1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2015 Joyent, Inc.
27 * Copyright 2017 Nexenta Systems, Inc.
28 */
29
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kmem.h>
45 #include <sys/taskq.h>
46 #include <sys/uio.h>
47 #include <sys/vmsystm.h>
48 #include <sys/atomic.h>
49 #include <sys/vm.h>
50 #include <vm/seg_vn.h>
51 #include <vm/pvn.h>
52 #include <vm/as.h>
53 #include <vm/kpm.h>
54 #include <vm/seg_kpm.h>
55 #include <sys/mman.h>
56 #include <sys/pathname.h>
57 #include <sys/cmn_err.h>
58 #include <sys/errno.h>
59 #include <sys/unistd.h>
60 #include <sys/zfs_dir.h>
61 #include <sys/zfs_acl.h>
62 #include <sys/zfs_ioctl.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/dmu.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa.h>
67 #include <sys/txg.h>
68 #include <sys/dbuf.h>
69 #include <sys/zap.h>
70 #include <sys/sa.h>
71 #include <sys/dirent.h>
72 #include <sys/policy.h>
73 #include <sys/sunddi.h>
74 #include <sys/filio.h>
75 #include <sys/sid.h>
76 #include "fs/fs_subr.h"
77 #include <sys/zfs_ctldir.h>
78 #include <sys/zfs_fuid.h>
79 #include <sys/zfs_sa.h>
80 #include <sys/dnlc.h>
81 #include <sys/zfs_rlock.h>
82 #include <sys/extdirent.h>
83 #include <sys/kidmap.h>
84 #include <sys/cred.h>
85 #include <sys/attr.h>
86 #include <sys/zil.h>
87
88 /*
89 * Programming rules.
90 *
91 * Each vnode op performs some logical unit of work. To do this, the ZPL must
92 * properly lock its in-core state, create a DMU transaction, do the work,
93 * record this work in the intent log (ZIL), commit the DMU transaction,
94 * and wait for the intent log to commit if it is a synchronous operation.
95 * Moreover, the vnode ops must work in both normal and log replay context.
96 * The ordering of events is important to avoid deadlocks and references
97 * to freed memory. The example below illustrates the following Big Rules:
98 *
99 * (1) A check must be made in each zfs thread for a mounted file system.
100 * This is done avoiding races using ZFS_ENTER(zfsvfs).
101 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
102 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
103 * can return EIO from the calling function.
104 *
105 * (2) VN_RELE() should always be the last thing except for zil_commit()
106 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
107 * First, if it's the last reference, the vnode/znode
108 * can be freed, so the zp may point to freed memory. Second, the last
109 * reference will call zfs_zinactive(), which may induce a lot of work --
110 * pushing cached pages (which acquires range locks) and syncing out
111 * cached atime changes. Third, zfs_zinactive() may require a new tx,
112 * which could deadlock the system if you were already holding one.
113 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
114 *
115 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
116 * as they can span dmu_tx_assign() calls.
117 *
118 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
119 * dmu_tx_assign(). This is critical because we don't want to block
120 * while holding locks.
121 *
122 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
123 * reduces lock contention and CPU usage when we must wait (note that if
124 * throughput is constrained by the storage, nearly every transaction
125 * must wait).
126 *
127 * Note, in particular, that if a lock is sometimes acquired before
128 * the tx assigns, and sometimes after (e.g. z_lock), then failing
129 * to use a non-blocking assign can deadlock the system. The scenario:
130 *
131 * Thread A has grabbed a lock before calling dmu_tx_assign().
132 * Thread B is in an already-assigned tx, and blocks for this lock.
133 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
134 * forever, because the previous txg can't quiesce until B's tx commits.
135 *
136 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
137 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
138 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
139 * to indicate that this operation has already called dmu_tx_wait().
140 * This will ensure that we don't retry forever, waiting a short bit
141 * each time.
142 *
143 * (5) If the operation succeeded, generate the intent log entry for it
144 * before dropping locks. This ensures that the ordering of events
145 * in the intent log matches the order in which they actually occurred.
146 * During ZIL replay the zfs_log_* functions will update the sequence
147 * number to indicate the zil transaction has replayed.
148 *
149 * (6) At the end of each vnode op, the DMU tx must always commit,
150 * regardless of whether there were any errors.
151 *
152 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
153 * to ensure that synchronous semantics are provided when necessary.
154 *
155 * In general, this is how things should be ordered in each vnode op:
156 *
157 * ZFS_ENTER(zfsvfs); // exit if unmounted
158 * top:
159 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
160 * rw_enter(...); // grab any other locks you need
161 * tx = dmu_tx_create(...); // get DMU tx
162 * dmu_tx_hold_*(); // hold each object you might modify
163 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
164 * if (error) {
165 * rw_exit(...); // drop locks
166 * zfs_dirent_unlock(dl); // unlock directory entry
167 * VN_RELE(...); // release held vnodes
168 * if (error == ERESTART) {
169 * waited = B_TRUE;
170 * dmu_tx_wait(tx);
171 * dmu_tx_abort(tx);
172 * goto top;
173 * }
174 * dmu_tx_abort(tx); // abort DMU tx
175 * ZFS_EXIT(zfsvfs); // finished in zfs
176 * return (error); // really out of space
177 * }
178 * error = do_real_work(); // do whatever this VOP does
179 * if (error == 0)
180 * zfs_log_*(...); // on success, make ZIL entry
181 * dmu_tx_commit(tx); // commit DMU tx -- error or not
182 * rw_exit(...); // drop locks
183 * zfs_dirent_unlock(dl); // unlock directory entry
184 * VN_RELE(...); // release held vnodes
185 * zil_commit(zilog, foid); // synchronous when necessary
186 * ZFS_EXIT(zfsvfs); // finished in zfs
187 * return (error); // done, report error
188 */
189
190 /* ARGSUSED */
191 static int
192 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
193 {
194 znode_t *zp = VTOZ(*vpp);
195 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
196
197 ZFS_ENTER(zfsvfs);
198 ZFS_VERIFY_ZP(zp);
199
200 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
201 ((flag & FAPPEND) == 0)) {
202 ZFS_EXIT(zfsvfs);
203 return (SET_ERROR(EPERM));
204 }
205
206 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
207 ZTOV(zp)->v_type == VREG &&
208 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
209 if (fs_vscan(*vpp, cr, 0) != 0) {
210 ZFS_EXIT(zfsvfs);
211 return (SET_ERROR(EACCES));
212 }
213 }
214
215 /* Keep a count of the synchronous opens in the znode */
216 if (flag & (FSYNC | FDSYNC))
217 atomic_inc_32(&zp->z_sync_cnt);
218
219 ZFS_EXIT(zfsvfs);
220 return (0);
221 }
222
223 /* ARGSUSED */
224 static int
225 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
226 caller_context_t *ct)
227 {
228 znode_t *zp = VTOZ(vp);
229 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
230
231 /*
232 * Clean up any locks held by this process on the vp.
233 */
234 cleanlocks(vp, ddi_get_pid(), 0);
235 cleanshares(vp, ddi_get_pid());
236
237 ZFS_ENTER(zfsvfs);
238 ZFS_VERIFY_ZP(zp);
239
240 /* Decrement the synchronous opens in the znode */
241 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
242 atomic_dec_32(&zp->z_sync_cnt);
243
244 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
245 ZTOV(zp)->v_type == VREG &&
246 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
247 VERIFY(fs_vscan(vp, cr, 1) == 0);
248
249 ZFS_EXIT(zfsvfs);
250 return (0);
251 }
252
253 /*
254 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
255 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
256 */
257 static int
258 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
259 {
260 znode_t *zp = VTOZ(vp);
261 uint64_t noff = (uint64_t)*off; /* new offset */
262 uint64_t file_sz;
263 int error;
264 boolean_t hole;
265
266 file_sz = zp->z_size;
267 if (noff >= file_sz) {
268 return (SET_ERROR(ENXIO));
269 }
270
271 if (cmd == _FIO_SEEK_HOLE)
272 hole = B_TRUE;
273 else
274 hole = B_FALSE;
275
276 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
277
278 if (error == ESRCH)
279 return (SET_ERROR(ENXIO));
280
281 /*
282 * We could find a hole that begins after the logical end-of-file,
283 * because dmu_offset_next() only works on whole blocks. If the
284 * EOF falls mid-block, then indicate that the "virtual hole"
285 * at the end of the file begins at the logical EOF, rather than
286 * at the end of the last block.
287 */
288 if (noff > file_sz) {
289 ASSERT(hole);
290 noff = file_sz;
291 }
292
293 if (noff < *off)
294 return (error);
295 *off = noff;
296 return (error);
297 }
298
299 /* ARGSUSED */
300 static int
301 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
302 int *rvalp, caller_context_t *ct)
303 {
304 offset_t off;
305 offset_t ndata;
306 dmu_object_info_t doi;
307 int error;
308 zfsvfs_t *zfsvfs;
309 znode_t *zp;
310
311 switch (com) {
312 case _FIOFFS:
313 {
314 return (zfs_sync(vp->v_vfsp, 0, cred));
315
316 /*
317 * The following two ioctls are used by bfu. Faking out,
318 * necessary to avoid bfu errors.
319 */
320 }
321 case _FIOGDIO:
322 case _FIOSDIO:
323 {
324 return (0);
325 }
326
327 case _FIO_SEEK_DATA:
328 case _FIO_SEEK_HOLE:
329 {
330 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
331 return (SET_ERROR(EFAULT));
332
333 zp = VTOZ(vp);
334 zfsvfs = zp->z_zfsvfs;
335 ZFS_ENTER(zfsvfs);
336 ZFS_VERIFY_ZP(zp);
337
338 /* offset parameter is in/out */
339 error = zfs_holey(vp, com, &off);
340 ZFS_EXIT(zfsvfs);
341 if (error)
342 return (error);
343 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
344 return (SET_ERROR(EFAULT));
345 return (0);
346 }
347 case _FIO_COUNT_FILLED:
348 {
349 /*
350 * _FIO_COUNT_FILLED adds a new ioctl command which
351 * exposes the number of filled blocks in a
352 * ZFS object.
353 */
354 zp = VTOZ(vp);
355 zfsvfs = zp->z_zfsvfs;
356 ZFS_ENTER(zfsvfs);
357 ZFS_VERIFY_ZP(zp);
358
359 /*
360 * Wait for all dirty blocks for this object
361 * to get synced out to disk, and the DMU info
362 * updated.
363 */
364 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
365 if (error) {
366 ZFS_EXIT(zfsvfs);
367 return (error);
368 }
369
370 /*
371 * Retrieve fill count from DMU object.
372 */
373 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
374 if (error) {
375 ZFS_EXIT(zfsvfs);
376 return (error);
377 }
378
379 ndata = doi.doi_fill_count;
380
381 ZFS_EXIT(zfsvfs);
382 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
383 return (SET_ERROR(EFAULT));
384 return (0);
385 }
386 }
387 return (SET_ERROR(ENOTTY));
388 }
389
390 /*
391 * Utility functions to map and unmap a single physical page. These
392 * are used to manage the mappable copies of ZFS file data, and therefore
393 * do not update ref/mod bits.
394 */
395 caddr_t
396 zfs_map_page(page_t *pp, enum seg_rw rw)
397 {
398 if (kpm_enable)
399 return (hat_kpm_mapin(pp, 0));
400 ASSERT(rw == S_READ || rw == S_WRITE);
401 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
402 (caddr_t)-1));
403 }
404
405 void
406 zfs_unmap_page(page_t *pp, caddr_t addr)
407 {
408 if (kpm_enable) {
409 hat_kpm_mapout(pp, 0, addr);
410 } else {
411 ppmapout(addr);
412 }
413 }
414
415 /*
416 * When a file is memory mapped, we must keep the IO data synchronized
417 * between the DMU cache and the memory mapped pages. What this means:
418 *
419 * On Write: If we find a memory mapped page, we write to *both*
420 * the page and the dmu buffer.
421 */
422 static void
423 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
424 {
425 int64_t off;
426
427 off = start & PAGEOFFSET;
428 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
429 page_t *pp;
430 uint64_t nbytes = MIN(PAGESIZE - off, len);
431
432 if (pp = page_lookup(vp, start, SE_SHARED)) {
433 caddr_t va;
434
435 va = zfs_map_page(pp, S_WRITE);
436 (void) dmu_read(os, oid, start+off, nbytes, va+off,
437 DMU_READ_PREFETCH);
438 zfs_unmap_page(pp, va);
439 page_unlock(pp);
440 }
441 len -= nbytes;
442 off = 0;
443 }
444 }
445
446 /*
447 * When a file is memory mapped, we must keep the IO data synchronized
448 * between the DMU cache and the memory mapped pages. What this means:
449 *
450 * On Read: We "read" preferentially from memory mapped pages,
451 * else we default from the dmu buffer.
452 *
453 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
454 * the file is memory mapped.
455 */
456 static int
457 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
458 {
459 znode_t *zp = VTOZ(vp);
460 int64_t start, off;
461 int len = nbytes;
462 int error = 0;
463
464 start = uio->uio_loffset;
465 off = start & PAGEOFFSET;
466 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
467 page_t *pp;
468 uint64_t bytes = MIN(PAGESIZE - off, len);
469
470 if (pp = page_lookup(vp, start, SE_SHARED)) {
471 caddr_t va;
472
473 va = zfs_map_page(pp, S_READ);
474 error = uiomove(va + off, bytes, UIO_READ, uio);
475 zfs_unmap_page(pp, va);
476 page_unlock(pp);
477 } else {
478 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
479 uio, bytes);
480 }
481 len -= bytes;
482 off = 0;
483 if (error)
484 break;
485 }
486 return (error);
487 }
488
489 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
490
491 /*
492 * Read bytes from specified file into supplied buffer.
493 *
494 * IN: vp - vnode of file to be read from.
495 * uio - structure supplying read location, range info,
496 * and return buffer.
497 * ioflag - SYNC flags; used to provide FRSYNC semantics.
498 * cr - credentials of caller.
499 * ct - caller context
500 *
501 * OUT: uio - updated offset and range, buffer filled.
502 *
503 * RETURN: 0 on success, error code on failure.
504 *
505 * Side Effects:
506 * vp - atime updated if byte count > 0
507 */
508 /* ARGSUSED */
509 static int
510 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
511 {
512 znode_t *zp = VTOZ(vp);
513 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
514 ssize_t n, nbytes;
515 int error = 0;
516 xuio_t *xuio = NULL;
517
518 ZFS_ENTER(zfsvfs);
519 ZFS_VERIFY_ZP(zp);
520
521 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
522 ZFS_EXIT(zfsvfs);
523 return (SET_ERROR(EACCES));
524 }
525
526 /*
527 * Validate file offset
528 */
529 if (uio->uio_loffset < (offset_t)0) {
530 ZFS_EXIT(zfsvfs);
531 return (SET_ERROR(EINVAL));
532 }
533
534 /*
535 * Fasttrack empty reads
536 */
537 if (uio->uio_resid == 0) {
538 ZFS_EXIT(zfsvfs);
539 return (0);
540 }
541
542 /*
543 * Check for mandatory locks
544 */
545 if (MANDMODE(zp->z_mode)) {
546 if (error = chklock(vp, FREAD,
547 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
548 ZFS_EXIT(zfsvfs);
549 return (error);
550 }
551 }
552
553 /*
554 * If we're in FRSYNC mode, sync out this znode before reading it.
555 */
556 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
557 zil_commit(zfsvfs->z_log, zp->z_id);
558
559 /*
560 * Lock the range against changes.
561 */
562 locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
563 uio->uio_loffset, uio->uio_resid, RL_READER);
564
565 /*
566 * If we are reading past end-of-file we can skip
567 * to the end; but we might still need to set atime.
568 */
569 if (uio->uio_loffset >= zp->z_size) {
570 error = 0;
571 goto out;
572 }
573
574 ASSERT(uio->uio_loffset < zp->z_size);
575 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
576
577 if ((uio->uio_extflg == UIO_XUIO) &&
578 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
579 int nblk;
580 int blksz = zp->z_blksz;
581 uint64_t offset = uio->uio_loffset;
582
583 xuio = (xuio_t *)uio;
584 if ((ISP2(blksz))) {
585 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
586 blksz)) / blksz;
587 } else {
588 ASSERT(offset + n <= blksz);
589 nblk = 1;
590 }
591 (void) dmu_xuio_init(xuio, nblk);
592
593 if (vn_has_cached_data(vp)) {
594 /*
595 * For simplicity, we always allocate a full buffer
596 * even if we only expect to read a portion of a block.
597 */
598 while (--nblk >= 0) {
599 (void) dmu_xuio_add(xuio,
600 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
601 blksz), 0, blksz);
602 }
603 }
604 }
605
606 while (n > 0) {
607 nbytes = MIN(n, zfs_read_chunk_size -
608 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
609
610 if (vn_has_cached_data(vp)) {
611 error = mappedread(vp, nbytes, uio);
612 } else {
613 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
614 uio, nbytes);
615 }
616 if (error) {
617 /* convert checksum errors into IO errors */
618 if (error == ECKSUM)
619 error = SET_ERROR(EIO);
620 break;
621 }
622
623 n -= nbytes;
624 }
625 out:
626 rangelock_exit(lr);
627
628 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
629 ZFS_EXIT(zfsvfs);
630 return (error);
631 }
632
633 /*
634 * Write the bytes to a file.
635 *
636 * IN: vp - vnode of file to be written to.
637 * uio - structure supplying write location, range info,
638 * and data buffer.
639 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
640 * set if in append mode.
641 * cr - credentials of caller.
642 * ct - caller context (NFS/CIFS fem monitor only)
643 *
644 * OUT: uio - updated offset and range.
645 *
646 * RETURN: 0 on success, error code on failure.
647 *
648 * Timestamps:
649 * vp - ctime|mtime updated if byte count > 0
650 */
651
652 /* ARGSUSED */
653 static int
654 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
655 {
656 znode_t *zp = VTOZ(vp);
657 rlim64_t limit = uio->uio_llimit;
658 ssize_t start_resid = uio->uio_resid;
659 ssize_t tx_bytes;
660 uint64_t end_size;
661 dmu_tx_t *tx;
662 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
663 zilog_t *zilog;
664 offset_t woff;
665 ssize_t n, nbytes;
666 int max_blksz = zfsvfs->z_max_blksz;
667 int error = 0;
668 arc_buf_t *abuf;
669 iovec_t *aiov = NULL;
670 xuio_t *xuio = NULL;
671 int i_iov = 0;
672 int iovcnt = uio->uio_iovcnt;
673 iovec_t *iovp = uio->uio_iov;
674 int write_eof;
675 int count = 0;
676 sa_bulk_attr_t bulk[4];
677 uint64_t mtime[2], ctime[2];
678
679 /*
680 * Fasttrack empty write
681 */
682 n = start_resid;
683 if (n == 0)
684 return (0);
685
686 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
687 limit = MAXOFFSET_T;
688
689 ZFS_ENTER(zfsvfs);
690 ZFS_VERIFY_ZP(zp);
691
692 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
695 &zp->z_size, 8);
696 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
697 &zp->z_pflags, 8);
698
699 /*
700 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
701 * callers might not be able to detect properly that we are read-only,
702 * so check it explicitly here.
703 */
704 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
705 ZFS_EXIT(zfsvfs);
706 return (SET_ERROR(EROFS));
707 }
708
709 /*
710 * If immutable or not appending then return EPERM.
711 * Intentionally allow ZFS_READONLY through here.
