1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright 2015 Joyent, Inc.
  27  * Copyright 2017 Nexenta Systems, Inc.
  28  */
  29 
  30 /* Portions Copyright 2007 Jeremy Teo */
  31 /* Portions Copyright 2010 Robert Milkowski */
  32 
  33 #include <sys/types.h>
  34 #include <sys/param.h>
  35 #include <sys/time.h>
  36 #include <sys/systm.h>
  37 #include <sys/sysmacros.h>
  38 #include <sys/resource.h>
  39 #include <sys/vfs.h>
  40 #include <sys/vfs_opreg.h>
  41 #include <sys/vnode.h>
  42 #include <sys/file.h>
  43 #include <sys/stat.h>
  44 #include <sys/kmem.h>
  45 #include <sys/taskq.h>
  46 #include <sys/uio.h>
  47 #include <sys/vmsystm.h>
  48 #include <sys/atomic.h>
  49 #include <sys/vm.h>
  50 #include <vm/seg_vn.h>
  51 #include <vm/pvn.h>
  52 #include <vm/as.h>
  53 #include <vm/kpm.h>
  54 #include <vm/seg_kpm.h>
  55 #include <sys/mman.h>
  56 #include <sys/pathname.h>
  57 #include <sys/cmn_err.h>
  58 #include <sys/errno.h>
  59 #include <sys/unistd.h>
  60 #include <sys/zfs_dir.h>
  61 #include <sys/zfs_acl.h>
  62 #include <sys/zfs_ioctl.h>
  63 #include <sys/fs/zfs.h>
  64 #include <sys/dmu.h>
  65 #include <sys/dmu_objset.h>
  66 #include <sys/spa.h>
  67 #include <sys/txg.h>
  68 #include <sys/dbuf.h>
  69 #include <sys/zap.h>
  70 #include <sys/sa.h>
  71 #include <sys/dirent.h>
  72 #include <sys/policy.h>
  73 #include <sys/sunddi.h>
  74 #include <sys/filio.h>
  75 #include <sys/sid.h>
  76 #include "fs/fs_subr.h"
  77 #include <sys/zfs_ctldir.h>
  78 #include <sys/zfs_fuid.h>
  79 #include <sys/zfs_sa.h>
  80 #include <sys/dnlc.h>
  81 #include <sys/zfs_rlock.h>
  82 #include <sys/extdirent.h>
  83 #include <sys/kidmap.h>
  84 #include <sys/cred.h>
  85 #include <sys/attr.h>
  86 #include <sys/zil.h>
  87 
  88 /*
  89  * Programming rules.
  90  *
  91  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
  92  * properly lock its in-core state, create a DMU transaction, do the work,
  93  * record this work in the intent log (ZIL), commit the DMU transaction,
  94  * and wait for the intent log to commit if it is a synchronous operation.
  95  * Moreover, the vnode ops must work in both normal and log replay context.
  96  * The ordering of events is important to avoid deadlocks and references
  97  * to freed memory.  The example below illustrates the following Big Rules:
  98  *
  99  *  (1) A check must be made in each zfs thread for a mounted file system.
 100  *      This is done avoiding races using ZFS_ENTER(zfsvfs).
 101  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
 102  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
 103  *      can return EIO from the calling function.
 104  *
 105  *  (2) VN_RELE() should always be the last thing except for zil_commit()
 106  *      (if necessary) and ZFS_EXIT(). This is for 3 reasons:
 107  *      First, if it's the last reference, the vnode/znode
 108  *      can be freed, so the zp may point to freed memory.  Second, the last
 109  *      reference will call zfs_zinactive(), which may induce a lot of work --
 110  *      pushing cached pages (which acquires range locks) and syncing out
 111  *      cached atime changes.  Third, zfs_zinactive() may require a new tx,
 112  *      which could deadlock the system if you were already holding one.
 113  *      If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
 114  *
 115  *  (3) All range locks must be grabbed before calling dmu_tx_assign(),
 116  *      as they can span dmu_tx_assign() calls.
 117  *
 118  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
 119  *      dmu_tx_assign().  This is critical because we don't want to block
 120  *      while holding locks.
 121  *
 122  *      If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
 123  *      reduces lock contention and CPU usage when we must wait (note that if
 124  *      throughput is constrained by the storage, nearly every transaction
 125  *      must wait).
 126  *
 127  *      Note, in particular, that if a lock is sometimes acquired before
 128  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
 129  *      to use a non-blocking assign can deadlock the system.  The scenario:
 130  *
 131  *      Thread A has grabbed a lock before calling dmu_tx_assign().
 132  *      Thread B is in an already-assigned tx, and blocks for this lock.
 133  *      Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
 134  *      forever, because the previous txg can't quiesce until B's tx commits.
 135  *
 136  *      If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
 137  *      then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
 138  *      calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
 139  *      to indicate that this operation has already called dmu_tx_wait().
 140  *      This will ensure that we don't retry forever, waiting a short bit
 141  *      each time.
 142  *
 143  *  (5) If the operation succeeded, generate the intent log entry for it
 144  *      before dropping locks.  This ensures that the ordering of events
 145  *      in the intent log matches the order in which they actually occurred.
 146  *      During ZIL replay the zfs_log_* functions will update the sequence
 147  *      number to indicate the zil transaction has replayed.
 148  *
 149  *  (6) At the end of each vnode op, the DMU tx must always commit,
 150  *      regardless of whether there were any errors.
 151  *
 152  *  (7) After dropping all locks, invoke zil_commit(zilog, foid)
 153  *      to ensure that synchronous semantics are provided when necessary.
 154  *
 155  * In general, this is how things should be ordered in each vnode op:
 156  *
 157  *      ZFS_ENTER(zfsvfs);              // exit if unmounted
 158  * top:
 159  *      zfs_dirent_lock(&dl, ...)   // lock directory entry (may VN_HOLD())
 160  *      rw_enter(...);                  // grab any other locks you need
 161  *      tx = dmu_tx_create(...);        // get DMU tx
 162  *      dmu_tx_hold_*();                // hold each object you might modify
 163  *      error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
 164  *      if (error) {
 165  *              rw_exit(...);           // drop locks
 166  *              zfs_dirent_unlock(dl);  // unlock directory entry
 167  *              VN_RELE(...);           // release held vnodes
 168  *              if (error == ERESTART) {
 169  *                      waited = B_TRUE;
 170  *                      dmu_tx_wait(tx);
 171  *                      dmu_tx_abort(tx);
 172  *                      goto top;
 173  *              }
 174  *              dmu_tx_abort(tx);       // abort DMU tx
 175  *              ZFS_EXIT(zfsvfs);       // finished in zfs
 176  *              return (error);         // really out of space
 177  *      }
 178  *      error = do_real_work();         // do whatever this VOP does
 179  *      if (error == 0)
 180  *              zfs_log_*(...);         // on success, make ZIL entry
 181  *      dmu_tx_commit(tx);              // commit DMU tx -- error or not
 182  *      rw_exit(...);                   // drop locks
 183  *      zfs_dirent_unlock(dl);          // unlock directory entry
 184  *      VN_RELE(...);                   // release held vnodes
 185  *      zil_commit(zilog, foid);        // synchronous when necessary
 186  *      ZFS_EXIT(zfsvfs);               // finished in zfs
 187  *      return (error);                 // done, report error
 188  */
 189 
 190 /* ARGSUSED */
 191 static int
 192 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
 193 {
 194         znode_t *zp = VTOZ(*vpp);
 195         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 196 
 197         ZFS_ENTER(zfsvfs);
 198         ZFS_VERIFY_ZP(zp);
 199 
 200         if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
 201             ((flag & FAPPEND) == 0)) {
 202                 ZFS_EXIT(zfsvfs);
 203                 return (SET_ERROR(EPERM));
 204         }
 205 
 206         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 207             ZTOV(zp)->v_type == VREG &&
 208             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
 209                 if (fs_vscan(*vpp, cr, 0) != 0) {
 210                         ZFS_EXIT(zfsvfs);
 211                         return (SET_ERROR(EACCES));
 212                 }
 213         }
 214 
 215         /* Keep a count of the synchronous opens in the znode */
 216         if (flag & (FSYNC | FDSYNC))
 217                 atomic_inc_32(&zp->z_sync_cnt);
 218 
 219         ZFS_EXIT(zfsvfs);
 220         return (0);
 221 }
 222 
 223 /* ARGSUSED */
 224 static int
 225 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
 226     caller_context_t *ct)
 227 {
 228         znode_t *zp = VTOZ(vp);
 229         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 230 
 231         /*
 232          * Clean up any locks held by this process on the vp.
 233          */
 234         cleanlocks(vp, ddi_get_pid(), 0);
 235         cleanshares(vp, ddi_get_pid());
 236 
 237         ZFS_ENTER(zfsvfs);
 238         ZFS_VERIFY_ZP(zp);
 239 
 240         /* Decrement the synchronous opens in the znode */
 241         if ((flag & (FSYNC | FDSYNC)) && (count == 1))
 242                 atomic_dec_32(&zp->z_sync_cnt);
 243 
 244         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 245             ZTOV(zp)->v_type == VREG &&
 246             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
 247                 VERIFY(fs_vscan(vp, cr, 1) == 0);
 248 
 249         ZFS_EXIT(zfsvfs);
 250         return (0);
 251 }
 252 
 253 /*
 254  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
 255  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
 256  */
 257 static int
 258 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
 259 {
 260         znode_t *zp = VTOZ(vp);
 261         uint64_t noff = (uint64_t)*off; /* new offset */
 262         uint64_t file_sz;
 263         int error;
 264         boolean_t hole;
 265 
 266         file_sz = zp->z_size;
 267         if (noff >= file_sz)  {
 268                 return (SET_ERROR(ENXIO));
 269         }
 270 
 271         if (cmd == _FIO_SEEK_HOLE)
 272                 hole = B_TRUE;
 273         else
 274                 hole = B_FALSE;
 275 
 276         error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
 277 
 278         if (error == ESRCH)
 279                 return (SET_ERROR(ENXIO));
 280 
 281         /*
 282          * We could find a hole that begins after the logical end-of-file,
 283          * because dmu_offset_next() only works on whole blocks.  If the
 284          * EOF falls mid-block, then indicate that the "virtual hole"
 285          * at the end of the file begins at the logical EOF, rather than
 286          * at the end of the last block.
 287          */
 288         if (noff > file_sz) {
 289                 ASSERT(hole);
 290                 noff = file_sz;
 291         }
 292 
 293         if (noff < *off)
 294                 return (error);
 295         *off = noff;
 296         return (error);
 297 }
 298 
 299 /* ARGSUSED */
 300 static int
 301 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
 302     int *rvalp, caller_context_t *ct)
 303 {
 304         offset_t off;
 305         offset_t ndata;
 306         dmu_object_info_t doi;
 307         int error;
 308         zfsvfs_t *zfsvfs;
 309         znode_t *zp;
 310 
 311         switch (com) {
 312         case _FIOFFS:
 313         {
 314                 return (zfs_sync(vp->v_vfsp, 0, cred));
 315 
 316                 /*
 317                  * The following two ioctls are used by bfu.  Faking out,
 318                  * necessary to avoid bfu errors.
 319                  */
 320         }
 321         case _FIOGDIO:
 322         case _FIOSDIO:
 323         {
 324                 return (0);
 325         }
 326 
 327         case _FIO_SEEK_DATA:
 328         case _FIO_SEEK_HOLE:
 329         {
 330                 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
 331                         return (SET_ERROR(EFAULT));
 332 
 333                 zp = VTOZ(vp);
 334                 zfsvfs = zp->z_zfsvfs;
 335                 ZFS_ENTER(zfsvfs);
 336                 ZFS_VERIFY_ZP(zp);
 337 
 338                 /* offset parameter is in/out */
 339                 error = zfs_holey(vp, com, &off);
 340                 ZFS_EXIT(zfsvfs);
 341                 if (error)
 342                         return (error);
 343                 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
 344                         return (SET_ERROR(EFAULT));
 345                 return (0);
 346         }
 347         case _FIO_COUNT_FILLED:
 348         {
 349                 /*
 350                  * _FIO_COUNT_FILLED adds a new ioctl command which
 351                  * exposes the number of filled blocks in a
 352                  * ZFS object.
 353                  */
 354                 zp = VTOZ(vp);
 355                 zfsvfs = zp->z_zfsvfs;
 356                 ZFS_ENTER(zfsvfs);
 357                 ZFS_VERIFY_ZP(zp);
 358 
 359                 /*
 360                  * Wait for all dirty blocks for this object
 361                  * to get synced out to disk, and the DMU info
 362                  * updated.
 363                  */
 364                 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
 365                 if (error) {
 366                         ZFS_EXIT(zfsvfs);
 367                         return (error);
 368                 }
 369 
 370                 /*
 371                  * Retrieve fill count from DMU object.
 372                  */
 373                 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
 374                 if (error) {
 375                         ZFS_EXIT(zfsvfs);
 376                         return (error);
 377                 }
 378 
 379                 ndata = doi.doi_fill_count;
 380 
 381                 ZFS_EXIT(zfsvfs);
 382                 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
 383                         return (SET_ERROR(EFAULT));
 384                 return (0);
 385         }
 386         }
 387         return (SET_ERROR(ENOTTY));
 388 }
 389 
 390 /*
 391  * Utility functions to map and unmap a single physical page.  These
 392  * are used to manage the mappable copies of ZFS file data, and therefore
 393  * do not update ref/mod bits.
 394  */
 395 caddr_t
 396 zfs_map_page(page_t *pp, enum seg_rw rw)
 397 {
 398         if (kpm_enable)
 399                 return (hat_kpm_mapin(pp, 0));
 400         ASSERT(rw == S_READ || rw == S_WRITE);
 401         return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
 402             (caddr_t)-1));
 403 }
 404 
 405 void
 406 zfs_unmap_page(page_t *pp, caddr_t addr)
 407 {
 408         if (kpm_enable) {
 409                 hat_kpm_mapout(pp, 0, addr);
 410         } else {
 411                 ppmapout(addr);
 412         }
 413 }
 414 
 415 /*
 416  * When a file is memory mapped, we must keep the IO data synchronized
 417  * between the DMU cache and the memory mapped pages.  What this means:
 418  *
 419  * On Write:    If we find a memory mapped page, we write to *both*
 420  *              the page and the dmu buffer.
 421  */
 422 static void
 423 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
 424 {
 425         int64_t off;
 426 
 427         off = start & PAGEOFFSET;
 428         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 429                 page_t *pp;
 430                 uint64_t nbytes = MIN(PAGESIZE - off, len);
 431 
 432                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 433                         caddr_t va;
 434 
 435                         va = zfs_map_page(pp, S_WRITE);
 436                         (void) dmu_read(os, oid, start+off, nbytes, va+off,
 437                             DMU_READ_PREFETCH);
 438                         zfs_unmap_page(pp, va);
 439                         page_unlock(pp);
 440                 }
 441                 len -= nbytes;
 442                 off = 0;
 443         }
 444 }
 445 
 446 /*
 447  * When a file is memory mapped, we must keep the IO data synchronized
 448  * between the DMU cache and the memory mapped pages.  What this means:
 449  *
 450  * On Read:     We "read" preferentially from memory mapped pages,
 451  *              else we default from the dmu buffer.
 452  *
 453  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
 454  *       the file is memory mapped.
 455  */
 456 static int
 457 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
 458 {
 459         znode_t *zp = VTOZ(vp);
 460         int64_t start, off;
 461         int len = nbytes;
 462         int error = 0;
 463 
 464         start = uio->uio_loffset;
 465         off = start & PAGEOFFSET;
 466         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 467                 page_t *pp;
 468                 uint64_t bytes = MIN(PAGESIZE - off, len);
 469 
 470                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 471                         caddr_t va;
 472 
 473                         va = zfs_map_page(pp, S_READ);
 474                         error = uiomove(va + off, bytes, UIO_READ, uio);
 475                         zfs_unmap_page(pp, va);
 476                         page_unlock(pp);
 477                 } else {
 478                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 479                             uio, bytes);
 480                 }
 481                 len -= bytes;
 482                 off = 0;
 483                 if (error)
 484                         break;
 485         }
 486         return (error);
 487 }
 488 
 489 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
 490 
 491 /*
 492  * Read bytes from specified file into supplied buffer.
 493  *
 494  *      IN:     vp      - vnode of file to be read from.
 495  *              uio     - structure supplying read location, range info,
 496  *                        and return buffer.
 497  *              ioflag  - SYNC flags; used to provide FRSYNC semantics.
 498  *              cr      - credentials of caller.
 499  *              ct      - caller context
 500  *
 501  *      OUT:    uio     - updated offset and range, buffer filled.
 502  *
 503  *      RETURN: 0 on success, error code on failure.
 504  *
 505  * Side Effects:
 506  *      vp - atime updated if byte count > 0
 507  */
 508 /* ARGSUSED */
 509 static int
 510 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 511 {
 512         znode_t         *zp = VTOZ(vp);
 513         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 514         ssize_t         n, nbytes;
 515         int             error = 0;
 516         xuio_t          *xuio = NULL;
 517 
 518         ZFS_ENTER(zfsvfs);
 519         ZFS_VERIFY_ZP(zp);
 520 
 521         if (zp->z_pflags & ZFS_AV_QUARANTINED) {
 522                 ZFS_EXIT(zfsvfs);
 523                 return (SET_ERROR(EACCES));
 524         }
 525 
 526         /*
 527          * Validate file offset
 528          */
 529         if (uio->uio_loffset < (offset_t)0) {
 530                 ZFS_EXIT(zfsvfs);
 531                 return (SET_ERROR(EINVAL));
 532         }
 533 
 534         /*
 535          * Fasttrack empty reads
 536          */
 537         if (uio->uio_resid == 0) {
 538                 ZFS_EXIT(zfsvfs);
 539                 return (0);
 540         }
 541 
 542         /*
 543          * Check for mandatory locks
 544          */
 545         if (MANDMODE(zp->z_mode)) {
 546                 if (error = chklock(vp, FREAD,
 547                     uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
 548                         ZFS_EXIT(zfsvfs);
 549                         return (error);
 550                 }
 551         }
 552 
 553         /*
 554          * If we're in FRSYNC mode, sync out this znode before reading it.
 555          */
 556         if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 557                 zil_commit(zfsvfs->z_log, zp->z_id);
 558 
 559         /*
 560          * Lock the range against changes.
 561          */
 562         locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
 563             uio->uio_loffset, uio->uio_resid, RL_READER);
 564 
 565         /*
 566          * If we are reading past end-of-file we can skip
 567          * to the end; but we might still need to set atime.
 568          */
 569         if (uio->uio_loffset >= zp->z_size) {
 570                 error = 0;
 571                 goto out;
 572         }
 573 
 574         ASSERT(uio->uio_loffset < zp->z_size);
 575         n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
 576 
 577         if ((uio->uio_extflg == UIO_XUIO) &&
 578             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
 579                 int nblk;
 580                 int blksz = zp->z_blksz;
 581                 uint64_t offset = uio->uio_loffset;
 582 
 583                 xuio = (xuio_t *)uio;
 584                 if ((ISP2(blksz))) {
 585                         nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
 586                             blksz)) / blksz;
 587                 } else {
 588                         ASSERT(offset + n <= blksz);
 589                         nblk = 1;
 590                 }
 591                 (void) dmu_xuio_init(xuio, nblk);
 592 
 593                 if (vn_has_cached_data(vp)) {
 594                         /*
 595                          * For simplicity, we always allocate a full buffer
 596                          * even if we only expect to read a portion of a block.
 597                          */
 598                         while (--nblk >= 0) {
 599                                 (void) dmu_xuio_add(xuio,
 600                                     dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 601                                     blksz), 0, blksz);
 602                         }
 603                 }
 604         }
 605 
 606         while (n > 0) {
 607                 nbytes = MIN(n, zfs_read_chunk_size -
 608                     P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
 609 
 610                 if (vn_has_cached_data(vp)) {
 611                         error = mappedread(vp, nbytes, uio);
 612                 } else {
 613                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 614                             uio, nbytes);
 615                 }
 616                 if (error) {
 617                         /* convert checksum errors into IO errors */
 618                         if (error == ECKSUM)
 619                                 error = SET_ERROR(EIO);
 620                         break;
 621                 }
 622 
 623                 n -= nbytes;
 624         }
 625 out:
 626         rangelock_exit(lr);
 627 
 628         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
 629         ZFS_EXIT(zfsvfs);
 630         return (error);
 631 }
 632 
 633 /*
 634  * Write the bytes to a file.
 635  *
 636  *      IN:     vp      - vnode of file to be written to.
 637  *              uio     - structure supplying write location, range info,
 638  *                        and data buffer.
 639  *              ioflag  - FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
 640  *                        set if in append mode.
 641  *              cr      - credentials of caller.
 642  *              ct      - caller context (NFS/CIFS fem monitor only)
 643  *
 644  *      OUT:    uio     - updated offset and range.
 645  *
 646  *      RETURN: 0 on success, error code on failure.
