Print this page
9832 Original bug discovered as 9560 has friends IPv4 packets coming in as IPv6 creating chaos
Reviewed by: Robert Mustacchi <rm@joyent.com>
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/io/mac/mac_sched.c
+++ new/usr/src/uts/common/io/mac/mac_sched.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
|
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 23 * Use is subject to license terms.
24 - * Copyright 2017 Joyent, Inc.
25 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 + * Copyright 2019 Joyent, Inc.
26 26 */
27 27
28 28 /*
29 29 * MAC data path
30 30 *
31 31 * The MAC data path is concerned with the flow of traffic from mac clients --
32 32 * DLS, IP, etc. -- to various GLDv3 device drivers -- e1000g, vnic, aggr,
33 33 * ixgbe, etc. -- and from the GLDv3 device drivers back to clients.
34 34 *
35 35 * -----------
36 36 * Terminology
37 37 * -----------
38 38 *
39 39 * MAC uses a lot of different, but related terms that are associated with the
40 40 * design and structure of the data path. Before we cover other aspects, first
41 41 * let's review the terminology that MAC uses.
42 42 *
43 43 * MAC
44 44 *
45 - * This driver. It interfaces with device drivers and provides abstractions
46 - * that the rest of the system consumes. All data links -- things managed
47 - * with dladm(1M), are accessed through MAC.
45 + * This driver. It interfaces with device drivers and provides abstractions
46 + * that the rest of the system consumes. All data links -- things managed
47 + * with dladm(1M), are accessed through MAC.
48 48 *
49 49 * GLDv3 DEVICE DRIVER
50 50 *
51 - * A GLDv3 device driver refers to a driver, both for pseudo-devices and
52 - * real devices, which implement the GLDv3 driver API. Common examples of
53 - * these are igb and ixgbe, which are drivers for various Intel networking
54 - * cards. These devices may or may not have various features, such as
55 - * hardware rings and checksum offloading. For MAC, a GLDv3 device is the
56 - * final point for the transmission of a packet and the starting point for
57 - * the receipt of a packet.
51 + * A GLDv3 device driver refers to a driver, both for pseudo-devices and
52 + * real devices, which implement the GLDv3 driver API. Common examples of
53 + * these are igb and ixgbe, which are drivers for various Intel networking
54 + * cards. These devices may or may not have various features, such as
55 + * hardware rings and checksum offloading. For MAC, a GLDv3 device is the
56 + * final point for the transmission of a packet and the starting point for
57 + * the receipt of a packet.
58 58 *
59 59 * FLOWS
60 60 *
61 - * At a high level, a flow refers to a series of packets that are related.
62 - * Often times the term is used in the context of TCP to indicate a unique
63 - * TCP connection and the traffic over it. However, a flow can exist at
64 - * other levels of the system as well. MAC has a notion of a default flow
65 - * which is used for all unicast traffic addressed to the address of a MAC
66 - * device. For example, when a VNIC is created, a default flow is created
67 - * for the VNIC's MAC address. In addition, flows are created for broadcast
68 - * groups and a user may create a flow with flowadm(1M).
61 + * At a high level, a flow refers to a series of packets that are related.
62 + * Often times the term is used in the context of TCP to indicate a unique
63 + * TCP connection and the traffic over it. However, a flow can exist at
64 + * other levels of the system as well. MAC has a notion of a default flow
65 + * which is used for all unicast traffic addressed to the address of a MAC
66 + * device. For example, when a VNIC is created, a default flow is created
67 + * for the VNIC's MAC address. In addition, flows are created for broadcast
68 + * groups and a user may create a flow with flowadm(1M).
69 69 *
70 70 * CLASSIFICATION
71 71 *
72 - * Classification refers to the notion of identifying an incoming frame
73 - * based on its destination address and optionally its source addresses and
74 - * doing different processing based on that information. Classification can
75 - * be done in both hardware and software. In general, we usually only
76 - * classify based on the layer two destination, eg. for Ethernet, the
77 - * destination MAC address.
72 + * Classification refers to the notion of identifying an incoming frame
73 + * based on its destination address and optionally its source addresses and
74 + * doing different processing based on that information. Classification can
75 + * be done in both hardware and software. In general, we usually only
76 + * classify based on the layer two destination, eg. for Ethernet, the
77 + * destination MAC address.
78 78 *
79 - * The system also will do classification based on layer three and layer
80 - * four properties. This is used to support things like flowadm(1M), which
81 - * allows setting QoS and other properties on a per-flow basis.
79 + * The system also will do classification based on layer three and layer
80 + * four properties. This is used to support things like flowadm(1M), which
81 + * allows setting QoS and other properties on a per-flow basis.
82 82 *
83 83 * RING
84 84 *
85 - * Conceptually, a ring represents a series of framed messages, often in a
86 - * contiguous chunk of memory that acts as a circular buffer. Rings come in
87 - * a couple of forms. Generally they are either a hardware construct (hw
88 - * ring) or they are a software construct (sw ring) maintained by MAC.
85 + * Conceptually, a ring represents a series of framed messages, often in a
86 + * contiguous chunk of memory that acts as a circular buffer. Rings come in
87 + * a couple of forms. Generally they are either a hardware construct (hw
88 + * ring) or they are a software construct (sw ring) maintained by MAC.
89 89 *
90 90 * HW RING
91 91 *
92 - * A hardware ring is a set of resources provided by a GLDv3 device driver
93 - * (even if it is a pseudo-device). A hardware ring comes in two different
94 - * forms: receive (rx) rings and transmit (tx) rings. An rx hw ring is
95 - * something that has a unique DMA (direct memory access) region and
96 - * generally supports some form of classification (though it isn't always
97 - * used), as well as a means of generating an interrupt specific to that
98 - * ring. For example, the device may generate a specific MSI-X for a PCI
99 - * express device. A tx ring is similar, except that it is dedicated to
100 - * transmission. It may also be a vector for enabling features such as VLAN
101 - * tagging and large transmit offloading. It usually has its own dedicated
102 - * interrupts for transmit being completed.
92 + * A hardware ring is a set of resources provided by a GLDv3 device driver
93 + * (even if it is a pseudo-device). A hardware ring comes in two different
94 + * forms: receive (rx) rings and transmit (tx) rings. An rx hw ring is
95 + * something that has a unique DMA (direct memory access) region and
96 + * generally supports some form of classification (though it isn't always
97 + * used), as well as a means of generating an interrupt specific to that
98 + * ring. For example, the device may generate a specific MSI-X for a PCI
99 + * express device. A tx ring is similar, except that it is dedicated to
100 + * transmission. It may also be a vector for enabling features such as VLAN
101 + * tagging and large transmit offloading. It usually has its own dedicated
102 + * interrupts for transmit being completed.
103 103 *
104 104 * SW RING
105 105 *
106 - * A software ring is a construction of MAC. It represents the same thing
107 - * that a hardware ring generally does, a collection of frames. However,
108 - * instead of being in a contiguous ring of memory, they're instead linked
109 - * by using the mblk_t's b_next pointer. Each frame may itself be multiple
110 - * mblk_t's linked together by the b_cont pointer. A software ring always
111 - * represents a collection of classified packets; however, it varies as to
112 - * whether it uses only layer two information, or a combination of that and
113 - * additional layer three and layer four data.
106 + * A software ring is a construction of MAC. It represents the same thing
107 + * that a hardware ring generally does, a collection of frames. However,
108 + * instead of being in a contiguous ring of memory, they're instead linked
109 + * by using the mblk_t's b_next pointer. Each frame may itself be multiple
110 + * mblk_t's linked together by the b_cont pointer. A software ring always
111 + * represents a collection of classified packets; however, it varies as to
112 + * whether it uses only layer two information, or a combination of that and
113 + * additional layer three and layer four data.
114 114 *
115 115 * FANOUT
116 116 *
117 - * Fanout is the idea of spreading out the load of processing frames based
118 - * on the source and destination information contained in the layer two,
119 - * three, and four headers, such that the data can then be processed in
120 - * parallel using multiple hardware threads.
117 + * Fanout is the idea of spreading out the load of processing frames based
118 + * on the source and destination information contained in the layer two,
119 + * three, and four headers, such that the data can then be processed in
120 + * parallel using multiple hardware threads.
121 121 *
122 - * A fanout algorithm hashes the headers and uses that to place different
123 - * flows into a bucket. The most important thing is that packets that are
124 - * in the same flow end up in the same bucket. If they do not, performance
125 - * can be adversely affected. Consider the case of TCP. TCP severely
126 - * penalizes a connection if the data arrives out of order. If a given flow
127 - * is processed on different CPUs, then the data will appear out of order,
128 - * hence the invariant that fanout always hash a given flow to the same
129 - * bucket and thus get processed on the same CPU.
122 + * A fanout algorithm hashes the headers and uses that to place different
123 + * flows into a bucket. The most important thing is that packets that are
124 + * in the same flow end up in the same bucket. If they do not, performance
125 + * can be adversely affected. Consider the case of TCP. TCP severely
126 + * penalizes a connection if the data arrives out of order. If a given flow
127 + * is processed on different CPUs, then the data will appear out of order,
128 + * hence the invariant that fanout always hash a given flow to the same
129 + * bucket and thus get processed on the same CPU.
130 130 *
131 131 * RECEIVE SIDE SCALING (RSS)
132 132 *
133 133 *
134 - * Receive side scaling is a term that isn't common in illumos, but is used
135 - * by vendors and was popularized by Microsoft. It refers to the idea of
136 - * spreading the incoming receive load out across multiple interrupts which
137 - * can be directed to different CPUs. This allows a device to leverage
138 - * hardware rings even when it doesn't support hardware classification. The
139 - * hardware uses an algorithm to perform fanout that ensures the flow
140 - * invariant is maintained.
134 + * Receive side scaling is a term that isn't common in illumos, but is used
135 + * by vendors and was popularized by Microsoft. It refers to the idea of
136 + * spreading the incoming receive load out across multiple interrupts which
137 + * can be directed to different CPUs. This allows a device to leverage
138 + * hardware rings even when it doesn't support hardware classification. The
139 + * hardware uses an algorithm to perform fanout that ensures the flow
140 + * invariant is maintained.
141 141 *
142 142 * SOFT RING SET
143 143 *
144 - * A soft ring set, commonly abbreviated SRS, is a collection of rings and
145 - * is used for both transmitting and receiving. It is maintained in the
146 - * structure mac_soft_ring_set_t. A soft ring set is usually associated
147 - * with flows, and coordinates both the use of hardware and software rings.
148 - * Because the use of hardware rings can change as devices such as VNICs
149 - * come and go, we always ensure that the set has software classification
150 - * rules that correspond to the hardware classification rules from rings.
144 + * A soft ring set, commonly abbreviated SRS, is a collection of rings and
145 + * is used for both transmitting and receiving. It is maintained in the
146 + * structure mac_soft_ring_set_t. A soft ring set is usually associated
147 + * with flows, and coordinates both the use of hardware and software rings.
148 + * Because the use of hardware rings can change as devices such as VNICs
149 + * come and go, we always ensure that the set has software classification
150 + * rules that correspond to the hardware classification rules from rings.
151 151 *
152 - * Soft ring sets are also used for the enforcement of various QoS
153 - * properties. For example, if a bandwidth limit has been placed on a
154 - * specific flow or device, then that will be enforced by the soft ring
155 - * set.
152 + * Soft ring sets are also used for the enforcement of various QoS
153 + * properties. For example, if a bandwidth limit has been placed on a
154 + * specific flow or device, then that will be enforced by the soft ring
155 + * set.
156 156 *
157 157 * SERVICE ATTACHMENT POINT (SAP)
158 158 *
159 - * The service attachment point is a DLPI (Data Link Provider Interface)
160 - * concept; however, it comes up quite often in MAC. Most MAC devices speak
161 - * a protocol that has some notion of different channels or message type
162 - * identifiers. For example, Ethernet defines an EtherType which is a part
163 - * of the Ethernet header and defines the particular protocol of the data
164 - * payload. If the EtherType is set to 0x0800, then it defines that the
165 - * contents of that Ethernet frame is IPv4 traffic. For Ethernet, the
166 - * EtherType is the SAP.
159 + * The service attachment point is a DLPI (Data Link Provider Interface)
160 + * concept; however, it comes up quite often in MAC. Most MAC devices speak
161 + * a protocol that has some notion of different channels or message type
162 + * identifiers. For example, Ethernet defines an EtherType which is a part
163 + * of the Ethernet header and defines the particular protocol of the data
164 + * payload. If the EtherType is set to 0x0800, then it defines that the
165 + * contents of that Ethernet frame is IPv4 traffic. For Ethernet, the
166 + * EtherType is the SAP.
167 167 *
168 - * In DLPI, a given consumer attaches to a specific SAP. In illumos, the ip
169 - * and arp drivers attach to the EtherTypes for IPv4, IPv6, and ARP. Using
170 - * libdlpi(3LIB) user software can attach to arbitrary SAPs. With the
171 - * exception of 802.1Q VLAN tagged traffic, MAC itself does not directly
172 - * consume the SAP; however, it uses that information as part of hashing
173 - * and it may be used as part of the construction of flows.
168 + * In DLPI, a given consumer attaches to a specific SAP. In illumos, the ip
169 + * and arp drivers attach to the EtherTypes for IPv4, IPv6, and ARP. Using
170 + * libdlpi(3LIB) user software can attach to arbitrary SAPs. With the
171 + * exception of 802.1Q VLAN tagged traffic, MAC itself does not directly
172 + * consume the SAP; however, it uses that information as part of hashing
173 + * and it may be used as part of the construction of flows.
174 174 *
175 175 * PRIMARY MAC CLIENT
176 176 *
177 - * The primary mac client refers to a mac client whose unicast address
178 - * matches the address of the device itself. For example, if the system has
179 - * instance of the e1000g driver such as e1000g0, e1000g1, etc., the
180 - * primary mac client is the one named after the device itself. VNICs that
181 - * are created on top of such devices are not the primary client.
177 + * The primary mac client refers to a mac client whose unicast address
178 + * matches the address of the device itself. For example, if the system has
179 + * instance of the e1000g driver such as e1000g0, e1000g1, etc., the
180 + * primary mac client is the one named after the device itself. VNICs that
181 + * are created on top of such devices are not the primary client.
182 182 *
183 183 * TRANSMIT DESCRIPTORS
184 184 *
185 - * Transmit descriptors are a resource that most GLDv3 device drivers have.
186 - * Generally, a GLDv3 device driver takes a frame that's meant to be output
187 - * and puts a copy of it into a region of memory. Each region of memory
188 - * usually has an associated descriptor that the device uses to manage
189 - * properties of the frames. Devices have a limited number of such
190 - * descriptors. They get reclaimed once the device finishes putting the
191 - * frame on the wire.
185 + * Transmit descriptors are a resource that most GLDv3 device drivers have.
186 + * Generally, a GLDv3 device driver takes a frame that's meant to be output
187 + * and puts a copy of it into a region of memory. Each region of memory
188 + * usually has an associated descriptor that the device uses to manage
189 + * properties of the frames. Devices have a limited number of such
190 + * descriptors. They get reclaimed once the device finishes putting the
191 + * frame on the wire.
192 192 *
193 - * If the driver runs out of transmit descriptors, for example, the OS is
194 - * generating more frames than it can put on the wire, then it will return
195 - * them back to the MAC layer.
193 + * If the driver runs out of transmit descriptors, for example, the OS is
194 + * generating more frames than it can put on the wire, then it will return
195 + * them back to the MAC layer.
196 196 *
197 197 * ---------------------------------
198 198 * Rings, Classification, and Fanout
199 199 * ---------------------------------
200 200 *
201 201 * The heart of MAC is made up of rings, and not those that Elven-kings wear.
202 202 * When receiving a packet, MAC breaks the work into two different, though
203 203 * interrelated phases. The first phase is generally classification and then the
204 204 * second phase is generally fanout. When a frame comes in from a GLDv3 Device,
205 205 * MAC needs to determine where that frame should be delivered. If it's a
206 206 * unicast frame (say a normal TCP/IP packet), then it will be delivered to a
207 207 * single MAC client; however, if it's a broadcast or multicast frame, then MAC
208 208 * may need to deliver it to multiple MAC clients.
209 209 *
210 210 * On transmit, classification isn't quite as important, but may still be used.
211 211 * Unlike with the receive path, the classification is not used to determine
212 212 * devices that should transmit something, but rather is used for special
213 213 * properties of a flow, eg. bandwidth limits for a given IP address, device, or
214 214 * connection.
215 215 *
216 216 * MAC employs a software classifier and leverages hardware classification as
217 217 * well. The software classifier can leverage the full layer two information,
218 218 * source, destination, VLAN, and SAP. If the SAP indicates that IP traffic is
219 219 * being sent, it can classify based on the IP header, and finally, it also
220 220 * knows how to classify based on the local and remote ports of TCP, UDP, and
221 221 * SCTP.
222 222 *
223 223 * Hardware classifiers vary in capability. Generally all hardware classifiers
224 224 * provide the capability to classify based on the destination MAC address. Some
225 225 * hardware has additional filters built in for performing more in-depth
226 226 * classification; however, it often has much more limited resources for these
227 227 * activities as compared to the layer two destination address classification.
228 228 *
229 229 * The modus operandi in MAC is to always ensure that we have software-based
230 230 * capabilities and rules in place and then to supplement that with hardware
231 231 * resources when available. In general, simple layer two classification is
232 232 * sufficient and nothing else is used, unless a specific flow is created with
233 233 * tools such as flowadm(1M) or bandwidth limits are set on a device with
234 234 * dladm(1M).
235 235 *
236 236 * RINGS AND GROUPS
237 237 *
238 238 * To get into how rings and classification play together, it's first important
239 239 * to understand how hardware devices commonly associate rings and allow them to
240 240 * be programmed. Recall that a hardware ring should be thought of as a DMA
241 241 * buffer and an interrupt resource. Rings are then collected into groups. A
242 242 * group itself has a series of classification rules. One or more MAC addresses
243 243 * are assigned to a group.
244 244 *
245 245 * Hardware devices vary in terms of what capabilities they provide. Sometimes
246 246 * they allow for a dynamic assignment of rings to a group and sometimes they
247 247 * have a static assignment of rings to a group. For example, the ixgbe driver
248 248 * has a static assignment of rings to groups such that every group has exactly
249 249 * one ring and the number of groups is equal to the number of rings.
250 250 *
251 251 * Classification and receive side scaling both come into play with how a device
252 252 * advertises itself to MAC and how MAC uses it. If a device supports layer two
253 253 * classification of frames, then MAC will assign MAC addresses to a group as a
254 254 * form of primary classification. If a single MAC address is assigned to a
255 255 * group, a common case, then MAC will consider packets that come in from rings
256 256 * on that group to be fully classified and will not need to do any software
257 257 * classification unless a specific flow has been created.
258 258 *
259 259 * If a device supports receive side scaling, then it may advertise or support
260 260 * groups with multiple rings. In those cases, then receive side scaling will
261 261 * come into play and MAC will use that as a means of fanning out received
262 262 * frames across multiple CPUs. This can also be combined with groups that
263 263 * support layer two classification.
264 264 *
265 265 * If a device supports dynamic assignments of rings to groups, then MAC will
266 266 * change around the way that rings are assigned to various groups as devices
267 267 * come and go from the system. For example, when a VNIC is created, a new flow
268 268 * will be created for the VNIC's MAC address. If a hardware ring is available,
269 269 * MAC may opt to reassign it from one group to another.