712 * See zfs_zaccess_common()
713 */
714 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
715 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
716 (uio->uio_loffset < zp->z_size))) {
717 ZFS_EXIT(zfsvfs);
718 return (SET_ERROR(EPERM));
719 }
720
721 zilog = zfsvfs->z_log;
722
723 /*
724 * Validate file offset
725 */
726 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
727 if (woff < 0) {
728 ZFS_EXIT(zfsvfs);
729 return (SET_ERROR(EINVAL));
730 }
731
732 /*
733 * Check for mandatory locks before calling rangelock_enter()
734 * in order to prevent a deadlock with locks set via fcntl().
735 */
736 if (MANDMODE((mode_t)zp->z_mode) &&
737 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
738 ZFS_EXIT(zfsvfs);
739 return (error);
740 }
741
742 /*
743 * Pre-fault the pages to ensure slow (eg NFS) pages
744 * don't hold up txg.
745 * Skip this if uio contains loaned arc_buf.
746 */
747 if ((uio->uio_extflg == UIO_XUIO) &&
748 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
749 xuio = (xuio_t *)uio;
750 else
751 uio_prefaultpages(MIN(n, max_blksz), uio);
752
753 /*
754 * If in append mode, set the io offset pointer to eof.
755 */
756 locked_range_t *lr;
757 if (ioflag & FAPPEND) {
758 /*
759 * Obtain an appending range lock to guarantee file append
760 * semantics. We reset the write offset once we have the lock.
761 */
762 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
763 woff = lr->lr_offset;
764 if (lr->lr_length == UINT64_MAX) {
765 /*
766 * We overlocked the file because this write will cause
767 * the file block size to increase.
768 * Note that zp_size cannot change with this lock held.
769 */
770 woff = zp->z_size;
771 }
772 uio->uio_loffset = woff;
773 } else {
774 /*
775 * Note that if the file block size will change as a result of
776 * this write, then this range lock will lock the entire file
777 * so that we can re-write the block safely.
778 */
779 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
780 }
781
782 if (woff >= limit) {
783 rangelock_exit(lr);
784 ZFS_EXIT(zfsvfs);
785 return (SET_ERROR(EFBIG));
786 }
787
788 if ((woff + n) > limit || woff > (limit - n))
789 n = limit - woff;
790
791 /* Will this write extend the file length? */
792 write_eof = (woff + n > zp->z_size);
793
794 end_size = MAX(zp->z_size, woff + n);
795
796 /*
797 * Write the file in reasonable size chunks. Each chunk is written
798 * in a separate transaction; this keeps the intent log records small
799 * and allows us to do more fine-grained space accounting.
800 */
801 while (n > 0) {
802 abuf = NULL;
803 woff = uio->uio_loffset;
804 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
805 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
806 if (abuf != NULL)
807 dmu_return_arcbuf(abuf);
808 error = SET_ERROR(EDQUOT);
809 break;
810 }
811
812 if (xuio && abuf == NULL) {
813 ASSERT(i_iov < iovcnt);
814 aiov = &iovp[i_iov];
815 abuf = dmu_xuio_arcbuf(xuio, i_iov);
816 dmu_xuio_clear(xuio, i_iov);
817 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
818 iovec_t *, aiov, arc_buf_t *, abuf);
819 ASSERT((aiov->iov_base == abuf->b_data) ||
820 ((char *)aiov->iov_base - (char *)abuf->b_data +
821 aiov->iov_len == arc_buf_size(abuf)));
822 i_iov++;
823 } else if (abuf == NULL && n >= max_blksz &&
824 woff >= zp->z_size &&
825 P2PHASE(woff, max_blksz) == 0 &&
826 zp->z_blksz == max_blksz) {
827 /*
828 * This write covers a full block. "Borrow" a buffer
829 * from the dmu so that we can fill it before we enter
830 * a transaction. This avoids the possibility of
831 * holding up the transaction if the data copy hangs
832 * up on a pagefault (e.g., from an NFS server mapping).
833 */
834 size_t cbytes;
835
836 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
837 max_blksz);
838 ASSERT(abuf != NULL);
839 ASSERT(arc_buf_size(abuf) == max_blksz);
840 if (error = uiocopy(abuf->b_data, max_blksz,
841 UIO_WRITE, uio, &cbytes)) {
842 dmu_return_arcbuf(abuf);
843 break;
844 }
845 ASSERT(cbytes == max_blksz);
846 }
847
848 /*
849 * Start a transaction.
850 */
851 tx = dmu_tx_create(zfsvfs->z_os);
852 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
853 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
854 zfs_sa_upgrade_txholds(tx, zp);
855 error = dmu_tx_assign(tx, TXG_WAIT);
856 if (error) {
857 dmu_tx_abort(tx);
858 if (abuf != NULL)
859 dmu_return_arcbuf(abuf);
860 break;
861 }
862
863 /*
864 * If rangelock_enter() over-locked we grow the blocksize
865 * and then reduce the lock range. This will only happen
866 * on the first iteration since rangelock_reduce() will
867 * shrink down lr_length to the appropriate size.
868 */
869 if (lr->lr_length == UINT64_MAX) {
870 uint64_t new_blksz;
871
872 if (zp->z_blksz > max_blksz) {
873 /*
874 * File's blocksize is already larger than the
875 * "recordsize" property. Only let it grow to
876 * the next power of 2.
877 */
878 ASSERT(!ISP2(zp->z_blksz));
879 new_blksz = MIN(end_size,
880 1 << highbit64(zp->z_blksz));
881 } else {
882 new_blksz = MIN(end_size, max_blksz);
883 }
884 zfs_grow_blocksize(zp, new_blksz, tx);
885 rangelock_reduce(lr, woff, n);
886 }
887
888 /*
889 * XXX - should we really limit each write to z_max_blksz?
890 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
891 */
892 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
893
894 if (abuf == NULL) {
895 tx_bytes = uio->uio_resid;
896 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
897 uio, nbytes, tx);
898 tx_bytes -= uio->uio_resid;
899 } else {
900 tx_bytes = nbytes;
901 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
902 /*
903 * If this is not a full block write, but we are
904 * extending the file past EOF and this data starts
905 * block-aligned, use assign_arcbuf(). Otherwise,
906 * write via dmu_write().
907 */
908 if (tx_bytes < max_blksz && (!write_eof ||
909 aiov->iov_base != abuf->b_data)) {
910 ASSERT(xuio);
911 dmu_write(zfsvfs->z_os, zp->z_id, woff,
912 aiov->iov_len, aiov->iov_base, tx);
913 dmu_return_arcbuf(abuf);
914 xuio_stat_wbuf_copied();
915 } else {
916 ASSERT(xuio || tx_bytes == max_blksz);
917 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
918 woff, abuf, tx);
919 }
920 ASSERT(tx_bytes <= uio->uio_resid);
921 uioskip(uio, tx_bytes);
922 }
923 if (tx_bytes && vn_has_cached_data(vp)) {
924 update_pages(vp, woff,
925 tx_bytes, zfsvfs->z_os, zp->z_id);
926 }
927
928 /*
929 * If we made no progress, we're done. If we made even
930 * partial progress, update the znode and ZIL accordingly.
931 */
932 if (tx_bytes == 0) {
933 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
934 (void *)&zp->z_size, sizeof (uint64_t), tx);
935 dmu_tx_commit(tx);
936 ASSERT(error != 0);
937 break;
938 }
939
940 /*
941 * Clear Set-UID/Set-GID bits on successful write if not
942 * privileged and at least one of the excute bits is set.
943 *
944 * It would be nice to to this after all writes have
945 * been done, but that would still expose the ISUID/ISGID
946 * to another app after the partial write is committed.
947 *
948 * Note: we don't call zfs_fuid_map_id() here because
949 * user 0 is not an ephemeral uid.
950 */
951 mutex_enter(&zp->z_acl_lock);
952 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
953 (S_IXUSR >> 6))) != 0 &&
954 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
955 secpolicy_vnode_setid_retain(cr,
956 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
957 uint64_t newmode;
958 zp->z_mode &= ~(S_ISUID | S_ISGID);
959 newmode = zp->z_mode;
960 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
961 (void *)&newmode, sizeof (uint64_t), tx);
962 }
963 mutex_exit(&zp->z_acl_lock);
964
965 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
966 B_TRUE);
967
968 /*
969 * Update the file size (zp_size) if it has changed;
970 * account for possible concurrent updates.
971 */
972 while ((end_size = zp->z_size) < uio->uio_loffset) {
973 (void) atomic_cas_64(&zp->z_size, end_size,
974 uio->uio_loffset);
975 ASSERT(error == 0);
976 }
977 /*
978 * If we are replaying and eof is non zero then force
979 * the file size to the specified eof. Note, there's no
980 * concurrency during replay.
981 */
982 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
983 zp->z_size = zfsvfs->z_replay_eof;
984
985 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
986
987 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
988 dmu_tx_commit(tx);
989
990 if (error != 0)
991 break;
992 ASSERT(tx_bytes == nbytes);
993 n -= nbytes;
994
995 if (!xuio && n > 0)
996 uio_prefaultpages(MIN(n, max_blksz), uio);
997 }
998
999 rangelock_exit(lr);
1000
1001 /*
1002 * If we're in replay mode, or we made no progress, return error.
1003 * Otherwise, it's at least a partial write, so it's successful.
1004 */
1005 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1006 ZFS_EXIT(zfsvfs);
1007 return (error);
1008 }
1009
1010 if (ioflag & (FSYNC | FDSYNC) ||
1011 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1012 zil_commit(zilog, zp->z_id);
1013
1014 ZFS_EXIT(zfsvfs);
1015 return (0);
1016 }
1017
1018 /* ARGSUSED */
1019 void
1020 zfs_get_done(zgd_t *zgd, int error)
1021 {
1022 znode_t *zp = zgd->zgd_private;
1023 objset_t *os = zp->z_zfsvfs->z_os;
1024
1025 if (zgd->zgd_db)
1026 dmu_buf_rele(zgd->zgd_db, zgd);
1027
1028 rangelock_exit(zgd->zgd_lr);
1029
1030 /*
1031 * Release the vnode asynchronously as we currently have the
1032 * txg stopped from syncing.
1033 */
1034 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1035
1036 kmem_free(zgd, sizeof (zgd_t));
1037 }
1038
1039 #ifdef DEBUG
1040 static int zil_fault_io = 0;
1041 #endif
1042
1043 /*
1044 * Get data to generate a TX_WRITE intent log record.
1045 */
1046 int
1047 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1048 {
1049 zfsvfs_t *zfsvfs = arg;
1050 objset_t *os = zfsvfs->z_os;
1051 znode_t *zp;
1052 uint64_t object = lr->lr_foid;
1053 uint64_t offset = lr->lr_offset;
1054 uint64_t size = lr->lr_length;
1055 dmu_buf_t *db;
1056 zgd_t *zgd;
1057 int error = 0;
1058
1059 ASSERT3P(lwb, !=, NULL);
1060 ASSERT3P(zio, !=, NULL);
1061 ASSERT3U(size, !=, 0);
1062
1063 /*
1064 * Nothing to do if the file has been removed
1065 */
1066 if (zfs_zget(zfsvfs, object, &zp) != 0)
1067 return (SET_ERROR(ENOENT));
1068 if (zp->z_unlinked) {
1069 /*
1070 * Release the vnode asynchronously as we currently have the
1071 * txg stopped from syncing.
1072 */
1073 VN_RELE_ASYNC(ZTOV(zp),
1074 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1075 return (SET_ERROR(ENOENT));
1076 }
1077
1078 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1079 zgd->zgd_lwb = lwb;
1080 zgd->zgd_private = zp;
1081
1082 /*
1083 * Write records come in two flavors: immediate and indirect.
1084 * For small writes it's cheaper to store the data with the
1085 * log record (immediate); for large writes it's cheaper to
1086 * sync the data and get a pointer to it (indirect) so that
1087 * we don't have to write the data twice.
1088 */
1089 if (buf != NULL) { /* immediate write */
1090 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1091 offset, size, RL_READER);
1092 /* test for truncation needs to be done while range locked */
1093 if (offset >= zp->z_size) {
1094 error = SET_ERROR(ENOENT);
1095 } else {
1096 error = dmu_read(os, object, offset, size, buf,
1097 DMU_READ_NO_PREFETCH);
1098 }
1099 ASSERT(error == 0 || error == ENOENT);
1100 } else { /* indirect write */
1101 /*
1102 * Have to lock the whole block to ensure when it's
1103 * written out and its checksum is being calculated
1104 * that no one can change the data. We need to re-check
1105 * blocksize after we get the lock in case it's changed!
1106 */
1107 for (;;) {
1108 uint64_t blkoff;
1109 size = zp->z_blksz;
1110 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1111 offset -= blkoff;
1112 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1113 offset, size, RL_READER);
1114 if (zp->z_blksz == size)
1115 break;
1116 offset += blkoff;
1117 rangelock_exit(zgd->zgd_lr);
1118 }
1119 /* test for truncation needs to be done while range locked */
1120 if (lr->lr_offset >= zp->z_size)
1121 error = SET_ERROR(ENOENT);
1122 #ifdef DEBUG
1123 if (zil_fault_io) {
1124 error = SET_ERROR(EIO);
1125 zil_fault_io = 0;
1126 }
1127 #endif
1128 if (error == 0)
1129 error = dmu_buf_hold(os, object, offset, zgd, &db,
1130 DMU_READ_NO_PREFETCH);
1131
1132 if (error == 0) {
1133 blkptr_t *bp = &lr->lr_blkptr;
1134
1135 zgd->zgd_db = db;
1136 zgd->zgd_bp = bp;
1137
1138 ASSERT(db->db_offset == offset);
1139 ASSERT(db->db_size == size);
1140
1141 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1142 zfs_get_done, zgd);
1143 ASSERT(error || lr->lr_length <= size);
1144
1145 /*
1146 * On success, we need to wait for the write I/O
1147 * initiated by dmu_sync() to complete before we can
1148 * release this dbuf. We will finish everything up
1149 * in the zfs_get_done() callback.
1150 */
1151 if (error == 0)
1152 return (0);
1153
1154 if (error == EALREADY) {
1155 lr->lr_common.lrc_txtype = TX_WRITE2;
1156 /*
1157 * TX_WRITE2 relies on the data previously
1158 * written by the TX_WRITE that caused
1159 * EALREADY. We zero out the BP because
1160 * it is the old, currently-on-disk BP.
1161 */
1162 zgd->zgd_bp = NULL;
1163 BP_ZERO(bp);
1164 error = 0;
1165 }
1166 }
1167 }
1168
1169 zfs_get_done(zgd, error);
1170
1171 return (error);
1172 }
1173
1174 /*ARGSUSED*/
1175 static int
1176 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1177 caller_context_t *ct)
1178 {
1179 znode_t *zp = VTOZ(vp);
1180 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1181 int error;
1182
1183 ZFS_ENTER(zfsvfs);
1184 ZFS_VERIFY_ZP(zp);
1185
1186 if (flag & V_ACE_MASK)
1187 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1188 else
1189 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1190
1191 ZFS_EXIT(zfsvfs);
1192 return (error);
1193 }
1194
1195 /*
1196 * If vnode is for a device return a specfs vnode instead.
1197 */
1198 static int
1199 specvp_check(vnode_t **vpp, cred_t *cr)
1200 {
1201 int error = 0;
1202
1203 if (IS_DEVVP(*vpp)) {
1204 struct vnode *svp;
1205
1206 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1207 VN_RELE(*vpp);
1208 if (svp == NULL)
1209 error = SET_ERROR(ENOSYS);
1210 *vpp = svp;
1211 }
1212 return (error);
1213 }
1214
1215
1216 /*
1217 * Lookup an entry in a directory, or an extended attribute directory.
1218 * If it exists, return a held vnode reference for it.
1219 *
1220 * IN: dvp - vnode of directory to search.
1221 * nm - name of entry to lookup.
1222 * pnp - full pathname to lookup [UNUSED].
1223 * flags - LOOKUP_XATTR set if looking for an attribute.
1224 * rdir - root directory vnode [UNUSED].
1225 * cr - credentials of caller.
1226 * ct - caller context
1227 * direntflags - directory lookup flags
1228 * realpnp - returned pathname.
1229 *
1230 * OUT: vpp - vnode of located entry, NULL if not found.
1231 *
1232 * RETURN: 0 on success, error code on failure.
1233 *
1234 * Timestamps:
1235 * NA
1236 */
1237 /* ARGSUSED */
1238 static int
1239 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1240 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1241 int *direntflags, pathname_t *realpnp)
1242 {
1243 znode_t *zdp = VTOZ(dvp);
1244 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1245 int error = 0;
1246
1247 /*
1248 * Fast path lookup, however we must skip DNLC lookup
1249 * for case folding or normalizing lookups because the
1250 * DNLC code only stores the passed in name. This means
1251 * creating 'a' and removing 'A' on a case insensitive
1252 * file system would work, but DNLC still thinks 'a'
1253 * exists and won't let you create it again on the next
1254 * pass through fast path.
1255 */
1256 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1257
1258 if (dvp->v_type != VDIR) {
1259 return (SET_ERROR(ENOTDIR));
1260 } else if (zdp->z_sa_hdl == NULL) {
1261 return (SET_ERROR(EIO));
1262 }
1263
1264 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1265 error = zfs_fastaccesschk_execute(zdp, cr);
1266 if (!error) {
1267 *vpp = dvp;
1268 VN_HOLD(*vpp);
1269 return (0);
1270 }
1271 return (error);
1272 } else if (!zdp->z_zfsvfs->z_norm &&
1273 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1274
1275 vnode_t *tvp = dnlc_lookup(dvp, nm);
1276
1277 if (tvp) {
1278 error = zfs_fastaccesschk_execute(zdp, cr);
1279 if (error) {
1280 VN_RELE(tvp);
1281 return (error);
1282 }
1283 if (tvp == DNLC_NO_VNODE) {
1284 VN_RELE(tvp);
1285 return (SET_ERROR(ENOENT));
1286 } else {
1287 *vpp = tvp;
1288 return (specvp_check(vpp, cr));
1289 }
1290 }
1291 }
1292 }
1293
1294 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1295
1296 ZFS_ENTER(zfsvfs);
1297 ZFS_VERIFY_ZP(zdp);
1298
1299 *vpp = NULL;
1300
1301 if (flags & LOOKUP_XATTR) {
1302 /*
1303 * If the xattr property is off, refuse the lookup request.
1304 */
1305 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1306 ZFS_EXIT(zfsvfs);
1307 return (SET_ERROR(EINVAL));
1308 }
1309
1310 /*
1311 * We don't allow recursive attributes..
1312 * Maybe someday we will.
1313 */
1314 if (zdp->z_pflags & ZFS_XATTR) {
1315 ZFS_EXIT(zfsvfs);
1316 return (SET_ERROR(EINVAL));
1317 }
1318
1319 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1320 ZFS_EXIT(zfsvfs);
1321 return (error);
1322 }
1323
1324 /*
1325 * Do we have permission to get into attribute directory?
1326 */
1327
1328 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1329 B_FALSE, cr)) {
1330 VN_RELE(*vpp);
1331 *vpp = NULL;
1332 }
1333
1334 ZFS_EXIT(zfsvfs);
1335 return (error);
1336 }
1337
1338 if (dvp->v_type != VDIR) {
1339 ZFS_EXIT(zfsvfs);
1340 return (SET_ERROR(ENOTDIR));
1341 }
1342
1343 /*
1344 * Check accessibility of directory.
