 zap_cursor_fini(&zc);
2461 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2462 kmem_free(outbuf, bufsize);
2463
2464 if (error == ENOENT)
2465 error = 0;
2466
2467 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2468
2469 uio->uio_loffset = offset;
2470 ZFS_EXIT(zfsvfs);
2471 return (error);
2472 }
2473
2474 ulong_t zfs_fsync_sync_cnt = 4;
2475
2476 static int
2477 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2478 {
2479 znode_t *zp = VTOZ(vp);
2480 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2481
2482 /*
2483 * Regardless of whether this is required for standards conformance,
2484 * this is the logical behavior when fsync() is called on a file with
2485 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2486 * going to be pushed out as part of the zil_commit().
2487 */
2488 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2489 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2490 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2491
2492 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2493
2494 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2495 ZFS_ENTER(zfsvfs);
2496 ZFS_VERIFY_ZP(zp);
2497 zil_commit(zfsvfs->z_log, zp->z_id);
2498 ZFS_EXIT(zfsvfs);
2499 }
2500 return (0);
2501 }
2502
2503
2504 /*
2505 * Get the requested file attributes and place them in the provided
2506 * vattr structure.
2507 *
2508 * IN: vp - vnode of file.
2509 * vap - va_mask identifies requested attributes.
2510 * If AT_XVATTR set, then optional attrs are requested
2511 * flags - ATTR_NOACLCHECK (CIFS server context)
2512 * cr - credentials of caller.
2513 * ct - caller context
2514 *
2515 * OUT: vap - attribute values.
2516 *
2517 * RETURN: 0 (always succeeds).
2518 */
2519 /* ARGSUSED */
2520 static int
2521 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2522 caller_context_t *ct)
2523 {
2524 znode_t *zp = VTOZ(vp);
2525 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2526 int error = 0;
2527 uint64_t links;
2528 uint64_t mtime[2], ctime[2];
2529 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2530 xoptattr_t *xoap = NULL;
2531 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2532 sa_bulk_attr_t bulk[2];
2533 int count = 0;
2534
2535 ZFS_ENTER(zfsvfs);
2536 ZFS_VERIFY_ZP(zp);
2537
2538 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2539
2540 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2541 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2542
2543 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2544 ZFS_EXIT(zfsvfs);
2545 return (error);
2546 }
2547
2548 /*
2549 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2550 * Also, if we are the owner don't bother, since owner should
2551 * always be allowed to read basic attributes of file.
2552 */
2553 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2554 (vap->va_uid != crgetuid(cr))) {
2555 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2556 skipaclchk, cr)) {
2557 ZFS_EXIT(zfsvfs);
2558 return (error);
2559 }
2560 }
2561
2562 /*
2563 * Return all attributes. It's cheaper to provide the answer
2564 * than to determine whether we were asked the question.
2565 */
2566
2567 mutex_enter(&zp->z_lock);
2568 vap->va_type = vp->v_type;
2569 vap->va_mode = zp->z_mode & MODEMASK;
2570 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2571 vap->va_nodeid = zp->z_id;
2572 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2573 links = zp->z_links + 1;
2574 else
2575 links = zp->z_links;
2576 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2577 vap->va_size = zp->z_size;
2578 vap->va_rdev = vp->v_rdev;
2579 vap->va_seq = zp->z_seq;
2580
2581 /*
2582 * Add in any requested optional attributes and the create time.
2583 * Also set the corresponding bits in the returned attribute bitmap.
2584 */
2585 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2586 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2587 xoap->xoa_archive =
2588 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2589 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2590 }
2591
2592 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2593 xoap->xoa_readonly =
2594 ((zp->z_pflags & ZFS_READONLY) != 0);
2595 XVA_SET_RTN(xvap, XAT_READONLY);
2596 }
2597
2598 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2599 xoap->xoa_system =
2600 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2601 XVA_SET_RTN(xvap, XAT_SYSTEM);
2602 }
2603
2604 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2605 xoap->xoa_hidden =
2606 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2607 XVA_SET_RTN(xvap, XAT_HIDDEN);
2608 }
2609
2610 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2611 xoap->xoa_nounlink =
2612 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2613 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2614 }
2615
2616 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2617 xoap->xoa_immutable =
2618 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2619 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2620 }
2621
2622 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2623 xoap->xoa_appendonly =
2624 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2625 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2626 }
2627
2628 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2629 xoap->xoa_nodump =
2630 ((zp->z_pflags & ZFS_NODUMP) != 0);
2631 XVA_SET_RTN(xvap, XAT_NODUMP);
2632 }
2633
2634 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2635 xoap->xoa_opaque =
2636 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2637 XVA_SET_RTN(xvap, XAT_OPAQUE);
2638 }
2639
2640 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2641 xoap->xoa_av_quarantined =
2642 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2643 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2644 }
2645
2646 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2647 xoap->xoa_av_modified =
2648 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2649 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2650 }
2651
2652 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2653 vp->v_type == VREG) {
2654 zfs_sa_get_scanstamp(zp, xvap);
2655 }
2656
2657 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2658 uint64_t times[2];
2659
2660 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2661 times, sizeof (times));
2662 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2663 XVA_SET_RTN(xvap, XAT_CREATETIME);
2664 }
2665
2666 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2667 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2668 XVA_SET_RTN(xvap, XAT_REPARSE);
2669 }
2670 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2671 xoap->xoa_generation = zp->z_gen;
2672 XVA_SET_RTN(xvap, XAT_GEN);
2673 }
2674
2675 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2676 xoap->xoa_offline =
2677 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2678 XVA_SET_RTN(xvap, XAT_OFFLINE);
2679 }
2680
2681 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2682 xoap->xoa_sparse =
2683 ((zp->z_pflags & ZFS_SPARSE) != 0);
2684 XVA_SET_RTN(xvap, XAT_SPARSE);
2685 }
2686 }
2687
2688 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2689 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2690 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2691
2692 mutex_exit(&zp->z_lock);
2693
2694 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2695
2696 if (zp->z_blksz == 0) {
2697 /*
2698 * Block size hasn't been set; suggest maximal I/O transfers.
2699 */
2700 vap->va_blksize = zfsvfs->z_max_blksz;
2701 }
2702
2703 ZFS_EXIT(zfsvfs);
2704 return (0);
2705 }
2706
2707 /*
2708 * Set the file attributes to the values contained in the
2709 * vattr structure.
2710 *
2711 * IN: vp - vnode of file to be modified.
2712 * vap - new attribute values.
2713 * If AT_XVATTR set, then optional attrs are being set
2714 * flags - ATTR_UTIME set if non-default time values provided.
2715 * - ATTR_NOACLCHECK (CIFS context only).
2716 * cr - credentials of caller.
2717 * ct - caller context
2718 *
2719 * RETURN: 0 on success, error code on failure.
2720 *
2721 * Timestamps:
2722 * vp - ctime updated, mtime updated if size changed.
2723 */
2724 /* ARGSUSED */
2725 static int
2726 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2727 caller_context_t *ct)
2728 {
2729 znode_t *zp = VTOZ(vp);
2730 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2731 zilog_t *zilog;
2732 dmu_tx_t *tx;
2733 vattr_t oldva;
2734 xvattr_t tmpxvattr;
2735 uint_t mask = vap->va_mask;
2736 uint_t saved_mask = 0;
2737 int trim_mask = 0;
2738 uint64_t new_mode;
2739 uint64_t new_uid, new_gid;
2740 uint64_t xattr_obj;
2741 uint64_t mtime[2], ctime[2];
2742 znode_t *attrzp;
2743 int need_policy = FALSE;
2744 int err, err2;
2745 zfs_fuid_info_t *fuidp = NULL;
2746 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2747 xoptattr_t *xoap;
2748 zfs_acl_t *aclp;
2749 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2750 boolean_t fuid_dirtied = B_FALSE;
2751 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2752 int count = 0, xattr_count = 0;
2753
2754 if (mask == 0)
2755 return (0);
2756
2757 if (mask & AT_NOSET)
2758 return (SET_ERROR(EINVAL));
2759
2760 ZFS_ENTER(zfsvfs);
2761 ZFS_VERIFY_ZP(zp);
2762
2763 zilog = zfsvfs->z_log;
2764
2765 /*
2766 * Make sure that if we have ephemeral uid/gid or xvattr specified
2767 * that file system is at proper version level
2768 */
2769
2770 if (zfsvfs->z_use_fuids == B_FALSE &&
2771 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2772 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2773 (mask & AT_XVATTR))) {
2774 ZFS_EXIT(zfsvfs);
2775 return (SET_ERROR(EINVAL));
2776 }
2777
2778 if (mask & AT_SIZE && vp->v_type == VDIR) {
2779 ZFS_EXIT(zfsvfs);
2780 return (SET_ERROR(EISDIR));
2781 }
2782
2783 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2784 ZFS_EXIT(zfsvfs);
2785 return (SET_ERROR(EINVAL));
2786 }
2787
2788 /*
2789 * If this is an xvattr_t, then get a pointer to the structure of
2790 * optional attributes. If this is NULL, then we have a vattr_t.
2791 */
2792 xoap = xva_getxoptattr(xvap);
2793
2794 xva_init(&tmpxvattr);
2795
2796 /*
2797 * Immutable files can only alter immutable bit and atime
2798 */
2799 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2800 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2801 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2802 ZFS_EXIT(zfsvfs);
2803 return (SET_ERROR(EPERM));
2804 }
2805
2806 /*
2807 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2808 */
2809
2810 /*
2811 * Verify timestamps doesn't overflow 32 bits.
2812 * ZFS can handle large timestamps, but 32bit syscalls can't
2813 * handle times greater than 2039. This check should be removed
2814 * once large timestamps are fully supported.
2815 */
2816 if (mask & (AT_ATIME | AT_MTIME)) {
2817 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2818 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2819 ZFS_EXIT(zfsvfs);
2820 return (SET_ERROR(EOVERFLOW));
2821 }
2822 }
2823
2824 top:
2825 attrzp = NULL;
2826 aclp = NULL;
2827
2828 /* Can this be moved to before the top label? */
2829 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2830 ZFS_EXIT(zfsvfs);
2831 return (SET_ERROR(EROFS));
2832 }
2833
2834 /*
2835 * First validate permissions
2836 */
2837
2838 if (mask & AT_SIZE) {
2839 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2840 if (err) {
2841 ZFS_EXIT(zfsvfs);
2842 return (err);
2843 }
2844 /*
2845 * XXX - Note, we are not providing any open
2846 * mode flags here (like FNDELAY), so we may
2847 * block if there are locks present... this
2848 * should be addressed in openat().