270 270 *
271 271 * ASSIGNMENT OF HARDWARE RINGS
272 272 *
273 273 * This is a bit of a complicated subject that varies depending on the device,
274 274 * the use of aggregations, the special nature of the primary mac client. This
275 275 * section deserves being fleshed out.
276 276 *
277 277 * FANOUT
278 278 *
279 279 * illumos uses fanout to help spread out the incoming processing load of chains
280 280 * of frames away from a single CPU. If a device supports receive side scaling,
281 281 * then that provides an initial form of fanout; however, what we're concerned
282 282 * with all happens after the context of a given set of frames being classified
283 283 * to a soft ring set.
284 284 *
285 285 * After frames reach a soft ring set and account for any potential bandwidth
286 286 * related accounting, they may be fanned out based on one of the following
287 287 * three modes:
288 288 *
289 289 * o No Fanout
290 290 * o Protocol level fanout
291 291 * o Full software ring protocol fanout
292 292 *
293 293 * MAC makes the determination as to which of these modes a given soft ring set
294 294 * obtains based on parameters such as whether or not it's the primary mac
295 295 * client, whether it's on a 10 GbE or faster device, user controlled dladm(1M)
296 296 * properties, and the nature of the hardware and the resources that it has.
297 297 *
298 298 * When there is no fanout, MAC does not create any soft rings for a device and
299 299 * the device has frames delivered directly to the MAC client.
300 300 *
301 301 * Otherwise, all fanout is performed by software. MAC divides incoming frames
302 302 * into one of three buckets -- IPv4 TCP traffic, IPv4 UDP traffic, and
303 303 * everything else. Note, VLAN tagged traffic is considered other, regardless of
304 304 * the interior EtherType. Regardless of the type of fanout, these three
305 305 * categories or buckets are always used.
306 306 *
307 307 * The difference between protocol level fanout and full software ring protocol
308 308 * fanout is the number of software rings that end up getting created. The
309 309 * system always uses the same number of software rings per protocol bucket. So
310 310 * in the first case when we're just doing protocol level fanout, we just create
311 311 * one software ring each for IPv4 TCP traffic, IPv4 UDP traffic, and everything
312 312 * else.
313 313 *
314 314 * In the case where we do full software ring protocol fanout, we generally use
315 315 * mac_compute_soft_ring_count() to determine the number of rings. There are
316 316 * other combinations of properties and devices that may send us down other
317 317 * paths, but this is a common starting point. If it's a non-bandwidth enforced
318 318 * device and we're on at least a 10 GbE link, then we'll use eight soft rings
319 319 * per protocol bucket as a starting point. See mac_compute_soft_ring_count()
320 320 * for more information on the total number.
321 321 *
322 322 * For each of these rings, we create a mac_soft_ring_t and an associated worker
323 323 * thread. Particularly when doing full software ring protocol fanout, we bind
324 324 * each of the worker threads to individual CPUs.
325 325 *
326 326 * The other advantage of these software rings is that it allows upper layers to
327 327 * optionally poll on them. For example, TCP can leverage an squeue to poll on
328 328 * the software ring, see squeue.c for more information.
329 329 *
330 330 * DLS BYPASS
331 331 *
332 332 * DLS is the data link services module. It interfaces with DLPI, which is the
333 333 * primary way that other parts of the system such as IP interface with the MAC
334 334 * layer. While DLS is traditionally a STREAMS-based interface, it allows for
335 335 * certain modules such as IP to negotiate various more modern interfaces to be
336 336 * used, which are useful for higher performance and allow it to use direct
337 337 * function calls to DLS instead of using STREAMS.
338 338 *
339 339 * When we have IPv4 TCP or UDP software rings, then traffic on those rings is
340 340 * eligible for what we call the dls bypass. In those cases, rather than going
341 341 * out mac_rx_deliver() to DLS, DLS instead registers them to go directly via
342 342 * the direct callback registered with DLS, generally ip_input().
343 343 *
344 344 * HARDWARE RING POLLING
345 345 *
346 346 * GLDv3 devices with hardware rings generally deliver chains of messages
347 347 * (mblk_t chain) during the context of a single interrupt. However, interrupts
348 348 * are not the only way that these devices may be used. As part of implementing
349 349 * ring support, a GLDv3 device driver must have a way to disable the generation
350 350 * of that interrupt and allow for the operating system to poll on that ring.
351 351 *
352 352 * To implement this, every soft ring set has a worker thread and a polling
353 353 * thread. If a sufficient packet rate comes into the system, MAC will 'blank'
354 354 * (disable) interrupts on that specific ring and the polling thread will start
355 355 * consuming packets from the hardware device and deliver them to the soft ring
356 356 * set, where the worker thread will take over.
357 357 *
358 358 * Once the rate of packet intake drops down below a certain threshold, then
359 359 * polling on the hardware ring will be quiesced and interrupts will be
360 360 * re-enabled for the given ring. This effectively allows the system to shift
361 361 * how it handles a ring based on its load. At high packet rates, polling on the
362 362 * device as opposed to relying on interrupts can actually reduce overall system
363 363 * load due to the minimization of interrupt activity.
364 364 *
365 365 * Note the importance of each ring having its own interrupt source. The whole
366 366 * idea here is that we do not disable interrupts on the device as a whole, but
367 367 * rather each ring can be independently toggled.
368 368 *
369 369 * USE OF WORKER THREADS
370 370 *
371 371 * Both the soft ring set and individual soft rings have a worker thread
372 372 * associated with them that may be bound to a specific CPU in the system. Any
373 373 * such assignment will get reassessed as part of dynamic reconfiguration events
374 374 * in the system such as the onlining and offlining of CPUs and the creation of
375 375 * CPU partitions.
376 376 *
377 377 * In many cases, while in an interrupt, we try to deliver a frame all the way
378 378 * through the stack in the context of the interrupt itself. However, if the
379 379 * amount of queued frames has exceeded a threshold, then we instead defer to
380 380 * the worker thread to do this work and signal it. This is particularly useful
381 381 * when you have the soft ring set delivering frames into multiple software
382 382 * rings. If it was only delivering frames into a single software ring then
383 383 * there'd be no need to have another thread take over. However, if it's
384 384 * delivering chains of frames to multiple rings, then it's worthwhile to have
385 385 * the worker for the software ring take over so that the different software
386 386 * rings can be processed in parallel.
387 387 *
388 388 * In a similar fashion to the hardware polling thread, if we don't have a
389 389 * backlog or there's nothing to do, then the worker thread will go back to
390 390 * sleep and frames can be delivered all the way from an interrupt. This
391 391 * behavior is useful as it's designed to minimize latency and the default
392 392 * disposition of MAC is to optimize for latency.
393 393 *
394 394 * MAINTAINING CHAINS
395 395 *
396 396 * Another useful idea that MAC uses is to try and maintain frames in chains for
397 397 * as long as possible. The idea is that all of MAC can handle chains of frames
398 398 * structured as a series of mblk_t structures linked with the b_next pointer.
399 399 * When performing software classification and software fanout, MAC does not
400 400 * simply determine the destination and send the frame along. Instead, in the
401 401 * case of classification, it tries to maintain a chain for as long as possible
402 402 * before passing it along and performing additional processing.
403 403 *
404 404 * In the case of fanout, MAC first determines what the target software ring is
405 405 * for every frame in the original chain and constructs a new chain for each
406 406 * target. MAC then delivers the new chain to each software ring in succession.
407 407 *
408 408 * The whole rationale for doing this is that we want to try and maintain the
409 409 * pipe as much as possible and deliver as many frames through the stack at once
410 410 * that we can, rather than just pushing a single frame through. This can often
411 411 * help bring down latency and allows MAC to get a better sense of the overall
412 412 * activity in the system and properly engage worker threads.
413 413 *
414 414 * --------------------
415 415 * Bandwidth Management
416 416 * --------------------
417 417 *
418 418 * Bandwidth management is something that's built into the soft ring set itself.
419 419 * When bandwidth limits are placed on a flow, a corresponding soft ring set is
420 420 * toggled into bandwidth mode. This changes how we transmit and receive the
421 421 * frames in question.
422 422 *
423 423 * Bandwidth management is done on a per-tick basis. We translate the user's
424 424 * requested bandwidth from a quantity per-second into a quantity per-tick. MAC
425 425 * cannot process a frame across more than one tick, thus it sets a lower bound
426 426 * for the bandwidth cap to be a single MTU. This also means that when
427 427 * hires ticks are enabled (hz is set to 1000), that the minimum amount of
428 428 * bandwidth is higher, because the number of ticks has increased and MAC has to
429 429 * go from accepting 100 packets / sec to 1000 / sec.
430 430 *
431 431 * The bandwidth counter is reset by either the soft ring set's worker thread or
432 432 * a thread that is doing an inline transmit or receive if they discover that
433 433 * the current tick is in the future from the recorded tick.
434 434 *
435 435 * Whenever we're receiving or transmitting data, we end up leaving most of the
436 436 * work to the soft ring set's worker thread. This forces data inserted into the
437 437 * soft ring set to be effectively serialized and allows us to exhume bandwidth
438 438 * at a reasonable rate. If there is nothing in the soft ring set at the moment
439 439 * and the set has available bandwidth, then it may processed inline.
440 440 * Otherwise, the worker is responsible for taking care of the soft ring set.
441 441 *
442 442 * ---------------------
443 443 * The Receive Data Path
444 444 * ---------------------
445 445 *
446 446 * The following series of ASCII art images breaks apart the way that a frame
447 447 * comes in and is processed in MAC.
448 448 *
449 449 * Part 1 -- Initial frame receipt, SRS classification
450 450 *
451 451 * Here, a frame is received by a GLDv3 driver, generally in the context of an
452 452 * interrupt, and it ends up in mac_rx_common(). A driver calls either mac_rx or
453 453 * mac_rx_ring, depending on whether or not it supports rings and can identify
454 454 * the interrupt as having come from a specific ring. Here we determine whether
455 455 * or not it's fully classified and perform software classification as
456 456 * appropriate. From here, everything always ends up going to either entry [A]
457 457 * or entry [B] based on whether or not they have subflow processing needed. We
458 458 * leave via fanout or delivery.
459 459 *
460 460 * +===========+
461 461 * v hardware v
462 462 * v interrupt v
463 463 * +===========+
464 464 * |
465 465 * * . . appropriate
466 466 * | upcall made
467 467 * | by GLDv3 driver . . always
468 468 * | .
469 469 * +--------+ | +----------+ . +---------------+
470 470 * | GLDv3 | +---->| mac_rx |-----*--->| mac_rx_common |
471 471 * | Driver |-->--+ +----------+ +---------------+
472 472 * +--------+ | ^ |
473 473 * | | ^ v
474 474 * ^ | * . . always +----------------------+
475 475 * | | | | mac_promisc_dispatch |
476 476 * | | +-------------+ +----------------------+
477 477 * | +--->| mac_rx_ring | |
478 478 * | +-------------+ * . . hw classified
479 479 * | v or single flow?
480 480 * | |
481 481 * | +--------++--------------+
482 482 * | | | * hw class,
483 483 * | | * hw classified | subflows
484 484 * | no hw class and . * | or single | exist
485 485 * | subflows | | flow |
486 486 * | | v v
487 487 * | | +-----------+ +-----------+
488 488 * | | | goto | | goto |
489 489 * | | | entry [A] | | entry [B] |
490 490 * | | +-----------+ +-----------+
491 491 * | v ^
492 492 * | +-------------+ |
493 493 * | | mac_rx_flow | * SRS and flow found,
494 494 * | +-------------+ | call flow cb
495 495 * | | +------+
496 496 * | v |
497 497 * v +==========+ +-----------------+
498 498 * | v For each v--->| mac_rx_classify |
499 499 * +----------+ v mblk_t v +-----------------+
500 500 * | srs | +==========+
501 501 * | pollling |
502 502 * | thread |->------------------------------------------+
503 503 * +----------+ |
504 504 * v . inline
505 505 * +--------------------+ +----------+ +---------+ .
506 506 * [A]---->| mac_rx_srs_process |-->| check bw |-->| enqueue |--*---------+
507 507 * +--------------------+ | limits | | frames | |
508 508 * ^ +----------+ | to SRS | |
509 509 * | +---------+ |
510 510 * | send chain +--------+ | |
511 511 * * when clasified | signal | * BW limits, |
512 512 * | flow changes | srs |<---+ loopback, |
513 513 * | | worker | stack too |
514 514 * | +--------+ deep |
515 515 * +-----------------+ +--------+ |
516 516 * | mac_flow_lookup | | srs | +---------------------+ |
517 517 * +-----------------+ | worker |---->| mac_rx_srs_drain |<---+
518 518 * ^ | thread | | mac_rx_srs_drain_bw |
519 519 * | +--------+ +---------------------+
520 520 * | |
521 521 * +----------------------------+ * software rings
522 522 * [B]-->| mac_rx_srs_subflow_process | | for fanout?
523 523 * +----------------------------+ |
524 524 * +----------+-----------+
525 525 * | |
526 526 * v v
527 527 * +--------+ +--------+
528 528 * | goto | | goto |
529 529 * | Part 2 | | Part 3 |
530 530 * +--------+ +--------+
531 531 *
532 532 * Part 2 -- Fanout
533 533 *
534 534 * This part is concerned with using software fanout to assign frames to
535 535 * software rings and then deliver them to MAC clients or allow those rings to
536 536 * be polled upon. While there are two different primary fanout entry points,
537 537 * mac_rx_fanout and mac_rx_proto_fanout, they behave in similar ways, and aside
538 538 * from some of the individual hashing techniques used, most of the general
539 539 * flow is the same.
540 540 *
541 541 * +--------+ +-------------------+
542 542 * | From |---+--------->| mac_rx_srs_fanout |----+
543 543 * | Part 1 | | +-------------------+ | +=================+
544 544 * +--------+ | | v for each mblk_t v
545 545 * * . . protocol only +--->v assign to new v
546 546 * | fanout | v chain based on v
547 547 * | | v hash % nrings v
548 548 * | +-------------------------+ | +=================+
549 549 * +--->| mac_rx_srs_proto_fanout |----+ |
550 550 * +-------------------------+ |
551 551 * v
552 552 * +------------+ +--------------------------+ +================+
553 553 * | enqueue in |<---| mac_rx_soft_ring_process |<------v for each chain v
554 554 * | soft ring | +--------------------------+ +================+
555 555 * +------------+
556 556 * | +-----------+
557 557 * * soft ring set | soft ring |
558 558 * | empty and no | worker |
559 559 * | worker? | thread |
560 560 * | +-----------+
561 561 * +------*----------------+ |
562 562 * | . | v
563 563 * No . * . Yes | +------------------------+
564 564 * | +----<--| mac_rx_soft_ring_drain |
565 565 * | | +------------------------+
566 566 * v |
567 567 * +-----------+ v
568 568 * | signal | +---------------+
569 569 * | soft ring | | Deliver chain |
570 570 * | worker | | goto Part 3 |
571 571 * +-----------+ +---------------+
572 572 *
573 573 *
574 574 * Part 3 -- Packet Delivery
575 575 *
576 576 * Here, we go through and deliver the mblk_t chain directly to a given
577 577 * processing function. In a lot of cases this is mac_rx_deliver(). In the case
578 578 * of DLS bypass being used, then instead we end up going ahead and deliver it
579 579 * to the direct callback registered with DLS, generally ip_input.
580 580 *
581 581 *
582 582 * +---------+ +----------------+ +------------------+
583 583 * | From |---+------->| mac_rx_deliver |--->| Off to DLS, or |
584 584 * | Parts 1 | | +----------------+ | other MAC client |
585 585 * | and 2 | * DLS bypass +------------------+
586 586 * +---------+ | enabled +----------+ +-------------+
587 587 * +---------->| ip_input |--->| To IP |
588 588 * +----------+ | and beyond! |
589 589 * +-------------+
590 590 *
591 591 * ----------------------
592 592 * The Transmit Data Path
593 593 * ----------------------
594 594 *
595 595 * Before we go into the images, it's worth talking about a problem that is a
596 596 * bit different from the receive data path. GLDv3 device drivers have a finite
597 597 * amount of transmit descriptors. When they run out, they return unused frames
598 598 * back to MAC. MAC, at this point has several options about what it will do,
599 599 * which vary based upon the settings that the client uses.
600 600 *
601 601 * When a device runs out of descriptors, the next thing that MAC does is
602 602 * enqueue them off of the soft ring set or a software ring, depending on the
603 603 * configuration of the soft ring set. MAC will enqueue up to a high watermark
604 604 * of mblk_t chains, at which point it will indicate flow control back to the
605 605 * client. Once this condition is reached, any mblk_t chains that were not
606 606 * enqueued will be returned to the caller and they will have to decide what to
607 607 * do with them. There are various flags that control this behavior that a
608 608 * client may pass, which are discussed below.
609 609 *
610 610 * When this condition is hit, MAC also returns a cookie to the client in
611 611 * addition to unconsumed frames. Clients can poll on that cookie and register a
612 612 * callback with MAC to be notified when they are no longer subject to flow
613 613 * control, at which point they may continue to call mac_tx(). This flow control
614 614 * actually manages to work itself all the way up the stack, back through dls,
615 615 * to ip, through the various protocols, and to sockfs.
616 616 *
617 617 * While the behavior described above is the default, this behavior can be
618 618 * modified. There are two alternate modes, described below, which are
619 619 * controlled with flags.
620 620 *
621 621 * DROP MODE
622 622 *
623 623 * This mode is controlled by having the client pass the MAC_DROP_ON_NO_DESC
624 624 * flag. When this is passed, if a device driver runs out of transmit
625 625 * descriptors, then the MAC layer will drop any unsent traffic. The client in
626 626 * this case will never have any frames returned to it.
627 627 *
628 628 * DON'T ENQUEUE
629 629 *
630 630 * This mode is controlled by having the client pass the MAC_TX_NO_ENQUEUE flag.
631 631 * If the MAC_DROP_ON_NO_DESC flag is also passed, it takes precedence. In this
632 632 * mode, when we hit a case where a driver runs out of transmit descriptors,
633 633 * then instead of enqueuing packets in a soft ring set or software ring, we
634 634 * instead return the mblk_t chain back to the caller and immediately put the
635 635 * soft ring set into flow control mode.
636 636 *
637 637 * The following series of ASCII art images describe the transmit data path that
638 638 * MAC clients enter into based on calling into mac_tx(). A soft ring set has a
639 639 * transmission function associated with it. There are seven possible
640 640 * transmission modes, some of which share function entry points. The one that a
641 641 * soft ring set gets depends on properties such as whether there are
642 642 * transmission rings for fanout, whether the device involves aggregations,
643 643 * whether any bandwidth limits exist, etc.
644 644 *
645 645 *
646 646 * Part 1 -- Initial checks
647 647 *
648 648 * * . called by
649 649 * | MAC clients
650 650 * v . . No
651 651 * +--------+ +-----------+ . +-------------------+ +====================+
652 652 * | mac_tx |->| device |-*-->| mac_protect_check |->v Is this the simple v
653 653 * +--------+ | quiesced? | +-------------------+ v case? See [1] v
654 654 * +-----------+ | +====================+
655 655 * * . Yes * failed |
656 656 * v | frames |
657 657 * +--------------+ | +-------+---------+
658 658 * | freemsgchain |<---------+ Yes . * No . *
659 659 * +--------------+ v v
660 660 * +-----------+ +--------+
661 661 * | goto | | goto |
662 662 * | Part 2 | | SRS TX |
663 663 * | Entry [A] | | func |
664 664 * +-----------+ +--------+
665 665 * | |
666 666 * | v
667 667 * | +--------+
668 668 * +---------->| return |
669 669 * | cookie |
670 670 * +--------+
671 671 *
672 672 * [1] The simple case refers to the SRS being configured with the
673 673 * SRS_TX_DEFAULT transmission mode, having a single mblk_t (not a chain), their
674 674 * being only a single active client, and not having a backlog in the srs.