1345 */
1346
1347 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1348 ZFS_EXIT(zfsvfs);
1349 return (error);
1350 }
1351
1352 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1353 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1354 ZFS_EXIT(zfsvfs);
1355 return (SET_ERROR(EILSEQ));
1356 }
1357
1358 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1359 if (error == 0)
1360 error = specvp_check(vpp, cr);
1361
1362 ZFS_EXIT(zfsvfs);
1363 return (error);
1364 }
1365
1366 /*
1367 * Attempt to create a new entry in a directory. If the entry
1368 * already exists, truncate the file if permissible, else return
1369 * an error. Return the vp of the created or trunc'd file.
1370 *
1371 * IN: dvp - vnode of directory to put new file entry in.
1372 * name - name of new file entry.
1373 * vap - attributes of new file.
1374 * excl - flag indicating exclusive or non-exclusive mode.
1375 * mode - mode to open file with.
1376 * cr - credentials of caller.
1377 * flag - large file flag [UNUSED].
1378 * ct - caller context
1379 * vsecp - ACL to be set
1380 *
1381 * OUT: vpp - vnode of created or trunc'd entry.
1382 *
1383 * RETURN: 0 on success, error code on failure.
1384 *
1385 * Timestamps:
1386 * dvp - ctime|mtime updated if new entry created
1387 * vp - ctime|mtime always, atime if new
1388 */
1389
1390 /* ARGSUSED */
1391 static int
1392 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1393 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1394 vsecattr_t *vsecp)
1395 {
1396 znode_t *zp, *dzp = VTOZ(dvp);
1397 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1398 zilog_t *zilog;
1399 objset_t *os;
1400 zfs_dirlock_t *dl;
1401 dmu_tx_t *tx;
1402 int error;
1403 ksid_t *ksid;
1404 uid_t uid;
1405 gid_t gid = crgetgid(cr);
1406 zfs_acl_ids_t acl_ids;
1407 boolean_t fuid_dirtied;
1408 boolean_t have_acl = B_FALSE;
1409 boolean_t waited = B_FALSE;
1410
1411 /*
1412 * If we have an ephemeral id, ACL, or XVATTR then
1413 * make sure file system is at proper version
1414 */
1415
1416 ksid = crgetsid(cr, KSID_OWNER);
1417 if (ksid)
1418 uid = ksid_getid(ksid);
1419 else
1420 uid = crgetuid(cr);
1421
1422 if (zfsvfs->z_use_fuids == B_FALSE &&
1423 (vsecp || (vap->va_mask & AT_XVATTR) ||
1424 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1425 return (SET_ERROR(EINVAL));
1426
1427 ZFS_ENTER(zfsvfs);
1428 ZFS_VERIFY_ZP(dzp);
1429 os = zfsvfs->z_os;
1430 zilog = zfsvfs->z_log;
1431
1432 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1433 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1434 ZFS_EXIT(zfsvfs);
1435 return (SET_ERROR(EILSEQ));
1436 }
1437
1438 if (vap->va_mask & AT_XVATTR) {
1439 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1440 crgetuid(cr), cr, vap->va_type)) != 0) {
1441 ZFS_EXIT(zfsvfs);
1442 return (error);
1443 }
1444 }
1445 top:
1446 *vpp = NULL;
1447
1448 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1449 vap->va_mode &= ~VSVTX;
1450
1451 if (*name == '\0') {
1452 /*
1453 * Null component name refers to the directory itself.
1454 */
1455 VN_HOLD(dvp);
1456 zp = dzp;
1457 dl = NULL;
1458 error = 0;
1459 } else {
1460 /* possible VN_HOLD(zp) */
1461 int zflg = 0;
1462
1463 if (flag & FIGNORECASE)
1464 zflg |= ZCILOOK;
1465
1466 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1467 NULL, NULL);
1468 if (error) {
1469 if (have_acl)
1470 zfs_acl_ids_free(&acl_ids);
1471 if (strcmp(name, "..") == 0)
1472 error = SET_ERROR(EISDIR);
1473 ZFS_EXIT(zfsvfs);
1474 return (error);
1475 }
1476 }
1477
1478 if (zp == NULL) {
1479 uint64_t txtype;
1480
1481 /*
1482 * Create a new file object and update the directory
1483 * to reference it.
1484 */
1485 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1486 if (have_acl)
1487 zfs_acl_ids_free(&acl_ids);
1488 goto out;
1489 }
1490
1491 /*
1492 * We only support the creation of regular files in
1493 * extended attribute directories.
1494 */
1495
1496 if ((dzp->z_pflags & ZFS_XATTR) &&
1497 (vap->va_type != VREG)) {
1498 if (have_acl)
1499 zfs_acl_ids_free(&acl_ids);
1500 error = SET_ERROR(EINVAL);
1501 goto out;
1502 }
1503
1504 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1505 cr, vsecp, &acl_ids)) != 0)
1506 goto out;
1507 have_acl = B_TRUE;
1508
1509 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1510 zfs_acl_ids_free(&acl_ids);
1511 error = SET_ERROR(EDQUOT);
1512 goto out;
1513 }
1514
1515 tx = dmu_tx_create(os);
1516
1517 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1518 ZFS_SA_BASE_ATTR_SIZE);
1519
1520 fuid_dirtied = zfsvfs->z_fuid_dirty;
1521 if (fuid_dirtied)
1522 zfs_fuid_txhold(zfsvfs, tx);
1523 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1524 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1525 if (!zfsvfs->z_use_sa &&
1526 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1527 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1528 0, acl_ids.z_aclp->z_acl_bytes);
1529 }
1530 error = dmu_tx_assign(tx,
1531 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1532 if (error) {
1533 zfs_dirent_unlock(dl);
1534 if (error == ERESTART) {
1535 waited = B_TRUE;
1536 dmu_tx_wait(tx);
1537 dmu_tx_abort(tx);
1538 goto top;
1539 }
1540 zfs_acl_ids_free(&acl_ids);
1541 dmu_tx_abort(tx);
1542 ZFS_EXIT(zfsvfs);
1543 return (error);
1544 }
1545 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1546
1547 if (fuid_dirtied)
1548 zfs_fuid_sync(zfsvfs, tx);
1549
1550 (void) zfs_link_create(dl, zp, tx, ZNEW);
1551 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1552 if (flag & FIGNORECASE)
1553 txtype |= TX_CI;
1554 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1555 vsecp, acl_ids.z_fuidp, vap);
1556 zfs_acl_ids_free(&acl_ids);
1557 dmu_tx_commit(tx);
1558 } else {
1559 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1560
1561 if (have_acl)
1562 zfs_acl_ids_free(&acl_ids);
1563 have_acl = B_FALSE;
1564
1565 /*
1566 * A directory entry already exists for this name.
1567 */
1568 /*
1569 * Can't truncate an existing file if in exclusive mode.
1570 */
1571 if (excl == EXCL) {
1572 error = SET_ERROR(EEXIST);
1573 goto out;
1574 }
1575 /*
1576 * Can't open a directory for writing.
1577 */
1578 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1579 error = SET_ERROR(EISDIR);
1580 goto out;
1581 }
1582 /*
1583 * Verify requested access to file.
1584 */
1585 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1586 goto out;
1587 }
1588
1589 mutex_enter(&dzp->z_lock);
1590 dzp->z_seq++;
1591 mutex_exit(&dzp->z_lock);
1592
1593 /*
1594 * Truncate regular files if requested.
1595 */
1596 if ((ZTOV(zp)->v_type == VREG) &&
1597 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1598 /* we can't hold any locks when calling zfs_freesp() */
1599 zfs_dirent_unlock(dl);
1600 dl = NULL;
1601 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1602 if (error == 0) {
1603 vnevent_create(ZTOV(zp), ct);
1604 }
1605 }
1606 }
1607 out:
1608
1609 if (dl)
1610 zfs_dirent_unlock(dl);
1611
1612 if (error) {
1613 if (zp)
1614 VN_RELE(ZTOV(zp));
1615 } else {
1616 *vpp = ZTOV(zp);
1617 error = specvp_check(vpp, cr);
1618 }
1619
1620 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1621 zil_commit(zilog, 0);
1622
1623 ZFS_EXIT(zfsvfs);
1624 return (error);
1625 }
1626
1627 /*
1628 * Remove an entry from a directory.
1629 *
1630 * IN: dvp - vnode of directory to remove entry from.
1631 * name - name of entry to remove.
1632 * cr - credentials of caller.
1633 * ct - caller context
1634 * flags - case flags
1635 *
1636 * RETURN: 0 on success, error code on failure.
1637 *
1638 * Timestamps:
1639 * dvp - ctime|mtime
1640 * vp - ctime (if nlink > 0)
1641 */
1642
1643 uint64_t null_xattr = 0;
1644
1645 /*ARGSUSED*/
1646 static int
1647 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1648 int flags)
1649 {
1650 znode_t *zp, *dzp = VTOZ(dvp);
1651 znode_t *xzp;
1652 vnode_t *vp;
1653 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1654 zilog_t *zilog;
1655 uint64_t acl_obj, xattr_obj;
1656 uint64_t xattr_obj_unlinked = 0;
1657 uint64_t obj = 0;
1658 zfs_dirlock_t *dl;
1659 dmu_tx_t *tx;
1660 boolean_t may_delete_now, delete_now = FALSE;
1661 boolean_t unlinked, toobig = FALSE;
1662 uint64_t txtype;
1663 pathname_t *realnmp = NULL;
1664 pathname_t realnm;
1665 int error;
1666 int zflg = ZEXISTS;
1667 boolean_t waited = B_FALSE;
1668
1669 ZFS_ENTER(zfsvfs);
1670 ZFS_VERIFY_ZP(dzp);
1671 zilog = zfsvfs->z_log;
1672
1673 if (flags & FIGNORECASE) {
1674 zflg |= ZCILOOK;
1675 pn_alloc(&realnm);
1676 realnmp = &realnm;
1677 }
1678
1679 top:
1680 xattr_obj = 0;
1681 xzp = NULL;
1682 /*
1683 * Attempt to lock directory; fail if entry doesn't exist.
1684 */
1685 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1686 NULL, realnmp)) {
1687 if (realnmp)
1688 pn_free(realnmp);
1689 ZFS_EXIT(zfsvfs);
1690 return (error);
1691 }
1692
1693 vp = ZTOV(zp);
1694
1695 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1696 goto out;
1697 }
1698
1699 /*
1700 * Need to use rmdir for removing directories.
1701 */
1702 if (vp->v_type == VDIR) {
1703 error = SET_ERROR(EPERM);
1704 goto out;
1705 }
1706
1707 vnevent_remove(vp, dvp, name, ct);
1708
1709 if (realnmp)
1710 dnlc_remove(dvp, realnmp->pn_buf);
1711 else
1712 dnlc_remove(dvp, name);
1713
1714 mutex_enter(&vp->v_lock);
1715 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1716 mutex_exit(&vp->v_lock);
1717
1718 /*
1719 * We may delete the znode now, or we may put it in the unlinked set;
1720 * it depends on whether we're the last link, and on whether there are
1721 * other holds on the vnode. So we dmu_tx_hold() the right things to
1722 * allow for either case.
1723 */
1724 obj = zp->z_id;
1725 tx = dmu_tx_create(zfsvfs->z_os);
1726 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1727 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1728 zfs_sa_upgrade_txholds(tx, zp);
1729 zfs_sa_upgrade_txholds(tx, dzp);
1730 if (may_delete_now) {
1731 toobig =
1732 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1733 /* if the file is too big, only hold_free a token amount */
1734 dmu_tx_hold_free(tx, zp->z_id, 0,
1735 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1736 }
1737
1738 /* are there any extended attributes? */
1739 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1740 &xattr_obj, sizeof (xattr_obj));
1741 if (error == 0 && xattr_obj) {
1742 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1743 ASSERT0(error);
1744 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1745 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1746 }
1747
1748 mutex_enter(&zp->z_lock);
1749 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1750 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1751 mutex_exit(&zp->z_lock);
1752
1753 /* charge as an update -- would be nice not to charge at all */
1754 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1755
1756 /*
1757 * Mark this transaction as typically resulting in a net free of space
1758 */
1759 dmu_tx_mark_netfree(tx);
1760
1761 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1762 if (error) {
1763 zfs_dirent_unlock(dl);
1764 VN_RELE(vp);
1765 if (xzp)
1766 VN_RELE(ZTOV(xzp));
1767 if (error == ERESTART) {
1768 waited = B_TRUE;
1769 dmu_tx_wait(tx);
1770 dmu_tx_abort(tx);
1771 goto top;
1772 }
1773 if (realnmp)
1774 pn_free(realnmp);
1775 dmu_tx_abort(tx);
1776 ZFS_EXIT(zfsvfs);
1777 return (error);
1778 }
1779
1780 /*
1781 * Remove the directory entry.
1782 */
1783 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1784
1785 if (error) {
1786 dmu_tx_commit(tx);
1787 goto out;
1788 }
1789
1790 if (unlinked) {
1791 /*
1792 * Hold z_lock so that we can make sure that the ACL obj
1793 * hasn't changed. Could have been deleted due to
1794 * zfs_sa_upgrade().
1795 */
1796 mutex_enter(&zp->z_lock);
1797 mutex_enter(&vp->v_lock);
1798 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1799 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1800 delete_now = may_delete_now && !toobig &&
1801 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1802 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1803 acl_obj;
1804 mutex_exit(&vp->v_lock);
1805 }
1806
1807 if (delete_now) {
1808 if (xattr_obj_unlinked) {
1809 ASSERT3U(xzp->z_links, ==, 2);
1810 mutex_enter(&xzp->z_lock);
1811 xzp->z_unlinked = 1;
1812 xzp->z_links = 0;
1813 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1814 &xzp->z_links, sizeof (xzp->z_links), tx);
1815 ASSERT3U(error, ==, 0);
1816 mutex_exit(&xzp->z_lock);
1817 zfs_unlinked_add(xzp, tx);
1818
1819 if (zp->z_is_sa)
1820 error = sa_remove(zp->z_sa_hdl,
1821 SA_ZPL_XATTR(zfsvfs), tx);
1822 else
1823 error = sa_update(zp->z_sa_hdl,
1824 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1825 sizeof (uint64_t), tx);
1826 ASSERT0(error);
1827 }
1828 mutex_enter(&vp->v_lock);
1829 VN_RELE_LOCKED(vp);
1830 ASSERT0(vp->v_count);
1831 mutex_exit(&vp->v_lock);
1832 mutex_exit(&zp->z_lock);
1833 zfs_znode_delete(zp, tx);
1834 } else if (unlinked) {
1835 mutex_exit(&zp->z_lock);
1836 zfs_unlinked_add(zp, tx);
1837 }
1838
1839 txtype = TX_REMOVE;
1840 if (flags & FIGNORECASE)
1841 txtype |= TX_CI;
1842 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1843
1844 dmu_tx_commit(tx);
1845 out:
1846 if (realnmp)
1847 pn_free(realnmp);
1848
1849 zfs_dirent_unlock(dl);
1850
1851 if (!delete_now)
1852 VN_RELE(vp);
1853 if (xzp)
1854 VN_RELE(ZTOV(xzp));
1855
1856 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1857 zil_commit(zilog, 0);
1858
1859 ZFS_EXIT(zfsvfs);
1860 return (error);
1861 }
1862
1863 /*
1864 * Create a new directory and insert it into dvp using the name
1865 * provided. Return a pointer to the inserted directory.
1866 *
1867 * IN: dvp - vnode of directory to add subdir to.
1868 * dirname - name of new directory.
1869 * vap - attributes of new directory.
1870 * cr - credentials of caller.
1871 * ct - caller context
1872 * flags - case flags
1873 * vsecp - ACL to be set
1874 *
1875 * OUT: vpp - vnode of created directory.
1876 *
1877 * RETURN: 0 on success, error code on failure.
1878 *
1879 * Timestamps:
1880 * dvp - ctime|mtime updated
1881 * vp - ctime|mtime|atime updated
1882 */
1883 /*ARGSUSED*/
1884 static int
1885 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1886 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1887 {
1888 znode_t *zp, *dzp = VTOZ(dvp);
1889 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1890 zilog_t *zilog;
1891 zfs_dirlock_t *dl;
1892 uint64_t txtype;
1893 dmu_tx_t *tx;
1894 int error;
1895 int zf = ZNEW;
1896 ksid_t *ksid;
1897 uid_t uid;
1898 gid_t gid = crgetgid(cr);
1899 zfs_acl_ids_t acl_ids;
1900 boolean_t fuid_dirtied;
1901 boolean_t waited = B_FALSE;
1902
1903 ASSERT(vap->va_type == VDIR);
1904
1905 /*
1906 * If we have an ephemeral id, ACL, or XVATTR then
1907 * make sure file system is at proper version
1908 */
1909
1910 ksid = crgetsid(cr, KSID_OWNER);
1911 if (ksid)
1912 uid = ksid_getid(ksid);
1913 else
1914 uid = crgetuid(cr);
1915 if (zfsvfs->z_use_fuids == B_FALSE &&
1916 (vsecp || (vap->va_mask & AT_XVATTR) ||
1917 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1918 return (SET_ERROR(EINVAL));
1919
1920 ZFS_ENTER(zfsvfs);
1921 ZFS_VERIFY_ZP(dzp);
1922 zilog = zfsvfs->z_log;
1923
1924 if (dzp->z_pflags & ZFS_XATTR) {
1925 ZFS_EXIT(zfsvfs);
1926 return (SET_ERROR(EINVAL));
1927 }
1928
1929 if (zfsvfs->z_utf8 && u8_validate(dirname,
1930 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1931 ZFS_EXIT(zfsvfs);
1932 return (SET_ERROR(EILSEQ));
1933 }
1934 if (flags & FIGNORECASE)
1935 zf |= ZCILOOK;
1936
1937 if (vap->va_mask & AT_XVATTR) {
1938 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1939 crgetuid(cr), cr, vap->va_type)) != 0) {
1940 ZFS_EXIT(zfsvfs);
1941 return (error);
1942 }
1943 }
1944
1945 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1946 vsecp, &acl_ids)) != 0) {
1947 ZFS_EXIT(zfsvfs);
1948 return (error);
1949 }
1950 /*
1951 * First make sure the new directory doesn't exist.
1952 *
1953 * Existence is checked first to make sure we don't return
1954 * EACCES instead of EEXIST which can cause some applications
1955 * to fail.
1956 */
1957 top:
1958 *vpp = NULL;
1959
1960 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1961 NULL, NULL)) {
1962 zfs_acl_ids_free(&acl_ids);
1963 ZFS_EXIT(zfsvfs);
1964 return (error);
1965 }
1966
1967 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1968 zfs_acl_ids_free(&acl_ids);
1969 zfs_dirent_unlock(dl);
1970 ZFS_EXIT(zfsvfs);
1971 return (error);
1972 }
1973
1974 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1975 zfs_acl_ids_free(&acl_ids);
1976 zfs_dirent_unlock(dl);
1977 ZFS_EXIT(zfsvfs);
1978 return (SET_ERROR(EDQUOT));
1979 }
1980
1981 /*
1982 * Add a new entry to the directory.
