1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright 2015 Joyent, Inc.
  27  * Copyright 2017 Nexenta Systems, Inc.
  28  */
  29 
  30 /* Portions Copyright 2007 Jeremy Teo */
  31 /* Portions Copyright 2010 Robert Milkowski */
  32 
  33 #include <sys/types.h>
  34 #include <sys/param.h>
  35 #include <sys/time.h>
  36 #include <sys/systm.h>
  37 #include <sys/sysmacros.h>
  38 #include <sys/resource.h>
  39 #include <sys/vfs.h>
  40 #include <sys/vfs_opreg.h>
  41 #include <sys/vnode.h>
  42 #include <sys/file.h>
  43 #include <sys/stat.h>
  44 #include <sys/kmem.h>
  45 #include <sys/taskq.h>
  46 #include <sys/uio.h>
  47 #include <sys/vmsystm.h>
  48 #include <sys/atomic.h>
  49 #include <sys/vm.h>
  50 #include <vm/seg_vn.h>
  51 #include <vm/pvn.h>
  52 #include <vm/as.h>
  53 #include <vm/kpm.h>
  54 #include <vm/seg_kpm.h>
  55 #include <sys/mman.h>
  56 #include <sys/pathname.h>
  57 #include <sys/cmn_err.h>
  58 #include <sys/errno.h>
  59 #include <sys/unistd.h>
  60 #include <sys/zfs_dir.h>
  61 #include <sys/zfs_acl.h>
  62 #include <sys/zfs_ioctl.h>
  63 #include <sys/fs/zfs.h>
  64 #include <sys/dmu.h>
  65 #include <sys/dmu_objset.h>
  66 #include <sys/spa.h>
  67 #include <sys/txg.h>
  68 #include <sys/dbuf.h>
  69 #include <sys/zap.h>
  70 #include <sys/sa.h>
  71 #include <sys/dirent.h>
  72 #include <sys/policy.h>
  73 #include <sys/sunddi.h>
  74 #include <sys/filio.h>
  75 #include <sys/sid.h>
  76 #include "fs/fs_subr.h"
  77 #include <sys/zfs_ctldir.h>
  78 #include <sys/zfs_fuid.h>
  79 #include <sys/zfs_sa.h>
  80 #include <sys/dnlc.h>
  81 #include <sys/zfs_rlock.h>
  82 #include <sys/extdirent.h>
  83 #include <sys/kidmap.h>
  84 #include <sys/cred.h>
  85 #include <sys/attr.h>
  86 #include <sys/zil.h>
  87 
  88 /*
  89  * Programming rules.
  90  *
  91  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
  92  * properly lock its in-core state, create a DMU transaction, do the work,
  93  * record this work in the intent log (ZIL), commit the DMU transaction,
  94  * and wait for the intent log to commit if it is a synchronous operation.
  95  * Moreover, the vnode ops must work in both normal and log replay context.
  96  * The ordering of events is important to avoid deadlocks and references
  97  * to freed memory.  The example below illustrates the following Big Rules:
  98  *
  99  *  (1) A check must be made in each zfs thread for a mounted file system.
 100  *      This is done avoiding races using ZFS_ENTER(zfsvfs).
 101  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
 102  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
 103  *      can return EIO from the calling function.
 104  *
 105  *  (2) VN_RELE() should always be the last thing except for zil_commit()
 106  *      (if necessary) and ZFS_EXIT(). This is for 3 reasons:
 107  *      First, if it's the last reference, the vnode/znode
 108  *      can be freed, so the zp may point to freed memory.  Second, the last
 109  *      reference will call zfs_zinactive(), which may induce a lot of work --
 110  *      pushing cached pages (which acquires range locks) and syncing out
 111  *      cached atime changes.  Third, zfs_zinactive() may require a new tx,
 112  *      which could deadlock the system if you were already holding one.
 113  *      If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
 114  *
 115  *  (3) All range locks must be grabbed before calling dmu_tx_assign(),
 116  *      as they can span dmu_tx_assign() calls.
 117  *
 118  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
 119  *      dmu_tx_assign().  This is critical because we don't want to block
 120  *      while holding locks.
 121  *
 122  *      If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
 123  *      reduces lock contention and CPU usage when we must wait (note that if
 124  *      throughput is constrained by the storage, nearly every transaction
 125  *      must wait).
 126  *
 127  *      Note, in particular, that if a lock is sometimes acquired before
 128  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
 129  *      to use a non-blocking assign can deadlock the system.  The scenario:
 130  *
 131  *      Thread A has grabbed a lock before calling dmu_tx_assign().
 132  *      Thread B is in an already-assigned tx, and blocks for this lock.
 133  *      Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
 134  *      forever, because the previous txg can't quiesce until B's tx commits.
 135  *
 136  *      If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
 137  *      then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
 138  *      calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
 139  *      to indicate that this operation has already called dmu_tx_wait().
 140  *      This will ensure that we don't retry forever, waiting a short bit
 141  *      each time.
 142  *
 143  *  (5) If the operation succeeded, generate the intent log entry for it
 144  *      before dropping locks.  This ensures that the ordering of events
 145  *      in the intent log matches the order in which they actually occurred.
 146  *      During ZIL replay the zfs_log_* functions will update the sequence
 147  *      number to indicate the zil transaction has replayed.
 148  *
 149  *  (6) At the end of each vnode op, the DMU tx must always commit,
 150  *      regardless of whether there were any errors.
 151  *
 152  *  (7) After dropping all locks, invoke zil_commit(zilog, foid)
 153  *      to ensure that synchronous semantics are provided when necessary.
 154  *
 155  * In general, this is how things should be ordered in each vnode op:
 156  *
 157  *      ZFS_ENTER(zfsvfs);              // exit if unmounted
 158  * top:
 159  *      zfs_dirent_lock(&dl, ...)   // lock directory entry (may VN_HOLD())
 160  *      rw_enter(...);                  // grab any other locks you need
 161  *      tx = dmu_tx_create(...);        // get DMU tx
 162  *      dmu_tx_hold_*();                // hold each object you might modify
 163  *      error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
 164  *      if (error) {
 165  *              rw_exit(...);           // drop locks
 166  *              zfs_dirent_unlock(dl);  // unlock directory entry
 167  *              VN_RELE(...);           // release held vnodes
 168  *              if (error == ERESTART) {
 169  *                      waited = B_TRUE;
 170  *                      dmu_tx_wait(tx);
 171  *                      dmu_tx_abort(tx);
 172  *                      goto top;
 173  *              }
 174  *              dmu_tx_abort(tx);       // abort DMU tx
 175  *              ZFS_EXIT(zfsvfs);       // finished in zfs
 176  *              return (error);         // really out of space
 177  *      }
 178  *      error = do_real_work();         // do whatever this VOP does
 179  *      if (error == 0)
 180  *              zfs_log_*(...);         // on success, make ZIL entry
 181  *      dmu_tx_commit(tx);              // commit DMU tx -- error or not
 182  *      rw_exit(...);                   // drop locks
 183  *      zfs_dirent_unlock(dl);          // unlock directory entry
 184  *      VN_RELE(...);                   // release held vnodes
 185  *      zil_commit(zilog, foid);        // synchronous when necessary
 186  *      ZFS_EXIT(zfsvfs);               // finished in zfs
 187  *      return (error);                 // done, report error
 188  */
 189 
 190 /* ARGSUSED */
 191 static int
 192 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
 193 {
 194         znode_t *zp = VTOZ(*vpp);
 195         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 196 
 197         ZFS_ENTER(zfsvfs);
 198         ZFS_VERIFY_ZP(zp);
 199 
 200         if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
 201             ((flag & FAPPEND) == 0)) {
 202                 ZFS_EXIT(zfsvfs);
 203                 return (SET_ERROR(EPERM));
 204         }
 205 
 206         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 207             ZTOV(zp)->v_type == VREG &&
 208             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
 209                 if (fs_vscan(*vpp, cr, 0) != 0) {
 210                         ZFS_EXIT(zfsvfs);
 211                         return (SET_ERROR(EACCES));
 212                 }
 213         }
 214 
 215         /* Keep a count of the synchronous opens in the znode */
 216         if (flag & (FSYNC | FDSYNC))
 217                 atomic_inc_32(&zp->z_sync_cnt);
 218 
 219         ZFS_EXIT(zfsvfs);
 220         return (0);
 221 }
 222 
 223 /* ARGSUSED */
 224 static int
 225 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
 226     caller_context_t *ct)
 227 {
 228         znode_t *zp = VTOZ(vp);
 229         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 230 
 231         /*
 232          * Clean up any locks held by this process on the vp.
 233          */
 234         cleanlocks(vp, ddi_get_pid(), 0);
 235         cleanshares(vp, ddi_get_pid());
 236 
 237         ZFS_ENTER(zfsvfs);
 238         ZFS_VERIFY_ZP(zp);
 239 
 240         /* Decrement the synchronous opens in the znode */
 241         if ((flag & (FSYNC | FDSYNC)) && (count == 1))
 242                 atomic_dec_32(&zp->z_sync_cnt);
 243 
 244         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 245             ZTOV(zp)->v_type == VREG &&
 246             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
 247                 VERIFY(fs_vscan(vp, cr, 1) == 0);
 248 
 249         ZFS_EXIT(zfsvfs);
 250         return (0);
 251 }
 252 
 253 /*
 254  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
 255  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
 256  */
 257 static int
 258 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
 259 {
 260         znode_t *zp = VTOZ(vp);
 261         uint64_t noff = (uint64_t)*off; /* new offset */
 262         uint64_t file_sz;
 263         int error;
 264         boolean_t hole;
 265 
 266         file_sz = zp->z_size;
 267         if (noff >= file_sz)  {
 268                 return (SET_ERROR(ENXIO));
 269         }
 270 
 271         if (cmd == _FIO_SEEK_HOLE)
 272                 hole = B_TRUE;
 273         else
 274                 hole = B_FALSE;
 275 
 276         error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
 277 
 278         if (error == ESRCH)
 279                 return (SET_ERROR(ENXIO));
 280 
 281         /*
 282          * We could find a hole that begins after the logical end-of-file,
 283          * because dmu_offset_next() only works on whole blocks.  If the
 284          * EOF falls mid-block, then indicate that the "virtual hole"
 285          * at the end of the file begins at the logical EOF, rather than
 286          * at the end of the last block.
 287          */
 288         if (noff > file_sz) {
 289                 ASSERT(hole);
 290                 noff = file_sz;
 291         }
 292 
 293         if (noff < *off)
 294                 return (error);
 295         *off = noff;
 296         return (error);
 297 }
 298 
 299 /* ARGSUSED */
 300 static int
 301 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
 302     int *rvalp, caller_context_t *ct)
 303 {
 304         offset_t off;
 305         offset_t ndata;
 306         dmu_object_info_t doi;
 307         int error;
 308         zfsvfs_t *zfsvfs;
 309         znode_t *zp;
 310 
 311         switch (com) {
 312         case _FIOFFS:
 313         {
 314                 return (zfs_sync(vp->v_vfsp, 0, cred));
 315 
 316                 /*
 317                  * The following two ioctls are used by bfu.  Faking out,
 318                  * necessary to avoid bfu errors.
 319                  */
 320         }
 321         case _FIOGDIO:
 322         case _FIOSDIO:
 323         {
 324                 return (0);
 325         }
 326 
 327         case _FIO_SEEK_DATA:
 328         case _FIO_SEEK_HOLE:
 329         {
 330                 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
 331                         return (SET_ERROR(EFAULT));
 332 
 333                 zp = VTOZ(vp);
 334                 zfsvfs = zp->z_zfsvfs;
 335                 ZFS_ENTER(zfsvfs);
 336                 ZFS_VERIFY_ZP(zp);
 337 
 338                 /* offset parameter is in/out */
 339                 error = zfs_holey(vp, com, &off);
 340                 ZFS_EXIT(zfsvfs);
 341                 if (error)
 342                         return (error);
 343                 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
 344                         return (SET_ERROR(EFAULT));
 345                 return (0);
 346         }
 347         case _FIO_COUNT_FILLED:
 348         {
 349                 /*
 350                  * _FIO_COUNT_FILLED adds a new ioctl command which
 351                  * exposes the number of filled blocks in a
 352                  * ZFS object.
 353                  */
 354                 zp = VTOZ(vp);
 355                 zfsvfs = zp->z_zfsvfs;
 356                 ZFS_ENTER(zfsvfs);
 357                 ZFS_VERIFY_ZP(zp);
 358 
 359                 /*
 360                  * Wait for all dirty blocks for this object
 361                  * to get synced out to disk, and the DMU info
 362                  * updated.
 363                  */
 364                 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
 365                 if (error) {
 366                         ZFS_EXIT(zfsvfs);
 367                         return (error);
 368                 }
 369 
 370                 /*
 371                  * Retrieve fill count from DMU object.
 372                  */
 373                 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
 374                 if (error) {
 375                         ZFS_EXIT(zfsvfs);
 376                         return (error);
 377                 }
 378 
 379                 ndata = doi.doi_fill_count;
 380 
 381                 ZFS_EXIT(zfsvfs);
 382                 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
 383                         return (SET_ERROR(EFAULT));
 384                 return (0);
 385         }
 386         }
 387         return (SET_ERROR(ENOTTY));
 388 }
 389 
 390 /*
 391  * Utility functions to map and unmap a single physical page.  These
 392  * are used to manage the mappable copies of ZFS file data, and therefore
 393  * do not update ref/mod bits.
 394  */
 395 caddr_t
 396 zfs_map_page(page_t *pp, enum seg_rw rw)
 397 {
 398         if (kpm_enable)
 399                 return (hat_kpm_mapin(pp, 0));
 400         ASSERT(rw == S_READ || rw == S_WRITE);
 401         return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
 402             (caddr_t)-1));
 403 }
 404 
 405 void
 406 zfs_unmap_page(page_t *pp, caddr_t addr)
 407 {
 408         if (kpm_enable) {
 409                 hat_kpm_mapout(pp, 0, addr);
 410         } else {
 411                 ppmapout(addr);
 412         }
 413 }
 414 
 415 /*
 416  * When a file is memory mapped, we must keep the IO data synchronized
 417  * between the DMU cache and the memory mapped pages.  What this means:
 418  *
 419  * On Write:    If we find a memory mapped page, we write to *both*
 420  *              the page and the dmu buffer.
 421  */
 422 static void
 423 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
 424 {
 425         int64_t off;
 426 
 427         off = start & PAGEOFFSET;
 428         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 429                 page_t *pp;
 430                 uint64_t nbytes = MIN(PAGESIZE - off, len);
 431 
 432                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 433                         caddr_t va;
 434 
 435                         va = zfs_map_page(pp, S_WRITE);
 436                         (void) dmu_read(os, oid, start+off, nbytes, va+off,
 437                             DMU_READ_PREFETCH);
 438                         zfs_unmap_page(pp, va);
 439                         page_unlock(pp);
 440                 }
 441                 len -= nbytes;
 442                 off = 0;
 443         }
 444 }
 445 
 446 /*
 447  * When a file is memory mapped, we must keep the IO data synchronized
 448  * between the DMU cache and the memory mapped pages.  What this means:
 449  *
 450  * On Read:     We "read" preferentially from memory mapped pages,
 451  *              else we default from the dmu buffer.
 452  *
 453  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
 454  *       the file is memory mapped.
 455  */
 456 static int
 457 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
 458 {
 459         znode_t *zp = VTOZ(vp);
 460         int64_t start, off;
 461         int len = nbytes;
 462         int error = 0;
 463 
 464         start = uio->uio_loffset;
 465         off = start & PAGEOFFSET;
 466         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 467                 page_t *pp;
 468                 uint64_t bytes = MIN(PAGESIZE - off, len);
 469 
 470                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 471                         caddr_t va;
 472 
 473                         va = zfs_map_page(pp, S_READ);
 474                         error = uiomove(va + off, bytes, UIO_READ, uio);
 475                         zfs_unmap_page(pp, va);
 476                         page_unlock(pp);
 477                 } else {
 478                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 479                             uio, bytes);
 480                 }
 481                 len -= bytes;
 482                 off = 0;
 483                 if (error)
 484                         break;
 485         }
 486         return (error);
 487 }
 488 
 489 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
 490 
 491 /*
 492  * Read bytes from specified file into supplied buffer.
 493  *
 494  *      IN:     vp      - vnode of file to be read from.
 495  *              uio     - structure supplying read location, range info,
 496  *                        and return buffer.
 497  *              ioflag  - SYNC flags; used to provide FRSYNC semantics.
 498  *              cr      - credentials of caller.
 499  *              ct      - caller context
 500  *
 501  *      OUT:    uio     - updated offset and range, buffer filled.
 502  *
 503  *      RETURN: 0 on success, error code on failure.
 504  *
 505  * Side Effects:
 506  *      vp - atime updated if byte count > 0
 507  */
 508 /* ARGSUSED */
 509 static int
 510 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 511 {
 512         znode_t         *zp = VTOZ(vp);
 513         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 514         ssize_t         n, nbytes;
 515         int             error = 0;
 516         xuio_t          *xuio = NULL;
 517 
 518         ZFS_ENTER(zfsvfs);
 519         ZFS_VERIFY_ZP(zp);
 520 
 521         if (zp->z_pflags & ZFS_AV_QUARANTINED) {
 522                 ZFS_EXIT(zfsvfs);
 523                 return (SET_ERROR(EACCES));
 524         }
 525 
 526         /*
 527          * Validate file offset
 528          */
 529         if (uio->uio_loffset < (offset_t)0) {
 530                 ZFS_EXIT(zfsvfs);
 531                 return (SET_ERROR(EINVAL));
 532         }
 533 
 534         /*
 535          * Fasttrack empty reads
 536          */
 537         if (uio->uio_resid == 0) {
 538                 ZFS_EXIT(zfsvfs);
 539                 return (0);
 540         }
 541 
 542         /*
 543          * Check for mandatory locks
 544          */
 545         if (MANDMODE(zp->z_mode)) {
 546                 if (error = chklock(vp, FREAD,
 547                     uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
 548                         ZFS_EXIT(zfsvfs);
 549                         return (error);
 550                 }
 551         }
 552 
 553         /*
 554          * If we're in FRSYNC mode, sync out this znode before reading it.
 555          */
 556         if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 557                 zil_commit(zfsvfs->z_log, zp->z_id);
 558 
 559         /*
 560          * Lock the range against changes.
 561          */
 562         locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
 563             uio->uio_loffset, uio->uio_resid, RL_READER);
 564 
 565         /*
 566          * If we are reading past end-of-file we can skip
 567          * to the end; but we might still need to set atime.
 568          */
 569         if (uio->uio_loffset >= zp->z_size) {
 570                 error = 0;
 571                 goto out;
 572         }
 573 
 574         ASSERT(uio->uio_loffset < zp->z_size);
 575         n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
 576 
 577         if ((uio->uio_extflg == UIO_XUIO) &&
 578             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
 579                 int nblk;
 580                 int blksz = zp->z_blksz;
 581                 uint64_t offset = uio->uio_loffset;
 582 
 583                 xuio = (xuio_t *)uio;
 584                 if ((ISP2(blksz))) {
 585                         nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
 586                             blksz)) / blksz;
 587                 } else {
 588                         ASSERT(offset + n <= blksz);
 589                         nblk = 1;
 590                 }
 591                 (void) dmu_xuio_init(xuio, nblk);
 592 
 593                 if (vn_has_cached_data(vp)) {
 594                         /*
 595                          * For simplicity, we always allocate a full buffer
 596                          * even if we only expect to read a portion of a block.
 597                          */
 598                         while (--nblk >= 0) {
 599                                 (void) dmu_xuio_add(xuio,
 600                                     dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 601                                     blksz), 0, blksz);
 602                         }
 603                 }
 604         }
 605 
 606         while (n > 0) {
 607                 nbytes = MIN(n, zfs_read_chunk_size -
 608                     P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
 609 
 610                 if (vn_has_cached_data(vp)) {
 611                         error = mappedread(vp, nbytes, uio);
 612                 } else {
 613                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 614                             uio, nbytes);
 615                 }
 616                 if (error) {
 617                         /* convert checksum errors into IO errors */
 618                         if (error == ECKSUM)
 619                                 error = SET_ERROR(EIO);
 620                         break;
 621                 }
 622 
 623                 n -= nbytes;
 624         }
 625 out:
 626         rangelock_exit(lr);
 627 
 628         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
 629         ZFS_EXIT(zfsvfs);
 630         return (error);
 631 }
 632 
 633 /*
 634  * Write the bytes to a file.
 635  *
 636  *      IN:     vp      - vnode of file to be written to.
 637  *              uio     - structure supplying write location, range info,
 638  *                        and data buffer.
 639  *              ioflag  - FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
 640  *                        set if in append mode.
 641  *              cr      - credentials of caller.
 642  *              ct      - caller context (NFS/CIFS fem monitor only)
 643  *
 644  *      OUT:    uio     - updated offset and range.
 645  *
 646  *      RETURN: 0 on success, error code on failure.