675 675 *
676 676 *
677 677 * Part 2 -- The SRS transmission functions
678 678 *
679 679 * This part is a bit more complicated. The different transmission paths often
680 680 * leverage one another. In this case, we'll draw out the more common ones
681 681 * before the parts that depend upon them. Here, we're going to start with the
682 682 * workings of mac_tx_send() a common function that most of the others end up
683 683 * calling.
684 684 *
685 685 * +-------------+
686 686 * | mac_tx_send |
687 687 * +-------------+
688 688 * |
689 689 * v
690 690 * +=============+ +==============+
691 691 * v more than v--->v check v
692 692 * v one client? v v VLAN and add v
693 693 * +=============+ v VLAN tags v
694 694 * | +==============+
695 695 * | |
696 696 * +------------------+
697 697 * |
698 698 * | [A]
699 699 * v |
700 700 * +============+ . No v
701 701 * v more than v . +==========+ +--------------------------+
702 702 * v one active v-*---->v for each v---->| mac_promisc_dispatch_one |---+
703 703 * v client? v v mblk_t v +--------------------------+ |
704 704 * +============+ +==========+ ^ |
705 705 * | | +==========+ |
706 706 * * . Yes | v hardware v<-------+
707 707 * v +------------+ v rings? v
708 708 * +==========+ | +==========+
709 709 * v for each v No . . . * |
710 710 * v mblk_t v specific | |
711 711 * +==========+ flow | +-----+-----+
712 712 * | | | |
713 713 * v | v v
714 714 * +-----------------+ | +-------+ +---------+
715 715 * | mac_tx_classify |------------+ | GLDv3 | | GLDv3 |
716 716 * +-----------------+ |TX func| | ring tx |
717 717 * | +-------+ | func |
718 718 * * Specific flow, generally | +---------+
719 719 * | bcast, mcast, loopback | |
720 720 * v +-----+-----+
721 721 * +==========+ +---------+ |
722 722 * v valid L2 v--*--->| freemsg | v
723 723 * v header v . No +---------+ +-------------------+
724 724 * +==========+ | return unconsumed |
725 725 * * . Yes | frames to the |
726 726 * v | caller |
727 727 * +===========+ +-------------------+
728 728 * v braodcast v +----------------+ ^
729 729 * v flow? v--*-->| mac_bcast_send |------------------+
730 730 * +===========+ . +----------------+ |
731 731 * | . . Yes |
732 732 * No . * v
733 733 * | +---------------------+ +---------------+ +----------+
734 734 * +->|mac_promisc_dispatch |->| mac_fix_cksum |->| flow |
735 735 * +---------------------+ +---------------+ | callback |
736 736 * +----------+
737 737 *
738 738 *
739 739 * In addition, many but not all of the routines, all rely on
740 740 * mac_tx_softring_process as an entry point.
741 741 *
742 742 *
743 743 * . No . No
744 744 * +--------------------------+ +========+ . +===========+ . +-------------+
745 745 * | mac_tx_soft_ring_process |-->v worker v-*->v out of tx v-*->| goto |
746 746 * +--------------------------+ v only? v v descr.? v | mac_tx_send |
747 747 * +========+ +===========+ +-------------+
748 748 * Yes . * * . Yes |
749 749 * . No v | v
750 750 * v=========+ . +===========+ . Yes | Yes . +==========+
751 751 * v apppend v<--*----------v out of tx v-*-------+---------*--v returned v
752 752 * v mblk_t v v descr.? v | v frames? v
753 753 * v chain v +===========+ | +==========+
754 754 * +=========+ | *. No
755 755 * | | v
756 756 * v v +------------+
757 757 * +===================+ +----------------------+ | done |
758 758 * v worker scheduled? v | mac_tx_sring_enqueue | | processing |
759 759 * v Out of tx descr? v +----------------------+ +------------+
760 760 * +===================+ |
761 761 * | | . Yes v
762 762 * * Yes * No . +============+
763 763 * | v +-*---------v drop on no v
764 764 * | +========+ v v TX desc? v
765 765 * | v wake v +----------+ +============+
766 766 * | v worker v | mac_pkt_ | * . No
767 767 * | +========+ | drop | | . Yes . No
768 768 * | | +----------+ v . .
769 769 * | | v ^ +===============+ . +========+ .
770 770 * +--+--------+---------+ | v Don't enqueue v-*->v ring v-*----+
771 771 * | | v Set? v v empty? v |
772 772 * | +---------------+ +===============+ +========+ |
773 773 * | | | | |
774 774 * | | +-------------------+ | |
775 775 * | *. Yes | +---------+ |
776 776 * | | v v v
777 777 * | | +===========+ +========+ +--------------+
778 778 * | +<-v At hiwat? v v append v | return |
779 779 * | +===========+ v mblk_t v | mblk_t chain |
780 780 * | * No v chain v | and flow |
781 781 * | v +========+ | control |
782 782 * | +=========+ | | cookie |
783 783 * | v append v v +--------------+
784 784 * | v mblk_t v +========+
785 785 * | v chain v v wake v +------------+
786 786 * | +=========+ v worker v-->| done |
787 787 * | | +========+ | processing |
788 788 * | v .. Yes +------------+
789 789 * | +=========+ . +========+
790 790 * | v first v--*-->v wake v
791 791 * | v append? v v worker v
792 792 * | +=========+ +========+
793 793 * | | |
794 794 * | No . * |
795 795 * | v |
796 796 * | +--------------+ |
797 797 * +------>| Return | |
798 798 * | flow control |<------------+
799 799 * | cookie |
800 800 * +--------------+
801 801 *
802 802 *
803 803 * The remaining images are all specific to each of the different transmission
804 804 * modes.
805 805 *
806 806 * SRS TX DEFAULT
807 807 *
808 808 * [ From Part 1 ]
809 809 * |
810 810 * v
811 811 * +-------------------------+
812 812 * | mac_tx_single_ring_mode |
813 813 * +-------------------------+
814 814 * |
815 815 * | . Yes
816 816 * v .
817 817 * +==========+ . +============+
818 818 * v SRS v-*->v Try to v---->---------------------+
819 819 * v backlog? v v enqueue in v |
820 820 * +==========+ v SRS v-->------+ * . . Queue too
821 821 * | +============+ * don't enqueue | deep or
822 822 * * . No ^ | | flag or at | drop flag
823 823 * | | v | hiwat, |
824 824 * v | | | return +---------+
825 825 * +-------------+ | | | cookie | freemsg |
826 826 * | goto |-*-----+ | | +---------+
827 827 * | mac_tx_send | . returned | | |
828 828 * +-------------+ mblk_t | | |
829 829 * | | | |
830 830 * | | | |
831 831 * * . . all mblk_t * queued, | |
832 832 * v consumed | may return | |
833 833 * +-------------+ | tx cookie | |
834 834 * | SRS TX func |<------------+------------+----------------+
835 835 * | completed |
836 836 * +-------------+
837 837 *
838 838 * SRS_TX_SERIALIZE
839 839 *
840 840 * +------------------------+
841 841 * | mac_tx_serializer_mode |
842 842 * +------------------------+
843 843 * |
844 844 * | . No
845 845 * v .
846 846 * +============+ . +============+ +-------------+ +============+
847 847 * v srs being v-*->v set SRS v--->| goto |-->v remove SRS v
848 848 * v processed? v v proc flags v | mac_tx_send | v proc flag v
849 849 * +============+ +============+ +-------------+ +============+
850 850 * | |
851 851 * * Yes |
852 852 * v . No v
853 853 * +--------------------+ . +==========+
854 854 * | mac_tx_srs_enqueue | +------------------------*-----<--v returned v
855 855 * +--------------------+ | v frames? v
856 856 * | | . Yes +==========+
857 857 * | | . |
858 858 * | | . +=========+ v
859 859 * v +-<-*-v queued v +--------------------+
860 860 * +-------------+ | v frames? v<----| mac_tx_srs_enqueue |
861 861 * | SRS TX func | | +=========+ +--------------------+
862 862 * | completed, |<------+ * . Yes
863 863 * | may return | | v
864 864 * | cookie | | +========+
865 865 * +-------------+ +-<---v wake v
866 866 * v worker v
867 867 * +========+
868 868 *
869 869 *
870 870 * SRS_TX_FANOUT
871 871 *
872 872 * . Yes
873 873 * +--------------------+ +=============+ . +--------------------------+
874 874 * | mac_tx_fanout_mode |--->v Have fanout v-*-->| goto |
875 875 * +--------------------+ v hint? v | mac_rx_soft_ring_process |
876 876 * +=============+ +--------------------------+
877 877 * * . No |
878 878 * v ^
879 879 * +===========+ |
880 880 * +--->v for each v +===============+
881 881 * | v mblk_t v v pick softring v
882 882 * same * +===========+ v from hash v
883 883 * hash | | +===============+
884 884 * | v |
885 885 * | +--------------+ |
886 886 * +---| mac_pkt_hash |--->*------------+
887 887 * +--------------+ . different
888 888 * hash or
889 889 * done proc.
890 890 * SRS_TX_AGGR chain
891 891 *
892 892 * +------------------+ +================================+
893 893 * | mac_tx_aggr_mode |--->v Use aggr capab function to v
894 894 * +------------------+ v find appropriate tx ring. v
895 895 * v Applies hash based on aggr v
896 896 * v policy, see mac_tx_aggr_mode() v
897 897 * +================================+
898 898 * |
899 899 * v
900 900 * +-------------------------------+
901 901 * | goto |
902 902 * | mac_rx_srs_soft_ring_process |
903 903 * +-------------------------------+
904 904 *
905 905 *
906 906 * SRS_TX_BW, SRS_TX_BW_FANOUT, SRS_TX_BW_AGGR
907 907 *
908 908 * Note, all three of these tx functions start from the same place --
909 909 * mac_tx_bw_mode().
910 910 *
911 911 * +----------------+
912 912 * | mac_tx_bw_mode |
913 913 * +----------------+
914 914 * |
915 915 * v . No . No . Yes
916 916 * +==============+ . +============+ . +=============+ . +=========+
917 917 * v Out of BW? v--*->v SRS empty? v--*->v reset BW v-*->v Bump BW v
918 918 * +==============+ +============+ v tick count? v v Usage v
919 919 * | | +=============+ +=========+
920 920 * | +---------+ | |
921 921 * | | +--------------------+ |
922 922 * | | | +----------------------+
923 923 * v | v v
924 924 * +===============+ | +==========+ +==========+ +------------------+
925 925 * v Don't enqueue v | v set bw v v Is aggr? v--*-->| goto |
926 926 * v flag set? v | v enforced v +==========+ . | mac_tx_aggr_mode |-+
927 927 * +===============+ | +==========+ | . +------------------+ |
928 928 * | Yes .* | | No . * . |
929 929 * | | | | | . Yes |
930 930 * * . No | | v | |
931 931 * | +---------+ | +========+ v +======+ |
932 932 * | | freemsg | | v append v +============+ . Yes v pick v |
933 933 * | +---------+ | v mblk_t v v Is fanout? v--*---->v ring v |
934 934 * | | | v chain v +============+ +======+ |
935 935 * +------+ | +========+ | | |
936 936 * v | | v v |
937 937 * +---------+ | v +-------------+ +--------------------+ |
938 938 * | return | | +========+ | goto | | goto | |
939 939 * | flow | | v wakeup v | mac_tx_send | | mac_tx_fanout_mode | |
940 940 * | control | | v worker v +-------------+ +--------------------+ |
941 941 * | cookie | | +========+ | | |
942 942 * +---------+ | | | +------+------+
943 943 * | v | |
944 944 * | +---------+ | v
945 945 * | | return | +============+ +------------+
946 946 * | | flow | v unconsumed v-------+ | done |
947 947 * | | control | v frames? v | | processing |
948 948 * | | cookie | +============+ | +------------+
949 949 * | +---------+ | |
950 950 * | Yes * |
951 951 * | | |
952 952 * | +===========+ |
953 953 * | v subtract v |
954 954 * | v unused bw v |
955 955 * | +===========+ |
956 956 * | | |
957 957 * | v |
958 958 * | +--------------------+ |
959 959 * +------------->| mac_tx_srs_enqueue | |
960 960 * +--------------------+ |
961 961 * | |
962 962 * | |
963 963 * +------------+ |
964 964 * | return fc | |
965 965 * | cookie and |<------+
966 966 * | mblk_t |
967 967 * +------------+
968 968 */
969 969
970 970 #include <sys/types.h>
971 971 #include <sys/callb.h>
972 972 #include <sys/sdt.h>
973 973 #include <sys/strsubr.h>
974 974 #include <sys/strsun.h>
975 975 #include <sys/vlan.h>
976 976 #include <sys/stack.h>
977 977 #include <sys/archsystm.h>
978 978 #include <inet/ipsec_impl.h>
979 979 #include <inet/ip_impl.h>
980 980 #include <inet/sadb.h>
981 981 #include <inet/ipsecesp.h>
982 982 #include <inet/ipsecah.h>
983 983 #include <inet/ip6.h>
984 984
985 985 #include <sys/mac_impl.h>
986 986 #include <sys/mac_client_impl.h>
987 987 #include <sys/mac_client_priv.h>
988 988 #include <sys/mac_soft_ring.h>
989 989 #include <sys/mac_flow_impl.h>
990 990
991 991 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *,
992 992 uintptr_t, uint16_t, mblk_t **);
993 993 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *,
994 994 uintptr_t, uint16_t, mblk_t **);
995 995 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *,
996 996 uintptr_t, uint16_t, mblk_t **);
997 997 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *,
998 998 uintptr_t, uint16_t, mblk_t **);
999 999 static mac_tx_cookie_t mac_tx_aggr_mode(mac_soft_ring_set_t *, mblk_t *,
1000 1000 uintptr_t, uint16_t, mblk_t **);
1001 1001
1002 1002 typedef struct mac_tx_mode_s {
1003 1003 mac_tx_srs_mode_t mac_tx_mode;
1004 1004 mac_tx_func_t mac_tx_func;
1005 1005 } mac_tx_mode_t;
1006 1006
1007 1007 /*
1008 1008 * There are seven modes of operation on the Tx side. These modes get set
1009 1009 * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode,
1010 1010 * none of the other modes are user configurable. They get selected by
1011 1011 * the system depending upon whether the link (or flow) has multiple Tx
1012 1012 * rings or a bandwidth configured, or if the link is an aggr, etc.
1013 1013 *
1014 1014 * When the Tx SRS is operating in aggr mode (st_mode) or if there are
1015 1015 * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or
1016 1016 * otherwise) will have a soft ring associated with it. These soft rings
1017 1017 * are stored in srs_tx_soft_rings[] array.
1018 1018 *
1019 1019 * Additionally in the case of aggr, there is the st_soft_rings[] array
1020 1020 * in the mac_srs_tx_t structure. This array is used to store the same
1021 1021 * set of soft rings that are present in srs_tx_soft_rings[] array but
1022 1022 * in a different manner. The soft ring associated with the pseudo Tx
1023 1023 * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[]
1024 1024 * array. This helps in quickly getting the soft ring associated with the
1025 1025 * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to
1026 1026 * be used for transmit.
1027 1027 */
1028 1028 mac_tx_mode_t mac_tx_mode_list[] = {
1029 1029 {SRS_TX_DEFAULT, mac_tx_single_ring_mode},
1030 1030 {SRS_TX_SERIALIZE, mac_tx_serializer_mode},
1031 1031 {SRS_TX_FANOUT, mac_tx_fanout_mode},
1032 1032 {SRS_TX_BW, mac_tx_bw_mode},
1033 1033 {SRS_TX_BW_FANOUT, mac_tx_bw_mode},
1034 1034 {SRS_TX_AGGR, mac_tx_aggr_mode},
1035 1035 {SRS_TX_BW_AGGR, mac_tx_bw_mode}
1036 1036 };
1037 1037
1038 1038 /*
1039 1039 * Soft Ring Set (SRS) - The Run time code that deals with
1040 1040 * dynamic polling from the hardware, bandwidth enforcement,
1041 1041 * fanout etc.
1042 1042 *
1043 1043 * We try to use H/W classification on NIC and assign traffic for
1044 1044 * a MAC address to a particular Rx ring or ring group. There is a
1045 1045 * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically
1046 1046 * switches the underlying Rx ring between interrupt and
1047 1047 * polling mode and enforces any specified B/W control.
1048 1048 *
1049 1049 * There is always a SRS created and tied to each H/W and S/W rule.
1050 1050 * Whenever we create a H/W rule, we always add the the same rule to
1051 1051 * S/W classifier and tie a SRS to it.
1052 1052 *
1053 1053 * In case a B/W control is specified, it is broken into bytes
1054 1054 * per ticks and as soon as the quota for a tick is exhausted,
1055 1055 * the underlying Rx ring is forced into poll mode for remainder of
1056 1056 * the tick. The SRS poll thread only polls for bytes that are
1057 1057 * allowed to come in the SRS. We typically let 4x the configured
1058 1058 * B/W worth of packets to come in the SRS (to prevent unnecessary
1059 1059 * drops due to bursts) but only process the specified amount.
1060 1060 *
1061 1061 * A MAC client (e.g. a VNIC or aggr) can have 1 or more
1062 1062 * Rx rings (and corresponding SRSs) assigned to it. The SRS
1063 1063 * in turn can have softrings to do protocol level fanout or
1064 1064 * softrings to do S/W based fanout or both. In case the NIC
1065 1065 * has no Rx rings, we do S/W classification to respective SRS.
1066 1066 * The S/W classification rule is always setup and ready. This
1067 1067 * allows the MAC layer to reassign Rx rings whenever needed
1068 1068 * but packets still continue to flow via the default path and
1069 1069 * getting S/W classified to correct SRS.
1070 1070 *
1071 1071 * The SRS's are used on both Tx and Rx side. They use the same
1072 1072 * data structure but the processing routines have slightly different
1073 1073 * semantics due to the fact that Rx side needs to do dynamic
1074 1074 * polling etc.
1075 1075 *
1076 1076 * Dynamic Polling Notes
1077 1077 * =====================
1078 1078 *
1079 1079 * Each Soft ring set is capable of switching its Rx ring between
1080 1080 * interrupt and poll mode and actively 'polls' for packets in
1081 1081 * poll mode. If the SRS is implementing a B/W limit, it makes
1082 1082 * sure that only Max allowed packets are pulled in poll mode
1083 1083 * and goes to poll mode as soon as B/W limit is exceeded. As
1084 1084 * such, there are no overheads to implement B/W limits.
1085 1085 *
1086 1086 * In poll mode, its better to keep the pipeline going where the
1087 1087 * SRS worker thread keeps processing packets and poll thread
1088 1088 * keeps bringing more packets (specially if they get to run
1089 1089 * on different CPUs). This also prevents the overheads associated
1090 1090 * by excessive signalling (on NUMA machines, this can be
1091 1091 * pretty devastating). The exception is latency optimized case
1092 1092 * where worker thread does no work and interrupt and poll thread
1093 1093 * are allowed to do their own drain.
1094 1094 *
1095 1095 * We use the following policy to control Dynamic Polling:
1096 1096 * 1) We switch to poll mode anytime the processing
1097 1097 * thread causes a backlog to build up in SRS and
1098 1098 * its associated Soft Rings (sr_poll_pkt_cnt > 0).