1983 */
1984 tx = dmu_tx_create(zfsvfs->z_os);
1985 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1986 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1987 fuid_dirtied = zfsvfs->z_fuid_dirty;
1988 if (fuid_dirtied)
1989 zfs_fuid_txhold(zfsvfs, tx);
1990 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1991 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1992 acl_ids.z_aclp->z_acl_bytes);
1993 }
1994
1995 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1996 ZFS_SA_BASE_ATTR_SIZE);
1997
1998 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1999 if (error) {
2000 zfs_dirent_unlock(dl);
2001 if (error == ERESTART) {
2002 waited = B_TRUE;
2003 dmu_tx_wait(tx);
2004 dmu_tx_abort(tx);
2005 goto top;
2006 }
2007 zfs_acl_ids_free(&acl_ids);
2008 dmu_tx_abort(tx);
2009 ZFS_EXIT(zfsvfs);
2010 return (error);
2011 }
2012
2013 /*
2014 * Create new node.
2015 */
2016 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2017
2018 if (fuid_dirtied)
2019 zfs_fuid_sync(zfsvfs, tx);
2020
2021 /*
2022 * Now put new name in parent dir.
2023 */
2024 (void) zfs_link_create(dl, zp, tx, ZNEW);
2025
2026 *vpp = ZTOV(zp);
2027
2028 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2029 if (flags & FIGNORECASE)
2030 txtype |= TX_CI;
2031 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2032 acl_ids.z_fuidp, vap);
2033
2034 zfs_acl_ids_free(&acl_ids);
2035
2036 dmu_tx_commit(tx);
2037
2038 zfs_dirent_unlock(dl);
2039
2040 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2041 zil_commit(zilog, 0);
2042
2043 ZFS_EXIT(zfsvfs);
2044 return (0);
2045 }
2046
2047 /*
2048 * Remove a directory subdir entry. If the current working
2049 * directory is the same as the subdir to be removed, the
2050 * remove will fail.
2051 *
2052 * IN: dvp - vnode of directory to remove from.
2053 * name - name of directory to be removed.
2054 * cwd - vnode of current working directory.
2055 * cr - credentials of caller.
2056 * ct - caller context
2057 * flags - case flags
2058 *
2059 * RETURN: 0 on success, error code on failure.
2060 *
2061 * Timestamps:
2062 * dvp - ctime|mtime updated
2063 */
2064 /*ARGSUSED*/
2065 static int
2066 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2067 caller_context_t *ct, int flags)
2068 {
2069 znode_t *dzp = VTOZ(dvp);
2070 znode_t *zp;
2071 vnode_t *vp;
2072 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2073 zilog_t *zilog;
2074 zfs_dirlock_t *dl;
2075 dmu_tx_t *tx;
2076 int error;
2077 int zflg = ZEXISTS;
2078 boolean_t waited = B_FALSE;
2079
2080 ZFS_ENTER(zfsvfs);
2081 ZFS_VERIFY_ZP(dzp);
2082 zilog = zfsvfs->z_log;
2083
2084 if (flags & FIGNORECASE)
2085 zflg |= ZCILOOK;
2086 top:
2087 zp = NULL;
2088
2089 /*
2090 * Attempt to lock directory; fail if entry doesn't exist.
2091 */
2092 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2093 NULL, NULL)) {
2094 ZFS_EXIT(zfsvfs);
2095 return (error);
2096 }
2097
2098 vp = ZTOV(zp);
2099
2100 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2101 goto out;
2102 }
2103
2104 if (vp->v_type != VDIR) {
2105 error = SET_ERROR(ENOTDIR);
2106 goto out;
2107 }
2108
2109 if (vp == cwd) {
2110 error = SET_ERROR(EINVAL);
2111 goto out;
2112 }
2113
2114 vnevent_rmdir(vp, dvp, name, ct);
2115
2116 /*
2117 * Grab a lock on the directory to make sure that noone is
2118 * trying to add (or lookup) entries while we are removing it.
2119 */
2120 rw_enter(&zp->z_name_lock, RW_WRITER);
2121
2122 /*
2123 * Grab a lock on the parent pointer to make sure we play well
2124 * with the treewalk and directory rename code.
2125 */
2126 rw_enter(&zp->z_parent_lock, RW_WRITER);
2127
2128 tx = dmu_tx_create(zfsvfs->z_os);
2129 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2130 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2131 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2132 zfs_sa_upgrade_txholds(tx, zp);
2133 zfs_sa_upgrade_txholds(tx, dzp);
2134 dmu_tx_mark_netfree(tx);
2135 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2136 if (error) {
2137 rw_exit(&zp->z_parent_lock);
2138 rw_exit(&zp->z_name_lock);
2139 zfs_dirent_unlock(dl);
2140 VN_RELE(vp);
2141 if (error == ERESTART) {
2142 waited = B_TRUE;
2143 dmu_tx_wait(tx);
2144 dmu_tx_abort(tx);
2145 goto top;
2146 }
2147 dmu_tx_abort(tx);
2148 ZFS_EXIT(zfsvfs);
2149 return (error);
2150 }
2151
2152 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2153
2154 if (error == 0) {
2155 uint64_t txtype = TX_RMDIR;
2156 if (flags & FIGNORECASE)
2157 txtype |= TX_CI;
2158 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2159 }
2160
2161 dmu_tx_commit(tx);
2162
2163 rw_exit(&zp->z_parent_lock);
2164 rw_exit(&zp->z_name_lock);
2165 out:
2166 zfs_dirent_unlock(dl);
2167
2168 VN_RELE(vp);
2169
2170 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2171 zil_commit(zilog, 0);
2172
2173 ZFS_EXIT(zfsvfs);
2174 return (error);
2175 }
2176
2177 /*
2178 * Read as many directory entries as will fit into the provided
2179 * buffer from the given directory cursor position (specified in
2180 * the uio structure).
2181 *
2182 * IN: vp - vnode of directory to read.
2183 * uio - structure supplying read location, range info,
2184 * and return buffer.
2185 * cr - credentials of caller.
2186 * ct - caller context
2187 * flags - case flags
2188 *
2189 * OUT: uio - updated offset and range, buffer filled.
2190 * eofp - set to true if end-of-file detected.
2191 *
2192 * RETURN: 0 on success, error code on failure.
2193 *
2194 * Timestamps:
2195 * vp - atime updated
2196 *
2197 * Note that the low 4 bits of the cookie returned by zap is always zero.
2198 * This allows us to use the low range for "special" directory entries:
2199 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2200 * we use the offset 2 for the '.zfs' directory.
2201 */
2202 /* ARGSUSED */
2203 static int
2204 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2205 caller_context_t *ct, int flags)
2206 {
2207 znode_t *zp = VTOZ(vp);
2208 iovec_t *iovp;
2209 edirent_t *eodp;
2210 dirent64_t *odp;
2211 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2212 objset_t *os;
2213 caddr_t outbuf;
2214 size_t bufsize;
2215 zap_cursor_t zc;
2216 zap_attribute_t zap;
2217 uint_t bytes_wanted;
2218 uint64_t offset; /* must be unsigned; checks for < 1 */
2219 uint64_t parent;
2220 int local_eof;
2221 int outcount;
2222 int error;
2223 uint8_t prefetch;
2224 boolean_t check_sysattrs;
2225
2226 ZFS_ENTER(zfsvfs);
2227 ZFS_VERIFY_ZP(zp);
2228
2229 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2230 &parent, sizeof (parent))) != 0) {
2231 ZFS_EXIT(zfsvfs);
2232 return (error);
2233 }
2234
2235 /*
2236 * If we are not given an eof variable,
2237 * use a local one.
2238 */
2239 if (eofp == NULL)
2240 eofp = &local_eof;
2241
2242 /*
2243 * Check for valid iov_len.
2244 */
2245 if (uio->uio_iov->iov_len <= 0) {
2246 ZFS_EXIT(zfsvfs);
2247 return (SET_ERROR(EINVAL));
2248 }
2249
2250 /*
2251 * Quit if directory has been removed (posix)
2252 */
2253 if ((*eofp = zp->z_unlinked) != 0) {
2254 ZFS_EXIT(zfsvfs);
2255 return (0);
2256 }
2257
2258 error = 0;
2259 os = zfsvfs->z_os;
2260 offset = uio->uio_loffset;
2261 prefetch = zp->z_zn_prefetch;
2262
2263 /*
2264 * Initialize the iterator cursor.
2265 */
2266 if (offset <= 3) {
2267 /*
2268 * Start iteration from the beginning of the directory.
2269 */
2270 zap_cursor_init(&zc, os, zp->z_id);
2271 } else {
2272 /*
2273 * The offset is a serialized cursor.
2274 */
2275 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2276 }
2277
2278 /*
2279 * Get space to change directory entries into fs independent format.
2280 */
2281 iovp = uio->uio_iov;
2282 bytes_wanted = iovp->iov_len;
2283 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2284 bufsize = bytes_wanted;
2285 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2286 odp = (struct dirent64 *)outbuf;
2287 } else {
2288 bufsize = bytes_wanted;
2289 outbuf = NULL;
2290 odp = (struct dirent64 *)iovp->iov_base;
2291 }
2292 eodp = (struct edirent *)odp;
2293
2294 /*
2295 * If this VFS supports the system attribute view interface; and
2296 * we're looking at an extended attribute directory; and we care
2297 * about normalization conflicts on this vfs; then we must check
2298 * for normalization conflicts with the sysattr name space.
2299 */
2300 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2301 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2302 (flags & V_RDDIR_ENTFLAGS);
2303
2304 /*
2305 * Transform to file-system independent format
2306 */
2307 outcount = 0;
2308 while (outcount < bytes_wanted) {
2309 ino64_t objnum;
2310 ushort_t reclen;
2311 off64_t *next = NULL;
2312
2313 /*
2314 * Special case `.', `..', and `.zfs'.
2315 */
2316 if (offset == 0) {
2317 (void) strcpy(zap.za_name, ".");
2318 zap.za_normalization_conflict = 0;
2319 objnum = zp->z_id;
2320 } else if (offset == 1) {
2321 (void) strcpy(zap.za_name, "..");
2322 zap.za_normalization_conflict = 0;
2323 objnum = parent;
2324 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2325 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2326 zap.za_normalization_conflict = 0;
2327 objnum = ZFSCTL_INO_ROOT;
2328 } else {
2329 /*
2330 * Grab next entry.
2331 */
2332 if (error = zap_cursor_retrieve(&zc, &zap)) {
2333 if ((*eofp = (error == ENOENT)) != 0)
2334 break;
2335 else
2336 goto update;
2337 }
2338
2339 if (zap.za_integer_length != 8 ||
2340 zap.za_num_integers != 1) {
2341 cmn_err(CE_WARN, "zap_readdir: bad directory "
2342 "entry, obj = %lld, offset = %lld\n",
2343 (u_longlong_t)zp->z_id,
2344 (u_longlong_t)offset);
2345 error = SET_ERROR(ENXIO);
2346 goto update;
2347 }
2348
2349 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2350 /*
2351 * MacOS X can extract the object type here such as:
2352 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2353 */
2354
2355 if (check_sysattrs && !zap.za_normalization_conflict) {
2356 zap.za_normalization_conflict =
2357 xattr_sysattr_casechk(zap.za_name);
2358 }
2359 }
2360
2361 if (flags & V_RDDIR_ACCFILTER) {
2362 /*
2363 * If we have no access at all, don't include
2364 * this entry in the returned information
2365 */
2366 znode_t *ezp;
2367 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2368 goto skip_entry;
2369 if (!zfs_has_access(ezp, cr)) {
2370 VN_RELE(ZTOV(ezp));
2371 goto skip_entry;
2372 }
2373 VN_RELE(ZTOV(ezp));
2374 }
2375
2376 if (flags & V_RDDIR_ENTFLAGS)
2377 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2378 else
2379 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2380
2381 /*
2382 * Will this entry fit in the buffer?
2383 */
2384 if (outcount + reclen > bufsize) {
2385 /*
2386 * Did we manage to fit anything in the buffer?
2387 */
2388 if (!outcount) {
2389 error = SET_ERROR(EINVAL);
2390 goto update;
2391 }
2392 break;
2393 }
2394 if (flags & V_RDDIR_ENTFLAGS) {
2395 /*
2396 * Add extended flag entry:
2397 */
2398 eodp->ed_ino = objnum;
2399 eodp->ed_reclen = reclen;
2400 /* NOTE: ed_off is the offset for the *next* entry */
2401 next = &(eodp->ed_off);
2402 eodp->ed_eflags = zap.za_normalization_conflict ?
2403 ED_CASE_CONFLICT : 0;
2404 (void) strncpy(eodp->ed_name, zap.za_name,
2405 EDIRENT_NAMELEN(reclen));
2406 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2407 } else {
2408 /*
2409 * Add normal entry:
2410 */
2411 odp->d_ino = objnum;
2412 odp->d_reclen = reclen;
2413 /* NOTE: d_off is the offset for the *next* entry */
2414 next = &(odp->d_off);
2415 (void) strncpy(odp->d_name, zap.za_name,
2416 DIRENT64_NAMELEN(reclen));
2417 odp = (dirent64_t *)((intptr_t)odp + reclen);
2418 }
2419 outcount += reclen;
2420
2421 ASSERT(outcount <= bufsize);
2422
2423 /* Prefetch znode */
2424 if (prefetch)
2425 dmu_prefetch(os, objnum, 0, 0, 0,
2426 ZIO_PRIORITY_SYNC_READ);
2427
2428 skip_entry:
2429 /*
2430 * Move to the next entry, fill in the previous offset.
2431 */
2432 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2433 zap_cursor_advance(&zc);
2434 offset = zap_cursor_serialize(&zc);
2435 } else {
2436 offset += 1;
2437 }
2438 if (next)
2439 *next = offset;
2440 }
2441 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2442
2443 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2444 iovp->iov_base += outcount;
2445 iovp->iov_len -= outcount;
2446 uio->uio_resid -= outcount;
2447 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2448 /*
2449 * Reset the pointer.
2450 */
2451 offset = uio->uio_loffset;
2452 }
2453
2454 update:
2455 zap_cursor_fini(&zc);
2456 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2457 kmem_free(outbuf, bufsize);
2458
2459 if (error == ENOENT)
2460 error = 0;
2461
2462 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2463
2464 uio->uio_loffset = offset;
2465 ZFS_EXIT(zfsvfs);
2466 return (error);
2467 }
2468
2469 ulong_t zfs_fsync_sync_cnt = 4;
2470
2471 static int
2472 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2473 {
2474 znode_t *zp = VTOZ(vp);
2475 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2476
2477 /*
2478 * Regardless of whether this is required for standards conformance,
2479 * this is the logical behavior when fsync() is called on a file with
2480 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2481 * going to be pushed out as part of the zil_commit().
2482 */
2483 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2484 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2485 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2486
2487 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2488
2489 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2490 ZFS_ENTER(zfsvfs);
2491 ZFS_VERIFY_ZP(zp);
2492 zil_commit(zfsvfs->z_log, zp->z_id);
2493 ZFS_EXIT(zfsvfs);
2494 }
2495 return (0);
2496 }
2497
2498
2499 /*
2500 * Get the requested file attributes and place them in the provided
2501 * vattr structure.
2502 *
2503 * IN: vp - vnode of file.
2504 * vap - va_mask identifies requested attributes.
2505 * If AT_XVATTR set, then optional attrs are requested
2506 * flags - ATTR_NOACLCHECK (CIFS server context)
2507 * cr - credentials of caller.
2508 * ct - caller context
2509 *
2510 * OUT: vap - attribute values.
2511 *
2512 * RETURN: 0 (always succeeds).
2513 */
2514 /* ARGSUSED */
2515 static int
2516 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2517 caller_context_t *ct)
2518 {
2519 znode_t *zp = VTOZ(vp);
2520 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2521 int error = 0;
2522 uint64_t links;
2523 uint64_t mtime[2], ctime[2];
2524 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2525 xoptattr_t *xoap = NULL;
2526 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2527 sa_bulk_attr_t bulk[2];
2528 int count = 0;
2529
2530 ZFS_ENTER(zfsvfs);
2531 ZFS_VERIFY_ZP(zp);
2532
2533 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2534
2535 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2536 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2537
2538 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2539 ZFS_EXIT(zfsvfs);
2540 return (error);
2541 }
2542
2543 /*
2544 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2545 * Also, if we are the owner don't bother, since owner should
2546 * always be allowed to read basic attributes of file.
2547 */
2548 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2549 (vap->va_uid != crgetuid(cr))) {
2550 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2551 skipaclchk, cr)) {
2552 ZFS_EXIT(zfsvfs);
2553 return (error);
2554 }
2555 }
2556
2557 /*
2558 * Return all attributes. It's cheaper to provide the answer
2559 * than to determine whether we were asked the question.
2560 */
2561
2562 mutex_enter(&zp->z_lock);
2563 vap->va_type = vp->v_type;
2564 vap->va_mode = zp->z_mode & MODEMASK;
2565 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2566 vap->va_nodeid = zp->z_id;
2567 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2568 links = zp->z_links + 1;
2569 else
2570 links = zp->z_links;
2571 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2572 vap->va_size = zp->z_size;
2573 vap->va_rdev = vp->v_rdev;
2574 vap->va_seq = zp->z_seq;
2575
2576 /*
2577 * Add in any requested optional attributes and the create time.
2578 * Also set the corresponding bits in the returned attribute bitmap.
2579 */
2580 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2581 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2582 xoap->xoa_archive =
2583 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2584 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2585 }
2586
2587 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2588 xoap->xoa_readonly =
2589 ((zp->z_pflags & ZFS_READONLY) != 0);
2590 XVA_SET_RTN(xvap, XAT_READONLY);
2591 }
2592
2593 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2594 xoap->xoa_system =
2595 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2596 XVA_SET_RTN(xvap, XAT_SYSTEM);
2597 }
2598
2599 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2600 xoap->xoa_hidden =
2601 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2602 XVA_SET_RTN(xvap, XAT_HIDDEN);
2603 }
2604
2605 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2606 xoap->xoa_nounlink =
2607 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2608 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2609 }
2610
2611 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2612 xoap->xoa_immutable =
2613 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2614 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2615 }
2616
2617 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2618 xoap->xoa_appendonly =
2619 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2620 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2621 }
2622
2623 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2624 xoap->xoa_nodump =
2625 ((zp->z_pflags & ZFS_NODUMP) != 0);
2626 XVA_SET_RTN(xvap, XAT_NODUMP);
2627 }
2628
2629 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2630 xoap->xoa_opaque =
2631 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2632 XVA_SET_RTN(xvap, XAT_OPAQUE);
2633 }
2634
2635 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2636 xoap->xoa_av_quarantined =
2637 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2638 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2639 }
2640
2641 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2642 xoap->xoa_av_modified =
2643 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2644 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2645 }
2646
2647 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2648 vp->v_type == VREG) {
2649 zfs_sa_get_scanstamp(zp, xvap);
2650 }
2651
2652 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2653 uint64_t times[2];
2654
2655 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2656 times, sizeof (times));
2657 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2658 XVA_SET_RTN(xvap, XAT_CREATETIME);
2659 }
2660
2661 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2662 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2663 XVA_SET_RTN(xvap, XAT_REPARSE);
2664 }
2665 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2666 xoap->xoa_generation = zp->z_gen;
2667 XVA_SET_RTN(xvap, XAT_GEN);
2668 }
2669
2670 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2671 xoap->xoa_offline =
2672 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2673 XVA_SET_RTN(xvap, XAT_OFFLINE);
2674 }
2675
2676 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2677 xoap->xoa_sparse =
2678 ((zp->z_pflags & ZFS_SPARSE) != 0);
2679 XVA_SET_RTN(xvap, XAT_SPARSE);
2680 }
2681 }
2682
2683 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2684 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2685 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2686
2687 mutex_exit(&zp->z_lock);
2688
2689 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2690
2691 if (zp->z_blksz == 0) {
2692 /*
2693 * Block size hasn't been set; suggest maximal I/O transfers.