 647  *
 648  * Timestamps:
 649  *      vp - ctime|mtime updated if byte count > 0
 650  */
 651 
 652 /* ARGSUSED */
 653 static int
 654 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 655 {
 656         znode_t         *zp = VTOZ(vp);
 657         rlim64_t        limit = uio->uio_llimit;
 658         ssize_t         start_resid = uio->uio_resid;
 659         ssize_t         tx_bytes;
 660         uint64_t        end_size;
 661         dmu_tx_t        *tx;
 662         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 663         zilog_t         *zilog;
 664         offset_t        woff;
 665         ssize_t         n, nbytes;
 666         int             max_blksz = zfsvfs->z_max_blksz;
 667         int             error = 0;
 668         int             prev_error;
 669         arc_buf_t       *abuf;
 670         iovec_t         *aiov = NULL;
 671         xuio_t          *xuio = NULL;
 672         int             i_iov = 0;
 673         int             iovcnt = uio->uio_iovcnt;
 674         iovec_t         *iovp = uio->uio_iov;
 675         int             write_eof;
 676         int             count = 0;
 677         sa_bulk_attr_t  bulk[4];
 678         uint64_t        mtime[2], ctime[2];
 679 
 680         /*
 681          * Fasttrack empty write
 682          */
 683         n = start_resid;
 684         if (n == 0)
 685                 return (0);
 686 
 687         if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
 688                 limit = MAXOFFSET_T;
 689 
 690         ZFS_ENTER(zfsvfs);
 691         ZFS_VERIFY_ZP(zp);
 692 
 693         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 694         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 695         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 696             &zp->z_size, 8);
 697         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 698             &zp->z_pflags, 8);
 699 
 700         /*
 701          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
 702          * callers might not be able to detect properly that we are read-only,
 703          * so check it explicitly here.
 704          */
 705         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
 706                 ZFS_EXIT(zfsvfs);
 707                 return (SET_ERROR(EROFS));
 708         }
 709 
 710         /*
 711          * If immutable or not appending then return EPERM.
 712          * Intentionally allow ZFS_READONLY through here.
 713          * See zfs_zaccess_common()
 714          */
 715         if ((zp->z_pflags & ZFS_IMMUTABLE) ||
 716             ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
 717             (uio->uio_loffset < zp->z_size))) {
 718                 ZFS_EXIT(zfsvfs);
 719                 return (SET_ERROR(EPERM));
 720         }
 721 
 722         zilog = zfsvfs->z_log;
 723 
 724         /*
 725          * Validate file offset
 726          */
 727         woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
 728         if (woff < 0) {
 729                 ZFS_EXIT(zfsvfs);
 730                 return (SET_ERROR(EINVAL));
 731         }
 732 
 733         /*
 734          * Check for mandatory locks before calling rangelock_enter()
 735          * in order to prevent a deadlock with locks set via fcntl().
 736          */
 737         if (MANDMODE((mode_t)zp->z_mode) &&
 738             (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
 739                 ZFS_EXIT(zfsvfs);
 740                 return (error);
 741         }
 742 
 743         /*
 744          * Pre-fault the pages to ensure slow (eg NFS) pages
 745          * don't hold up txg.
 746          * Skip this if uio contains loaned arc_buf.
 747          */
 748         if ((uio->uio_extflg == UIO_XUIO) &&
 749             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
 750                 xuio = (xuio_t *)uio;
 751         else
 752                 uio_prefaultpages(MIN(n, max_blksz), uio);
 753 
 754         /*
 755          * If in append mode, set the io offset pointer to eof.
 756          */
 757         locked_range_t *lr;
 758         if (ioflag & FAPPEND) {
 759                 /*
 760                  * Obtain an appending range lock to guarantee file append
 761                  * semantics.  We reset the write offset once we have the lock.
 762                  */
 763                 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
 764                 woff = lr->lr_offset;
 765                 if (lr->lr_length == UINT64_MAX) {
 766                         /*
 767                          * We overlocked the file because this write will cause
 768                          * the file block size to increase.
 769                          * Note that zp_size cannot change with this lock held.
 770                          */
 771                         woff = zp->z_size;
 772                 }
 773                 uio->uio_loffset = woff;
 774         } else {
 775                 /*
 776                  * Note that if the file block size will change as a result of
 777                  * this write, then this range lock will lock the entire file
 778                  * so that we can re-write the block safely.
 779                  */
 780                 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
 781         }
 782 
 783         if (woff >= limit) {
 784                 rangelock_exit(lr);
 785                 ZFS_EXIT(zfsvfs);
 786                 return (SET_ERROR(EFBIG));
 787         }
 788 
 789         if ((woff + n) > limit || woff > (limit - n))
 790                 n = limit - woff;
 791 
 792         /* Will this write extend the file length? */
 793         write_eof = (woff + n > zp->z_size);
 794 
 795         end_size = MAX(zp->z_size, woff + n);
 796 
 797         /*
 798          * Write the file in reasonable size chunks.  Each chunk is written
 799          * in a separate transaction; this keeps the intent log records small
 800          * and allows us to do more fine-grained space accounting.
 801          */
 802         while (n > 0) {
 803                 abuf = NULL;
 804                 woff = uio->uio_loffset;
 805                 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
 806                     zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
 807                         if (abuf != NULL)
 808                                 dmu_return_arcbuf(abuf);
 809                         error = SET_ERROR(EDQUOT);
 810                         break;
 811                 }
 812 
 813                 if (xuio && abuf == NULL) {
 814                         ASSERT(i_iov < iovcnt);
 815                         aiov = &iovp[i_iov];
 816                         abuf = dmu_xuio_arcbuf(xuio, i_iov);
 817                         dmu_xuio_clear(xuio, i_iov);
 818                         DTRACE_PROBE3(zfs_cp_write, int, i_iov,
 819                             iovec_t *, aiov, arc_buf_t *, abuf);
 820                         ASSERT((aiov->iov_base == abuf->b_data) ||
 821                             ((char *)aiov->iov_base - (char *)abuf->b_data +
 822                             aiov->iov_len == arc_buf_size(abuf)));
 823                         i_iov++;
 824                 } else if (abuf == NULL && n >= max_blksz &&
 825                     woff >= zp->z_size &&
 826                     P2PHASE(woff, max_blksz) == 0 &&
 827                     zp->z_blksz == max_blksz) {
 828                         /*
 829                          * This write covers a full block.  "Borrow" a buffer
 830                          * from the dmu so that we can fill it before we enter
 831                          * a transaction.  This avoids the possibility of
 832                          * holding up the transaction if the data copy hangs
 833                          * up on a pagefault (e.g., from an NFS server mapping).
 834                          */
 835                         size_t cbytes;
 836 
 837                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 838                             max_blksz);
 839                         ASSERT(abuf != NULL);
 840                         ASSERT(arc_buf_size(abuf) == max_blksz);
 841                         if (error = uiocopy(abuf->b_data, max_blksz,
 842                             UIO_WRITE, uio, &cbytes)) {
 843                                 dmu_return_arcbuf(abuf);
 844                                 break;
 845                         }
 846                         ASSERT(cbytes == max_blksz);
 847                 }
 848 
 849                 /*
 850                  * Start a transaction.
 851                  */
 852                 tx = dmu_tx_create(zfsvfs->z_os);
 853                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 854                 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
 855                 zfs_sa_upgrade_txholds(tx, zp);
 856                 error = dmu_tx_assign(tx, TXG_WAIT);
 857                 if (error) {
 858                         dmu_tx_abort(tx);
 859                         if (abuf != NULL)
 860                                 dmu_return_arcbuf(abuf);
 861                         break;
 862                 }
 863 
 864                 /*
 865                  * If rangelock_enter() over-locked we grow the blocksize
 866                  * and then reduce the lock range.  This will only happen
 867                  * on the first iteration since rangelock_reduce() will
 868                  * shrink down lr_length to the appropriate size.
 869                  */
 870                 if (lr->lr_length == UINT64_MAX) {
 871                         uint64_t new_blksz;
 872 
 873                         if (zp->z_blksz > max_blksz) {
 874                                 /*
 875                                  * File's blocksize is already larger than the
 876                                  * "recordsize" property.  Only let it grow to
 877                                  * the next power of 2.
 878                                  */
 879                                 ASSERT(!ISP2(zp->z_blksz));
 880                                 new_blksz = MIN(end_size,
 881                                     1 << highbit64(zp->z_blksz));
 882                         } else {
 883                                 new_blksz = MIN(end_size, max_blksz);
 884                         }
 885                         zfs_grow_blocksize(zp, new_blksz, tx);
 886                         rangelock_reduce(lr, woff, n);
 887                 }
 888 
 889                 /*
 890                  * XXX - should we really limit each write to z_max_blksz?
 891                  * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
 892                  */
 893                 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
 894 
 895                 if (abuf == NULL) {
 896                         tx_bytes = uio->uio_resid;
 897                         error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 898                             uio, nbytes, tx);
 899                         tx_bytes -= uio->uio_resid;
 900                 } else {
 901                         tx_bytes = nbytes;
 902                         ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
 903                         /*
 904                          * If this is not a full block write, but we are
 905                          * extending the file past EOF and this data starts
 906                          * block-aligned, use assign_arcbuf().  Otherwise,
 907                          * write via dmu_write().
 908                          */
 909                         if (tx_bytes < max_blksz && (!write_eof ||
 910                             aiov->iov_base != abuf->b_data)) {
 911                                 ASSERT(xuio);
 912                                 dmu_write(zfsvfs->z_os, zp->z_id, woff,
 913                                     aiov->iov_len, aiov->iov_base, tx);
 914                                 dmu_return_arcbuf(abuf);
 915                                 xuio_stat_wbuf_copied();
 916                         } else {
 917                                 ASSERT(xuio || tx_bytes == max_blksz);
 918                                 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
 919                                     woff, abuf, tx);
 920                         }
 921                         ASSERT(tx_bytes <= uio->uio_resid);
 922                         uioskip(uio, tx_bytes);
 923                 }
 924                 if (tx_bytes && vn_has_cached_data(vp)) {
 925                         update_pages(vp, woff,
 926                             tx_bytes, zfsvfs->z_os, zp->z_id);
 927                 }
 928 
 929                 /*
 930                  * If we made no progress, we're done.  If we made even
 931                  * partial progress, update the znode and ZIL accordingly.
 932                  */
 933                 if (tx_bytes == 0) {
 934                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
 935                             (void *)&zp->z_size, sizeof (uint64_t), tx);
 936                         dmu_tx_commit(tx);
 937                         ASSERT(error != 0);
 938                         break;
 939                 }
 940 
 941                 /*
 942                  * Clear Set-UID/Set-GID bits on successful write if not
 943                  * privileged and at least one of the excute bits is set.
 944                  *
 945                  * It would be nice to to this after all writes have
 946                  * been done, but that would still expose the ISUID/ISGID
 947                  * to another app after the partial write is committed.
 948                  *
 949                  * Note: we don't call zfs_fuid_map_id() here because
 950                  * user 0 is not an ephemeral uid.
 951                  */
 952                 mutex_enter(&zp->z_acl_lock);
 953                 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
 954                     (S_IXUSR >> 6))) != 0 &&
 955                     (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
 956                     secpolicy_vnode_setid_retain(cr,
 957                     (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
 958                         uint64_t newmode;
 959                         zp->z_mode &= ~(S_ISUID | S_ISGID);
 960                         newmode = zp->z_mode;
 961                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
 962                             (void *)&newmode, sizeof (uint64_t), tx);
 963                 }
 964                 mutex_exit(&zp->z_acl_lock);
 965 
 966                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
 967                     B_TRUE);
 968 
 969                 /*
 970                  * Update the file size (zp_size) if it has changed;
 971                  * account for possible concurrent updates.
 972                  */
 973                 while ((end_size = zp->z_size) < uio->uio_loffset) {
 974                         (void) atomic_cas_64(&zp->z_size, end_size,
 975                             uio->uio_loffset);
 976                 }
 977                 /*
 978                  * If we are replaying and eof is non zero then force
 979                  * the file size to the specified eof. Note, there's no
 980                  * concurrency during replay.
 981                  */
 982                 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
 983                         zp->z_size = zfsvfs->z_replay_eof;
 984 
 985                 /*
 986                  * Keep track of a possible pre-existing error from a partial
 987                  * write via dmu_write_uio_dbuf above.
 988                  */
 989                 prev_error = error;
 990                 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 991 
 992                 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
 993                 dmu_tx_commit(tx);
 994 
 995                 if (prev_error != 0 || error != 0)
 996                         break;
 997                 ASSERT(tx_bytes == nbytes);
 998                 n -= nbytes;
 999 
1000                 if (!xuio && n > 0)
1001                         uio_prefaultpages(MIN(n, max_blksz), uio);
1002         }
1003 
1004         rangelock_exit(lr);
1005 
1006         /*
1007          * If we're in replay mode, or we made no progress, return error.
1008          * Otherwise, it's at least a partial write, so it's successful.
1009          */
1010         if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1011                 ZFS_EXIT(zfsvfs);
1012                 return (error);
1013         }
1014 
1015         if (ioflag & (FSYNC | FDSYNC) ||
1016             zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1017                 zil_commit(zilog, zp->z_id);
1018 
1019         ZFS_EXIT(zfsvfs);
1020         return (0);
1021 }
1022 
1023 /* ARGSUSED */
1024 void
1025 zfs_get_done(zgd_t *zgd, int error)
1026 {
1027         znode_t *zp = zgd->zgd_private;
1028         objset_t *os = zp->z_zfsvfs->z_os;
1029 
1030         if (zgd->zgd_db)
1031                 dmu_buf_rele(zgd->zgd_db, zgd);
1032 
1033         rangelock_exit(zgd->zgd_lr);
1034 
1035         /*
1036          * Release the vnode asynchronously as we currently have the
1037          * txg stopped from syncing.
1038          */
1039         VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1040 
1041         kmem_free(zgd, sizeof (zgd_t));
1042 }
1043 
1044 #ifdef DEBUG
1045 static int zil_fault_io = 0;
1046 #endif
1047 
1048 /*
1049  * Get data to generate a TX_WRITE intent log record.
1050  */
1051 int
1052 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1053 {
1054         zfsvfs_t *zfsvfs = arg;
1055         objset_t *os = zfsvfs->z_os;
1056         znode_t *zp;
1057         uint64_t object = lr->lr_foid;
1058         uint64_t offset = lr->lr_offset;
1059         uint64_t size = lr->lr_length;
1060         dmu_buf_t *db;
1061         zgd_t *zgd;
1062         int error = 0;
1063 
1064         ASSERT3P(lwb, !=, NULL);
1065         ASSERT3P(zio, !=, NULL);
1066         ASSERT3U(size, !=, 0);
1067 
1068         /*
1069          * Nothing to do if the file has been removed
1070          */
1071         if (zfs_zget(zfsvfs, object, &zp) != 0)
1072                 return (SET_ERROR(ENOENT));
1073         if (zp->z_unlinked) {
1074                 /*
1075                  * Release the vnode asynchronously as we currently have the
1076                  * txg stopped from syncing.
1077                  */
1078                 VN_RELE_ASYNC(ZTOV(zp),
1079                     dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1080                 return (SET_ERROR(ENOENT));
1081         }
1082 
1083         zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1084         zgd->zgd_lwb = lwb;
1085         zgd->zgd_private = zp;
1086 
1087         /*
1088          * Write records come in two flavors: immediate and indirect.
1089          * For small writes it's cheaper to store the data with the
1090          * log record (immediate); for large writes it's cheaper to
1091          * sync the data and get a pointer to it (indirect) so that
1092          * we don't have to write the data twice.
1093          */
1094         if (buf != NULL) { /* immediate write */
1095                 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1096                     offset, size, RL_READER);
1097                 /* test for truncation needs to be done while range locked */
1098                 if (offset >= zp->z_size) {
1099                         error = SET_ERROR(ENOENT);
1100                 } else {
1101                         error = dmu_read(os, object, offset, size, buf,
1102                             DMU_READ_NO_PREFETCH);
1103                 }
1104                 ASSERT(error == 0 || error == ENOENT);
1105         } else { /* indirect write */
1106                 /*
1107                  * Have to lock the whole block to ensure when it's
1108                  * written out and its checksum is being calculated
1109                  * that no one can change the data. We need to re-check
1110                  * blocksize after we get the lock in case it's changed!
1111                  */
1112                 for (;;) {
1113                         uint64_t blkoff;
1114                         size = zp->z_blksz;
1115                         blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1116                         offset -= blkoff;
1117                         zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1118                             offset, size, RL_READER);
1119                         if (zp->z_blksz == size)
1120                                 break;
1121                         offset += blkoff;
1122                         rangelock_exit(zgd->zgd_lr);
1123                 }
1124                 /* test for truncation needs to be done while range locked */
1125                 if (lr->lr_offset >= zp->z_size)
1126                         error = SET_ERROR(ENOENT);
1127 #ifdef DEBUG
1128                 if (zil_fault_io) {
1129                         error = SET_ERROR(EIO);
1130                         zil_fault_io = 0;
1131                 }
1132 #endif
1133                 if (error == 0)
1134                         error = dmu_buf_hold(os, object, offset, zgd, &db,
1135                             DMU_READ_NO_PREFETCH);
1136 
1137                 if (error == 0) {
1138                         blkptr_t *bp = &lr->lr_blkptr;
1139 
1140                         zgd->zgd_db = db;
1141                         zgd->zgd_bp = bp;
1142 
1143                         ASSERT(db->db_offset == offset);
1144                         ASSERT(db->db_size == size);
1145 
1146                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
1147                             zfs_get_done, zgd);
1148                         ASSERT(error || lr->lr_length <= size);
1149 
1150                         /*
1151                          * On success, we need to wait for the write I/O
1152                          * initiated by dmu_sync() to complete before we can
1153                          * release this dbuf.  We will finish everything up
1154                          * in the zfs_get_done() callback.
1155                          */
1156                         if (error == 0)
1157                                 return (0);
1158 
1159                         if (error == EALREADY) {
1160                                 lr->lr_common.lrc_txtype = TX_WRITE2;
1161                                 /*
1162                                  * TX_WRITE2 relies on the data previously
1163                                  * written by the TX_WRITE that caused
1164                                  * EALREADY.  We zero out the BP because
1165                                  * it is the old, currently-on-disk BP.
1166                                  */
1167                                 zgd->zgd_bp = NULL;
1168                                 BP_ZERO(bp);
1169                                 error = 0;
1170                         }
1171                 }
1172         }
1173 
1174         zfs_get_done(zgd, error);
1175 
1176         return (error);
1177 }
1178 
1179 /*ARGSUSED*/
1180 static int
1181 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1182     caller_context_t *ct)
1183 {
1184         znode_t *zp = VTOZ(vp);
1185         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1186         int error;
1187 
1188         ZFS_ENTER(zfsvfs);
1189         ZFS_VERIFY_ZP(zp);
1190 
1191         if (flag & V_ACE_MASK)
1192                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1193         else
1194                 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1195 
1196         ZFS_EXIT(zfsvfs);
1197         return (error);
1198 }
1199 
1200 /*
1201  * If vnode is for a device return a specfs vnode instead.
1202  */
1203 static int
1204 specvp_check(vnode_t **vpp, cred_t *cr)
1205 {
1206         int error = 0;
1207 
1208         if (IS_DEVVP(*vpp)) {
1209                 struct vnode *svp;
1210 
1211                 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1212                 VN_RELE(*vpp);
1213                 if (svp == NULL)
1214                         error = SET_ERROR(ENOSYS);
1215                 *vpp = svp;
1216         }
1217         return (error);
1218 }
1219 
1220 
1221 /*
1222  * Lookup an entry in a directory, or an extended attribute directory.
1223  * If it exists, return a held vnode reference for it.
1224  *
1225  *      IN:     dvp     - vnode of directory to search.
1226  *              nm      - name of entry to lookup.
1227  *              pnp     - full pathname to lookup [UNUSED].
1228  *              flags   - LOOKUP_XATTR set if looking for an attribute.
1229  *              rdir    - root directory vnode [UNUSED].
1230  *              cr      - credentials of caller.
1231  *              ct      - caller context
1232  *              direntflags - directory lookup flags
1233  *              realpnp - returned pathname.
1234  *
1235  *      OUT:    vpp     - vnode of located entry, NULL if not found.
1236  *
1237  *      RETURN: 0 on success, error code on failure.
1238  *
1239  * Timestamps:
1240  *      NA
1241  */
1242 /* ARGSUSED */
1243 static int
1244 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1245     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1246     int *direntflags, pathname_t *realpnp)
1247 {
1248         znode_t *zdp = VTOZ(dvp);
1249         zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1250         int     error = 0;
1251 
1252         /*
1253          * Fast path lookup, however we must skip DNLC lookup
1254          * for case folding or normalizing lookups because the
1255          * DNLC code only stores the passed in name.  This means
1256          * creating 'a' and removing 'A' on a case insensitive
1257          * file system would work, but DNLC still thinks 'a'
1258          * exists and won't let you create it again on the next
1259          * pass through fast path.