1099 1099 * 2) As long as the backlog stays under the low water
1100 1100 * mark (sr_lowat), we poll the H/W for more packets.
1101 1101 * 3) If the backlog (sr_poll_pkt_cnt) exceeds low
1102 1102 * water mark, we stay in poll mode but don't poll
1103 1103 * the H/W for more packets.
1104 1104 * 4) Anytime in polling mode, if we poll the H/W for
1105 1105 * packets and find nothing plus we have an existing
1106 1106 * backlog (sr_poll_pkt_cnt > 0), we stay in polling
1107 1107 * mode but don't poll the H/W for packets anymore
1108 1108 * (let the polling thread go to sleep).
1109 1109 * 5) Once the backlog is relived (packets are processed)
1110 1110 * we reenable polling (by signalling the poll thread)
1111 1111 * only when the backlog dips below sr_poll_thres.
1112 1112 * 6) sr_hiwat is used exclusively when we are not
1113 1113 * polling capable and is used to decide when to
1114 1114 * drop packets so the SRS queue length doesn't grow
1115 1115 * infinitely.
1116 1116 *
1117 1117 * NOTE: Also see the block level comment on top of mac_soft_ring.c
1118 1118 */
1119 1119
1120 1120 /*
1121 1121 * mac_latency_optimize
1122 1122 *
1123 1123 * Controls whether the poll thread can process the packets inline
1124 1124 * or let the SRS worker thread do the processing. This applies if
1125 1125 * the SRS was not being processed. For latency sensitive traffic,
1126 1126 * this needs to be true to allow inline processing. For throughput
1127 1127 * under load, this should be false.
1128 1128 *
1129 1129 * This (and other similar) tunable should be rolled into a link
1130 1130 * or flow specific workload hint that can be set using dladm
1131 1131 * linkprop (instead of multiple such tunables).
1132 1132 */
1133 1133 boolean_t mac_latency_optimize = B_TRUE;
1134 1134
1135 1135 /*
1136 1136 * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN
1137 1137 *
1138 1138 * queue a mp or chain in soft ring set and increment the
1139 1139 * local count (srs_count) for the SRS and the shared counter
1140 1140 * (srs_poll_pkt_cnt - shared between SRS and its soft rings
1141 1141 * to track the total unprocessed packets for polling to work
1142 1142 * correctly).
1143 1143 *
1144 1144 * The size (total bytes queued) counters are incremented only
1145 1145 * if we are doing B/W control.
1146 1146 */
1147 1147 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
1148 1148 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1149 1149 if ((mac_srs)->srs_last != NULL) \
1150 1150 (mac_srs)->srs_last->b_next = (head); \
1151 1151 else \
1152 1152 (mac_srs)->srs_first = (head); \
1153 1153 (mac_srs)->srs_last = (tail); \
1154 1154 (mac_srs)->srs_count += count; \
1155 1155 }
1156 1156
1157 1157 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
1158 1158 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \
1159 1159 \
1160 1160 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \
1161 1161 srs_rx->sr_poll_pkt_cnt += count; \
1162 1162 ASSERT(srs_rx->sr_poll_pkt_cnt > 0); \
1163 1163 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \
1164 1164 (mac_srs)->srs_size += (sz); \
1165 1165 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock); \
1166 1166 (mac_srs)->srs_bw->mac_bw_sz += (sz); \
1167 1167 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock); \
1168 1168 } \
1169 1169 }
1170 1170
1171 1171 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
1172 1172 mac_srs->srs_state |= SRS_ENQUEUED; \
1173 1173 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \
1174 1174 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \
1175 1175 (mac_srs)->srs_size += (sz); \
1176 1176 (mac_srs)->srs_bw->mac_bw_sz += (sz); \
1177 1177 } \
1178 1178 }
1179 1179
1180 1180 /*
1181 1181 * Turn polling on routines
1182 1182 */
1183 1183 #define MAC_SRS_POLLING_ON(mac_srs) { \
1184 1184 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1185 1185 if (((mac_srs)->srs_state & \
1186 1186 (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) { \
|
↓ open down ↓ |
981 lines elided |
↑ open up ↑ |
1187 1187 (mac_srs)->srs_state |= SRS_POLLING; \
1188 1188 (void) mac_hwring_disable_intr((mac_ring_handle_t) \
1189 1189 (mac_srs)->srs_ring); \
1190 1190 (mac_srs)->srs_rx.sr_poll_on++; \
1191 1191 } \
1192 1192 }
1193 1193
1194 1194 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) { \
1195 1195 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1196 1196 if (((mac_srs)->srs_state & \
1197 - (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \
1197 + (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \
1198 1198 (SRS_POLLING_CAPAB|SRS_WORKER)) { \
1199 1199 (mac_srs)->srs_state |= SRS_POLLING; \
1200 1200 (void) mac_hwring_disable_intr((mac_ring_handle_t) \
1201 1201 (mac_srs)->srs_ring); \
1202 1202 (mac_srs)->srs_rx.sr_worker_poll_on++; \
1203 1203 } \
1204 1204 }
1205 1205
1206 1206 /*
1207 1207 * MAC_SRS_POLL_RING
1208 1208 *
1209 1209 * Signal the SRS poll thread to poll the underlying H/W ring
|
↓ open down ↓ |
2 lines elided |
↑ open up ↑ |
1210 1210 * provided it wasn't already polling (SRS_GET_PKTS was set).
1211 1211 *
1212 1212 * Poll thread gets to run only from mac_rx_srs_drain() and only
1213 1213 * if the drain was being done by the worker thread.
1214 1214 */
1215 1215 #define MAC_SRS_POLL_RING(mac_srs) { \
1216 1216 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \
1217 1217 \
1218 1218 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1219 1219 srs_rx->sr_poll_thr_sig++; \
1220 - if (((mac_srs)->srs_state & \
1220 + if (((mac_srs)->srs_state & \
1221 1221 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) == \
1222 1222 (SRS_WORKER|SRS_POLLING_CAPAB)) { \
1223 1223 (mac_srs)->srs_state |= SRS_GET_PKTS; \
1224 - cv_signal(&(mac_srs)->srs_cv); \
1224 + cv_signal(&(mac_srs)->srs_cv); \
1225 1225 } else { \
1226 1226 srs_rx->sr_poll_thr_busy++; \
1227 1227 } \
1228 1228 }
1229 1229
1230 1230 /*
1231 1231 * MAC_SRS_CHECK_BW_CONTROL
1232 1232 *
1233 1233 * Check to see if next tick has started so we can reset the
1234 1234 * SRS_BW_ENFORCED flag and allow more packets to come in the
1235 1235 * system.
1236 1236 */
1237 1237 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) { \
1238 1238 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1239 1239 ASSERT(((mac_srs)->srs_type & SRST_TX) || \
1240 1240 MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock)); \
1241 1241 clock_t now = ddi_get_lbolt(); \
1242 1242 if ((mac_srs)->srs_bw->mac_bw_curr_time != now) { \
1243 1243 (mac_srs)->srs_bw->mac_bw_curr_time = now; \
1244 - (mac_srs)->srs_bw->mac_bw_used = 0; \
1244 + (mac_srs)->srs_bw->mac_bw_used = 0; \
1245 1245 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED) \
1246 1246 (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \
1247 1247 } \
1248 1248 }
1249 1249
1250 1250 /*
1251 1251 * MAC_SRS_WORKER_WAKEUP
1252 1252 *
1253 1253 * Wake up the SRS worker thread to process the queue as long as
1254 1254 * no one else is processing the queue. If we are optimizing for
1255 1255 * latency, we wake up the worker thread immediately or else we
1256 1256 * wait mac_srs_worker_wakeup_ticks before worker thread gets
1257 1257 * woken up.
1258 1258 */
1259 1259 int mac_srs_worker_wakeup_ticks = 0;
1260 1260 #define MAC_SRS_WORKER_WAKEUP(mac_srs) { \
1261 1261 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1262 1262 if (!((mac_srs)->srs_state & SRS_PROC) && \
1263 1263 (mac_srs)->srs_tid == NULL) { \
1264 1264 if (((mac_srs)->srs_state & SRS_LATENCY_OPT) || \
1265 1265 (mac_srs_worker_wakeup_ticks == 0)) \
1266 1266 cv_signal(&(mac_srs)->srs_async); \
1267 1267 else \
1268 1268 (mac_srs)->srs_tid = \
1269 1269 timeout(mac_srs_fire, (mac_srs), \
1270 1270 mac_srs_worker_wakeup_ticks); \
1271 1271 } \
1272 1272 }
1273 1273
1274 1274 #define TX_BANDWIDTH_MODE(mac_srs) \
1275 1275 ((mac_srs)->srs_tx.st_mode == SRS_TX_BW || \
1276 1276 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT || \
1277 1277 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR)
1278 1278
1279 1279 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) { \
1280 1280 if (tx_mode == SRS_TX_BW_FANOUT) \
1281 1281 (void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\
1282 1282 else \
1283 1283 (void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL); \
1284 1284 }
1285 1285
1286 1286 /*
1287 1287 * MAC_TX_SRS_BLOCK
1288 1288 *
1289 1289 * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED
1290 1290 * will be set only if srs_tx_woken_up is FALSE. If
1291 1291 * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived
1292 1292 * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to
1293 1293 * attempt to transmit again and not setting SRS_TX_BLOCKED does
1294 1294 * that.
1295 1295 */
1296 1296 #define MAC_TX_SRS_BLOCK(srs, mp) { \
1297 1297 ASSERT(MUTEX_HELD(&(srs)->srs_lock)); \
1298 1298 if ((srs)->srs_tx.st_woken_up) { \
1299 1299 (srs)->srs_tx.st_woken_up = B_FALSE; \
1300 1300 } else { \
1301 1301 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED)); \
1302 1302 (srs)->srs_state |= SRS_TX_BLOCKED; \
1303 1303 (srs)->srs_tx.st_stat.mts_blockcnt++; \
1304 1304 } \
1305 1305 }
1306 1306
1307 1307 /*
1308 1308 * MAC_TX_SRS_TEST_HIWAT
1309 1309 *
1310 1310 * Called before queueing a packet onto Tx SRS to test and set
1311 1311 * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat.
1312 1312 */
1313 1313 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) { \
1314 1314 boolean_t enqueue = 1; \
1315 1315 \
1316 1316 if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) { \
1317 1317 /* \
1318 1318 * flow-controlled. Store srs in cookie so that it \
1319 1319 * can be returned as mac_tx_cookie_t to client \
1320 1320 */ \
1321 1321 (srs)->srs_state |= SRS_TX_HIWAT; \
1322 1322 cookie = (mac_tx_cookie_t)srs; \
1323 1323 (srs)->srs_tx.st_hiwat_cnt++; \
1324 1324 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) { \
1325 1325 /* increment freed stats */ \
1326 1326 (srs)->srs_tx.st_stat.mts_sdrops += cnt; \
1327 1327 /* \
1328 1328 * b_prev may be set to the fanout hint \
1329 1329 * hence can't use freemsg directly \
1330 1330 */ \
1331 1331 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); \
1332 1332 DTRACE_PROBE1(tx_queued_hiwat, \
1333 1333 mac_soft_ring_set_t *, srs); \
1334 1334 enqueue = 0; \
1335 1335 } \
1336 1336 } \
1337 1337 if (enqueue) \
1338 1338 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz); \
1339 1339 }
1340 1340
1341 1341 /* Some utility macros */
1342 1342 #define MAC_SRS_BW_LOCK(srs) \
1343 1343 if (!(srs->srs_type & SRST_TX)) \
1344 1344 mutex_enter(&srs->srs_bw->mac_bw_lock);
1345 1345
1346 1346 #define MAC_SRS_BW_UNLOCK(srs) \
1347 1347 if (!(srs->srs_type & SRST_TX)) \
1348 1348 mutex_exit(&srs->srs_bw->mac_bw_lock);
1349 1349
1350 1350 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) { \
1351 1351 mac_pkt_drop(NULL, NULL, mp, B_FALSE); \
1352 1352 /* increment freed stats */ \
1353 1353 mac_srs->srs_tx.st_stat.mts_sdrops++; \
1354 1354 cookie = (mac_tx_cookie_t)srs; \
1355 1355 }
1356 1356
1357 1357 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) { \
1358 1358 mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT; \
1359 1359 cookie = (mac_tx_cookie_t)srs; \
1360 1360 *ret_mp = mp_chain; \
1361 1361 }
1362 1362
1363 1363 /*
1364 1364 * MAC_RX_SRS_TOODEEP
1365 1365 *
1366 1366 * Macro called as part of receive-side processing to determine if handling
1367 1367 * can occur in situ (in the interrupt thread) or if it should be left to a
1368 1368 * worker thread. Note that the constant used to make this determination is
1369 1369 * not entirely made-up, and is a result of some emprical validation. That
1370 1370 * said, the constant is left as a static variable to allow it to be
1371 1371 * dynamically tuned in the field if and as needed.
1372 1372 */
1373 1373 static uintptr_t mac_rx_srs_stack_needed = 10240;
1374 1374 static uint_t mac_rx_srs_stack_toodeep;
1375 1375
1376 1376 #ifndef STACK_GROWTH_DOWN
1377 1377 #error Downward stack growth assumed.
1378 1378 #endif
1379 1379
1380 1380 #define MAC_RX_SRS_TOODEEP() (STACK_BIAS + (uintptr_t)getfp() - \
1381 1381 (uintptr_t)curthread->t_stkbase < mac_rx_srs_stack_needed && \
1382 1382 ++mac_rx_srs_stack_toodeep)
1383 1383
1384 1384
1385 1385 /*
1386 1386 * Drop the rx packet and advance to the next one in the chain.
1387 1387 */
1388 1388 static void
1389 1389 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp)
1390 1390 {
1391 1391 mac_srs_rx_t *srs_rx = &srs->srs_rx;
1392 1392
1393 1393 ASSERT(mp->b_next == NULL);
1394 1394 mutex_enter(&srs->srs_lock);
1395 1395 MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1);
1396 1396 MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp));
1397 1397 mutex_exit(&srs->srs_lock);
1398 1398
1399 1399 srs_rx->sr_stat.mrs_sdrops++;
1400 1400 freemsg(mp);
1401 1401 }
1402 1402
1403 1403 /* DATAPATH RUNTIME ROUTINES */
1404 1404
1405 1405 /*
1406 1406 * mac_srs_fire
1407 1407 *
1408 1408 * Timer callback routine for waking up the SRS worker thread.
1409 1409 */
1410 1410 static void
1411 1411 mac_srs_fire(void *arg)
1412 1412 {
1413 1413 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg;
1414 1414
1415 1415 mutex_enter(&mac_srs->srs_lock);
1416 1416 if (mac_srs->srs_tid == NULL) {
1417 1417 mutex_exit(&mac_srs->srs_lock);
1418 1418 return;
1419 1419 }
1420 1420
1421 1421 mac_srs->srs_tid = NULL;
1422 1422 if (!(mac_srs->srs_state & SRS_PROC))
1423 1423 cv_signal(&mac_srs->srs_async);
1424 1424
1425 1425 mutex_exit(&mac_srs->srs_lock);
1426 1426 }
1427 1427
1428 1428 /*
1429 1429 * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack,
1430 1430 * and it is used on the TX path.
1431 1431 */
1432 1432 #define HASH_HINT(hint) \
1433 1433 ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8))
1434 1434
1435 1435
1436 1436 /*
1437 1437 * hash based on the src address, dst address and the port information.
1438 1438 */
1439 1439 #define HASH_ADDR(src, dst, ports) \
1440 1440 (ntohl((src) + (dst)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
1441 1441 ((ports) >> 8) ^ (ports))
1442 1442
1443 1443 #define COMPUTE_INDEX(key, sz) (key % sz)
1444 1444
1445 1445 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) { \
1446 1446 if ((tail) != NULL) { \
1447 1447 ASSERT((tail)->b_next == NULL); \
1448 1448 (tail)->b_next = (mp); \
1449 1449 } else { \
1450 1450 ASSERT((head) == NULL); \
1451 1451 (head) = (mp); \
1452 1452 } \
1453 1453 (tail) = (mp); \
1454 1454 (cnt)++; \
1455 1455 if ((bw_ctl)) \
1456 1456 (sz) += (sz0); \
1457 1457 }
1458 1458
1459 1459 #define MAC_FANOUT_DEFAULT 0
1460 1460 #define MAC_FANOUT_RND_ROBIN 1
1461 1461 int mac_fanout_type = MAC_FANOUT_DEFAULT;
1462 1462
1463 1463 #define MAX_SR_TYPES 3
1464 1464 /* fanout types for port based hashing */
1465 1465 enum pkt_type {
1466 1466 V4_TCP = 0,
1467 1467 V4_UDP,
1468 1468 OTH,
1469 1469 UNDEF
1470 1470 };
1471 1471
1472 1472 /*
1473 1473 * Pair of local and remote ports in the transport header
1474 1474 */
1475 1475 #define PORTS_SIZE 4
1476 1476
1477 1477 /*
1478 1478 * mac_rx_srs_proto_fanout
1479 1479 *
1480 1480 * This routine delivers packets destined to an SRS into one of the
1481 1481 * protocol soft rings.
1482 1482 *
1483 1483 * Given a chain of packets we need to split it up into multiple sub chains
1484 1484 * destined into TCP, UDP or OTH soft ring. Instead of entering
1485 1485 * the soft ring one packet at a time, we want to enter it in the form of a
1486 1486 * chain otherwise we get this start/stop behaviour where the worker thread
1487 1487 * goes to sleep and then next packets comes in forcing it to wake up etc.
1488 1488 */
1489 1489 static void
1490 1490 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
1491 1491 {
1492 1492 struct ether_header *ehp;
1493 1493 struct ether_vlan_header *evhp;
1494 1494 uint32_t sap;
1495 1495 ipha_t *ipha;
1496 1496 uint8_t *dstaddr;
1497 1497 size_t hdrsize;
1498 1498 mblk_t *mp;
1499 1499 mblk_t *headmp[MAX_SR_TYPES];
1500 1500 mblk_t *tailmp[MAX_SR_TYPES];
1501 1501 int cnt[MAX_SR_TYPES];
1502 1502 size_t sz[MAX_SR_TYPES];
1503 1503 size_t sz1;
1504 1504 boolean_t bw_ctl;
1505 1505 boolean_t hw_classified;
1506 1506 boolean_t dls_bypass;
1507 1507 boolean_t is_ether;
1508 1508 boolean_t is_unicast;
1509 1509 enum pkt_type type;
1510 1510 mac_client_impl_t *mcip = mac_srs->srs_mcip;
1511 1511
1512 1512 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
1513 1513 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
1514 1514
1515 1515 /*
1516 1516 * If we don't have a Rx ring, S/W classification would have done
1517 1517 * its job and its a packet meant for us. If we were polling on
1518 1518 * the default ring (i.e. there was a ring assigned to this SRS),
1519 1519 * then we need to make sure that the mac address really belongs
1520 1520 * to us.
1521 1521 */
1522 1522 hw_classified = mac_srs->srs_ring != NULL &&
1523 1523 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
1524 1524
1525 1525 /*
1526 1526 * Special clients (eg. VLAN, non ether, etc) need DLS
1527 1527 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
1528 1528 * such SRSs. Another way of disabling bypass is to set the
1529 1529 * MCIS_RX_BYPASS_DISABLE flag.