2694 */
2695 vap->va_blksize = zfsvfs->z_max_blksz;
2696 }
2697
2698 ZFS_EXIT(zfsvfs);
2699 return (0);
2700 }
2701
2702 /*
2703 * Set the file attributes to the values contained in the
2704 * vattr structure.
2705 *
2706 * IN: vp - vnode of file to be modified.
2707 * vap - new attribute values.
2708 * If AT_XVATTR set, then optional attrs are being set
2709 * flags - ATTR_UTIME set if non-default time values provided.
2710 * - ATTR_NOACLCHECK (CIFS context only).
2711 * cr - credentials of caller.
2712 * ct - caller context
2713 *
2714 * RETURN: 0 on success, error code on failure.
2715 *
2716 * Timestamps:
2717 * vp - ctime updated, mtime updated if size changed.
2718 */
2719 /* ARGSUSED */
2720 static int
2721 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2722 caller_context_t *ct)
2723 {
2724 znode_t *zp = VTOZ(vp);
2725 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2726 zilog_t *zilog;
2727 dmu_tx_t *tx;
2728 vattr_t oldva;
2729 xvattr_t tmpxvattr;
2730 uint_t mask = vap->va_mask;
2731 uint_t saved_mask = 0;
2732 int trim_mask = 0;
2733 uint64_t new_mode;
2734 uint64_t new_uid, new_gid;
2735 uint64_t xattr_obj;
2736 uint64_t mtime[2], ctime[2];
2737 znode_t *attrzp;
2738 int need_policy = FALSE;
2739 int err, err2;
2740 zfs_fuid_info_t *fuidp = NULL;
2741 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2742 xoptattr_t *xoap;
2743 zfs_acl_t *aclp;
2744 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2745 boolean_t fuid_dirtied = B_FALSE;
2746 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2747 int count = 0, xattr_count = 0;
2748
2749 if (mask == 0)
2750 return (0);
2751
2752 if (mask & AT_NOSET)
2753 return (SET_ERROR(EINVAL));
2754
2755 ZFS_ENTER(zfsvfs);
2756 ZFS_VERIFY_ZP(zp);
2757
2758 zilog = zfsvfs->z_log;
2759
2760 /*
2761 * Make sure that if we have ephemeral uid/gid or xvattr specified
2762 * that file system is at proper version level
2763 */
2764
2765 if (zfsvfs->z_use_fuids == B_FALSE &&
2766 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2767 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2768 (mask & AT_XVATTR))) {
2769 ZFS_EXIT(zfsvfs);
2770 return (SET_ERROR(EINVAL));
2771 }
2772
2773 if (mask & AT_SIZE && vp->v_type == VDIR) {
2774 ZFS_EXIT(zfsvfs);
2775 return (SET_ERROR(EISDIR));
2776 }
2777
2778 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2779 ZFS_EXIT(zfsvfs);
2780 return (SET_ERROR(EINVAL));
2781 }
2782
2783 /*
2784 * If this is an xvattr_t, then get a pointer to the structure of
2785 * optional attributes. If this is NULL, then we have a vattr_t.
2786 */
2787 xoap = xva_getxoptattr(xvap);
2788
2789 xva_init(&tmpxvattr);
2790
2791 /*
2792 * Immutable files can only alter immutable bit and atime
2793 */
2794 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2795 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2796 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2797 ZFS_EXIT(zfsvfs);
2798 return (SET_ERROR(EPERM));
2799 }
2800
2801 /*
2802 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2803 */
2804
2805 /*
2806 * Verify timestamps doesn't overflow 32 bits.
2807 * ZFS can handle large timestamps, but 32bit syscalls can't
2808 * handle times greater than 2039. This check should be removed
2809 * once large timestamps are fully supported.
2810 */
2811 if (mask & (AT_ATIME | AT_MTIME)) {
2812 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2813 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2814 ZFS_EXIT(zfsvfs);
2815 return (SET_ERROR(EOVERFLOW));
2816 }
2817 }
2818
2819 top:
2820 attrzp = NULL;
2821 aclp = NULL;
2822
2823 /* Can this be moved to before the top label? */
2824 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2825 ZFS_EXIT(zfsvfs);
2826 return (SET_ERROR(EROFS));
2827 }
2828
2829 /*
2830 * First validate permissions
2831 */
2832
2833 if (mask & AT_SIZE) {
2834 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2835 if (err) {
2836 ZFS_EXIT(zfsvfs);
2837 return (err);
2838 }
2839 /*
2840 * XXX - Note, we are not providing any open
2841 * mode flags here (like FNDELAY), so we may
2842 * block if there are locks present... this
2843 * should be addressed in openat().
2844 */
2845 /* XXX - would it be OK to generate a log record here? */
2846 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2847 if (err) {
2848 ZFS_EXIT(zfsvfs);
2849 return (err);
2850 }
2851
2852 if (vap->va_size == 0)
2853 vnevent_truncate(ZTOV(zp), ct);
2854 }
2855
2856 if (mask & (AT_ATIME|AT_MTIME) ||
2857 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2858 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2859 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2860 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2861 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2862 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2863 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2864 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2865 skipaclchk, cr);
2866 }
2867
2868 if (mask & (AT_UID|AT_GID)) {
2869 int idmask = (mask & (AT_UID|AT_GID));
2870 int take_owner;
2871 int take_group;
2872
2873 /*
2874 * NOTE: even if a new mode is being set,
2875 * we may clear S_ISUID/S_ISGID bits.
2876 */
2877
2878 if (!(mask & AT_MODE))
2879 vap->va_mode = zp->z_mode;
2880
2881 /*
2882 * Take ownership or chgrp to group we are a member of
2883 */
2884
2885 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2886 take_group = (mask & AT_GID) &&
2887 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2888
2889 /*
2890 * If both AT_UID and AT_GID are set then take_owner and
2891 * take_group must both be set in order to allow taking
2892 * ownership.
2893 *
2894 * Otherwise, send the check through secpolicy_vnode_setattr()
2895 *
2896 */
2897
2898 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2899 ((idmask == AT_UID) && take_owner) ||
2900 ((idmask == AT_GID) && take_group)) {
2901 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2902 skipaclchk, cr) == 0) {
2903 /*
2904 * Remove setuid/setgid for non-privileged users
2905 */
2906 secpolicy_setid_clear(vap, cr);
2907 trim_mask = (mask & (AT_UID|AT_GID));
2908 } else {
2909 need_policy = TRUE;
2910 }
2911 } else {
2912 need_policy = TRUE;
2913 }
2914 }
2915
2916 mutex_enter(&zp->z_lock);
2917 oldva.va_mode = zp->z_mode;
2918 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2919 if (mask & AT_XVATTR) {
2920 /*
2921 * Update xvattr mask to include only those attributes
2922 * that are actually changing.
2923 *
2924 * the bits will be restored prior to actually setting
2925 * the attributes so the caller thinks they were set.
2926 */
2927 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2928 if (xoap->xoa_appendonly !=
2929 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2930 need_policy = TRUE;
2931 } else {
2932 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2933 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2934 }
2935 }
2936
2937 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2938 if (xoap->xoa_nounlink !=
2939 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2940 need_policy = TRUE;
2941 } else {
2942 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2943 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2944 }
2945 }
2946
2947 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2948 if (xoap->xoa_immutable !=
2949 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2950 need_policy = TRUE;
2951 } else {
2952 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2953 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2954 }
2955 }
2956
2957 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2958 if (xoap->xoa_nodump !=
2959 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2960 need_policy = TRUE;
2961 } else {
2962 XVA_CLR_REQ(xvap, XAT_NODUMP);
2963 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2964 }
2965 }
2966
2967 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2968 if (xoap->xoa_av_modified !=
2969 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2970 need_policy = TRUE;
2971 } else {
2972 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2973 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2974 }
2975 }
2976
2977 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2978 if ((vp->v_type != VREG &&
2979 xoap->xoa_av_quarantined) ||
2980 xoap->xoa_av_quarantined !=
2981 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2982 need_policy = TRUE;
2983 } else {
2984 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2985 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2986 }
2987 }
2988
2989 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2990 mutex_exit(&zp->z_lock);
2991 ZFS_EXIT(zfsvfs);
2992 return (SET_ERROR(EPERM));
2993 }
2994
2995 if (need_policy == FALSE &&
2996 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2997 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2998 need_policy = TRUE;
2999 }
3000 }
3001
3002 mutex_exit(&zp->z_lock);
3003
3004 if (mask & AT_MODE) {
3005 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3006 err = secpolicy_setid_setsticky_clear(vp, vap,
3007 &oldva, cr);
3008 if (err) {
3009 ZFS_EXIT(zfsvfs);
3010 return (err);
3011 }
3012 trim_mask |= AT_MODE;
3013 } else {
3014 need_policy = TRUE;
3015 }
3016 }
3017
3018 if (need_policy) {
3019 /*
3020 * If trim_mask is set then take ownership
3021 * has been granted or write_acl is present and user
3022 * has the ability to modify mode. In that case remove
3023 * UID|GID and or MODE from mask so that
3024 * secpolicy_vnode_setattr() doesn't revoke it.
3025 */
3026
3027 if (trim_mask) {
3028 saved_mask = vap->va_mask;
3029 vap->va_mask &= ~trim_mask;
3030 }
3031 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3032 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3033 if (err) {
3034 ZFS_EXIT(zfsvfs);
3035 return (err);
3036 }
3037
3038 if (trim_mask)
3039 vap->va_mask |= saved_mask;
3040 }
3041
3042 /*
3043 * secpolicy_vnode_setattr, or take ownership may have
3044 * changed va_mask
3045 */
3046 mask = vap->va_mask;
3047
3048 if ((mask & (AT_UID | AT_GID))) {
3049 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3050 &xattr_obj, sizeof (xattr_obj));
3051
3052 if (err == 0 && xattr_obj) {
3053 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3054 if (err)
3055 goto out2;
3056 }
3057 if (mask & AT_UID) {
3058 new_uid = zfs_fuid_create(zfsvfs,
3059 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3060 if (new_uid != zp->z_uid &&
3061 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3062 if (attrzp)
3063 VN_RELE(ZTOV(attrzp));
3064 err = SET_ERROR(EDQUOT);
3065 goto out2;
3066 }
3067 }
3068
3069 if (mask & AT_GID) {
3070 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3071 cr, ZFS_GROUP, &fuidp);
3072 if (new_gid != zp->z_gid &&
3073 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3074 if (attrzp)
3075 VN_RELE(ZTOV(attrzp));
3076 err = SET_ERROR(EDQUOT);
3077 goto out2;
3078 }
3079 }
3080 }
3081 tx = dmu_tx_create(zfsvfs->z_os);
3082
3083 if (mask & AT_MODE) {
3084 uint64_t pmode = zp->z_mode;
3085 uint64_t acl_obj;
3086 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3087
3088 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3089 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3090 err = SET_ERROR(EPERM);
3091 goto out;
3092 }
3093
3094 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3095 goto out;
3096
3097 mutex_enter(&zp->z_lock);
3098 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3099 /*
3100 * Are we upgrading ACL from old V0 format
3101 * to V1 format?
3102 */
3103 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3104 zfs_znode_acl_version(zp) ==
3105 ZFS_ACL_VERSION_INITIAL) {
3106 dmu_tx_hold_free(tx, acl_obj, 0,
3107 DMU_OBJECT_END);
3108 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3109 0, aclp->z_acl_bytes);
3110 } else {
3111 dmu_tx_hold_write(tx, acl_obj, 0,
3112 aclp->z_acl_bytes);
3113 }
3114 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3115 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3116 0, aclp->z_acl_bytes);
3117 }
3118 mutex_exit(&zp->z_lock);
3119 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3120 } else {
3121 if ((mask & AT_XVATTR) &&
3122 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3123 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3124 else
3125 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3126 }
3127
3128 if (attrzp) {
3129 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3130 }
3131
3132 fuid_dirtied = zfsvfs->z_fuid_dirty;
3133 if (fuid_dirtied)
3134 zfs_fuid_txhold(zfsvfs, tx);
3135
3136 zfs_sa_upgrade_txholds(tx, zp);
3137
3138 err = dmu_tx_assign(tx, TXG_WAIT);
3139 if (err)
3140 goto out;
3141
3142 count = 0;
3143 /*
3144 * Set each attribute requested.
3145 * We group settings according to the locks they need to acquire.
3146 *
3147 * Note: you cannot set ctime directly, although it will be
3148 * updated as a side-effect of calling this function.
3149 */
3150
3151
3152 if (mask & (AT_UID|AT_GID|AT_MODE))
3153 mutex_enter(&zp->z_acl_lock);
3154 mutex_enter(&zp->z_lock);
3155
3156 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3157 &zp->z_pflags, sizeof (zp->z_pflags));
3158
3159 if (attrzp) {
3160 if (mask & (AT_UID|AT_GID|AT_MODE))
3161 mutex_enter(&attrzp->z_acl_lock);
3162 mutex_enter(&attrzp->z_lock);
3163 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3164 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3165 sizeof (attrzp->z_pflags));
3166 }
3167
3168 if (mask & (AT_UID|AT_GID)) {
3169
3170 if (mask & AT_UID) {
3171 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3172 &new_uid, sizeof (new_uid));
3173 zp->z_uid = new_uid;
3174 if (attrzp) {
3175 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3176 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3177 sizeof (new_uid));
3178 attrzp->z_uid = new_uid;
3179 }
3180 }
3181
3182 if (mask & AT_GID) {
3183 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3184 NULL, &new_gid, sizeof (new_gid));
3185 zp->z_gid = new_gid;
3186 if (attrzp) {
3187 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3188 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3189 sizeof (new_gid));
3190 attrzp->z_gid = new_gid;
3191 }
3192 }
3193 if (!(mask & AT_MODE)) {
3194 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3195 NULL, &new_mode, sizeof (new_mode));
3196 new_mode = zp->z_mode;
3197 }
3198 err = zfs_acl_chown_setattr(zp);
3199 ASSERT(err == 0);
3200 if (attrzp) {
3201 err = zfs_acl_chown_setattr(attrzp);
3202 ASSERT(err == 0);
3203 }
3204 }
3205
3206 if (mask & AT_MODE) {
3207 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3208 &new_mode, sizeof (new_mode));
3209 zp->z_mode = new_mode;
3210 ASSERT3U((uintptr_t)aclp, !=, NULL);
3211 err = zfs_aclset_common(zp, aclp, cr, tx);
3212 ASSERT0(err);
3213 if (zp->z_acl_cached)
3214 zfs_acl_free(zp->z_acl_cached);
3215 zp->z_acl_cached = aclp;
3216 aclp = NULL;
3217 }
3218
3219
3220 if (mask & AT_ATIME) {
3221 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3223 &zp->z_atime, sizeof (zp->z_atime));
3224 }
3225
3226 if (mask & AT_MTIME) {
3227 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3229 mtime, sizeof (mtime));
3230 }
3231
3232 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3233 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3235 NULL, mtime, sizeof (mtime));
3236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3237 &ctime, sizeof (ctime));
3238 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3239 B_TRUE);
3240 } else if (mask != 0) {
3241 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3242 &ctime, sizeof (ctime));
3243 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3244 B_TRUE);
3245 if (attrzp) {
3246 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3247 SA_ZPL_CTIME(zfsvfs), NULL,
3248 &ctime, sizeof (ctime));
3249 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3250 mtime, ctime, B_TRUE);
3251 }
3252 }
3253 /*
3254 * Do this after setting timestamps to prevent timestamp
3255 * update from toggling bit
3256 */
3257
3258 if (xoap && (mask & AT_XVATTR)) {
3259
3260 /*
3261 * restore trimmed off masks
3262 * so that return masks can be set for caller.
3263 */
3264
3265 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3266 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3267 }
3268 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3269 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3270 }
3271 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3272 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3273 }
3274 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3275 XVA_SET_REQ(xvap, XAT_NODUMP);
3276 }
3277 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3278 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3279 }
3280 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3281 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3282 }
3283
3284 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3285 ASSERT(vp->v_type == VREG);
3286
3287 zfs_xvattr_set(zp, xvap, tx);
3288 }
3289
3290 if (fuid_dirtied)
3291 zfs_fuid_sync(zfsvfs, tx);
3292
3293 if (mask != 0)
3294 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3295
3296 mutex_exit(&zp->z_lock);
3297 if (mask & (AT_UID|AT_GID|AT_MODE))
3298 mutex_exit(&zp->z_acl_lock);
3299
3300 if (attrzp) {
3301 if (mask & (AT_UID|AT_GID|AT_MODE))
3302 mutex_exit(&attrzp->z_acl_lock);
3303 mutex_exit(&attrzp->z_lock);
3304 }
3305 out:
3306 if (err == 0 && attrzp) {
3307 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3308 xattr_count, tx);
3309 ASSERT(err2 == 0);
3310 }
3311
3312 if (attrzp)
3313 VN_RELE(ZTOV(attrzp));
3314
3315 if (aclp)
3316 zfs_acl_free(aclp);
3317
3318 if (fuidp) {
3319 zfs_fuid_info_free(fuidp);
3320 fuidp = NULL;
3321 }
3322
3323 if (err) {
3324 dmu_tx_abort(tx);
3325 if (err == ERESTART)
3326 goto top;
3327 } else {
3328 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3329 dmu_tx_commit(tx);
3330 }
3331
3332 out2:
3333 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3334 zil_commit(zilog, 0);
3335
3336 ZFS_EXIT(zfsvfs);
3337 return (err);
3338 }
3339
3340 typedef struct zfs_zlock {
3341 krwlock_t *zl_rwlock; /* lock we acquired */
3342 znode_t *zl_znode; /* znode we held */
3343 struct zfs_zlock *zl_next; /* next in list */
3344 } zfs_zlock_t;
3345
3346 /*
3347 * Drop locks and release vnodes that were held by zfs_rename_lock().
3348 */
3349 static void
3350 zfs_rename_unlock(zfs_zlock_t **zlpp)
3351 {
3352 zfs_zlock_t *zl;
3353
3354 while ((zl = *zlpp) != NULL) {
3355 if (zl->zl_znode != NULL)
3356 VN_RELE(ZTOV(zl->zl_znode));
3357 rw_exit(zl->zl_rwlock);
3358 *zlpp = zl->zl_next;
3359 kmem_free(zl, sizeof (*zl));
3360 }
3361 }
3362
3363 /*
3364 * Search back through the directory tree, using the ".." entries.
3365 * Lock each directory in the chain to prevent concurrent renames.
3366 * Fail any attempt to move a directory into one of its own descendants.
3367 * XXX - z_parent_lock can overlap with map or grow locks
3368 */
3369 static int
3370 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3371 {
3372 zfs_zlock_t *zl;
3373 znode_t *zp = tdzp;
3374 uint64_t rootid = zp->z_zfsvfs->z_root;
3375 uint64_t oidp = zp->z_id;
3376 krwlock_t *rwlp = &szp->z_parent_lock;
3377 krw_t rw = RW_WRITER;
3378
3379 /*
3380 * First pass write-locks szp and compares to zp->z_id.
3381 * Later passes read-lock zp and compare to zp->z_parent.
3382 */
3383 do {
3384 if (!rw_tryenter(rwlp, rw)) {
3385 /*
3386 * Another thread is renaming in this path.