 647  *
 648  * Timestamps:
 649  *      vp - ctime|mtime updated if byte count > 0
 650  */
 651 
 652 /* ARGSUSED */
 653 static int
 654 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 655 {
 656         znode_t         *zp = VTOZ(vp);
 657         rlim64_t        limit = uio->uio_llimit;
 658         ssize_t         start_resid = uio->uio_resid;
 659         ssize_t         tx_bytes;
 660         uint64_t        end_size;
 661         dmu_tx_t        *tx;
 662         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 663         zilog_t         *zilog;
 664         offset_t        woff;
 665         ssize_t         n, nbytes;
 666         int             max_blksz = zfsvfs->z_max_blksz;
 667         int             error = 0;
 668         arc_buf_t       *abuf;
 669         iovec_t         *aiov = NULL;
 670         xuio_t          *xuio = NULL;
 671         int             i_iov = 0;
 672         int             iovcnt = uio->uio_iovcnt;
 673         iovec_t         *iovp = uio->uio_iov;
 674         int             write_eof;
 675         int             count = 0;
 676         sa_bulk_attr_t  bulk[4];
 677         uint64_t        mtime[2], ctime[2];
 678 
 679         /*
 680          * Fasttrack empty write
 681          */
 682         n = start_resid;
 683         if (n == 0)
 684                 return (0);
 685 
 686         if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
 687                 limit = MAXOFFSET_T;
 688 
 689         ZFS_ENTER(zfsvfs);
 690         ZFS_VERIFY_ZP(zp);
 691 
 692         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 693         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 694         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 695             &zp->z_size, 8);
 696         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 697             &zp->z_pflags, 8);
 698 
 699         /*
 700          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
 701          * callers might not be able to detect properly that we are read-only,
 702          * so check it explicitly here.
 703          */
 704         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
 705                 ZFS_EXIT(zfsvfs);
 706                 return (SET_ERROR(EROFS));
 707         }
 708 
 709         /*
 710          * If immutable or not appending then return EPERM.
 711          * Intentionally allow ZFS_READONLY through here.
 712          * See zfs_zaccess_common()
 713          */
 714         if ((zp->z_pflags & ZFS_IMMUTABLE) ||
 715             ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
 716             (uio->uio_loffset < zp->z_size))) {
 717                 ZFS_EXIT(zfsvfs);
 718                 return (SET_ERROR(EPERM));
 719         }
 720 
 721         zilog = zfsvfs->z_log;
 722 
 723         /*
 724          * Validate file offset
 725          */
 726         woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
 727         if (woff < 0) {
 728                 ZFS_EXIT(zfsvfs);
 729                 return (SET_ERROR(EINVAL));
 730         }
 731 
 732         /*
 733          * Check for mandatory locks before calling rangelock_enter()
 734          * in order to prevent a deadlock with locks set via fcntl().
 735          */
 736         if (MANDMODE((mode_t)zp->z_mode) &&
 737             (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
 738                 ZFS_EXIT(zfsvfs);
 739                 return (error);
 740         }
 741 
 742         /*
 743          * Pre-fault the pages to ensure slow (eg NFS) pages
 744          * don't hold up txg.
 745          * Skip this if uio contains loaned arc_buf.
 746          */
 747         if ((uio->uio_extflg == UIO_XUIO) &&
 748             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
 749                 xuio = (xuio_t *)uio;
 750         else
 751                 uio_prefaultpages(MIN(n, max_blksz), uio);
 752 
 753         /*
 754          * If in append mode, set the io offset pointer to eof.
 755          */
 756         locked_range_t *lr;
 757         if (ioflag & FAPPEND) {
 758                 /*
 759                  * Obtain an appending range lock to guarantee file append
 760                  * semantics.  We reset the write offset once we have the lock.
 761                  */
 762                 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
 763                 woff = lr->lr_offset;
 764                 if (lr->lr_length == UINT64_MAX) {
 765                         /*
 766                          * We overlocked the file because this write will cause
 767                          * the file block size to increase.
 768                          * Note that zp_size cannot change with this lock held.
 769                          */
 770                         woff = zp->z_size;
 771                 }
 772                 uio->uio_loffset = woff;
 773         } else {
 774                 /*
 775                  * Note that if the file block size will change as a result of
 776                  * this write, then this range lock will lock the entire file
 777                  * so that we can re-write the block safely.
 778                  */
 779                 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
 780         }
 781 
 782         if (woff >= limit) {
 783                 rangelock_exit(lr);
 784                 ZFS_EXIT(zfsvfs);
 785                 return (SET_ERROR(EFBIG));
 786         }
 787 
 788         if ((woff + n) > limit || woff > (limit - n))
 789                 n = limit - woff;
 790 
 791         /* Will this write extend the file length? */
 792         write_eof = (woff + n > zp->z_size);
 793 
 794         end_size = MAX(zp->z_size, woff + n);
 795 
 796         /*
 797          * Write the file in reasonable size chunks.  Each chunk is written
 798          * in a separate transaction; this keeps the intent log records small
 799          * and allows us to do more fine-grained space accounting.
 800          */
 801         while (n > 0) {
 802                 abuf = NULL;
 803                 woff = uio->uio_loffset;
 804                 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
 805                     zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
 806                         if (abuf != NULL)
 807                                 dmu_return_arcbuf(abuf);
 808                         error = SET_ERROR(EDQUOT);
 809                         break;
 810                 }
 811 
 812                 if (xuio && abuf == NULL) {
 813                         ASSERT(i_iov < iovcnt);
 814                         aiov = &iovp[i_iov];
 815                         abuf = dmu_xuio_arcbuf(xuio, i_iov);
 816                         dmu_xuio_clear(xuio, i_iov);
 817                         DTRACE_PROBE3(zfs_cp_write, int, i_iov,
 818                             iovec_t *, aiov, arc_buf_t *, abuf);
 819                         ASSERT((aiov->iov_base == abuf->b_data) ||
 820                             ((char *)aiov->iov_base - (char *)abuf->b_data +
 821                             aiov->iov_len == arc_buf_size(abuf)));
 822                         i_iov++;
 823                 } else if (abuf == NULL && n >= max_blksz &&
 824                     woff >= zp->z_size &&
 825                     P2PHASE(woff, max_blksz) == 0 &&
 826                     zp->z_blksz == max_blksz) {
 827                         /*
 828                          * This write covers a full block.  "Borrow" a buffer
 829                          * from the dmu so that we can fill it before we enter
 830                          * a transaction.  This avoids the possibility of
 831                          * holding up the transaction if the data copy hangs
 832                          * up on a pagefault (e.g., from an NFS server mapping).
 833                          */
 834                         size_t cbytes;
 835 
 836                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 837                             max_blksz);
 838                         ASSERT(abuf != NULL);
 839                         ASSERT(arc_buf_size(abuf) == max_blksz);
 840                         if (error = uiocopy(abuf->b_data, max_blksz,
 841                             UIO_WRITE, uio, &cbytes)) {
 842                                 dmu_return_arcbuf(abuf);
 843                                 break;
 844                         }
 845                         ASSERT(cbytes == max_blksz);
 846                 }
 847 
 848                 /*
 849                  * Start a transaction.
 850                  */
 851                 tx = dmu_tx_create(zfsvfs->z_os);
 852                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 853                 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
 854                 zfs_sa_upgrade_txholds(tx, zp);
 855                 error = dmu_tx_assign(tx, TXG_WAIT);
 856                 if (error) {
 857                         dmu_tx_abort(tx);
 858                         if (abuf != NULL)
 859                                 dmu_return_arcbuf(abuf);
 860                         break;
 861                 }
 862 
 863                 /*
 864                  * If rangelock_enter() over-locked we grow the blocksize
 865                  * and then reduce the lock range.  This will only happen
 866                  * on the first iteration since rangelock_reduce() will
 867                  * shrink down lr_length to the appropriate size.
 868                  */
 869                 if (lr->lr_length == UINT64_MAX) {
 870                         uint64_t new_blksz;
 871 
 872                         if (zp->z_blksz > max_blksz) {
 873                                 /*
 874                                  * File's blocksize is already larger than the
 875                                  * "recordsize" property.  Only let it grow to
 876                                  * the next power of 2.
 877                                  */
 878                                 ASSERT(!ISP2(zp->z_blksz));
 879                                 new_blksz = MIN(end_size,
 880                                     1 << highbit64(zp->z_blksz));
 881                         } else {
 882                                 new_blksz = MIN(end_size, max_blksz);
 883                         }
 884                         zfs_grow_blocksize(zp, new_blksz, tx);
 885                         rangelock_reduce(lr, woff, n);
 886                 }
 887 
 888                 /*
 889                  * XXX - should we really limit each write to z_max_blksz?
 890                  * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
 891                  */
 892                 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
 893 
 894                 if (abuf == NULL) {
 895                         tx_bytes = uio->uio_resid;
 896                         error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 897                             uio, nbytes, tx);
 898                         tx_bytes -= uio->uio_resid;
 899                 } else {
 900                         tx_bytes = nbytes;
 901                         ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
 902                         /*
 903                          * If this is not a full block write, but we are
 904                          * extending the file past EOF and this data starts
 905                          * block-aligned, use assign_arcbuf().  Otherwise,
 906                          * write via dmu_write().
 907                          */
 908                         if (tx_bytes < max_blksz && (!write_eof ||
 909                             aiov->iov_base != abuf->b_data)) {
 910                                 ASSERT(xuio);
 911                                 dmu_write(zfsvfs->z_os, zp->z_id, woff,
 912                                     aiov->iov_len, aiov->iov_base, tx);
 913                                 dmu_return_arcbuf(abuf);
 914                                 xuio_stat_wbuf_copied();
 915                         } else {
 916                                 ASSERT(xuio || tx_bytes == max_blksz);
 917                                 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
 918                                     woff, abuf, tx);
 919                         }
 920                         ASSERT(tx_bytes <= uio->uio_resid);
 921                         uioskip(uio, tx_bytes);
 922                 }
 923                 if (tx_bytes && vn_has_cached_data(vp)) {
 924                         update_pages(vp, woff,
 925                             tx_bytes, zfsvfs->z_os, zp->z_id);
 926                 }
 927 
 928                 /*
 929                  * If we made no progress, we're done.  If we made even
 930                  * partial progress, update the znode and ZIL accordingly.
 931                  */
 932                 if (tx_bytes == 0) {
 933                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
 934                             (void *)&zp->z_size, sizeof (uint64_t), tx);
 935                         dmu_tx_commit(tx);
 936                         ASSERT(error != 0);
 937                         break;
 938                 }
 939 
 940                 /*
 941                  * Clear Set-UID/Set-GID bits on successful write if not
 942                  * privileged and at least one of the excute bits is set.
 943                  *
 944                  * It would be nice to to this after all writes have
 945                  * been done, but that would still expose the ISUID/ISGID
 946                  * to another app after the partial write is committed.
 947                  *
 948                  * Note: we don't call zfs_fuid_map_id() here because
 949                  * user 0 is not an ephemeral uid.
 950                  */
 951                 mutex_enter(&zp->z_acl_lock);
 952                 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
 953                     (S_IXUSR >> 6))) != 0 &&
 954                     (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
 955                     secpolicy_vnode_setid_retain(cr,
 956                     (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
 957                         uint64_t newmode;
 958                         zp->z_mode &= ~(S_ISUID | S_ISGID);
 959                         newmode = zp->z_mode;
 960                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
 961                             (void *)&newmode, sizeof (uint64_t), tx);
 962                 }
 963                 mutex_exit(&zp->z_acl_lock);
 964 
 965                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
 966                     B_TRUE);
 967 
 968                 /*
 969                  * Update the file size (zp_size) if it has changed;
 970                  * account for possible concurrent updates.
 971                  */
 972                 while ((end_size = zp->z_size) < uio->uio_loffset) {
 973                         (void) atomic_cas_64(&zp->z_size, end_size,
 974                             uio->uio_loffset);
 975                         ASSERT(error == 0);
 976                 }
 977                 /*
 978                  * If we are replaying and eof is non zero then force
 979                  * the file size to the specified eof. Note, there's no
 980                  * concurrency during replay.
 981                  */
 982                 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
 983                         zp->z_size = zfsvfs->z_replay_eof;
 984 
 985                 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 986 
 987                 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
 988                 dmu_tx_commit(tx);
 989 
 990                 if (error != 0)
 991                         break;
 992                 ASSERT(tx_bytes == nbytes);
 993                 n -= nbytes;
 994 
 995                 if (!xuio && n > 0)
 996                         uio_prefaultpages(MIN(n, max_blksz), uio);
 997         }
 998 
 999         rangelock_exit(lr);
1000 
1001         /*
1002          * If we're in replay mode, or we made no progress, return error.
1003          * Otherwise, it's at least a partial write, so it's successful.
1004          */
1005         if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1006                 ZFS_EXIT(zfsvfs);
1007                 return (error);
1008         }
1009 
1010         if (ioflag & (FSYNC | FDSYNC) ||
1011             zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1012                 zil_commit(zilog, zp->z_id);
1013 
1014         ZFS_EXIT(zfsvfs);
1015         return (0);
1016 }
1017 
1018 /* ARGSUSED */
1019 void
1020 zfs_get_done(zgd_t *zgd, int error)
1021 {
1022         znode_t *zp = zgd->zgd_private;
1023         objset_t *os = zp->z_zfsvfs->z_os;
1024 
1025         if (zgd->zgd_db)
1026                 dmu_buf_rele(zgd->zgd_db, zgd);
1027 
1028         rangelock_exit(zgd->zgd_lr);
1029 
1030         /*
1031          * Release the vnode asynchronously as we currently have the
1032          * txg stopped from syncing.
1033          */
1034         VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1035 
1036         kmem_free(zgd, sizeof (zgd_t));
1037 }
1038 
1039 #ifdef DEBUG
1040 static int zil_fault_io = 0;
1041 #endif
1042 
1043 /*
1044  * Get data to generate a TX_WRITE intent log record.
1045  */
1046 int
1047 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1048 {
1049         zfsvfs_t *zfsvfs = arg;
1050         objset_t *os = zfsvfs->z_os;
1051         znode_t *zp;
1052         uint64_t object = lr->lr_foid;
1053         uint64_t offset = lr->lr_offset;
1054         uint64_t size = lr->lr_length;
1055         dmu_buf_t *db;
1056         zgd_t *zgd;
1057         int error = 0;
1058 
1059         ASSERT3P(lwb, !=, NULL);
1060         ASSERT3P(zio, !=, NULL);
1061         ASSERT3U(size, !=, 0);
1062 
1063         /*
1064          * Nothing to do if the file has been removed
1065          */
1066         if (zfs_zget(zfsvfs, object, &zp) != 0)
1067                 return (SET_ERROR(ENOENT));
1068         if (zp->z_unlinked) {
1069                 /*
1070                  * Release the vnode asynchronously as we currently have the
1071                  * txg stopped from syncing.
1072                  */
1073                 VN_RELE_ASYNC(ZTOV(zp),
1074                     dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1075                 return (SET_ERROR(ENOENT));
1076         }
1077 
1078         zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1079         zgd->zgd_lwb = lwb;
1080         zgd->zgd_private = zp;
1081 
1082         /*
1083          * Write records come in two flavors: immediate and indirect.
1084          * For small writes it's cheaper to store the data with the
1085          * log record (immediate); for large writes it's cheaper to
1086          * sync the data and get a pointer to it (indirect) so that
1087          * we don't have to write the data twice.
1088          */
1089         if (buf != NULL) { /* immediate write */
1090                 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1091                     offset, size, RL_READER);
1092                 /* test for truncation needs to be done while range locked */
1093                 if (offset >= zp->z_size) {
1094                         error = SET_ERROR(ENOENT);
1095                 } else {
1096                         error = dmu_read(os, object, offset, size, buf,
1097                             DMU_READ_NO_PREFETCH);
1098                 }
1099                 ASSERT(error == 0 || error == ENOENT);
1100         } else { /* indirect write */
1101                 /*
1102                  * Have to lock the whole block to ensure when it's
1103                  * written out and its checksum is being calculated
1104                  * that no one can change the data. We need to re-check
1105                  * blocksize after we get the lock in case it's changed!
1106                  */
1107                 for (;;) {
1108                         uint64_t blkoff;
1109                         size = zp->z_blksz;
1110                         blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1111                         offset -= blkoff;
1112                         zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1113                             offset, size, RL_READER);
1114                         if (zp->z_blksz == size)
1115                                 break;
1116                         offset += blkoff;
1117                         rangelock_exit(zgd->zgd_lr);
1118                 }
1119                 /* test for truncation needs to be done while range locked */
1120                 if (lr->lr_offset >= zp->z_size)
1121                         error = SET_ERROR(ENOENT);
1122 #ifdef DEBUG
1123                 if (zil_fault_io) {
1124                         error = SET_ERROR(EIO);
1125                         zil_fault_io = 0;
1126                 }
1127 #endif
1128                 if (error == 0)
1129                         error = dmu_buf_hold(os, object, offset, zgd, &db,
1130                             DMU_READ_NO_PREFETCH);
1131 
1132                 if (error == 0) {
1133                         blkptr_t *bp = &lr->lr_blkptr;
1134 
1135                         zgd->zgd_db = db;
1136                         zgd->zgd_bp = bp;
1137 
1138                         ASSERT(db->db_offset == offset);
1139                         ASSERT(db->db_size == size);
1140 
1141                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
1142                             zfs_get_done, zgd);
1143                         ASSERT(error || lr->lr_length <= size);
1144 
1145                         /*
1146                          * On success, we need to wait for the write I/O
1147                          * initiated by dmu_sync() to complete before we can
1148                          * release this dbuf.  We will finish everything up
1149                          * in the zfs_get_done() callback.
1150                          */
1151                         if (error == 0)
1152                                 return (0);
1153 
1154                         if (error == EALREADY) {
1155                                 lr->lr_common.lrc_txtype = TX_WRITE2;
1156                                 /*
1157                                  * TX_WRITE2 relies on the data previously
1158                                  * written by the TX_WRITE that caused
1159                                  * EALREADY.  We zero out the BP because
1160                                  * it is the old, currently-on-disk BP.
1161                                  */
1162                                 zgd->zgd_bp = NULL;
1163                                 BP_ZERO(bp);
1164                                 error = 0;
1165                         }
1166                 }
1167         }
1168 
1169         zfs_get_done(zgd, error);
1170 
1171         return (error);
1172 }
1173 
1174 /*ARGSUSED*/
1175 static int
1176 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1177     caller_context_t *ct)
1178 {
1179         znode_t *zp = VTOZ(vp);
1180         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1181         int error;
1182 
1183         ZFS_ENTER(zfsvfs);
1184         ZFS_VERIFY_ZP(zp);
1185 
1186         if (flag & V_ACE_MASK)
1187                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1188         else
1189                 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1190 
1191         ZFS_EXIT(zfsvfs);
1192         return (error);
1193 }
1194 
1195 /*
1196  * If vnode is for a device return a specfs vnode instead.
1197  */
1198 static int
1199 specvp_check(vnode_t **vpp, cred_t *cr)
1200 {
1201         int error = 0;
1202 
1203         if (IS_DEVVP(*vpp)) {
1204                 struct vnode *svp;
1205 
1206                 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1207                 VN_RELE(*vpp);
1208                 if (svp == NULL)
1209                         error = SET_ERROR(ENOSYS);
1210                 *vpp = svp;
1211         }
1212         return (error);
1213 }
1214 
1215 
1216 /*
1217  * Lookup an entry in a directory, or an extended attribute directory.
1218  * If it exists, return a held vnode reference for it.
1219  *
1220  *      IN:     dvp     - vnode of directory to search.
1221  *              nm      - name of entry to lookup.
1222  *              pnp     - full pathname to lookup [UNUSED].
1223  *              flags   - LOOKUP_XATTR set if looking for an attribute.
1224  *              rdir    - root directory vnode [UNUSED].
1225  *              cr      - credentials of caller.
1226  *              ct      - caller context
1227  *              direntflags - directory lookup flags
1228  *              realpnp - returned pathname.
1229  *
1230  *      OUT:    vpp     - vnode of located entry, NULL if not found.
1231  *
1232  *      RETURN: 0 on success, error code on failure.
1233  *
1234  * Timestamps:
1235  *      NA
1236  */
1237 /* ARGSUSED */
1238 static int
1239 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1240     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1241     int *direntflags, pathname_t *realpnp)
1242 {
1243         znode_t *zdp = VTOZ(dvp);
1244         zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1245         int     error = 0;
1246 
1247         /*
1248          * Fast path lookup, however we must skip DNLC lookup
1249          * for case folding or normalizing lookups because the
1250          * DNLC code only stores the passed in name.  This means
1251          * creating 'a' and removing 'A' on a case insensitive
1252          * file system would work, but DNLC still thinks 'a'
1253          * exists and won't let you create it again on the next
1254          * pass through fast path.