1260          */
1261         if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1262 
1263                 if (dvp->v_type != VDIR) {
1264                         return (SET_ERROR(ENOTDIR));
1265                 } else if (zdp->z_sa_hdl == NULL) {
1266                         return (SET_ERROR(EIO));
1267                 }
1268 
1269                 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1270                         error = zfs_fastaccesschk_execute(zdp, cr);
1271                         if (!error) {
1272                                 *vpp = dvp;
1273                                 VN_HOLD(*vpp);
1274                                 return (0);
1275                         }
1276                         return (error);
1277                 } else if (!zdp->z_zfsvfs->z_norm &&
1278                     (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1279 
1280                         vnode_t *tvp = dnlc_lookup(dvp, nm);
1281 
1282                         if (tvp) {
1283                                 error = zfs_fastaccesschk_execute(zdp, cr);
1284                                 if (error) {
1285                                         VN_RELE(tvp);
1286                                         return (error);
1287                                 }
1288                                 if (tvp == DNLC_NO_VNODE) {
1289                                         VN_RELE(tvp);
1290                                         return (SET_ERROR(ENOENT));
1291                                 } else {
1292                                         *vpp = tvp;
1293                                         return (specvp_check(vpp, cr));
1294                                 }
1295                         }
1296                 }
1297         }
1298 
1299         DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1300 
1301         ZFS_ENTER(zfsvfs);
1302         ZFS_VERIFY_ZP(zdp);
1303 
1304         *vpp = NULL;
1305 
1306         if (flags & LOOKUP_XATTR) {
1307                 /*
1308                  * If the xattr property is off, refuse the lookup request.
1309                  */
1310                 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1311                         ZFS_EXIT(zfsvfs);
1312                         return (SET_ERROR(EINVAL));
1313                 }
1314 
1315                 /*
1316                  * We don't allow recursive attributes..
1317                  * Maybe someday we will.
1318                  */
1319                 if (zdp->z_pflags & ZFS_XATTR) {
1320                         ZFS_EXIT(zfsvfs);
1321                         return (SET_ERROR(EINVAL));
1322                 }
1323 
1324                 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1325                         ZFS_EXIT(zfsvfs);
1326                         return (error);
1327                 }
1328 
1329                 /*
1330                  * Do we have permission to get into attribute directory?
1331                  */
1332 
1333                 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1334                     B_FALSE, cr)) {
1335                         VN_RELE(*vpp);
1336                         *vpp = NULL;
1337                 }
1338 
1339                 ZFS_EXIT(zfsvfs);
1340                 return (error);
1341         }
1342 
1343         if (dvp->v_type != VDIR) {
1344                 ZFS_EXIT(zfsvfs);
1345                 return (SET_ERROR(ENOTDIR));
1346         }
1347 
1348         /*
1349          * Check accessibility of directory.
1350          */
1351 
1352         if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1353                 ZFS_EXIT(zfsvfs);
1354                 return (error);
1355         }
1356 
1357         if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1358             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1359                 ZFS_EXIT(zfsvfs);
1360                 return (SET_ERROR(EILSEQ));
1361         }
1362 
1363         error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1364         if (error == 0)
1365                 error = specvp_check(vpp, cr);
1366 
1367         ZFS_EXIT(zfsvfs);
1368         return (error);
1369 }
1370 
1371 /*
1372  * Attempt to create a new entry in a directory.  If the entry
1373  * already exists, truncate the file if permissible, else return
1374  * an error.  Return the vp of the created or trunc'd file.
1375  *
1376  *      IN:     dvp     - vnode of directory to put new file entry in.
1377  *              name    - name of new file entry.
1378  *              vap     - attributes of new file.
1379  *              excl    - flag indicating exclusive or non-exclusive mode.
1380  *              mode    - mode to open file with.
1381  *              cr      - credentials of caller.
1382  *              flag    - large file flag [UNUSED].
1383  *              ct      - caller context
1384  *              vsecp   - ACL to be set
1385  *
1386  *      OUT:    vpp     - vnode of created or trunc'd entry.
1387  *
1388  *      RETURN: 0 on success, error code on failure.
1389  *
1390  * Timestamps:
1391  *      dvp - ctime|mtime updated if new entry created
1392  *       vp - ctime|mtime always, atime if new
1393  */
1394 
1395 /* ARGSUSED */
1396 static int
1397 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1398     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1399     vsecattr_t *vsecp)
1400 {
1401         znode_t         *zp, *dzp = VTOZ(dvp);
1402         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1403         zilog_t         *zilog;
1404         objset_t        *os;
1405         zfs_dirlock_t   *dl;
1406         dmu_tx_t        *tx;
1407         int             error;
1408         ksid_t          *ksid;
1409         uid_t           uid;
1410         gid_t           gid = crgetgid(cr);
1411         zfs_acl_ids_t   acl_ids;
1412         boolean_t       fuid_dirtied;
1413         boolean_t       have_acl = B_FALSE;
1414         boolean_t       waited = B_FALSE;
1415 
1416         /*
1417          * If we have an ephemeral id, ACL, or XVATTR then
1418          * make sure file system is at proper version
1419          */
1420 
1421         ksid = crgetsid(cr, KSID_OWNER);
1422         if (ksid)
1423                 uid = ksid_getid(ksid);
1424         else
1425                 uid = crgetuid(cr);
1426 
1427         if (zfsvfs->z_use_fuids == B_FALSE &&
1428             (vsecp || (vap->va_mask & AT_XVATTR) ||
1429             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1430                 return (SET_ERROR(EINVAL));
1431 
1432         ZFS_ENTER(zfsvfs);
1433         ZFS_VERIFY_ZP(dzp);
1434         os = zfsvfs->z_os;
1435         zilog = zfsvfs->z_log;
1436 
1437         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1438             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1439                 ZFS_EXIT(zfsvfs);
1440                 return (SET_ERROR(EILSEQ));
1441         }
1442 
1443         if (vap->va_mask & AT_XVATTR) {
1444                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1445                     crgetuid(cr), cr, vap->va_type)) != 0) {
1446                         ZFS_EXIT(zfsvfs);
1447                         return (error);
1448                 }
1449         }
1450 top:
1451         *vpp = NULL;
1452 
1453         if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1454                 vap->va_mode &= ~VSVTX;
1455 
1456         if (*name == '\0') {
1457                 /*
1458                  * Null component name refers to the directory itself.
1459                  */
1460                 VN_HOLD(dvp);
1461                 zp = dzp;
1462                 dl = NULL;
1463                 error = 0;
1464         } else {
1465                 /* possible VN_HOLD(zp) */
1466                 int zflg = 0;
1467 
1468                 if (flag & FIGNORECASE)
1469                         zflg |= ZCILOOK;
1470 
1471                 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1472                     NULL, NULL);
1473                 if (error) {
1474                         if (have_acl)
1475                                 zfs_acl_ids_free(&acl_ids);
1476                         if (strcmp(name, "..") == 0)
1477                                 error = SET_ERROR(EISDIR);
1478                         ZFS_EXIT(zfsvfs);
1479                         return (error);
1480                 }
1481         }
1482 
1483         if (zp == NULL) {
1484                 uint64_t txtype;
1485 
1486                 /*
1487                  * Create a new file object and update the directory
1488                  * to reference it.
1489                  */
1490                 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1491                         if (have_acl)
1492                                 zfs_acl_ids_free(&acl_ids);
1493                         goto out;
1494                 }
1495 
1496                 /*
1497                  * We only support the creation of regular files in
1498                  * extended attribute directories.
1499                  */
1500 
1501                 if ((dzp->z_pflags & ZFS_XATTR) &&
1502                     (vap->va_type != VREG)) {
1503                         if (have_acl)
1504                                 zfs_acl_ids_free(&acl_ids);
1505                         error = SET_ERROR(EINVAL);
1506                         goto out;
1507                 }
1508 
1509                 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1510                     cr, vsecp, &acl_ids)) != 0)
1511                         goto out;
1512                 have_acl = B_TRUE;
1513 
1514                 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1515                         zfs_acl_ids_free(&acl_ids);
1516                         error = SET_ERROR(EDQUOT);
1517                         goto out;
1518                 }
1519 
1520                 tx = dmu_tx_create(os);
1521 
1522                 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1523                     ZFS_SA_BASE_ATTR_SIZE);
1524 
1525                 fuid_dirtied = zfsvfs->z_fuid_dirty;
1526                 if (fuid_dirtied)
1527                         zfs_fuid_txhold(zfsvfs, tx);
1528                 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1529                 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1530                 if (!zfsvfs->z_use_sa &&
1531                     acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1532                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1533                             0, acl_ids.z_aclp->z_acl_bytes);
1534                 }
1535                 error = dmu_tx_assign(tx,
1536                     (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1537                 if (error) {
1538                         zfs_dirent_unlock(dl);
1539                         if (error == ERESTART) {
1540                                 waited = B_TRUE;
1541                                 dmu_tx_wait(tx);
1542                                 dmu_tx_abort(tx);
1543                                 goto top;
1544                         }
1545                         zfs_acl_ids_free(&acl_ids);
1546                         dmu_tx_abort(tx);
1547                         ZFS_EXIT(zfsvfs);
1548                         return (error);
1549                 }
1550                 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1551 
1552                 if (fuid_dirtied)
1553                         zfs_fuid_sync(zfsvfs, tx);
1554 
1555                 (void) zfs_link_create(dl, zp, tx, ZNEW);
1556                 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1557                 if (flag & FIGNORECASE)
1558                         txtype |= TX_CI;
1559                 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1560                     vsecp, acl_ids.z_fuidp, vap);
1561                 zfs_acl_ids_free(&acl_ids);
1562                 dmu_tx_commit(tx);
1563         } else {
1564                 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1565 
1566                 if (have_acl)
1567                         zfs_acl_ids_free(&acl_ids);
1568                 have_acl = B_FALSE;
1569 
1570                 /*
1571                  * A directory entry already exists for this name.
1572                  */
1573                 /*
1574                  * Can't truncate an existing file if in exclusive mode.
1575                  */
1576                 if (excl == EXCL) {
1577                         error = SET_ERROR(EEXIST);
1578                         goto out;
1579                 }
1580                 /*
1581                  * Can't open a directory for writing.
1582                  */
1583                 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1584                         error = SET_ERROR(EISDIR);
1585                         goto out;
1586                 }
1587                 /*
1588                  * Verify requested access to file.
1589                  */
1590                 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1591                         goto out;
1592                 }
1593 
1594                 mutex_enter(&dzp->z_lock);
1595                 dzp->z_seq++;
1596                 mutex_exit(&dzp->z_lock);
1597 
1598                 /*
1599                  * Truncate regular files if requested.
1600                  */
1601                 if ((ZTOV(zp)->v_type == VREG) &&
1602                     (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1603                         /* we can't hold any locks when calling zfs_freesp() */
1604                         zfs_dirent_unlock(dl);
1605                         dl = NULL;
1606                         error = zfs_freesp(zp, 0, 0, mode, TRUE);
1607                         if (error == 0) {
1608                                 vnevent_create(ZTOV(zp), ct);
1609                         }
1610                 }
1611         }
1612 out:
1613 
1614         if (dl)
1615                 zfs_dirent_unlock(dl);
1616 
1617         if (error) {
1618                 if (zp)
1619                         VN_RELE(ZTOV(zp));
1620         } else {
1621                 *vpp = ZTOV(zp);
1622                 error = specvp_check(vpp, cr);
1623         }
1624 
1625         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1626                 zil_commit(zilog, 0);
1627 
1628         ZFS_EXIT(zfsvfs);
1629         return (error);
1630 }
1631 
1632 /*
1633  * Remove an entry from a directory.
1634  *
1635  *      IN:     dvp     - vnode of directory to remove entry from.
1636  *              name    - name of entry to remove.
1637  *              cr      - credentials of caller.
1638  *              ct      - caller context
1639  *              flags   - case flags
1640  *
1641  *      RETURN: 0 on success, error code on failure.
1642  *
1643  * Timestamps:
1644  *      dvp - ctime|mtime
1645  *       vp - ctime (if nlink > 0)
1646  */
1647 
1648 uint64_t null_xattr = 0;
1649 
1650 /*ARGSUSED*/
1651 static int
1652 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1653     int flags)
1654 {
1655         znode_t         *zp, *dzp = VTOZ(dvp);
1656         znode_t         *xzp;
1657         vnode_t         *vp;
1658         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1659         zilog_t         *zilog;
1660         uint64_t        acl_obj, xattr_obj;
1661         uint64_t        xattr_obj_unlinked = 0;
1662         uint64_t        obj = 0;
1663         zfs_dirlock_t   *dl;
1664         dmu_tx_t        *tx;
1665         boolean_t       may_delete_now, delete_now = FALSE;
1666         boolean_t       unlinked, toobig = FALSE;
1667         uint64_t        txtype;
1668         pathname_t      *realnmp = NULL;
1669         pathname_t      realnm;
1670         int             error;
1671         int             zflg = ZEXISTS;
1672         boolean_t       waited = B_FALSE;
1673 
1674         ZFS_ENTER(zfsvfs);
1675         ZFS_VERIFY_ZP(dzp);
1676         zilog = zfsvfs->z_log;
1677 
1678         if (flags & FIGNORECASE) {
1679                 zflg |= ZCILOOK;
1680                 pn_alloc(&realnm);
1681                 realnmp = &realnm;
1682         }
1683 
1684 top:
1685         xattr_obj = 0;
1686         xzp = NULL;
1687         /*
1688          * Attempt to lock directory; fail if entry doesn't exist.
1689          */
1690         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1691             NULL, realnmp)) {
1692                 if (realnmp)
1693                         pn_free(realnmp);
1694                 ZFS_EXIT(zfsvfs);
1695                 return (error);
1696         }
1697 
1698         vp = ZTOV(zp);
1699 
1700         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1701                 goto out;
1702         }
1703 
1704         /*
1705          * Need to use rmdir for removing directories.
1706          */
1707         if (vp->v_type == VDIR) {
1708                 error = SET_ERROR(EPERM);
1709                 goto out;
1710         }
1711 
1712         vnevent_remove(vp, dvp, name, ct);
1713 
1714         if (realnmp)
1715                 dnlc_remove(dvp, realnmp->pn_buf);
1716         else
1717                 dnlc_remove(dvp, name);
1718 
1719         mutex_enter(&vp->v_lock);
1720         may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1721         mutex_exit(&vp->v_lock);
1722 
1723         /*
1724          * We may delete the znode now, or we may put it in the unlinked set;
1725          * it depends on whether we're the last link, and on whether there are
1726          * other holds on the vnode.  So we dmu_tx_hold() the right things to
1727          * allow for either case.
1728          */
1729         obj = zp->z_id;
1730         tx = dmu_tx_create(zfsvfs->z_os);
1731         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1732         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1733         zfs_sa_upgrade_txholds(tx, zp);
1734         zfs_sa_upgrade_txholds(tx, dzp);
1735         if (may_delete_now) {
1736                 toobig =
1737                     zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1738                 /* if the file is too big, only hold_free a token amount */
1739                 dmu_tx_hold_free(tx, zp->z_id, 0,
1740                     (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1741         }
1742 
1743         /* are there any extended attributes? */
1744         error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1745             &xattr_obj, sizeof (xattr_obj));
1746         if (error == 0 && xattr_obj) {
1747                 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1748                 ASSERT0(error);
1749                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1750                 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1751         }
1752 
1753         mutex_enter(&zp->z_lock);
1754         if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1755                 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1756         mutex_exit(&zp->z_lock);
1757 
1758         /* charge as an update -- would be nice not to charge at all */
1759         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1760 
1761         /*
1762          * Mark this transaction as typically resulting in a net free of space
1763          */
1764         dmu_tx_mark_netfree(tx);
1765 
1766         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1767         if (error) {
1768                 zfs_dirent_unlock(dl);
1769                 VN_RELE(vp);
1770                 if (xzp)
1771                         VN_RELE(ZTOV(xzp));
1772                 if (error == ERESTART) {
1773                         waited = B_TRUE;
1774                         dmu_tx_wait(tx);
1775                         dmu_tx_abort(tx);
1776                         goto top;
1777                 }
1778                 if (realnmp)
1779                         pn_free(realnmp);
1780                 dmu_tx_abort(tx);
1781                 ZFS_EXIT(zfsvfs);
1782                 return (error);
1783         }
1784 
1785         /*
1786          * Remove the directory entry.
1787          */
1788         error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1789 
1790         if (error) {
1791                 dmu_tx_commit(tx);
1792                 goto out;
1793         }
1794 
1795         if (unlinked) {
1796                 /*
1797                  * Hold z_lock so that we can make sure that the ACL obj
1798                  * hasn't changed.  Could have been deleted due to
1799                  * zfs_sa_upgrade().
1800                  */
1801                 mutex_enter(&zp->z_lock);
1802                 mutex_enter(&vp->v_lock);
1803                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1804                     &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1805                 delete_now = may_delete_now && !toobig &&
1806                     vp->v_count == 1 && !vn_has_cached_data(vp) &&
1807                     xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1808                     acl_obj;
1809                 mutex_exit(&vp->v_lock);
1810         }
1811 
1812         if (delete_now) {
1813                 if (xattr_obj_unlinked) {
1814                         ASSERT3U(xzp->z_links, ==, 2);
1815                         mutex_enter(&xzp->z_lock);
1816                         xzp->z_unlinked = 1;
1817                         xzp->z_links = 0;
1818                         error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1819                             &xzp->z_links, sizeof (xzp->z_links), tx);
1820                         ASSERT3U(error,  ==,  0);
1821                         mutex_exit(&xzp->z_lock);
1822                         zfs_unlinked_add(xzp, tx);
1823 
1824                         if (zp->z_is_sa)
1825                                 error = sa_remove(zp->z_sa_hdl,
1826                                     SA_ZPL_XATTR(zfsvfs), tx);
1827                         else
1828                                 error = sa_update(zp->z_sa_hdl,
1829                                     SA_ZPL_XATTR(zfsvfs), &null_xattr,
1830                                     sizeof (uint64_t), tx);
1831                         ASSERT0(error);
1832                 }
1833                 mutex_enter(&vp->v_lock);
1834                 VN_RELE_LOCKED(vp);
1835                 ASSERT0(vp->v_count);
1836                 mutex_exit(&vp->v_lock);
1837                 mutex_exit(&zp->z_lock);
1838                 zfs_znode_delete(zp, tx);
1839         } else if (unlinked) {
1840                 mutex_exit(&zp->z_lock);
1841                 zfs_unlinked_add(zp, tx);
1842         }
1843 
1844         txtype = TX_REMOVE;
1845         if (flags & FIGNORECASE)
1846                 txtype |= TX_CI;
1847         zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1848 
1849         dmu_tx_commit(tx);
1850 out:
1851         if (realnmp)
1852                 pn_free(realnmp);
1853 
1854         zfs_dirent_unlock(dl);
1855 
1856         if (!delete_now)
1857                 VN_RELE(vp);
1858         if (xzp)
1859                 VN_RELE(ZTOV(xzp));
1860 
1861         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1862                 zil_commit(zilog, 0);
1863 
1864         ZFS_EXIT(zfsvfs);
1865         return (error);
1866 }
1867 
1868 /*
1869  * Create a new directory and insert it into dvp using the name
1870  * provided.  Return a pointer to the inserted directory.
1871  *
1872  *      IN:     dvp     - vnode of directory to add subdir to.
1873  *              dirname - name of new directory.
1874  *              vap     - attributes of new directory.
1875  *              cr      - credentials of caller.
1876  *              ct      - caller context
1877  *              flags   - case flags
1878  *              vsecp   - ACL to be set
1879  *
1880  *      OUT:    vpp     - vnode of created directory.
1881  *
1882  *      RETURN: 0 on success, error code on failure.
1883  *
1884  * Timestamps:
1885  *      dvp - ctime|mtime updated
1886  *       vp - ctime|mtime|atime updated
1887  */
1888 /*ARGSUSED*/
1889 static int
1890 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1891     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1892 {
1893         znode_t         *zp, *dzp = VTOZ(dvp);
1894         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1895         zilog_t         *zilog;
1896         zfs_dirlock_t   *dl;
1897         uint64_t        txtype;
1898         dmu_tx_t        *tx;
1899         int             error;
1900         int             zf = ZNEW;
1901         ksid_t          *ksid;
1902         uid_t           uid;
1903         gid_t           gid = crgetgid(cr);
1904         zfs_acl_ids_t   acl_ids;
1905         boolean_t       fuid_dirtied;
1906         boolean_t       waited = B_FALSE;
1907 
1908         ASSERT(vap->va_type == VDIR);
1909 
1910         /*
1911          * If we have an ephemeral id, ACL, or XVATTR then
1912          * make sure file system is at proper version
1913          */
1914 
1915         ksid = crgetsid(cr, KSID_OWNER);
1916         if (ksid)
1917                 uid = ksid_getid(ksid);
1918         else
1919                 uid = crgetuid(cr);
1920         if (zfsvfs->z_use_fuids == B_FALSE &&
1921             (vsecp || (vap->va_mask & AT_XVATTR) ||
1922             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1923                 return (SET_ERROR(EINVAL));
1924 
1925         ZFS_ENTER(zfsvfs);
1926         ZFS_VERIFY_ZP(dzp);
1927         zilog = zfsvfs->z_log;
1928 
1929         if (dzp->z_pflags & ZFS_XATTR) {
1930                 ZFS_EXIT(zfsvfs);
1931                 return (SET_ERROR(EINVAL));
1932         }
1933 
1934         if (zfsvfs->z_utf8 && u8_validate(dirname,
1935             strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1936                 ZFS_EXIT(zfsvfs);
1937                 return (SET_ERROR(EILSEQ));
1938         }
1939         if (flags & FIGNORECASE)
1940                 zf |= ZCILOOK;
1941 
1942         if (vap->va_mask & AT_XVATTR) {
1943                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1944                     crgetuid(cr), cr, vap->va_type)) != 0) {
1945                         ZFS_EXIT(zfsvfs);
1946                         return (error);
1947                 }
1948         }
1949 
1950         if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1951             vsecp, &acl_ids)) != 0) {
1952                 ZFS_EXIT(zfsvfs);
1953                 return (error);
1954         }
1955         /*
1956          * First make sure the new directory doesn't exist.