1530 1530 */
1531 1531 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1532 1532 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1533 1533
1534 1534 bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *));
1535 1535 bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *));
1536 1536 bzero(cnt, MAX_SR_TYPES * sizeof (int));
1537 1537 bzero(sz, MAX_SR_TYPES * sizeof (size_t));
1538 1538
1539 1539 /*
1540 1540 * We got a chain from SRS that we need to send to the soft rings.
1541 1541 * Since squeues for TCP & IPv4 sap poll their soft rings (for
1542 1542 * performance reasons), we need to separate out v4_tcp, v4_udp
1543 1543 * and the rest goes in other.
1544 1544 */
1545 1545 while (head != NULL) {
1546 1546 mp = head;
1547 1547 head = head->b_next;
1548 1548 mp->b_next = NULL;
1549 1549
1550 1550 type = OTH;
1551 1551 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1552 1552
1553 1553 if (is_ether) {
1554 1554 /*
1555 1555 * At this point we can be sure the packet at least
1556 1556 * has an ether header.
1557 1557 */
1558 1558 if (sz1 < sizeof (struct ether_header)) {
1559 1559 mac_rx_drop_pkt(mac_srs, mp);
1560 1560 continue;
1561 1561 }
1562 1562 ehp = (struct ether_header *)mp->b_rptr;
1563 1563
1564 1564 /*
1565 1565 * Determine if this is a VLAN or non-VLAN packet.
1566 1566 */
1567 1567 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1568 1568 evhp = (struct ether_vlan_header *)mp->b_rptr;
1569 1569 sap = ntohs(evhp->ether_type);
1570 1570 hdrsize = sizeof (struct ether_vlan_header);
1571 1571 /*
1572 1572 * Check if the VID of the packet, if any,
1573 1573 * belongs to this client.
1574 1574 */
1575 1575 if (!mac_client_check_flow_vid(mcip,
1576 1576 VLAN_ID(ntohs(evhp->ether_tci)))) {
1577 1577 mac_rx_drop_pkt(mac_srs, mp);
1578 1578 continue;
1579 1579 }
1580 1580 } else {
1581 1581 hdrsize = sizeof (struct ether_header);
1582 1582 }
1583 1583 is_unicast =
1584 1584 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
1585 1585 dstaddr = (uint8_t *)&ehp->ether_dhost;
1586 1586 } else {
1587 1587 mac_header_info_t mhi;
1588 1588
1589 1589 if (mac_header_info((mac_handle_t)mcip->mci_mip,
1590 1590 mp, &mhi) != 0) {
1591 1591 mac_rx_drop_pkt(mac_srs, mp);
1592 1592 continue;
1593 1593 }
1594 1594 hdrsize = mhi.mhi_hdrsize;
1595 1595 sap = mhi.mhi_bindsap;
1596 1596 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
1597 1597 dstaddr = (uint8_t *)mhi.mhi_daddr;
1598 1598 }
1599 1599
1600 1600 if (!dls_bypass) {
1601 1601 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
1602 1602 cnt[type], bw_ctl, sz[type], sz1, mp);
1603 1603 continue;
1604 1604 }
1605 1605
1606 1606 if (sap == ETHERTYPE_IP) {
1607 1607 /*
1608 1608 * If we are H/W classified, but we have promisc
1609 1609 * on, then we need to check for the unicast address.
1610 1610 */
1611 1611 if (hw_classified && mcip->mci_promisc_list != NULL) {
1612 1612 mac_address_t *map;
1613 1613
1614 1614 rw_enter(&mcip->mci_rw_lock, RW_READER);
1615 1615 map = mcip->mci_unicast;
1616 1616 if (bcmp(dstaddr, map->ma_addr,
1617 1617 map->ma_len) == 0)
1618 1618 type = UNDEF;
1619 1619 rw_exit(&mcip->mci_rw_lock);
1620 1620 } else if (is_unicast) {
1621 1621 type = UNDEF;
1622 1622 }
1623 1623 }
1624 1624
1625 1625 /*
1626 1626 * This needs to become a contract with the driver for
1627 1627 * the fast path.
1628 1628 *
1629 1629 * In the normal case the packet will have at least the L2
1630 1630 * header and the IP + Transport header in the same mblk.
1631 1631 * This is usually the case when the NIC driver sends up
1632 1632 * the packet. This is also true when the stack generates
1633 1633 * a packet that is looped back and when the stack uses the
1634 1634 * fastpath mechanism. The normal case is optimized for
1635 1635 * performance and may bypass DLS. All other cases go through
1636 1636 * the 'OTH' type path without DLS bypass.
1637 1637 */
1638 1638
1639 1639 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
1640 1640 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha))
1641 1641 type = OTH;
1642 1642
1643 1643 if (type == OTH) {
1644 1644 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
1645 1645 cnt[type], bw_ctl, sz[type], sz1, mp);
1646 1646 continue;
1647 1647 }
1648 1648
1649 1649 ASSERT(type == UNDEF);
1650 1650 /*
1651 1651 * We look for at least 4 bytes past the IP header to get
1652 1652 * the port information. If we get an IP fragment, we don't
1653 1653 * have the port information, and we use just the protocol
1654 1654 * information.
1655 1655 */
1656 1656 switch (ipha->ipha_protocol) {
1657 1657 case IPPROTO_TCP:
1658 1658 type = V4_TCP;
1659 1659 mp->b_rptr += hdrsize;
1660 1660 break;
1661 1661 case IPPROTO_UDP:
1662 1662 type = V4_UDP;
1663 1663 mp->b_rptr += hdrsize;
1664 1664 break;
1665 1665 default:
1666 1666 type = OTH;
1667 1667 break;
1668 1668 }
1669 1669
1670 1670 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type],
1671 1671 bw_ctl, sz[type], sz1, mp);
1672 1672 }
1673 1673
1674 1674 for (type = V4_TCP; type < UNDEF; type++) {
1675 1675 if (headmp[type] != NULL) {
1676 1676 mac_soft_ring_t *softring;
1677 1677
1678 1678 ASSERT(tailmp[type]->b_next == NULL);
1679 1679 switch (type) {
1680 1680 case V4_TCP:
1681 1681 softring = mac_srs->srs_tcp_soft_rings[0];
1682 1682 break;
1683 1683 case V4_UDP:
1684 1684 softring = mac_srs->srs_udp_soft_rings[0];
1685 1685 break;
1686 1686 case OTH:
1687 1687 softring = mac_srs->srs_oth_soft_rings[0];
1688 1688 }
1689 1689 mac_rx_soft_ring_process(mcip, softring,
1690 1690 headmp[type], tailmp[type], cnt[type], sz[type]);
1691 1691 }
1692 1692 }
1693 1693 }
1694 1694
1695 1695 int fanout_unaligned = 0;
1696 1696
1697 1697 /*
1698 1698 * mac_rx_srs_long_fanout
1699 1699 *
1700 1700 * The fanout routine for VLANs, and for anything else that isn't performing
1701 1701 * explicit dls bypass. Returns -1 on an error (drop the packet due to a
1702 1702 * malformed packet), 0 on success, with values written in *indx and *type.
1703 1703 */
1704 1704 static int
1705 1705 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp,
1706 1706 uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx)
1707 1707 {
|
↓ open down ↓ |
453 lines elided |
↑ open up ↑ |
1708 1708 ip6_t *ip6h;
1709 1709 ipha_t *ipha;
1710 1710 uint8_t *whereptr;
1711 1711 uint_t hash;
1712 1712 uint16_t remlen;
1713 1713 uint8_t nexthdr;
1714 1714 uint16_t hdr_len;
1715 1715 uint32_t src_val, dst_val;
1716 1716 boolean_t modifiable = B_TRUE;
1717 1717 boolean_t v6;
1718 + int errno;
1718 1719
1719 1720 ASSERT(MBLKL(mp) >= hdrsize);
1720 1721
1721 1722 if (sap == ETHERTYPE_IPV6) {
1722 1723 v6 = B_TRUE;
1723 1724 hdr_len = IPV6_HDR_LEN;
1724 1725 } else if (sap == ETHERTYPE_IP) {
1725 1726 v6 = B_FALSE;
1726 1727 hdr_len = IP_SIMPLE_HDR_LENGTH;
1727 1728 } else {
1728 1729 *indx = 0;
1729 1730 *type = OTH;
1730 1731 return (0);
1731 1732 }
1732 1733
1733 1734 ip6h = (ip6_t *)(mp->b_rptr + hdrsize);
1734 1735 ipha = (ipha_t *)ip6h;
1735 1736
1736 1737 if ((uint8_t *)ip6h == mp->b_wptr) {
1737 1738 /*
1738 1739 * The first mblk_t only includes the mac header.
1739 1740 * Note that it is safe to change the mp pointer here,
1740 1741 * as the subsequent operation does not assume mp
1741 1742 * points to the start of the mac header.
1742 1743 */
1743 1744 mp = mp->b_cont;
1744 1745
1745 1746 /*
1746 1747 * Make sure the IP header points to an entire one.
1747 1748 */
1748 1749 if (mp == NULL)
1749 1750 return (-1);
1750 1751
1751 1752 if (MBLKL(mp) < hdr_len) {
1752 1753 modifiable = (DB_REF(mp) == 1);
1753 1754
1754 1755 if (modifiable && !pullupmsg(mp, hdr_len))
1755 1756 return (-1);
1756 1757 }
1757 1758
1758 1759 ip6h = (ip6_t *)mp->b_rptr;
1759 1760 ipha = (ipha_t *)ip6h;
1760 1761 }
1761 1762
1762 1763 if (!modifiable || !(OK_32PTR((char *)ip6h)) ||
1763 1764 ((uint8_t *)ip6h + hdr_len > mp->b_wptr)) {
1764 1765 /*
1765 1766 * If either the IP header is not aligned, or it does not hold
1766 1767 * the complete simple structure (a pullupmsg() is not an
1767 1768 * option since it would result in an unaligned IP header),
1768 1769 * fanout to the default ring.
1769 1770 *
1770 1771 * Note that this may cause packet reordering.
1771 1772 */
1772 1773 *indx = 0;
1773 1774 *type = OTH;
1774 1775 fanout_unaligned++;
1775 1776 return (0);
1776 1777 }
1777 1778
1778 1779 /*
1779 1780 * Extract next-header, full header length, and source-hash value
1780 1781 * using v4/v6 specific fields.
1781 1782 */
|
↓ open down ↓ |
54 lines elided |
↑ open up ↑ |
1782 1783 if (v6) {
1783 1784 remlen = ntohs(ip6h->ip6_plen);
1784 1785 nexthdr = ip6h->ip6_nxt;
1785 1786 src_val = V4_PART_OF_V6(ip6h->ip6_src);
1786 1787 dst_val = V4_PART_OF_V6(ip6h->ip6_dst);
1787 1788 /*
1788 1789 * Do src based fanout if below tunable is set to B_TRUE or
1789 1790 * when mac_ip_hdr_length_v6() fails because of malformed
1790 1791 * packets or because mblks need to be concatenated using
1791 1792 * pullupmsg().
1792 - *
1793 - * Perform a version check to prevent parsing weirdness...
1794 1793 */
1795 - if (IPH_HDR_VERSION(ip6h) != IPV6_VERSION ||
1796 - !mac_ip_hdr_length_v6(ip6h, mp->b_wptr, &hdr_len, &nexthdr,
1797 - NULL)) {
1794 + errno = mac_ip_hdr_length_v6(ip6h, mp->b_wptr, &hdr_len,
1795 + &nexthdr, NULL);
1796 + switch (errno) {
1797 + case EINVAL:
1798 + /* Bad version. */
1799 + *indx = 0;
1800 + *type = OTH;
1801 + return (0);
1802 + case 0:
1803 + break;
1804 + default:
1798 1805 goto src_dst_based_fanout;
1799 1806 }
1800 1807 } else {
1808 + if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
1809 + /* Bad version. */
1810 + *indx = 0;
1811 + *type = OTH;
1812 + return (0);
1813 + }
1801 1814 hdr_len = IPH_HDR_LENGTH(ipha);
1802 1815 remlen = ntohs(ipha->ipha_length) - hdr_len;
1803 1816 nexthdr = ipha->ipha_protocol;
1804 1817 src_val = (uint32_t)ipha->ipha_src;
1805 1818 dst_val = (uint32_t)ipha->ipha_dst;
1806 1819 /*
1807 1820 * Catch IPv4 fragment case here. IPv6 has nexthdr == FRAG
1808 1821 * for its equivalent case.
1809 1822 */
1810 1823 if ((ntohs(ipha->ipha_fragment_offset_and_flags) &
1811 1824 (IPH_MF | IPH_OFFSET)) != 0) {
1812 1825 goto src_dst_based_fanout;
1813 1826 }
1814 1827 }
1815 1828 if (remlen < MIN_EHDR_LEN)
1816 1829 return (-1);
1817 1830 whereptr = (uint8_t *)ip6h + hdr_len;
1818 1831
1819 1832 /* If the transport is one of below, we do port/SPI based fanout */
1820 1833 switch (nexthdr) {
1821 1834 case IPPROTO_TCP:
1822 1835 case IPPROTO_UDP:
1823 1836 case IPPROTO_SCTP:
1824 1837 case IPPROTO_ESP:
1825 1838 /*
1826 1839 * If the ports or SPI in the transport header is not part of
1827 1840 * the mblk, do src_based_fanout, instead of calling
1828 1841 * pullupmsg().
1829 1842 */
1830 1843 if (mp->b_cont == NULL || whereptr + PORTS_SIZE <= mp->b_wptr)
1831 1844 break; /* out of switch... */
1832 1845 /* FALLTHRU */
1833 1846 default:
1834 1847 goto src_dst_based_fanout;
1835 1848 }
1836 1849
1837 1850 switch (nexthdr) {
1838 1851 case IPPROTO_TCP:
1839 1852 hash = HASH_ADDR(src_val, dst_val, *(uint32_t *)whereptr);
1840 1853 *indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
1841 1854 *type = OTH;
1842 1855 break;
1843 1856 case IPPROTO_UDP:
1844 1857 case IPPROTO_SCTP:
1845 1858 case IPPROTO_ESP:
1846 1859 if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
1847 1860 hash = HASH_ADDR(src_val, dst_val,
1848 1861 *(uint32_t *)whereptr);
1849 1862 *indx = COMPUTE_INDEX(hash,
1850 1863 mac_srs->srs_udp_ring_count);
1851 1864 } else {
1852 1865 *indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count;
1853 1866 mac_srs->srs_ind++;
1854 1867 }
1855 1868 *type = OTH;
1856 1869 break;
1857 1870 }
1858 1871 return (0);
1859 1872
1860 1873 src_dst_based_fanout:
1861 1874 hash = HASH_ADDR(src_val, dst_val, (uint32_t)0);
1862 1875 *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count);
1863 1876 *type = OTH;
1864 1877 return (0);
1865 1878 }
1866 1879
1867 1880 /*
1868 1881 * mac_rx_srs_fanout
1869 1882 *
1870 1883 * This routine delivers packets destined to an SRS into a soft ring member
1871 1884 * of the set.
1872 1885 *
1873 1886 * Given a chain of packets we need to split it up into multiple sub chains
1874 1887 * destined for one of the TCP, UDP or OTH soft rings. Instead of entering
1875 1888 * the soft ring one packet at a time, we want to enter it in the form of a
1876 1889 * chain otherwise we get this start/stop behaviour where the worker thread
1877 1890 * goes to sleep and then next packets comes in forcing it to wake up etc.
1878 1891 *
1879 1892 * Note:
1880 1893 * Since we know what is the maximum fanout possible, we create a 2D array
1881 1894 * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz
1882 1895 * variables so that we can enter the softrings with chain. We need the
1883 1896 * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc
1884 1897 * for each packet would be expensive). If we ever want to have the
1885 1898 * ability to have unlimited fanout, we should probably declare a head,
1886 1899 * tail, cnt, sz with each soft ring (a data struct which contains a softring
1887 1900 * along with these members) and create an array of this uber struct so we
1888 1901 * don't have to do kmem_alloc.
1889 1902 */
1890 1903 int fanout_oth1 = 0;
1891 1904 int fanout_oth2 = 0;
1892 1905 int fanout_oth3 = 0;
1893 1906 int fanout_oth4 = 0;
1894 1907 int fanout_oth5 = 0;
1895 1908
1896 1909 static void
1897 1910 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
1898 1911 {
1899 1912 struct ether_header *ehp;
1900 1913 struct ether_vlan_header *evhp;
1901 1914 uint32_t sap;
1902 1915 ipha_t *ipha;
1903 1916 uint8_t *dstaddr;
1904 1917 uint_t indx;
1905 1918 size_t ports_offset;
1906 1919 size_t ipha_len;
1907 1920 size_t hdrsize;
1908 1921 uint_t hash;
1909 1922 mblk_t *mp;
1910 1923 mblk_t *headmp[MAX_SR_TYPES][MAX_SR_FANOUT];
1911 1924 mblk_t *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT];
1912 1925 int cnt[MAX_SR_TYPES][MAX_SR_FANOUT];
1913 1926 size_t sz[MAX_SR_TYPES][MAX_SR_FANOUT];
1914 1927 size_t sz1;
1915 1928 boolean_t bw_ctl;
1916 1929 boolean_t hw_classified;
1917 1930 boolean_t dls_bypass;
1918 1931 boolean_t is_ether;
1919 1932 boolean_t is_unicast;
1920 1933 int fanout_cnt;
1921 1934 enum pkt_type type;
1922 1935 mac_client_impl_t *mcip = mac_srs->srs_mcip;
1923 1936
1924 1937 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
1925 1938 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
1926 1939
1927 1940 /*
1928 1941 * If we don't have a Rx ring, S/W classification would have done
1929 1942 * its job and its a packet meant for us. If we were polling on
1930 1943 * the default ring (i.e. there was a ring assigned to this SRS),
1931 1944 * then we need to make sure that the mac address really belongs
1932 1945 * to us.
1933 1946 */
1934 1947 hw_classified = mac_srs->srs_ring != NULL &&
1935 1948 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
1936 1949
1937 1950 /*
1938 1951 * Special clients (eg. VLAN, non ether, etc) need DLS
1939 1952 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
1940 1953 * such SRSs. Another way of disabling bypass is to set the
1941 1954 * MCIS_RX_BYPASS_DISABLE flag.
1942 1955 */
1943 1956 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1944 1957 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1945 1958
1946 1959 /*
1947 1960 * Since the softrings are never destroyed and we always
1948 1961 * create equal number of softrings for TCP, UDP and rest,
1949 1962 * its OK to check one of them for count and use it without
1950 1963 * any lock. In future, if soft rings get destroyed because
1951 1964 * of reduction in fanout, we will need to ensure that happens
1952 1965 * behind the SRS_PROC.
1953 1966 */
1954 1967 fanout_cnt = mac_srs->srs_tcp_ring_count;
1955 1968
1956 1969 bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1957 1970 bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1958 1971 bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int));
1959 1972 bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t));
1960 1973
1961 1974 /*
1962 1975 * We got a chain from SRS that we need to send to the soft rings.
1963 1976 * Since squeues for TCP & IPv4 sap poll their soft rings (for
1964 1977 * performance reasons), we need to separate out v4_tcp, v4_udp
1965 1978 * and the rest goes in other.
1966 1979 */
1967 1980 while (head != NULL) {
1968 1981 mp = head;
1969 1982 head = head->b_next;
1970 1983 mp->b_next = NULL;
1971 1984
1972 1985 type = OTH;
1973 1986 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1974 1987
1975 1988 if (is_ether) {
1976 1989 /*
1977 1990 * At this point we can be sure the packet at least
1978 1991 * has an ether header.