1255          */
1256         if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1257 
1258                 if (dvp->v_type != VDIR) {
1259                         return (SET_ERROR(ENOTDIR));
1260                 } else if (zdp->z_sa_hdl == NULL) {
1261                         return (SET_ERROR(EIO));
1262                 }
1263 
1264                 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1265                         error = zfs_fastaccesschk_execute(zdp, cr);
1266                         if (!error) {
1267                                 *vpp = dvp;
1268                                 VN_HOLD(*vpp);
1269                                 return (0);
1270                         }
1271                         return (error);
1272                 } else if (!zdp->z_zfsvfs->z_norm &&
1273                     (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1274 
1275                         vnode_t *tvp = dnlc_lookup(dvp, nm);
1276 
1277                         if (tvp) {
1278                                 error = zfs_fastaccesschk_execute(zdp, cr);
1279                                 if (error) {
1280                                         VN_RELE(tvp);
1281                                         return (error);
1282                                 }
1283                                 if (tvp == DNLC_NO_VNODE) {
1284                                         VN_RELE(tvp);
1285                                         return (SET_ERROR(ENOENT));
1286                                 } else {
1287                                         *vpp = tvp;
1288                                         return (specvp_check(vpp, cr));
1289                                 }
1290                         }
1291                 }
1292         }
1293 
1294         DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1295 
1296         ZFS_ENTER(zfsvfs);
1297         ZFS_VERIFY_ZP(zdp);
1298 
1299         *vpp = NULL;
1300 
1301         if (flags & LOOKUP_XATTR) {
1302                 /*
1303                  * If the xattr property is off, refuse the lookup request.
1304                  */
1305                 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1306                         ZFS_EXIT(zfsvfs);
1307                         return (SET_ERROR(EINVAL));
1308                 }
1309 
1310                 /*
1311                  * We don't allow recursive attributes..
1312                  * Maybe someday we will.
1313                  */
1314                 if (zdp->z_pflags & ZFS_XATTR) {
1315                         ZFS_EXIT(zfsvfs);
1316                         return (SET_ERROR(EINVAL));
1317                 }
1318 
1319                 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1320                         ZFS_EXIT(zfsvfs);
1321                         return (error);
1322                 }
1323 
1324                 /*
1325                  * Do we have permission to get into attribute directory?
1326                  */
1327 
1328                 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1329                     B_FALSE, cr)) {
1330                         VN_RELE(*vpp);
1331                         *vpp = NULL;
1332                 }
1333 
1334                 ZFS_EXIT(zfsvfs);
1335                 return (error);
1336         }
1337 
1338         if (dvp->v_type != VDIR) {
1339                 ZFS_EXIT(zfsvfs);
1340                 return (SET_ERROR(ENOTDIR));
1341         }
1342 
1343         /*
1344          * Check accessibility of directory.
1345          */
1346 
1347         if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1348                 ZFS_EXIT(zfsvfs);
1349                 return (error);
1350         }
1351 
1352         if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1353             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1354                 ZFS_EXIT(zfsvfs);
1355                 return (SET_ERROR(EILSEQ));
1356         }
1357 
1358         error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1359         if (error == 0)
1360                 error = specvp_check(vpp, cr);
1361 
1362         ZFS_EXIT(zfsvfs);
1363         return (error);
1364 }
1365 
1366 /*
1367  * Attempt to create a new entry in a directory.  If the entry
1368  * already exists, truncate the file if permissible, else return
1369  * an error.  Return the vp of the created or trunc'd file.
1370  *
1371  *      IN:     dvp     - vnode of directory to put new file entry in.
1372  *              name    - name of new file entry.
1373  *              vap     - attributes of new file.
1374  *              excl    - flag indicating exclusive or non-exclusive mode.
1375  *              mode    - mode to open file with.
1376  *              cr      - credentials of caller.
1377  *              flag    - large file flag [UNUSED].
1378  *              ct      - caller context
1379  *              vsecp   - ACL to be set
1380  *
1381  *      OUT:    vpp     - vnode of created or trunc'd entry.
1382  *
1383  *      RETURN: 0 on success, error code on failure.
1384  *
1385  * Timestamps:
1386  *      dvp - ctime|mtime updated if new entry created
1387  *       vp - ctime|mtime always, atime if new
1388  */
1389 
1390 /* ARGSUSED */
1391 static int
1392 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1393     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1394     vsecattr_t *vsecp)
1395 {
1396         znode_t         *zp, *dzp = VTOZ(dvp);
1397         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1398         zilog_t         *zilog;
1399         objset_t        *os;
1400         zfs_dirlock_t   *dl;
1401         dmu_tx_t        *tx;
1402         int             error;
1403         ksid_t          *ksid;
1404         uid_t           uid;
1405         gid_t           gid = crgetgid(cr);
1406         zfs_acl_ids_t   acl_ids;
1407         boolean_t       fuid_dirtied;
1408         boolean_t       have_acl = B_FALSE;
1409         boolean_t       waited = B_FALSE;
1410 
1411         /*
1412          * If we have an ephemeral id, ACL, or XVATTR then
1413          * make sure file system is at proper version
1414          */
1415 
1416         ksid = crgetsid(cr, KSID_OWNER);
1417         if (ksid)
1418                 uid = ksid_getid(ksid);
1419         else
1420                 uid = crgetuid(cr);
1421 
1422         if (zfsvfs->z_use_fuids == B_FALSE &&
1423             (vsecp || (vap->va_mask & AT_XVATTR) ||
1424             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1425                 return (SET_ERROR(EINVAL));
1426 
1427         ZFS_ENTER(zfsvfs);
1428         ZFS_VERIFY_ZP(dzp);
1429         os = zfsvfs->z_os;
1430         zilog = zfsvfs->z_log;
1431 
1432         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1433             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1434                 ZFS_EXIT(zfsvfs);
1435                 return (SET_ERROR(EILSEQ));
1436         }
1437 
1438         if (vap->va_mask & AT_XVATTR) {
1439                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1440                     crgetuid(cr), cr, vap->va_type)) != 0) {
1441                         ZFS_EXIT(zfsvfs);
1442                         return (error);
1443                 }
1444         }
1445 top:
1446         *vpp = NULL;
1447 
1448         if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1449                 vap->va_mode &= ~VSVTX;
1450 
1451         if (*name == '\0') {
1452                 /*
1453                  * Null component name refers to the directory itself.
1454                  */
1455                 VN_HOLD(dvp);
1456                 zp = dzp;
1457                 dl = NULL;
1458                 error = 0;
1459         } else {
1460                 /* possible VN_HOLD(zp) */
1461                 int zflg = 0;
1462 
1463                 if (flag & FIGNORECASE)
1464                         zflg |= ZCILOOK;
1465 
1466                 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1467                     NULL, NULL);
1468                 if (error) {
1469                         if (have_acl)
1470                                 zfs_acl_ids_free(&acl_ids);
1471                         if (strcmp(name, "..") == 0)
1472                                 error = SET_ERROR(EISDIR);
1473                         ZFS_EXIT(zfsvfs);
1474                         return (error);
1475                 }
1476         }
1477 
1478         if (zp == NULL) {
1479                 uint64_t txtype;
1480 
1481                 /*
1482                  * Create a new file object and update the directory
1483                  * to reference it.
1484                  */
1485                 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1486                         if (have_acl)
1487                                 zfs_acl_ids_free(&acl_ids);
1488                         goto out;
1489                 }
1490 
1491                 /*
1492                  * We only support the creation of regular files in
1493                  * extended attribute directories.
1494                  */
1495 
1496                 if ((dzp->z_pflags & ZFS_XATTR) &&
1497                     (vap->va_type != VREG)) {
1498                         if (have_acl)
1499                                 zfs_acl_ids_free(&acl_ids);
1500                         error = SET_ERROR(EINVAL);
1501                         goto out;
1502                 }
1503 
1504                 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1505                     cr, vsecp, &acl_ids)) != 0)
1506                         goto out;
1507                 have_acl = B_TRUE;
1508 
1509                 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1510                         zfs_acl_ids_free(&acl_ids);
1511                         error = SET_ERROR(EDQUOT);
1512                         goto out;
1513                 }
1514 
1515                 tx = dmu_tx_create(os);
1516 
1517                 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1518                     ZFS_SA_BASE_ATTR_SIZE);
1519 
1520                 fuid_dirtied = zfsvfs->z_fuid_dirty;
1521                 if (fuid_dirtied)
1522                         zfs_fuid_txhold(zfsvfs, tx);
1523                 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1524                 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1525                 if (!zfsvfs->z_use_sa &&
1526                     acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1527                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1528                             0, acl_ids.z_aclp->z_acl_bytes);
1529                 }
1530                 error = dmu_tx_assign(tx,
1531                     (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1532                 if (error) {
1533                         zfs_dirent_unlock(dl);
1534                         if (error == ERESTART) {
1535                                 waited = B_TRUE;
1536                                 dmu_tx_wait(tx);
1537                                 dmu_tx_abort(tx);
1538                                 goto top;
1539                         }
1540                         zfs_acl_ids_free(&acl_ids);
1541                         dmu_tx_abort(tx);
1542                         ZFS_EXIT(zfsvfs);
1543                         return (error);
1544                 }
1545                 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1546 
1547                 if (fuid_dirtied)
1548                         zfs_fuid_sync(zfsvfs, tx);
1549 
1550                 (void) zfs_link_create(dl, zp, tx, ZNEW);
1551                 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1552                 if (flag & FIGNORECASE)
1553                         txtype |= TX_CI;
1554                 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1555                     vsecp, acl_ids.z_fuidp, vap);
1556                 zfs_acl_ids_free(&acl_ids);
1557                 dmu_tx_commit(tx);
1558         } else {
1559                 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1560 
1561                 if (have_acl)
1562                         zfs_acl_ids_free(&acl_ids);
1563                 have_acl = B_FALSE;
1564 
1565                 /*
1566                  * A directory entry already exists for this name.
1567                  */
1568                 /*
1569                  * Can't truncate an existing file if in exclusive mode.
1570                  */
1571                 if (excl == EXCL) {
1572                         error = SET_ERROR(EEXIST);
1573                         goto out;
1574                 }
1575                 /*
1576                  * Can't open a directory for writing.
1577                  */
1578                 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1579                         error = SET_ERROR(EISDIR);
1580                         goto out;
1581                 }
1582                 /*
1583                  * Verify requested access to file.
1584                  */
1585                 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1586                         goto out;
1587                 }
1588 
1589                 mutex_enter(&dzp->z_lock);
1590                 dzp->z_seq++;
1591                 mutex_exit(&dzp->z_lock);
1592 
1593                 /*
1594                  * Truncate regular files if requested.
1595                  */
1596                 if ((ZTOV(zp)->v_type == VREG) &&
1597                     (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1598                         /* we can't hold any locks when calling zfs_freesp() */
1599                         zfs_dirent_unlock(dl);
1600                         dl = NULL;
1601                         error = zfs_freesp(zp, 0, 0, mode, TRUE);
1602                         if (error == 0) {
1603                                 vnevent_create(ZTOV(zp), ct);
1604                         }
1605                 }
1606         }
1607 out:
1608 
1609         if (dl)
1610                 zfs_dirent_unlock(dl);
1611 
1612         if (error) {
1613                 if (zp)
1614                         VN_RELE(ZTOV(zp));
1615         } else {
1616                 *vpp = ZTOV(zp);
1617                 error = specvp_check(vpp, cr);
1618         }
1619 
1620         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1621                 zil_commit(zilog, 0);
1622 
1623         ZFS_EXIT(zfsvfs);
1624         return (error);
1625 }
1626 
1627 /*
1628  * Remove an entry from a directory.
1629  *
1630  *      IN:     dvp     - vnode of directory to remove entry from.
1631  *              name    - name of entry to remove.
1632  *              cr      - credentials of caller.
1633  *              ct      - caller context
1634  *              flags   - case flags
1635  *
1636  *      RETURN: 0 on success, error code on failure.
1637  *
1638  * Timestamps:
1639  *      dvp - ctime|mtime
1640  *       vp - ctime (if nlink > 0)
1641  */
1642 
1643 uint64_t null_xattr = 0;
1644 
1645 /*ARGSUSED*/
1646 static int
1647 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1648     int flags)
1649 {
1650         znode_t         *zp, *dzp = VTOZ(dvp);
1651         znode_t         *xzp;
1652         vnode_t         *vp;
1653         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1654         zilog_t         *zilog;
1655         uint64_t        acl_obj, xattr_obj;
1656         uint64_t        xattr_obj_unlinked = 0;
1657         uint64_t        obj = 0;
1658         zfs_dirlock_t   *dl;
1659         dmu_tx_t        *tx;
1660         boolean_t       may_delete_now, delete_now = FALSE;
1661         boolean_t       unlinked, toobig = FALSE;
1662         uint64_t        txtype;
1663         pathname_t      *realnmp = NULL;
1664         pathname_t      realnm;
1665         int             error;
1666         int             zflg = ZEXISTS;
1667         boolean_t       waited = B_FALSE;
1668 
1669         ZFS_ENTER(zfsvfs);
1670         ZFS_VERIFY_ZP(dzp);
1671         zilog = zfsvfs->z_log;
1672 
1673         if (flags & FIGNORECASE) {
1674                 zflg |= ZCILOOK;
1675                 pn_alloc(&realnm);
1676                 realnmp = &realnm;
1677         }
1678 
1679 top:
1680         xattr_obj = 0;
1681         xzp = NULL;
1682         /*
1683          * Attempt to lock directory; fail if entry doesn't exist.
1684          */
1685         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1686             NULL, realnmp)) {
1687                 if (realnmp)
1688                         pn_free(realnmp);
1689                 ZFS_EXIT(zfsvfs);
1690                 return (error);
1691         }
1692 
1693         vp = ZTOV(zp);
1694 
1695         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1696                 goto out;
1697         }
1698 
1699         /*
1700          * Need to use rmdir for removing directories.
1701          */
1702         if (vp->v_type == VDIR) {
1703                 error = SET_ERROR(EPERM);
1704                 goto out;
1705         }
1706 
1707         vnevent_remove(vp, dvp, name, ct);
1708 
1709         if (realnmp)
1710                 dnlc_remove(dvp, realnmp->pn_buf);
1711         else
1712                 dnlc_remove(dvp, name);
1713 
1714         mutex_enter(&vp->v_lock);
1715         may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1716         mutex_exit(&vp->v_lock);
1717 
1718         /*
1719          * We may delete the znode now, or we may put it in the unlinked set;
1720          * it depends on whether we're the last link, and on whether there are
1721          * other holds on the vnode.  So we dmu_tx_hold() the right things to
1722          * allow for either case.
1723          */
1724         obj = zp->z_id;
1725         tx = dmu_tx_create(zfsvfs->z_os);
1726         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1727         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1728         zfs_sa_upgrade_txholds(tx, zp);
1729         zfs_sa_upgrade_txholds(tx, dzp);
1730         if (may_delete_now) {
1731                 toobig =
1732                     zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1733                 /* if the file is too big, only hold_free a token amount */
1734                 dmu_tx_hold_free(tx, zp->z_id, 0,
1735                     (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1736         }
1737 
1738         /* are there any extended attributes? */
1739         error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1740             &xattr_obj, sizeof (xattr_obj));
1741         if (error == 0 && xattr_obj) {
1742                 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1743                 ASSERT0(error);
1744                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1745                 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1746         }
1747 
1748         mutex_enter(&zp->z_lock);
1749         if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1750                 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1751         mutex_exit(&zp->z_lock);
1752 
1753         /* charge as an update -- would be nice not to charge at all */
1754         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1755 
1756         /*
1757          * Mark this transaction as typically resulting in a net free of space
1758          */
1759         dmu_tx_mark_netfree(tx);
1760 
1761         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1762         if (error) {
1763                 zfs_dirent_unlock(dl);
1764                 VN_RELE(vp);
1765                 if (xzp)
1766                         VN_RELE(ZTOV(xzp));
1767                 if (error == ERESTART) {
1768                         waited = B_TRUE;
1769                         dmu_tx_wait(tx);
1770                         dmu_tx_abort(tx);
1771                         goto top;
1772                 }
1773                 if (realnmp)
1774                         pn_free(realnmp);
1775                 dmu_tx_abort(tx);
1776                 ZFS_EXIT(zfsvfs);
1777                 return (error);
1778         }
1779 
1780         /*
1781          * Remove the directory entry.
1782          */
1783         error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1784 
1785         if (error) {
1786                 dmu_tx_commit(tx);
1787                 goto out;
1788         }
1789 
1790         if (unlinked) {
1791                 /*
1792                  * Hold z_lock so that we can make sure that the ACL obj
1793                  * hasn't changed.  Could have been deleted due to
1794                  * zfs_sa_upgrade().
1795                  */
1796                 mutex_enter(&zp->z_lock);
1797                 mutex_enter(&vp->v_lock);
1798                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1799                     &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1800                 delete_now = may_delete_now && !toobig &&
1801                     vp->v_count == 1 && !vn_has_cached_data(vp) &&
1802                     xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1803                     acl_obj;
1804                 mutex_exit(&vp->v_lock);
1805         }
1806 
1807         if (delete_now) {
1808                 if (xattr_obj_unlinked) {
1809                         ASSERT3U(xzp->z_links, ==, 2);
1810                         mutex_enter(&xzp->z_lock);
1811                         xzp->z_unlinked = 1;
1812                         xzp->z_links = 0;
1813                         error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1814                             &xzp->z_links, sizeof (xzp->z_links), tx);
1815                         ASSERT3U(error,  ==,  0);
1816                         mutex_exit(&xzp->z_lock);
1817                         zfs_unlinked_add(xzp, tx);
1818 
1819                         if (zp->z_is_sa)
1820                                 error = sa_remove(zp->z_sa_hdl,
1821                                     SA_ZPL_XATTR(zfsvfs), tx);
1822                         else
1823                                 error = sa_update(zp->z_sa_hdl,
1824                                     SA_ZPL_XATTR(zfsvfs), &null_xattr,
1825                                     sizeof (uint64_t), tx);
1826                         ASSERT0(error);
1827                 }
1828                 mutex_enter(&vp->v_lock);
1829                 VN_RELE_LOCKED(vp);
1830                 ASSERT0(vp->v_count);
1831                 mutex_exit(&vp->v_lock);
1832                 mutex_exit(&zp->z_lock);
1833                 zfs_znode_delete(zp, tx);
1834         } else if (unlinked) {
1835                 mutex_exit(&zp->z_lock);
1836                 zfs_unlinked_add(zp, tx);
1837         }
1838 
1839         txtype = TX_REMOVE;
1840         if (flags & FIGNORECASE)
1841                 txtype |= TX_CI;
1842         zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1843 
1844         dmu_tx_commit(tx);
1845 out:
1846         if (realnmp)
1847                 pn_free(realnmp);
1848 
1849         zfs_dirent_unlock(dl);
1850 
1851         if (!delete_now)
1852                 VN_RELE(vp);
1853         if (xzp)
1854                 VN_RELE(ZTOV(xzp));
1855 
1856         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1857                 zil_commit(zilog, 0);
1858 
1859         ZFS_EXIT(zfsvfs);
1860         return (error);
1861 }
1862 
1863 /*
1864  * Create a new directory and insert it into dvp using the name
1865  * provided.  Return a pointer to the inserted directory.
1866  *
1867  *      IN:     dvp     - vnode of directory to add subdir to.
1868  *              dirname - name of new directory.
1869  *              vap     - attributes of new directory.
1870  *              cr      - credentials of caller.
1871  *              ct      - caller context
1872  *              flags   - case flags
1873  *              vsecp   - ACL to be set
1874  *
1875  *      OUT:    vpp     - vnode of created directory.
1876  *
1877  *      RETURN: 0 on success, error code on failure.
1878  *
1879  * Timestamps:
1880  *      dvp - ctime|mtime updated
1881  *       vp - ctime|mtime|atime updated
1882  */
1883 /*ARGSUSED*/
1884 static int
1885 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1886     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1887 {
1888         znode_t         *zp, *dzp = VTOZ(dvp);
1889         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1890         zilog_t         *zilog;
1891         zfs_dirlock_t   *dl;
1892         uint64_t        txtype;
1893         dmu_tx_t        *tx;
1894         int             error;
1895         int             zf = ZNEW;
1896         ksid_t          *ksid;
1897         uid_t           uid;
1898         gid_t           gid = crgetgid(cr);
1899         zfs_acl_ids_t   acl_ids;
1900         boolean_t       fuid_dirtied;
1901         boolean_t       waited = B_FALSE;
1902 
1903         ASSERT(vap->va_type == VDIR);
1904 
1905         /*
1906          * If we have an ephemeral id, ACL, or XVATTR then
1907          * make sure file system is at proper version
1908          */
1909 
1910         ksid = crgetsid(cr, KSID_OWNER);
1911         if (ksid)
1912                 uid = ksid_getid(ksid);
1913         else
1914                 uid = crgetuid(cr);
1915         if (zfsvfs->z_use_fuids == B_FALSE &&
1916             (vsecp || (vap->va_mask & AT_XVATTR) ||
1917             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1918                 return (SET_ERROR(EINVAL));
1919 
1920         ZFS_ENTER(zfsvfs);
1921         ZFS_VERIFY_ZP(dzp);
1922         zilog = zfsvfs->z_log;
1923 
1924         if (dzp->z_pflags & ZFS_XATTR) {
1925                 ZFS_EXIT(zfsvfs);
1926                 return (SET_ERROR(EINVAL));
1927         }
1928 
1929         if (zfsvfs->z_utf8 && u8_validate(dirname,
1930             strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1931                 ZFS_EXIT(zfsvfs);
1932                 return (SET_ERROR(EILSEQ));
1933         }
1934         if (flags & FIGNORECASE)
1935                 zf |= ZCILOOK;
1936 
1937         if (vap->va_mask & AT_XVATTR) {
1938                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1939                     crgetuid(cr), cr, vap->va_type)) != 0) {
1940                         ZFS_EXIT(zfsvfs);
1941                         return (error);
1942                 }
1943         }
1944 
1945         if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1946             vsecp, &acl_ids)) != 0) {
1947                 ZFS_EXIT(zfsvfs);
1948                 return (error);
1949         }
1950         /*
1951          * First make sure the new directory doesn't exist.