1957          *
1958          * Existence is checked first to make sure we don't return
1959          * EACCES instead of EEXIST which can cause some applications
1960          * to fail.
1961          */
1962 top:
1963         *vpp = NULL;
1964 
1965         if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1966             NULL, NULL)) {
1967                 zfs_acl_ids_free(&acl_ids);
1968                 ZFS_EXIT(zfsvfs);
1969                 return (error);
1970         }
1971 
1972         if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1973                 zfs_acl_ids_free(&acl_ids);
1974                 zfs_dirent_unlock(dl);
1975                 ZFS_EXIT(zfsvfs);
1976                 return (error);
1977         }
1978 
1979         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1980                 zfs_acl_ids_free(&acl_ids);
1981                 zfs_dirent_unlock(dl);
1982                 ZFS_EXIT(zfsvfs);
1983                 return (SET_ERROR(EDQUOT));
1984         }
1985 
1986         /*
1987          * Add a new entry to the directory.
1988          */
1989         tx = dmu_tx_create(zfsvfs->z_os);
1990         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1991         dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1992         fuid_dirtied = zfsvfs->z_fuid_dirty;
1993         if (fuid_dirtied)
1994                 zfs_fuid_txhold(zfsvfs, tx);
1995         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1996                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1997                     acl_ids.z_aclp->z_acl_bytes);
1998         }
1999 
2000         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2001             ZFS_SA_BASE_ATTR_SIZE);
2002 
2003         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2004         if (error) {
2005                 zfs_dirent_unlock(dl);
2006                 if (error == ERESTART) {
2007                         waited = B_TRUE;
2008                         dmu_tx_wait(tx);
2009                         dmu_tx_abort(tx);
2010                         goto top;
2011                 }
2012                 zfs_acl_ids_free(&acl_ids);
2013                 dmu_tx_abort(tx);
2014                 ZFS_EXIT(zfsvfs);
2015                 return (error);
2016         }
2017 
2018         /*
2019          * Create new node.
2020          */
2021         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2022 
2023         if (fuid_dirtied)
2024                 zfs_fuid_sync(zfsvfs, tx);
2025 
2026         /*
2027          * Now put new name in parent dir.
2028          */
2029         (void) zfs_link_create(dl, zp, tx, ZNEW);
2030 
2031         *vpp = ZTOV(zp);
2032 
2033         txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2034         if (flags & FIGNORECASE)
2035                 txtype |= TX_CI;
2036         zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2037             acl_ids.z_fuidp, vap);
2038 
2039         zfs_acl_ids_free(&acl_ids);
2040 
2041         dmu_tx_commit(tx);
2042 
2043         zfs_dirent_unlock(dl);
2044 
2045         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2046                 zil_commit(zilog, 0);
2047 
2048         ZFS_EXIT(zfsvfs);
2049         return (0);
2050 }
2051 
2052 /*
2053  * Remove a directory subdir entry.  If the current working
2054  * directory is the same as the subdir to be removed, the
2055  * remove will fail.
2056  *
2057  *      IN:     dvp     - vnode of directory to remove from.
2058  *              name    - name of directory to be removed.
2059  *              cwd     - vnode of current working directory.
2060  *              cr      - credentials of caller.
2061  *              ct      - caller context
2062  *              flags   - case flags
2063  *
2064  *      RETURN: 0 on success, error code on failure.
2065  *
2066  * Timestamps:
2067  *      dvp - ctime|mtime updated
2068  */
2069 /*ARGSUSED*/
2070 static int
2071 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2072     caller_context_t *ct, int flags)
2073 {
2074         znode_t         *dzp = VTOZ(dvp);
2075         znode_t         *zp;
2076         vnode_t         *vp;
2077         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
2078         zilog_t         *zilog;
2079         zfs_dirlock_t   *dl;
2080         dmu_tx_t        *tx;
2081         int             error;
2082         int             zflg = ZEXISTS;
2083         boolean_t       waited = B_FALSE;
2084 
2085         ZFS_ENTER(zfsvfs);
2086         ZFS_VERIFY_ZP(dzp);
2087         zilog = zfsvfs->z_log;
2088 
2089         if (flags & FIGNORECASE)
2090                 zflg |= ZCILOOK;
2091 top:
2092         zp = NULL;
2093 
2094         /*
2095          * Attempt to lock directory; fail if entry doesn't exist.
2096          */
2097         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2098             NULL, NULL)) {
2099                 ZFS_EXIT(zfsvfs);
2100                 return (error);
2101         }
2102 
2103         vp = ZTOV(zp);
2104 
2105         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2106                 goto out;
2107         }
2108 
2109         if (vp->v_type != VDIR) {
2110                 error = SET_ERROR(ENOTDIR);
2111                 goto out;
2112         }
2113 
2114         if (vp == cwd) {
2115                 error = SET_ERROR(EINVAL);
2116                 goto out;
2117         }
2118 
2119         vnevent_rmdir(vp, dvp, name, ct);
2120 
2121         /*
2122          * Grab a lock on the directory to make sure that noone is
2123          * trying to add (or lookup) entries while we are removing it.
2124          */
2125         rw_enter(&zp->z_name_lock, RW_WRITER);
2126 
2127         /*
2128          * Grab a lock on the parent pointer to make sure we play well
2129          * with the treewalk and directory rename code.
2130          */
2131         rw_enter(&zp->z_parent_lock, RW_WRITER);
2132 
2133         tx = dmu_tx_create(zfsvfs->z_os);
2134         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2135         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2136         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2137         zfs_sa_upgrade_txholds(tx, zp);
2138         zfs_sa_upgrade_txholds(tx, dzp);
2139         dmu_tx_mark_netfree(tx);
2140         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2141         if (error) {
2142                 rw_exit(&zp->z_parent_lock);
2143                 rw_exit(&zp->z_name_lock);
2144                 zfs_dirent_unlock(dl);
2145                 VN_RELE(vp);
2146                 if (error == ERESTART) {
2147                         waited = B_TRUE;
2148                         dmu_tx_wait(tx);
2149                         dmu_tx_abort(tx);
2150                         goto top;
2151                 }
2152                 dmu_tx_abort(tx);
2153                 ZFS_EXIT(zfsvfs);
2154                 return (error);
2155         }
2156 
2157         error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2158 
2159         if (error == 0) {
2160                 uint64_t txtype = TX_RMDIR;
2161                 if (flags & FIGNORECASE)
2162                         txtype |= TX_CI;
2163                 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2164         }
2165 
2166         dmu_tx_commit(tx);
2167 
2168         rw_exit(&zp->z_parent_lock);
2169         rw_exit(&zp->z_name_lock);
2170 out:
2171         zfs_dirent_unlock(dl);
2172 
2173         VN_RELE(vp);
2174 
2175         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2176                 zil_commit(zilog, 0);
2177 
2178         ZFS_EXIT(zfsvfs);
2179         return (error);
2180 }
2181 
2182 /*
2183  * Read as many directory entries as will fit into the provided
2184  * buffer from the given directory cursor position (specified in
2185  * the uio structure).
2186  *
2187  *      IN:     vp      - vnode of directory to read.
2188  *              uio     - structure supplying read location, range info,
2189  *                        and return buffer.
2190  *              cr      - credentials of caller.
2191  *              ct      - caller context
2192  *              flags   - case flags
2193  *
2194  *      OUT:    uio     - updated offset and range, buffer filled.
2195  *              eofp    - set to true if end-of-file detected.
2196  *
2197  *      RETURN: 0 on success, error code on failure.
2198  *
2199  * Timestamps:
2200  *      vp - atime updated
2201  *
2202  * Note that the low 4 bits of the cookie returned by zap is always zero.
2203  * This allows us to use the low range for "special" directory entries:
2204  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2205  * we use the offset 2 for the '.zfs' directory.
2206  */
2207 /* ARGSUSED */
2208 static int
2209 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2210     caller_context_t *ct, int flags)
2211 {
2212         znode_t         *zp = VTOZ(vp);
2213         iovec_t         *iovp;
2214         edirent_t       *eodp;
2215         dirent64_t      *odp;
2216         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2217         objset_t        *os;
2218         caddr_t         outbuf;
2219         size_t          bufsize;
2220         zap_cursor_t    zc;
2221         zap_attribute_t zap;
2222         uint_t          bytes_wanted;
2223         uint64_t        offset; /* must be unsigned; checks for < 1 */
2224         uint64_t        parent;
2225         int             local_eof;
2226         int             outcount;
2227         int             error;
2228         uint8_t         prefetch;
2229         boolean_t       check_sysattrs;
2230 
2231         ZFS_ENTER(zfsvfs);
2232         ZFS_VERIFY_ZP(zp);
2233 
2234         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2235             &parent, sizeof (parent))) != 0) {
2236                 ZFS_EXIT(zfsvfs);
2237                 return (error);
2238         }
2239 
2240         /*
2241          * If we are not given an eof variable,
2242          * use a local one.
2243          */
2244         if (eofp == NULL)
2245                 eofp = &local_eof;
2246 
2247         /*
2248          * Check for valid iov_len.
2249          */
2250         if (uio->uio_iov->iov_len <= 0) {
2251                 ZFS_EXIT(zfsvfs);
2252                 return (SET_ERROR(EINVAL));
2253         }
2254 
2255         /*
2256          * Quit if directory has been removed (posix)
2257          */
2258         if ((*eofp = zp->z_unlinked) != 0) {
2259                 ZFS_EXIT(zfsvfs);
2260                 return (0);
2261         }
2262 
2263         error = 0;
2264         os = zfsvfs->z_os;
2265         offset = uio->uio_loffset;
2266         prefetch = zp->z_zn_prefetch;
2267 
2268         /*
2269          * Initialize the iterator cursor.
2270          */
2271         if (offset <= 3) {
2272                 /*
2273                  * Start iteration from the beginning of the directory.
2274                  */
2275                 zap_cursor_init(&zc, os, zp->z_id);
2276         } else {
2277                 /*
2278                  * The offset is a serialized cursor.
2279                  */
2280                 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2281         }
2282 
2283         /*
2284          * Get space to change directory entries into fs independent format.
2285          */
2286         iovp = uio->uio_iov;
2287         bytes_wanted = iovp->iov_len;
2288         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2289                 bufsize = bytes_wanted;
2290                 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2291                 odp = (struct dirent64 *)outbuf;
2292         } else {
2293                 bufsize = bytes_wanted;
2294                 outbuf = NULL;
2295                 odp = (struct dirent64 *)iovp->iov_base;
2296         }
2297         eodp = (struct edirent *)odp;
2298 
2299         /*
2300          * If this VFS supports the system attribute view interface; and
2301          * we're looking at an extended attribute directory; and we care
2302          * about normalization conflicts on this vfs; then we must check
2303          * for normalization conflicts with the sysattr name space.
2304          */
2305         check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2306             (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2307             (flags & V_RDDIR_ENTFLAGS);
2308 
2309         /*
2310          * Transform to file-system independent format
2311          */
2312         outcount = 0;
2313         while (outcount < bytes_wanted) {
2314                 ino64_t objnum;
2315                 ushort_t reclen;
2316                 off64_t *next = NULL;
2317 
2318                 /*
2319                  * Special case `.', `..', and `.zfs'.
2320                  */
2321                 if (offset == 0) {
2322                         (void) strcpy(zap.za_name, ".");
2323                         zap.za_normalization_conflict = 0;
2324                         objnum = zp->z_id;
2325                 } else if (offset == 1) {
2326                         (void) strcpy(zap.za_name, "..");
2327                         zap.za_normalization_conflict = 0;
2328                         objnum = parent;
2329                 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2330                         (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2331                         zap.za_normalization_conflict = 0;
2332                         objnum = ZFSCTL_INO_ROOT;
2333                 } else {
2334                         /*
2335                          * Grab next entry.
2336                          */
2337                         if (error = zap_cursor_retrieve(&zc, &zap)) {
2338                                 if ((*eofp = (error == ENOENT)) != 0)
2339                                         break;
2340                                 else
2341                                         goto update;
2342                         }
2343 
2344                         if (zap.za_integer_length != 8 ||
2345                             zap.za_num_integers != 1) {
2346                                 cmn_err(CE_WARN, "zap_readdir: bad directory "
2347                                     "entry, obj = %lld, offset = %lld\n",
2348                                     (u_longlong_t)zp->z_id,
2349                                     (u_longlong_t)offset);
2350                                 error = SET_ERROR(ENXIO);
2351                                 goto update;
2352                         }
2353 
2354                         objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2355                         /*
2356                          * MacOS X can extract the object type here such as:
2357                          * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2358                          */
2359 
2360                         if (check_sysattrs && !zap.za_normalization_conflict) {
2361                                 zap.za_normalization_conflict =
2362                                     xattr_sysattr_casechk(zap.za_name);
2363                         }
2364                 }
2365 
2366                 if (flags & V_RDDIR_ACCFILTER) {
2367                         /*
2368                          * If we have no access at all, don't include
2369                          * this entry in the returned information
2370                          */
2371                         znode_t *ezp;
2372                         if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2373                                 goto skip_entry;
2374                         if (!zfs_has_access(ezp, cr)) {
2375                                 VN_RELE(ZTOV(ezp));
2376                                 goto skip_entry;
2377                         }
2378                         VN_RELE(ZTOV(ezp));
2379                 }
2380 
2381                 if (flags & V_RDDIR_ENTFLAGS)
2382                         reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2383                 else
2384                         reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2385 
2386                 /*
2387                  * Will this entry fit in the buffer?
2388                  */
2389                 if (outcount + reclen > bufsize) {
2390                         /*
2391                          * Did we manage to fit anything in the buffer?
2392                          */
2393                         if (!outcount) {
2394                                 error = SET_ERROR(EINVAL);
2395                                 goto update;
2396                         }
2397                         break;
2398                 }
2399                 if (flags & V_RDDIR_ENTFLAGS) {
2400                         /*
2401                          * Add extended flag entry:
2402                          */
2403                         eodp->ed_ino = objnum;
2404                         eodp->ed_reclen = reclen;
2405                         /* NOTE: ed_off is the offset for the *next* entry */
2406                         next = &(eodp->ed_off);
2407                         eodp->ed_eflags = zap.za_normalization_conflict ?
2408                             ED_CASE_CONFLICT : 0;
2409                         (void) strncpy(eodp->ed_name, zap.za_name,
2410                             EDIRENT_NAMELEN(reclen));
2411                         eodp = (edirent_t *)((intptr_t)eodp + reclen);
2412                 } else {
2413                         /*
2414                          * Add normal entry:
2415                          */
2416                         odp->d_ino = objnum;
2417                         odp->d_reclen = reclen;
2418                         /* NOTE: d_off is the offset for the *next* entry */
2419                         next = &(odp->d_off);
2420                         (void) strncpy(odp->d_name, zap.za_name,
2421                             DIRENT64_NAMELEN(reclen));
2422                         odp = (dirent64_t *)((intptr_t)odp + reclen);
2423                 }
2424                 outcount += reclen;
2425 
2426                 ASSERT(outcount <= bufsize);
2427 
2428                 /* Prefetch znode */
2429                 if (prefetch)
2430                         dmu_prefetch(os, objnum, 0, 0, 0,
2431                             ZIO_PRIORITY_SYNC_READ);
2432 
2433         skip_entry:
2434                 /*
2435                  * Move to the next entry, fill in the previous offset.
2436                  */
2437                 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2438                         zap_cursor_advance(&zc);
2439                         offset = zap_cursor_serialize(&zc);
2440                 } else {
2441                         offset += 1;
2442                 }
2443                 if (next)
2444                         *next = offset;
2445         }
2446         zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2447 
2448         if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2449                 iovp->iov_base += outcount;
2450                 iovp->iov_len -= outcount;
2451                 uio->uio_resid -= outcount;
2452         } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2453                 /*
2454                  * Reset the pointer.
2455                  */
2456                 offset = uio->uio_loffset;
2457         }
2458 
2459 update:
2460         zap_cursor_fini(&zc);
2461         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2462                 kmem_free(outbuf, bufsize);
2463 
2464         if (error == ENOENT)
2465                 error = 0;
2466 
2467         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2468 
2469         uio->uio_loffset = offset;
2470         ZFS_EXIT(zfsvfs);
2471         return (error);
2472 }
2473 
2474 ulong_t zfs_fsync_sync_cnt = 4;
2475 
2476 static int
2477 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2478 {
2479         znode_t *zp = VTOZ(vp);
2480         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2481 
2482         /*
2483          * Regardless of whether this is required for standards conformance,
2484          * this is the logical behavior when fsync() is called on a file with
2485          * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2486          * going to be pushed out as part of the zil_commit().
2487          */
2488         if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2489             (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2490                 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2491 
2492         (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2493 
2494         if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2495                 ZFS_ENTER(zfsvfs);
2496                 ZFS_VERIFY_ZP(zp);
2497                 zil_commit(zfsvfs->z_log, zp->z_id);
2498                 ZFS_EXIT(zfsvfs);
2499         }
2500         return (0);
2501 }
2502 
2503 
2504 /*
2505  * Get the requested file attributes and place them in the provided
2506  * vattr structure.
2507  *
2508  *      IN:     vp      - vnode of file.
2509  *              vap     - va_mask identifies requested attributes.
2510  *                        If AT_XVATTR set, then optional attrs are requested
2511  *              flags   - ATTR_NOACLCHECK (CIFS server context)
2512  *              cr      - credentials of caller.
2513  *              ct      - caller context
2514  *
2515  *      OUT:    vap     - attribute values.
2516  *
2517  *      RETURN: 0 (always succeeds).
2518  */
2519 /* ARGSUSED */
2520 static int
2521 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2522     caller_context_t *ct)
2523 {
2524         znode_t *zp = VTOZ(vp);
2525         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2526         int     error = 0;
2527         uint64_t links;
2528         uint64_t mtime[2], ctime[2];
2529         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2530         xoptattr_t *xoap = NULL;
2531         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2532         sa_bulk_attr_t bulk[2];
2533         int count = 0;
2534 
2535         ZFS_ENTER(zfsvfs);
2536         ZFS_VERIFY_ZP(zp);
2537 
2538         zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2539 
2540         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2541         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2542 
2543         if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2544                 ZFS_EXIT(zfsvfs);
2545                 return (error);
2546         }
2547 
2548         /*
2549          * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2550          * Also, if we are the owner don't bother, since owner should
2551          * always be allowed to read basic attributes of file.
2552          */
2553         if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2554             (vap->va_uid != crgetuid(cr))) {
2555                 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2556                     skipaclchk, cr)) {
2557                         ZFS_EXIT(zfsvfs);
2558                         return (error);
2559                 }
2560         }
2561 
2562         /*
2563          * Return all attributes.  It's cheaper to provide the answer
2564          * than to determine whether we were asked the question.
2565          */
2566 
2567         mutex_enter(&zp->z_lock);
2568         vap->va_type = vp->v_type;
2569         vap->va_mode = zp->z_mode & MODEMASK;
2570         vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2571         vap->va_nodeid = zp->z_id;
2572         if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2573                 links = zp->z_links + 1;
2574         else
2575                 links = zp->z_links;
2576         vap->va_nlink = MIN(links, UINT32_MAX);      /* nlink_t limit! */
2577         vap->va_size = zp->z_size;
2578         vap->va_rdev = vp->v_rdev;
2579         vap->va_seq = zp->z_seq;
2580 
2581         /*
2582          * Add in any requested optional attributes and the create time.
2583          * Also set the corresponding bits in the returned attribute bitmap.