1979 1992 */
1980 1993 if (sz1 < sizeof (struct ether_header)) {
1981 1994 mac_rx_drop_pkt(mac_srs, mp);
1982 1995 continue;
1983 1996 }
1984 1997 ehp = (struct ether_header *)mp->b_rptr;
1985 1998
1986 1999 /*
1987 2000 * Determine if this is a VLAN or non-VLAN packet.
1988 2001 */
1989 2002 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1990 2003 evhp = (struct ether_vlan_header *)mp->b_rptr;
1991 2004 sap = ntohs(evhp->ether_type);
1992 2005 hdrsize = sizeof (struct ether_vlan_header);
1993 2006 /*
1994 2007 * Check if the VID of the packet, if any,
1995 2008 * belongs to this client.
1996 2009 */
1997 2010 if (!mac_client_check_flow_vid(mcip,
1998 2011 VLAN_ID(ntohs(evhp->ether_tci)))) {
1999 2012 mac_rx_drop_pkt(mac_srs, mp);
2000 2013 continue;
2001 2014 }
2002 2015 } else {
2003 2016 hdrsize = sizeof (struct ether_header);
2004 2017 }
2005 2018 is_unicast =
2006 2019 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
2007 2020 dstaddr = (uint8_t *)&ehp->ether_dhost;
2008 2021 } else {
2009 2022 mac_header_info_t mhi;
2010 2023
2011 2024 if (mac_header_info((mac_handle_t)mcip->mci_mip,
2012 2025 mp, &mhi) != 0) {
2013 2026 mac_rx_drop_pkt(mac_srs, mp);
2014 2027 continue;
2015 2028 }
2016 2029 hdrsize = mhi.mhi_hdrsize;
2017 2030 sap = mhi.mhi_bindsap;
2018 2031 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
2019 2032 dstaddr = (uint8_t *)mhi.mhi_daddr;
2020 2033 }
2021 2034
2022 2035 if (!dls_bypass) {
2023 2036 if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
2024 2037 hdrsize, &type, &indx) == -1) {
2025 2038 mac_rx_drop_pkt(mac_srs, mp);
2026 2039 continue;
2027 2040 }
2028 2041
2029 2042 FANOUT_ENQUEUE_MP(headmp[type][indx],
2030 2043 tailmp[type][indx], cnt[type][indx], bw_ctl,
2031 2044 sz[type][indx], sz1, mp);
2032 2045 continue;
2033 2046 }
2034 2047
2035 2048
2036 2049 /*
2037 2050 * If we are using the default Rx ring where H/W or S/W
2038 2051 * classification has not happened, we need to verify if
2039 2052 * this unicast packet really belongs to us.
2040 2053 */
2041 2054 if (sap == ETHERTYPE_IP) {
2042 2055 /*
2043 2056 * If we are H/W classified, but we have promisc
2044 2057 * on, then we need to check for the unicast address.
2045 2058 */
2046 2059 if (hw_classified && mcip->mci_promisc_list != NULL) {
2047 2060 mac_address_t *map;
2048 2061
2049 2062 rw_enter(&mcip->mci_rw_lock, RW_READER);
2050 2063 map = mcip->mci_unicast;
2051 2064 if (bcmp(dstaddr, map->ma_addr,
2052 2065 map->ma_len) == 0)
2053 2066 type = UNDEF;
2054 2067 rw_exit(&mcip->mci_rw_lock);
2055 2068 } else if (is_unicast) {
2056 2069 type = UNDEF;
2057 2070 }
2058 2071 }
2059 2072
2060 2073 /*
2061 2074 * This needs to become a contract with the driver for
2062 2075 * the fast path.
2063 2076 */
2064 2077
2065 2078 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
2066 2079 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) {
2067 2080 type = OTH;
2068 2081 fanout_oth1++;
2069 2082 }
2070 2083
2071 2084 if (type != OTH) {
2072 2085 uint16_t frag_offset_flags;
2073 2086
2074 2087 switch (ipha->ipha_protocol) {
2075 2088 case IPPROTO_TCP:
2076 2089 case IPPROTO_UDP:
2077 2090 case IPPROTO_SCTP:
2078 2091 case IPPROTO_ESP:
2079 2092 ipha_len = IPH_HDR_LENGTH(ipha);
2080 2093 if ((uchar_t *)ipha + ipha_len + PORTS_SIZE >
2081 2094 mp->b_wptr) {
2082 2095 type = OTH;
2083 2096 break;
2084 2097 }
2085 2098 frag_offset_flags =
2086 2099 ntohs(ipha->ipha_fragment_offset_and_flags);
2087 2100 if ((frag_offset_flags &
2088 2101 (IPH_MF | IPH_OFFSET)) != 0) {
2089 2102 type = OTH;
2090 2103 fanout_oth3++;
2091 2104 break;
2092 2105 }
2093 2106 ports_offset = hdrsize + ipha_len;
2094 2107 break;
2095 2108 default:
2096 2109 type = OTH;
2097 2110 fanout_oth4++;
2098 2111 break;
2099 2112 }
2100 2113 }
2101 2114
2102 2115 if (type == OTH) {
2103 2116 if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
2104 2117 hdrsize, &type, &indx) == -1) {
2105 2118 mac_rx_drop_pkt(mac_srs, mp);
2106 2119 continue;
2107 2120 }
2108 2121
2109 2122 FANOUT_ENQUEUE_MP(headmp[type][indx],
2110 2123 tailmp[type][indx], cnt[type][indx], bw_ctl,
2111 2124 sz[type][indx], sz1, mp);
2112 2125 continue;
2113 2126 }
2114 2127
2115 2128 ASSERT(type == UNDEF);
2116 2129
2117 2130 /*
2118 2131 * XXX-Sunay: We should hold srs_lock since ring_count
2119 2132 * below can change. But if we are always called from
2120 2133 * mac_rx_srs_drain and SRS_PROC is set, then we can
2121 2134 * enforce that ring_count can't be changed i.e.
2122 2135 * to change fanout type or ring count, the calling
2123 2136 * thread needs to be behind SRS_PROC.
2124 2137 */
2125 2138 switch (ipha->ipha_protocol) {
2126 2139 case IPPROTO_TCP:
2127 2140 /*
2128 2141 * Note that for ESP, we fanout on SPI and it is at the
2129 2142 * same offset as the 2x16-bit ports. So it is clumped
2130 2143 * along with TCP, UDP and SCTP.
2131 2144 */
2132 2145 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst,
2133 2146 *(uint32_t *)(mp->b_rptr + ports_offset));
2134 2147 indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
2135 2148 type = V4_TCP;
2136 2149 mp->b_rptr += hdrsize;
2137 2150 break;
2138 2151 case IPPROTO_UDP:
2139 2152 case IPPROTO_SCTP:
2140 2153 case IPPROTO_ESP:
2141 2154 if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
2142 2155 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst,
2143 2156 *(uint32_t *)(mp->b_rptr + ports_offset));
2144 2157 indx = COMPUTE_INDEX(hash,
2145 2158 mac_srs->srs_udp_ring_count);
2146 2159 } else {
2147 2160 indx = mac_srs->srs_ind %
2148 2161 mac_srs->srs_udp_ring_count;
2149 2162 mac_srs->srs_ind++;
2150 2163 }
2151 2164 type = V4_UDP;
2152 2165 mp->b_rptr += hdrsize;
2153 2166 break;
2154 2167 default:
2155 2168 indx = 0;
2156 2169 type = OTH;
2157 2170 }
2158 2171
2159 2172 FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx],
2160 2173 cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp);
2161 2174 }
2162 2175
2163 2176 for (type = V4_TCP; type < UNDEF; type++) {
2164 2177 int i;
2165 2178
2166 2179 for (i = 0; i < fanout_cnt; i++) {
2167 2180 if (headmp[type][i] != NULL) {
2168 2181 mac_soft_ring_t *softring;
2169 2182
2170 2183 ASSERT(tailmp[type][i]->b_next == NULL);
2171 2184 switch (type) {
2172 2185 case V4_TCP:
2173 2186 softring =
2174 2187 mac_srs->srs_tcp_soft_rings[i];
2175 2188 break;
2176 2189 case V4_UDP:
2177 2190 softring =
2178 2191 mac_srs->srs_udp_soft_rings[i];
2179 2192 break;
2180 2193 case OTH:
2181 2194 softring =
2182 2195 mac_srs->srs_oth_soft_rings[i];
2183 2196 break;
2184 2197 }
2185 2198 mac_rx_soft_ring_process(mcip,
2186 2199 softring, headmp[type][i], tailmp[type][i],
2187 2200 cnt[type][i], sz[type][i]);
2188 2201 }
2189 2202 }
2190 2203 }
2191 2204 }
2192 2205
2193 2206 #define SRS_BYTES_TO_PICKUP 150000
2194 2207 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP;
2195 2208
2196 2209 /*
2197 2210 * mac_rx_srs_poll_ring
2198 2211 *
2199 2212 * This SRS Poll thread uses this routine to poll the underlying hardware
|
↓ open down ↓ |
389 lines elided |
↑ open up ↑ |
2200 2213 * Rx ring to get a chain of packets. It can inline process that chain
2201 2214 * if mac_latency_optimize is set (default) or signal the SRS worker thread
2202 2215 * to do the remaining processing.
2203 2216 *
2204 2217 * Since packets come in the system via interrupt or poll path, we also
2205 2218 * update the stats and deal with promiscous clients here.
2206 2219 */
2207 2220 void
2208 2221 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs)
2209 2222 {
2210 - kmutex_t *lock = &mac_srs->srs_lock;
2211 - kcondvar_t *async = &mac_srs->srs_cv;
2223 + kmutex_t *lock = &mac_srs->srs_lock;
2224 + kcondvar_t *async = &mac_srs->srs_cv;
2212 2225 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
2213 - mblk_t *head, *tail, *mp;
2214 - callb_cpr_t cprinfo;
2215 - ssize_t bytes_to_pickup;
2216 - size_t sz;
2226 + mblk_t *head, *tail, *mp;
2227 + callb_cpr_t cprinfo;
2228 + ssize_t bytes_to_pickup;
2229 + size_t sz;
2217 2230 int count;
2218 2231 mac_client_impl_t *smcip;
2219 2232
2220 2233 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll");
2221 2234 mutex_enter(lock);
2222 2235
2223 2236 start:
2224 2237 for (;;) {
2225 2238 if (mac_srs->srs_state & SRS_PAUSE)
2226 2239 goto done;
2227 2240
2228 2241 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2229 2242 cv_wait(async, lock);
2230 2243 CALLB_CPR_SAFE_END(&cprinfo, lock);
2231 2244
2232 2245 if (mac_srs->srs_state & SRS_PAUSE)
2233 2246 goto done;
2234 2247
2235 2248 check_again:
2236 2249 if (mac_srs->srs_type & SRST_BW_CONTROL) {
2237 2250 /*
2238 2251 * We pick as many bytes as we are allowed to queue.
2239 2252 * Its possible that we will exceed the total
2240 2253 * packets queued in case this SRS is part of the
2241 2254 * Rx ring group since > 1 poll thread can be pulling
2242 2255 * upto the max allowed packets at the same time
2243 2256 * but that should be OK.
2244 2257 */
2245 2258 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2246 2259 bytes_to_pickup =
2247 2260 mac_srs->srs_bw->mac_bw_drop_threshold -
2248 2261 mac_srs->srs_bw->mac_bw_sz;
2249 2262 /*
2250 2263 * We shouldn't have been signalled if we
2251 2264 * have 0 or less bytes to pick but since
2252 2265 * some of the bytes accounting is driver
2253 2266 * dependant, we do the safety check.
2254 2267 */
2255 2268 if (bytes_to_pickup < 0)
2256 2269 bytes_to_pickup = 0;
2257 2270 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2258 2271 } else {
2259 2272 /*
2260 2273 * ToDO: Need to change the polling API
2261 2274 * to add a packet count and a flag which
2262 2275 * tells the driver whether we want packets
2263 2276 * based on a count, or bytes, or all the
2264 2277 * packets queued in the driver/HW. This
2265 2278 * way, we never have to check the limits
2266 2279 * on poll path. We truly let only as many
2267 2280 * packets enter the system as we are willing
2268 2281 * to process or queue.
2269 2282 *
2270 2283 * Something along the lines of
2271 2284 * pkts_to_pickup = mac_soft_ring_max_q_cnt -
2272 2285 * mac_srs->srs_poll_pkt_cnt
2273 2286 */
2274 2287
2275 2288 /*
2276 2289 * Since we are not doing B/W control, pick
2277 2290 * as many packets as allowed.
2278 2291 */
2279 2292 bytes_to_pickup = max_bytes_to_pickup;
2280 2293 }
2281 2294
2282 2295 /* Poll the underlying Hardware */
2283 2296 mutex_exit(lock);
2284 2297 head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup);
2285 2298 mutex_enter(lock);
2286 2299
2287 2300 ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
2288 2301 SRS_POLL_THR_OWNER);
2289 2302
2290 2303 mp = tail = head;
2291 2304 count = 0;
2292 2305 sz = 0;
2293 2306 while (mp != NULL) {
2294 2307 tail = mp;
2295 2308 sz += msgdsize(mp);
2296 2309 mp = mp->b_next;
2297 2310 count++;
2298 2311 }
2299 2312
2300 2313 if (head != NULL) {
2301 2314 tail->b_next = NULL;
2302 2315 smcip = mac_srs->srs_mcip;
2303 2316
2304 2317 SRS_RX_STAT_UPDATE(mac_srs, pollbytes, sz);
2305 2318 SRS_RX_STAT_UPDATE(mac_srs, pollcnt, count);
2306 2319
2307 2320 /*
2308 2321 * If there are any promiscuous mode callbacks
2309 2322 * defined for this MAC client, pass them a copy
2310 2323 * if appropriate and also update the counters.
2311 2324 */
2312 2325 if (smcip != NULL) {
2313 2326 if (smcip->mci_mip->mi_promisc_list != NULL) {
2314 2327 mutex_exit(lock);
2315 2328 mac_promisc_dispatch(smcip->mci_mip,
2316 2329 head, NULL);
2317 2330 mutex_enter(lock);
2318 2331 }
2319 2332 }
2320 2333 if (mac_srs->srs_type & SRST_BW_CONTROL) {
2321 2334 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2322 2335 mac_srs->srs_bw->mac_bw_polled += sz;
2323 2336 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2324 2337 }
2325 2338 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail,
2326 2339 count, sz);
2327 2340 if (count <= 10)
2328 2341 srs_rx->sr_stat.mrs_chaincntundr10++;
2329 2342 else if (count > 10 && count <= 50)
2330 2343 srs_rx->sr_stat.mrs_chaincnt10to50++;
2331 2344 else
2332 2345 srs_rx->sr_stat.mrs_chaincntover50++;
2333 2346 }
2334 2347
2335 2348 /*
2336 2349 * We are guaranteed that SRS_PROC will be set if we
2337 2350 * are here. Also, poll thread gets to run only if
2338 2351 * the drain was being done by a worker thread although
2339 2352 * its possible that worker thread is still running
2340 2353 * and poll thread was sent down to keep the pipeline
2341 2354 * going instead of doing a complete drain and then
2342 2355 * trying to poll the NIC.
2343 2356 *
2344 2357 * So we need to check SRS_WORKER flag to make sure
2345 2358 * that the worker thread is not processing the queue
2346 2359 * in parallel to us. The flags and conditions are
2347 2360 * protected by the srs_lock to prevent any race. We
2348 2361 * ensure that we don't drop the srs_lock from now
2349 2362 * till the end and similarly we don't drop the srs_lock
2350 2363 * in mac_rx_srs_drain() till similar condition check
2351 2364 * are complete. The mac_rx_srs_drain() needs to ensure
2352 2365 * that SRS_WORKER flag remains set as long as its
2353 2366 * processing the queue.
2354 2367 */
2355 2368 if (!(mac_srs->srs_state & SRS_WORKER) &&
2356 2369 (mac_srs->srs_first != NULL)) {
2357 2370 /*
2358 2371 * We have packets to process and worker thread
2359 2372 * is not running. Check to see if poll thread is
2360 2373 * allowed to process.
2361 2374 */
2362 2375 if (mac_srs->srs_state & SRS_LATENCY_OPT) {
2363 2376 mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC);
2364 2377 if (!(mac_srs->srs_state & SRS_PAUSE) &&
2365 2378 srs_rx->sr_poll_pkt_cnt <=
2366 2379 srs_rx->sr_lowat) {
2367 2380 srs_rx->sr_poll_again++;
2368 2381 goto check_again;
2369 2382 }
2370 2383 /*
2371 2384 * We are already above low water mark
2372 2385 * so stay in the polling mode but no
2373 2386 * need to poll. Once we dip below
2374 2387 * the polling threshold, the processing
2375 2388 * thread (soft ring) will signal us
2376 2389 * to poll again (MAC_UPDATE_SRS_COUNT)
2377 2390 */
2378 2391 srs_rx->sr_poll_drain_no_poll++;
2379 2392 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
2380 2393 /*
2381 2394 * In B/W control case, its possible
2382 2395 * that the backlog built up due to
2383 2396 * B/W limit being reached and packets
2384 2397 * are queued only in SRS. In this case,
2385 2398 * we should schedule worker thread
2386 2399 * since no one else will wake us up.
2387 2400 */
2388 2401 if ((mac_srs->srs_type & SRST_BW_CONTROL) &&
2389 2402 (mac_srs->srs_tid == NULL)) {
2390 2403 mac_srs->srs_tid =
2391 2404 timeout(mac_srs_fire, mac_srs, 1);
2392 2405 srs_rx->sr_poll_worker_wakeup++;
2393 2406 }
2394 2407 } else {
2395 2408 /*
2396 2409 * Wakeup the worker thread for more processing.
2397 2410 * We optimize for throughput in this case.
2398 2411 */
2399 2412 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
2400 2413 MAC_SRS_WORKER_WAKEUP(mac_srs);
2401 2414 srs_rx->sr_poll_sig_worker++;
2402 2415 }
2403 2416 } else if ((mac_srs->srs_first == NULL) &&
2404 2417 !(mac_srs->srs_state & SRS_WORKER)) {
2405 2418 /*
2406 2419 * There is nothing queued in SRS and
2407 2420 * no worker thread running. Plus we
2408 2421 * didn't get anything from the H/W
2409 2422 * as well (head == NULL);
2410 2423 */
2411 2424 ASSERT(head == NULL);
2412 2425 mac_srs->srs_state &=
2413 2426 ~(SRS_PROC|SRS_GET_PKTS);
2414 2427
2415 2428 /*
2416 2429 * If we have a packets in soft ring, don't allow
2417 2430 * more packets to come into this SRS by keeping the
2418 2431 * interrupts off but not polling the H/W. The
2419 2432 * poll thread will get signaled as soon as
2420 2433 * srs_poll_pkt_cnt dips below poll threshold.
2421 2434 */
2422 2435 if (srs_rx->sr_poll_pkt_cnt == 0) {
2423 2436 srs_rx->sr_poll_intr_enable++;
2424 2437 MAC_SRS_POLLING_OFF(mac_srs);
2425 2438 } else {
2426 2439 /*
2427 2440 * We know nothing is queued in SRS
2428 2441 * since we are here after checking
2429 2442 * srs_first is NULL. The backlog
2430 2443 * is entirely due to packets queued
2431 2444 * in Soft ring which will wake us up
2432 2445 * and get the interface out of polling
2433 2446 * mode once the backlog dips below
2434 2447 * sr_poll_thres.