2849 */
2850 /* XXX - would it be OK to generate a log record here? */
2851 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2852 if (err) {
2853 ZFS_EXIT(zfsvfs);
2854 return (err);
2855 }
2856
2857 if (vap->va_size == 0)
2858 vnevent_truncate(ZTOV(zp), ct);
2859 }
2860
2861 if (mask & (AT_ATIME|AT_MTIME) ||
2862 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2863 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2864 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2865 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2866 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2867 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2868 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2869 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2870 skipaclchk, cr);
2871 }
2872
2873 if (mask & (AT_UID|AT_GID)) {
2874 int idmask = (mask & (AT_UID|AT_GID));
2875 int take_owner;
2876 int take_group;
2877
2878 /*
2879 * NOTE: even if a new mode is being set,
2880 * we may clear S_ISUID/S_ISGID bits.
2881 */
2882
2883 if (!(mask & AT_MODE))
2884 vap->va_mode = zp->z_mode;
2885
2886 /*
2887 * Take ownership or chgrp to group we are a member of
2888 */
2889
2890 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2891 take_group = (mask & AT_GID) &&
2892 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2893
2894 /*
2895 * If both AT_UID and AT_GID are set then take_owner and
2896 * take_group must both be set in order to allow taking
2897 * ownership.
2898 *
2899 * Otherwise, send the check through secpolicy_vnode_setattr()
2900 *
2901 */
2902
2903 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2904 ((idmask == AT_UID) && take_owner) ||
2905 ((idmask == AT_GID) && take_group)) {
2906 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2907 skipaclchk, cr) == 0) {
2908 /*
2909 * Remove setuid/setgid for non-privileged users
2910 */
2911 secpolicy_setid_clear(vap, cr);
2912 trim_mask = (mask & (AT_UID|AT_GID));
2913 } else {
2914 need_policy = TRUE;
2915 }
2916 } else {
2917 need_policy = TRUE;
2918 }
2919 }
2920
2921 mutex_enter(&zp->z_lock);
2922 oldva.va_mode = zp->z_mode;
2923 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2924 if (mask & AT_XVATTR) {
2925 /*
2926 * Update xvattr mask to include only those attributes
2927 * that are actually changing.
2928 *
2929 * the bits will be restored prior to actually setting
2930 * the attributes so the caller thinks they were set.
2931 */
2932 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2933 if (xoap->xoa_appendonly !=
2934 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2935 need_policy = TRUE;
2936 } else {
2937 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2938 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2939 }
2940 }
2941
2942 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2943 if (xoap->xoa_nounlink !=
2944 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2945 need_policy = TRUE;
2946 } else {
2947 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2948 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2949 }
2950 }
2951
2952 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2953 if (xoap->xoa_immutable !=
2954 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2955 need_policy = TRUE;
2956 } else {
2957 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2958 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2959 }
2960 }
2961
2962 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2963 if (xoap->xoa_nodump !=
2964 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2965 need_policy = TRUE;
2966 } else {
2967 XVA_CLR_REQ(xvap, XAT_NODUMP);
2968 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2969 }
2970 }
2971
2972 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2973 if (xoap->xoa_av_modified !=
2974 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2975 need_policy = TRUE;
2976 } else {
2977 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2978 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2979 }
2980 }
2981
2982 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2983 if ((vp->v_type != VREG &&
2984 xoap->xoa_av_quarantined) ||
2985 xoap->xoa_av_quarantined !=
2986 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2987 need_policy = TRUE;
2988 } else {
2989 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2990 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2991 }
2992 }
2993
2994 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2995 mutex_exit(&zp->z_lock);
2996 ZFS_EXIT(zfsvfs);
2997 return (SET_ERROR(EPERM));
2998 }
2999
3000 if (need_policy == FALSE &&
3001 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3002 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3003 need_policy = TRUE;
3004 }
3005 }
3006
3007 mutex_exit(&zp->z_lock);
3008
3009 if (mask & AT_MODE) {
3010 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3011 err = secpolicy_setid_setsticky_clear(vp, vap,
3012 &oldva, cr);
3013 if (err) {
3014 ZFS_EXIT(zfsvfs);
3015 return (err);
3016 }
3017 trim_mask |= AT_MODE;
3018 } else {
3019 need_policy = TRUE;
3020 }
3021 }
3022
3023 if (need_policy) {
3024 /*
3025 * If trim_mask is set then take ownership
3026 * has been granted or write_acl is present and user
3027 * has the ability to modify mode. In that case remove
3028 * UID|GID and or MODE from mask so that
3029 * secpolicy_vnode_setattr() doesn't revoke it.
3030 */
3031
3032 if (trim_mask) {
3033 saved_mask = vap->va_mask;
3034 vap->va_mask &= ~trim_mask;
3035 }
3036 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3037 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3038 if (err) {
3039 ZFS_EXIT(zfsvfs);
3040 return (err);
3041 }
3042
3043 if (trim_mask)
3044 vap->va_mask |= saved_mask;
3045 }
3046
3047 /*
3048 * secpolicy_vnode_setattr, or take ownership may have
3049 * changed va_mask
3050 */
3051 mask = vap->va_mask;
3052
3053 if ((mask & (AT_UID | AT_GID))) {
3054 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3055 &xattr_obj, sizeof (xattr_obj));
3056
3057 if (err == 0 && xattr_obj) {
3058 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3059 if (err)
3060 goto out2;
3061 }
3062 if (mask & AT_UID) {
3063 new_uid = zfs_fuid_create(zfsvfs,
3064 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3065 if (new_uid != zp->z_uid &&
3066 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3067 if (attrzp)
3068 VN_RELE(ZTOV(attrzp));
3069 err = SET_ERROR(EDQUOT);
3070 goto out2;
3071 }
3072 }
3073
3074 if (mask & AT_GID) {
3075 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3076 cr, ZFS_GROUP, &fuidp);
3077 if (new_gid != zp->z_gid &&
3078 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3079 if (attrzp)
3080 VN_RELE(ZTOV(attrzp));
3081 err = SET_ERROR(EDQUOT);
3082 goto out2;
3083 }
3084 }
3085 }
3086 tx = dmu_tx_create(zfsvfs->z_os);
3087
3088 if (mask & AT_MODE) {
3089 uint64_t pmode = zp->z_mode;
3090 uint64_t acl_obj;
3091 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3092
3093 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3094 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3095 err = SET_ERROR(EPERM);
3096 goto out;
3097 }
3098
3099 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3100 goto out;
3101
3102 mutex_enter(&zp->z_lock);
3103 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3104 /*
3105 * Are we upgrading ACL from old V0 format
3106 * to V1 format?
3107 */
3108 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3109 zfs_znode_acl_version(zp) ==
3110 ZFS_ACL_VERSION_INITIAL) {
3111 dmu_tx_hold_free(tx, acl_obj, 0,
3112 DMU_OBJECT_END);
3113 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3114 0, aclp->z_acl_bytes);
3115 } else {
3116 dmu_tx_hold_write(tx, acl_obj, 0,
3117 aclp->z_acl_bytes);
3118 }
3119 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3120 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3121 0, aclp->z_acl_bytes);
3122 }
3123 mutex_exit(&zp->z_lock);
3124 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3125 } else {
3126 if ((mask & AT_XVATTR) &&
3127 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3128 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3129 else
3130 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3131 }
3132
3133 if (attrzp) {
3134 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3135 }
3136
3137 fuid_dirtied = zfsvfs->z_fuid_dirty;
3138 if (fuid_dirtied)
3139 zfs_fuid_txhold(zfsvfs, tx);
3140
3141 zfs_sa_upgrade_txholds(tx, zp);
3142
3143 err = dmu_tx_assign(tx, TXG_WAIT);
3144 if (err)
3145 goto out;
3146
3147 count = 0;
3148 /*
3149 * Set each attribute requested.
3150 * We group settings according to the locks they need to acquire.
3151 *
3152 * Note: you cannot set ctime directly, although it will be
3153 * updated as a side-effect of calling this function.
3154 */
3155
3156
3157 if (mask & (AT_UID|AT_GID|AT_MODE))
3158 mutex_enter(&zp->z_acl_lock);
3159 mutex_enter(&zp->z_lock);
3160
3161 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3162 &zp->z_pflags, sizeof (zp->z_pflags));
3163
3164 if (attrzp) {
3165 if (mask & (AT_UID|AT_GID|AT_MODE))
3166 mutex_enter(&attrzp->z_acl_lock);
3167 mutex_enter(&attrzp->z_lock);
3168 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3169 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3170 sizeof (attrzp->z_pflags));
3171 }
3172
3173 if (mask & (AT_UID|AT_GID)) {
3174
3175 if (mask & AT_UID) {
3176 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3177 &new_uid, sizeof (new_uid));
3178 zp->z_uid = new_uid;
3179 if (attrzp) {
3180 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3181 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3182 sizeof (new_uid));
3183 attrzp->z_uid = new_uid;
3184 }
3185 }
3186
3187 if (mask & AT_GID) {
3188 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3189 NULL, &new_gid, sizeof (new_gid));
3190 zp->z_gid = new_gid;
3191 if (attrzp) {
3192 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3193 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3194 sizeof (new_gid));
3195 attrzp->z_gid = new_gid;
3196 }
3197 }
3198 if (!(mask & AT_MODE)) {
3199 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3200 NULL, &new_mode, sizeof (new_mode));
3201 new_mode = zp->z_mode;
3202 }
3203 err = zfs_acl_chown_setattr(zp);
3204 ASSERT(err == 0);
3205 if (attrzp) {
3206 err = zfs_acl_chown_setattr(attrzp);
3207 ASSERT(err == 0);
3208 }
3209 }
3210
3211 if (mask & AT_MODE) {
3212 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3213 &new_mode, sizeof (new_mode));
3214 zp->z_mode = new_mode;
3215 ASSERT3U((uintptr_t)aclp, !=, NULL);
3216 err = zfs_aclset_common(zp, aclp, cr, tx);
3217 ASSERT0(err);
3218 if (zp->z_acl_cached)
3219 zfs_acl_free(zp->z_acl_cached);
3220 zp->z_acl_cached = aclp;
3221 aclp = NULL;
3222 }
3223
3224
3225 if (mask & AT_ATIME) {
3226 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3227 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3228 &zp->z_atime, sizeof (zp->z_atime));
3229 }
3230
3231 if (mask & AT_MTIME) {
3232 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3234 mtime, sizeof (mtime));
3235 }
3236
3237 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3238 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3240 NULL, mtime, sizeof (mtime));
3241 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3242 &ctime, sizeof (ctime));
3243 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3244 B_TRUE);
3245 } else if (mask != 0) {
3246 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3247 &ctime, sizeof (ctime));
3248 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3249 B_TRUE);
3250 if (attrzp) {
3251 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3252 SA_ZPL_CTIME(zfsvfs), NULL,
3253 &ctime, sizeof (ctime));
3254 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3255 mtime, ctime, B_TRUE);
3256 }
3257 }
3258 /*
3259 * Do this after setting timestamps to prevent timestamp
3260 * update from toggling bit
3261 */
3262
3263 if (xoap && (mask & AT_XVATTR)) {
3264
3265 /*
3266 * restore trimmed off masks
3267 * so that return masks can be set for caller.