2584          */
2585         if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2586                 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2587                         xoap->xoa_archive =
2588                             ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2589                         XVA_SET_RTN(xvap, XAT_ARCHIVE);
2590                 }
2591 
2592                 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2593                         xoap->xoa_readonly =
2594                             ((zp->z_pflags & ZFS_READONLY) != 0);
2595                         XVA_SET_RTN(xvap, XAT_READONLY);
2596                 }
2597 
2598                 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2599                         xoap->xoa_system =
2600                             ((zp->z_pflags & ZFS_SYSTEM) != 0);
2601                         XVA_SET_RTN(xvap, XAT_SYSTEM);
2602                 }
2603 
2604                 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2605                         xoap->xoa_hidden =
2606                             ((zp->z_pflags & ZFS_HIDDEN) != 0);
2607                         XVA_SET_RTN(xvap, XAT_HIDDEN);
2608                 }
2609 
2610                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2611                         xoap->xoa_nounlink =
2612                             ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2613                         XVA_SET_RTN(xvap, XAT_NOUNLINK);
2614                 }
2615 
2616                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2617                         xoap->xoa_immutable =
2618                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2619                         XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2620                 }
2621 
2622                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2623                         xoap->xoa_appendonly =
2624                             ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2625                         XVA_SET_RTN(xvap, XAT_APPENDONLY);
2626                 }
2627 
2628                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2629                         xoap->xoa_nodump =
2630                             ((zp->z_pflags & ZFS_NODUMP) != 0);
2631                         XVA_SET_RTN(xvap, XAT_NODUMP);
2632                 }
2633 
2634                 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2635                         xoap->xoa_opaque =
2636                             ((zp->z_pflags & ZFS_OPAQUE) != 0);
2637                         XVA_SET_RTN(xvap, XAT_OPAQUE);
2638                 }
2639 
2640                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2641                         xoap->xoa_av_quarantined =
2642                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2643                         XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2644                 }
2645 
2646                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2647                         xoap->xoa_av_modified =
2648                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2649                         XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2650                 }
2651 
2652                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2653                     vp->v_type == VREG) {
2654                         zfs_sa_get_scanstamp(zp, xvap);
2655                 }
2656 
2657                 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2658                         uint64_t times[2];
2659 
2660                         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2661                             times, sizeof (times));
2662                         ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2663                         XVA_SET_RTN(xvap, XAT_CREATETIME);
2664                 }
2665 
2666                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2667                         xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2668                         XVA_SET_RTN(xvap, XAT_REPARSE);
2669                 }
2670                 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2671                         xoap->xoa_generation = zp->z_gen;
2672                         XVA_SET_RTN(xvap, XAT_GEN);
2673                 }
2674 
2675                 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2676                         xoap->xoa_offline =
2677                             ((zp->z_pflags & ZFS_OFFLINE) != 0);
2678                         XVA_SET_RTN(xvap, XAT_OFFLINE);
2679                 }
2680 
2681                 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2682                         xoap->xoa_sparse =
2683                             ((zp->z_pflags & ZFS_SPARSE) != 0);
2684                         XVA_SET_RTN(xvap, XAT_SPARSE);
2685                 }
2686         }
2687 
2688         ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2689         ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2690         ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2691 
2692         mutex_exit(&zp->z_lock);
2693 
2694         sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2695 
2696         if (zp->z_blksz == 0) {
2697                 /*
2698                  * Block size hasn't been set; suggest maximal I/O transfers.
2699                  */
2700                 vap->va_blksize = zfsvfs->z_max_blksz;
2701         }
2702 
2703         ZFS_EXIT(zfsvfs);
2704         return (0);
2705 }
2706 
2707 /*
2708  * Set the file attributes to the values contained in the
2709  * vattr structure.
2710  *
2711  *      IN:     vp      - vnode of file to be modified.
2712  *              vap     - new attribute values.
2713  *                        If AT_XVATTR set, then optional attrs are being set
2714  *              flags   - ATTR_UTIME set if non-default time values provided.
2715  *                      - ATTR_NOACLCHECK (CIFS context only).
2716  *              cr      - credentials of caller.
2717  *              ct      - caller context
2718  *
2719  *      RETURN: 0 on success, error code on failure.
2720  *
2721  * Timestamps:
2722  *      vp - ctime updated, mtime updated if size changed.
2723  */
2724 /* ARGSUSED */
2725 static int
2726 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2727     caller_context_t *ct)
2728 {
2729         znode_t         *zp = VTOZ(vp);
2730         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2731         zilog_t         *zilog;
2732         dmu_tx_t        *tx;
2733         vattr_t         oldva;
2734         xvattr_t        tmpxvattr;
2735         uint_t          mask = vap->va_mask;
2736         uint_t          saved_mask = 0;
2737         int             trim_mask = 0;
2738         uint64_t        new_mode;
2739         uint64_t        new_uid, new_gid;
2740         uint64_t        xattr_obj;
2741         uint64_t        mtime[2], ctime[2];
2742         znode_t         *attrzp;
2743         int             need_policy = FALSE;
2744         int             err, err2;
2745         zfs_fuid_info_t *fuidp = NULL;
2746         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2747         xoptattr_t      *xoap;
2748         zfs_acl_t       *aclp;
2749         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2750         boolean_t       fuid_dirtied = B_FALSE;
2751         sa_bulk_attr_t  bulk[7], xattr_bulk[7];
2752         int             count = 0, xattr_count = 0;
2753 
2754         if (mask == 0)
2755                 return (0);
2756 
2757         if (mask & AT_NOSET)
2758                 return (SET_ERROR(EINVAL));
2759 
2760         ZFS_ENTER(zfsvfs);
2761         ZFS_VERIFY_ZP(zp);
2762 
2763         zilog = zfsvfs->z_log;
2764 
2765         /*
2766          * Make sure that if we have ephemeral uid/gid or xvattr specified
2767          * that file system is at proper version level
2768          */
2769 
2770         if (zfsvfs->z_use_fuids == B_FALSE &&
2771             (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2772             ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2773             (mask & AT_XVATTR))) {
2774                 ZFS_EXIT(zfsvfs);
2775                 return (SET_ERROR(EINVAL));
2776         }
2777 
2778         if (mask & AT_SIZE && vp->v_type == VDIR) {
2779                 ZFS_EXIT(zfsvfs);
2780                 return (SET_ERROR(EISDIR));
2781         }
2782 
2783         if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2784                 ZFS_EXIT(zfsvfs);
2785                 return (SET_ERROR(EINVAL));
2786         }
2787 
2788         /*
2789          * If this is an xvattr_t, then get a pointer to the structure of
2790          * optional attributes.  If this is NULL, then we have a vattr_t.
2791          */
2792         xoap = xva_getxoptattr(xvap);
2793 
2794         xva_init(&tmpxvattr);
2795 
2796         /*
2797          * Immutable files can only alter immutable bit and atime
2798          */
2799         if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2800             ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2801             ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2802                 ZFS_EXIT(zfsvfs);
2803                 return (SET_ERROR(EPERM));
2804         }
2805 
2806         /*
2807          * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2808          */
2809 
2810         /*
2811          * Verify timestamps doesn't overflow 32 bits.
2812          * ZFS can handle large timestamps, but 32bit syscalls can't
2813          * handle times greater than 2039.  This check should be removed
2814          * once large timestamps are fully supported.
2815          */
2816         if (mask & (AT_ATIME | AT_MTIME)) {
2817                 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2818                     ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2819                         ZFS_EXIT(zfsvfs);
2820                         return (SET_ERROR(EOVERFLOW));
2821                 }
2822         }
2823 
2824 top:
2825         attrzp = NULL;
2826         aclp = NULL;
2827 
2828         /* Can this be moved to before the top label? */
2829         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2830                 ZFS_EXIT(zfsvfs);
2831                 return (SET_ERROR(EROFS));
2832         }
2833 
2834         /*
2835          * First validate permissions
2836          */
2837 
2838         if (mask & AT_SIZE) {
2839                 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2840                 if (err) {
2841                         ZFS_EXIT(zfsvfs);
2842                         return (err);
2843                 }
2844                 /*
2845                  * XXX - Note, we are not providing any open
2846                  * mode flags here (like FNDELAY), so we may
2847                  * block if there are locks present... this
2848                  * should be addressed in openat().
2849                  */
2850                 /* XXX - would it be OK to generate a log record here? */
2851                 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2852                 if (err) {
2853                         ZFS_EXIT(zfsvfs);
2854                         return (err);
2855                 }
2856 
2857                 if (vap->va_size == 0)
2858                         vnevent_truncate(ZTOV(zp), ct);
2859         }
2860 
2861         if (mask & (AT_ATIME|AT_MTIME) ||
2862             ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2863             XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2864             XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2865             XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2866             XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2867             XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2868             XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2869                 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2870                     skipaclchk, cr);
2871         }
2872 
2873         if (mask & (AT_UID|AT_GID)) {
2874                 int     idmask = (mask & (AT_UID|AT_GID));
2875                 int     take_owner;
2876                 int     take_group;
2877 
2878                 /*
2879                  * NOTE: even if a new mode is being set,
2880                  * we may clear S_ISUID/S_ISGID bits.
2881                  */
2882 
2883                 if (!(mask & AT_MODE))
2884                         vap->va_mode = zp->z_mode;
2885 
2886                 /*
2887                  * Take ownership or chgrp to group we are a member of
2888                  */
2889 
2890                 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2891                 take_group = (mask & AT_GID) &&
2892                     zfs_groupmember(zfsvfs, vap->va_gid, cr);
2893 
2894                 /*
2895                  * If both AT_UID and AT_GID are set then take_owner and
2896                  * take_group must both be set in order to allow taking
2897                  * ownership.
2898                  *
2899                  * Otherwise, send the check through secpolicy_vnode_setattr()
2900                  *
2901                  */
2902 
2903                 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2904                     ((idmask == AT_UID) && take_owner) ||
2905                     ((idmask == AT_GID) && take_group)) {
2906                         if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2907                             skipaclchk, cr) == 0) {
2908                                 /*
2909                                  * Remove setuid/setgid for non-privileged users
2910                                  */
2911                                 secpolicy_setid_clear(vap, cr);
2912                                 trim_mask = (mask & (AT_UID|AT_GID));
2913                         } else {
2914                                 need_policy =  TRUE;
2915                         }
2916                 } else {
2917                         need_policy =  TRUE;
2918                 }
2919         }
2920 
2921         mutex_enter(&zp->z_lock);
2922         oldva.va_mode = zp->z_mode;
2923         zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2924         if (mask & AT_XVATTR) {
2925                 /*
2926                  * Update xvattr mask to include only those attributes
2927                  * that are actually changing.
2928                  *
2929                  * the bits will be restored prior to actually setting
2930                  * the attributes so the caller thinks they were set.
2931                  */
2932                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2933                         if (xoap->xoa_appendonly !=
2934                             ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2935                                 need_policy = TRUE;
2936                         } else {
2937                                 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2938                                 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2939                         }
2940                 }
2941 
2942                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2943                         if (xoap->xoa_nounlink !=
2944                             ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2945                                 need_policy = TRUE;
2946                         } else {
2947                                 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2948                                 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2949                         }
2950                 }
2951 
2952                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2953                         if (xoap->xoa_immutable !=
2954                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2955                                 need_policy = TRUE;
2956                         } else {
2957                                 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2958                                 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2959                         }
2960                 }
2961 
2962                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2963                         if (xoap->xoa_nodump !=
2964                             ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2965                                 need_policy = TRUE;
2966                         } else {
2967                                 XVA_CLR_REQ(xvap, XAT_NODUMP);
2968                                 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2969                         }
2970                 }
2971 
2972                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2973                         if (xoap->xoa_av_modified !=
2974                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2975                                 need_policy = TRUE;
2976                         } else {
2977                                 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2978                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2979                         }
2980                 }
2981 
2982                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2983                         if ((vp->v_type != VREG &&
2984                             xoap->xoa_av_quarantined) ||
2985                             xoap->xoa_av_quarantined !=
2986                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2987                                 need_policy = TRUE;
2988                         } else {
2989                                 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2990                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2991                         }
2992                 }
2993 
2994                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2995                         mutex_exit(&zp->z_lock);
2996                         ZFS_EXIT(zfsvfs);
2997                         return (SET_ERROR(EPERM));
2998                 }
2999 
3000                 if (need_policy == FALSE &&
3001                     (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3002                     XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3003                         need_policy = TRUE;
3004                 }
3005         }
3006 
3007         mutex_exit(&zp->z_lock);
3008 
3009         if (mask & AT_MODE) {
3010                 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3011                         err = secpolicy_setid_setsticky_clear(vp, vap,
3012                             &oldva, cr);
3013                         if (err) {
3014                                 ZFS_EXIT(zfsvfs);
3015                                 return (err);
3016                         }
3017                         trim_mask |= AT_MODE;
3018                 } else {
3019                         need_policy = TRUE;
3020                 }
3021         }
3022 
3023         if (need_policy) {
3024                 /*
3025                  * If trim_mask is set then take ownership
3026                  * has been granted or write_acl is present and user
3027                  * has the ability to modify mode.  In that case remove
3028                  * UID|GID and or MODE from mask so that
3029                  * secpolicy_vnode_setattr() doesn't revoke it.
3030                  */
3031 
3032                 if (trim_mask) {
3033                         saved_mask = vap->va_mask;
3034                         vap->va_mask &= ~trim_mask;
3035                 }
3036                 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3037                     (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3038                 if (err) {
3039                         ZFS_EXIT(zfsvfs);
3040                         return (err);
3041                 }
3042 
3043                 if (trim_mask)
3044                         vap->va_mask |= saved_mask;
3045         }
3046 
3047         /*
3048          * secpolicy_vnode_setattr, or take ownership may have
3049          * changed va_mask
3050          */
3051         mask = vap->va_mask;
3052 
3053         if ((mask & (AT_UID | AT_GID))) {
3054                 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3055                     &xattr_obj, sizeof (xattr_obj));
3056 
3057                 if (err == 0 && xattr_obj) {
3058                         err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3059                         if (err)
3060                                 goto out2;
3061                 }
3062                 if (mask & AT_UID) {
3063                         new_uid = zfs_fuid_create(zfsvfs,
3064                             (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3065                         if (new_uid != zp->z_uid &&
3066                             zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3067                                 if (attrzp)
3068                                         VN_RELE(ZTOV(attrzp));
3069                                 err = SET_ERROR(EDQUOT);
3070                                 goto out2;
3071                         }
3072                 }
3073 
3074                 if (mask & AT_GID) {
3075                         new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3076                             cr, ZFS_GROUP, &fuidp);
3077                         if (new_gid != zp->z_gid &&
3078                             zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3079                                 if (attrzp)
3080                                         VN_RELE(ZTOV(attrzp));
3081                                 err = SET_ERROR(EDQUOT);
3082                                 goto out2;
3083                         }
3084                 }
3085         }
3086         tx = dmu_tx_create(zfsvfs->z_os);
3087 
3088         if (mask & AT_MODE) {
3089                 uint64_t pmode = zp->z_mode;
3090                 uint64_t acl_obj;
3091                 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3092 
3093                 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3094                     !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3095                         err = SET_ERROR(EPERM);
3096                         goto out;
3097                 }
3098 
3099                 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3100                         goto out;
3101 
3102                 mutex_enter(&zp->z_lock);
3103                 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3104                         /*
3105                          * Are we upgrading ACL from old V0 format
3106                          * to V1 format?
3107                          */
3108                         if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3109                             zfs_znode_acl_version(zp) ==
3110                             ZFS_ACL_VERSION_INITIAL) {
3111                                 dmu_tx_hold_free(tx, acl_obj, 0,
3112                                     DMU_OBJECT_END);
3113                                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3114                                     0, aclp->z_acl_bytes);
3115                         } else {
3116                                 dmu_tx_hold_write(tx, acl_obj, 0,
3117                                     aclp->z_acl_bytes);
3118                         }
3119                 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3120                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3121                             0, aclp->z_acl_bytes);
3122                 }
3123                 mutex_exit(&zp->z_lock);
3124                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3125         } else {
3126                 if ((mask & AT_XVATTR) &&
3127                     XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3128                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3129                 else
3130                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3131         }
3132 
3133         if (attrzp) {
3134                 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3135         }
3136 
3137         fuid_dirtied = zfsvfs->z_fuid_dirty;
3138         if (fuid_dirtied)
3139                 zfs_fuid_txhold(zfsvfs, tx);
3140 
3141         zfs_sa_upgrade_txholds(tx, zp);
3142 
3143         err = dmu_tx_assign(tx, TXG_WAIT);
3144         if (err)
3145                 goto out;
3146 
3147         count = 0;
3148         /*
3149          * Set each attribute requested.
3150          * We group settings according to the locks they need to acquire.
3151          *
3152          * Note: you cannot set ctime directly, although it will be
3153          * updated as a side-effect of calling this function.
3154          */
3155 
3156 
3157         if (mask & (AT_UID|AT_GID|AT_MODE))
3158                 mutex_enter(&zp->z_acl_lock);
3159         mutex_enter(&zp->z_lock);
3160 
3161         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3162             &zp->z_pflags, sizeof (zp->z_pflags));
3163 
3164         if (attrzp) {
3165                 if (mask & (AT_UID|AT_GID|AT_MODE))
3166                         mutex_enter(&attrzp->z_acl_lock);
3167                 mutex_enter(&attrzp->z_lock);
3168                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3169                     SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3170                     sizeof (attrzp->z_pflags));
3171         }
3172 
3173         if (mask & (AT_UID|AT_GID)) {
3174 
3175                 if (mask & AT_UID) {
3176                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3177                             &new_uid, sizeof (new_uid));
3178                         zp->z_uid = new_uid;
3179                         if (attrzp) {
3180                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3181                                     SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3182                                     sizeof (new_uid));
3183                                 attrzp->z_uid = new_uid;
3184                         }
3185                 }
3186 
3187                 if (mask & AT_GID) {
3188                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3189                             NULL, &new_gid, sizeof (new_gid));
3190                         zp->z_gid = new_gid;
3191                         if (attrzp) {
3192                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3193                                     SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3194                                     sizeof (new_gid));
3195                                 attrzp->z_gid = new_gid;
3196                         }
3197                 }
3198                 if (!(mask & AT_MODE)) {
3199                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3200                             NULL, &new_mode, sizeof (new_mode));
3201                         new_mode = zp->z_mode;
3202                 }
3203                 err = zfs_acl_chown_setattr(zp);
3204                 ASSERT(err == 0);
3205                 if (attrzp) {
3206                         err = zfs_acl_chown_setattr(attrzp);
3207                         ASSERT(err == 0);
3208                 }
3209         }
3210 
3211         if (mask & AT_MODE) {
3212                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3213                     &new_mode, sizeof (new_mode));
3214                 zp->z_mode = new_mode;
3215                 ASSERT3U((uintptr_t)aclp, !=, NULL);
3216                 err = zfs_aclset_common(zp, aclp, cr, tx);
3217                 ASSERT0(err);
3218                 if (zp->z_acl_cached)
3219                         zfs_acl_free(zp->z_acl_cached);
3220                 zp->z_acl_cached = aclp;
3221                 aclp = NULL;
3222         }
3223 
3224 
3225         if (mask & AT_ATIME) {
3226                 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3227                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3228                     &zp->z_atime, sizeof (zp->z_atime));
3229         }
3230 
3231         if (mask & AT_MTIME) {
3232                 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3233                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3234                     mtime, sizeof (mtime));
3235         }
3236 
3237         /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3238         if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3239                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3240                     NULL, mtime, sizeof (mtime));
3241                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3242                     &ctime, sizeof (ctime));
3243                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3244                     B_TRUE);
3245         } else if (mask != 0) {
3246                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3247                     &ctime, sizeof (ctime));
3248                 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3249                     B_TRUE);
3250                 if (attrzp) {
3251                         SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3252                             SA_ZPL_CTIME(zfsvfs), NULL,
3253                             &ctime, sizeof (ctime));
3254                         zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3255                             mtime, ctime, B_TRUE);
3256                 }
3257         }
3258         /*
3259          * Do this after setting timestamps to prevent timestamp
3260          * update from toggling bit
3261          */
3262 
3263         if (xoap && (mask & AT_XVATTR)) {
3264 
3265                 /*
3266                  * restore trimmed off masks
3267                  * so that return masks can be set for caller.
3268                  */
3269 
3270                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3271                         XVA_SET_REQ(xvap, XAT_APPENDONLY);
3272                 }
3273                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3274                         XVA_SET_REQ(xvap, XAT_NOUNLINK);
3275                 }
3276                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3277                         XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3278                 }
3279                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3280                         XVA_SET_REQ(xvap, XAT_NODUMP);
3281                 }
3282                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3283                         XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3284                 }
3285                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3286                         XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3287                 }
3288 
3289                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3290                         ASSERT(vp->v_type == VREG);
3291 
3292                 zfs_xvattr_set(zp, xvap, tx);
3293         }
3294 
3295         if (fuid_dirtied)
3296                 zfs_fuid_sync(zfsvfs, tx);
3297 
3298         if (mask != 0)
3299                 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3300 
3301         mutex_exit(&zp->z_lock);
3302         if (mask & (AT_UID|AT_GID|AT_MODE))
3303                 mutex_exit(&zp->z_acl_lock);
3304 
3305         if (attrzp) {
3306                 if (mask & (AT_UID|AT_GID|AT_MODE))
3307                         mutex_exit(&attrzp->z_acl_lock);
3308                 mutex_exit(&attrzp->z_lock);
3309         }
3310 out:
3311         if (err == 0 && attrzp) {
3312                 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3313                     xattr_count, tx);
3314                 ASSERT(err2 == 0);
3315         }
3316 
3317         if (attrzp)
3318                 VN_RELE(ZTOV(attrzp));
3319 
3320         if (aclp)
3321                 zfs_acl_free(aclp);
3322 
3323         if (fuidp) {
3324                 zfs_fuid_info_free(fuidp);
3325                 fuidp = NULL;
3326         }
3327 
3328         if (err) {
3329                 dmu_tx_abort(tx);
3330                 if (err == ERESTART)
3331                         goto top;
3332         } else {
3333                 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3334                 dmu_tx_commit(tx);
3335         }
3336 
3337 out2:
3338         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3339                 zil_commit(zilog, 0);
3340 
3341         ZFS_EXIT(zfsvfs);
3342         return (err);
3343 }
3344 
3345 typedef struct zfs_zlock {
3346         krwlock_t       *zl_rwlock;     /* lock we acquired */
3347         znode_t         *zl_znode;      /* znode we held */
3348         struct zfs_zlock *zl_next;      /* next in list */
3349 } zfs_zlock_t;
3350 
3351 /*
3352  * Drop locks and release vnodes that were held by zfs_rename_lock().