1952          *
1953          * Existence is checked first to make sure we don't return
1954          * EACCES instead of EEXIST which can cause some applications
1955          * to fail.
1956          */
1957 top:
1958         *vpp = NULL;
1959 
1960         if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1961             NULL, NULL)) {
1962                 zfs_acl_ids_free(&acl_ids);
1963                 ZFS_EXIT(zfsvfs);
1964                 return (error);
1965         }
1966 
1967         if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1968                 zfs_acl_ids_free(&acl_ids);
1969                 zfs_dirent_unlock(dl);
1970                 ZFS_EXIT(zfsvfs);
1971                 return (error);
1972         }
1973 
1974         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1975                 zfs_acl_ids_free(&acl_ids);
1976                 zfs_dirent_unlock(dl);
1977                 ZFS_EXIT(zfsvfs);
1978                 return (SET_ERROR(EDQUOT));
1979         }
1980 
1981         /*
1982          * Add a new entry to the directory.
1983          */
1984         tx = dmu_tx_create(zfsvfs->z_os);
1985         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1986         dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1987         fuid_dirtied = zfsvfs->z_fuid_dirty;
1988         if (fuid_dirtied)
1989                 zfs_fuid_txhold(zfsvfs, tx);
1990         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1991                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1992                     acl_ids.z_aclp->z_acl_bytes);
1993         }
1994 
1995         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1996             ZFS_SA_BASE_ATTR_SIZE);
1997 
1998         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1999         if (error) {
2000                 zfs_dirent_unlock(dl);
2001                 if (error == ERESTART) {
2002                         waited = B_TRUE;
2003                         dmu_tx_wait(tx);
2004                         dmu_tx_abort(tx);
2005                         goto top;
2006                 }
2007                 zfs_acl_ids_free(&acl_ids);
2008                 dmu_tx_abort(tx);
2009                 ZFS_EXIT(zfsvfs);
2010                 return (error);
2011         }
2012 
2013         /*
2014          * Create new node.
2015          */
2016         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2017 
2018         if (fuid_dirtied)
2019                 zfs_fuid_sync(zfsvfs, tx);
2020 
2021         /*
2022          * Now put new name in parent dir.
2023          */
2024         (void) zfs_link_create(dl, zp, tx, ZNEW);
2025 
2026         *vpp = ZTOV(zp);
2027 
2028         txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2029         if (flags & FIGNORECASE)
2030                 txtype |= TX_CI;
2031         zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2032             acl_ids.z_fuidp, vap);
2033 
2034         zfs_acl_ids_free(&acl_ids);
2035 
2036         dmu_tx_commit(tx);
2037 
2038         zfs_dirent_unlock(dl);
2039 
2040         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2041                 zil_commit(zilog, 0);
2042 
2043         ZFS_EXIT(zfsvfs);
2044         return (0);
2045 }
2046 
2047 /*
2048  * Remove a directory subdir entry.  If the current working
2049  * directory is the same as the subdir to be removed, the
2050  * remove will fail.
2051  *
2052  *      IN:     dvp     - vnode of directory to remove from.
2053  *              name    - name of directory to be removed.
2054  *              cwd     - vnode of current working directory.
2055  *              cr      - credentials of caller.
2056  *              ct      - caller context
2057  *              flags   - case flags
2058  *
2059  *      RETURN: 0 on success, error code on failure.
2060  *
2061  * Timestamps:
2062  *      dvp - ctime|mtime updated
2063  */
2064 /*ARGSUSED*/
2065 static int
2066 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2067     caller_context_t *ct, int flags)
2068 {
2069         znode_t         *dzp = VTOZ(dvp);
2070         znode_t         *zp;
2071         vnode_t         *vp;
2072         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
2073         zilog_t         *zilog;
2074         zfs_dirlock_t   *dl;
2075         dmu_tx_t        *tx;
2076         int             error;
2077         int             zflg = ZEXISTS;
2078         boolean_t       waited = B_FALSE;
2079 
2080         ZFS_ENTER(zfsvfs);
2081         ZFS_VERIFY_ZP(dzp);
2082         zilog = zfsvfs->z_log;
2083 
2084         if (flags & FIGNORECASE)
2085                 zflg |= ZCILOOK;
2086 top:
2087         zp = NULL;
2088 
2089         /*
2090          * Attempt to lock directory; fail if entry doesn't exist.
2091          */
2092         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2093             NULL, NULL)) {
2094                 ZFS_EXIT(zfsvfs);
2095                 return (error);
2096         }
2097 
2098         vp = ZTOV(zp);
2099 
2100         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2101                 goto out;
2102         }
2103 
2104         if (vp->v_type != VDIR) {
2105                 error = SET_ERROR(ENOTDIR);
2106                 goto out;
2107         }
2108 
2109         if (vp == cwd) {
2110                 error = SET_ERROR(EINVAL);
2111                 goto out;
2112         }
2113 
2114         vnevent_rmdir(vp, dvp, name, ct);
2115 
2116         /*
2117          * Grab a lock on the directory to make sure that noone is
2118          * trying to add (or lookup) entries while we are removing it.
2119          */
2120         rw_enter(&zp->z_name_lock, RW_WRITER);
2121 
2122         /*
2123          * Grab a lock on the parent pointer to make sure we play well
2124          * with the treewalk and directory rename code.
2125          */
2126         rw_enter(&zp->z_parent_lock, RW_WRITER);
2127 
2128         tx = dmu_tx_create(zfsvfs->z_os);
2129         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2130         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2131         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2132         zfs_sa_upgrade_txholds(tx, zp);
2133         zfs_sa_upgrade_txholds(tx, dzp);
2134         dmu_tx_mark_netfree(tx);
2135         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2136         if (error) {
2137                 rw_exit(&zp->z_parent_lock);
2138                 rw_exit(&zp->z_name_lock);
2139                 zfs_dirent_unlock(dl);
2140                 VN_RELE(vp);
2141                 if (error == ERESTART) {
2142                         waited = B_TRUE;
2143                         dmu_tx_wait(tx);
2144                         dmu_tx_abort(tx);
2145                         goto top;
2146                 }
2147                 dmu_tx_abort(tx);
2148                 ZFS_EXIT(zfsvfs);
2149                 return (error);
2150         }
2151 
2152         error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2153 
2154         if (error == 0) {
2155                 uint64_t txtype = TX_RMDIR;
2156                 if (flags & FIGNORECASE)
2157                         txtype |= TX_CI;
2158                 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2159         }
2160 
2161         dmu_tx_commit(tx);
2162 
2163         rw_exit(&zp->z_parent_lock);
2164         rw_exit(&zp->z_name_lock);
2165 out:
2166         zfs_dirent_unlock(dl);
2167 
2168         VN_RELE(vp);
2169 
2170         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2171                 zil_commit(zilog, 0);
2172 
2173         ZFS_EXIT(zfsvfs);
2174         return (error);
2175 }
2176 
2177 /*
2178  * Read as many directory entries as will fit into the provided
2179  * buffer from the given directory cursor position (specified in
2180  * the uio structure).
2181  *
2182  *      IN:     vp      - vnode of directory to read.
2183  *              uio     - structure supplying read location, range info,
2184  *                        and return buffer.
2185  *              cr      - credentials of caller.
2186  *              ct      - caller context
2187  *              flags   - case flags
2188  *
2189  *      OUT:    uio     - updated offset and range, buffer filled.
2190  *              eofp    - set to true if end-of-file detected.
2191  *
2192  *      RETURN: 0 on success, error code on failure.
2193  *
2194  * Timestamps:
2195  *      vp - atime updated
2196  *
2197  * Note that the low 4 bits of the cookie returned by zap is always zero.
2198  * This allows us to use the low range for "special" directory entries:
2199  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2200  * we use the offset 2 for the '.zfs' directory.
2201  */
2202 /* ARGSUSED */
2203 static int
2204 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2205     caller_context_t *ct, int flags)
2206 {
2207         znode_t         *zp = VTOZ(vp);
2208         iovec_t         *iovp;
2209         edirent_t       *eodp;
2210         dirent64_t      *odp;
2211         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2212         objset_t        *os;
2213         caddr_t         outbuf;
2214         size_t          bufsize;
2215         zap_cursor_t    zc;
2216         zap_attribute_t zap;
2217         uint_t          bytes_wanted;
2218         uint64_t        offset; /* must be unsigned; checks for < 1 */
2219         uint64_t        parent;
2220         int             local_eof;
2221         int             outcount;
2222         int             error;
2223         uint8_t         prefetch;
2224         boolean_t       check_sysattrs;
2225 
2226         ZFS_ENTER(zfsvfs);
2227         ZFS_VERIFY_ZP(zp);
2228 
2229         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2230             &parent, sizeof (parent))) != 0) {
2231                 ZFS_EXIT(zfsvfs);
2232                 return (error);
2233         }
2234 
2235         /*
2236          * If we are not given an eof variable,
2237          * use a local one.
2238          */
2239         if (eofp == NULL)
2240                 eofp = &local_eof;
2241 
2242         /*
2243          * Check for valid iov_len.
2244          */
2245         if (uio->uio_iov->iov_len <= 0) {
2246                 ZFS_EXIT(zfsvfs);
2247                 return (SET_ERROR(EINVAL));
2248         }
2249 
2250         /*
2251          * Quit if directory has been removed (posix)
2252          */
2253         if ((*eofp = zp->z_unlinked) != 0) {
2254                 ZFS_EXIT(zfsvfs);
2255                 return (0);
2256         }
2257 
2258         error = 0;
2259         os = zfsvfs->z_os;
2260         offset = uio->uio_loffset;
2261         prefetch = zp->z_zn_prefetch;
2262 
2263         /*
2264          * Initialize the iterator cursor.
2265          */
2266         if (offset <= 3) {
2267                 /*
2268                  * Start iteration from the beginning of the directory.
2269                  */
2270                 zap_cursor_init(&zc, os, zp->z_id);
2271         } else {
2272                 /*
2273                  * The offset is a serialized cursor.
2274                  */
2275                 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2276         }
2277 
2278         /*
2279          * Get space to change directory entries into fs independent format.
2280          */
2281         iovp = uio->uio_iov;
2282         bytes_wanted = iovp->iov_len;
2283         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2284                 bufsize = bytes_wanted;
2285                 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2286                 odp = (struct dirent64 *)outbuf;
2287         } else {
2288                 bufsize = bytes_wanted;
2289                 outbuf = NULL;
2290                 odp = (struct dirent64 *)iovp->iov_base;
2291         }
2292         eodp = (struct edirent *)odp;
2293 
2294         /*
2295          * If this VFS supports the system attribute view interface; and
2296          * we're looking at an extended attribute directory; and we care
2297          * about normalization conflicts on this vfs; then we must check
2298          * for normalization conflicts with the sysattr name space.
2299          */
2300         check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2301             (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2302             (flags & V_RDDIR_ENTFLAGS);
2303 
2304         /*
2305          * Transform to file-system independent format
2306          */
2307         outcount = 0;
2308         while (outcount < bytes_wanted) {
2309                 ino64_t objnum;
2310                 ushort_t reclen;
2311                 off64_t *next = NULL;
2312 
2313                 /*
2314                  * Special case `.', `..', and `.zfs'.
2315                  */
2316                 if (offset == 0) {
2317                         (void) strcpy(zap.za_name, ".");
2318                         zap.za_normalization_conflict = 0;
2319                         objnum = zp->z_id;
2320                 } else if (offset == 1) {
2321                         (void) strcpy(zap.za_name, "..");
2322                         zap.za_normalization_conflict = 0;
2323                         objnum = parent;
2324                 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2325                         (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2326                         zap.za_normalization_conflict = 0;
2327                         objnum = ZFSCTL_INO_ROOT;
2328                 } else {
2329                         /*
2330                          * Grab next entry.
2331                          */
2332                         if (error = zap_cursor_retrieve(&zc, &zap)) {
2333                                 if ((*eofp = (error == ENOENT)) != 0)
2334                                         break;
2335                                 else
2336                                         goto update;
2337                         }
2338 
2339                         if (zap.za_integer_length != 8 ||
2340                             zap.za_num_integers != 1) {
2341                                 cmn_err(CE_WARN, "zap_readdir: bad directory "
2342                                     "entry, obj = %lld, offset = %lld\n",
2343                                     (u_longlong_t)zp->z_id,
2344                                     (u_longlong_t)offset);
2345                                 error = SET_ERROR(ENXIO);
2346                                 goto update;
2347                         }
2348 
2349                         objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2350                         /*
2351                          * MacOS X can extract the object type here such as:
2352                          * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2353                          */
2354 
2355                         if (check_sysattrs && !zap.za_normalization_conflict) {
2356                                 zap.za_normalization_conflict =
2357                                     xattr_sysattr_casechk(zap.za_name);
2358                         }
2359                 }
2360 
2361                 if (flags & V_RDDIR_ACCFILTER) {
2362                         /*
2363                          * If we have no access at all, don't include
2364                          * this entry in the returned information
2365                          */
2366                         znode_t *ezp;
2367                         if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2368                                 goto skip_entry;
2369                         if (!zfs_has_access(ezp, cr)) {
2370                                 VN_RELE(ZTOV(ezp));
2371                                 goto skip_entry;
2372                         }
2373                         VN_RELE(ZTOV(ezp));
2374                 }
2375 
2376                 if (flags & V_RDDIR_ENTFLAGS)
2377                         reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2378                 else
2379                         reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2380 
2381                 /*
2382                  * Will this entry fit in the buffer?
2383                  */
2384                 if (outcount + reclen > bufsize) {
2385                         /*
2386                          * Did we manage to fit anything in the buffer?
2387                          */
2388                         if (!outcount) {
2389                                 error = SET_ERROR(EINVAL);
2390                                 goto update;
2391                         }
2392                         break;
2393                 }
2394                 if (flags & V_RDDIR_ENTFLAGS) {
2395                         /*
2396                          * Add extended flag entry:
2397                          */
2398                         eodp->ed_ino = objnum;
2399                         eodp->ed_reclen = reclen;
2400                         /* NOTE: ed_off is the offset for the *next* entry */
2401                         next = &(eodp->ed_off);
2402                         eodp->ed_eflags = zap.za_normalization_conflict ?
2403                             ED_CASE_CONFLICT : 0;
2404                         (void) strncpy(eodp->ed_name, zap.za_name,
2405                             EDIRENT_NAMELEN(reclen));
2406                         eodp = (edirent_t *)((intptr_t)eodp + reclen);
2407                 } else {
2408                         /*
2409                          * Add normal entry:
2410                          */
2411                         odp->d_ino = objnum;
2412                         odp->d_reclen = reclen;
2413                         /* NOTE: d_off is the offset for the *next* entry */
2414                         next = &(odp->d_off);
2415                         (void) strncpy(odp->d_name, zap.za_name,
2416                             DIRENT64_NAMELEN(reclen));
2417                         odp = (dirent64_t *)((intptr_t)odp + reclen);
2418                 }
2419                 outcount += reclen;
2420 
2421                 ASSERT(outcount <= bufsize);
2422 
2423                 /* Prefetch znode */
2424                 if (prefetch)
2425                         dmu_prefetch(os, objnum, 0, 0, 0,
2426                             ZIO_PRIORITY_SYNC_READ);
2427 
2428         skip_entry:
2429                 /*
2430                  * Move to the next entry, fill in the previous offset.
2431                  */
2432                 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2433                         zap_cursor_advance(&zc);
2434                         offset = zap_cursor_serialize(&zc);
2435                 } else {
2436                         offset += 1;
2437                 }
2438                 if (next)
2439                         *next = offset;
2440         }
2441         zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2442 
2443         if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2444                 iovp->iov_base += outcount;
2445                 iovp->iov_len -= outcount;
2446                 uio->uio_resid -= outcount;
2447         } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2448                 /*
2449                  * Reset the pointer.
2450                  */
2451                 offset = uio->uio_loffset;
2452         }
2453 
2454 update:
2455         zap_cursor_fini(&zc);
2456         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2457                 kmem_free(outbuf, bufsize);
2458 
2459         if (error == ENOENT)
2460                 error = 0;
2461 
2462         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2463 
2464         uio->uio_loffset = offset;
2465         ZFS_EXIT(zfsvfs);
2466         return (error);
2467 }
2468 
2469 ulong_t zfs_fsync_sync_cnt = 4;
2470 
2471 static int
2472 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2473 {
2474         znode_t *zp = VTOZ(vp);
2475         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2476 
2477         /*
2478          * Regardless of whether this is required for standards conformance,
2479          * this is the logical behavior when fsync() is called on a file with
2480          * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2481          * going to be pushed out as part of the zil_commit().
2482          */
2483         if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2484             (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2485                 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2486 
2487         (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2488 
2489         if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2490                 ZFS_ENTER(zfsvfs);
2491                 ZFS_VERIFY_ZP(zp);
2492                 zil_commit(zfsvfs->z_log, zp->z_id);
2493                 ZFS_EXIT(zfsvfs);
2494         }
2495         return (0);
2496 }
2497 
2498 
2499 /*
2500  * Get the requested file attributes and place them in the provided
2501  * vattr structure.
2502  *
2503  *      IN:     vp      - vnode of file.
2504  *              vap     - va_mask identifies requested attributes.
2505  *                        If AT_XVATTR set, then optional attrs are requested
2506  *              flags   - ATTR_NOACLCHECK (CIFS server context)
2507  *              cr      - credentials of caller.
2508  *              ct      - caller context
2509  *
2510  *      OUT:    vap     - attribute values.
2511  *
2512  *      RETURN: 0 (always succeeds).
2513  */
2514 /* ARGSUSED */
2515 static int
2516 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2517     caller_context_t *ct)
2518 {
2519         znode_t *zp = VTOZ(vp);
2520         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2521         int     error = 0;
2522         uint64_t links;
2523         uint64_t mtime[2], ctime[2];
2524         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2525         xoptattr_t *xoap = NULL;
2526         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2527         sa_bulk_attr_t bulk[2];
2528         int count = 0;
2529 
2530         ZFS_ENTER(zfsvfs);
2531         ZFS_VERIFY_ZP(zp);
2532 
2533         zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2534 
2535         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2536         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2537 
2538         if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2539                 ZFS_EXIT(zfsvfs);
2540                 return (error);
2541         }
2542 
2543         /*
2544          * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2545          * Also, if we are the owner don't bother, since owner should
2546          * always be allowed to read basic attributes of file.
2547          */
2548         if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2549             (vap->va_uid != crgetuid(cr))) {
2550                 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2551                     skipaclchk, cr)) {
2552                         ZFS_EXIT(zfsvfs);
2553                         return (error);
2554                 }
2555         }
2556 
2557         /*
2558          * Return all attributes.  It's cheaper to provide the answer
2559          * than to determine whether we were asked the question.
2560          */
2561 
2562         mutex_enter(&zp->z_lock);
2563         vap->va_type = vp->v_type;
2564         vap->va_mode = zp->z_mode & MODEMASK;
2565         vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2566         vap->va_nodeid = zp->z_id;
2567         if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2568                 links = zp->z_links + 1;
2569         else
2570                 links = zp->z_links;
2571         vap->va_nlink = MIN(links, UINT32_MAX);      /* nlink_t limit! */
2572         vap->va_size = zp->z_size;
2573         vap->va_rdev = vp->v_rdev;
2574         vap->va_seq = zp->z_seq;
2575 
2576         /*
2577          * Add in any requested optional attributes and the create time.
2578          * Also set the corresponding bits in the returned attribute bitmap.