3268 */
3269
3270 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3271 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3272 }
3273 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3274 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3275 }
3276 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3277 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3278 }
3279 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3280 XVA_SET_REQ(xvap, XAT_NODUMP);
3281 }
3282 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3283 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3284 }
3285 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3286 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3287 }
3288
3289 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3290 ASSERT(vp->v_type == VREG);
3291
3292 zfs_xvattr_set(zp, xvap, tx);
3293 }
3294
3295 if (fuid_dirtied)
3296 zfs_fuid_sync(zfsvfs, tx);
3297
3298 if (mask != 0)
3299 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3300
3301 mutex_exit(&zp->z_lock);
3302 if (mask & (AT_UID|AT_GID|AT_MODE))
3303 mutex_exit(&zp->z_acl_lock);
3304
3305 if (attrzp) {
3306 if (mask & (AT_UID|AT_GID|AT_MODE))
3307 mutex_exit(&attrzp->z_acl_lock);
3308 mutex_exit(&attrzp->z_lock);
3309 }
3310 out:
3311 if (err == 0 && attrzp) {
3312 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3313 xattr_count, tx);
3314 ASSERT(err2 == 0);
3315 }
3316
3317 if (attrzp)
3318 VN_RELE(ZTOV(attrzp));
3319
3320 if (aclp)
3321 zfs_acl_free(aclp);
3322
3323 if (fuidp) {
3324 zfs_fuid_info_free(fuidp);
3325 fuidp = NULL;
3326 }
3327
3328 if (err) {
3329 dmu_tx_abort(tx);
3330 if (err == ERESTART)
3331 goto top;
3332 } else {
3333 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3334 dmu_tx_commit(tx);
3335 }
3336
3337 out2:
3338 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3339 zil_commit(zilog, 0);
3340
3341 ZFS_EXIT(zfsvfs);
3342 return (err);
3343 }
3344
3345 typedef struct zfs_zlock {
3346 krwlock_t *zl_rwlock; /* lock we acquired */
3347 znode_t *zl_znode; /* znode we held */
3348 struct zfs_zlock *zl_next; /* next in list */
3349 } zfs_zlock_t;
3350
3351 /*
3352 * Drop locks and release vnodes that were held by zfs_rename_lock().
3353 */
3354 static void
3355 zfs_rename_unlock(zfs_zlock_t **zlpp)
3356 {
3357 zfs_zlock_t *zl;
3358
3359 while ((zl = *zlpp) != NULL) {
3360 if (zl->zl_znode != NULL)
3361 VN_RELE(ZTOV(zl->zl_znode));
3362 rw_exit(zl->zl_rwlock);
3363 *zlpp = zl->zl_next;
3364 kmem_free(zl, sizeof (*zl));
3365 }
3366 }
3367
3368 /*
3369 * Search back through the directory tree, using the ".." entries.
3370 * Lock each directory in the chain to prevent concurrent renames.
3371 * Fail any attempt to move a directory into one of its own descendants.
3372 * XXX - z_parent_lock can overlap with map or grow locks
3373 */
3374 static int
3375 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3376 {
3377 zfs_zlock_t *zl;
3378 znode_t *zp = tdzp;
3379 uint64_t rootid = zp->z_zfsvfs->z_root;
3380 uint64_t oidp = zp->z_id;
3381 krwlock_t *rwlp = &szp->z_parent_lock;
3382 krw_t rw = RW_WRITER;
3383
3384 /*
3385 * First pass write-locks szp and compares to zp->z_id.
3386 * Later passes read-lock zp and compare to zp->z_parent.
3387 */
3388 do {
3389 if (!rw_tryenter(rwlp, rw)) {
3390 /*
3391 * Another thread is renaming in this path.
3392 * Note that if we are a WRITER, we don't have any
3393 * parent_locks held yet.
3394 */
3395 if (rw == RW_READER && zp->z_id > szp->z_id) {
3396 /*
3397 * Drop our locks and restart
3398 */
3399 zfs_rename_unlock(&zl);
3400 *zlpp = NULL;
3401 zp = tdzp;
3402 oidp = zp->z_id;
3403 rwlp = &szp->z_parent_lock;
3404 rw = RW_WRITER;
3405 continue;
3406 } else {
3407 /*
3408 * Wait for other thread to drop its locks
3409 */
3410 rw_enter(rwlp, rw);
3411 }
3412 }
3413
3414 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3415 zl->zl_rwlock = rwlp;
3416 zl->zl_znode = NULL;
3417 zl->zl_next = *zlpp;
3418 *zlpp = zl;
3419
3420 if (oidp == szp->z_id) /* We're a descendant of szp */
3421 return (SET_ERROR(EINVAL));
3422
3423 if (oidp == rootid) /* We've hit the top */
3424 return (0);
3425
3426 if (rw == RW_READER) { /* i.e. not the first pass */
3427 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3428 if (error)
3429 return (error);
3430 zl->zl_znode = zp;
3431 }
3432 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3433 &oidp, sizeof (oidp));
3434 rwlp = &zp->z_parent_lock;
3435 rw = RW_READER;
3436
3437 } while (zp->z_id != sdzp->z_id);
3438
3439 return (0);
3440 }
3441
3442 /*
3443 * Move an entry from the provided source directory to the target
3444 * directory. Change the entry name as indicated.
3445 *
3446 * IN: sdvp - Source directory containing the "old entry".
3447 * snm - Old entry name.
3448 * tdvp - Target directory to contain the "new entry".
3449 * tnm - New entry name.
3450 * cr - credentials of caller.
3451 * ct - caller context
3452 * flags - case flags
3453 *
3454 * RETURN: 0 on success, error code on failure.
3455 *
3456 * Timestamps:
3457 * sdvp,tdvp - ctime|mtime updated
3458 */
3459 /*ARGSUSED*/
3460 static int
3461 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3462 caller_context_t *ct, int flags)
3463 {
3464 znode_t *tdzp, *szp, *tzp;
3465 znode_t *sdzp = VTOZ(sdvp);
3466 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3467 zilog_t *zilog;
3468 vnode_t *realvp;
3469 zfs_dirlock_t *sdl, *tdl;
3470 dmu_tx_t *tx;
3471 zfs_zlock_t *zl;
3472 int cmp, serr, terr;
3473 int error = 0, rm_err = 0;
3474 int zflg = 0;
3475 boolean_t waited = B_FALSE;
3476
3477 ZFS_ENTER(zfsvfs);
3478 ZFS_VERIFY_ZP(sdzp);
3479 zilog = zfsvfs->z_log;
3480
3481 /*
3482 * Make sure we have the real vp for the target directory.
3483 */
3484 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3485 tdvp = realvp;
3486
3487 tdzp = VTOZ(tdvp);
3488 ZFS_VERIFY_ZP(tdzp);
3489
3490 /*
3491 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3492 * ctldir appear to have the same v_vfsp.
3493 */
3494 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3495 ZFS_EXIT(zfsvfs);
3496 return (SET_ERROR(EXDEV));
3497 }
3498
3499 if (zfsvfs->z_utf8 && u8_validate(tnm,
3500 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3501 ZFS_EXIT(zfsvfs);
3502 return (SET_ERROR(EILSEQ));
3503 }
3504
3505 if (flags & FIGNORECASE)
3506 zflg |= ZCILOOK;
3507
3508 top:
3509 szp = NULL;
3510 tzp = NULL;
3511 zl = NULL;
3512
3513 /*
3514 * This is to prevent the creation of links into attribute space
3515 * by renaming a linked file into/outof an attribute directory.
3516 * See the comment in zfs_link() for why this is considered bad.
3517 */
3518 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3519 ZFS_EXIT(zfsvfs);
3520 return (SET_ERROR(EINVAL));
3521 }
3522
3523 /*
3524 * Lock source and target directory entries. To prevent deadlock,
3525 * a lock ordering must be defined. We lock the directory with
3526 * the smallest object id first, or if it's a tie, the one with
3527 * the lexically first name.
3528 */
3529 if (sdzp->z_id < tdzp->z_id) {
3530 cmp = -1;
3531 } else if (sdzp->z_id > tdzp->z_id) {
3532 cmp = 1;
3533 } else {
3534 /*
3535 * First compare the two name arguments without
3536 * considering any case folding.
3537 */
3538 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3539
3540 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3541 ASSERT(error == 0 || !zfsvfs->z_utf8);
3542 if (cmp == 0) {
3543 /*
3544 * POSIX: "If the old argument and the new argument
3545 * both refer to links to the same existing file,
3546 * the rename() function shall return successfully
3547 * and perform no other action."
3548 */
3549 ZFS_EXIT(zfsvfs);
3550 return (0);
3551 }
3552 /*
3553 * If the file system is case-folding, then we may
3554 * have some more checking to do. A case-folding file
3555 * system is either supporting mixed case sensitivity
3556 * access or is completely case-insensitive. Note
3557 * that the file system is always case preserving.
3558 *
3559 * In mixed sensitivity mode case sensitive behavior
3560 * is the default. FIGNORECASE must be used to
3561 * explicitly request case insensitive behavior.
3562 *
3563 * If the source and target names provided differ only
3564 * by case (e.g., a request to rename 'tim' to 'Tim'),
3565 * we will treat this as a special case in the
3566 * case-insensitive mode: as long as the source name
3567 * is an exact match, we will allow this to proceed as
3568 * a name-change request.
3569 */
3570 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3571 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3572 flags & FIGNORECASE)) &&
3573 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3574 &error) == 0) {
3575 /*
3576 * case preserving rename request, require exact
3577 * name matches
3578 */
3579 zflg |= ZCIEXACT;
3580 zflg &= ~ZCILOOK;
3581 }
3582 }
3583
3584 /*
3585 * If the source and destination directories are the same, we should
3586 * grab the z_name_lock of that directory only once.