2435 2448 */
2436 2449 srs_rx->sr_poll_no_poll++;
2437 2450 }
2438 2451 } else {
2439 2452 /*
2440 2453 * Worker thread is already running.
2441 2454 * Nothing much to do. If the polling
2442 2455 * was enabled, worker thread will deal
2443 2456 * with that.
2444 2457 */
2445 2458 mac_srs->srs_state &= ~SRS_GET_PKTS;
2446 2459 srs_rx->sr_poll_goto_sleep++;
2447 2460 }
2448 2461 }
2449 2462 done:
2450 2463 mac_srs->srs_state |= SRS_POLL_THR_QUIESCED;
2451 2464 cv_signal(&mac_srs->srs_async);
2452 2465 /*
2453 2466 * If this is a temporary quiesce then wait for the restart signal
2454 2467 * from the srs worker. Then clear the flags and signal the srs worker
2455 2468 * to ensure a positive handshake and go back to start.
2456 2469 */
2457 2470 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART)))
2458 2471 cv_wait(async, lock);
2459 2472 if (mac_srs->srs_state & SRS_POLL_THR_RESTART) {
2460 2473 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
2461 2474 mac_srs->srs_state &=
2462 2475 ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART);
2463 2476 cv_signal(&mac_srs->srs_async);
2464 2477 goto start;
2465 2478 } else {
2466 2479 mac_srs->srs_state |= SRS_POLL_THR_EXITED;
2467 2480 cv_signal(&mac_srs->srs_async);
2468 2481 CALLB_CPR_EXIT(&cprinfo);
2469 2482 thread_exit();
2470 2483 }
2471 2484 }
2472 2485
|
↓ open down ↓ |
246 lines elided |
↑ open up ↑ |
2473 2486 /*
2474 2487 * mac_srs_pick_chain
2475 2488 *
2476 2489 * In Bandwidth control case, checks how many packets can be processed
2477 2490 * and return them in a sub chain.
2478 2491 */
2479 2492 static mblk_t *
2480 2493 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail,
2481 2494 size_t *chain_sz, int *chain_cnt)
2482 2495 {
2483 - mblk_t *head = NULL;
2484 - mblk_t *tail = NULL;
2496 + mblk_t *head = NULL;
2497 + mblk_t *tail = NULL;
2485 2498 size_t sz;
2486 - size_t tsz = 0;
2499 + size_t tsz = 0;
2487 2500 int cnt = 0;
2488 - mblk_t *mp;
2501 + mblk_t *mp;
2489 2502
2490 2503 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2491 2504 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2492 2505 if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <=
2493 2506 mac_srs->srs_bw->mac_bw_limit) ||
2494 2507 (mac_srs->srs_bw->mac_bw_limit == 0)) {
2495 2508 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2496 2509 head = mac_srs->srs_first;
2497 2510 mac_srs->srs_first = NULL;
2498 2511 *chain_tail = mac_srs->srs_last;
2499 2512 mac_srs->srs_last = NULL;
2500 2513 *chain_sz = mac_srs->srs_size;
2501 2514 *chain_cnt = mac_srs->srs_count;
2502 2515 mac_srs->srs_count = 0;
2503 2516 mac_srs->srs_size = 0;
2504 2517 return (head);
2505 2518 }
2506 2519
2507 2520 /*
2508 2521 * Can't clear the entire backlog.
2509 2522 * Need to find how many packets to pick
2510 2523 */
2511 2524 ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock));
2512 2525 while ((mp = mac_srs->srs_first) != NULL) {
2513 2526 sz = msgdsize(mp);
2514 2527 if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) >
2515 2528 mac_srs->srs_bw->mac_bw_limit) {
2516 2529 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED))
2517 2530 mac_srs->srs_bw->mac_bw_state |=
2518 2531 SRS_BW_ENFORCED;
2519 2532 break;
2520 2533 }
2521 2534
2522 2535 /*
2523 2536 * The _size & cnt is decremented from the softrings
2524 2537 * when they send up the packet for polling to work
2525 2538 * properly.
2526 2539 */
2527 2540 tsz += sz;
2528 2541 cnt++;
2529 2542 mac_srs->srs_count--;
2530 2543 mac_srs->srs_size -= sz;
2531 2544 if (tail != NULL)
2532 2545 tail->b_next = mp;
2533 2546 else
2534 2547 head = mp;
2535 2548 tail = mp;
2536 2549 mac_srs->srs_first = mac_srs->srs_first->b_next;
2537 2550 }
2538 2551 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2539 2552 if (mac_srs->srs_first == NULL)
2540 2553 mac_srs->srs_last = NULL;
2541 2554
2542 2555 if (tail != NULL)
2543 2556 tail->b_next = NULL;
2544 2557 *chain_tail = tail;
2545 2558 *chain_cnt = cnt;
2546 2559 *chain_sz = tsz;
2547 2560
2548 2561 return (head);
2549 2562 }
2550 2563
2551 2564 /*
2552 2565 * mac_rx_srs_drain
2553 2566 *
2554 2567 * The SRS drain routine. Gets to run to clear the queue. Any thread
2555 2568 * (worker, interrupt, poll) can call this based on processing model.
2556 2569 * The first thing we do is disable interrupts if possible and then
2557 2570 * drain the queue. we also try to poll the underlying hardware if
2558 2571 * there is a dedicated hardware Rx ring assigned to this SRS.
|
↓ open down ↓ |
60 lines elided |
↑ open up ↑ |
2559 2572 *
2560 2573 * There is a equivalent drain routine in bandwidth control mode
2561 2574 * mac_rx_srs_drain_bw. There is some code duplication between the two
2562 2575 * routines but they are highly performance sensitive and are easier
2563 2576 * to read/debug if they stay separate. Any code changes here might
2564 2577 * also apply to mac_rx_srs_drain_bw as well.
2565 2578 */
2566 2579 void
2567 2580 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
2568 2581 {
2569 - mblk_t *head;
2582 + mblk_t *head;
2570 2583 mblk_t *tail;
2571 - timeout_id_t tid;
2584 + timeout_id_t tid;
2572 2585 int cnt = 0;
2573 2586 mac_client_impl_t *mcip = mac_srs->srs_mcip;
2574 2587 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
2575 2588
2576 2589 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2577 2590 ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL));
2578 2591
2579 2592 /* If we are blanked i.e. can't do upcalls, then we are done */
2580 2593 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
2581 2594 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
2582 2595 (mac_srs->srs_state & SRS_PAUSE));
2583 2596 goto out;
2584 2597 }
2585 2598
2586 2599 if (mac_srs->srs_first == NULL)
2587 2600 goto out;
2588 2601
2589 2602 if (!(mac_srs->srs_state & SRS_LATENCY_OPT) &&
2590 2603 (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) {
2591 2604 /*
2592 2605 * In the normal case, the SRS worker thread does no
2593 2606 * work and we wait for a backlog to build up before
2594 2607 * we switch into polling mode. In case we are
2595 2608 * optimizing for throughput, we use the worker thread
2596 2609 * as well. The goal is to let worker thread process
2597 2610 * the queue and poll thread to feed packets into
2598 2611 * the queue. As such, we should signal the poll
2599 2612 * thread to try and get more packets.
2600 2613 *
2601 2614 * We could have pulled this check in the POLL_RING
2602 2615 * macro itself but keeping it explicit here makes
2603 2616 * the architecture more human understandable.
2604 2617 */
2605 2618 MAC_SRS_POLL_RING(mac_srs);
2606 2619 }
2607 2620
2608 2621 again:
2609 2622 head = mac_srs->srs_first;
2610 2623 mac_srs->srs_first = NULL;
2611 2624 tail = mac_srs->srs_last;
2612 2625 mac_srs->srs_last = NULL;
2613 2626 cnt = mac_srs->srs_count;
2614 2627 mac_srs->srs_count = 0;
2615 2628
2616 2629 ASSERT(head != NULL);
2617 2630 ASSERT(tail != NULL);
2618 2631
2619 2632 if ((tid = mac_srs->srs_tid) != NULL)
2620 2633 mac_srs->srs_tid = NULL;
2621 2634
2622 2635 mac_srs->srs_state |= (SRS_PROC|proc_type);
2623 2636
2624 2637
2625 2638 /*
2626 2639 * mcip is NULL for broadcast and multicast flows. The promisc
2627 2640 * callbacks for broadcast and multicast packets are delivered from
2628 2641 * mac_rx() and we don't need to worry about that case in this path
2629 2642 */
2630 2643 if (mcip != NULL) {
2631 2644 if (mcip->mci_promisc_list != NULL) {
2632 2645 mutex_exit(&mac_srs->srs_lock);
2633 2646 mac_promisc_client_dispatch(mcip, head);
2634 2647 mutex_enter(&mac_srs->srs_lock);
2635 2648 }
2636 2649 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
2637 2650 mutex_exit(&mac_srs->srs_lock);
2638 2651 mac_protect_intercept_dynamic(mcip, head);
2639 2652 mutex_enter(&mac_srs->srs_lock);
2640 2653 }
2641 2654 }
2642 2655
2643 2656 /*
2644 2657 * Check if SRS itself is doing the processing
2645 2658 * This direct path does not apply when subflows are present. In this
2646 2659 * case, packets need to be dispatched to a soft ring according to the
2647 2660 * flow's bandwidth and other resources contraints.
2648 2661 */
2649 2662 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
2650 2663 mac_direct_rx_t proc;
2651 2664 void *arg1;
2652 2665 mac_resource_handle_t arg2;
2653 2666
2654 2667 /*
2655 2668 * This is the case when a Rx is directly
2656 2669 * assigned and we have a fully classified
2657 2670 * protocol chain. We can deal with it in
2658 2671 * one shot.
2659 2672 */
2660 2673 proc = srs_rx->sr_func;
2661 2674 arg1 = srs_rx->sr_arg1;
2662 2675 arg2 = srs_rx->sr_arg2;
2663 2676
2664 2677 mac_srs->srs_state |= SRS_CLIENT_PROC;
2665 2678 mutex_exit(&mac_srs->srs_lock);
2666 2679 if (tid != NULL) {
2667 2680 (void) untimeout(tid);
2668 2681 tid = NULL;
2669 2682 }
2670 2683
2671 2684 proc(arg1, arg2, head, NULL);
2672 2685 /*
2673 2686 * Decrement the size and count here itelf
2674 2687 * since the packet has been processed.
2675 2688 */
2676 2689 mutex_enter(&mac_srs->srs_lock);
2677 2690 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2678 2691 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2679 2692 cv_signal(&mac_srs->srs_client_cv);
2680 2693 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2681 2694 } else {
2682 2695 /* Some kind of softrings based fanout is required */
2683 2696 mutex_exit(&mac_srs->srs_lock);
2684 2697 if (tid != NULL) {
2685 2698 (void) untimeout(tid);
2686 2699 tid = NULL;
2687 2700 }
2688 2701
2689 2702 /*
2690 2703 * Since the fanout routines can deal with chains,
2691 2704 * shoot the entire chain up.
2692 2705 */
2693 2706 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2694 2707 mac_rx_srs_fanout(mac_srs, head);
2695 2708 else
2696 2709 mac_rx_srs_proto_fanout(mac_srs, head);
2697 2710 mutex_enter(&mac_srs->srs_lock);
2698 2711 }
2699 2712
2700 2713 if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) &&
2701 2714 (mac_srs->srs_first != NULL)) {
2702 2715 /*
2703 2716 * More packets arrived while we were clearing the
2704 2717 * SRS. This can be possible because of one of
2705 2718 * three conditions below:
2706 2719 * 1) The driver is using multiple worker threads
2707 2720 * to send the packets to us.
2708 2721 * 2) The driver has a race in switching
2709 2722 * between interrupt and polling mode or
2710 2723 * 3) Packets are arriving in this SRS via the
2711 2724 * S/W classification as well.
2712 2725 *
2713 2726 * We should switch to polling mode and see if we
2714 2727 * need to send the poll thread down. Also, signal
2715 2728 * the worker thread to process whats just arrived.
2716 2729 */
2717 2730 MAC_SRS_POLLING_ON(mac_srs);
2718 2731 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) {
2719 2732 srs_rx->sr_drain_poll_sig++;
2720 2733 MAC_SRS_POLL_RING(mac_srs);
2721 2734 }
2722 2735
2723 2736 /*
2724 2737 * If we didn't signal the poll thread, we need
2725 2738 * to deal with the pending packets ourselves.
2726 2739 */
2727 2740 if (proc_type == SRS_WORKER) {
2728 2741 srs_rx->sr_drain_again++;
2729 2742 goto again;
2730 2743 } else {
2731 2744 srs_rx->sr_drain_worker_sig++;
2732 2745 cv_signal(&mac_srs->srs_async);
2733 2746 }
2734 2747 }
2735 2748
2736 2749 out:
2737 2750 if (mac_srs->srs_state & SRS_GET_PKTS) {
2738 2751 /*
2739 2752 * Poll thread is already running. Leave the
2740 2753 * SRS_RPOC set and hand over the control to
2741 2754 * poll thread.
2742 2755 */
2743 2756 mac_srs->srs_state &= ~proc_type;
2744 2757 srs_rx->sr_drain_poll_running++;
2745 2758 return;
2746 2759 }
2747 2760
2748 2761 /*
2749 2762 * Even if there are no packets queued in SRS, we
2750 2763 * need to make sure that the shared counter is
2751 2764 * clear and any associated softrings have cleared
2752 2765 * all the backlog. Otherwise, leave the interface
2753 2766 * in polling mode and the poll thread will get
2754 2767 * signalled once the count goes down to zero.
2755 2768 *
2756 2769 * If someone is already draining the queue (SRS_PROC is
2757 2770 * set) when the srs_poll_pkt_cnt goes down to zero,
2758 2771 * then it means that drain is already running and we
2759 2772 * will turn off polling at that time if there is
2760 2773 * no backlog.
2761 2774 *
2762 2775 * As long as there are packets queued either
2763 2776 * in soft ring set or its soft rings, we will leave
2764 2777 * the interface in polling mode (even if the drain
2765 2778 * was done being the interrupt thread). We signal
2766 2779 * the poll thread as well if we have dipped below
2767 2780 * low water mark.
2768 2781 *
2769 2782 * NOTE: We can't use the MAC_SRS_POLLING_ON macro
2770 2783 * since that turn polling on only for worker thread.
2771 2784 * Its not worth turning polling on for interrupt
2772 2785 * thread (since NIC will not issue another interrupt)
2773 2786 * unless a backlog builds up.
2774 2787 */
2775 2788 if ((srs_rx->sr_poll_pkt_cnt > 0) &&
2776 2789 (mac_srs->srs_state & SRS_POLLING_CAPAB)) {
2777 2790 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2778 2791 srs_rx->sr_drain_keep_polling++;
2779 2792 MAC_SRS_POLLING_ON(mac_srs);
2780 2793 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)
2781 2794 MAC_SRS_POLL_RING(mac_srs);
2782 2795 return;
2783 2796 }
2784 2797
2785 2798 /* Nothing else to do. Get out of poll mode */
2786 2799 MAC_SRS_POLLING_OFF(mac_srs);
2787 2800 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2788 2801 srs_rx->sr_drain_finish_intr++;
2789 2802 }
2790 2803
2791 2804 /*
2792 2805 * mac_rx_srs_drain_bw
2793 2806 *
2794 2807 * The SRS BW drain routine. Gets to run to clear the queue. Any thread
2795 2808 * (worker, interrupt, poll) can call this based on processing model.
2796 2809 * The first thing we do is disable interrupts if possible and then
2797 2810 * drain the queue. we also try to poll the underlying hardware if
2798 2811 * there is a dedicated hardware Rx ring assigned to this SRS.
|
↓ open down ↓ |
217 lines elided |
↑ open up ↑ |
2799 2812 *
2800 2813 * There is a equivalent drain routine in non bandwidth control mode
2801 2814 * mac_rx_srs_drain. There is some code duplication between the two
2802 2815 * routines but they are highly performance sensitive and are easier
2803 2816 * to read/debug if they stay separate. Any code changes here might
2804 2817 * also apply to mac_rx_srs_drain as well.
2805 2818 */
2806 2819 void
2807 2820 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
2808 2821 {
2809 - mblk_t *head;
2822 + mblk_t *head;
2810 2823 mblk_t *tail;
2811 - timeout_id_t tid;
2824 + timeout_id_t tid;
2812 2825 size_t sz = 0;
2813 2826 int cnt = 0;
2814 2827 mac_client_impl_t *mcip = mac_srs->srs_mcip;
2815 2828 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
2816 2829 clock_t now;
2817 2830
2818 2831 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2819 2832 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
2820 2833 again:
2821 2834 /* Check if we are doing B/W control */
2822 2835 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2823 2836 now = ddi_get_lbolt();
2824 2837 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
2825 2838 mac_srs->srs_bw->mac_bw_curr_time = now;
2826 2839 mac_srs->srs_bw->mac_bw_used = 0;
2827 2840 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
2828 2841 mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED;
2829 2842 } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) {
2830 2843 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2831 2844 goto done;
2832 2845 } else if (mac_srs->srs_bw->mac_bw_used >
2833 2846 mac_srs->srs_bw->mac_bw_limit) {
2834 2847 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
2835 2848 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2836 2849 goto done;
2837 2850 }
2838 2851 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2839 2852
2840 2853 /* If we are blanked i.e. can't do upcalls, then we are done */
2841 2854 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
2842 2855 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
2843 2856 (mac_srs->srs_state & SRS_PAUSE));
2844 2857 goto done;
2845 2858 }
2846 2859
2847 2860 sz = 0;
2848 2861 cnt = 0;
2849 2862 if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) {
2850 2863 /*
2851 2864 * We couldn't pick up a single packet.
2852 2865 */
2853 2866 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2854 2867 if ((mac_srs->srs_bw->mac_bw_used == 0) &&
2855 2868 (mac_srs->srs_size != 0) &&
2856 2869 !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2857 2870 /*
2858 2871 * Seems like configured B/W doesn't
2859 2872 * even allow processing of 1 packet
2860 2873 * per tick.
2861 2874 *
2862 2875 * XXX: raise the limit to processing
2863 2876 * at least 1 packet per tick.