2579          */
2580         if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2581                 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2582                         xoap->xoa_archive =
2583                             ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2584                         XVA_SET_RTN(xvap, XAT_ARCHIVE);
2585                 }
2586 
2587                 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2588                         xoap->xoa_readonly =
2589                             ((zp->z_pflags & ZFS_READONLY) != 0);
2590                         XVA_SET_RTN(xvap, XAT_READONLY);
2591                 }
2592 
2593                 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2594                         xoap->xoa_system =
2595                             ((zp->z_pflags & ZFS_SYSTEM) != 0);
2596                         XVA_SET_RTN(xvap, XAT_SYSTEM);
2597                 }
2598 
2599                 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2600                         xoap->xoa_hidden =
2601                             ((zp->z_pflags & ZFS_HIDDEN) != 0);
2602                         XVA_SET_RTN(xvap, XAT_HIDDEN);
2603                 }
2604 
2605                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2606                         xoap->xoa_nounlink =
2607                             ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2608                         XVA_SET_RTN(xvap, XAT_NOUNLINK);
2609                 }
2610 
2611                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2612                         xoap->xoa_immutable =
2613                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2614                         XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2615                 }
2616 
2617                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2618                         xoap->xoa_appendonly =
2619                             ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2620                         XVA_SET_RTN(xvap, XAT_APPENDONLY);
2621                 }
2622 
2623                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2624                         xoap->xoa_nodump =
2625                             ((zp->z_pflags & ZFS_NODUMP) != 0);
2626                         XVA_SET_RTN(xvap, XAT_NODUMP);
2627                 }
2628 
2629                 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2630                         xoap->xoa_opaque =
2631                             ((zp->z_pflags & ZFS_OPAQUE) != 0);
2632                         XVA_SET_RTN(xvap, XAT_OPAQUE);
2633                 }
2634 
2635                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2636                         xoap->xoa_av_quarantined =
2637                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2638                         XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2639                 }
2640 
2641                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2642                         xoap->xoa_av_modified =
2643                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2644                         XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2645                 }
2646 
2647                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2648                     vp->v_type == VREG) {
2649                         zfs_sa_get_scanstamp(zp, xvap);
2650                 }
2651 
2652                 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2653                         uint64_t times[2];
2654 
2655                         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2656                             times, sizeof (times));
2657                         ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2658                         XVA_SET_RTN(xvap, XAT_CREATETIME);
2659                 }
2660 
2661                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2662                         xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2663                         XVA_SET_RTN(xvap, XAT_REPARSE);
2664                 }
2665                 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2666                         xoap->xoa_generation = zp->z_gen;
2667                         XVA_SET_RTN(xvap, XAT_GEN);
2668                 }
2669 
2670                 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2671                         xoap->xoa_offline =
2672                             ((zp->z_pflags & ZFS_OFFLINE) != 0);
2673                         XVA_SET_RTN(xvap, XAT_OFFLINE);
2674                 }
2675 
2676                 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2677                         xoap->xoa_sparse =
2678                             ((zp->z_pflags & ZFS_SPARSE) != 0);
2679                         XVA_SET_RTN(xvap, XAT_SPARSE);
2680                 }
2681         }
2682 
2683         ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2684         ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2685         ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2686 
2687         mutex_exit(&zp->z_lock);
2688 
2689         sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2690 
2691         if (zp->z_blksz == 0) {
2692                 /*
2693                  * Block size hasn't been set; suggest maximal I/O transfers.
2694                  */
2695                 vap->va_blksize = zfsvfs->z_max_blksz;
2696         }
2697 
2698         ZFS_EXIT(zfsvfs);
2699         return (0);
2700 }
2701 
2702 /*
2703  * Set the file attributes to the values contained in the
2704  * vattr structure.
2705  *
2706  *      IN:     vp      - vnode of file to be modified.
2707  *              vap     - new attribute values.
2708  *                        If AT_XVATTR set, then optional attrs are being set
2709  *              flags   - ATTR_UTIME set if non-default time values provided.
2710  *                      - ATTR_NOACLCHECK (CIFS context only).
2711  *              cr      - credentials of caller.
2712  *              ct      - caller context
2713  *
2714  *      RETURN: 0 on success, error code on failure.
2715  *
2716  * Timestamps:
2717  *      vp - ctime updated, mtime updated if size changed.
2718  */
2719 /* ARGSUSED */
2720 static int
2721 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2722     caller_context_t *ct)
2723 {
2724         znode_t         *zp = VTOZ(vp);
2725         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2726         zilog_t         *zilog;
2727         dmu_tx_t        *tx;
2728         vattr_t         oldva;
2729         xvattr_t        tmpxvattr;
2730         uint_t          mask = vap->va_mask;
2731         uint_t          saved_mask = 0;
2732         int             trim_mask = 0;
2733         uint64_t        new_mode;
2734         uint64_t        new_uid, new_gid;
2735         uint64_t        xattr_obj;
2736         uint64_t        mtime[2], ctime[2];
2737         znode_t         *attrzp;
2738         int             need_policy = FALSE;
2739         int             err, err2;
2740         zfs_fuid_info_t *fuidp = NULL;
2741         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2742         xoptattr_t      *xoap;
2743         zfs_acl_t       *aclp;
2744         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2745         boolean_t       fuid_dirtied = B_FALSE;
2746         sa_bulk_attr_t  bulk[7], xattr_bulk[7];
2747         int             count = 0, xattr_count = 0;
2748 
2749         if (mask == 0)
2750                 return (0);
2751 
2752         if (mask & AT_NOSET)
2753                 return (SET_ERROR(EINVAL));
2754 
2755         ZFS_ENTER(zfsvfs);
2756         ZFS_VERIFY_ZP(zp);
2757 
2758         zilog = zfsvfs->z_log;
2759 
2760         /*
2761          * Make sure that if we have ephemeral uid/gid or xvattr specified
2762          * that file system is at proper version level
2763          */
2764 
2765         if (zfsvfs->z_use_fuids == B_FALSE &&
2766             (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2767             ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2768             (mask & AT_XVATTR))) {
2769                 ZFS_EXIT(zfsvfs);
2770                 return (SET_ERROR(EINVAL));
2771         }
2772 
2773         if (mask & AT_SIZE && vp->v_type == VDIR) {
2774                 ZFS_EXIT(zfsvfs);
2775                 return (SET_ERROR(EISDIR));
2776         }
2777 
2778         if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2779                 ZFS_EXIT(zfsvfs);
2780                 return (SET_ERROR(EINVAL));
2781         }
2782 
2783         /*
2784          * If this is an xvattr_t, then get a pointer to the structure of
2785          * optional attributes.  If this is NULL, then we have a vattr_t.
2786          */
2787         xoap = xva_getxoptattr(xvap);
2788 
2789         xva_init(&tmpxvattr);
2790 
2791         /*
2792          * Immutable files can only alter immutable bit and atime
2793          */
2794         if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2795             ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2796             ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2797                 ZFS_EXIT(zfsvfs);
2798                 return (SET_ERROR(EPERM));
2799         }
2800 
2801         /*
2802          * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2803          */
2804 
2805         /*
2806          * Verify timestamps doesn't overflow 32 bits.
2807          * ZFS can handle large timestamps, but 32bit syscalls can't
2808          * handle times greater than 2039.  This check should be removed
2809          * once large timestamps are fully supported.
2810          */
2811         if (mask & (AT_ATIME | AT_MTIME)) {
2812                 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2813                     ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2814                         ZFS_EXIT(zfsvfs);
2815                         return (SET_ERROR(EOVERFLOW));
2816                 }
2817         }
2818 
2819 top:
2820         attrzp = NULL;
2821         aclp = NULL;
2822 
2823         /* Can this be moved to before the top label? */
2824         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2825                 ZFS_EXIT(zfsvfs);
2826                 return (SET_ERROR(EROFS));
2827         }
2828 
2829         /*
2830          * First validate permissions
2831          */
2832 
2833         if (mask & AT_SIZE) {
2834                 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2835                 if (err) {
2836                         ZFS_EXIT(zfsvfs);
2837                         return (err);
2838                 }
2839                 /*
2840                  * XXX - Note, we are not providing any open
2841                  * mode flags here (like FNDELAY), so we may
2842                  * block if there are locks present... this
2843                  * should be addressed in openat().
2844                  */
2845                 /* XXX - would it be OK to generate a log record here? */
2846                 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2847                 if (err) {
2848                         ZFS_EXIT(zfsvfs);
2849                         return (err);
2850                 }
2851 
2852                 if (vap->va_size == 0)
2853                         vnevent_truncate(ZTOV(zp), ct);
2854         }
2855 
2856         if (mask & (AT_ATIME|AT_MTIME) ||
2857             ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2858             XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2859             XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2860             XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2861             XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2862             XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2863             XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2864                 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2865                     skipaclchk, cr);
2866         }
2867 
2868         if (mask & (AT_UID|AT_GID)) {
2869                 int     idmask = (mask & (AT_UID|AT_GID));
2870                 int     take_owner;
2871                 int     take_group;
2872 
2873                 /*
2874                  * NOTE: even if a new mode is being set,
2875                  * we may clear S_ISUID/S_ISGID bits.
2876                  */
2877 
2878                 if (!(mask & AT_MODE))
2879                         vap->va_mode = zp->z_mode;
2880 
2881                 /*
2882                  * Take ownership or chgrp to group we are a member of
2883                  */
2884 
2885                 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2886                 take_group = (mask & AT_GID) &&
2887                     zfs_groupmember(zfsvfs, vap->va_gid, cr);
2888 
2889                 /*
2890                  * If both AT_UID and AT_GID are set then take_owner and
2891                  * take_group must both be set in order to allow taking
2892                  * ownership.
2893                  *
2894                  * Otherwise, send the check through secpolicy_vnode_setattr()
2895                  *
2896                  */
2897 
2898                 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2899                     ((idmask == AT_UID) && take_owner) ||
2900                     ((idmask == AT_GID) && take_group)) {
2901                         if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2902                             skipaclchk, cr) == 0) {
2903                                 /*
2904                                  * Remove setuid/setgid for non-privileged users
2905                                  */
2906                                 secpolicy_setid_clear(vap, cr);
2907                                 trim_mask = (mask & (AT_UID|AT_GID));
2908                         } else {
2909                                 need_policy =  TRUE;
2910                         }
2911                 } else {
2912                         need_policy =  TRUE;
2913                 }
2914         }
2915 
2916         mutex_enter(&zp->z_lock);
2917         oldva.va_mode = zp->z_mode;
2918         zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2919         if (mask & AT_XVATTR) {
2920                 /*
2921                  * Update xvattr mask to include only those attributes
2922                  * that are actually changing.
2923                  *
2924                  * the bits will be restored prior to actually setting
2925                  * the attributes so the caller thinks they were set.
2926                  */
2927                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2928                         if (xoap->xoa_appendonly !=
2929                             ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2930                                 need_policy = TRUE;
2931                         } else {
2932                                 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2933                                 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2934                         }
2935                 }
2936 
2937                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2938                         if (xoap->xoa_nounlink !=
2939                             ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2940                                 need_policy = TRUE;
2941                         } else {
2942                                 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2943                                 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2944                         }
2945                 }
2946 
2947                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2948                         if (xoap->xoa_immutable !=
2949                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2950                                 need_policy = TRUE;
2951                         } else {
2952                                 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2953                                 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2954                         }
2955                 }
2956 
2957                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2958                         if (xoap->xoa_nodump !=
2959                             ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2960                                 need_policy = TRUE;
2961                         } else {
2962                                 XVA_CLR_REQ(xvap, XAT_NODUMP);
2963                                 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2964                         }
2965                 }
2966 
2967                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2968                         if (xoap->xoa_av_modified !=
2969                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2970                                 need_policy = TRUE;
2971                         } else {
2972                                 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2973                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2974                         }
2975                 }
2976 
2977                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2978                         if ((vp->v_type != VREG &&
2979                             xoap->xoa_av_quarantined) ||
2980                             xoap->xoa_av_quarantined !=
2981                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2982                                 need_policy = TRUE;
2983                         } else {
2984                                 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2985                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2986                         }
2987                 }
2988 
2989                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2990                         mutex_exit(&zp->z_lock);
2991                         ZFS_EXIT(zfsvfs);
2992                         return (SET_ERROR(EPERM));
2993                 }
2994 
2995                 if (need_policy == FALSE &&
2996                     (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2997                     XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2998                         need_policy = TRUE;
2999                 }
3000         }
3001 
3002         mutex_exit(&zp->z_lock);
3003 
3004         if (mask & AT_MODE) {
3005                 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3006                         err = secpolicy_setid_setsticky_clear(vp, vap,
3007                             &oldva, cr);
3008                         if (err) {
3009                                 ZFS_EXIT(zfsvfs);
3010                                 return (err);
3011                         }
3012                         trim_mask |= AT_MODE;
3013                 } else {
3014                         need_policy = TRUE;
3015                 }
3016         }
3017 
3018         if (need_policy) {
3019                 /*
3020                  * If trim_mask is set then take ownership
3021                  * has been granted or write_acl is present and user
3022                  * has the ability to modify mode.  In that case remove
3023                  * UID|GID and or MODE from mask so that
3024                  * secpolicy_vnode_setattr() doesn't revoke it.
3025                  */
3026 
3027                 if (trim_mask) {
3028                         saved_mask = vap->va_mask;
3029                         vap->va_mask &= ~trim_mask;
3030                 }
3031                 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3032                     (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3033                 if (err) {
3034                         ZFS_EXIT(zfsvfs);
3035                         return (err);
3036                 }
3037 
3038                 if (trim_mask)
3039                         vap->va_mask |= saved_mask;
3040         }
3041 
3042         /*
3043          * secpolicy_vnode_setattr, or take ownership may have
3044          * changed va_mask
3045          */
3046         mask = vap->va_mask;
3047 
3048         if ((mask & (AT_UID | AT_GID))) {
3049                 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3050                     &xattr_obj, sizeof (xattr_obj));
3051 
3052                 if (err == 0 && xattr_obj) {
3053                         err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3054                         if (err)
3055                                 goto out2;
3056                 }
3057                 if (mask & AT_UID) {
3058                         new_uid = zfs_fuid_create(zfsvfs,
3059                             (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3060                         if (new_uid != zp->z_uid &&
3061                             zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3062                                 if (attrzp)
3063                                         VN_RELE(ZTOV(attrzp));
3064                                 err = SET_ERROR(EDQUOT);
3065                                 goto out2;
3066                         }
3067                 }
3068 
3069                 if (mask & AT_GID) {
3070                         new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3071                             cr, ZFS_GROUP, &fuidp);
3072                         if (new_gid != zp->z_gid &&
3073                             zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3074                                 if (attrzp)
3075                                         VN_RELE(ZTOV(attrzp));
3076                                 err = SET_ERROR(EDQUOT);
3077                                 goto out2;
3078                         }
3079                 }
3080         }
3081         tx = dmu_tx_create(zfsvfs->z_os);
3082 
3083         if (mask & AT_MODE) {
3084                 uint64_t pmode = zp->z_mode;
3085                 uint64_t acl_obj;
3086                 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3087 
3088                 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3089                     !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3090                         err = SET_ERROR(EPERM);
3091                         goto out;
3092                 }
3093 
3094                 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3095                         goto out;
3096 
3097                 mutex_enter(&zp->z_lock);
3098                 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3099                         /*
3100                          * Are we upgrading ACL from old V0 format
3101                          * to V1 format?
3102                          */
3103                         if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3104                             zfs_znode_acl_version(zp) ==
3105                             ZFS_ACL_VERSION_INITIAL) {
3106                                 dmu_tx_hold_free(tx, acl_obj, 0,
3107                                     DMU_OBJECT_END);
3108                                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3109                                     0, aclp->z_acl_bytes);
3110                         } else {
3111                                 dmu_tx_hold_write(tx, acl_obj, 0,
3112                                     aclp->z_acl_bytes);
3113                         }
3114                 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3115                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3116                             0, aclp->z_acl_bytes);
3117                 }
3118                 mutex_exit(&zp->z_lock);
3119                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3120         } else {
3121                 if ((mask & AT_XVATTR) &&
3122                     XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3123                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3124                 else
3125                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3126         }
3127 
3128         if (attrzp) {
3129                 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3130         }
3131 
3132         fuid_dirtied = zfsvfs->z_fuid_dirty;
3133         if (fuid_dirtied)
3134                 zfs_fuid_txhold(zfsvfs, tx);
3135 
3136         zfs_sa_upgrade_txholds(tx, zp);
3137 
3138         err = dmu_tx_assign(tx, TXG_WAIT);
3139         if (err)
3140                 goto out;
3141 
3142         count = 0;
3143         /*
3144          * Set each attribute requested.
3145          * We group settings according to the locks they need to acquire.
3146          *
3147          * Note: you cannot set ctime directly, although it will be
3148          * updated as a side-effect of calling this function.
3149          */
3150 
3151 
3152         if (mask & (AT_UID|AT_GID|AT_MODE))
3153                 mutex_enter(&zp->z_acl_lock);
3154         mutex_enter(&zp->z_lock);
3155 
3156         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3157             &zp->z_pflags, sizeof (zp->z_pflags));
3158 
3159         if (attrzp) {
3160                 if (mask & (AT_UID|AT_GID|AT_MODE))
3161                         mutex_enter(&attrzp->z_acl_lock);
3162                 mutex_enter(&attrzp->z_lock);
3163                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3164                     SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3165                     sizeof (attrzp->z_pflags));
3166         }
3167 
3168         if (mask & (AT_UID|AT_GID)) {
3169 
3170                 if (mask & AT_UID) {
3171                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3172                             &new_uid, sizeof (new_uid));
3173                         zp->z_uid = new_uid;
3174                         if (attrzp) {
3175                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3176                                     SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3177                                     sizeof (new_uid));
3178                                 attrzp->z_uid = new_uid;
3179                         }
3180                 }
3181 
3182                 if (mask & AT_GID) {
3183                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3184                             NULL, &new_gid, sizeof (new_gid));
3185                         zp->z_gid = new_gid;
3186                         if (attrzp) {
3187                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3188                                     SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3189                                     sizeof (new_gid));
3190                                 attrzp->z_gid = new_gid;
3191                         }
3192                 }
3193                 if (!(mask & AT_MODE)) {
3194                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3195                             NULL, &new_mode, sizeof (new_mode));
3196                         new_mode = zp->z_mode;
3197                 }
3198                 err = zfs_acl_chown_setattr(zp);
3199                 ASSERT(err == 0);
3200                 if (attrzp) {
3201                         err = zfs_acl_chown_setattr(attrzp);
3202                         ASSERT(err == 0);
3203                 }
3204         }
3205 
3206         if (mask & AT_MODE) {
3207                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3208                     &new_mode, sizeof (new_mode));
3209                 zp->z_mode = new_mode;
3210                 ASSERT3U((uintptr_t)aclp, !=, NULL);
3211                 err = zfs_aclset_common(zp, aclp, cr, tx);
3212                 ASSERT0(err);
3213                 if (zp->z_acl_cached)
3214                         zfs_acl_free(zp->z_acl_cached);
3215                 zp->z_acl_cached = aclp;
3216                 aclp = NULL;
3217         }
3218 
3219 
3220         if (mask & AT_ATIME) {
3221                 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3222                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3223                     &zp->z_atime, sizeof (zp->z_atime));
3224         }
3225 
3226         if (mask & AT_MTIME) {
3227                 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3228                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3229                     mtime, sizeof (mtime));
3230         }
3231 
3232         /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3233         if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3234                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3235                     NULL, mtime, sizeof (mtime));
3236                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3237                     &ctime, sizeof (ctime));
3238                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3239                     B_TRUE);
3240         } else if (mask != 0) {
3241                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3242                     &ctime, sizeof (ctime));
3243                 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3244                     B_TRUE);
3245                 if (attrzp) {
3246                         SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3247                             SA_ZPL_CTIME(zfsvfs), NULL,
3248                             &ctime, sizeof (ctime));
3249                         zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3250                             mtime, ctime, B_TRUE);
3251                 }
3252         }
3253         /*
3254          * Do this after setting timestamps to prevent timestamp
3255          * update from toggling bit
3256          */
3257 
3258         if (xoap && (mask & AT_XVATTR)) {
3259 
3260                 /*
3261                  * restore trimmed off masks
3262                  * so that return masks can be set for caller.
3263                  */
3264 
3265                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3266                         XVA_SET_REQ(xvap, XAT_APPENDONLY);
3267                 }
3268                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3269                         XVA_SET_REQ(xvap, XAT_NOUNLINK);
3270                 }
3271                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3272                         XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3273                 }
3274                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3275                         XVA_SET_REQ(xvap, XAT_NODUMP);
3276                 }
3277                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3278                         XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3279                 }
3280                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3281                         XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3282                 }
3283 
3284                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3285                         ASSERT(vp->v_type == VREG);
3286 
3287                 zfs_xvattr_set(zp, xvap, tx);
3288         }
3289 
3290         if (fuid_dirtied)
3291                 zfs_fuid_sync(zfsvfs, tx);
3292 
3293         if (mask != 0)
3294                 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3295 
3296         mutex_exit(&zp->z_lock);
3297         if (mask & (AT_UID|AT_GID|AT_MODE))
3298                 mutex_exit(&zp->z_acl_lock);
3299 
3300         if (attrzp) {
3301                 if (mask & (AT_UID|AT_GID|AT_MODE))
3302                         mutex_exit(&attrzp->z_acl_lock);
3303                 mutex_exit(&attrzp->z_lock);
3304         }
3305 out:
3306         if (err == 0 && attrzp) {
3307                 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3308                     xattr_count, tx);
3309                 ASSERT(err2 == 0);
3310         }
3311 
3312         if (attrzp)
3313                 VN_RELE(ZTOV(attrzp));
3314 
3315         if (aclp)
3316                 zfs_acl_free(aclp);
3317 
3318         if (fuidp) {
3319                 zfs_fuid_info_free(fuidp);
3320                 fuidp = NULL;
3321         }
3322 
3323         if (err) {
3324                 dmu_tx_abort(tx);
3325                 if (err == ERESTART)
3326                         goto top;
3327         } else {
3328                 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3329                 dmu_tx_commit(tx);
3330         }
3331 
3332 out2:
3333         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3334                 zil_commit(zilog, 0);
3335 
3336         ZFS_EXIT(zfsvfs);
3337         return (err);
3338 }
3339 
3340 typedef struct zfs_zlock {
3341         krwlock_t       *zl_rwlock;     /* lock we acquired */
3342         znode_t         *zl_znode;      /* znode we held */
3343         struct zfs_zlock *zl_next;      /* next in list */
3344 } zfs_zlock_t;
3345 
3346 /*
3347  * Drop locks and release vnodes that were held by zfs_rename_lock().