3587 */
3588 if (sdzp == tdzp) {
3589 zflg |= ZHAVELOCK;
3590 rw_enter(&sdzp->z_name_lock, RW_READER);
3591 }
3592
3593 if (cmp < 0) {
3594 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3595 ZEXISTS | zflg, NULL, NULL);
3596 terr = zfs_dirent_lock(&tdl,
3597 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3598 } else {
3599 terr = zfs_dirent_lock(&tdl,
3600 tdzp, tnm, &tzp, zflg, NULL, NULL);
3601 serr = zfs_dirent_lock(&sdl,
3602 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3603 NULL, NULL);
3604 }
3605
3606 if (serr) {
3607 /*
3608 * Source entry invalid or not there.
3609 */
3610 if (!terr) {
3611 zfs_dirent_unlock(tdl);
3612 if (tzp)
3613 VN_RELE(ZTOV(tzp));
3614 }
3615
3616 if (sdzp == tdzp)
3617 rw_exit(&sdzp->z_name_lock);
3618
3619 if (strcmp(snm, "..") == 0)
3620 serr = SET_ERROR(EINVAL);
3621 ZFS_EXIT(zfsvfs);
3622 return (serr);
3623 }
3624 if (terr) {
3625 zfs_dirent_unlock(sdl);
3626 VN_RELE(ZTOV(szp));
3627
3628 if (sdzp == tdzp)
3629 rw_exit(&sdzp->z_name_lock);
3630
3631 if (strcmp(tnm, "..") == 0)
3632 terr = SET_ERROR(EINVAL);
3633 ZFS_EXIT(zfsvfs);
3634 return (terr);
3635 }
3636
3637 /*
3638 * Must have write access at the source to remove the old entry
3639 * and write access at the target to create the new entry.
3640 * Note that if target and source are the same, this can be
3641 * done in a single check.
3642 */
3643
3644 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3645 goto out;
3646
3647 if (ZTOV(szp)->v_type == VDIR) {
3648 /*
3649 * Check to make sure rename is valid.
3650 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3651 */
3652 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3653 goto out;
3654 }
3655
3656 /*
3657 * Does target exist?
3658 */
3659 if (tzp) {
3660 /*
3661 * Source and target must be the same type.
3662 */
3663 if (ZTOV(szp)->v_type == VDIR) {
3664 if (ZTOV(tzp)->v_type != VDIR) {
3665 error = SET_ERROR(ENOTDIR);
3666 goto out;
3667 }
3668 } else {
3669 if (ZTOV(tzp)->v_type == VDIR) {
3670 error = SET_ERROR(EISDIR);
3671 goto out;
3672 }
3673 }
3674 /*
3675 * POSIX dictates that when the source and target
3676 * entries refer to the same file object, rename
3677 * must do nothing and exit without error.
3678 */
3679 if (szp->z_id == tzp->z_id) {
3680 error = 0;
3681 goto out;
3682 }
3683 }
3684
3685 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3686 if (tzp)
3687 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3688
3689 /*
3690 * notify the target directory if it is not the same
3691 * as source directory.
3692 */
3693 if (tdvp != sdvp) {
3694 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3695 }
3696
3697 tx = dmu_tx_create(zfsvfs->z_os);
3698 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3699 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3700 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3701 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3702 if (sdzp != tdzp) {
3703 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3704 zfs_sa_upgrade_txholds(tx, tdzp);
3705 }
3706 if (tzp) {
3707 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3708 zfs_sa_upgrade_txholds(tx, tzp);
3709 }
3710
3711 zfs_sa_upgrade_txholds(tx, szp);
3712 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3713 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3714 if (error) {
3715 if (zl != NULL)
3716 zfs_rename_unlock(&zl);
3717 zfs_dirent_unlock(sdl);
3718 zfs_dirent_unlock(tdl);
3719
3720 if (sdzp == tdzp)
3721 rw_exit(&sdzp->z_name_lock);
3722
3723 VN_RELE(ZTOV(szp));
3724 if (tzp)
3725 VN_RELE(ZTOV(tzp));
3726 if (error == ERESTART) {
3727 waited = B_TRUE;
3728 dmu_tx_wait(tx);
3729 dmu_tx_abort(tx);
3730 goto top;
3731 }
3732 dmu_tx_abort(tx);
3733 ZFS_EXIT(zfsvfs);
3734 return (error);
3735 }
3736
3737 if (tzp) /* Attempt to remove the existing target */
3738 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3739
3740 if (error == 0) {
3741 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3742 if (error == 0) {
3743 szp->z_pflags |= ZFS_AV_MODIFIED;
3744
3745 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3746 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3747 ASSERT0(error);
3748
3749 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3750 if (error == 0) {
3751 zfs_log_rename(zilog, tx, TX_RENAME |
3752 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3753 sdl->dl_name, tdzp, tdl->dl_name, szp);
3754
3755 /*
3756 * Update path information for the target vnode
3757 */
3758 vn_renamepath(tdvp, ZTOV(szp), tnm,
3759 strlen(tnm));
3760 } else {
3761 /*
3762 * At this point, we have successfully created
3763 * the target name, but have failed to remove
3764 * the source name. Since the create was done
3765 * with the ZRENAMING flag, there are
3766 * complications; for one, the link count is
3767 * wrong. The easiest way to deal with this
3768 * is to remove the newly created target, and
3769 * return the original error. This must
3770 * succeed; fortunately, it is very unlikely to
3771 * fail, since we just created it.
3772 */
3773 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3774 ZRENAMING, NULL), ==, 0);
3775 }
3776 }
3777 }
3778
3779 dmu_tx_commit(tx);
3780
3781 if (tzp && rm_err == 0)
3782 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3783
3784 if (error == 0) {
3785 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3786 /* notify the target dir if it is not the same as source dir */
3787 if (tdvp != sdvp)
3788 vnevent_rename_dest_dir(tdvp, ct);
3789 }
3790 out:
3791 if (zl != NULL)
3792 zfs_rename_unlock(&zl);
3793
3794 zfs_dirent_unlock(sdl);
3795 zfs_dirent_unlock(tdl);
3796
3797 if (sdzp == tdzp)
3798 rw_exit(&sdzp->z_name_lock);
3799
3800
3801 VN_RELE(ZTOV(szp));
3802 if (tzp)
3803 VN_RELE(ZTOV(tzp));
3804
3805 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3806 zil_commit(zilog, 0);
3807
3808 ZFS_EXIT(zfsvfs);
3809 return (error);
3810 }
3811
3812 /*
3813 * Insert the indicated symbolic reference entry into the directory.
3814 *
3815 * IN: dvp - Directory to contain new symbolic link.
3816 * link - Name for new symlink entry.
3817 * vap - Attributes of new entry.
3818 * cr - credentials of caller.
3819 * ct - caller context
3820 * flags - case flags
3821 *
3822 * RETURN: 0 on success, error code on failure.
3823 *
3824 * Timestamps:
3825 * dvp - ctime|mtime updated
3826 */
3827 /*ARGSUSED*/
3828 static int
3829 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3830 caller_context_t *ct, int flags)
3831 {
3832 znode_t *zp, *dzp = VTOZ(dvp);
3833 zfs_dirlock_t *dl;
3834 dmu_tx_t *tx;
3835 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3836 zilog_t *zilog;
3837 uint64_t len = strlen(link);
3838 int error;
3839 int zflg = ZNEW;
3840 zfs_acl_ids_t acl_ids;
3841 boolean_t fuid_dirtied;
3842 uint64_t txtype = TX_SYMLINK;
3843 boolean_t waited = B_FALSE;
3844
3845 ASSERT(vap->va_type == VLNK);
3846
3847 ZFS_ENTER(zfsvfs);
3848 ZFS_VERIFY_ZP(dzp);
3849 zilog = zfsvfs->z_log;
3850
3851 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3852 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3853 ZFS_EXIT(zfsvfs);
3854 return (SET_ERROR(EILSEQ));
3855 }
3856 if (flags & FIGNORECASE)
3857 zflg |= ZCILOOK;
3858
3859 if (len > MAXPATHLEN) {
3860 ZFS_EXIT(zfsvfs);
3861 return (SET_ERROR(ENAMETOOLONG));
3862 }
3863
3864 if ((error = zfs_acl_ids_create(dzp, 0,
3865 vap, cr, NULL, &acl_ids)) != 0) {
3866 ZFS_EXIT(zfsvfs);
3867 return (error);
3868 }
3869 top:
3870 /*
3871 * Attempt to lock directory; fail if entry already exists.
3872 */
3873 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3874 if (error) {
3875 zfs_acl_ids_free(&acl_ids);
3876 ZFS_EXIT(zfsvfs);
3877 return (error);
3878 }
3879
3880 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3881 zfs_acl_ids_free(&acl_ids);
3882 zfs_dirent_unlock(dl);
3883 ZFS_EXIT(zfsvfs);
3884 return (error);
3885 }
3886
3887 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3888 zfs_acl_ids_free(&acl_ids);
3889 zfs_dirent_unlock(dl);
3890 ZFS_EXIT(zfsvfs);
3891 return (SET_ERROR(EDQUOT));
3892 }
3893 tx = dmu_tx_create(zfsvfs->z_os);
3894 fuid_dirtied = zfsvfs->z_fuid_dirty;
3895 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3896 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3897 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3898 ZFS_SA_BASE_ATTR_SIZE + len);
3899 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3900 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3901 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3902 acl_ids.z_aclp->z_acl_bytes);
3903 }
3904 if (fuid_dirtied)
3905 zfs_fuid_txhold(zfsvfs, tx);
3906 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3907 if (error) {
3908 zfs_dirent_unlock(dl);
3909 if (error == ERESTART) {
3910 waited = B_TRUE;
3911 dmu_tx_wait(tx);
3912 dmu_tx_abort(tx);
3913 goto top;
3914 }
3915 zfs_acl_ids_free(&acl_ids);
3916 dmu_tx_abort(tx);
3917 ZFS_EXIT(zfsvfs);
3918 return (error);
3919 }
3920
3921 /*
3922 * Create a new object for the symlink.
3923 * for version 4 ZPL datsets the symlink will be an SA attribute
3924 */
3925 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3926
3927 if (fuid_dirtied)
3928 zfs_fuid_sync(zfsvfs, tx);
3929
3930 mutex_enter(&zp->z_lock);
3931 if (zp->z_is_sa)
3932 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3933 link, len, tx);
3934 else
3935 zfs_sa_symlink(zp, link, len, tx);
3936 mutex_exit(&zp->z_lock);
3937
3938 zp->z_size = len;
3939 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3940 &zp->z_size, sizeof (zp->z_size), tx);
3941 /*
3942 * Insert the new object into the directory.