3387 * Note that if we are a WRITER, we don't have any
3388 * parent_locks held yet.
3389 */
3390 if (rw == RW_READER && zp->z_id > szp->z_id) {
3391 /*
3392 * Drop our locks and restart
3393 */
3394 zfs_rename_unlock(&zl);
3395 *zlpp = NULL;
3396 zp = tdzp;
3397 oidp = zp->z_id;
3398 rwlp = &szp->z_parent_lock;
3399 rw = RW_WRITER;
3400 continue;
3401 } else {
3402 /*
3403 * Wait for other thread to drop its locks
3404 */
3405 rw_enter(rwlp, rw);
3406 }
3407 }
3408
3409 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3410 zl->zl_rwlock = rwlp;
3411 zl->zl_znode = NULL;
3412 zl->zl_next = *zlpp;
3413 *zlpp = zl;
3414
3415 if (oidp == szp->z_id) /* We're a descendant of szp */
3416 return (SET_ERROR(EINVAL));
3417
3418 if (oidp == rootid) /* We've hit the top */
3419 return (0);
3420
3421 if (rw == RW_READER) { /* i.e. not the first pass */
3422 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3423 if (error)
3424 return (error);
3425 zl->zl_znode = zp;
3426 }
3427 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3428 &oidp, sizeof (oidp));
3429 rwlp = &zp->z_parent_lock;
3430 rw = RW_READER;
3431
3432 } while (zp->z_id != sdzp->z_id);
3433
3434 return (0);
3435 }
3436
3437 /*
3438 * Move an entry from the provided source directory to the target
3439 * directory. Change the entry name as indicated.
3440 *
3441 * IN: sdvp - Source directory containing the "old entry".
3442 * snm - Old entry name.
3443 * tdvp - Target directory to contain the "new entry".
3444 * tnm - New entry name.
3445 * cr - credentials of caller.
3446 * ct - caller context
3447 * flags - case flags
3448 *
3449 * RETURN: 0 on success, error code on failure.
3450 *
3451 * Timestamps:
3452 * sdvp,tdvp - ctime|mtime updated
3453 */
3454 /*ARGSUSED*/
3455 static int
3456 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3457 caller_context_t *ct, int flags)
3458 {
3459 znode_t *tdzp, *szp, *tzp;
3460 znode_t *sdzp = VTOZ(sdvp);
3461 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3462 zilog_t *zilog;
3463 vnode_t *realvp;
3464 zfs_dirlock_t *sdl, *tdl;
3465 dmu_tx_t *tx;
3466 zfs_zlock_t *zl;
3467 int cmp, serr, terr;
3468 int error = 0, rm_err = 0;
3469 int zflg = 0;
3470 boolean_t waited = B_FALSE;
3471
3472 ZFS_ENTER(zfsvfs);
3473 ZFS_VERIFY_ZP(sdzp);
3474 zilog = zfsvfs->z_log;
3475
3476 /*
3477 * Make sure we have the real vp for the target directory.
3478 */
3479 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3480 tdvp = realvp;
3481
3482 tdzp = VTOZ(tdvp);
3483 ZFS_VERIFY_ZP(tdzp);
3484
3485 /*
3486 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3487 * ctldir appear to have the same v_vfsp.
3488 */
3489 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3490 ZFS_EXIT(zfsvfs);
3491 return (SET_ERROR(EXDEV));
3492 }
3493
3494 if (zfsvfs->z_utf8 && u8_validate(tnm,
3495 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3496 ZFS_EXIT(zfsvfs);
3497 return (SET_ERROR(EILSEQ));
3498 }
3499
3500 if (flags & FIGNORECASE)
3501 zflg |= ZCILOOK;
3502
3503 top:
3504 szp = NULL;
3505 tzp = NULL;
3506 zl = NULL;
3507
3508 /*
3509 * This is to prevent the creation of links into attribute space
3510 * by renaming a linked file into/outof an attribute directory.
3511 * See the comment in zfs_link() for why this is considered bad.
3512 */
3513 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3514 ZFS_EXIT(zfsvfs);
3515 return (SET_ERROR(EINVAL));
3516 }
3517
3518 /*
3519 * Lock source and target directory entries. To prevent deadlock,
3520 * a lock ordering must be defined. We lock the directory with
3521 * the smallest object id first, or if it's a tie, the one with
3522 * the lexically first name.
3523 */
3524 if (sdzp->z_id < tdzp->z_id) {
3525 cmp = -1;
3526 } else if (sdzp->z_id > tdzp->z_id) {
3527 cmp = 1;
3528 } else {
3529 /*
3530 * First compare the two name arguments without
3531 * considering any case folding.
3532 */
3533 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3534
3535 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3536 ASSERT(error == 0 || !zfsvfs->z_utf8);
3537 if (cmp == 0) {
3538 /*
3539 * POSIX: "If the old argument and the new argument
3540 * both refer to links to the same existing file,
3541 * the rename() function shall return successfully
3542 * and perform no other action."
3543 */
3544 ZFS_EXIT(zfsvfs);
3545 return (0);
3546 }
3547 /*
3548 * If the file system is case-folding, then we may
3549 * have some more checking to do. A case-folding file
3550 * system is either supporting mixed case sensitivity
3551 * access or is completely case-insensitive. Note
3552 * that the file system is always case preserving.
3553 *
3554 * In mixed sensitivity mode case sensitive behavior
3555 * is the default. FIGNORECASE must be used to
3556 * explicitly request case insensitive behavior.
3557 *
3558 * If the source and target names provided differ only
3559 * by case (e.g., a request to rename 'tim' to 'Tim'),
3560 * we will treat this as a special case in the
3561 * case-insensitive mode: as long as the source name
3562 * is an exact match, we will allow this to proceed as
3563 * a name-change request.
3564 */
3565 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3566 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3567 flags & FIGNORECASE)) &&
3568 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3569 &error) == 0) {
3570 /*
3571 * case preserving rename request, require exact
3572 * name matches
3573 */
3574 zflg |= ZCIEXACT;
3575 zflg &= ~ZCILOOK;
3576 }
3577 }
3578
3579 /*
3580 * If the source and destination directories are the same, we should
3581 * grab the z_name_lock of that directory only once.
3582 */
3583 if (sdzp == tdzp) {
3584 zflg |= ZHAVELOCK;
3585 rw_enter(&sdzp->z_name_lock, RW_READER);
3586 }
3587
3588 if (cmp < 0) {
3589 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3590 ZEXISTS | zflg, NULL, NULL);
3591 terr = zfs_dirent_lock(&tdl,
3592 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3593 } else {
3594 terr = zfs_dirent_lock(&tdl,
3595 tdzp, tnm, &tzp, zflg, NULL, NULL);
3596 serr = zfs_dirent_lock(&sdl,
3597 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3598 NULL, NULL);
3599 }
3600
3601 if (serr) {
3602 /*
3603 * Source entry invalid or not there.
3604 */
3605 if (!terr) {
3606 zfs_dirent_unlock(tdl);
3607 if (tzp)
3608 VN_RELE(ZTOV(tzp));
3609 }
3610
3611 if (sdzp == tdzp)
3612 rw_exit(&sdzp->z_name_lock);
3613
3614 if (strcmp(snm, "..") == 0)
3615 serr = SET_ERROR(EINVAL);
3616 ZFS_EXIT(zfsvfs);
3617 return (serr);
3618 }
3619 if (terr) {
3620 zfs_dirent_unlock(sdl);
3621 VN_RELE(ZTOV(szp));
3622
3623 if (sdzp == tdzp)
3624 rw_exit(&sdzp->z_name_lock);
3625
3626 if (strcmp(tnm, "..") == 0)
3627 terr = SET_ERROR(EINVAL);
3628 ZFS_EXIT(zfsvfs);
3629 return (terr);
3630 }
3631
3632 /*
3633 * Must have write access at the source to remove the old entry
3634 * and write access at the target to create the new entry.
3635 * Note that if target and source are the same, this can be
3636 * done in a single check.
3637 */
3638
3639 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3640 goto out;
3641
3642 if (ZTOV(szp)->v_type == VDIR) {
3643 /*
3644 * Check to make sure rename is valid.
3645 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3646 */
3647 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3648 goto out;
3649 }
3650
3651 /*
3652 * Does target exist?
3653 */
3654 if (tzp) {
3655 /*
3656 * Source and target must be the same type.
3657 */
3658 if (ZTOV(szp)->v_type == VDIR) {
3659 if (ZTOV(tzp)->v_type != VDIR) {
3660 error = SET_ERROR(ENOTDIR);
3661 goto out;
3662 }
3663 } else {
3664 if (ZTOV(tzp)->v_type == VDIR) {
3665 error = SET_ERROR(EISDIR);
3666 goto out;
3667 }
3668 }
3669 /*
3670 * POSIX dictates that when the source and target
3671 * entries refer to the same file object, rename
3672 * must do nothing and exit without error.
3673 */
3674 if (szp->z_id == tzp->z_id) {
3675 error = 0;
3676 goto out;
3677 }
3678 }
3679
3680 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3681 if (tzp)
3682 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3683
3684 /*
3685 * notify the target directory if it is not the same
3686 * as source directory.
3687 */
3688 if (tdvp != sdvp) {
3689 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3690 }
3691
3692 tx = dmu_tx_create(zfsvfs->z_os);
3693 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3694 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3695 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3696 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3697 if (sdzp != tdzp) {
3698 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3699 zfs_sa_upgrade_txholds(tx, tdzp);
3700 }
3701 if (tzp) {
3702 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3703 zfs_sa_upgrade_txholds(tx, tzp);
3704 }
3705
3706 zfs_sa_upgrade_txholds(tx, szp);
3707 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3708 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3709 if (error) {
3710 if (zl != NULL)
3711 zfs_rename_unlock(&zl);
3712 zfs_dirent_unlock(sdl);
3713 zfs_dirent_unlock(tdl);
3714
3715 if (sdzp == tdzp)
3716 rw_exit(&sdzp->z_name_lock);
3717
3718 VN_RELE(ZTOV(szp));
3719 if (tzp)
3720 VN_RELE(ZTOV(tzp));
3721 if (error == ERESTART) {
3722 waited = B_TRUE;
3723 dmu_tx_wait(tx);
3724 dmu_tx_abort(tx);
3725 goto top;
3726 }
3727 dmu_tx_abort(tx);
3728 ZFS_EXIT(zfsvfs);
3729 return (error);
3730 }
3731
3732 if (tzp) /* Attempt to remove the existing target */
3733 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3734
3735 if (error == 0) {
3736 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3737 if (error == 0) {
3738 szp->z_pflags |= ZFS_AV_MODIFIED;
3739
3740 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3741 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3742 ASSERT0(error);
3743
3744 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3745 if (error == 0) {
3746 zfs_log_rename(zilog, tx, TX_RENAME |
3747 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3748 sdl->dl_name, tdzp, tdl->dl_name, szp);
3749
3750 /*
3751 * Update path information for the target vnode
3752 */
3753 vn_renamepath(tdvp, ZTOV(szp), tnm,
3754 strlen(tnm));
3755 } else {
3756 /*
3757 * At this point, we have successfully created
3758 * the target name, but have failed to remove
3759 * the source name. Since the create was done
3760 * with the ZRENAMING flag, there are
3761 * complications; for one, the link count is
3762 * wrong. The easiest way to deal with this
3763 * is to remove the newly created target, and
3764 * return the original error. This must
3765 * succeed; fortunately, it is very unlikely to
3766 * fail, since we just created it.
3767 */
3768 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3769 ZRENAMING, NULL), ==, 0);
3770 }
3771 }
3772 }
3773
3774 dmu_tx_commit(tx);
3775
3776 if (tzp && rm_err == 0)
3777 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3778
3779 if (error == 0) {
3780 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3781 /* notify the target dir if it is not the same as source dir */
3782 if (tdvp != sdvp)
3783 vnevent_rename_dest_dir(tdvp, ct);
3784 }
3785 out:
3786 if (zl != NULL)
3787 zfs_rename_unlock(&zl);
3788
3789 zfs_dirent_unlock(sdl);
3790 zfs_dirent_unlock(tdl);
3791
3792 if (sdzp == tdzp)
3793 rw_exit(&sdzp->z_name_lock);
3794
3795
3796 VN_RELE(ZTOV(szp));
3797 if (tzp)
3798 VN_RELE(ZTOV(tzp));
3799
3800 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3801 zil_commit(zilog, 0);
3802
3803 ZFS_EXIT(zfsvfs);
3804 return (error);
3805 }
3806
3807 /*
3808 * Insert the indicated symbolic reference entry into the directory.
3809 *
3810 * IN: dvp - Directory to contain new symbolic link.
3811 * link - Name for new symlink entry.
3812 * vap - Attributes of new entry.
3813 * cr - credentials of caller.
3814 * ct - caller context
3815 * flags - case flags
3816 *
3817 * RETURN: 0 on success, error code on failure.
3818 *
3819 * Timestamps:
3820 * dvp - ctime|mtime updated
3821 */
3822 /*ARGSUSED*/
3823 static int
3824 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3825 caller_context_t *ct, int flags)
3826 {
3827 znode_t *zp, *dzp = VTOZ(dvp);
3828 zfs_dirlock_t *dl;
3829 dmu_tx_t *tx;
3830 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3831 zilog_t *zilog;
3832 uint64_t len = strlen(link);
3833 int error;
3834 int zflg = ZNEW;
3835 zfs_acl_ids_t acl_ids;
3836 boolean_t fuid_dirtied;
3837 uint64_t txtype = TX_SYMLINK;
3838 boolean_t waited = B_FALSE;
3839
3840 ASSERT(vap->va_type == VLNK);
3841
3842 ZFS_ENTER(zfsvfs);
3843 ZFS_VERIFY_ZP(dzp);
3844 zilog = zfsvfs->z_log;
3845
3846 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3847 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3848 ZFS_EXIT(zfsvfs);
3849 return (SET_ERROR(EILSEQ));
3850 }
3851 if (flags & FIGNORECASE)
3852 zflg |= ZCILOOK;
3853
3854 if (len > MAXPATHLEN) {
3855 ZFS_EXIT(zfsvfs);
3856 return (SET_ERROR(ENAMETOOLONG));
3857 }
3858
3859 if ((error = zfs_acl_ids_create(dzp, 0,
3860 vap, cr, NULL, &acl_ids)) != 0) {
3861 ZFS_EXIT(zfsvfs);
3862 return (error);
3863 }
3864 top:
3865 /*
3866 * Attempt to lock directory; fail if entry already exists.
3867 */
3868 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3869 if (error) {
3870 zfs_acl_ids_free(&acl_ids);
3871 ZFS_EXIT(zfsvfs);
3872 return (error);
3873 }
3874
3875 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3876 zfs_acl_ids_free(&acl_ids);
3877 zfs_dirent_unlock(dl);
3878 ZFS_EXIT(zfsvfs);
3879 return (error);
3880 }
3881
3882 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3883 zfs_acl_ids_free(&acl_ids);
3884 zfs_dirent_unlock(dl);
3885 ZFS_EXIT(zfsvfs);
3886 return (SET_ERROR(EDQUOT));
3887 }
3888 tx = dmu_tx_create(zfsvfs->z_os);
3889 fuid_dirtied = zfsvfs->z_fuid_dirty;
3890 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3891 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3892 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3893 ZFS_SA_BASE_ATTR_SIZE + len);
3894 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3895 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3896 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3897 acl_ids.z_aclp->z_acl_bytes);
3898 }
3899 if (fuid_dirtied)
3900 zfs_fuid_txhold(zfsvfs, tx);
3901 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3902 if (error) {
3903 zfs_dirent_unlock(dl);
3904 if (error == ERESTART) {
3905 waited = B_TRUE;
3906 dmu_tx_wait(tx);
3907 dmu_tx_abort(tx);
3908 goto top;
3909 }
3910 zfs_acl_ids_free(&acl_ids);
3911 dmu_tx_abort(tx);
3912 ZFS_EXIT(zfsvfs);
3913 return (error);
3914 }
3915
3916 /*
3917 * Create a new object for the symlink.
3918 * for version 4 ZPL datsets the symlink will be an SA attribute
3919 */
3920 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3921
3922 if (fuid_dirtied)
3923 zfs_fuid_sync(zfsvfs, tx);
3924
3925 mutex_enter(&zp->z_lock);
3926 if (zp->z_is_sa)
3927 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3928 link, len, tx);
3929 else
3930 zfs_sa_symlink(zp, link, len, tx);
3931 mutex_exit(&zp->z_lock);
3932
3933 zp->z_size = len;
3934 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3935 &zp->z_size, sizeof (zp->z_size), tx);
3936 /*
3937 * Insert the new object into the directory.
3938 */
3939 (void) zfs_link_create(dl, zp, tx, ZNEW);
3940
3941 if (flags & FIGNORECASE)
3942 txtype |= TX_CI;
3943 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3944
3945 zfs_acl_ids_free(&acl_ids);
3946
3947 dmu_tx_commit(tx);
3948
3949 zfs_dirent_unlock(dl);
3950
3951 VN_RELE(ZTOV(zp));
3952
3953 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3954 zil_commit(zilog, 0);
3955
3956 ZFS_EXIT(zfsvfs);
3957 return (error);
3958 }
3959
3960 /*
3961 * Return, in the buffer contained in the provided uio structure,
3962 * the symbolic path referred to by vp.
3963 *
3964 * IN: vp - vnode of symbolic link.
3965 * uio - structure to contain the link path.
3966 * cr - credentials of caller.
3967 * ct - caller context
3968 *
3969 * OUT: uio - structure containing the link path.
3970 *
3971 * RETURN: 0 on success, error code on failure.
3972 *
3973 * Timestamps:
3974 * vp - atime updated
3975 */
3976 /* ARGSUSED */
3977 static int
3978 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3979 {
3980 znode_t *zp = VTOZ(vp);
3981 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3982 int error;
3983
3984 ZFS_ENTER(zfsvfs);
3985 ZFS_VERIFY_ZP(zp);
3986
3987 mutex_enter(&zp->z_lock);
3988 if (zp->z_is_sa)
3989 error = sa_lookup_uio(zp->z_sa_hdl,
3990 SA_ZPL_SYMLINK(zfsvfs), uio);
3991 else
3992 error = zfs_sa_readlink(zp, uio);
3993 mutex_exit(&zp->z_lock);
3994
3995 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3996
3997 ZFS_EXIT(zfsvfs);
3998 return (error);
3999 }
4000
4001 /*
4002 * Insert a new entry into directory tdvp referencing svp.
4003 *
4004 * IN: tdvp - Directory to contain new entry.
4005 * svp - vnode of new entry.
4006 * name - name of new entry.
4007 * cr - credentials of caller.
4008 * ct - caller context
4009 *
4010 * RETURN: 0 on success, error code on failure.
4011 *
4012 * Timestamps:
4013 * tdvp - ctime|mtime updated
4014 * svp - ctime updated
4015 */
4016 /* ARGSUSED */
4017 static int
4018 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4019 caller_context_t *ct, int flags)
4020 {
4021 znode_t *dzp = VTOZ(tdvp);
4022 znode_t *tzp, *szp;
4023 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4024 zilog_t *zilog;
4025 zfs_dirlock_t *dl;
4026 dmu_tx_t *tx;
4027 vnode_t *realvp;
4028 int error;
4029 int zf = ZNEW;
4030 uint64_t parent;
4031 uid_t owner;
4032 boolean_t waited = B_FALSE;
4033
4034 ASSERT(tdvp->v_type == VDIR);
4035
4036 ZFS_ENTER(zfsvfs);
4037 ZFS_VERIFY_ZP(dzp);
4038 zilog = zfsvfs->z_log;
4039
4040 if (VOP_REALVP(svp, &realvp, ct) == 0)
4041 svp = realvp;
4042
4043 /*
4044 * POSIX dictates that we return EPERM here.