3353  */
3354 static void
3355 zfs_rename_unlock(zfs_zlock_t **zlpp)
3356 {
3357         zfs_zlock_t *zl;
3358 
3359         while ((zl = *zlpp) != NULL) {
3360                 if (zl->zl_znode != NULL)
3361                         VN_RELE(ZTOV(zl->zl_znode));
3362                 rw_exit(zl->zl_rwlock);
3363                 *zlpp = zl->zl_next;
3364                 kmem_free(zl, sizeof (*zl));
3365         }
3366 }
3367 
3368 /*
3369  * Search back through the directory tree, using the ".." entries.
3370  * Lock each directory in the chain to prevent concurrent renames.
3371  * Fail any attempt to move a directory into one of its own descendants.
3372  * XXX - z_parent_lock can overlap with map or grow locks
3373  */
3374 static int
3375 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3376 {
3377         zfs_zlock_t     *zl;
3378         znode_t         *zp = tdzp;
3379         uint64_t        rootid = zp->z_zfsvfs->z_root;
3380         uint64_t        oidp = zp->z_id;
3381         krwlock_t       *rwlp = &szp->z_parent_lock;
3382         krw_t           rw = RW_WRITER;
3383 
3384         /*
3385          * First pass write-locks szp and compares to zp->z_id.
3386          * Later passes read-lock zp and compare to zp->z_parent.
3387          */
3388         do {
3389                 if (!rw_tryenter(rwlp, rw)) {
3390                         /*
3391                          * Another thread is renaming in this path.
3392                          * Note that if we are a WRITER, we don't have any
3393                          * parent_locks held yet.
3394                          */
3395                         if (rw == RW_READER && zp->z_id > szp->z_id) {
3396                                 /*
3397                                  * Drop our locks and restart
3398                                  */
3399                                 zfs_rename_unlock(&zl);
3400                                 *zlpp = NULL;
3401                                 zp = tdzp;
3402                                 oidp = zp->z_id;
3403                                 rwlp = &szp->z_parent_lock;
3404                                 rw = RW_WRITER;
3405                                 continue;
3406                         } else {
3407                                 /*
3408                                  * Wait for other thread to drop its locks
3409                                  */
3410                                 rw_enter(rwlp, rw);
3411                         }
3412                 }
3413 
3414                 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3415                 zl->zl_rwlock = rwlp;
3416                 zl->zl_znode = NULL;
3417                 zl->zl_next = *zlpp;
3418                 *zlpp = zl;
3419 
3420                 if (oidp == szp->z_id)               /* We're a descendant of szp */
3421                         return (SET_ERROR(EINVAL));
3422 
3423                 if (oidp == rootid)             /* We've hit the top */
3424                         return (0);
3425 
3426                 if (rw == RW_READER) {          /* i.e. not the first pass */
3427                         int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3428                         if (error)
3429                                 return (error);
3430                         zl->zl_znode = zp;
3431                 }
3432                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3433                     &oidp, sizeof (oidp));
3434                 rwlp = &zp->z_parent_lock;
3435                 rw = RW_READER;
3436 
3437         } while (zp->z_id != sdzp->z_id);
3438 
3439         return (0);
3440 }
3441 
3442 /*
3443  * Move an entry from the provided source directory to the target
3444  * directory.  Change the entry name as indicated.
3445  *
3446  *      IN:     sdvp    - Source directory containing the "old entry".
3447  *              snm     - Old entry name.
3448  *              tdvp    - Target directory to contain the "new entry".
3449  *              tnm     - New entry name.
3450  *              cr      - credentials of caller.
3451  *              ct      - caller context
3452  *              flags   - case flags
3453  *
3454  *      RETURN: 0 on success, error code on failure.
3455  *
3456  * Timestamps:
3457  *      sdvp,tdvp - ctime|mtime updated
3458  */
3459 /*ARGSUSED*/
3460 static int
3461 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3462     caller_context_t *ct, int flags)
3463 {
3464         znode_t         *tdzp, *szp, *tzp;
3465         znode_t         *sdzp = VTOZ(sdvp);
3466         zfsvfs_t        *zfsvfs = sdzp->z_zfsvfs;
3467         zilog_t         *zilog;
3468         vnode_t         *realvp;
3469         zfs_dirlock_t   *sdl, *tdl;
3470         dmu_tx_t        *tx;
3471         zfs_zlock_t     *zl;
3472         int             cmp, serr, terr;
3473         int             error = 0, rm_err = 0;
3474         int             zflg = 0;
3475         boolean_t       waited = B_FALSE;
3476 
3477         ZFS_ENTER(zfsvfs);
3478         ZFS_VERIFY_ZP(sdzp);
3479         zilog = zfsvfs->z_log;
3480 
3481         /*
3482          * Make sure we have the real vp for the target directory.
3483          */
3484         if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3485                 tdvp = realvp;
3486 
3487         tdzp = VTOZ(tdvp);
3488         ZFS_VERIFY_ZP(tdzp);
3489 
3490         /*
3491          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3492          * ctldir appear to have the same v_vfsp.
3493          */
3494         if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3495                 ZFS_EXIT(zfsvfs);
3496                 return (SET_ERROR(EXDEV));
3497         }
3498 
3499         if (zfsvfs->z_utf8 && u8_validate(tnm,
3500             strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3501                 ZFS_EXIT(zfsvfs);
3502                 return (SET_ERROR(EILSEQ));
3503         }
3504 
3505         if (flags & FIGNORECASE)
3506                 zflg |= ZCILOOK;
3507 
3508 top:
3509         szp = NULL;
3510         tzp = NULL;
3511         zl = NULL;
3512 
3513         /*
3514          * This is to prevent the creation of links into attribute space
3515          * by renaming a linked file into/outof an attribute directory.
3516          * See the comment in zfs_link() for why this is considered bad.
3517          */
3518         if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3519                 ZFS_EXIT(zfsvfs);
3520                 return (SET_ERROR(EINVAL));
3521         }
3522 
3523         /*
3524          * Lock source and target directory entries.  To prevent deadlock,
3525          * a lock ordering must be defined.  We lock the directory with
3526          * the smallest object id first, or if it's a tie, the one with
3527          * the lexically first name.
3528          */
3529         if (sdzp->z_id < tdzp->z_id) {
3530                 cmp = -1;
3531         } else if (sdzp->z_id > tdzp->z_id) {
3532                 cmp = 1;
3533         } else {
3534                 /*
3535                  * First compare the two name arguments without
3536                  * considering any case folding.
3537                  */
3538                 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3539 
3540                 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3541                 ASSERT(error == 0 || !zfsvfs->z_utf8);
3542                 if (cmp == 0) {
3543                         /*
3544                          * POSIX: "If the old argument and the new argument
3545                          * both refer to links to the same existing file,
3546                          * the rename() function shall return successfully
3547                          * and perform no other action."
3548                          */
3549                         ZFS_EXIT(zfsvfs);
3550                         return (0);
3551                 }
3552                 /*
3553                  * If the file system is case-folding, then we may
3554                  * have some more checking to do.  A case-folding file
3555                  * system is either supporting mixed case sensitivity
3556                  * access or is completely case-insensitive.  Note
3557                  * that the file system is always case preserving.
3558                  *
3559                  * In mixed sensitivity mode case sensitive behavior
3560                  * is the default.  FIGNORECASE must be used to
3561                  * explicitly request case insensitive behavior.
3562                  *
3563                  * If the source and target names provided differ only
3564                  * by case (e.g., a request to rename 'tim' to 'Tim'),
3565                  * we will treat this as a special case in the
3566                  * case-insensitive mode: as long as the source name
3567                  * is an exact match, we will allow this to proceed as
3568                  * a name-change request.
3569                  */
3570                 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3571                     (zfsvfs->z_case == ZFS_CASE_MIXED &&
3572                     flags & FIGNORECASE)) &&
3573                     u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3574                     &error) == 0) {
3575                         /*
3576                          * case preserving rename request, require exact
3577                          * name matches
3578                          */
3579                         zflg |= ZCIEXACT;
3580                         zflg &= ~ZCILOOK;
3581                 }
3582         }
3583 
3584         /*
3585          * If the source and destination directories are the same, we should
3586          * grab the z_name_lock of that directory only once.
3587          */
3588         if (sdzp == tdzp) {
3589                 zflg |= ZHAVELOCK;
3590                 rw_enter(&sdzp->z_name_lock, RW_READER);
3591         }
3592 
3593         if (cmp < 0) {
3594                 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3595                     ZEXISTS | zflg, NULL, NULL);
3596                 terr = zfs_dirent_lock(&tdl,
3597                     tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3598         } else {
3599                 terr = zfs_dirent_lock(&tdl,
3600                     tdzp, tnm, &tzp, zflg, NULL, NULL);
3601                 serr = zfs_dirent_lock(&sdl,
3602                     sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3603                     NULL, NULL);
3604         }
3605 
3606         if (serr) {
3607                 /*
3608                  * Source entry invalid or not there.
3609                  */
3610                 if (!terr) {
3611                         zfs_dirent_unlock(tdl);
3612                         if (tzp)
3613                                 VN_RELE(ZTOV(tzp));
3614                 }
3615 
3616                 if (sdzp == tdzp)
3617                         rw_exit(&sdzp->z_name_lock);
3618 
3619                 if (strcmp(snm, "..") == 0)
3620                         serr = SET_ERROR(EINVAL);
3621                 ZFS_EXIT(zfsvfs);
3622                 return (serr);
3623         }
3624         if (terr) {
3625                 zfs_dirent_unlock(sdl);
3626                 VN_RELE(ZTOV(szp));
3627 
3628                 if (sdzp == tdzp)
3629                         rw_exit(&sdzp->z_name_lock);
3630 
3631                 if (strcmp(tnm, "..") == 0)
3632                         terr = SET_ERROR(EINVAL);
3633                 ZFS_EXIT(zfsvfs);
3634                 return (terr);
3635         }
3636 
3637         /*
3638          * Must have write access at the source to remove the old entry
3639          * and write access at the target to create the new entry.
3640          * Note that if target and source are the same, this can be
3641          * done in a single check.
3642          */
3643 
3644         if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3645                 goto out;
3646 
3647         if (ZTOV(szp)->v_type == VDIR) {
3648                 /*
3649                  * Check to make sure rename is valid.
3650                  * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3651                  */
3652                 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3653                         goto out;
3654         }
3655 
3656         /*
3657          * Does target exist?
3658          */
3659         if (tzp) {
3660                 /*
3661                  * Source and target must be the same type.
3662                  */
3663                 if (ZTOV(szp)->v_type == VDIR) {
3664                         if (ZTOV(tzp)->v_type != VDIR) {
3665                                 error = SET_ERROR(ENOTDIR);
3666                                 goto out;
3667                         }
3668                 } else {
3669                         if (ZTOV(tzp)->v_type == VDIR) {
3670                                 error = SET_ERROR(EISDIR);
3671                                 goto out;
3672                         }
3673                 }
3674                 /*
3675                  * POSIX dictates that when the source and target
3676                  * entries refer to the same file object, rename
3677                  * must do nothing and exit without error.
3678                  */
3679                 if (szp->z_id == tzp->z_id) {
3680                         error = 0;
3681                         goto out;
3682                 }
3683         }
3684 
3685         vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3686         if (tzp)
3687                 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3688 
3689         /*
3690          * notify the target directory if it is not the same
3691          * as source directory.
3692          */
3693         if (tdvp != sdvp) {
3694                 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3695         }
3696 
3697         tx = dmu_tx_create(zfsvfs->z_os);
3698         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3699         dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3700         dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3701         dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3702         if (sdzp != tdzp) {
3703                 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3704                 zfs_sa_upgrade_txholds(tx, tdzp);
3705         }
3706         if (tzp) {
3707                 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3708                 zfs_sa_upgrade_txholds(tx, tzp);
3709         }
3710 
3711         zfs_sa_upgrade_txholds(tx, szp);
3712         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3713         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3714         if (error) {
3715                 if (zl != NULL)
3716                         zfs_rename_unlock(&zl);
3717                 zfs_dirent_unlock(sdl);
3718                 zfs_dirent_unlock(tdl);
3719 
3720                 if (sdzp == tdzp)
3721                         rw_exit(&sdzp->z_name_lock);
3722 
3723                 VN_RELE(ZTOV(szp));
3724                 if (tzp)
3725                         VN_RELE(ZTOV(tzp));
3726                 if (error == ERESTART) {
3727                         waited = B_TRUE;
3728                         dmu_tx_wait(tx);
3729                         dmu_tx_abort(tx);
3730                         goto top;
3731                 }
3732                 dmu_tx_abort(tx);
3733                 ZFS_EXIT(zfsvfs);
3734                 return (error);
3735         }
3736 
3737         if (tzp)        /* Attempt to remove the existing target */
3738                 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3739 
3740         if (error == 0) {
3741                 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3742                 if (error == 0) {
3743                         szp->z_pflags |= ZFS_AV_MODIFIED;
3744 
3745                         error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3746                             (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3747                         ASSERT0(error);
3748 
3749                         error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3750                         if (error == 0) {
3751                                 zfs_log_rename(zilog, tx, TX_RENAME |
3752                                     (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3753                                     sdl->dl_name, tdzp, tdl->dl_name, szp);
3754 
3755                                 /*
3756                                  * Update path information for the target vnode
3757                                  */
3758                                 vn_renamepath(tdvp, ZTOV(szp), tnm,
3759                                     strlen(tnm));
3760                         } else {
3761                                 /*
3762                                  * At this point, we have successfully created
3763                                  * the target name, but have failed to remove
3764                                  * the source name.  Since the create was done
3765                                  * with the ZRENAMING flag, there are
3766                                  * complications; for one, the link count is
3767                                  * wrong.  The easiest way to deal with this
3768                                  * is to remove the newly created target, and
3769                                  * return the original error.  This must
3770                                  * succeed; fortunately, it is very unlikely to
3771                                  * fail, since we just created it.
3772                                  */
3773                                 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3774                                     ZRENAMING, NULL), ==, 0);
3775                         }
3776                 }
3777         }
3778 
3779         dmu_tx_commit(tx);
3780 
3781         if (tzp && rm_err == 0)
3782                 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3783 
3784         if (error == 0) {
3785                 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3786                 /* notify the target dir if it is not the same as source dir */
3787                 if (tdvp != sdvp)
3788                         vnevent_rename_dest_dir(tdvp, ct);
3789         }
3790 out:
3791         if (zl != NULL)
3792                 zfs_rename_unlock(&zl);
3793 
3794         zfs_dirent_unlock(sdl);
3795         zfs_dirent_unlock(tdl);
3796 
3797         if (sdzp == tdzp)
3798                 rw_exit(&sdzp->z_name_lock);
3799 
3800 
3801         VN_RELE(ZTOV(szp));
3802         if (tzp)
3803                 VN_RELE(ZTOV(tzp));
3804 
3805         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3806                 zil_commit(zilog, 0);
3807 
3808         ZFS_EXIT(zfsvfs);
3809         return (error);
3810 }
3811 
3812 /*
3813  * Insert the indicated symbolic reference entry into the directory.
3814  *
3815  *      IN:     dvp     - Directory to contain new symbolic link.
3816  *              link    - Name for new symlink entry.
3817  *              vap     - Attributes of new entry.
3818  *              cr      - credentials of caller.
3819  *              ct      - caller context
3820  *              flags   - case flags
3821  *
3822  *      RETURN: 0 on success, error code on failure.
3823  *
3824  * Timestamps:
3825  *      dvp - ctime|mtime updated
3826  */
3827 /*ARGSUSED*/
3828 static int
3829 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3830     caller_context_t *ct, int flags)
3831 {
3832         znode_t         *zp, *dzp = VTOZ(dvp);
3833         zfs_dirlock_t   *dl;
3834         dmu_tx_t        *tx;
3835         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3836         zilog_t         *zilog;
3837         uint64_t        len = strlen(link);
3838         int             error;
3839         int             zflg = ZNEW;
3840         zfs_acl_ids_t   acl_ids;
3841         boolean_t       fuid_dirtied;
3842         uint64_t        txtype = TX_SYMLINK;
3843         boolean_t       waited = B_FALSE;
3844 
3845         ASSERT(vap->va_type == VLNK);
3846 
3847         ZFS_ENTER(zfsvfs);
3848         ZFS_VERIFY_ZP(dzp);
3849         zilog = zfsvfs->z_log;
3850 
3851         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3852             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3853                 ZFS_EXIT(zfsvfs);
3854                 return (SET_ERROR(EILSEQ));
3855         }
3856         if (flags & FIGNORECASE)
3857                 zflg |= ZCILOOK;
3858 
3859         if (len > MAXPATHLEN) {
3860                 ZFS_EXIT(zfsvfs);
3861                 return (SET_ERROR(ENAMETOOLONG));
3862         }
3863 
3864         if ((error = zfs_acl_ids_create(dzp, 0,
3865             vap, cr, NULL, &acl_ids)) != 0) {
3866                 ZFS_EXIT(zfsvfs);
3867                 return (error);
3868         }
3869 top:
3870         /*
3871          * Attempt to lock directory; fail if entry already exists.
3872          */
3873         error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3874         if (error) {
3875                 zfs_acl_ids_free(&acl_ids);
3876                 ZFS_EXIT(zfsvfs);
3877                 return (error);
3878         }
3879 
3880         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3881                 zfs_acl_ids_free(&acl_ids);
3882                 zfs_dirent_unlock(dl);
3883                 ZFS_EXIT(zfsvfs);
3884                 return (error);
3885         }
3886 
3887         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3888                 zfs_acl_ids_free(&acl_ids);
3889                 zfs_dirent_unlock(dl);
3890                 ZFS_EXIT(zfsvfs);
3891                 return (SET_ERROR(EDQUOT));
3892         }
3893         tx = dmu_tx_create(zfsvfs->z_os);
3894         fuid_dirtied = zfsvfs->z_fuid_dirty;
3895         dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3896         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3897         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3898             ZFS_SA_BASE_ATTR_SIZE + len);
3899         dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3900         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3901                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3902                     acl_ids.z_aclp->z_acl_bytes);
3903         }
3904         if (fuid_dirtied)
3905                 zfs_fuid_txhold(zfsvfs, tx);
3906         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3907         if (error) {
3908                 zfs_dirent_unlock(dl);
3909                 if (error == ERESTART) {
3910                         waited = B_TRUE;
3911                         dmu_tx_wait(tx);
3912                         dmu_tx_abort(tx);
3913                         goto top;
3914                 }
3915                 zfs_acl_ids_free(&acl_ids);
3916                 dmu_tx_abort(tx);
3917                 ZFS_EXIT(zfsvfs);
3918                 return (error);
3919         }
3920 
3921         /*
3922          * Create a new object for the symlink.
3923          * for version 4 ZPL datsets the symlink will be an SA attribute
3924          */
3925         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3926 
3927         if (fuid_dirtied)
3928                 zfs_fuid_sync(zfsvfs, tx);
3929 
3930         mutex_enter(&zp->z_lock);
3931         if (zp->z_is_sa)
3932                 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3933                     link, len, tx);
3934         else
3935                 zfs_sa_symlink(zp, link, len, tx);
3936         mutex_exit(&zp->z_lock);
3937 
3938         zp->z_size = len;
3939         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3940             &zp->z_size, sizeof (zp->z_size), tx);
3941         /*
3942          * Insert the new object into the directory.
3943          */
3944         (void) zfs_link_create(dl, zp, tx, ZNEW);
3945 
3946         if (flags & FIGNORECASE)
3947                 txtype |= TX_CI;
3948         zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3949 
3950         zfs_acl_ids_free(&acl_ids);
3951 
3952         dmu_tx_commit(tx);
3953 
3954         zfs_dirent_unlock(dl);
3955 
3956         VN_RELE(ZTOV(zp));
3957 
3958         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3959                 zil_commit(zilog, 0);
3960 
3961         ZFS_EXIT(zfsvfs);
3962         return (error);
3963 }
3964 
3965 /*
3966  * Return, in the buffer contained in the provided uio structure,
3967  * the symbolic path referred to by vp.
3968  *
3969  *      IN:     vp      - vnode of symbolic link.
3970  *              uio     - structure to contain the link path.
3971  *              cr      - credentials of caller.
3972  *              ct      - caller context
3973  *
3974  *      OUT:    uio     - structure containing the link path.
3975  *
3976  *      RETURN: 0 on success, error code on failure.
3977  *
3978  * Timestamps:
3979  *      vp - atime updated
3980  */
3981 /* ARGSUSED */
3982 static int
3983 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3984 {
3985         znode_t         *zp = VTOZ(vp);
3986         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
3987         int             error;
3988 
3989         ZFS_ENTER(zfsvfs);
3990         ZFS_VERIFY_ZP(zp);
3991 
3992         mutex_enter(&zp->z_lock);
3993         if (zp->z_is_sa)
3994                 error = sa_lookup_uio(zp->z_sa_hdl,
3995                     SA_ZPL_SYMLINK(zfsvfs), uio);
3996         else
3997                 error = zfs_sa_readlink(zp, uio);
3998         mutex_exit(&zp->z_lock);
3999 
4000         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4001 
4002         ZFS_EXIT(zfsvfs);
4003         return (error);
4004 }
4005 
4006 /*
4007  * Insert a new entry into directory tdvp referencing svp.