3943 */
3944 (void) zfs_link_create(dl, zp, tx, ZNEW);
3945
3946 if (flags & FIGNORECASE)
3947 txtype |= TX_CI;
3948 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3949
3950 zfs_acl_ids_free(&acl_ids);
3951
3952 dmu_tx_commit(tx);
3953
3954 zfs_dirent_unlock(dl);
3955
3956 VN_RELE(ZTOV(zp));
3957
3958 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3959 zil_commit(zilog, 0);
3960
3961 ZFS_EXIT(zfsvfs);
3962 return (error);
3963 }
3964
3965 /*
3966 * Return, in the buffer contained in the provided uio structure,
3967 * the symbolic path referred to by vp.
3968 *
3969 * IN: vp - vnode of symbolic link.
3970 * uio - structure to contain the link path.
3971 * cr - credentials of caller.
3972 * ct - caller context
3973 *
3974 * OUT: uio - structure containing the link path.
3975 *
3976 * RETURN: 0 on success, error code on failure.
3977 *
3978 * Timestamps:
3979 * vp - atime updated
3980 */
3981 /* ARGSUSED */
3982 static int
3983 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3984 {
3985 znode_t *zp = VTOZ(vp);
3986 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3987 int error;
3988
3989 ZFS_ENTER(zfsvfs);
3990 ZFS_VERIFY_ZP(zp);
3991
3992 mutex_enter(&zp->z_lock);
3993 if (zp->z_is_sa)
3994 error = sa_lookup_uio(zp->z_sa_hdl,
3995 SA_ZPL_SYMLINK(zfsvfs), uio);
3996 else
3997 error = zfs_sa_readlink(zp, uio);
3998 mutex_exit(&zp->z_lock);
3999
4000 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4001
4002 ZFS_EXIT(zfsvfs);
4003 return (error);
4004 }
4005
4006 /*
4007 * Insert a new entry into directory tdvp referencing svp.
4008 *
4009 * IN: tdvp - Directory to contain new entry.
4010 * svp - vnode of new entry.
4011 * name - name of new entry.
4012 * cr - credentials of caller.
4013 * ct - caller context
4014 *
4015 * RETURN: 0 on success, error code on failure.
4016 *
4017 * Timestamps:
4018 * tdvp - ctime|mtime updated
4019 * svp - ctime updated
4020 */
4021 /* ARGSUSED */
4022 static int
4023 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4024 caller_context_t *ct, int flags)
4025 {
4026 znode_t *dzp = VTOZ(tdvp);
4027 znode_t *tzp, *szp;
4028 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4029 zilog_t *zilog;
4030 zfs_dirlock_t *dl;
4031 dmu_tx_t *tx;
4032 vnode_t *realvp;
4033 int error;
4034 int zf = ZNEW;
4035 uint64_t parent;
4036 uid_t owner;
4037 boolean_t waited = B_FALSE;
4038
4039 ASSERT(tdvp->v_type == VDIR);
4040
4041 ZFS_ENTER(zfsvfs);
4042 ZFS_VERIFY_ZP(dzp);
4043 zilog = zfsvfs->z_log;
4044
4045 if (VOP_REALVP(svp, &realvp, ct) == 0)
4046 svp = realvp;
4047
4048 /*
4049 * POSIX dictates that we return EPERM here.
4050 * Better choices include ENOTSUP or EISDIR.
4051 */
4052 if (svp->v_type == VDIR) {
4053 ZFS_EXIT(zfsvfs);
4054 return (SET_ERROR(EPERM));
4055 }
4056
4057 szp = VTOZ(svp);
4058 ZFS_VERIFY_ZP(szp);
4059
4060 /*
4061 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4062 * ctldir appear to have the same v_vfsp.
4063 */
4064 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4065 ZFS_EXIT(zfsvfs);
4066 return (SET_ERROR(EXDEV));
4067 }
4068
4069 /* Prevent links to .zfs/shares files */
4070
4071 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4072 &parent, sizeof (uint64_t))) != 0) {
4073 ZFS_EXIT(zfsvfs);
4074 return (error);
4075 }
4076 if (parent == zfsvfs->z_shares_dir) {
4077 ZFS_EXIT(zfsvfs);
4078 return (SET_ERROR(EPERM));
4079 }
4080
4081 if (zfsvfs->z_utf8 && u8_validate(name,
4082 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4083 ZFS_EXIT(zfsvfs);
4084 return (SET_ERROR(EILSEQ));
4085 }
4086 if (flags & FIGNORECASE)
4087 zf |= ZCILOOK;
4088
4089 /*
4090 * We do not support links between attributes and non-attributes
4091 * because of the potential security risk of creating links
4092 * into "normal" file space in order to circumvent restrictions
4093 * imposed in attribute space.
4094 */
4095 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4096 ZFS_EXIT(zfsvfs);
4097 return (SET_ERROR(EINVAL));
4098 }
4099
4100
4101 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4102 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4103 ZFS_EXIT(zfsvfs);
4104 return (SET_ERROR(EPERM));
4105 }
4106
4107 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4108 ZFS_EXIT(zfsvfs);
4109 return (error);
4110 }
4111
4112 top:
4113 /*
4114 * Attempt to lock directory; fail if entry already exists.
4115 */
4116 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4117 if (error) {
4118 ZFS_EXIT(zfsvfs);
4119 return (error);
4120 }
4121
4122 tx = dmu_tx_create(zfsvfs->z_os);
4123 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4124 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4125 zfs_sa_upgrade_txholds(tx, szp);
4126 zfs_sa_upgrade_txholds(tx, dzp);
4127 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4128 if (error) {
4129 zfs_dirent_unlock(dl);
4130 if (error == ERESTART) {
4131 waited = B_TRUE;
4132 dmu_tx_wait(tx);
4133 dmu_tx_abort(tx);
4134 goto top;
4135 }
4136 dmu_tx_abort(tx);
4137 ZFS_EXIT(zfsvfs);
4138 return (error);
4139 }
4140
4141 error = zfs_link_create(dl, szp, tx, 0);
4142
4143 if (error == 0) {
4144 uint64_t txtype = TX_LINK;
4145 if (flags & FIGNORECASE)
4146 txtype |= TX_CI;
4147 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4148 }
4149
4150 dmu_tx_commit(tx);
4151
4152 zfs_dirent_unlock(dl);
4153
4154 if (error == 0) {
4155 vnevent_link(svp, ct);
4156 }
4157
4158 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4159 zil_commit(zilog, 0);
4160
4161 ZFS_EXIT(zfsvfs);
4162 return (error);
4163 }
4164
4165 /*
4166 * zfs_null_putapage() is used when the file system has been force
4167 * unmounted. It just drops the pages.
4168 */
4169 /* ARGSUSED */
4170 static int
4171 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4172 size_t *lenp, int flags, cred_t *cr)
4173 {
4174 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4175 return (0);
4176 }
4177
4178 /*
4179 * Push a page out to disk, klustering if possible.
4180 *
4181 * IN: vp - file to push page to.
4182 * pp - page to push.
4183 * flags - additional flags.
4184 * cr - credentials of caller.
4185 *
4186 * OUT: offp - start of range pushed.
4187 * lenp - len of range pushed.
4188 *
4189 * RETURN: 0 on success, error code on failure.
4190 *
4191 * NOTE: callers must have locked the page to be pushed. On
4192 * exit, the page (and all other pages in the kluster) must be
4193 * unlocked.
4194 */
4195 /* ARGSUSED */
4196 static int
4197 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4198 size_t *lenp, int flags, cred_t *cr)
4199 {
4200 znode_t *zp = VTOZ(vp);
4201 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4202 dmu_tx_t *tx;
4203 u_offset_t off, koff;
4204 size_t len, klen;
4205 int err;
4206
4207 off = pp->p_offset;
4208 len = PAGESIZE;
4209 /*
4210 * If our blocksize is bigger than the page size, try to kluster
4211 * multiple pages so that we write a full block (thus avoiding
4212 * a read-modify-write).
4213 */
4214 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4215 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4216 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4217 ASSERT(koff <= zp->z_size);
4218 if (koff + klen > zp->z_size)
4219 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4220 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4221 }
4222 ASSERT3U(btop(len), ==, btopr(len));
4223
4224 /*
4225 * Can't push pages past end-of-file.
4226 */
4227 if (off >= zp->z_size) {
4228 /* ignore all pages */
4229 err = 0;
4230 goto out;
4231 } else if (off + len > zp->z_size) {
4232 int npages = btopr(zp->z_size - off);
4233 page_t *trunc;
4234
4235 page_list_break(&pp, &trunc, npages);
4236 /* ignore pages past end of file */
4237 if (trunc)
4238 pvn_write_done(trunc, flags);
4239 len = zp->z_size - off;
4240 }
4241
4242 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4243 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4244 err = SET_ERROR(EDQUOT);
4245 goto out;
4246 }
4247 tx = dmu_tx_create(zfsvfs->z_os);
4248 dmu_tx_hold_write(tx, zp->z_id, off, len);
4249
4250 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4251 zfs_sa_upgrade_txholds(tx, zp);
4252 err = dmu_tx_assign(tx, TXG_WAIT);
4253 if (err != 0) {
4254 dmu_tx_abort(tx);
4255 goto out;
4256 }
4257
4258 if (zp->z_blksz <= PAGESIZE) {
4259 caddr_t va = zfs_map_page(pp, S_READ);
4260 ASSERT3U(len, <=, PAGESIZE);
4261 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4262 zfs_unmap_page(pp, va);
4263 } else {
4264 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4265 }
4266
4267 if (err == 0) {
4268 uint64_t mtime[2], ctime[2];
4269 sa_bulk_attr_t bulk[3];
4270 int count = 0;
4271
4272 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4273 &mtime, 16);
4274 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4275 &ctime, 16);
4276 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4277 &zp->z_pflags, 8);
4278 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4279 B_TRUE);
4280 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4281 ASSERT0(err);
4282 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4283 }
4284 dmu_tx_commit(tx);
4285
4286 out:
4287 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4288 if (offp)
4289 *offp = off;
4290 if (lenp)
4291 *lenp = len;
4292
4293 return (err);
4294 }
4295
4296 /*
4297 * Copy the portion of the file indicated from pages into the file.
4298 * The pages are stored in a page list attached to the files vnode.
4299 *
4300 * IN: vp - vnode of file to push page data to.
4301 * off - position in file to put data.
4302 * len - amount of data to write.
4303 * flags - flags to control the operation.
4304 * cr - credentials of caller.
4305 * ct - caller context.
4306 *
4307 * RETURN: 0 on success, error code on failure.