3348  */
3349 static void
3350 zfs_rename_unlock(zfs_zlock_t **zlpp)
3351 {
3352         zfs_zlock_t *zl;
3353 
3354         while ((zl = *zlpp) != NULL) {
3355                 if (zl->zl_znode != NULL)
3356                         VN_RELE(ZTOV(zl->zl_znode));
3357                 rw_exit(zl->zl_rwlock);
3358                 *zlpp = zl->zl_next;
3359                 kmem_free(zl, sizeof (*zl));
3360         }
3361 }
3362 
3363 /*
3364  * Search back through the directory tree, using the ".." entries.
3365  * Lock each directory in the chain to prevent concurrent renames.
3366  * Fail any attempt to move a directory into one of its own descendants.
3367  * XXX - z_parent_lock can overlap with map or grow locks
3368  */
3369 static int
3370 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3371 {
3372         zfs_zlock_t     *zl;
3373         znode_t         *zp = tdzp;
3374         uint64_t        rootid = zp->z_zfsvfs->z_root;
3375         uint64_t        oidp = zp->z_id;
3376         krwlock_t       *rwlp = &szp->z_parent_lock;
3377         krw_t           rw = RW_WRITER;
3378 
3379         /*
3380          * First pass write-locks szp and compares to zp->z_id.
3381          * Later passes read-lock zp and compare to zp->z_parent.
3382          */
3383         do {
3384                 if (!rw_tryenter(rwlp, rw)) {
3385                         /*
3386                          * Another thread is renaming in this path.
3387                          * Note that if we are a WRITER, we don't have any
3388                          * parent_locks held yet.
3389                          */
3390                         if (rw == RW_READER && zp->z_id > szp->z_id) {
3391                                 /*
3392                                  * Drop our locks and restart
3393                                  */
3394                                 zfs_rename_unlock(&zl);
3395                                 *zlpp = NULL;
3396                                 zp = tdzp;
3397                                 oidp = zp->z_id;
3398                                 rwlp = &szp->z_parent_lock;
3399                                 rw = RW_WRITER;
3400                                 continue;
3401                         } else {
3402                                 /*
3403                                  * Wait for other thread to drop its locks
3404                                  */
3405                                 rw_enter(rwlp, rw);
3406                         }
3407                 }
3408 
3409                 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3410                 zl->zl_rwlock = rwlp;
3411                 zl->zl_znode = NULL;
3412                 zl->zl_next = *zlpp;
3413                 *zlpp = zl;
3414 
3415                 if (oidp == szp->z_id)               /* We're a descendant of szp */
3416                         return (SET_ERROR(EINVAL));
3417 
3418                 if (oidp == rootid)             /* We've hit the top */
3419                         return (0);
3420 
3421                 if (rw == RW_READER) {          /* i.e. not the first pass */
3422                         int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3423                         if (error)
3424                                 return (error);
3425                         zl->zl_znode = zp;
3426                 }
3427                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3428                     &oidp, sizeof (oidp));
3429                 rwlp = &zp->z_parent_lock;
3430                 rw = RW_READER;
3431 
3432         } while (zp->z_id != sdzp->z_id);
3433 
3434         return (0);
3435 }
3436 
3437 /*
3438  * Move an entry from the provided source directory to the target
3439  * directory.  Change the entry name as indicated.
3440  *
3441  *      IN:     sdvp    - Source directory containing the "old entry".
3442  *              snm     - Old entry name.
3443  *              tdvp    - Target directory to contain the "new entry".
3444  *              tnm     - New entry name.
3445  *              cr      - credentials of caller.
3446  *              ct      - caller context
3447  *              flags   - case flags
3448  *
3449  *      RETURN: 0 on success, error code on failure.
3450  *
3451  * Timestamps:
3452  *      sdvp,tdvp - ctime|mtime updated
3453  */
3454 /*ARGSUSED*/
3455 static int
3456 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3457     caller_context_t *ct, int flags)
3458 {
3459         znode_t         *tdzp, *szp, *tzp;
3460         znode_t         *sdzp = VTOZ(sdvp);
3461         zfsvfs_t        *zfsvfs = sdzp->z_zfsvfs;
3462         zilog_t         *zilog;
3463         vnode_t         *realvp;
3464         zfs_dirlock_t   *sdl, *tdl;
3465         dmu_tx_t        *tx;
3466         zfs_zlock_t     *zl;
3467         int             cmp, serr, terr;
3468         int             error = 0, rm_err = 0;
3469         int             zflg = 0;
3470         boolean_t       waited = B_FALSE;
3471 
3472         ZFS_ENTER(zfsvfs);
3473         ZFS_VERIFY_ZP(sdzp);
3474         zilog = zfsvfs->z_log;
3475 
3476         /*
3477          * Make sure we have the real vp for the target directory.
3478          */
3479         if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3480                 tdvp = realvp;
3481 
3482         tdzp = VTOZ(tdvp);
3483         ZFS_VERIFY_ZP(tdzp);
3484 
3485         /*
3486          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3487          * ctldir appear to have the same v_vfsp.
3488          */
3489         if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3490                 ZFS_EXIT(zfsvfs);
3491                 return (SET_ERROR(EXDEV));
3492         }
3493 
3494         if (zfsvfs->z_utf8 && u8_validate(tnm,
3495             strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3496                 ZFS_EXIT(zfsvfs);
3497                 return (SET_ERROR(EILSEQ));
3498         }
3499 
3500         if (flags & FIGNORECASE)
3501                 zflg |= ZCILOOK;
3502 
3503 top:
3504         szp = NULL;
3505         tzp = NULL;
3506         zl = NULL;
3507 
3508         /*
3509          * This is to prevent the creation of links into attribute space
3510          * by renaming a linked file into/outof an attribute directory.
3511          * See the comment in zfs_link() for why this is considered bad.
3512          */
3513         if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3514                 ZFS_EXIT(zfsvfs);
3515                 return (SET_ERROR(EINVAL));
3516         }
3517 
3518         /*
3519          * Lock source and target directory entries.  To prevent deadlock,
3520          * a lock ordering must be defined.  We lock the directory with
3521          * the smallest object id first, or if it's a tie, the one with
3522          * the lexically first name.
3523          */
3524         if (sdzp->z_id < tdzp->z_id) {
3525                 cmp = -1;
3526         } else if (sdzp->z_id > tdzp->z_id) {
3527                 cmp = 1;
3528         } else {
3529                 /*
3530                  * First compare the two name arguments without
3531                  * considering any case folding.
3532                  */
3533                 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3534 
3535                 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3536                 ASSERT(error == 0 || !zfsvfs->z_utf8);
3537                 if (cmp == 0) {
3538                         /*
3539                          * POSIX: "If the old argument and the new argument
3540                          * both refer to links to the same existing file,
3541                          * the rename() function shall return successfully
3542                          * and perform no other action."
3543                          */
3544                         ZFS_EXIT(zfsvfs);
3545                         return (0);
3546                 }
3547                 /*
3548                  * If the file system is case-folding, then we may
3549                  * have some more checking to do.  A case-folding file
3550                  * system is either supporting mixed case sensitivity
3551                  * access or is completely case-insensitive.  Note
3552                  * that the file system is always case preserving.
3553                  *
3554                  * In mixed sensitivity mode case sensitive behavior
3555                  * is the default.  FIGNORECASE must be used to
3556                  * explicitly request case insensitive behavior.
3557                  *
3558                  * If the source and target names provided differ only
3559                  * by case (e.g., a request to rename 'tim' to 'Tim'),
3560                  * we will treat this as a special case in the
3561                  * case-insensitive mode: as long as the source name
3562                  * is an exact match, we will allow this to proceed as
3563                  * a name-change request.
3564                  */
3565                 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3566                     (zfsvfs->z_case == ZFS_CASE_MIXED &&
3567                     flags & FIGNORECASE)) &&
3568                     u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3569                     &error) == 0) {
3570                         /*
3571                          * case preserving rename request, require exact
3572                          * name matches
3573                          */
3574                         zflg |= ZCIEXACT;
3575                         zflg &= ~ZCILOOK;
3576                 }
3577         }
3578 
3579         /*
3580          * If the source and destination directories are the same, we should
3581          * grab the z_name_lock of that directory only once.
3582          */
3583         if (sdzp == tdzp) {
3584                 zflg |= ZHAVELOCK;
3585                 rw_enter(&sdzp->z_name_lock, RW_READER);
3586         }
3587 
3588         if (cmp < 0) {
3589                 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3590                     ZEXISTS | zflg, NULL, NULL);
3591                 terr = zfs_dirent_lock(&tdl,
3592                     tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3593         } else {
3594                 terr = zfs_dirent_lock(&tdl,
3595                     tdzp, tnm, &tzp, zflg, NULL, NULL);
3596                 serr = zfs_dirent_lock(&sdl,
3597                     sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3598                     NULL, NULL);
3599         }
3600 
3601         if (serr) {
3602                 /*
3603                  * Source entry invalid or not there.
3604                  */
3605                 if (!terr) {
3606                         zfs_dirent_unlock(tdl);
3607                         if (tzp)
3608                                 VN_RELE(ZTOV(tzp));
3609                 }
3610 
3611                 if (sdzp == tdzp)
3612                         rw_exit(&sdzp->z_name_lock);
3613 
3614                 if (strcmp(snm, "..") == 0)
3615                         serr = SET_ERROR(EINVAL);
3616                 ZFS_EXIT(zfsvfs);
3617                 return (serr);
3618         }
3619         if (terr) {
3620                 zfs_dirent_unlock(sdl);
3621                 VN_RELE(ZTOV(szp));
3622 
3623                 if (sdzp == tdzp)
3624                         rw_exit(&sdzp->z_name_lock);
3625 
3626                 if (strcmp(tnm, "..") == 0)
3627                         terr = SET_ERROR(EINVAL);
3628                 ZFS_EXIT(zfsvfs);
3629                 return (terr);
3630         }
3631 
3632         /*
3633          * Must have write access at the source to remove the old entry
3634          * and write access at the target to create the new entry.
3635          * Note that if target and source are the same, this can be
3636          * done in a single check.
3637          */
3638 
3639         if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3640                 goto out;
3641 
3642         if (ZTOV(szp)->v_type == VDIR) {
3643                 /*
3644                  * Check to make sure rename is valid.
3645                  * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3646                  */
3647                 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3648                         goto out;
3649         }
3650 
3651         /*
3652          * Does target exist?
3653          */
3654         if (tzp) {
3655                 /*
3656                  * Source and target must be the same type.
3657                  */
3658                 if (ZTOV(szp)->v_type == VDIR) {
3659                         if (ZTOV(tzp)->v_type != VDIR) {
3660                                 error = SET_ERROR(ENOTDIR);
3661                                 goto out;
3662                         }
3663                 } else {
3664                         if (ZTOV(tzp)->v_type == VDIR) {
3665                                 error = SET_ERROR(EISDIR);
3666                                 goto out;
3667                         }
3668                 }
3669                 /*
3670                  * POSIX dictates that when the source and target
3671                  * entries refer to the same file object, rename
3672                  * must do nothing and exit without error.
3673                  */
3674                 if (szp->z_id == tzp->z_id) {
3675                         error = 0;
3676                         goto out;
3677                 }
3678         }
3679 
3680         vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3681         if (tzp)
3682                 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3683 
3684         /*
3685          * notify the target directory if it is not the same
3686          * as source directory.
3687          */
3688         if (tdvp != sdvp) {
3689                 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3690         }
3691 
3692         tx = dmu_tx_create(zfsvfs->z_os);
3693         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3694         dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3695         dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3696         dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3697         if (sdzp != tdzp) {
3698                 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3699                 zfs_sa_upgrade_txholds(tx, tdzp);
3700         }
3701         if (tzp) {
3702                 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3703                 zfs_sa_upgrade_txholds(tx, tzp);
3704         }
3705 
3706         zfs_sa_upgrade_txholds(tx, szp);
3707         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3708         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3709         if (error) {
3710                 if (zl != NULL)
3711                         zfs_rename_unlock(&zl);
3712                 zfs_dirent_unlock(sdl);
3713                 zfs_dirent_unlock(tdl);
3714 
3715                 if (sdzp == tdzp)
3716                         rw_exit(&sdzp->z_name_lock);
3717 
3718                 VN_RELE(ZTOV(szp));
3719                 if (tzp)
3720                         VN_RELE(ZTOV(tzp));
3721                 if (error == ERESTART) {
3722                         waited = B_TRUE;
3723                         dmu_tx_wait(tx);
3724                         dmu_tx_abort(tx);
3725                         goto top;
3726                 }
3727                 dmu_tx_abort(tx);
3728                 ZFS_EXIT(zfsvfs);
3729                 return (error);
3730         }
3731 
3732         if (tzp)        /* Attempt to remove the existing target */
3733                 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3734 
3735         if (error == 0) {
3736                 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3737                 if (error == 0) {
3738                         szp->z_pflags |= ZFS_AV_MODIFIED;
3739 
3740                         error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3741                             (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3742                         ASSERT0(error);
3743 
3744                         error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3745                         if (error == 0) {
3746                                 zfs_log_rename(zilog, tx, TX_RENAME |
3747                                     (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3748                                     sdl->dl_name, tdzp, tdl->dl_name, szp);
3749 
3750                                 /*
3751                                  * Update path information for the target vnode
3752                                  */
3753                                 vn_renamepath(tdvp, ZTOV(szp), tnm,
3754                                     strlen(tnm));
3755                         } else {
3756                                 /*
3757                                  * At this point, we have successfully created
3758                                  * the target name, but have failed to remove
3759                                  * the source name.  Since the create was done
3760                                  * with the ZRENAMING flag, there are
3761                                  * complications; for one, the link count is
3762                                  * wrong.  The easiest way to deal with this
3763                                  * is to remove the newly created target, and
3764                                  * return the original error.  This must
3765                                  * succeed; fortunately, it is very unlikely to
3766                                  * fail, since we just created it.
3767                                  */
3768                                 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3769                                     ZRENAMING, NULL), ==, 0);
3770                         }
3771                 }
3772         }
3773 
3774         dmu_tx_commit(tx);
3775 
3776         if (tzp && rm_err == 0)
3777                 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3778 
3779         if (error == 0) {
3780                 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3781                 /* notify the target dir if it is not the same as source dir */
3782                 if (tdvp != sdvp)
3783                         vnevent_rename_dest_dir(tdvp, ct);
3784         }
3785 out:
3786         if (zl != NULL)
3787                 zfs_rename_unlock(&zl);
3788 
3789         zfs_dirent_unlock(sdl);
3790         zfs_dirent_unlock(tdl);
3791 
3792         if (sdzp == tdzp)
3793                 rw_exit(&sdzp->z_name_lock);
3794 
3795 
3796         VN_RELE(ZTOV(szp));
3797         if (tzp)
3798                 VN_RELE(ZTOV(tzp));
3799 
3800         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3801                 zil_commit(zilog, 0);
3802 
3803         ZFS_EXIT(zfsvfs);
3804         return (error);
3805 }
3806 
3807 /*
3808  * Insert the indicated symbolic reference entry into the directory.
3809  *
3810  *      IN:     dvp     - Directory to contain new symbolic link.
3811  *              link    - Name for new symlink entry.
3812  *              vap     - Attributes of new entry.
3813  *              cr      - credentials of caller.
3814  *              ct      - caller context
3815  *              flags   - case flags
3816  *
3817  *      RETURN: 0 on success, error code on failure.
3818  *
3819  * Timestamps:
3820  *      dvp - ctime|mtime updated
3821  */
3822 /*ARGSUSED*/
3823 static int
3824 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3825     caller_context_t *ct, int flags)
3826 {
3827         znode_t         *zp, *dzp = VTOZ(dvp);
3828         zfs_dirlock_t   *dl;
3829         dmu_tx_t        *tx;
3830         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3831         zilog_t         *zilog;
3832         uint64_t        len = strlen(link);
3833         int             error;
3834         int             zflg = ZNEW;
3835         zfs_acl_ids_t   acl_ids;
3836         boolean_t       fuid_dirtied;
3837         uint64_t        txtype = TX_SYMLINK;
3838         boolean_t       waited = B_FALSE;
3839 
3840         ASSERT(vap->va_type == VLNK);
3841 
3842         ZFS_ENTER(zfsvfs);
3843         ZFS_VERIFY_ZP(dzp);
3844         zilog = zfsvfs->z_log;
3845 
3846         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3847             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3848                 ZFS_EXIT(zfsvfs);
3849                 return (SET_ERROR(EILSEQ));
3850         }
3851         if (flags & FIGNORECASE)
3852                 zflg |= ZCILOOK;
3853 
3854         if (len > MAXPATHLEN) {
3855                 ZFS_EXIT(zfsvfs);
3856                 return (SET_ERROR(ENAMETOOLONG));
3857         }
3858 
3859         if ((error = zfs_acl_ids_create(dzp, 0,
3860             vap, cr, NULL, &acl_ids)) != 0) {
3861                 ZFS_EXIT(zfsvfs);
3862                 return (error);
3863         }
3864 top:
3865         /*
3866          * Attempt to lock directory; fail if entry already exists.
3867          */
3868         error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3869         if (error) {
3870                 zfs_acl_ids_free(&acl_ids);
3871                 ZFS_EXIT(zfsvfs);
3872                 return (error);
3873         }
3874 
3875         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3876                 zfs_acl_ids_free(&acl_ids);
3877                 zfs_dirent_unlock(dl);
3878                 ZFS_EXIT(zfsvfs);
3879                 return (error);
3880         }
3881 
3882         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3883                 zfs_acl_ids_free(&acl_ids);
3884                 zfs_dirent_unlock(dl);
3885                 ZFS_EXIT(zfsvfs);
3886                 return (SET_ERROR(EDQUOT));
3887         }
3888         tx = dmu_tx_create(zfsvfs->z_os);
3889         fuid_dirtied = zfsvfs->z_fuid_dirty;
3890         dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3891         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3892         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3893             ZFS_SA_BASE_ATTR_SIZE + len);
3894         dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3895         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3896                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3897                     acl_ids.z_aclp->z_acl_bytes);
3898         }
3899         if (fuid_dirtied)
3900                 zfs_fuid_txhold(zfsvfs, tx);
3901         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3902         if (error) {
3903                 zfs_dirent_unlock(dl);
3904                 if (error == ERESTART) {
3905                         waited = B_TRUE;
3906                         dmu_tx_wait(tx);
3907                         dmu_tx_abort(tx);
3908                         goto top;
3909                 }
3910                 zfs_acl_ids_free(&acl_ids);
3911                 dmu_tx_abort(tx);
3912                 ZFS_EXIT(zfsvfs);
3913                 return (error);
3914         }
3915 
3916         /*
3917          * Create a new object for the symlink.
3918          * for version 4 ZPL datsets the symlink will be an SA attribute
3919          */
3920         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3921 
3922         if (fuid_dirtied)
3923                 zfs_fuid_sync(zfsvfs, tx);
3924 
3925         mutex_enter(&zp->z_lock);
3926         if (zp->z_is_sa)
3927                 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3928                     link, len, tx);
3929         else
3930                 zfs_sa_symlink(zp, link, len, tx);
3931         mutex_exit(&zp->z_lock);
3932 
3933         zp->z_size = len;
3934         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3935             &zp->z_size, sizeof (zp->z_size), tx);
3936         /*
3937          * Insert the new object into the directory.
3938          */
3939         (void) zfs_link_create(dl, zp, tx, ZNEW);
3940 
3941         if (flags & FIGNORECASE)
3942                 txtype |= TX_CI;
3943         zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3944 
3945         zfs_acl_ids_free(&acl_ids);
3946 
3947         dmu_tx_commit(tx);
3948 
3949         zfs_dirent_unlock(dl);
3950 
3951         VN_RELE(ZTOV(zp));
3952 
3953         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3954                 zil_commit(zilog, 0);
3955 
3956         ZFS_EXIT(zfsvfs);
3957         return (error);
3958 }
3959 
3960 /*
3961  * Return, in the buffer contained in the provided uio structure,
3962  * the symbolic path referred to by vp.
3963  *
3964  *      IN:     vp      - vnode of symbolic link.
3965  *              uio     - structure to contain the link path.
3966  *              cr      - credentials of caller.
3967  *              ct      - caller context
3968  *
3969  *      OUT:    uio     - structure containing the link path.
3970  *
3971  *      RETURN: 0 on success, error code on failure.
3972  *
3973  * Timestamps:
3974  *      vp - atime updated
3975  */
3976 /* ARGSUSED */
3977 static int
3978 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3979 {
3980         znode_t         *zp = VTOZ(vp);
3981         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
3982         int             error;
3983 
3984         ZFS_ENTER(zfsvfs);
3985         ZFS_VERIFY_ZP(zp);
3986 
3987         mutex_enter(&zp->z_lock);
3988         if (zp->z_is_sa)
3989                 error = sa_lookup_uio(zp->z_sa_hdl,
3990                     SA_ZPL_SYMLINK(zfsvfs), uio);
3991         else
3992                 error = zfs_sa_readlink(zp, uio);
3993         mutex_exit(&zp->z_lock);
3994 
3995         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3996 
3997         ZFS_EXIT(zfsvfs);
3998         return (error);
3999 }
4000 
4001 /*
4002  * Insert a new entry into directory tdvp referencing svp.