4008  *
4009  *      IN:     tdvp    - Directory to contain new entry.
4010  *              svp     - vnode of new entry.
4011  *              name    - name of new entry.
4012  *              cr      - credentials of caller.
4013  *              ct      - caller context
4014  *
4015  *      RETURN: 0 on success, error code on failure.
4016  *
4017  * Timestamps:
4018  *      tdvp - ctime|mtime updated
4019  *       svp - ctime updated
4020  */
4021 /* ARGSUSED */
4022 static int
4023 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4024     caller_context_t *ct, int flags)
4025 {
4026         znode_t         *dzp = VTOZ(tdvp);
4027         znode_t         *tzp, *szp;
4028         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
4029         zilog_t         *zilog;
4030         zfs_dirlock_t   *dl;
4031         dmu_tx_t        *tx;
4032         vnode_t         *realvp;
4033         int             error;
4034         int             zf = ZNEW;
4035         uint64_t        parent;
4036         uid_t           owner;
4037         boolean_t       waited = B_FALSE;
4038 
4039         ASSERT(tdvp->v_type == VDIR);
4040 
4041         ZFS_ENTER(zfsvfs);
4042         ZFS_VERIFY_ZP(dzp);
4043         zilog = zfsvfs->z_log;
4044 
4045         if (VOP_REALVP(svp, &realvp, ct) == 0)
4046                 svp = realvp;
4047 
4048         /*
4049          * POSIX dictates that we return EPERM here.
4050          * Better choices include ENOTSUP or EISDIR.
4051          */
4052         if (svp->v_type == VDIR) {
4053                 ZFS_EXIT(zfsvfs);
4054                 return (SET_ERROR(EPERM));
4055         }
4056 
4057         szp = VTOZ(svp);
4058         ZFS_VERIFY_ZP(szp);
4059 
4060         /*
4061          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4062          * ctldir appear to have the same v_vfsp.
4063          */
4064         if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4065                 ZFS_EXIT(zfsvfs);
4066                 return (SET_ERROR(EXDEV));
4067         }
4068 
4069         /* Prevent links to .zfs/shares files */
4070 
4071         if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4072             &parent, sizeof (uint64_t))) != 0) {
4073                 ZFS_EXIT(zfsvfs);
4074                 return (error);
4075         }
4076         if (parent == zfsvfs->z_shares_dir) {
4077                 ZFS_EXIT(zfsvfs);
4078                 return (SET_ERROR(EPERM));
4079         }
4080 
4081         if (zfsvfs->z_utf8 && u8_validate(name,
4082             strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4083                 ZFS_EXIT(zfsvfs);
4084                 return (SET_ERROR(EILSEQ));
4085         }
4086         if (flags & FIGNORECASE)
4087                 zf |= ZCILOOK;
4088 
4089         /*
4090          * We do not support links between attributes and non-attributes
4091          * because of the potential security risk of creating links
4092          * into "normal" file space in order to circumvent restrictions
4093          * imposed in attribute space.
4094          */
4095         if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4096                 ZFS_EXIT(zfsvfs);
4097                 return (SET_ERROR(EINVAL));
4098         }
4099 
4100 
4101         owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4102         if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4103                 ZFS_EXIT(zfsvfs);
4104                 return (SET_ERROR(EPERM));
4105         }
4106 
4107         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4108                 ZFS_EXIT(zfsvfs);
4109                 return (error);
4110         }
4111 
4112 top:
4113         /*
4114          * Attempt to lock directory; fail if entry already exists.
4115          */
4116         error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4117         if (error) {
4118                 ZFS_EXIT(zfsvfs);
4119                 return (error);
4120         }
4121 
4122         tx = dmu_tx_create(zfsvfs->z_os);
4123         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4124         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4125         zfs_sa_upgrade_txholds(tx, szp);
4126         zfs_sa_upgrade_txholds(tx, dzp);
4127         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4128         if (error) {
4129                 zfs_dirent_unlock(dl);
4130                 if (error == ERESTART) {
4131                         waited = B_TRUE;
4132                         dmu_tx_wait(tx);
4133                         dmu_tx_abort(tx);
4134                         goto top;
4135                 }
4136                 dmu_tx_abort(tx);
4137                 ZFS_EXIT(zfsvfs);
4138                 return (error);
4139         }
4140 
4141         error = zfs_link_create(dl, szp, tx, 0);
4142 
4143         if (error == 0) {
4144                 uint64_t txtype = TX_LINK;
4145                 if (flags & FIGNORECASE)
4146                         txtype |= TX_CI;
4147                 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4148         }
4149 
4150         dmu_tx_commit(tx);
4151 
4152         zfs_dirent_unlock(dl);
4153 
4154         if (error == 0) {
4155                 vnevent_link(svp, ct);
4156         }
4157 
4158         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4159                 zil_commit(zilog, 0);
4160 
4161         ZFS_EXIT(zfsvfs);
4162         return (error);
4163 }
4164 
4165 /*
4166  * zfs_null_putapage() is used when the file system has been force
4167  * unmounted. It just drops the pages.
4168  */
4169 /* ARGSUSED */
4170 static int
4171 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4172     size_t *lenp, int flags, cred_t *cr)
4173 {
4174         pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4175         return (0);
4176 }
4177 
4178 /*
4179  * Push a page out to disk, klustering if possible.
4180  *
4181  *      IN:     vp      - file to push page to.
4182  *              pp      - page to push.
4183  *              flags   - additional flags.
4184  *              cr      - credentials of caller.
4185  *
4186  *      OUT:    offp    - start of range pushed.
4187  *              lenp    - len of range pushed.
4188  *
4189  *      RETURN: 0 on success, error code on failure.
4190  *
4191  * NOTE: callers must have locked the page to be pushed.  On
4192  * exit, the page (and all other pages in the kluster) must be
4193  * unlocked.
4194  */
4195 /* ARGSUSED */
4196 static int
4197 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4198     size_t *lenp, int flags, cred_t *cr)
4199 {
4200         znode_t         *zp = VTOZ(vp);
4201         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4202         dmu_tx_t        *tx;
4203         u_offset_t      off, koff;
4204         size_t          len, klen;
4205         int             err;
4206 
4207         off = pp->p_offset;
4208         len = PAGESIZE;
4209         /*
4210          * If our blocksize is bigger than the page size, try to kluster
4211          * multiple pages so that we write a full block (thus avoiding
4212          * a read-modify-write).
4213          */
4214         if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4215                 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4216                 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4217                 ASSERT(koff <= zp->z_size);
4218                 if (koff + klen > zp->z_size)
4219                         klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4220                 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4221         }
4222         ASSERT3U(btop(len), ==, btopr(len));
4223 
4224         /*
4225          * Can't push pages past end-of-file.
4226          */
4227         if (off >= zp->z_size) {
4228                 /* ignore all pages */
4229                 err = 0;
4230                 goto out;
4231         } else if (off + len > zp->z_size) {
4232                 int npages = btopr(zp->z_size - off);
4233                 page_t *trunc;
4234 
4235                 page_list_break(&pp, &trunc, npages);
4236                 /* ignore pages past end of file */
4237                 if (trunc)
4238                         pvn_write_done(trunc, flags);
4239                 len = zp->z_size - off;
4240         }
4241 
4242         if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4243             zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4244                 err = SET_ERROR(EDQUOT);
4245                 goto out;
4246         }
4247         tx = dmu_tx_create(zfsvfs->z_os);
4248         dmu_tx_hold_write(tx, zp->z_id, off, len);
4249 
4250         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4251         zfs_sa_upgrade_txholds(tx, zp);
4252         err = dmu_tx_assign(tx, TXG_WAIT);
4253         if (err != 0) {
4254                 dmu_tx_abort(tx);
4255                 goto out;
4256         }
4257 
4258         if (zp->z_blksz <= PAGESIZE) {
4259                 caddr_t va = zfs_map_page(pp, S_READ);
4260                 ASSERT3U(len, <=, PAGESIZE);
4261                 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4262                 zfs_unmap_page(pp, va);
4263         } else {
4264                 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4265         }
4266 
4267         if (err == 0) {
4268                 uint64_t mtime[2], ctime[2];
4269                 sa_bulk_attr_t bulk[3];
4270                 int count = 0;
4271 
4272                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4273                     &mtime, 16);
4274                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4275                     &ctime, 16);
4276                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4277                     &zp->z_pflags, 8);
4278                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4279                     B_TRUE);
4280                 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4281                 ASSERT0(err);
4282                 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4283         }
4284         dmu_tx_commit(tx);
4285 
4286 out:
4287         pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4288         if (offp)
4289                 *offp = off;
4290         if (lenp)
4291                 *lenp = len;
4292 
4293         return (err);
4294 }
4295 
4296 /*
4297  * Copy the portion of the file indicated from pages into the file.
4298  * The pages are stored in a page list attached to the files vnode.
4299  *
4300  *      IN:     vp      - vnode of file to push page data to.
4301  *              off     - position in file to put data.
4302  *              len     - amount of data to write.
4303  *              flags   - flags to control the operation.
4304  *              cr      - credentials of caller.
4305  *              ct      - caller context.
4306  *
4307  *      RETURN: 0 on success, error code on failure.
4308  *
4309  * Timestamps:
4310  *      vp - ctime|mtime updated
4311  */
4312 /*ARGSUSED*/
4313 static int
4314 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4315     caller_context_t *ct)
4316 {
4317         znode_t         *zp = VTOZ(vp);
4318         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4319         page_t          *pp;
4320         size_t          io_len;
4321         u_offset_t      io_off;
4322         uint_t          blksz;
4323         locked_range_t  *lr;
4324         int             error = 0;
4325 
4326         ZFS_ENTER(zfsvfs);
4327         ZFS_VERIFY_ZP(zp);
4328 
4329         /*
4330          * There's nothing to do if no data is cached.
4331          */
4332         if (!vn_has_cached_data(vp)) {
4333                 ZFS_EXIT(zfsvfs);
4334                 return (0);
4335         }
4336 
4337         /*
4338          * Align this request to the file block size in case we kluster.
4339          * XXX - this can result in pretty aggresive locking, which can
4340          * impact simultanious read/write access.  One option might be
4341          * to break up long requests (len == 0) into block-by-block
4342          * operations to get narrower locking.
4343          */
4344         blksz = zp->z_blksz;
4345         if (ISP2(blksz))
4346                 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4347         else
4348                 io_off = 0;
4349         if (len > 0 && ISP2(blksz))
4350                 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4351         else
4352                 io_len = 0;
4353 
4354         if (io_len == 0) {
4355                 /*
4356                  * Search the entire vp list for pages >= io_off.
4357                  */
4358                 lr = rangelock_enter(&zp->z_rangelock,
4359                     io_off, UINT64_MAX, RL_WRITER);
4360                 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4361                 goto out;
4362         }
4363         lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER);
4364 
4365         if (off > zp->z_size) {
4366                 /* past end of file */
4367                 rangelock_exit(lr);
4368                 ZFS_EXIT(zfsvfs);
4369                 return (0);
4370         }
4371 
4372         len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4373 
4374         for (off = io_off; io_off < off + len; io_off += io_len) {
4375                 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4376                         pp = page_lookup(vp, io_off,
4377                             (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4378                 } else {
4379                         pp = page_lookup_nowait(vp, io_off,
4380                             (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4381                 }
4382 
4383                 if (pp != NULL && pvn_getdirty(pp, flags)) {
4384                         int err;
4385 
4386                         /*
4387                          * Found a dirty page to push
4388                          */
4389                         err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4390                         if (err)
4391                                 error = err;
4392                 } else {
4393                         io_len = PAGESIZE;
4394                 }
4395         }
4396 out:
4397         rangelock_exit(lr);
4398         if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4399                 zil_commit(zfsvfs->z_log, zp->z_id);
4400         ZFS_EXIT(zfsvfs);
4401         return (error);
4402 }
4403 
4404 /*ARGSUSED*/
4405 void
4406 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4407 {
4408         znode_t *zp = VTOZ(vp);
4409         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4410         int error;
4411 
4412         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4413         if (zp->z_sa_hdl == NULL) {
4414                 /*
4415                  * The fs has been unmounted, or we did a
4416                  * suspend/resume and this file no longer exists.
4417                  */
4418                 if (vn_has_cached_data(vp)) {
4419                         (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4420                             B_INVAL, cr);
4421                 }
4422 
4423                 mutex_enter(&zp->z_lock);
4424                 mutex_enter(&vp->v_lock);
4425                 ASSERT(vp->v_count == 1);
4426                 VN_RELE_LOCKED(vp);
4427                 mutex_exit(&vp->v_lock);
4428                 mutex_exit(&zp->z_lock);
4429                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4430                 zfs_znode_free(zp);
4431                 return;
4432         }
4433 
4434         /*
4435          * Attempt to push any data in the page cache.  If this fails
4436          * we will get kicked out later in zfs_zinactive().
4437          */
4438         if (vn_has_cached_data(vp)) {
4439                 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4440                     cr);
4441         }
4442 
4443         if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4444                 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4445 
4446                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4447                 zfs_sa_upgrade_txholds(tx, zp);
4448                 error = dmu_tx_assign(tx, TXG_WAIT);
4449                 if (error) {
4450                         dmu_tx_abort(tx);
4451                 } else {
4452                         mutex_enter(&zp->z_lock);
4453                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4454                             (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4455                         zp->z_atime_dirty = 0;
4456                         mutex_exit(&zp->z_lock);
4457                         dmu_tx_commit(tx);
4458                 }
4459         }
4460 
4461         zfs_zinactive(zp);
4462         rw_exit(&zfsvfs->z_teardown_inactive_lock);
4463 }
4464 
4465 /*
4466  * Bounds-check the seek operation.
4467  *
4468  *      IN:     vp      - vnode seeking within
4469  *              ooff    - old file offset
4470  *              noffp   - pointer to new file offset
4471  *              ct      - caller context
4472  *
4473  *      RETURN: 0 on success, EINVAL if new offset invalid.
4474  */
4475 /* ARGSUSED */
4476 static int
4477 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4478     caller_context_t *ct)
4479 {
4480         if (vp->v_type == VDIR)
4481                 return (0);
4482         return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4483 }
4484 
4485 /*
4486  * Pre-filter the generic locking function to trap attempts to place
4487  * a mandatory lock on a memory mapped file.
4488  */
4489 static int
4490 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4491     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4492 {
4493         znode_t *zp = VTOZ(vp);
4494         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4495 
4496         ZFS_ENTER(zfsvfs);
4497         ZFS_VERIFY_ZP(zp);
4498 
4499         /*
4500          * We are following the UFS semantics with respect to mapcnt
4501          * here: If we see that the file is mapped already, then we will
4502          * return an error, but we don't worry about races between this
4503          * function and zfs_map().
4504          */
4505         if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4506                 ZFS_EXIT(zfsvfs);
4507                 return (SET_ERROR(EAGAIN));
4508         }
4509         ZFS_EXIT(zfsvfs);
4510         return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4511 }
4512 
4513 /*
4514  * If we can't find a page in the cache, we will create a new page
4515  * and fill it with file data.  For efficiency, we may try to fill
4516  * multiple pages at once (klustering) to fill up the supplied page
4517  * list.  Note that the pages to be filled are held with an exclusive
4518  * lock to prevent access by other threads while they are being filled.
4519  */
4520 static int
4521 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4522     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4523 {
4524         znode_t *zp = VTOZ(vp);
4525         page_t *pp, *cur_pp;
4526         objset_t *os = zp->z_zfsvfs->z_os;
4527         u_offset_t io_off, total;
4528         size_t io_len;
4529         int err;
4530 
4531         if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4532                 /*
4533                  * We only have a single page, don't bother klustering
4534                  */
4535                 io_off = off;
4536                 io_len = PAGESIZE;
4537                 pp = page_create_va(vp, io_off, io_len,
4538                     PG_EXCL | PG_WAIT, seg, addr);
4539         } else {
4540                 /*
4541                  * Try to find enough pages to fill the page list
4542                  */
4543                 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4544                     &io_len, off, plsz, 0);
4545         }
4546         if (pp == NULL) {
4547                 /*
4548                  * The page already exists, nothing to do here.
4549                  */
4550                 *pl = NULL;
4551                 return (0);
4552         }
4553 
4554         /*
4555          * Fill the pages in the kluster.
4556          */
4557         cur_pp = pp;
4558         for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4559                 caddr_t va;
4560 
4561                 ASSERT3U(io_off, ==, cur_pp->p_offset);
4562                 va = zfs_map_page(cur_pp, S_WRITE);
4563                 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4564                     DMU_READ_PREFETCH);
4565                 zfs_unmap_page(cur_pp, va);
4566                 if (err) {
4567                         /* On error, toss the entire kluster */
4568                         pvn_read_done(pp, B_ERROR);
4569                         /* convert checksum errors into IO errors */
4570                         if (err == ECKSUM)
4571                                 err = SET_ERROR(EIO);
4572                         return (err);
4573                 }
4574                 cur_pp = cur_pp->p_next;
4575         }
4576 
4577         /*
4578          * Fill in the page list array from the kluster starting
4579          * from the desired offset `off'.
4580          * NOTE: the page list will always be null terminated.
4581          */
4582         pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4583         ASSERT(pl == NULL || (*pl)->p_offset == off);
4584 
4585         return (0);
4586 }
4587 
4588 /*
4589  * Return pointers to the pages for the file region [off, off + len]
4590  * in the pl array.  If plsz is greater than len, this function may
4591  * also return page pointers from after the specified region
4592  * (i.e. the region [off, off + plsz]).  These additional pages are
4593  * only returned if they are already in the cache, or were created as
4594  * part of a klustered read.
4595  *
4596  *      IN:     vp      - vnode of file to get data from.
4597  *              off     - position in file to get data from.
4598  *              len     - amount of data to retrieve.
4599  *              plsz    - length of provided page list.
4600  *              seg     - segment to obtain pages for.
4601  *              addr    - virtual address of fault.
4602  *              rw      - mode of created pages.
4603  *              cr      - credentials of caller.
4604  *              ct      - caller context.
4605  *
4606  *      OUT:    protp   - protection mode of created pages.
4607  *              pl      - list of pages created.
4608  *
4609  *      RETURN: 0 on success, error code on failure.
4610  *
4611  * Timestamps:
4612  *      vp - atime updated
4613  */
4614 /* ARGSUSED */
4615 static int
4616 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4617     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4618     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4619 {
4620         znode_t         *zp = VTOZ(vp);
4621         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4622         page_t          **pl0 = pl;
4623         int             err = 0;
4624 
4625         /* we do our own caching, faultahead is unnecessary */
4626         if (pl == NULL)
4627                 return (0);
4628         else if (len > plsz)
4629                 len = plsz;
4630         else
4631                 len = P2ROUNDUP(len, PAGESIZE);
4632         ASSERT(plsz >= len);
4633 
4634         ZFS_ENTER(zfsvfs);
4635         ZFS_VERIFY_ZP(zp);
4636 
4637         if (protp)
4638                 *protp = PROT_ALL;
4639 
4640         /*
4641          * Loop through the requested range [off, off + len) looking
4642          * for pages.  If we don't find a page, we will need to create
4643          * a new page and fill it with data from the file.
4644          */
4645         while (len > 0) {
4646                 if (*pl = page_lookup(vp, off, SE_SHARED))
4647                         *(pl+1) = NULL;
4648                 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4649                         goto out;
4650                 while (*pl) {
4651                         ASSERT3U((*pl)->p_offset, ==, off);
4652                         off += PAGESIZE;
4653                         addr += PAGESIZE;
4654                         if (len > 0) {
4655                                 ASSERT3U(len, >=, PAGESIZE);
4656                                 len -= PAGESIZE;
4657                         }
4658                         ASSERT3U(plsz, >=, PAGESIZE);
4659                         plsz -= PAGESIZE;
4660                         pl++;
4661                 }
4662         }
4663 
4664         /*
4665          * Fill out the page array with any pages already in the cache.
4666          */
4667         while (plsz > 0 &&
4668             (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4669                         off += PAGESIZE;
4670                         plsz -= PAGESIZE;
4671         }
4672 out:
4673         if (err) {
4674                 /*
4675                  * Release any pages we have previously locked.