4308 *
4309 * Timestamps:
4310 * vp - ctime|mtime updated
4311 */
4312 /*ARGSUSED*/
4313 static int
4314 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4315 caller_context_t *ct)
4316 {
4317 znode_t *zp = VTOZ(vp);
4318 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4319 page_t *pp;
4320 size_t io_len;
4321 u_offset_t io_off;
4322 uint_t blksz;
4323 locked_range_t *lr;
4324 int error = 0;
4325
4326 ZFS_ENTER(zfsvfs);
4327 ZFS_VERIFY_ZP(zp);
4328
4329 /*
4330 * There's nothing to do if no data is cached.
4331 */
4332 if (!vn_has_cached_data(vp)) {
4333 ZFS_EXIT(zfsvfs);
4334 return (0);
4335 }
4336
4337 /*
4338 * Align this request to the file block size in case we kluster.
4339 * XXX - this can result in pretty aggresive locking, which can
4340 * impact simultanious read/write access. One option might be
4341 * to break up long requests (len == 0) into block-by-block
4342 * operations to get narrower locking.
4343 */
4344 blksz = zp->z_blksz;
4345 if (ISP2(blksz))
4346 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4347 else
4348 io_off = 0;
4349 if (len > 0 && ISP2(blksz))
4350 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4351 else
4352 io_len = 0;
4353
4354 if (io_len == 0) {
4355 /*
4356 * Search the entire vp list for pages >= io_off.
4357 */
4358 lr = rangelock_enter(&zp->z_rangelock,
4359 io_off, UINT64_MAX, RL_WRITER);
4360 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4361 goto out;
4362 }
4363 lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER);
4364
4365 if (off > zp->z_size) {
4366 /* past end of file */
4367 rangelock_exit(lr);
4368 ZFS_EXIT(zfsvfs);
4369 return (0);
4370 }
4371
4372 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4373
4374 for (off = io_off; io_off < off + len; io_off += io_len) {
4375 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4376 pp = page_lookup(vp, io_off,
4377 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4378 } else {
4379 pp = page_lookup_nowait(vp, io_off,
4380 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4381 }
4382
4383 if (pp != NULL && pvn_getdirty(pp, flags)) {
4384 int err;
4385
4386 /*
4387 * Found a dirty page to push
4388 */
4389 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4390 if (err)
4391 error = err;
4392 } else {
4393 io_len = PAGESIZE;
4394 }
4395 }
4396 out:
4397 rangelock_exit(lr);
4398 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4399 zil_commit(zfsvfs->z_log, zp->z_id);
4400 ZFS_EXIT(zfsvfs);
4401 return (error);
4402 }
4403
4404 /*ARGSUSED*/
4405 void
4406 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4407 {
4408 znode_t *zp = VTOZ(vp);
4409 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4410 int error;
4411
4412 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4413 if (zp->z_sa_hdl == NULL) {
4414 /*
4415 * The fs has been unmounted, or we did a
4416 * suspend/resume and this file no longer exists.
4417 */
4418 if (vn_has_cached_data(vp)) {
4419 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4420 B_INVAL, cr);
4421 }
4422
4423 mutex_enter(&zp->z_lock);
4424 mutex_enter(&vp->v_lock);
4425 ASSERT(vp->v_count == 1);
4426 VN_RELE_LOCKED(vp);
4427 mutex_exit(&vp->v_lock);
4428 mutex_exit(&zp->z_lock);
4429 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4430 zfs_znode_free(zp);
4431 return;
4432 }
4433
4434 /*
4435 * Attempt to push any data in the page cache. If this fails
4436 * we will get kicked out later in zfs_zinactive().
4437 */
4438 if (vn_has_cached_data(vp)) {
4439 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4440 cr);
4441 }
4442
4443 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4444 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4445
4446 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4447 zfs_sa_upgrade_txholds(tx, zp);
4448 error = dmu_tx_assign(tx, TXG_WAIT);
4449 if (error) {
4450 dmu_tx_abort(tx);
4451 } else {
4452 mutex_enter(&zp->z_lock);
4453 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4454 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4455 zp->z_atime_dirty = 0;
4456 mutex_exit(&zp->z_lock);
4457 dmu_tx_commit(tx);
4458 }
4459 }
4460
4461 zfs_zinactive(zp);
4462 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4463 }
4464
4465 /*
4466 * Bounds-check the seek operation.
4467 *
4468 * IN: vp - vnode seeking within
4469 * ooff - old file offset
4470 * noffp - pointer to new file offset
4471 * ct - caller context
4472 *
4473 * RETURN: 0 on success, EINVAL if new offset invalid.
4474 */
4475 /* ARGSUSED */
4476 static int
4477 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4478 caller_context_t *ct)
4479 {
4480 if (vp->v_type == VDIR)
4481 return (0);
4482 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4483 }
4484
4485 /*
4486 * Pre-filter the generic locking function to trap attempts to place
4487 * a mandatory lock on a memory mapped file.
4488 */
4489 static int
4490 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4491 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4492 {
4493 znode_t *zp = VTOZ(vp);
4494 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4495
4496 ZFS_ENTER(zfsvfs);
4497 ZFS_VERIFY_ZP(zp);
4498
4499 /*
4500 * We are following the UFS semantics with respect to mapcnt
4501 * here: If we see that the file is mapped already, then we will
4502 * return an error, but we don't worry about races between this
4503 * function and zfs_map().
4504 */
4505 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4506 ZFS_EXIT(zfsvfs);
4507 return (SET_ERROR(EAGAIN));
4508 }
4509 ZFS_EXIT(zfsvfs);
4510 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4511 }
4512
4513 /*
4514 * If we can't find a page in the cache, we will create a new page
4515 * and fill it with file data. For efficiency, we may try to fill
4516 * multiple pages at once (klustering) to fill up the supplied page
4517 * list. Note that the pages to be filled are held with an exclusive
4518 * lock to prevent access by other threads while they are being filled.
4519 */
4520 static int
4521 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4522 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4523 {
4524 znode_t *zp = VTOZ(vp);
4525 page_t *pp, *cur_pp;
4526 objset_t *os = zp->z_zfsvfs->z_os;
4527 u_offset_t io_off, total;
4528 size_t io_len;
4529 int err;
4530
4531 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4532 /*
4533 * We only have a single page, don't bother klustering
4534 */
4535 io_off = off;
4536 io_len = PAGESIZE;
4537 pp = page_create_va(vp, io_off, io_len,
4538 PG_EXCL | PG_WAIT, seg, addr);
4539 } else {
4540 /*
4541 * Try to find enough pages to fill the page list
4542 */
4543 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4544 &io_len, off, plsz, 0);
4545 }
4546 if (pp == NULL) {
4547 /*
4548 * The page already exists, nothing to do here.
4549 */
4550 *pl = NULL;
4551 return (0);
4552 }
4553
4554 /*
4555 * Fill the pages in the kluster.
4556 */
4557 cur_pp = pp;
4558 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4559 caddr_t va;
4560
4561 ASSERT3U(io_off, ==, cur_pp->p_offset);
4562 va = zfs_map_page(cur_pp, S_WRITE);
4563 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4564 DMU_READ_PREFETCH);
4565 zfs_unmap_page(cur_pp, va);
4566 if (err) {
4567 /* On error, toss the entire kluster */
4568 pvn_read_done(pp, B_ERROR);
4569 /* convert checksum errors into IO errors */
4570 if (err == ECKSUM)
4571 err = SET_ERROR(EIO);
4572 return (err);
4573 }
4574 cur_pp = cur_pp->p_next;
4575 }
4576
4577 /*
4578 * Fill in the page list array from the kluster starting
4579 * from the desired offset `off'.
4580 * NOTE: the page list will always be null terminated.
4581 */
4582 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4583 ASSERT(pl == NULL || (*pl)->p_offset == off);
4584
4585 return (0);
4586 }
4587
4588 /*
4589 * Return pointers to the pages for the file region [off, off + len]
4590 * in the pl array. If plsz is greater than len, this function may
4591 * also return page pointers from after the specified region
4592 * (i.e. the region [off, off + plsz]). These additional pages are
4593 * only returned if they are already in the cache, or were created as
4594 * part of a klustered read.
4595 *
4596 * IN: vp - vnode of file to get data from.
4597 * off - position in file to get data from.
4598 * len - amount of data to retrieve.
4599 * plsz - length of provided page list.
4600 * seg - segment to obtain pages for.
4601 * addr - virtual address of fault.
4602 * rw - mode of created pages.
4603 * cr - credentials of caller.
4604 * ct - caller context.
4605 *
4606 * OUT: protp - protection mode of created pages.
4607 * pl - list of pages created.
4608 *
4609 * RETURN: 0 on success, error code on failure.
4610 *
4611 * Timestamps:
4612 * vp - atime updated
4613 */
4614 /* ARGSUSED */
4615 static int
4616 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4617 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4618 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4619 {
4620 znode_t *zp = VTOZ(vp);
4621 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4622 page_t **pl0 = pl;
4623 int err = 0;
4624
4625 /* we do our own caching, faultahead is unnecessary */
4626 if (pl == NULL)
4627 return (0);
4628 else if (len > plsz)
4629 len = plsz;
4630 else
4631 len = P2ROUNDUP(len, PAGESIZE);
4632 ASSERT(plsz >= len);
4633
4634 ZFS_ENTER(zfsvfs);
4635 ZFS_VERIFY_ZP(zp);
4636
4637 if (protp)
4638 *protp = PROT_ALL;
4639
4640 /*
4641 * Loop through the requested range [off, off + len) looking
4642 * for pages. If we don't find a page, we will need to create
4643 * a new page and fill it with data from the file.
4644 */
4645 while (len > 0) {
4646 if (*pl = page_lookup(vp, off, SE_SHARED))
4647 *(pl+1) = NULL;
4648 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4649 goto out;
4650 while (*pl) {
4651 ASSERT3U((*pl)->p_offset, ==, off);
4652 off += PAGESIZE;
4653 addr += PAGESIZE;
4654 if (len > 0) {
4655 ASSERT3U(len, >=, PAGESIZE);
4656 len -= PAGESIZE;
4657 }
4658 ASSERT3U(plsz, >=, PAGESIZE);
4659 plsz -= PAGESIZE;
4660 pl++;
4661 }
4662 }
4663
4664 /*
4665 * Fill out the page array with any pages already in the cache.
4666 */
4667 while (plsz > 0 &&
4668 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4669 off += PAGESIZE;
4670 plsz -= PAGESIZE;
4671 }
4672 out:
4673 if (err) {
4674 /*
4675 * Release any pages we have previously locked.