4003  *
4004  *      IN:     tdvp    - Directory to contain new entry.
4005  *              svp     - vnode of new entry.
4006  *              name    - name of new entry.
4007  *              cr      - credentials of caller.
4008  *              ct      - caller context
4009  *
4010  *      RETURN: 0 on success, error code on failure.
4011  *
4012  * Timestamps:
4013  *      tdvp - ctime|mtime updated
4014  *       svp - ctime updated
4015  */
4016 /* ARGSUSED */
4017 static int
4018 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4019     caller_context_t *ct, int flags)
4020 {
4021         znode_t         *dzp = VTOZ(tdvp);
4022         znode_t         *tzp, *szp;
4023         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
4024         zilog_t         *zilog;
4025         zfs_dirlock_t   *dl;
4026         dmu_tx_t        *tx;
4027         vnode_t         *realvp;
4028         int             error;
4029         int             zf = ZNEW;
4030         uint64_t        parent;
4031         uid_t           owner;
4032         boolean_t       waited = B_FALSE;
4033 
4034         ASSERT(tdvp->v_type == VDIR);
4035 
4036         ZFS_ENTER(zfsvfs);
4037         ZFS_VERIFY_ZP(dzp);
4038         zilog = zfsvfs->z_log;
4039 
4040         if (VOP_REALVP(svp, &realvp, ct) == 0)
4041                 svp = realvp;
4042 
4043         /*
4044          * POSIX dictates that we return EPERM here.
4045          * Better choices include ENOTSUP or EISDIR.
4046          */
4047         if (svp->v_type == VDIR) {
4048                 ZFS_EXIT(zfsvfs);
4049                 return (SET_ERROR(EPERM));
4050         }
4051 
4052         szp = VTOZ(svp);
4053         ZFS_VERIFY_ZP(szp);
4054 
4055         /*
4056          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4057          * ctldir appear to have the same v_vfsp.
4058          */
4059         if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4060                 ZFS_EXIT(zfsvfs);
4061                 return (SET_ERROR(EXDEV));
4062         }
4063 
4064         /* Prevent links to .zfs/shares files */
4065 
4066         if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4067             &parent, sizeof (uint64_t))) != 0) {
4068                 ZFS_EXIT(zfsvfs);
4069                 return (error);
4070         }
4071         if (parent == zfsvfs->z_shares_dir) {
4072                 ZFS_EXIT(zfsvfs);
4073                 return (SET_ERROR(EPERM));
4074         }
4075 
4076         if (zfsvfs->z_utf8 && u8_validate(name,
4077             strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4078                 ZFS_EXIT(zfsvfs);
4079                 return (SET_ERROR(EILSEQ));
4080         }
4081         if (flags & FIGNORECASE)
4082                 zf |= ZCILOOK;
4083 
4084         /*
4085          * We do not support links between attributes and non-attributes
4086          * because of the potential security risk of creating links
4087          * into "normal" file space in order to circumvent restrictions
4088          * imposed in attribute space.
4089          */
4090         if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4091                 ZFS_EXIT(zfsvfs);
4092                 return (SET_ERROR(EINVAL));
4093         }
4094 
4095 
4096         owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4097         if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4098                 ZFS_EXIT(zfsvfs);
4099                 return (SET_ERROR(EPERM));
4100         }
4101 
4102         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4103                 ZFS_EXIT(zfsvfs);
4104                 return (error);
4105         }
4106 
4107 top:
4108         /*
4109          * Attempt to lock directory; fail if entry already exists.
4110          */
4111         error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4112         if (error) {
4113                 ZFS_EXIT(zfsvfs);
4114                 return (error);
4115         }
4116 
4117         tx = dmu_tx_create(zfsvfs->z_os);
4118         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4119         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4120         zfs_sa_upgrade_txholds(tx, szp);
4121         zfs_sa_upgrade_txholds(tx, dzp);
4122         error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4123         if (error) {
4124                 zfs_dirent_unlock(dl);
4125                 if (error == ERESTART) {
4126                         waited = B_TRUE;
4127                         dmu_tx_wait(tx);
4128                         dmu_tx_abort(tx);
4129                         goto top;
4130                 }
4131                 dmu_tx_abort(tx);
4132                 ZFS_EXIT(zfsvfs);
4133                 return (error);
4134         }
4135 
4136         error = zfs_link_create(dl, szp, tx, 0);
4137 
4138         if (error == 0) {
4139                 uint64_t txtype = TX_LINK;
4140                 if (flags & FIGNORECASE)
4141                         txtype |= TX_CI;
4142                 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4143         }
4144 
4145         dmu_tx_commit(tx);
4146 
4147         zfs_dirent_unlock(dl);
4148 
4149         if (error == 0) {
4150                 vnevent_link(svp, ct);
4151         }
4152 
4153         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4154                 zil_commit(zilog, 0);
4155 
4156         ZFS_EXIT(zfsvfs);
4157         return (error);
4158 }
4159 
4160 /*
4161  * zfs_null_putapage() is used when the file system has been force
4162  * unmounted. It just drops the pages.
4163  */
4164 /* ARGSUSED */
4165 static int
4166 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4167     size_t *lenp, int flags, cred_t *cr)
4168 {
4169         pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4170         return (0);
4171 }
4172 
4173 /*
4174  * Push a page out to disk, klustering if possible.
4175  *
4176  *      IN:     vp      - file to push page to.
4177  *              pp      - page to push.
4178  *              flags   - additional flags.
4179  *              cr      - credentials of caller.
4180  *
4181  *      OUT:    offp    - start of range pushed.
4182  *              lenp    - len of range pushed.
4183  *
4184  *      RETURN: 0 on success, error code on failure.
4185  *
4186  * NOTE: callers must have locked the page to be pushed.  On
4187  * exit, the page (and all other pages in the kluster) must be
4188  * unlocked.
4189  */
4190 /* ARGSUSED */
4191 static int
4192 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4193     size_t *lenp, int flags, cred_t *cr)
4194 {
4195         znode_t         *zp = VTOZ(vp);
4196         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4197         dmu_tx_t        *tx;
4198         u_offset_t      off, koff;
4199         size_t          len, klen;
4200         int             err;
4201 
4202         off = pp->p_offset;
4203         len = PAGESIZE;
4204         /*
4205          * If our blocksize is bigger than the page size, try to kluster
4206          * multiple pages so that we write a full block (thus avoiding
4207          * a read-modify-write).
4208          */
4209         if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4210                 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4211                 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4212                 ASSERT(koff <= zp->z_size);
4213                 if (koff + klen > zp->z_size)
4214                         klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4215                 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4216         }
4217         ASSERT3U(btop(len), ==, btopr(len));
4218 
4219         /*
4220          * Can't push pages past end-of-file.
4221          */
4222         if (off >= zp->z_size) {
4223                 /* ignore all pages */
4224                 err = 0;
4225                 goto out;
4226         } else if (off + len > zp->z_size) {
4227                 int npages = btopr(zp->z_size - off);
4228                 page_t *trunc;
4229 
4230                 page_list_break(&pp, &trunc, npages);
4231                 /* ignore pages past end of file */
4232                 if (trunc)
4233                         pvn_write_done(trunc, flags);
4234                 len = zp->z_size - off;
4235         }
4236 
4237         if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4238             zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4239                 err = SET_ERROR(EDQUOT);
4240                 goto out;
4241         }
4242         tx = dmu_tx_create(zfsvfs->z_os);
4243         dmu_tx_hold_write(tx, zp->z_id, off, len);
4244 
4245         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4246         zfs_sa_upgrade_txholds(tx, zp);
4247         err = dmu_tx_assign(tx, TXG_WAIT);
4248         if (err != 0) {
4249                 dmu_tx_abort(tx);
4250                 goto out;
4251         }
4252 
4253         if (zp->z_blksz <= PAGESIZE) {
4254                 caddr_t va = zfs_map_page(pp, S_READ);
4255                 ASSERT3U(len, <=, PAGESIZE);
4256                 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4257                 zfs_unmap_page(pp, va);
4258         } else {
4259                 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4260         }
4261 
4262         if (err == 0) {
4263                 uint64_t mtime[2], ctime[2];
4264                 sa_bulk_attr_t bulk[3];
4265                 int count = 0;
4266 
4267                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4268                     &mtime, 16);
4269                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4270                     &ctime, 16);
4271                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4272                     &zp->z_pflags, 8);
4273                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4274                     B_TRUE);
4275                 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4276                 ASSERT0(err);
4277                 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4278         }
4279         dmu_tx_commit(tx);
4280 
4281 out:
4282         pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4283         if (offp)
4284                 *offp = off;
4285         if (lenp)
4286                 *lenp = len;
4287 
4288         return (err);
4289 }
4290 
4291 /*
4292  * Copy the portion of the file indicated from pages into the file.
4293  * The pages are stored in a page list attached to the files vnode.
4294  *
4295  *      IN:     vp      - vnode of file to push page data to.
4296  *              off     - position in file to put data.
4297  *              len     - amount of data to write.
4298  *              flags   - flags to control the operation.
4299  *              cr      - credentials of caller.
4300  *              ct      - caller context.
4301  *
4302  *      RETURN: 0 on success, error code on failure.
4303  *
4304  * Timestamps:
4305  *      vp - ctime|mtime updated
4306  */
4307 /*ARGSUSED*/
4308 static int
4309 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4310     caller_context_t *ct)
4311 {
4312         znode_t         *zp = VTOZ(vp);
4313         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4314         page_t          *pp;
4315         size_t          io_len;
4316         u_offset_t      io_off;
4317         uint_t          blksz;
4318         locked_range_t  *lr;
4319         int             error = 0;
4320 
4321         ZFS_ENTER(zfsvfs);
4322         ZFS_VERIFY_ZP(zp);
4323 
4324         /*
4325          * There's nothing to do if no data is cached.
4326          */
4327         if (!vn_has_cached_data(vp)) {
4328                 ZFS_EXIT(zfsvfs);
4329                 return (0);
4330         }
4331 
4332         /*
4333          * Align this request to the file block size in case we kluster.
4334          * XXX - this can result in pretty aggresive locking, which can
4335          * impact simultanious read/write access.  One option might be
4336          * to break up long requests (len == 0) into block-by-block
4337          * operations to get narrower locking.
4338          */
4339         blksz = zp->z_blksz;
4340         if (ISP2(blksz))
4341                 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4342         else
4343                 io_off = 0;
4344         if (len > 0 && ISP2(blksz))
4345                 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4346         else
4347                 io_len = 0;
4348 
4349         if (io_len == 0) {
4350                 /*
4351                  * Search the entire vp list for pages >= io_off.
4352                  */
4353                 lr = rangelock_enter(&zp->z_rangelock,
4354                     io_off, UINT64_MAX, RL_WRITER);
4355                 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4356                 goto out;
4357         }
4358         lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER);
4359 
4360         if (off > zp->z_size) {
4361                 /* past end of file */
4362                 rangelock_exit(lr);
4363                 ZFS_EXIT(zfsvfs);
4364                 return (0);
4365         }
4366 
4367         len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4368 
4369         for (off = io_off; io_off < off + len; io_off += io_len) {
4370                 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4371                         pp = page_lookup(vp, io_off,
4372                             (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4373                 } else {
4374                         pp = page_lookup_nowait(vp, io_off,
4375                             (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4376                 }
4377 
4378                 if (pp != NULL && pvn_getdirty(pp, flags)) {
4379                         int err;
4380 
4381                         /*
4382                          * Found a dirty page to push
4383                          */
4384                         err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4385                         if (err)
4386                                 error = err;
4387                 } else {
4388                         io_len = PAGESIZE;
4389                 }
4390         }
4391 out:
4392         rangelock_exit(lr);
4393         if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4394                 zil_commit(zfsvfs->z_log, zp->z_id);
4395         ZFS_EXIT(zfsvfs);
4396         return (error);
4397 }
4398 
4399 /*ARGSUSED*/
4400 void
4401 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4402 {
4403         znode_t *zp = VTOZ(vp);
4404         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4405         int error;
4406 
4407         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4408         if (zp->z_sa_hdl == NULL) {
4409                 /*
4410                  * The fs has been unmounted, or we did a
4411                  * suspend/resume and this file no longer exists.
4412                  */
4413                 if (vn_has_cached_data(vp)) {
4414                         (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4415                             B_INVAL, cr);
4416                 }
4417 
4418                 mutex_enter(&zp->z_lock);
4419                 mutex_enter(&vp->v_lock);
4420                 ASSERT(vp->v_count == 1);
4421                 VN_RELE_LOCKED(vp);
4422                 mutex_exit(&vp->v_lock);
4423                 mutex_exit(&zp->z_lock);
4424                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4425                 zfs_znode_free(zp);
4426                 return;
4427         }
4428 
4429         /*
4430          * Attempt to push any data in the page cache.  If this fails
4431          * we will get kicked out later in zfs_zinactive().
4432          */
4433         if (vn_has_cached_data(vp)) {
4434                 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4435                     cr);
4436         }
4437 
4438         if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4439                 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4440 
4441                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4442                 zfs_sa_upgrade_txholds(tx, zp);
4443                 error = dmu_tx_assign(tx, TXG_WAIT);
4444                 if (error) {
4445                         dmu_tx_abort(tx);
4446                 } else {
4447                         mutex_enter(&zp->z_lock);
4448                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4449                             (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4450                         zp->z_atime_dirty = 0;
4451                         mutex_exit(&zp->z_lock);
4452                         dmu_tx_commit(tx);
4453                 }
4454         }
4455 
4456         zfs_zinactive(zp);
4457         rw_exit(&zfsvfs->z_teardown_inactive_lock);
4458 }
4459 
4460 /*
4461  * Bounds-check the seek operation.
4462  *
4463  *      IN:     vp      - vnode seeking within
4464  *              ooff    - old file offset
4465  *              noffp   - pointer to new file offset
4466  *              ct      - caller context
4467  *
4468  *      RETURN: 0 on success, EINVAL if new offset invalid.
4469  */
4470 /* ARGSUSED */
4471 static int
4472 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4473     caller_context_t *ct)
4474 {
4475         if (vp->v_type == VDIR)
4476                 return (0);
4477         return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4478 }
4479 
4480 /*
4481  * Pre-filter the generic locking function to trap attempts to place
4482  * a mandatory lock on a memory mapped file.
4483  */
4484 static int
4485 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4486     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4487 {
4488         znode_t *zp = VTOZ(vp);
4489         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4490 
4491         ZFS_ENTER(zfsvfs);
4492         ZFS_VERIFY_ZP(zp);
4493 
4494         /*
4495          * We are following the UFS semantics with respect to mapcnt
4496          * here: If we see that the file is mapped already, then we will
4497          * return an error, but we don't worry about races between this
4498          * function and zfs_map().
4499          */
4500         if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4501                 ZFS_EXIT(zfsvfs);
4502                 return (SET_ERROR(EAGAIN));
4503         }
4504         ZFS_EXIT(zfsvfs);
4505         return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4506 }
4507 
4508 /*
4509  * If we can't find a page in the cache, we will create a new page
4510  * and fill it with file data.  For efficiency, we may try to fill
4511  * multiple pages at once (klustering) to fill up the supplied page
4512  * list.  Note that the pages to be filled are held with an exclusive
4513  * lock to prevent access by other threads while they are being filled.
4514  */
4515 static int
4516 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4517     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4518 {
4519         znode_t *zp = VTOZ(vp);
4520         page_t *pp, *cur_pp;
4521         objset_t *os = zp->z_zfsvfs->z_os;
4522         u_offset_t io_off, total;
4523         size_t io_len;
4524         int err;
4525 
4526         if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4527                 /*
4528                  * We only have a single page, don't bother klustering
4529                  */
4530                 io_off = off;
4531                 io_len = PAGESIZE;
4532                 pp = page_create_va(vp, io_off, io_len,
4533                     PG_EXCL | PG_WAIT, seg, addr);
4534         } else {
4535                 /*
4536                  * Try to find enough pages to fill the page list
4537                  */
4538                 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4539                     &io_len, off, plsz, 0);
4540         }
4541         if (pp == NULL) {
4542                 /*
4543                  * The page already exists, nothing to do here.
4544                  */
4545                 *pl = NULL;
4546                 return (0);
4547         }
4548 
4549         /*
4550          * Fill the pages in the kluster.
4551          */
4552         cur_pp = pp;
4553         for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4554                 caddr_t va;
4555 
4556                 ASSERT3U(io_off, ==, cur_pp->p_offset);
4557                 va = zfs_map_page(cur_pp, S_WRITE);
4558                 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4559                     DMU_READ_PREFETCH);
4560                 zfs_unmap_page(cur_pp, va);
4561                 if (err) {
4562                         /* On error, toss the entire kluster */
4563                         pvn_read_done(pp, B_ERROR);
4564                         /* convert checksum errors into IO errors */
4565                         if (err == ECKSUM)
4566                                 err = SET_ERROR(EIO);
4567                         return (err);
4568                 }
4569                 cur_pp = cur_pp->p_next;
4570         }
4571 
4572         /*
4573          * Fill in the page list array from the kluster starting
4574          * from the desired offset `off'.
4575          * NOTE: the page list will always be null terminated.
4576          */
4577         pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4578         ASSERT(pl == NULL || (*pl)->p_offset == off);
4579 
4580         return (0);
4581 }
4582 
4583 /*
4584  * Return pointers to the pages for the file region [off, off + len]
4585  * in the pl array.  If plsz is greater than len, this function may
4586  * also return page pointers from after the specified region
4587  * (i.e. the region [off, off + plsz]).  These additional pages are
4588  * only returned if they are already in the cache, or were created as
4589  * part of a klustered read.
4590  *
4591  *      IN:     vp      - vnode of file to get data from.
4592  *              off     - position in file to get data from.
4593  *              len     - amount of data to retrieve.
4594  *              plsz    - length of provided page list.
4595  *              seg     - segment to obtain pages for.
4596  *              addr    - virtual address of fault.
4597  *              rw      - mode of created pages.
4598  *              cr      - credentials of caller.
4599  *              ct      - caller context.
4600  *
4601  *      OUT:    protp   - protection mode of created pages.
4602  *              pl      - list of pages created.
4603  *
4604  *      RETURN: 0 on success, error code on failure.
4605  *
4606  * Timestamps:
4607  *      vp - atime updated
4608  */
4609 /* ARGSUSED */
4610 static int
4611 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4612     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4613     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4614 {
4615         znode_t         *zp = VTOZ(vp);
4616         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4617         page_t          **pl0 = pl;
4618         int             err = 0;
4619 
4620         /* we do our own caching, faultahead is unnecessary */
4621         if (pl == NULL)
4622                 return (0);
4623         else if (len > plsz)
4624                 len = plsz;
4625         else
4626                 len = P2ROUNDUP(len, PAGESIZE);
4627         ASSERT(plsz >= len);
4628 
4629         ZFS_ENTER(zfsvfs);
4630         ZFS_VERIFY_ZP(zp);
4631 
4632         if (protp)
4633                 *protp = PROT_ALL;
4634 
4635         /*
4636          * Loop through the requested range [off, off + len) looking
4637          * for pages.  If we don't find a page, we will need to create
4638          * a new page and fill it with data from the file.
4639          */
4640         while (len > 0) {
4641                 if (*pl = page_lookup(vp, off, SE_SHARED))
4642                         *(pl+1) = NULL;
4643                 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4644                         goto out;
4645                 while (*pl) {
4646                         ASSERT3U((*pl)->p_offset, ==, off);
4647                         off += PAGESIZE;
4648                         addr += PAGESIZE;
4649                         if (len > 0) {
4650                                 ASSERT3U(len, >=, PAGESIZE);
4651                                 len -= PAGESIZE;
4652                         }
4653                         ASSERT3U(plsz, >=, PAGESIZE);
4654                         plsz -= PAGESIZE;
4655                         pl++;
4656                 }
4657         }
4658 
4659         /*
4660          * Fill out the page array with any pages already in the cache.
4661          */
4662         while (plsz > 0 &&
4663             (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4664                         off += PAGESIZE;
4665                         plsz -= PAGESIZE;
4666         }
4667 out:
4668         if (err) {
4669                 /*
4670                  * Release any pages we have previously locked.