4045 * Better choices include ENOTSUP or EISDIR.
4046 */
4047 if (svp->v_type == VDIR) {
4048 ZFS_EXIT(zfsvfs);
4049 return (SET_ERROR(EPERM));
4050 }
4051
4052 szp = VTOZ(svp);
4053 ZFS_VERIFY_ZP(szp);
4054
4055 /*
4056 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4057 * ctldir appear to have the same v_vfsp.
4058 */
4059 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4060 ZFS_EXIT(zfsvfs);
4061 return (SET_ERROR(EXDEV));
4062 }
4063
4064 /* Prevent links to .zfs/shares files */
4065
4066 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4067 &parent, sizeof (uint64_t))) != 0) {
4068 ZFS_EXIT(zfsvfs);
4069 return (error);
4070 }
4071 if (parent == zfsvfs->z_shares_dir) {
4072 ZFS_EXIT(zfsvfs);
4073 return (SET_ERROR(EPERM));
4074 }
4075
4076 if (zfsvfs->z_utf8 && u8_validate(name,
4077 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4078 ZFS_EXIT(zfsvfs);
4079 return (SET_ERROR(EILSEQ));
4080 }
4081 if (flags & FIGNORECASE)
4082 zf |= ZCILOOK;
4083
4084 /*
4085 * We do not support links between attributes and non-attributes
4086 * because of the potential security risk of creating links
4087 * into "normal" file space in order to circumvent restrictions
4088 * imposed in attribute space.
4089 */
4090 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4091 ZFS_EXIT(zfsvfs);
4092 return (SET_ERROR(EINVAL));
4093 }
4094
4095
4096 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4097 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4098 ZFS_EXIT(zfsvfs);
4099 return (SET_ERROR(EPERM));
4100 }
4101
4102 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4103 ZFS_EXIT(zfsvfs);
4104 return (error);
4105 }
4106
4107 top:
4108 /*
4109 * Attempt to lock directory; fail if entry already exists.
4110 */
4111 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4112 if (error) {
4113 ZFS_EXIT(zfsvfs);
4114 return (error);
4115 }
4116
4117 tx = dmu_tx_create(zfsvfs->z_os);
4118 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4119 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4120 zfs_sa_upgrade_txholds(tx, szp);
4121 zfs_sa_upgrade_txholds(tx, dzp);
4122 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4123 if (error) {
4124 zfs_dirent_unlock(dl);
4125 if (error == ERESTART) {
4126 waited = B_TRUE;
4127 dmu_tx_wait(tx);
4128 dmu_tx_abort(tx);
4129 goto top;
4130 }
4131 dmu_tx_abort(tx);
4132 ZFS_EXIT(zfsvfs);
4133 return (error);
4134 }
4135
4136 error = zfs_link_create(dl, szp, tx, 0);
4137
4138 if (error == 0) {
4139 uint64_t txtype = TX_LINK;
4140 if (flags & FIGNORECASE)
4141 txtype |= TX_CI;
4142 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4143 }
4144
4145 dmu_tx_commit(tx);
4146
4147 zfs_dirent_unlock(dl);
4148
4149 if (error == 0) {
4150 vnevent_link(svp, ct);
4151 }
4152
4153 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4154 zil_commit(zilog, 0);
4155
4156 ZFS_EXIT(zfsvfs);
4157 return (error);
4158 }
4159
4160 /*
4161 * zfs_null_putapage() is used when the file system has been force
4162 * unmounted. It just drops the pages.
4163 */
4164 /* ARGSUSED */
4165 static int
4166 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4167 size_t *lenp, int flags, cred_t *cr)
4168 {
4169 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4170 return (0);
4171 }
4172
4173 /*
4174 * Push a page out to disk, klustering if possible.
4175 *
4176 * IN: vp - file to push page to.
4177 * pp - page to push.
4178 * flags - additional flags.
4179 * cr - credentials of caller.
4180 *
4181 * OUT: offp - start of range pushed.
4182 * lenp - len of range pushed.
4183 *
4184 * RETURN: 0 on success, error code on failure.
4185 *
4186 * NOTE: callers must have locked the page to be pushed. On
4187 * exit, the page (and all other pages in the kluster) must be
4188 * unlocked.
4189 */
4190 /* ARGSUSED */
4191 static int
4192 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4193 size_t *lenp, int flags, cred_t *cr)
4194 {
4195 znode_t *zp = VTOZ(vp);
4196 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4197 dmu_tx_t *tx;
4198 u_offset_t off, koff;
4199 size_t len, klen;
4200 int err;
4201
4202 off = pp->p_offset;
4203 len = PAGESIZE;
4204 /*
4205 * If our blocksize is bigger than the page size, try to kluster
4206 * multiple pages so that we write a full block (thus avoiding
4207 * a read-modify-write).
4208 */
4209 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4210 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4211 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4212 ASSERT(koff <= zp->z_size);
4213 if (koff + klen > zp->z_size)
4214 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4215 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4216 }
4217 ASSERT3U(btop(len), ==, btopr(len));
4218
4219 /*
4220 * Can't push pages past end-of-file.
4221 */
4222 if (off >= zp->z_size) {
4223 /* ignore all pages */
4224 err = 0;
4225 goto out;
4226 } else if (off + len > zp->z_size) {
4227 int npages = btopr(zp->z_size - off);
4228 page_t *trunc;
4229
4230 page_list_break(&pp, &trunc, npages);
4231 /* ignore pages past end of file */
4232 if (trunc)
4233 pvn_write_done(trunc, flags);
4234 len = zp->z_size - off;
4235 }
4236
4237 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4238 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4239 err = SET_ERROR(EDQUOT);
4240 goto out;
4241 }
4242 tx = dmu_tx_create(zfsvfs->z_os);
4243 dmu_tx_hold_write(tx, zp->z_id, off, len);
4244
4245 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4246 zfs_sa_upgrade_txholds(tx, zp);
4247 err = dmu_tx_assign(tx, TXG_WAIT);
4248 if (err != 0) {
4249 dmu_tx_abort(tx);
4250 goto out;
4251 }
4252
4253 if (zp->z_blksz <= PAGESIZE) {
4254 caddr_t va = zfs_map_page(pp, S_READ);
4255 ASSERT3U(len, <=, PAGESIZE);
4256 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4257 zfs_unmap_page(pp, va);
4258 } else {
4259 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4260 }
4261
4262 if (err == 0) {
4263 uint64_t mtime[2], ctime[2];
4264 sa_bulk_attr_t bulk[3];
4265 int count = 0;
4266
4267 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4268 &mtime, 16);
4269 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4270 &ctime, 16);
4271 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4272 &zp->z_pflags, 8);
4273 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4274 B_TRUE);
4275 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4276 ASSERT0(err);
4277 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4278 }
4279 dmu_tx_commit(tx);
4280
4281 out:
4282 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4283 if (offp)
4284 *offp = off;
4285 if (lenp)
4286 *lenp = len;
4287
4288 return (err);
4289 }
4290
4291 /*
4292 * Copy the portion of the file indicated from pages into the file.
4293 * The pages are stored in a page list attached to the files vnode.
4294 *
4295 * IN: vp - vnode of file to push page data to.
4296 * off - position in file to put data.
4297 * len - amount of data to write.
4298 * flags - flags to control the operation.
4299 * cr - credentials of caller.
4300 * ct - caller context.
4301 *
4302 * RETURN: 0 on success, error code on failure.
4303 *
4304 * Timestamps:
4305 * vp - ctime|mtime updated
4306 */
4307 /*ARGSUSED*/
4308 static int
4309 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4310 caller_context_t *ct)
4311 {
4312 znode_t *zp = VTOZ(vp);
4313 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4314 page_t *pp;
4315 size_t io_len;
4316 u_offset_t io_off;
4317 uint_t blksz;
4318 locked_range_t *lr;
4319 int error = 0;
4320
4321 ZFS_ENTER(zfsvfs);
4322 ZFS_VERIFY_ZP(zp);
4323
4324 /*
4325 * There's nothing to do if no data is cached.
4326 */
4327 if (!vn_has_cached_data(vp)) {
4328 ZFS_EXIT(zfsvfs);
4329 return (0);
4330 }
4331
4332 /*
4333 * Align this request to the file block size in case we kluster.
4334 * XXX - this can result in pretty aggresive locking, which can
4335 * impact simultanious read/write access. One option might be
4336 * to break up long requests (len == 0) into block-by-block
4337 * operations to get narrower locking.
4338 */
4339 blksz = zp->z_blksz;
4340 if (ISP2(blksz))
4341 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4342 else
4343 io_off = 0;
4344 if (len > 0 && ISP2(blksz))
4345 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4346 else
4347 io_len = 0;
4348
4349 if (io_len == 0) {
4350 /*
4351 * Search the entire vp list for pages >= io_off.
4352 */
4353 lr = rangelock_enter(&zp->z_rangelock,
4354 io_off, UINT64_MAX, RL_WRITER);
4355 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4356 goto out;
4357 }
4358 lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER);
4359
4360 if (off > zp->z_size) {
4361 /* past end of file */
4362 rangelock_exit(lr);
4363 ZFS_EXIT(zfsvfs);
4364 return (0);
4365 }
4366
4367 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4368
4369 for (off = io_off; io_off < off + len; io_off += io_len) {
4370 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4371 pp = page_lookup(vp, io_off,
4372 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4373 } else {
4374 pp = page_lookup_nowait(vp, io_off,
4375 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4376 }
4377
4378 if (pp != NULL && pvn_getdirty(pp, flags)) {
4379 int err;
4380
4381 /*
4382 * Found a dirty page to push
4383 */
4384 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4385 if (err)
4386 error = err;
4387 } else {
4388 io_len = PAGESIZE;
4389 }
4390 }
4391 out:
4392 rangelock_exit(lr);
4393 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4394 zil_commit(zfsvfs->z_log, zp->z_id);
4395 ZFS_EXIT(zfsvfs);
4396 return (error);
4397 }
4398
4399 /*ARGSUSED*/
4400 void
4401 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4402 {
4403 znode_t *zp = VTOZ(vp);
4404 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4405 int error;
4406
4407 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4408 if (zp->z_sa_hdl == NULL) {
4409 /*
4410 * The fs has been unmounted, or we did a
4411 * suspend/resume and this file no longer exists.
4412 */
4413 if (vn_has_cached_data(vp)) {
4414 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4415 B_INVAL, cr);
4416 }
4417
4418 mutex_enter(&zp->z_lock);
4419 mutex_enter(&vp->v_lock);
4420 ASSERT(vp->v_count == 1);
4421 VN_RELE_LOCKED(vp);
4422 mutex_exit(&vp->v_lock);
4423 mutex_exit(&zp->z_lock);
4424 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4425 zfs_znode_free(zp);
4426 return;
4427 }
4428
4429 /*
4430 * Attempt to push any data in the page cache. If this fails
4431 * we will get kicked out later in zfs_zinactive().
4432 */
4433 if (vn_has_cached_data(vp)) {
4434 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4435 cr);
4436 }
4437
4438 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4439 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4440
4441 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4442 zfs_sa_upgrade_txholds(tx, zp);
4443 error = dmu_tx_assign(tx, TXG_WAIT);
4444 if (error) {
4445 dmu_tx_abort(tx);
4446 } else {
4447 mutex_enter(&zp->z_lock);
4448 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4449 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4450 zp->z_atime_dirty = 0;
4451 mutex_exit(&zp->z_lock);
4452 dmu_tx_commit(tx);
4453 }
4454 }
4455
4456 zfs_zinactive(zp);
4457 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4458 }
4459
4460 /*
4461 * Bounds-check the seek operation.
4462 *
4463 * IN: vp - vnode seeking within
4464 * ooff - old file offset
4465 * noffp - pointer to new file offset
4466 * ct - caller context
4467 *
4468 * RETURN: 0 on success, EINVAL if new offset invalid.
4469 */
4470 /* ARGSUSED */
4471 static int
4472 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4473 caller_context_t *ct)
4474 {
4475 if (vp->v_type == VDIR)
4476 return (0);
4477 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4478 }
4479
4480 /*
4481 * Pre-filter the generic locking function to trap attempts to place
4482 * a mandatory lock on a memory mapped file.
4483 */
4484 static int
4485 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4486 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4487 {
4488 znode_t *zp = VTOZ(vp);
4489 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4490
4491 ZFS_ENTER(zfsvfs);
4492 ZFS_VERIFY_ZP(zp);
4493
4494 /*
4495 * We are following the UFS semantics with respect to mapcnt
4496 * here: If we see that the file is mapped already, then we will
4497 * return an error, but we don't worry about races between this
4498 * function and zfs_map().
4499 */
4500 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4501 ZFS_EXIT(zfsvfs);
4502 return (SET_ERROR(EAGAIN));
4503 }
4504 ZFS_EXIT(zfsvfs);
4505 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4506 }
4507
4508 /*
4509 * If we can't find a page in the cache, we will create a new page
4510 * and fill it with file data. For efficiency, we may try to fill
4511 * multiple pages at once (klustering) to fill up the supplied page
4512 * list. Note that the pages to be filled are held with an exclusive
4513 * lock to prevent access by other threads while they are being filled.
4514 */
4515 static int
4516 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4517 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4518 {
4519 znode_t *zp = VTOZ(vp);
4520 page_t *pp, *cur_pp;
4521 objset_t *os = zp->z_zfsvfs->z_os;
4522 u_offset_t io_off, total;
4523 size_t io_len;
4524 int err;
4525
4526 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4527 /*
4528 * We only have a single page, don't bother klustering
4529 */
4530 io_off = off;
4531 io_len = PAGESIZE;
4532 pp = page_create_va(vp, io_off, io_len,
4533 PG_EXCL | PG_WAIT, seg, addr);
4534 } else {
4535 /*
4536 * Try to find enough pages to fill the page list
4537 */
4538 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4539 &io_len, off, plsz, 0);
4540 }
4541 if (pp == NULL) {
4542 /*
4543 * The page already exists, nothing to do here.
4544 */
4545 *pl = NULL;
4546 return (0);
4547 }
4548
4549 /*
4550 * Fill the pages in the kluster.
4551 */
4552 cur_pp = pp;
4553 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4554 caddr_t va;
4555
4556 ASSERT3U(io_off, ==, cur_pp->p_offset);
4557 va = zfs_map_page(cur_pp, S_WRITE);
4558 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4559 DMU_READ_PREFETCH);
4560 zfs_unmap_page(cur_pp, va);
4561 if (err) {
4562 /* On error, toss the entire kluster */
4563 pvn_read_done(pp, B_ERROR);
4564 /* convert checksum errors into IO errors */
4565 if (err == ECKSUM)
4566 err = SET_ERROR(EIO);
4567 return (err);
4568 }
4569 cur_pp = cur_pp->p_next;
4570 }
4571
4572 /*
4573 * Fill in the page list array from the kluster starting
4574 * from the desired offset `off'.
4575 * NOTE: the page list will always be null terminated.
4576 */
4577 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4578 ASSERT(pl == NULL || (*pl)->p_offset == off);
4579
4580 return (0);
4581 }
4582
4583 /*
4584 * Return pointers to the pages for the file region [off, off + len]
4585 * in the pl array. If plsz is greater than len, this function may
4586 * also return page pointers from after the specified region
4587 * (i.e. the region [off, off + plsz]). These additional pages are
4588 * only returned if they are already in the cache, or were created as
4589 * part of a klustered read.
4590 *
4591 * IN: vp - vnode of file to get data from.
4592 * off - position in file to get data from.
4593 * len - amount of data to retrieve.
4594 * plsz - length of provided page list.
4595 * seg - segment to obtain pages for.
4596 * addr - virtual address of fault.
4597 * rw - mode of created pages.
4598 * cr - credentials of caller.
4599 * ct - caller context.
4600 *
4601 * OUT: protp - protection mode of created pages.
4602 * pl - list of pages created.
4603 *
4604 * RETURN: 0 on success, error code on failure.
4605 *
4606 * Timestamps:
4607 * vp - atime updated
4608 */
4609 /* ARGSUSED */
4610 static int
4611 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4612 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4613 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4614 {
4615 znode_t *zp = VTOZ(vp);
4616 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4617 page_t **pl0 = pl;
4618 int err = 0;
4619
4620 /* we do our own caching, faultahead is unnecessary */
4621 if (pl == NULL)
4622 return (0);
4623 else if (len > plsz)
4624 len = plsz;
4625 else
4626 len = P2ROUNDUP(len, PAGESIZE);
4627 ASSERT(plsz >= len);
4628
4629 ZFS_ENTER(zfsvfs);
4630 ZFS_VERIFY_ZP(zp);
4631
4632 if (protp)
4633 *protp = PROT_ALL;
4634
4635 /*
4636 * Loop through the requested range [off, off + len) looking
4637 * for pages. If we don't find a page, we will need to create
4638 * a new page and fill it with data from the file.
4639 */
4640 while (len > 0) {
4641 if (*pl = page_lookup(vp, off, SE_SHARED))
4642 *(pl+1) = NULL;
4643 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4644 goto out;
4645 while (*pl) {
4646 ASSERT3U((*pl)->p_offset, ==, off);
4647 off += PAGESIZE;
4648 addr += PAGESIZE;
4649 if (len > 0) {
4650 ASSERT3U(len, >=, PAGESIZE);
4651 len -= PAGESIZE;
4652 }
4653 ASSERT3U(plsz, >=, PAGESIZE);
4654 plsz -= PAGESIZE;
4655 pl++;
4656 }
4657 }
4658
4659 /*
4660 * Fill out the page array with any pages already in the cache.
4661 */
4662 while (plsz > 0 &&
4663 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4664 off += PAGESIZE;
4665 plsz -= PAGESIZE;
4666 }
4667 out:
4668 if (err) {
4669 /*
4670 * Release any pages we have previously locked.
4671 */
4672 while (pl > pl0)
4673 page_unlock(*--pl);
4674 } else {
4675 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4676 }
4677
4678 *pl = NULL;
4679
4680 ZFS_EXIT(zfsvfs);
4681 return (err);
4682 }
4683
4684 /*
4685 * Request a memory map for a section of a file. This code interacts
4686 * with common code and the VM system as follows:
4687 *
4688 * - common code calls mmap(), which ends up in smmap_common()
4689 * - this calls VOP_MAP(), which takes you into (say) zfs
4690 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4691 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4692 * - zfs_addmap() updates z_mapcnt
4693 */
4694 /*ARGSUSED*/
4695 static int
4696 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4697 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4698 caller_context_t *ct)
4699 {
4700 znode_t *zp = VTOZ(vp);
4701 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4702 segvn_crargs_t vn_a;
4703 int error;
4704
4705 ZFS_ENTER(zfsvfs);
4706 ZFS_VERIFY_ZP(zp);
4707
4708 /*
4709 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4710 */
4711
4712 if ((prot & PROT_WRITE) && (zp->z_pflags &
4713 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4714 ZFS_EXIT(zfsvfs);
4715 return (SET_ERROR(EPERM));
4716 }
4717
4718 if ((prot & (PROT_READ | PROT_EXEC)) &&
4719 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4720 ZFS_EXIT(zfsvfs);
4721 return (SET_ERROR(EACCES));
4722 }
4723
4724 if (vp->v_flag & VNOMAP) {
4725 ZFS_EXIT(zfsvfs);
4726 return (SET_ERROR(ENOSYS));
4727 }
4728
4729 if (off < 0 || len > MAXOFFSET_T - off) {
4730 ZFS_EXIT(zfsvfs);
4731 return (SET_ERROR(ENXIO));
4732 }
4733
4734 if (vp->v_type != VREG) {
4735 ZFS_EXIT(zfsvfs);
4736 return (SET_ERROR(ENODEV));
4737 }
4738
4739 /*
4740 * If file is locked, disallow mapping.