4676 */
4677 while (pl > pl0)
4678 page_unlock(*--pl);
4679 } else {
4680 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4681 }
4682
4683 *pl = NULL;
4684
4685 ZFS_EXIT(zfsvfs);
4686 return (err);
4687 }
4688
4689 /*
4690 * Request a memory map for a section of a file. This code interacts
4691 * with common code and the VM system as follows:
4692 *
4693 * - common code calls mmap(), which ends up in smmap_common()
4694 * - this calls VOP_MAP(), which takes you into (say) zfs
4695 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4696 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4697 * - zfs_addmap() updates z_mapcnt
4698 */
4699 /*ARGSUSED*/
4700 static int
4701 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4702 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4703 caller_context_t *ct)
4704 {
4705 znode_t *zp = VTOZ(vp);
4706 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4707 segvn_crargs_t vn_a;
4708 int error;
4709
4710 ZFS_ENTER(zfsvfs);
4711 ZFS_VERIFY_ZP(zp);
4712
4713 /*
4714 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4715 */
4716
4717 if ((prot & PROT_WRITE) && (zp->z_pflags &
4718 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4719 ZFS_EXIT(zfsvfs);
4720 return (SET_ERROR(EPERM));
4721 }
4722
4723 if ((prot & (PROT_READ | PROT_EXEC)) &&
4724 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4725 ZFS_EXIT(zfsvfs);
4726 return (SET_ERROR(EACCES));
4727 }
4728
4729 if (vp->v_flag & VNOMAP) {
4730 ZFS_EXIT(zfsvfs);
4731 return (SET_ERROR(ENOSYS));
4732 }
4733
4734 if (off < 0 || len > MAXOFFSET_T - off) {
4735 ZFS_EXIT(zfsvfs);
4736 return (SET_ERROR(ENXIO));
4737 }
4738
4739 if (vp->v_type != VREG) {
4740 ZFS_EXIT(zfsvfs);
4741 return (SET_ERROR(ENODEV));
4742 }
4743
4744 /*
4745 * If file is locked, disallow mapping.
4746 */
4747 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4748 ZFS_EXIT(zfsvfs);
4749 return (SET_ERROR(EAGAIN));
4750 }
4751
4752 as_rangelock(as);
4753 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4754 if (error != 0) {
4755 as_rangeunlock(as);
4756 ZFS_EXIT(zfsvfs);
4757 return (error);
4758 }
4759
4760 vn_a.vp = vp;
4761 vn_a.offset = (u_offset_t)off;
4762 vn_a.type = flags & MAP_TYPE;
4763 vn_a.prot = prot;
4764 vn_a.maxprot = maxprot;
4765 vn_a.cred = cr;
4766 vn_a.amp = NULL;
4767 vn_a.flags = flags & ~MAP_TYPE;
4768 vn_a.szc = 0;
4769 vn_a.lgrp_mem_policy_flags = 0;
4770
4771 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4772
4773 as_rangeunlock(as);
4774 ZFS_EXIT(zfsvfs);
4775 return (error);
4776 }
4777
4778 /* ARGSUSED */
4779 static int
4780 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4781 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4782 caller_context_t *ct)
4783 {
4784 uint64_t pages = btopr(len);
4785
4786 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4787 return (0);
4788 }
4789
4790 /*
4791 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4792 * more accurate mtime for the associated file. Since we don't have a way of
4793 * detecting when the data was actually modified, we have to resort to
4794 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4795 * last page is pushed. The problem occurs when the msync() call is omitted,
4796 * which by far the most common case:
4797 *
4798 * open()
4799 * mmap()
4800 * <modify memory>
4801 * munmap()
4802 * close()
4803 * <time lapse>
4804 * putpage() via fsflush
4805 *
4806 * If we wait until fsflush to come along, we can have a modification time that
4807 * is some arbitrary point in the future. In order to prevent this in the
4808 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4809 * torn down.
4810 */
4811 /* ARGSUSED */
4812 static int
4813 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4814 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4815 caller_context_t *ct)
4816 {
4817 uint64_t pages = btopr(len);
4818
4819 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4820 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4821
4822 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4823 vn_has_cached_data(vp))
4824 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4825
4826 return (0);
4827 }
4828
4829 /*
4830 * Free or allocate space in a file. Currently, this function only
4831 * supports the `F_FREESP' command. However, this command is somewhat
4832 * misnamed, as its functionality includes the ability to allocate as
4833 * well as free space.
4834 *
4835 * IN: vp - vnode of file to free data in.
4836 * cmd - action to take (only F_FREESP supported).
4837 * bfp - section of file to free/alloc.
4838 * flag - current file open mode flags.
4839 * offset - current file offset.
4840 * cr - credentials of caller [UNUSED].
4841 * ct - caller context.
4842 *
4843 * RETURN: 0 on success, error code on failure.
4844 *
4845 * Timestamps:
4846 * vp - ctime|mtime updated
4847 */
4848 /* ARGSUSED */
4849 static int
4850 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4851 offset_t offset, cred_t *cr, caller_context_t *ct)
4852 {
4853 znode_t *zp = VTOZ(vp);
4854 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4855 uint64_t off, len;
4856 int error;
4857
4858 ZFS_ENTER(zfsvfs);
4859 ZFS_VERIFY_ZP(zp);
4860
4861 if (cmd != F_FREESP) {
4862 ZFS_EXIT(zfsvfs);
4863 return (SET_ERROR(EINVAL));
4864 }
4865
4866 /*
4867 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4868 * callers might not be able to detect properly that we are read-only,
4869 * so check it explicitly here.
4870 */
4871 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4872 ZFS_EXIT(zfsvfs);
4873 return (SET_ERROR(EROFS));
4874 }
4875
4876 if (error = convoff(vp, bfp, 0, offset)) {
4877 ZFS_EXIT(zfsvfs);
4878 return (error);
4879 }
4880
4881 if (bfp->l_len < 0) {
4882 ZFS_EXIT(zfsvfs);
4883 return (SET_ERROR(EINVAL));
4884 }
4885
4886 off = bfp->l_start;
4887 len = bfp->l_len; /* 0 means from off to end of file */
4888
4889 error = zfs_freesp(zp, off, len, flag, TRUE);
4890
4891 if (error == 0 && off == 0 && len == 0)
4892 vnevent_truncate(ZTOV(zp), ct);
4893
4894 ZFS_EXIT(zfsvfs);
4895 return (error);
4896 }
4897
4898 /*ARGSUSED*/
4899 static int
4900 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4901 {
4902 znode_t *zp = VTOZ(vp);
4903 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4904 uint32_t gen;
4905 uint64_t gen64;
4906 uint64_t object = zp->z_id;
4907 zfid_short_t *zfid;
4908 int size, i, error;
4909
4910 ZFS_ENTER(zfsvfs);
4911 ZFS_VERIFY_ZP(zp);
4912
4913 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4914 &gen64, sizeof (uint64_t))) != 0) {
4915 ZFS_EXIT(zfsvfs);
4916 return (error);
4917 }
4918
4919 gen = (uint32_t)gen64;
4920
4921 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4922 if (fidp->fid_len < size) {
4923 fidp->fid_len = size;
4924 ZFS_EXIT(zfsvfs);
4925 return (SET_ERROR(ENOSPC));
4926 }
4927
4928 zfid = (zfid_short_t *)fidp;
4929
4930 zfid->zf_len = size;
4931
4932 for (i = 0; i < sizeof (zfid->zf_object); i++)
4933 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4934
4935 /* Must have a non-zero generation number to distinguish from .zfs */
4936 if (gen == 0)
4937 gen = 1;
4938 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4939 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4940
4941 if (size == LONG_FID_LEN) {
4942 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4943 zfid_long_t *zlfid;
4944
4945 zlfid = (zfid_long_t *)fidp;
4946
4947 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4948 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4949
4950 /* XXX - this should be the generation number for the objset */
4951 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4952 zlfid->zf_setgen[i] = 0;
4953 }
4954
4955 ZFS_EXIT(zfsvfs);
4956 return (0);
4957 }
4958
4959 static int
4960 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4961 caller_context_t *ct)
4962 {
4963 znode_t *zp, *xzp;
4964 zfsvfs_t *zfsvfs;
4965 zfs_dirlock_t *dl;
4966 int error;
4967
4968 switch (cmd) {
4969 case _PC_LINK_MAX:
4970 *valp = ULONG_MAX;
4971 return (0);
4972
4973 case _PC_FILESIZEBITS:
4974 *valp = 64;
4975 return (0);
4976
4977 case _PC_XATTR_EXISTS:
4978 zp = VTOZ(vp);
4979 zfsvfs = zp->z_zfsvfs;
4980 ZFS_ENTER(zfsvfs);
4981 ZFS_VERIFY_ZP(zp);
4982 *valp = 0;
4983 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4984 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4985 if (error == 0) {
4986 zfs_dirent_unlock(dl);
4987 if (!zfs_dirempty(xzp))
4988 *valp = 1;
4989 VN_RELE(ZTOV(xzp));
4990 } else if (error == ENOENT) {
4991 /*
4992 * If there aren't extended attributes, it's the
4993 * same as having zero of them.
4994 */
4995 error = 0;
4996 }
4997 ZFS_EXIT(zfsvfs);
4998 return (error);
4999
5000 case _PC_SATTR_ENABLED:
5001 case _PC_SATTR_EXISTS:
5002 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5003 (vp->v_type == VREG || vp->v_type == VDIR);
5004 return (0);
5005
5006 case _PC_ACCESS_FILTERING:
5007 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5008 vp->v_type == VDIR;
5009 return (0);
5010
5011 case _PC_ACL_ENABLED:
5012 *valp = _ACL_ACE_ENABLED;
5013 return (0);
5014
5015 case _PC_MIN_HOLE_SIZE:
5016 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5017 return (0);
5018
5019 case _PC_TIMESTAMP_RESOLUTION:
5020 /* nanosecond timestamp resolution */
5021 *valp = 1L;
5022 return (0);
5023
5024 default:
5025 return (fs_pathconf(vp, cmd, valp, cr, ct));
5026 }
5027 }
5028
5029 /*ARGSUSED*/
5030 static int
5031 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5032 caller_context_t *ct)
5033 {
5034 znode_t *zp = VTOZ(vp);
5035 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5036 int error;
5037 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5038
5039 ZFS_ENTER(zfsvfs);
5040 ZFS_VERIFY_ZP(zp);
5041 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5042 ZFS_EXIT(zfsvfs);
5043
5044 return (error);
5045 }
5046
5047 /*ARGSUSED*/
5048 static int
5049 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5050 caller_context_t *ct)
5051 {
5052 znode_t *zp = VTOZ(vp);
5053 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5054 int error;
5055 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5056 zilog_t *zilog = zfsvfs->z_log;
5057
5058 ZFS_ENTER(zfsvfs);
5059 ZFS_VERIFY_ZP(zp);
5060
5061 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5062
5063 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5064 zil_commit(zilog, 0);
5065
5066 ZFS_EXIT(zfsvfs);
5067 return (error);
5068 }
5069
5070 /*
5071 * The smallest read we may consider to loan out an arcbuf.