4676                  */
4677                 while (pl > pl0)
4678                         page_unlock(*--pl);
4679         } else {
4680                 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4681         }
4682 
4683         *pl = NULL;
4684 
4685         ZFS_EXIT(zfsvfs);
4686         return (err);
4687 }
4688 
4689 /*
4690  * Request a memory map for a section of a file.  This code interacts
4691  * with common code and the VM system as follows:
4692  *
4693  * - common code calls mmap(), which ends up in smmap_common()
4694  * - this calls VOP_MAP(), which takes you into (say) zfs
4695  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4696  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4697  * - zfs_addmap() updates z_mapcnt
4698  */
4699 /*ARGSUSED*/
4700 static int
4701 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4702     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4703     caller_context_t *ct)
4704 {
4705         znode_t *zp = VTOZ(vp);
4706         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4707         segvn_crargs_t  vn_a;
4708         int             error;
4709 
4710         ZFS_ENTER(zfsvfs);
4711         ZFS_VERIFY_ZP(zp);
4712 
4713         /*
4714          * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4715          */
4716 
4717         if ((prot & PROT_WRITE) && (zp->z_pflags &
4718             (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4719                 ZFS_EXIT(zfsvfs);
4720                 return (SET_ERROR(EPERM));
4721         }
4722 
4723         if ((prot & (PROT_READ | PROT_EXEC)) &&
4724             (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4725                 ZFS_EXIT(zfsvfs);
4726                 return (SET_ERROR(EACCES));
4727         }
4728 
4729         if (vp->v_flag & VNOMAP) {
4730                 ZFS_EXIT(zfsvfs);
4731                 return (SET_ERROR(ENOSYS));
4732         }
4733 
4734         if (off < 0 || len > MAXOFFSET_T - off) {
4735                 ZFS_EXIT(zfsvfs);
4736                 return (SET_ERROR(ENXIO));
4737         }
4738 
4739         if (vp->v_type != VREG) {
4740                 ZFS_EXIT(zfsvfs);
4741                 return (SET_ERROR(ENODEV));
4742         }
4743 
4744         /*
4745          * If file is locked, disallow mapping.
4746          */
4747         if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4748                 ZFS_EXIT(zfsvfs);
4749                 return (SET_ERROR(EAGAIN));
4750         }
4751 
4752         as_rangelock(as);
4753         error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4754         if (error != 0) {
4755                 as_rangeunlock(as);
4756                 ZFS_EXIT(zfsvfs);
4757                 return (error);
4758         }
4759 
4760         vn_a.vp = vp;
4761         vn_a.offset = (u_offset_t)off;
4762         vn_a.type = flags & MAP_TYPE;
4763         vn_a.prot = prot;
4764         vn_a.maxprot = maxprot;
4765         vn_a.cred = cr;
4766         vn_a.amp = NULL;
4767         vn_a.flags = flags & ~MAP_TYPE;
4768         vn_a.szc = 0;
4769         vn_a.lgrp_mem_policy_flags = 0;
4770 
4771         error = as_map(as, *addrp, len, segvn_create, &vn_a);
4772 
4773         as_rangeunlock(as);
4774         ZFS_EXIT(zfsvfs);
4775         return (error);
4776 }
4777 
4778 /* ARGSUSED */
4779 static int
4780 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4781     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4782     caller_context_t *ct)
4783 {
4784         uint64_t pages = btopr(len);
4785 
4786         atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4787         return (0);
4788 }
4789 
4790 /*
4791  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4792  * more accurate mtime for the associated file.  Since we don't have a way of
4793  * detecting when the data was actually modified, we have to resort to
4794  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4795  * last page is pushed.  The problem occurs when the msync() call is omitted,
4796  * which by far the most common case:
4797  *
4798  *      open()
4799  *      mmap()
4800  *      <modify memory>
4801  *      munmap()
4802  *      close()
4803  *      <time lapse>
4804  *      putpage() via fsflush
4805  *
4806  * If we wait until fsflush to come along, we can have a modification time that
4807  * is some arbitrary point in the future.  In order to prevent this in the
4808  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4809  * torn down.
4810  */
4811 /* ARGSUSED */
4812 static int
4813 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4814     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4815     caller_context_t *ct)
4816 {
4817         uint64_t pages = btopr(len);
4818 
4819         ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4820         atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4821 
4822         if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4823             vn_has_cached_data(vp))
4824                 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4825 
4826         return (0);
4827 }
4828 
4829 /*
4830  * Free or allocate space in a file.  Currently, this function only
4831  * supports the `F_FREESP' command.  However, this command is somewhat
4832  * misnamed, as its functionality includes the ability to allocate as
4833  * well as free space.
4834  *
4835  *      IN:     vp      - vnode of file to free data in.
4836  *              cmd     - action to take (only F_FREESP supported).
4837  *              bfp     - section of file to free/alloc.
4838  *              flag    - current file open mode flags.
4839  *              offset  - current file offset.
4840  *              cr      - credentials of caller [UNUSED].
4841  *              ct      - caller context.
4842  *
4843  *      RETURN: 0 on success, error code on failure.
4844  *
4845  * Timestamps:
4846  *      vp - ctime|mtime updated
4847  */
4848 /* ARGSUSED */
4849 static int
4850 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4851     offset_t offset, cred_t *cr, caller_context_t *ct)
4852 {
4853         znode_t         *zp = VTOZ(vp);
4854         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4855         uint64_t        off, len;
4856         int             error;
4857 
4858         ZFS_ENTER(zfsvfs);
4859         ZFS_VERIFY_ZP(zp);
4860 
4861         if (cmd != F_FREESP) {
4862                 ZFS_EXIT(zfsvfs);
4863                 return (SET_ERROR(EINVAL));
4864         }
4865 
4866         /*
4867          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4868          * callers might not be able to detect properly that we are read-only,
4869          * so check it explicitly here.
4870          */
4871         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4872                 ZFS_EXIT(zfsvfs);
4873                 return (SET_ERROR(EROFS));
4874         }
4875 
4876         if (error = convoff(vp, bfp, 0, offset)) {
4877                 ZFS_EXIT(zfsvfs);
4878                 return (error);
4879         }
4880 
4881         if (bfp->l_len < 0) {
4882                 ZFS_EXIT(zfsvfs);
4883                 return (SET_ERROR(EINVAL));
4884         }
4885 
4886         off = bfp->l_start;
4887         len = bfp->l_len; /* 0 means from off to end of file */
4888 
4889         error = zfs_freesp(zp, off, len, flag, TRUE);
4890 
4891         if (error == 0 && off == 0 && len == 0)
4892                 vnevent_truncate(ZTOV(zp), ct);
4893 
4894         ZFS_EXIT(zfsvfs);
4895         return (error);
4896 }
4897 
4898 /*ARGSUSED*/
4899 static int
4900 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4901 {
4902         znode_t         *zp = VTOZ(vp);
4903         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4904         uint32_t        gen;
4905         uint64_t        gen64;
4906         uint64_t        object = zp->z_id;
4907         zfid_short_t    *zfid;
4908         int             size, i, error;
4909 
4910         ZFS_ENTER(zfsvfs);
4911         ZFS_VERIFY_ZP(zp);
4912 
4913         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4914             &gen64, sizeof (uint64_t))) != 0) {
4915                 ZFS_EXIT(zfsvfs);
4916                 return (error);
4917         }
4918 
4919         gen = (uint32_t)gen64;
4920 
4921         size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4922         if (fidp->fid_len < size) {
4923                 fidp->fid_len = size;
4924                 ZFS_EXIT(zfsvfs);
4925                 return (SET_ERROR(ENOSPC));
4926         }
4927 
4928         zfid = (zfid_short_t *)fidp;
4929 
4930         zfid->zf_len = size;
4931 
4932         for (i = 0; i < sizeof (zfid->zf_object); i++)
4933                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4934 
4935         /* Must have a non-zero generation number to distinguish from .zfs */
4936         if (gen == 0)
4937                 gen = 1;
4938         for (i = 0; i < sizeof (zfid->zf_gen); i++)
4939                 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4940 
4941         if (size == LONG_FID_LEN) {
4942                 uint64_t        objsetid = dmu_objset_id(zfsvfs->z_os);
4943                 zfid_long_t     *zlfid;
4944 
4945                 zlfid = (zfid_long_t *)fidp;
4946 
4947                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4948                         zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4949 
4950                 /* XXX - this should be the generation number for the objset */
4951                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4952                         zlfid->zf_setgen[i] = 0;
4953         }
4954 
4955         ZFS_EXIT(zfsvfs);
4956         return (0);
4957 }
4958 
4959 static int
4960 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4961     caller_context_t *ct)
4962 {
4963         znode_t         *zp, *xzp;
4964         zfsvfs_t        *zfsvfs;
4965         zfs_dirlock_t   *dl;
4966         int             error;
4967 
4968         switch (cmd) {
4969         case _PC_LINK_MAX:
4970                 *valp = ULONG_MAX;
4971                 return (0);
4972 
4973         case _PC_FILESIZEBITS:
4974                 *valp = 64;
4975                 return (0);
4976 
4977         case _PC_XATTR_EXISTS:
4978                 zp = VTOZ(vp);
4979                 zfsvfs = zp->z_zfsvfs;
4980                 ZFS_ENTER(zfsvfs);
4981                 ZFS_VERIFY_ZP(zp);
4982                 *valp = 0;
4983                 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4984                     ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4985                 if (error == 0) {
4986                         zfs_dirent_unlock(dl);
4987                         if (!zfs_dirempty(xzp))
4988                                 *valp = 1;
4989                         VN_RELE(ZTOV(xzp));
4990                 } else if (error == ENOENT) {
4991                         /*
4992                          * If there aren't extended attributes, it's the
4993                          * same as having zero of them.
4994                          */
4995                         error = 0;
4996                 }
4997                 ZFS_EXIT(zfsvfs);
4998                 return (error);
4999 
5000         case _PC_SATTR_ENABLED:
5001         case _PC_SATTR_EXISTS:
5002                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5003                     (vp->v_type == VREG || vp->v_type == VDIR);
5004                 return (0);
5005 
5006         case _PC_ACCESS_FILTERING:
5007                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5008                     vp->v_type == VDIR;
5009                 return (0);
5010 
5011         case _PC_ACL_ENABLED:
5012                 *valp = _ACL_ACE_ENABLED;
5013                 return (0);
5014 
5015         case _PC_MIN_HOLE_SIZE:
5016                 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5017                 return (0);
5018 
5019         case _PC_TIMESTAMP_RESOLUTION:
5020                 /* nanosecond timestamp resolution */
5021                 *valp = 1L;
5022                 return (0);
5023 
5024         default:
5025                 return (fs_pathconf(vp, cmd, valp, cr, ct));
5026         }
5027 }
5028 
5029 /*ARGSUSED*/
5030 static int
5031 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5032     caller_context_t *ct)
5033 {
5034         znode_t *zp = VTOZ(vp);
5035         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5036         int error;
5037         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5038 
5039         ZFS_ENTER(zfsvfs);
5040         ZFS_VERIFY_ZP(zp);
5041         error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5042         ZFS_EXIT(zfsvfs);
5043 
5044         return (error);
5045 }
5046 
5047 /*ARGSUSED*/
5048 static int
5049 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5050     caller_context_t *ct)
5051 {
5052         znode_t *zp = VTOZ(vp);
5053         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5054         int error;
5055         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5056         zilog_t *zilog = zfsvfs->z_log;
5057 
5058         ZFS_ENTER(zfsvfs);
5059         ZFS_VERIFY_ZP(zp);
5060 
5061         error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5062 
5063         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5064                 zil_commit(zilog, 0);
5065 
5066         ZFS_EXIT(zfsvfs);
5067         return (error);
5068 }
5069 
5070 /*
5071  * The smallest read we may consider to loan out an arcbuf.
5072  * This must be a power of 2.
5073  */
5074 int zcr_blksz_min = (1 << 10);    /* 1K */
5075 /*
5076  * If set to less than the file block size, allow loaning out of an
5077  * arcbuf for a partial block read.  This must be a power of 2.
5078  */
5079 int zcr_blksz_max = (1 << 17);    /* 128K */
5080 
5081 /*ARGSUSED*/
5082 static int
5083 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5084     caller_context_t *ct)
5085 {
5086         znode_t *zp = VTOZ(vp);
5087         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5088         int max_blksz = zfsvfs->z_max_blksz;
5089         uio_t *uio = &xuio->xu_uio;
5090         ssize_t size = uio->uio_resid;
5091         offset_t offset = uio->uio_loffset;
5092         int blksz;
5093         int fullblk, i;
5094         arc_buf_t *abuf;
5095         ssize_t maxsize;
5096         int preamble, postamble;
5097 
5098         if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5099                 return (SET_ERROR(EINVAL));
5100 
5101         ZFS_ENTER(zfsvfs);
5102         ZFS_VERIFY_ZP(zp);
5103         switch (ioflag) {
5104         case UIO_WRITE:
5105                 /*
5106                  * Loan out an arc_buf for write if write size is bigger than
5107                  * max_blksz, and the file's block size is also max_blksz.
5108                  */
5109                 blksz = max_blksz;
5110                 if (size < blksz || zp->z_blksz != blksz) {
5111                         ZFS_EXIT(zfsvfs);
5112                         return (SET_ERROR(EINVAL));
5113                 }
5114                 /*
5115                  * Caller requests buffers for write before knowing where the
5116                  * write offset might be (e.g. NFS TCP write).
5117                  */
5118                 if (offset == -1) {
5119                         preamble = 0;
5120                 } else {
5121                         preamble = P2PHASE(offset, blksz);
5122                         if (preamble) {
5123                                 preamble = blksz - preamble;
5124                                 size -= preamble;
5125                         }
5126                 }
5127 
5128                 postamble = P2PHASE(size, blksz);
5129                 size -= postamble;
5130 
5131                 fullblk = size / blksz;
5132                 (void) dmu_xuio_init(xuio,
5133                     (preamble != 0) + fullblk + (postamble != 0));
5134                 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5135                     int, postamble, int,
5136                     (preamble != 0) + fullblk + (postamble != 0));
5137 
5138                 /*
5139                  * Have to fix iov base/len for partial buffers.  They
5140                  * currently represent full arc_buf's.
5141                  */
5142                 if (preamble) {
5143                         /* data begins in the middle of the arc_buf */
5144                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5145                             blksz);
5146                         ASSERT(abuf);
5147                         (void) dmu_xuio_add(xuio, abuf,
5148                             blksz - preamble, preamble);
5149                 }
5150 
5151                 for (i = 0; i < fullblk; i++) {
5152                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5153                             blksz);
5154                         ASSERT(abuf);
5155                         (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5156                 }
5157 
5158                 if (postamble) {
5159                         /* data ends in the middle of the arc_buf */
5160                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5161                             blksz);
5162                         ASSERT(abuf);
5163                         (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5164                 }
5165                 break;
5166         case UIO_READ:
5167                 /*
5168                  * Loan out an arc_buf for read if the read size is larger than
5169                  * the current file block size.  Block alignment is not
5170                  * considered.  Partial arc_buf will be loaned out for read.
5171                  */
5172                 blksz = zp->z_blksz;
5173                 if (blksz < zcr_blksz_min)
5174                         blksz = zcr_blksz_min;
5175                 if (blksz > zcr_blksz_max)
5176                         blksz = zcr_blksz_max;
5177                 /* avoid potential complexity of dealing with it */
5178                 if (blksz > max_blksz) {
5179                         ZFS_EXIT(zfsvfs);
5180                         return (SET_ERROR(EINVAL));
5181                 }
5182 
5183                 maxsize = zp->z_size - uio->uio_loffset;
5184                 if (size > maxsize)
5185                         size = maxsize;
5186 
5187                 if (size < blksz || vn_has_cached_data(vp)) {
5188                         ZFS_EXIT(zfsvfs);
5189                         return (SET_ERROR(EINVAL));
5190                 }
5191                 break;
5192         default:
5193                 ZFS_EXIT(zfsvfs);
5194                 return (SET_ERROR(EINVAL));
5195         }
5196 
5197         uio->uio_extflg = UIO_XUIO;
5198         XUIO_XUZC_RW(xuio) = ioflag;
5199         ZFS_EXIT(zfsvfs);
5200         return (0);
5201 }
5202 
5203 /*ARGSUSED*/
5204 static int
5205 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5206 {
5207         int i;
5208         arc_buf_t *abuf;
5209         int ioflag = XUIO_XUZC_RW(xuio);
5210 
5211         ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5212 
5213         i = dmu_xuio_cnt(xuio);
5214         while (i-- > 0) {
5215                 abuf = dmu_xuio_arcbuf(xuio, i);
5216                 /*
5217                  * if abuf == NULL, it must be a write buffer
5218                  * that has been returned in zfs_write().
5219                  */
5220                 if (abuf)
5221                         dmu_return_arcbuf(abuf);
5222                 ASSERT(abuf || ioflag == UIO_WRITE);
5223         }
5224 
5225         dmu_xuio_fini(xuio);
5226         return (0);
5227 }
5228 
5229 /*
5230  * Predeclare these here so that the compiler assumes that
5231  * this is an "old style" function declaration that does
5232  * not include arguments => we won't get type mismatch errors
5233  * in the initializations that follow.
5234  */
5235 static int zfs_inval();
5236 static int zfs_isdir();
5237 
5238 static int
5239 zfs_inval()
5240 {
5241         return (SET_ERROR(EINVAL));
5242 }
5243 
5244 static int
5245 zfs_isdir()
5246 {
5247         return (SET_ERROR(EISDIR));
5248 }
5249 /*
5250  * Directory vnode operations template
5251  */
5252 vnodeops_t *zfs_dvnodeops;
5253 const fs_operation_def_t zfs_dvnodeops_template[] = {
5254         VOPNAME_OPEN,           { .vop_open = zfs_open },
5255         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5256         VOPNAME_READ,           { .error = zfs_isdir },
5257         VOPNAME_WRITE,          { .error = zfs_isdir },
5258         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5259         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5260         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5261         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5262         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5263         VOPNAME_CREATE,         { .vop_create = zfs_create },
5264         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5265         VOPNAME_LINK,           { .vop_link = zfs_link },
5266         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5267         VOPNAME_MKDIR,          { .vop_mkdir = zfs_mkdir },
5268         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5269         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5270         VOPNAME_SYMLINK,        { .vop_symlink = zfs_symlink },
5271         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5272         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5273         VOPNAME_FID,            { .vop_fid = zfs_fid },
5274         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5275         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5276         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5277         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5278         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5279         NULL,                   NULL
5280 };
5281 
5282 /*
5283  * Regular file vnode operations template
5284  */
5285 vnodeops_t *zfs_fvnodeops;
5286 const fs_operation_def_t zfs_fvnodeops_template[] = {
5287         VOPNAME_OPEN,           { .vop_open = zfs_open },
5288         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5289         VOPNAME_READ,           { .vop_read = zfs_read },
5290         VOPNAME_WRITE,          { .vop_write = zfs_write },
5291         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5292         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5293         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5294         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5295         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5296         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5297         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5298         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5299         VOPNAME_FID,            { .vop_fid = zfs_fid },
5300         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5301         VOPNAME_FRLOCK,         { .vop_frlock = zfs_frlock },
5302         VOPNAME_SPACE,          { .vop_space = zfs_space },
5303         VOPNAME_GETPAGE,        { .vop_getpage = zfs_getpage },
5304         VOPNAME_PUTPAGE,        { .vop_putpage = zfs_putpage },
5305         VOPNAME_MAP,            { .vop_map = zfs_map },
5306         VOPNAME_ADDMAP,         { .vop_addmap = zfs_addmap },
5307         VOPNAME_DELMAP,         { .vop_delmap = zfs_delmap },
5308         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5309         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5310         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5311         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5312         VOPNAME_REQZCBUF,       { .vop_reqzcbuf = zfs_reqzcbuf },
5313         VOPNAME_RETZCBUF,       { .vop_retzcbuf = zfs_retzcbuf },
5314         NULL,                   NULL
5315 };
5316 
5317 /*
5318  * Symbolic link vnode operations template
5319  */
5320 vnodeops_t *zfs_symvnodeops;
5321 const fs_operation_def_t zfs_symvnodeops_template[] = {
5322         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5323         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5324         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5325         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5326         VOPNAME_READLINK,       { .vop_readlink = zfs_readlink },
5327         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5328         VOPNAME_FID,            { .vop_fid = zfs_fid },
5329         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5330         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5331         NULL,                   NULL
5332 };
5333 
5334 /*
5335  * special share hidden files vnode operations template
5336  */
5337 vnodeops_t *zfs_sharevnodeops;
5338 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5339         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5340         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5341         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5342         VOPNAME_FID,            { .vop_fid = zfs_fid },
5343         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5344         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5345         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5346         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5347         NULL,                   NULL
5348 };
5349 
5350 /*
5351  * Extended attribute directory vnode operations template
5352  *
5353  * This template is identical to the directory vnodes
5354  * operation template except for restricted operations:
5355  *      VOP_MKDIR()
5356  *      VOP_SYMLINK()
5357  *
5358  * Note that there are other restrictions embedded in:
5359  *      zfs_create()    - restrict type to VREG
5360  *      zfs_link()      - no links into/out of attribute space
5361  *      zfs_rename()    - no moves into/out of attribute space
5362  */
5363 vnodeops_t *zfs_xdvnodeops;
5364 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5365         VOPNAME_OPEN,           { .vop_open = zfs_open },
5366         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5367         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5368         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5369         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5370         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5371         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5372         VOPNAME_CREATE,         { .vop_create = zfs_create },
5373         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5374         VOPNAME_LINK,           { .vop_link = zfs_link },
5375         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5376         VOPNAME_MKDIR,          { .error = zfs_inval },
5377         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5378         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5379         VOPNAME_SYMLINK,        { .error = zfs_inval },
5380         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5381         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5382         VOPNAME_FID,            { .vop_fid = zfs_fid },
5383         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5384         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5385         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5386         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5387         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5388         NULL,                   NULL
5389 };
5390 
5391 /*
5392  * Error vnode operations template
5393  */
5394 vnodeops_t *zfs_evnodeops;
5395 const fs_operation_def_t zfs_evnodeops_template[] = {
5396         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5397         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5398         NULL,                   NULL
5399 };