4741 */
4742 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4743 ZFS_EXIT(zfsvfs);
4744 return (SET_ERROR(EAGAIN));
4745 }
4746
4747 as_rangelock(as);
4748 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4749 if (error != 0) {
4750 as_rangeunlock(as);
4751 ZFS_EXIT(zfsvfs);
4752 return (error);
4753 }
4754
4755 vn_a.vp = vp;
4756 vn_a.offset = (u_offset_t)off;
4757 vn_a.type = flags & MAP_TYPE;
4758 vn_a.prot = prot;
4759 vn_a.maxprot = maxprot;
4760 vn_a.cred = cr;
4761 vn_a.amp = NULL;
4762 vn_a.flags = flags & ~MAP_TYPE;
4763 vn_a.szc = 0;
4764 vn_a.lgrp_mem_policy_flags = 0;
4765
4766 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4767
4768 as_rangeunlock(as);
4769 ZFS_EXIT(zfsvfs);
4770 return (error);
4771 }
4772
4773 /* ARGSUSED */
4774 static int
4775 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4776 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4777 caller_context_t *ct)
4778 {
4779 uint64_t pages = btopr(len);
4780
4781 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4782 return (0);
4783 }
4784
4785 /*
4786 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4787 * more accurate mtime for the associated file. Since we don't have a way of
4788 * detecting when the data was actually modified, we have to resort to
4789 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4790 * last page is pushed. The problem occurs when the msync() call is omitted,
4791 * which by far the most common case:
4792 *
4793 * open()
4794 * mmap()
4795 * <modify memory>
4796 * munmap()
4797 * close()
4798 * <time lapse>
4799 * putpage() via fsflush
4800 *
4801 * If we wait until fsflush to come along, we can have a modification time that
4802 * is some arbitrary point in the future. In order to prevent this in the
4803 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4804 * torn down.
4805 */
4806 /* ARGSUSED */
4807 static int
4808 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4809 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4810 caller_context_t *ct)
4811 {
4812 uint64_t pages = btopr(len);
4813
4814 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4815 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4816
4817 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4818 vn_has_cached_data(vp))
4819 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4820
4821 return (0);
4822 }
4823
4824 /*
4825 * Free or allocate space in a file. Currently, this function only
4826 * supports the `F_FREESP' command. However, this command is somewhat
4827 * misnamed, as its functionality includes the ability to allocate as
4828 * well as free space.
4829 *
4830 * IN: vp - vnode of file to free data in.
4831 * cmd - action to take (only F_FREESP supported).
4832 * bfp - section of file to free/alloc.
4833 * flag - current file open mode flags.
4834 * offset - current file offset.
4835 * cr - credentials of caller [UNUSED].
4836 * ct - caller context.
4837 *
4838 * RETURN: 0 on success, error code on failure.
4839 *
4840 * Timestamps:
4841 * vp - ctime|mtime updated
4842 */
4843 /* ARGSUSED */
4844 static int
4845 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4846 offset_t offset, cred_t *cr, caller_context_t *ct)
4847 {
4848 znode_t *zp = VTOZ(vp);
4849 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4850 uint64_t off, len;
4851 int error;
4852
4853 ZFS_ENTER(zfsvfs);
4854 ZFS_VERIFY_ZP(zp);
4855
4856 if (cmd != F_FREESP) {
4857 ZFS_EXIT(zfsvfs);
4858 return (SET_ERROR(EINVAL));
4859 }
4860
4861 /*
4862 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4863 * callers might not be able to detect properly that we are read-only,
4864 * so check it explicitly here.
4865 */
4866 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4867 ZFS_EXIT(zfsvfs);
4868 return (SET_ERROR(EROFS));
4869 }
4870
4871 if (error = convoff(vp, bfp, 0, offset)) {
4872 ZFS_EXIT(zfsvfs);
4873 return (error);
4874 }
4875
4876 if (bfp->l_len < 0) {
4877 ZFS_EXIT(zfsvfs);
4878 return (SET_ERROR(EINVAL));
4879 }
4880
4881 off = bfp->l_start;
4882 len = bfp->l_len; /* 0 means from off to end of file */
4883
4884 error = zfs_freesp(zp, off, len, flag, TRUE);
4885
4886 if (error == 0 && off == 0 && len == 0)
4887 vnevent_truncate(ZTOV(zp), ct);
4888
4889 ZFS_EXIT(zfsvfs);
4890 return (error);
4891 }
4892
4893 /*ARGSUSED*/
4894 static int
4895 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4896 {
4897 znode_t *zp = VTOZ(vp);
4898 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4899 uint32_t gen;
4900 uint64_t gen64;
4901 uint64_t object = zp->z_id;
4902 zfid_short_t *zfid;
4903 int size, i, error;
4904
4905 ZFS_ENTER(zfsvfs);
4906 ZFS_VERIFY_ZP(zp);
4907
4908 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4909 &gen64, sizeof (uint64_t))) != 0) {
4910 ZFS_EXIT(zfsvfs);
4911 return (error);
4912 }
4913
4914 gen = (uint32_t)gen64;
4915
4916 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4917 if (fidp->fid_len < size) {
4918 fidp->fid_len = size;
4919 ZFS_EXIT(zfsvfs);
4920 return (SET_ERROR(ENOSPC));
4921 }
4922
4923 zfid = (zfid_short_t *)fidp;
4924
4925 zfid->zf_len = size;
4926
4927 for (i = 0; i < sizeof (zfid->zf_object); i++)
4928 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4929
4930 /* Must have a non-zero generation number to distinguish from .zfs */
4931 if (gen == 0)
4932 gen = 1;
4933 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4934 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4935
4936 if (size == LONG_FID_LEN) {
4937 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4938 zfid_long_t *zlfid;
4939
4940 zlfid = (zfid_long_t *)fidp;
4941
4942 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4943 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4944
4945 /* XXX - this should be the generation number for the objset */
4946 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4947 zlfid->zf_setgen[i] = 0;
4948 }
4949
4950 ZFS_EXIT(zfsvfs);
4951 return (0);
4952 }
4953
4954 static int
4955 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4956 caller_context_t *ct)
4957 {
4958 znode_t *zp, *xzp;
4959 zfsvfs_t *zfsvfs;
4960 zfs_dirlock_t *dl;
4961 int error;
4962
4963 switch (cmd) {
4964 case _PC_LINK_MAX:
4965 *valp = ULONG_MAX;
4966 return (0);
4967
4968 case _PC_FILESIZEBITS:
4969 *valp = 64;
4970 return (0);
4971
4972 case _PC_XATTR_EXISTS:
4973 zp = VTOZ(vp);
4974 zfsvfs = zp->z_zfsvfs;
4975 ZFS_ENTER(zfsvfs);
4976 ZFS_VERIFY_ZP(zp);
4977 *valp = 0;
4978 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4979 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4980 if (error == 0) {
4981 zfs_dirent_unlock(dl);
4982 if (!zfs_dirempty(xzp))
4983 *valp = 1;
4984 VN_RELE(ZTOV(xzp));
4985 } else if (error == ENOENT) {
4986 /*
4987 * If there aren't extended attributes, it's the
4988 * same as having zero of them.
4989 */
4990 error = 0;
4991 }
4992 ZFS_EXIT(zfsvfs);
4993 return (error);
4994
4995 case _PC_SATTR_ENABLED:
4996 case _PC_SATTR_EXISTS:
4997 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4998 (vp->v_type == VREG || vp->v_type == VDIR);
4999 return (0);
5000
5001 case _PC_ACCESS_FILTERING:
5002 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5003 vp->v_type == VDIR;
5004 return (0);
5005
5006 case _PC_ACL_ENABLED:
5007 *valp = _ACL_ACE_ENABLED;
5008 return (0);
5009
5010 case _PC_MIN_HOLE_SIZE:
5011 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5012 return (0);
5013
5014 case _PC_TIMESTAMP_RESOLUTION:
5015 /* nanosecond timestamp resolution */
5016 *valp = 1L;
5017 return (0);
5018
5019 default:
5020 return (fs_pathconf(vp, cmd, valp, cr, ct));
5021 }
5022 }
5023
5024 /*ARGSUSED*/
5025 static int
5026 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5027 caller_context_t *ct)
5028 {
5029 znode_t *zp = VTOZ(vp);
5030 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5031 int error;
5032 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5033
5034 ZFS_ENTER(zfsvfs);
5035 ZFS_VERIFY_ZP(zp);
5036 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5037 ZFS_EXIT(zfsvfs);
5038
5039 return (error);
5040 }
5041
5042 /*ARGSUSED*/
5043 static int
5044 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5045 caller_context_t *ct)
5046 {
5047 znode_t *zp = VTOZ(vp);
5048 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5049 int error;
5050 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5051 zilog_t *zilog = zfsvfs->z_log;
5052
5053 ZFS_ENTER(zfsvfs);
5054 ZFS_VERIFY_ZP(zp);
5055
5056 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5057
5058 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5059 zil_commit(zilog, 0);
5060
5061 ZFS_EXIT(zfsvfs);
5062 return (error);
5063 }
5064
5065 /*
5066 * The smallest read we may consider to loan out an arcbuf.
5067 * This must be a power of 2.
5068 */
5069 int zcr_blksz_min = (1 << 10); /* 1K */
5070 /*
5071 * If set to less than the file block size, allow loaning out of an
5072 * arcbuf for a partial block read. This must be a power of 2.
5073 */
5074 int zcr_blksz_max = (1 << 17); /* 128K */
5075
5076 /*ARGSUSED*/
5077 static int
5078 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5079 caller_context_t *ct)
5080 {
5081 znode_t *zp = VTOZ(vp);
5082 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5083 int max_blksz = zfsvfs->z_max_blksz;
5084 uio_t *uio = &xuio->xu_uio;
5085 ssize_t size = uio->uio_resid;
5086 offset_t offset = uio->uio_loffset;
5087 int blksz;
5088 int fullblk, i;
5089 arc_buf_t *abuf;
5090 ssize_t maxsize;
5091 int preamble, postamble;
5092
5093 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5094 return (SET_ERROR(EINVAL));
5095
5096 ZFS_ENTER(zfsvfs);
5097 ZFS_VERIFY_ZP(zp);
5098 switch (ioflag) {
5099 case UIO_WRITE:
5100 /*
5101 * Loan out an arc_buf for write if write size is bigger than
5102 * max_blksz, and the file's block size is also max_blksz.
5103 */
5104 blksz = max_blksz;
5105 if (size < blksz || zp->z_blksz != blksz) {
5106 ZFS_EXIT(zfsvfs);
5107 return (SET_ERROR(EINVAL));
5108 }
5109 /*
5110 * Caller requests buffers for write before knowing where the
5111 * write offset might be (e.g. NFS TCP write).
5112 */
5113 if (offset == -1) {
5114 preamble = 0;
5115 } else {
5116 preamble = P2PHASE(offset, blksz);
5117 if (preamble) {
5118 preamble = blksz - preamble;
5119 size -= preamble;
5120 }
5121 }
5122
5123 postamble = P2PHASE(size, blksz);
5124 size -= postamble;
5125
5126 fullblk = size / blksz;
5127 (void) dmu_xuio_init(xuio,
5128 (preamble != 0) + fullblk + (postamble != 0));
5129 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5130 int, postamble, int,
5131 (preamble != 0) + fullblk + (postamble != 0));
5132
5133 /*
5134 * Have to fix iov base/len for partial buffers. They
5135 * currently represent full arc_buf's.
5136 */
5137 if (preamble) {
5138 /* data begins in the middle of the arc_buf */
5139 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5140 blksz);
5141 ASSERT(abuf);
5142 (void) dmu_xuio_add(xuio, abuf,
5143 blksz - preamble, preamble);
5144 }
5145
5146 for (i = 0; i < fullblk; i++) {
5147 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5148 blksz);
5149 ASSERT(abuf);
5150 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5151 }
5152
5153 if (postamble) {
5154 /* data ends in the middle of the arc_buf */
5155 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5156 blksz);
5157 ASSERT(abuf);
5158 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5159 }
5160 break;
5161 case UIO_READ:
5162 /*
5163 * Loan out an arc_buf for read if the read size is larger than
5164 * the current file block size. Block alignment is not
5165 * considered. Partial arc_buf will be loaned out for read.
5166 */
5167 blksz = zp->z_blksz;
5168 if (blksz < zcr_blksz_min)
5169 blksz = zcr_blksz_min;
5170 if (blksz > zcr_blksz_max)
5171 blksz = zcr_blksz_max;
5172 /* avoid potential complexity of dealing with it */
5173 if (blksz > max_blksz) {
5174 ZFS_EXIT(zfsvfs);
5175 return (SET_ERROR(EINVAL));
5176 }
5177
5178 maxsize = zp->z_size - uio->uio_loffset;
5179 if (size > maxsize)
5180 size = maxsize;
5181
5182 if (size < blksz || vn_has_cached_data(vp)) {
5183 ZFS_EXIT(zfsvfs);
5184 return (SET_ERROR(EINVAL));
5185 }
5186 break;
5187 default:
5188 ZFS_EXIT(zfsvfs);
5189 return (SET_ERROR(EINVAL));
5190 }
5191
5192 uio->uio_extflg = UIO_XUIO;
5193 XUIO_XUZC_RW(xuio) = ioflag;
5194 ZFS_EXIT(zfsvfs);
5195 return (0);
5196 }
5197
5198 /*ARGSUSED*/
5199 static int
5200 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5201 {
5202 int i;
5203 arc_buf_t *abuf;
5204 int ioflag = XUIO_XUZC_RW(xuio);
5205
5206 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5207
5208 i = dmu_xuio_cnt(xuio);
5209 while (i-- > 0) {
5210 abuf = dmu_xuio_arcbuf(xuio, i);
5211 /*
5212 * if abuf == NULL, it must be a write buffer
5213 * that has been returned in zfs_write().
5214 */
5215 if (abuf)
5216 dmu_return_arcbuf(abuf);
5217 ASSERT(abuf || ioflag == UIO_WRITE);
5218 }
5219
5220 dmu_xuio_fini(xuio);
5221 return (0);
5222 }
5223
5224 /*
5225 * Predeclare these here so that the compiler assumes that
5226 * this is an "old style" function declaration that does
5227 * not include arguments => we won't get type mismatch errors
5228 * in the initializations that follow.
5229 */
5230 static int zfs_inval();
5231 static int zfs_isdir();
5232
5233 static int
5234 zfs_inval()
5235 {
5236 return (SET_ERROR(EINVAL));
5237 }
5238
5239 static int
5240 zfs_isdir()
5241 {
5242 return (SET_ERROR(EISDIR));
5243 }
5244 /*
5245 * Directory vnode operations template
5246 */
5247 vnodeops_t *zfs_dvnodeops;
5248 const fs_operation_def_t zfs_dvnodeops_template[] = {
5249 VOPNAME_OPEN, { .vop_open = zfs_open },
5250 VOPNAME_CLOSE, { .vop_close = zfs_close },
5251 VOPNAME_READ, { .error = zfs_isdir },
5252 VOPNAME_WRITE, { .error = zfs_isdir },
5253 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5254 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5255 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5256 VOPNAME_ACCESS, { .vop_access = zfs_access },
5257 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5258 VOPNAME_CREATE, { .vop_create = zfs_create },
5259 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5260 VOPNAME_LINK, { .vop_link = zfs_link },
5261 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5262 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5263 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5264 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5265 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5266 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5267 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5268 VOPNAME_FID, { .vop_fid = zfs_fid },
5269 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5270 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5271 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5272 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5273 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5274 NULL, NULL
5275 };
5276
5277 /*
5278 * Regular file vnode operations template
5279 */
5280 vnodeops_t *zfs_fvnodeops;
5281 const fs_operation_def_t zfs_fvnodeops_template[] = {
5282 VOPNAME_OPEN, { .vop_open = zfs_open },
5283 VOPNAME_CLOSE, { .vop_close = zfs_close },
5284 VOPNAME_READ, { .vop_read = zfs_read },
5285 VOPNAME_WRITE, { .vop_write = zfs_write },
5286 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5287 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5288 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5289 VOPNAME_ACCESS, { .vop_access = zfs_access },
5290 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5291 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5292 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5293 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5294 VOPNAME_FID, { .vop_fid = zfs_fid },
5295 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5296 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5297 VOPNAME_SPACE, { .vop_space = zfs_space },
5298 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5299 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5300 VOPNAME_MAP, { .vop_map = zfs_map },
5301 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5302 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5303 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5304 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5305 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5306 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5307 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5308 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5309 NULL, NULL
5310 };
5311
5312 /*
5313 * Symbolic link vnode operations template
5314 */
5315 vnodeops_t *zfs_symvnodeops;
5316 const fs_operation_def_t zfs_symvnodeops_template[] = {
5317 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5318 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5319 VOPNAME_ACCESS, { .vop_access = zfs_access },
5320 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5321 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5322 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5323 VOPNAME_FID, { .vop_fid = zfs_fid },
5324 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5325 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5326 NULL, NULL
5327 };
5328
5329 /*
5330 * special share hidden files vnode operations template
5331 */
5332 vnodeops_t *zfs_sharevnodeops;
5333 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5334 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5335 VOPNAME_ACCESS, { .vop_access = zfs_access },
5336 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5337 VOPNAME_FID, { .vop_fid = zfs_fid },
5338 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5339 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5340 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5341 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5342 NULL, NULL
5343 };
5344
5345 /*
5346 * Extended attribute directory vnode operations template
5347 *
5348 * This template is identical to the directory vnodes
5349 * operation template except for restricted operations:
5350 * VOP_MKDIR()
5351 * VOP_SYMLINK()
5352 *
5353 * Note that there are other restrictions embedded in:
5354 * zfs_create() - restrict type to VREG
5355 * zfs_link() - no links into/out of attribute space
5356 * zfs_rename() - no moves into/out of attribute space
5357 */
5358 vnodeops_t *zfs_xdvnodeops;
5359 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5360 VOPNAME_OPEN, { .vop_open = zfs_open },
5361 VOPNAME_CLOSE, { .vop_close = zfs_close },
5362 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5363 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5364 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5365 VOPNAME_ACCESS, { .vop_access = zfs_access },
5366 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5367 VOPNAME_CREATE, { .vop_create = zfs_create },
5368 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5369 VOPNAME_LINK, { .vop_link = zfs_link },
5370 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5371 VOPNAME_MKDIR, { .error = zfs_inval },
5372 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5373 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5374 VOPNAME_SYMLINK, { .error = zfs_inval },
5375 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5376 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5377 VOPNAME_FID, { .vop_fid = zfs_fid },
5378 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5379 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5380 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5381 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5382 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5383 NULL, NULL
5384 };
5385
5386 /*
5387 * Error vnode operations template
5388 */
5389 vnodeops_t *zfs_evnodeops;
5390 const fs_operation_def_t zfs_evnodeops_template[] = {
5391 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5392 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5393 NULL, NULL
5394 };