5072 * This must be a power of 2.
5073 */
5074 int zcr_blksz_min = (1 << 10); /* 1K */
5075 /*
5076 * If set to less than the file block size, allow loaning out of an
5077 * arcbuf for a partial block read. This must be a power of 2.
5078 */
5079 int zcr_blksz_max = (1 << 17); /* 128K */
5080
5081 /*ARGSUSED*/
5082 static int
5083 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5084 caller_context_t *ct)
5085 {
5086 znode_t *zp = VTOZ(vp);
5087 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5088 int max_blksz = zfsvfs->z_max_blksz;
5089 uio_t *uio = &xuio->xu_uio;
5090 ssize_t size = uio->uio_resid;
5091 offset_t offset = uio->uio_loffset;
5092 int blksz;
5093 int fullblk, i;
5094 arc_buf_t *abuf;
5095 ssize_t maxsize;
5096 int preamble, postamble;
5097
5098 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5099 return (SET_ERROR(EINVAL));
5100
5101 ZFS_ENTER(zfsvfs);
5102 ZFS_VERIFY_ZP(zp);
5103 switch (ioflag) {
5104 case UIO_WRITE:
5105 /*
5106 * Loan out an arc_buf for write if write size is bigger than
5107 * max_blksz, and the file's block size is also max_blksz.
5108 */
5109 blksz = max_blksz;
5110 if (size < blksz || zp->z_blksz != blksz) {
5111 ZFS_EXIT(zfsvfs);
5112 return (SET_ERROR(EINVAL));
5113 }
5114 /*
5115 * Caller requests buffers for write before knowing where the
5116 * write offset might be (e.g. NFS TCP write).
5117 */
5118 if (offset == -1) {
5119 preamble = 0;
5120 } else {
5121 preamble = P2PHASE(offset, blksz);
5122 if (preamble) {
5123 preamble = blksz - preamble;
5124 size -= preamble;
5125 }
5126 }
5127
5128 postamble = P2PHASE(size, blksz);
5129 size -= postamble;
5130
5131 fullblk = size / blksz;
5132 (void) dmu_xuio_init(xuio,
5133 (preamble != 0) + fullblk + (postamble != 0));
5134 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5135 int, postamble, int,
5136 (preamble != 0) + fullblk + (postamble != 0));
5137
5138 /*
5139 * Have to fix iov base/len for partial buffers. They
5140 * currently represent full arc_buf's.
5141 */
5142 if (preamble) {
5143 /* data begins in the middle of the arc_buf */
5144 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5145 blksz);
5146 ASSERT(abuf);
5147 (void) dmu_xuio_add(xuio, abuf,
5148 blksz - preamble, preamble);
5149 }
5150
5151 for (i = 0; i < fullblk; i++) {
5152 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5153 blksz);
5154 ASSERT(abuf);
5155 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5156 }
5157
5158 if (postamble) {
5159 /* data ends in the middle of the arc_buf */
5160 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5161 blksz);
5162 ASSERT(abuf);
5163 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5164 }
5165 break;
5166 case UIO_READ:
5167 /*
5168 * Loan out an arc_buf for read if the read size is larger than
5169 * the current file block size. Block alignment is not
5170 * considered. Partial arc_buf will be loaned out for read.
5171 */
5172 blksz = zp->z_blksz;
5173 if (blksz < zcr_blksz_min)
5174 blksz = zcr_blksz_min;
5175 if (blksz > zcr_blksz_max)
5176 blksz = zcr_blksz_max;
5177 /* avoid potential complexity of dealing with it */
5178 if (blksz > max_blksz) {
5179 ZFS_EXIT(zfsvfs);
5180 return (SET_ERROR(EINVAL));
5181 }
5182
5183 maxsize = zp->z_size - uio->uio_loffset;
5184 if (size > maxsize)
5185 size = maxsize;
5186
5187 if (size < blksz || vn_has_cached_data(vp)) {
5188 ZFS_EXIT(zfsvfs);
5189 return (SET_ERROR(EINVAL));
5190 }
5191 break;
5192 default:
5193 ZFS_EXIT(zfsvfs);
5194 return (SET_ERROR(EINVAL));
5195 }
5196
5197 uio->uio_extflg = UIO_XUIO;
5198 XUIO_XUZC_RW(xuio) = ioflag;
5199 ZFS_EXIT(zfsvfs);
5200 return (0);
5201 }
5202
5203 /*ARGSUSED*/
5204 static int
5205 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5206 {
5207 int i;
5208 arc_buf_t *abuf;
5209 int ioflag = XUIO_XUZC_RW(xuio);
5210
5211 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5212
5213 i = dmu_xuio_cnt(xuio);
5214 while (i-- > 0) {
5215 abuf = dmu_xuio_arcbuf(xuio, i);
5216 /*
5217 * if abuf == NULL, it must be a write buffer
5218 * that has been returned in zfs_write().
5219 */
5220 if (abuf)
5221 dmu_return_arcbuf(abuf);
5222 ASSERT(abuf || ioflag == UIO_WRITE);
5223 }
5224
5225 dmu_xuio_fini(xuio);
5226 return (0);
5227 }
5228
5229 /*
5230 * Predeclare these here so that the compiler assumes that
5231 * this is an "old style" function declaration that does
5232 * not include arguments => we won't get type mismatch errors
5233 * in the initializations that follow.
5234 */
5235 static int zfs_inval();
5236 static int zfs_isdir();
5237
5238 static int
5239 zfs_inval()
5240 {
5241 return (SET_ERROR(EINVAL));
5242 }
5243
5244 static int
5245 zfs_isdir()
5246 {
5247 return (SET_ERROR(EISDIR));
5248 }
5249 /*
5250 * Directory vnode operations template
5251 */
5252 vnodeops_t *zfs_dvnodeops;
5253 const fs_operation_def_t zfs_dvnodeops_template[] = {
5254 VOPNAME_OPEN, { .vop_open = zfs_open },
5255 VOPNAME_CLOSE, { .vop_close = zfs_close },
5256 VOPNAME_READ, { .error = zfs_isdir },
5257 VOPNAME_WRITE, { .error = zfs_isdir },
5258 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5259 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5260 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5261 VOPNAME_ACCESS, { .vop_access = zfs_access },
5262 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5263 VOPNAME_CREATE, { .vop_create = zfs_create },
5264 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5265 VOPNAME_LINK, { .vop_link = zfs_link },
5266 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5267 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5268 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5269 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5270 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5271 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5272 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5273 VOPNAME_FID, { .vop_fid = zfs_fid },
5274 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5275 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5276 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5277 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5278 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5279 NULL, NULL
5280 };
5281
5282 /*
5283 * Regular file vnode operations template
5284 */
5285 vnodeops_t *zfs_fvnodeops;
5286 const fs_operation_def_t zfs_fvnodeops_template[] = {
5287 VOPNAME_OPEN, { .vop_open = zfs_open },
5288 VOPNAME_CLOSE, { .vop_close = zfs_close },
5289 VOPNAME_READ, { .vop_read = zfs_read },
5290 VOPNAME_WRITE, { .vop_write = zfs_write },
5291 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5292 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5293 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5294 VOPNAME_ACCESS, { .vop_access = zfs_access },
5295 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5296 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5297 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5298 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5299 VOPNAME_FID, { .vop_fid = zfs_fid },
5300 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5301 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5302 VOPNAME_SPACE, { .vop_space = zfs_space },
5303 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5304 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5305 VOPNAME_MAP, { .vop_map = zfs_map },
5306 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5307 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5308 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5309 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5310 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5311 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5312 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5313 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5314 NULL, NULL
5315 };
5316
5317 /*
5318 * Symbolic link vnode operations template
5319 */
5320 vnodeops_t *zfs_symvnodeops;
5321 const fs_operation_def_t zfs_symvnodeops_template[] = {
5322 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5323 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5324 VOPNAME_ACCESS, { .vop_access = zfs_access },
5325 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5326 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5327 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5328 VOPNAME_FID, { .vop_fid = zfs_fid },
5329 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5330 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5331 NULL, NULL
5332 };
5333
5334 /*
5335 * special share hidden files vnode operations template
5336 */
5337 vnodeops_t *zfs_sharevnodeops;
5338 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5339 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5340 VOPNAME_ACCESS, { .vop_access = zfs_access },
5341 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5342 VOPNAME_FID, { .vop_fid = zfs_fid },
5343 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5344 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5345 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5346 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5347 NULL, NULL
5348 };
5349
5350 /*
5351 * Extended attribute directory vnode operations template
5352 *
5353 * This template is identical to the directory vnodes
5354 * operation template except for restricted operations:
5355 * VOP_MKDIR()
5356 * VOP_SYMLINK()
5357 *
5358 * Note that there are other restrictions embedded in:
5359 * zfs_create() - restrict type to VREG
5360 * zfs_link() - no links into/out of attribute space
5361 * zfs_rename() - no moves into/out of attribute space
5362 */
5363 vnodeops_t *zfs_xdvnodeops;
5364 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5365 VOPNAME_OPEN, { .vop_open = zfs_open },
5366 VOPNAME_CLOSE, { .vop_close = zfs_close },
5367 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5368 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5369 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5370 VOPNAME_ACCESS, { .vop_access = zfs_access },
5371 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5372 VOPNAME_CREATE, { .vop_create = zfs_create },
5373 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5374 VOPNAME_LINK, { .vop_link = zfs_link },
5375 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5376 VOPNAME_MKDIR, { .error = zfs_inval },
5377 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5378 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5379 VOPNAME_SYMLINK, { .error = zfs_inval },
5380 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5381 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5382 VOPNAME_FID, { .vop_fid = zfs_fid },
5383 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5384 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5385 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5386 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5387 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5388 NULL, NULL
5389 };
5390
5391 /*
5392 * Error vnode operations template
5393 */
5394 vnodeops_t *zfs_evnodeops;
5395 const fs_operation_def_t zfs_evnodeops_template[] = {
5396 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5397 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5398 NULL, NULL
5399 };