4671                  */
4672                 while (pl > pl0)
4673                         page_unlock(*--pl);
4674         } else {
4675                 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4676         }
4677 
4678         *pl = NULL;
4679 
4680         ZFS_EXIT(zfsvfs);
4681         return (err);
4682 }
4683 
4684 /*
4685  * Request a memory map for a section of a file.  This code interacts
4686  * with common code and the VM system as follows:
4687  *
4688  * - common code calls mmap(), which ends up in smmap_common()
4689  * - this calls VOP_MAP(), which takes you into (say) zfs
4690  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4691  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4692  * - zfs_addmap() updates z_mapcnt
4693  */
4694 /*ARGSUSED*/
4695 static int
4696 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4697     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4698     caller_context_t *ct)
4699 {
4700         znode_t *zp = VTOZ(vp);
4701         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4702         segvn_crargs_t  vn_a;
4703         int             error;
4704 
4705         ZFS_ENTER(zfsvfs);
4706         ZFS_VERIFY_ZP(zp);
4707 
4708         /*
4709          * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4710          */
4711 
4712         if ((prot & PROT_WRITE) && (zp->z_pflags &
4713             (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4714                 ZFS_EXIT(zfsvfs);
4715                 return (SET_ERROR(EPERM));
4716         }
4717 
4718         if ((prot & (PROT_READ | PROT_EXEC)) &&
4719             (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4720                 ZFS_EXIT(zfsvfs);
4721                 return (SET_ERROR(EACCES));
4722         }
4723 
4724         if (vp->v_flag & VNOMAP) {
4725                 ZFS_EXIT(zfsvfs);
4726                 return (SET_ERROR(ENOSYS));
4727         }
4728 
4729         if (off < 0 || len > MAXOFFSET_T - off) {
4730                 ZFS_EXIT(zfsvfs);
4731                 return (SET_ERROR(ENXIO));
4732         }
4733 
4734         if (vp->v_type != VREG) {
4735                 ZFS_EXIT(zfsvfs);
4736                 return (SET_ERROR(ENODEV));
4737         }
4738 
4739         /*
4740          * If file is locked, disallow mapping.
4741          */
4742         if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4743                 ZFS_EXIT(zfsvfs);
4744                 return (SET_ERROR(EAGAIN));
4745         }
4746 
4747         as_rangelock(as);
4748         error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4749         if (error != 0) {
4750                 as_rangeunlock(as);
4751                 ZFS_EXIT(zfsvfs);
4752                 return (error);
4753         }
4754 
4755         vn_a.vp = vp;
4756         vn_a.offset = (u_offset_t)off;
4757         vn_a.type = flags & MAP_TYPE;
4758         vn_a.prot = prot;
4759         vn_a.maxprot = maxprot;
4760         vn_a.cred = cr;
4761         vn_a.amp = NULL;
4762         vn_a.flags = flags & ~MAP_TYPE;
4763         vn_a.szc = 0;
4764         vn_a.lgrp_mem_policy_flags = 0;
4765 
4766         error = as_map(as, *addrp, len, segvn_create, &vn_a);
4767 
4768         as_rangeunlock(as);
4769         ZFS_EXIT(zfsvfs);
4770         return (error);
4771 }
4772 
4773 /* ARGSUSED */
4774 static int
4775 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4776     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4777     caller_context_t *ct)
4778 {
4779         uint64_t pages = btopr(len);
4780 
4781         atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4782         return (0);
4783 }
4784 
4785 /*
4786  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4787  * more accurate mtime for the associated file.  Since we don't have a way of
4788  * detecting when the data was actually modified, we have to resort to
4789  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4790  * last page is pushed.  The problem occurs when the msync() call is omitted,
4791  * which by far the most common case:
4792  *
4793  *      open()
4794  *      mmap()
4795  *      <modify memory>
4796  *      munmap()
4797  *      close()
4798  *      <time lapse>
4799  *      putpage() via fsflush
4800  *
4801  * If we wait until fsflush to come along, we can have a modification time that
4802  * is some arbitrary point in the future.  In order to prevent this in the
4803  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4804  * torn down.
4805  */
4806 /* ARGSUSED */
4807 static int
4808 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4809     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4810     caller_context_t *ct)
4811 {
4812         uint64_t pages = btopr(len);
4813 
4814         ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4815         atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4816 
4817         if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4818             vn_has_cached_data(vp))
4819                 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4820 
4821         return (0);
4822 }
4823 
4824 /*
4825  * Free or allocate space in a file.  Currently, this function only
4826  * supports the `F_FREESP' command.  However, this command is somewhat
4827  * misnamed, as its functionality includes the ability to allocate as
4828  * well as free space.
4829  *
4830  *      IN:     vp      - vnode of file to free data in.
4831  *              cmd     - action to take (only F_FREESP supported).
4832  *              bfp     - section of file to free/alloc.
4833  *              flag    - current file open mode flags.
4834  *              offset  - current file offset.
4835  *              cr      - credentials of caller [UNUSED].
4836  *              ct      - caller context.
4837  *
4838  *      RETURN: 0 on success, error code on failure.
4839  *
4840  * Timestamps:
4841  *      vp - ctime|mtime updated
4842  */
4843 /* ARGSUSED */
4844 static int
4845 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4846     offset_t offset, cred_t *cr, caller_context_t *ct)
4847 {
4848         znode_t         *zp = VTOZ(vp);
4849         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4850         uint64_t        off, len;
4851         int             error;
4852 
4853         ZFS_ENTER(zfsvfs);
4854         ZFS_VERIFY_ZP(zp);
4855 
4856         if (cmd != F_FREESP) {
4857                 ZFS_EXIT(zfsvfs);
4858                 return (SET_ERROR(EINVAL));
4859         }
4860 
4861         /*
4862          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4863          * callers might not be able to detect properly that we are read-only,
4864          * so check it explicitly here.
4865          */
4866         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4867                 ZFS_EXIT(zfsvfs);
4868                 return (SET_ERROR(EROFS));
4869         }
4870 
4871         if (error = convoff(vp, bfp, 0, offset)) {
4872                 ZFS_EXIT(zfsvfs);
4873                 return (error);
4874         }
4875 
4876         if (bfp->l_len < 0) {
4877                 ZFS_EXIT(zfsvfs);
4878                 return (SET_ERROR(EINVAL));
4879         }
4880 
4881         off = bfp->l_start;
4882         len = bfp->l_len; /* 0 means from off to end of file */
4883 
4884         error = zfs_freesp(zp, off, len, flag, TRUE);
4885 
4886         if (error == 0 && off == 0 && len == 0)
4887                 vnevent_truncate(ZTOV(zp), ct);
4888 
4889         ZFS_EXIT(zfsvfs);
4890         return (error);
4891 }
4892 
4893 /*ARGSUSED*/
4894 static int
4895 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4896 {
4897         znode_t         *zp = VTOZ(vp);
4898         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4899         uint32_t        gen;
4900         uint64_t        gen64;
4901         uint64_t        object = zp->z_id;
4902         zfid_short_t    *zfid;
4903         int             size, i, error;
4904 
4905         ZFS_ENTER(zfsvfs);
4906         ZFS_VERIFY_ZP(zp);
4907 
4908         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4909             &gen64, sizeof (uint64_t))) != 0) {
4910                 ZFS_EXIT(zfsvfs);
4911                 return (error);
4912         }
4913 
4914         gen = (uint32_t)gen64;
4915 
4916         size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4917         if (fidp->fid_len < size) {
4918                 fidp->fid_len = size;
4919                 ZFS_EXIT(zfsvfs);
4920                 return (SET_ERROR(ENOSPC));
4921         }
4922 
4923         zfid = (zfid_short_t *)fidp;
4924 
4925         zfid->zf_len = size;
4926 
4927         for (i = 0; i < sizeof (zfid->zf_object); i++)
4928                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4929 
4930         /* Must have a non-zero generation number to distinguish from .zfs */
4931         if (gen == 0)
4932                 gen = 1;
4933         for (i = 0; i < sizeof (zfid->zf_gen); i++)
4934                 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4935 
4936         if (size == LONG_FID_LEN) {
4937                 uint64_t        objsetid = dmu_objset_id(zfsvfs->z_os);
4938                 zfid_long_t     *zlfid;
4939 
4940                 zlfid = (zfid_long_t *)fidp;
4941 
4942                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4943                         zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4944 
4945                 /* XXX - this should be the generation number for the objset */
4946                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4947                         zlfid->zf_setgen[i] = 0;
4948         }
4949 
4950         ZFS_EXIT(zfsvfs);
4951         return (0);
4952 }
4953 
4954 static int
4955 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4956     caller_context_t *ct)
4957 {
4958         znode_t         *zp, *xzp;
4959         zfsvfs_t        *zfsvfs;
4960         zfs_dirlock_t   *dl;
4961         int             error;
4962 
4963         switch (cmd) {
4964         case _PC_LINK_MAX:
4965                 *valp = ULONG_MAX;
4966                 return (0);
4967 
4968         case _PC_FILESIZEBITS:
4969                 *valp = 64;
4970                 return (0);
4971 
4972         case _PC_XATTR_EXISTS:
4973                 zp = VTOZ(vp);
4974                 zfsvfs = zp->z_zfsvfs;
4975                 ZFS_ENTER(zfsvfs);
4976                 ZFS_VERIFY_ZP(zp);
4977                 *valp = 0;
4978                 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4979                     ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4980                 if (error == 0) {
4981                         zfs_dirent_unlock(dl);
4982                         if (!zfs_dirempty(xzp))
4983                                 *valp = 1;
4984                         VN_RELE(ZTOV(xzp));
4985                 } else if (error == ENOENT) {
4986                         /*
4987                          * If there aren't extended attributes, it's the
4988                          * same as having zero of them.
4989                          */
4990                         error = 0;
4991                 }
4992                 ZFS_EXIT(zfsvfs);
4993                 return (error);
4994 
4995         case _PC_SATTR_ENABLED:
4996         case _PC_SATTR_EXISTS:
4997                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4998                     (vp->v_type == VREG || vp->v_type == VDIR);
4999                 return (0);
5000 
5001         case _PC_ACCESS_FILTERING:
5002                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5003                     vp->v_type == VDIR;
5004                 return (0);
5005 
5006         case _PC_ACL_ENABLED:
5007                 *valp = _ACL_ACE_ENABLED;
5008                 return (0);
5009 
5010         case _PC_MIN_HOLE_SIZE:
5011                 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5012                 return (0);
5013 
5014         case _PC_TIMESTAMP_RESOLUTION:
5015                 /* nanosecond timestamp resolution */
5016                 *valp = 1L;
5017                 return (0);
5018 
5019         default:
5020                 return (fs_pathconf(vp, cmd, valp, cr, ct));
5021         }
5022 }
5023 
5024 /*ARGSUSED*/
5025 static int
5026 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5027     caller_context_t *ct)
5028 {
5029         znode_t *zp = VTOZ(vp);
5030         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5031         int error;
5032         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5033 
5034         ZFS_ENTER(zfsvfs);
5035         ZFS_VERIFY_ZP(zp);
5036         error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5037         ZFS_EXIT(zfsvfs);
5038 
5039         return (error);
5040 }
5041 
5042 /*ARGSUSED*/
5043 static int
5044 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5045     caller_context_t *ct)
5046 {
5047         znode_t *zp = VTOZ(vp);
5048         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5049         int error;
5050         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5051         zilog_t *zilog = zfsvfs->z_log;
5052 
5053         ZFS_ENTER(zfsvfs);
5054         ZFS_VERIFY_ZP(zp);
5055 
5056         error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5057 
5058         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5059                 zil_commit(zilog, 0);
5060 
5061         ZFS_EXIT(zfsvfs);
5062         return (error);
5063 }
5064 
5065 /*
5066  * The smallest read we may consider to loan out an arcbuf.
5067  * This must be a power of 2.
5068  */
5069 int zcr_blksz_min = (1 << 10);    /* 1K */
5070 /*
5071  * If set to less than the file block size, allow loaning out of an
5072  * arcbuf for a partial block read.  This must be a power of 2.
5073  */
5074 int zcr_blksz_max = (1 << 17);    /* 128K */
5075 
5076 /*ARGSUSED*/
5077 static int
5078 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5079     caller_context_t *ct)
5080 {
5081         znode_t *zp = VTOZ(vp);
5082         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5083         int max_blksz = zfsvfs->z_max_blksz;
5084         uio_t *uio = &xuio->xu_uio;
5085         ssize_t size = uio->uio_resid;
5086         offset_t offset = uio->uio_loffset;
5087         int blksz;
5088         int fullblk, i;
5089         arc_buf_t *abuf;
5090         ssize_t maxsize;
5091         int preamble, postamble;
5092 
5093         if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5094                 return (SET_ERROR(EINVAL));
5095 
5096         ZFS_ENTER(zfsvfs);
5097         ZFS_VERIFY_ZP(zp);
5098         switch (ioflag) {
5099         case UIO_WRITE:
5100                 /*
5101                  * Loan out an arc_buf for write if write size is bigger than
5102                  * max_blksz, and the file's block size is also max_blksz.
5103                  */
5104                 blksz = max_blksz;
5105                 if (size < blksz || zp->z_blksz != blksz) {
5106                         ZFS_EXIT(zfsvfs);
5107                         return (SET_ERROR(EINVAL));
5108                 }
5109                 /*
5110                  * Caller requests buffers for write before knowing where the
5111                  * write offset might be (e.g. NFS TCP write).
5112                  */
5113                 if (offset == -1) {
5114                         preamble = 0;
5115                 } else {
5116                         preamble = P2PHASE(offset, blksz);
5117                         if (preamble) {
5118                                 preamble = blksz - preamble;
5119                                 size -= preamble;
5120                         }
5121                 }
5122 
5123                 postamble = P2PHASE(size, blksz);
5124                 size -= postamble;
5125 
5126                 fullblk = size / blksz;
5127                 (void) dmu_xuio_init(xuio,
5128                     (preamble != 0) + fullblk + (postamble != 0));
5129                 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5130                     int, postamble, int,
5131                     (preamble != 0) + fullblk + (postamble != 0));
5132 
5133                 /*
5134                  * Have to fix iov base/len for partial buffers.  They
5135                  * currently represent full arc_buf's.
5136                  */
5137                 if (preamble) {
5138                         /* data begins in the middle of the arc_buf */
5139                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5140                             blksz);
5141                         ASSERT(abuf);
5142                         (void) dmu_xuio_add(xuio, abuf,
5143                             blksz - preamble, preamble);
5144                 }
5145 
5146                 for (i = 0; i < fullblk; i++) {
5147                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5148                             blksz);
5149                         ASSERT(abuf);
5150                         (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5151                 }
5152 
5153                 if (postamble) {
5154                         /* data ends in the middle of the arc_buf */
5155                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5156                             blksz);
5157                         ASSERT(abuf);
5158                         (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5159                 }
5160                 break;
5161         case UIO_READ:
5162                 /*
5163                  * Loan out an arc_buf for read if the read size is larger than
5164                  * the current file block size.  Block alignment is not
5165                  * considered.  Partial arc_buf will be loaned out for read.
5166                  */
5167                 blksz = zp->z_blksz;
5168                 if (blksz < zcr_blksz_min)
5169                         blksz = zcr_blksz_min;
5170                 if (blksz > zcr_blksz_max)
5171                         blksz = zcr_blksz_max;
5172                 /* avoid potential complexity of dealing with it */
5173                 if (blksz > max_blksz) {
5174                         ZFS_EXIT(zfsvfs);
5175                         return (SET_ERROR(EINVAL));
5176                 }
5177 
5178                 maxsize = zp->z_size - uio->uio_loffset;
5179                 if (size > maxsize)
5180                         size = maxsize;
5181 
5182                 if (size < blksz || vn_has_cached_data(vp)) {
5183                         ZFS_EXIT(zfsvfs);
5184                         return (SET_ERROR(EINVAL));
5185                 }
5186                 break;
5187         default:
5188                 ZFS_EXIT(zfsvfs);
5189                 return (SET_ERROR(EINVAL));
5190         }
5191 
5192         uio->uio_extflg = UIO_XUIO;
5193         XUIO_XUZC_RW(xuio) = ioflag;
5194         ZFS_EXIT(zfsvfs);
5195         return (0);
5196 }
5197 
5198 /*ARGSUSED*/
5199 static int
5200 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5201 {
5202         int i;
5203         arc_buf_t *abuf;
5204         int ioflag = XUIO_XUZC_RW(xuio);
5205 
5206         ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5207 
5208         i = dmu_xuio_cnt(xuio);
5209         while (i-- > 0) {
5210                 abuf = dmu_xuio_arcbuf(xuio, i);
5211                 /*
5212                  * if abuf == NULL, it must be a write buffer
5213                  * that has been returned in zfs_write().
5214                  */
5215                 if (abuf)
5216                         dmu_return_arcbuf(abuf);
5217                 ASSERT(abuf || ioflag == UIO_WRITE);
5218         }
5219 
5220         dmu_xuio_fini(xuio);
5221         return (0);
5222 }
5223 
5224 /*
5225  * Predeclare these here so that the compiler assumes that
5226  * this is an "old style" function declaration that does
5227  * not include arguments => we won't get type mismatch errors
5228  * in the initializations that follow.
5229  */
5230 static int zfs_inval();
5231 static int zfs_isdir();
5232 
5233 static int
5234 zfs_inval()
5235 {
5236         return (SET_ERROR(EINVAL));
5237 }
5238 
5239 static int
5240 zfs_isdir()
5241 {
5242         return (SET_ERROR(EISDIR));
5243 }
5244 /*
5245  * Directory vnode operations template
5246  */
5247 vnodeops_t *zfs_dvnodeops;
5248 const fs_operation_def_t zfs_dvnodeops_template[] = {
5249         VOPNAME_OPEN,           { .vop_open = zfs_open },
5250         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5251         VOPNAME_READ,           { .error = zfs_isdir },
5252         VOPNAME_WRITE,          { .error = zfs_isdir },
5253         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5254         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5255         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5256         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5257         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5258         VOPNAME_CREATE,         { .vop_create = zfs_create },
5259         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5260         VOPNAME_LINK,           { .vop_link = zfs_link },
5261         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5262         VOPNAME_MKDIR,          { .vop_mkdir = zfs_mkdir },
5263         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5264         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5265         VOPNAME_SYMLINK,        { .vop_symlink = zfs_symlink },
5266         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5267         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5268         VOPNAME_FID,            { .vop_fid = zfs_fid },
5269         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5270         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5271         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5272         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5273         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5274         NULL,                   NULL
5275 };
5276 
5277 /*
5278  * Regular file vnode operations template
5279  */
5280 vnodeops_t *zfs_fvnodeops;
5281 const fs_operation_def_t zfs_fvnodeops_template[] = {
5282         VOPNAME_OPEN,           { .vop_open = zfs_open },
5283         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5284         VOPNAME_READ,           { .vop_read = zfs_read },
5285         VOPNAME_WRITE,          { .vop_write = zfs_write },
5286         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5287         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5288         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5289         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5290         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5291         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5292         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5293         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5294         VOPNAME_FID,            { .vop_fid = zfs_fid },
5295         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5296         VOPNAME_FRLOCK,         { .vop_frlock = zfs_frlock },
5297         VOPNAME_SPACE,          { .vop_space = zfs_space },
5298         VOPNAME_GETPAGE,        { .vop_getpage = zfs_getpage },
5299         VOPNAME_PUTPAGE,        { .vop_putpage = zfs_putpage },
5300         VOPNAME_MAP,            { .vop_map = zfs_map },
5301         VOPNAME_ADDMAP,         { .vop_addmap = zfs_addmap },
5302         VOPNAME_DELMAP,         { .vop_delmap = zfs_delmap },
5303         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5304         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5305         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5306         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5307         VOPNAME_REQZCBUF,       { .vop_reqzcbuf = zfs_reqzcbuf },
5308         VOPNAME_RETZCBUF,       { .vop_retzcbuf = zfs_retzcbuf },
5309         NULL,                   NULL
5310 };
5311 
5312 /*
5313  * Symbolic link vnode operations template
5314  */
5315 vnodeops_t *zfs_symvnodeops;
5316 const fs_operation_def_t zfs_symvnodeops_template[] = {
5317         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5318         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5319         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5320         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5321         VOPNAME_READLINK,       { .vop_readlink = zfs_readlink },
5322         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5323         VOPNAME_FID,            { .vop_fid = zfs_fid },
5324         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5325         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5326         NULL,                   NULL
5327 };
5328 
5329 /*
5330  * special share hidden files vnode operations template
5331  */
5332 vnodeops_t *zfs_sharevnodeops;
5333 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5334         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5335         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5336         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5337         VOPNAME_FID,            { .vop_fid = zfs_fid },
5338         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5339         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5340         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5341         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5342         NULL,                   NULL
5343 };
5344 
5345 /*
5346  * Extended attribute directory vnode operations template
5347  *
5348  * This template is identical to the directory vnodes
5349  * operation template except for restricted operations:
5350  *      VOP_MKDIR()
5351  *      VOP_SYMLINK()
5352  *
5353  * Note that there are other restrictions embedded in:
5354  *      zfs_create()    - restrict type to VREG
5355  *      zfs_link()      - no links into/out of attribute space
5356  *      zfs_rename()    - no moves into/out of attribute space
5357  */
5358 vnodeops_t *zfs_xdvnodeops;
5359 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5360         VOPNAME_OPEN,           { .vop_open = zfs_open },
5361         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5362         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5363         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5364         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5365         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5366         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5367         VOPNAME_CREATE,         { .vop_create = zfs_create },
5368         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5369         VOPNAME_LINK,           { .vop_link = zfs_link },
5370         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5371         VOPNAME_MKDIR,          { .error = zfs_inval },
5372         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5373         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5374         VOPNAME_SYMLINK,        { .error = zfs_inval },
5375         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5376         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5377         VOPNAME_FID,            { .vop_fid = zfs_fid },
5378         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5379         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5380         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5381         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5382         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5383         NULL,                   NULL
5384 };
5385 
5386 /*
5387  * Error vnode operations template
5388  */
5389 vnodeops_t *zfs_evnodeops;
5390 const fs_operation_def_t zfs_evnodeops_template[] = {
5391         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5392         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5393         NULL,                   NULL
5394 };