2864 2877 */
2865 2878 mac_srs->srs_bw->mac_bw_limit +=
2866 2879 mac_srs->srs_bw->mac_bw_limit;
2867 2880 mac_srs->srs_bw->mac_bw_drop_threshold +=
2868 2881 mac_srs->srs_bw->mac_bw_drop_threshold;
2869 2882 cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) "
2870 2883 "raised B/W limit to %d since not even a "
2871 2884 "single packet can be processed per "
2872 2885 "tick %d\n", (void *)mac_srs,
2873 2886 (int)mac_srs->srs_bw->mac_bw_limit,
2874 2887 (int)msgdsize(mac_srs->srs_first));
2875 2888 }
2876 2889 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2877 2890 goto done;
2878 2891 }
2879 2892
2880 2893 ASSERT(head != NULL);
2881 2894 ASSERT(tail != NULL);
2882 2895
2883 2896 /* zero bandwidth: drop all and return to interrupt mode */
2884 2897 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2885 2898 if (mac_srs->srs_bw->mac_bw_limit == 0) {
2886 2899 srs_rx->sr_stat.mrs_sdrops += cnt;
2887 2900 ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz);
2888 2901 mac_srs->srs_bw->mac_bw_sz -= sz;
2889 2902 mac_srs->srs_bw->mac_bw_drop_bytes += sz;
2890 2903 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2891 2904 mac_pkt_drop(NULL, NULL, head, B_FALSE);
2892 2905 goto leave_poll;
2893 2906 } else {
2894 2907 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2895 2908 }
2896 2909
2897 2910 if ((tid = mac_srs->srs_tid) != NULL)
2898 2911 mac_srs->srs_tid = NULL;
2899 2912
2900 2913 mac_srs->srs_state |= (SRS_PROC|proc_type);
2901 2914 MAC_SRS_WORKER_POLLING_ON(mac_srs);
2902 2915
2903 2916 /*
2904 2917 * mcip is NULL for broadcast and multicast flows. The promisc
2905 2918 * callbacks for broadcast and multicast packets are delivered from
2906 2919 * mac_rx() and we don't need to worry about that case in this path
2907 2920 */
2908 2921 if (mcip != NULL) {
2909 2922 if (mcip->mci_promisc_list != NULL) {
2910 2923 mutex_exit(&mac_srs->srs_lock);
2911 2924 mac_promisc_client_dispatch(mcip, head);
2912 2925 mutex_enter(&mac_srs->srs_lock);
2913 2926 }
2914 2927 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
2915 2928 mutex_exit(&mac_srs->srs_lock);
2916 2929 mac_protect_intercept_dynamic(mcip, head);
2917 2930 mutex_enter(&mac_srs->srs_lock);
2918 2931 }
2919 2932 }
2920 2933
2921 2934 /*
2922 2935 * Check if SRS itself is doing the processing
2923 2936 * This direct path does not apply when subflows are present. In this
2924 2937 * case, packets need to be dispatched to a soft ring according to the
2925 2938 * flow's bandwidth and other resources contraints.
2926 2939 */
2927 2940 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
2928 2941 mac_direct_rx_t proc;
2929 2942 void *arg1;
2930 2943 mac_resource_handle_t arg2;
2931 2944
2932 2945 /*
2933 2946 * This is the case when a Rx is directly
2934 2947 * assigned and we have a fully classified
2935 2948 * protocol chain. We can deal with it in
2936 2949 * one shot.
2937 2950 */
2938 2951 proc = srs_rx->sr_func;
2939 2952 arg1 = srs_rx->sr_arg1;
2940 2953 arg2 = srs_rx->sr_arg2;
2941 2954
2942 2955 mac_srs->srs_state |= SRS_CLIENT_PROC;
2943 2956 mutex_exit(&mac_srs->srs_lock);
2944 2957 if (tid != NULL) {
2945 2958 (void) untimeout(tid);
2946 2959 tid = NULL;
2947 2960 }
2948 2961
2949 2962 proc(arg1, arg2, head, NULL);
2950 2963 /*
2951 2964 * Decrement the size and count here itelf
2952 2965 * since the packet has been processed.
2953 2966 */
2954 2967 mutex_enter(&mac_srs->srs_lock);
2955 2968 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2956 2969 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
2957 2970
2958 2971 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2959 2972 cv_signal(&mac_srs->srs_client_cv);
2960 2973 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2961 2974 } else {
2962 2975 /* Some kind of softrings based fanout is required */
2963 2976 mutex_exit(&mac_srs->srs_lock);
2964 2977 if (tid != NULL) {
2965 2978 (void) untimeout(tid);
2966 2979 tid = NULL;
2967 2980 }
2968 2981
2969 2982 /*
2970 2983 * Since the fanout routines can deal with chains,
2971 2984 * shoot the entire chain up.
2972 2985 */
2973 2986 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2974 2987 mac_rx_srs_fanout(mac_srs, head);
2975 2988 else
2976 2989 mac_rx_srs_proto_fanout(mac_srs, head);
2977 2990 mutex_enter(&mac_srs->srs_lock);
2978 2991 }
2979 2992
2980 2993 /*
2981 2994 * Send the poll thread to pick up any packets arrived
2982 2995 * so far. This also serves as the last check in case
2983 2996 * nothing else is queued in the SRS. The poll thread
2984 2997 * is signalled only in the case the drain was done
2985 2998 * by the worker thread and SRS_WORKER is set. The
2986 2999 * worker thread can run in parallel as long as the
2987 3000 * SRS_WORKER flag is set. We we have nothing else to
2988 3001 * process, we can exit while leaving SRS_PROC set
2989 3002 * which gives the poll thread control to process and
2990 3003 * cleanup once it returns from the NIC.
2991 3004 *
2992 3005 * If we have nothing else to process, we need to
2993 3006 * ensure that we keep holding the srs_lock till
2994 3007 * all the checks below are done and control is
2995 3008 * handed to the poll thread if it was running.
2996 3009 */
2997 3010 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2998 3011 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2999 3012 if (mac_srs->srs_first != NULL) {
3000 3013 if (proc_type == SRS_WORKER) {
3001 3014 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3002 3015 if (srs_rx->sr_poll_pkt_cnt <=
3003 3016 srs_rx->sr_lowat)
3004 3017 MAC_SRS_POLL_RING(mac_srs);
3005 3018 goto again;
3006 3019 } else {
3007 3020 cv_signal(&mac_srs->srs_async);
3008 3021 }
3009 3022 }
3010 3023 }
3011 3024 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3012 3025
3013 3026 done:
3014 3027
3015 3028 if (mac_srs->srs_state & SRS_GET_PKTS) {
3016 3029 /*
3017 3030 * Poll thread is already running. Leave the
3018 3031 * SRS_RPOC set and hand over the control to
3019 3032 * poll thread.
3020 3033 */
3021 3034 mac_srs->srs_state &= ~proc_type;
3022 3035 return;
3023 3036 }
3024 3037
3025 3038 /*
3026 3039 * If we can't process packets because we have exceeded
3027 3040 * B/W limit for this tick, just set the timeout
3028 3041 * and leave.
3029 3042 *
3030 3043 * Even if there are no packets queued in SRS, we
3031 3044 * need to make sure that the shared counter is
3032 3045 * clear and any associated softrings have cleared
3033 3046 * all the backlog. Otherwise, leave the interface
3034 3047 * in polling mode and the poll thread will get
3035 3048 * signalled once the count goes down to zero.
3036 3049 *
3037 3050 * If someone is already draining the queue (SRS_PROC is
3038 3051 * set) when the srs_poll_pkt_cnt goes down to zero,
3039 3052 * then it means that drain is already running and we
3040 3053 * will turn off polling at that time if there is
3041 3054 * no backlog. As long as there are packets queued either
3042 3055 * is soft ring set or its soft rings, we will leave
3043 3056 * the interface in polling mode.
3044 3057 */
3045 3058 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
3046 3059 if ((mac_srs->srs_state & SRS_POLLING_CAPAB) &&
3047 3060 ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) ||
3048 3061 (srs_rx->sr_poll_pkt_cnt > 0))) {
3049 3062 MAC_SRS_POLLING_ON(mac_srs);
3050 3063 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
3051 3064 if ((mac_srs->srs_first != NULL) &&
3052 3065 (mac_srs->srs_tid == NULL))
3053 3066 mac_srs->srs_tid = timeout(mac_srs_fire,
3054 3067 mac_srs, 1);
3055 3068 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3056 3069 return;
3057 3070 }
3058 3071 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3059 3072
3060 3073 leave_poll:
3061 3074
3062 3075 /* Nothing else to do. Get out of poll mode */
3063 3076 MAC_SRS_POLLING_OFF(mac_srs);
3064 3077 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
3065 3078 }
|
↓ open down ↓ |
244 lines elided |
↑ open up ↑ |
3066 3079
3067 3080 /*
3068 3081 * mac_srs_worker
3069 3082 *
3070 3083 * The SRS worker routine. Drains the queue when no one else is
3071 3084 * processing it.
3072 3085 */
3073 3086 void
3074 3087 mac_srs_worker(mac_soft_ring_set_t *mac_srs)
3075 3088 {
3076 - kmutex_t *lock = &mac_srs->srs_lock;
3077 - kcondvar_t *async = &mac_srs->srs_async;
3089 + kmutex_t *lock = &mac_srs->srs_lock;
3090 + kcondvar_t *async = &mac_srs->srs_async;
3078 3091 callb_cpr_t cprinfo;
3079 3092 boolean_t bw_ctl_flag;
3080 3093
3081 3094 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker");
3082 3095 mutex_enter(lock);
3083 3096
3084 3097 start:
3085 3098 for (;;) {
3086 3099 bw_ctl_flag = B_FALSE;
3087 3100 if (mac_srs->srs_type & SRST_BW_CONTROL) {
3088 3101 MAC_SRS_BW_LOCK(mac_srs);
3089 3102 MAC_SRS_CHECK_BW_CONTROL(mac_srs);
3090 3103 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
3091 3104 bw_ctl_flag = B_TRUE;
3092 3105 MAC_SRS_BW_UNLOCK(mac_srs);
3093 3106 }
3094 3107 /*
3095 3108 * The SRS_BW_ENFORCED flag may change since we have dropped
3096 3109 * the mac_bw_lock. However the drain function can handle both
3097 3110 * a drainable SRS or a bandwidth controlled SRS, and the
3098 3111 * effect of scheduling a timeout is to wakeup the worker
3099 3112 * thread which in turn will call the drain function. Since
3100 3113 * we release the srs_lock atomically only in the cv_wait there
3101 3114 * isn't a fear of waiting for ever.
3102 3115 */
3103 3116 while (((mac_srs->srs_state & SRS_PROC) ||
3104 3117 (mac_srs->srs_first == NULL) || bw_ctl_flag ||
3105 3118 (mac_srs->srs_state & SRS_TX_BLOCKED)) &&
3106 3119 !(mac_srs->srs_state & SRS_PAUSE)) {
3107 3120 /*
3108 3121 * If we have packets queued and we are here
3109 3122 * because B/W control is in place, we better
3110 3123 * schedule the worker wakeup after 1 tick
3111 3124 * to see if bandwidth control can be relaxed.
3112 3125 */
3113 3126 if (bw_ctl_flag && mac_srs->srs_tid == NULL) {
3114 3127 /*
3115 3128 * We need to ensure that a timer is already
3116 3129 * scheduled or we force schedule one for
3117 3130 * later so that we can continue processing
3118 3131 * after this quanta is over.
3119 3132 */
3120 3133 mac_srs->srs_tid = timeout(mac_srs_fire,
3121 3134 mac_srs, 1);
3122 3135 }
3123 3136 wait:
3124 3137 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3125 3138 cv_wait(async, lock);
3126 3139 CALLB_CPR_SAFE_END(&cprinfo, lock);
3127 3140
3128 3141 if (mac_srs->srs_state & SRS_PAUSE)
3129 3142 goto done;
3130 3143 if (mac_srs->srs_state & SRS_PROC)
3131 3144 goto wait;
3132 3145
3133 3146 if (mac_srs->srs_first != NULL &&
3134 3147 mac_srs->srs_type & SRST_BW_CONTROL) {
3135 3148 MAC_SRS_BW_LOCK(mac_srs);
3136 3149 if (mac_srs->srs_bw->mac_bw_state &
3137 3150 SRS_BW_ENFORCED) {
3138 3151 MAC_SRS_CHECK_BW_CONTROL(mac_srs);
3139 3152 }
3140 3153 bw_ctl_flag = mac_srs->srs_bw->mac_bw_state &
3141 3154 SRS_BW_ENFORCED;
3142 3155 MAC_SRS_BW_UNLOCK(mac_srs);
3143 3156 }
3144 3157 }
3145 3158
3146 3159 if (mac_srs->srs_state & SRS_PAUSE)
3147 3160 goto done;
3148 3161 mac_srs->srs_drain_func(mac_srs, SRS_WORKER);
3149 3162 }
3150 3163 done:
3151 3164 /*
3152 3165 * The Rx SRS quiesce logic first cuts off packet supply to the SRS
3153 3166 * from both hard and soft classifications and waits for such threads
3154 3167 * to finish before signaling the worker. So at this point the only
3155 3168 * thread left that could be competing with the worker is the poll
3156 3169 * thread. In the case of Tx, there shouldn't be any thread holding
3157 3170 * SRS_PROC at this point.
3158 3171 */
3159 3172 if (!(mac_srs->srs_state & SRS_PROC)) {
3160 3173 mac_srs->srs_state |= SRS_PROC;
3161 3174 } else {
3162 3175 ASSERT((mac_srs->srs_type & SRST_TX) == 0);
3163 3176 /*
3164 3177 * Poll thread still owns the SRS and is still running
3165 3178 */
3166 3179 ASSERT((mac_srs->srs_poll_thr == NULL) ||
3167 3180 ((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
3168 3181 SRS_POLL_THR_OWNER));
3169 3182 }
3170 3183 mac_srs_worker_quiesce(mac_srs);
3171 3184 /*
3172 3185 * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator
3173 3186 * of the quiesce operation
3174 3187 */
3175 3188 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART)))
3176 3189 cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock);
3177 3190
3178 3191 if (mac_srs->srs_state & SRS_RESTART) {
3179 3192 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
3180 3193 mac_srs_worker_restart(mac_srs);
3181 3194 mac_srs->srs_state &= ~SRS_PROC;
3182 3195 goto start;
3183 3196 }
3184 3197
3185 3198 if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE))
3186 3199 mac_srs_worker_quiesce(mac_srs);
3187 3200
3188 3201 mac_srs->srs_state &= ~SRS_PROC;
3189 3202 /* The macro drops the srs_lock */
3190 3203 CALLB_CPR_EXIT(&cprinfo);
3191 3204 thread_exit();
3192 3205 }
3193 3206
3194 3207 /*
3195 3208 * mac_rx_srs_subflow_process
3196 3209 *
3197 3210 * Receive side routine called from interrupt path when there are
3198 3211 * sub flows present on this SRS.
3199 3212 */
3200 3213 /* ARGSUSED */
3201 3214 void
3202 3215 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs,
3203 3216 mblk_t *mp_chain, boolean_t loopback)
3204 3217 {
3205 3218 flow_entry_t *flent = NULL;
3206 3219 flow_entry_t *prev_flent = NULL;
3207 3220 mblk_t *mp = NULL;
3208 3221 mblk_t *tail = NULL;
3209 3222 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
3210 3223 mac_client_impl_t *mcip;
3211 3224
3212 3225 mcip = mac_srs->srs_mcip;
3213 3226 ASSERT(mcip != NULL);
3214 3227
3215 3228 /*
3216 3229 * We need to determine the SRS for every packet
3217 3230 * by walking the flow table, if we don't get any,
3218 3231 * then we proceed using the SRS we came with.
3219 3232 */
3220 3233 mp = tail = mp_chain;
3221 3234 while (mp != NULL) {
3222 3235
3223 3236 /*
3224 3237 * We will increment the stats for the mactching subflow.
3225 3238 * when we get the bytes/pkt count for the classified packets
3226 3239 * later in mac_rx_srs_process.
3227 3240 */
3228 3241 (void) mac_flow_lookup(mcip->mci_subflow_tab, mp,
3229 3242 FLOW_INBOUND, &flent);
3230 3243
3231 3244 if (mp == mp_chain || flent == prev_flent) {
3232 3245 if (prev_flent != NULL)
3233 3246 FLOW_REFRELE(prev_flent);
3234 3247 prev_flent = flent;
3235 3248 flent = NULL;
3236 3249 tail = mp;
3237 3250 mp = mp->b_next;
3238 3251 continue;
3239 3252 }
3240 3253 tail->b_next = NULL;
3241 3254 /*
3242 3255 * A null indicates, this is for the mac_srs itself.
3243 3256 * XXX-venu : probably assert for fe_rx_srs_cnt == 0.
3244 3257 */
3245 3258 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
3246 3259 mac_rx_srs_process(arg,
3247 3260 (mac_resource_handle_t)mac_srs, mp_chain,
3248 3261 loopback);
3249 3262 } else {
3250 3263 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
3251 3264 prev_flent->fe_cb_arg2, mp_chain, loopback);
3252 3265 FLOW_REFRELE(prev_flent);
3253 3266 }
3254 3267 prev_flent = flent;
3255 3268 flent = NULL;
3256 3269 mp_chain = mp;
3257 3270 tail = mp;
3258 3271 mp = mp->b_next;
3259 3272 }
3260 3273 /* Last chain */
3261 3274 ASSERT(mp_chain != NULL);
3262 3275 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
3263 3276 mac_rx_srs_process(arg,
3264 3277 (mac_resource_handle_t)mac_srs, mp_chain, loopback);
3265 3278 } else {
3266 3279 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
3267 3280 prev_flent->fe_cb_arg2, mp_chain, loopback);
3268 3281 FLOW_REFRELE(prev_flent);
3269 3282 }
3270 3283 }
3271 3284
3272 3285 /*
3273 3286 * mac_rx_srs_process
3274 3287 *
3275 3288 * Receive side routine called from the interrupt path.
3276 3289 *
3277 3290 * loopback is set to force a context switch on the loopback
3278 3291 * path between MAC clients.
3279 3292 */
3280 3293 /* ARGSUSED */
3281 3294 void
3282 3295 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain,
3283 3296 boolean_t loopback)
3284 3297 {
3285 3298 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
3286 3299 mblk_t *mp, *tail, *head;
3287 3300 int count = 0;
3288 3301 int count1;
3289 3302 size_t sz = 0;
3290 3303 size_t chain_sz, sz1;
3291 3304 mac_bw_ctl_t *mac_bw;
3292 3305 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
3293 3306
3294 3307 /*
3295 3308 * Set the tail, count and sz. We set the sz irrespective
3296 3309 * of whether we are doing B/W control or not for the
3297 3310 * purpose of updating the stats.
3298 3311 */
3299 3312 mp = tail = mp_chain;
3300 3313 while (mp != NULL) {
3301 3314 tail = mp;
3302 3315 count++;
3303 3316 sz += msgdsize(mp);
3304 3317 mp = mp->b_next;
3305 3318 }
3306 3319
3307 3320 mutex_enter(&mac_srs->srs_lock);
3308 3321
3309 3322 if (loopback) {
3310 3323 SRS_RX_STAT_UPDATE(mac_srs, lclbytes, sz);
3311 3324 SRS_RX_STAT_UPDATE(mac_srs, lclcnt, count);
3312 3325
3313 3326 } else {
3314 3327 SRS_RX_STAT_UPDATE(mac_srs, intrbytes, sz);
3315 3328 SRS_RX_STAT_UPDATE(mac_srs, intrcnt, count);
3316 3329 }
3317 3330
3318 3331 /*
3319 3332 * If the SRS in already being processed; has been blanked;
3320 3333 * can be processed by worker thread only; or the B/W limit
3321 3334 * has been reached, then queue the chain and check if
3322 3335 * worker thread needs to be awakend.
3323 3336 */
3324 3337 if (mac_srs->srs_type & SRST_BW_CONTROL) {
3325 3338 mac_bw = mac_srs->srs_bw;
3326 3339 ASSERT(mac_bw != NULL);
3327 3340 mutex_enter(&mac_bw->mac_bw_lock);
3328 3341 mac_bw->mac_bw_intr += sz;
3329 3342 if (mac_bw->mac_bw_limit == 0) {
3330 3343 /* zero bandwidth: drop all */
3331 3344 srs_rx->sr_stat.mrs_sdrops += count;
3332 3345 mac_bw->mac_bw_drop_bytes += sz;
3333 3346 mutex_exit(&mac_bw->mac_bw_lock);
3334 3347 mutex_exit(&mac_srs->srs_lock);
3335 3348 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
3336 3349 return;
3337 3350 } else {
3338 3351 if ((mac_bw->mac_bw_sz + sz) <=
3339 3352 mac_bw->mac_bw_drop_threshold) {
3340 3353 mutex_exit(&mac_bw->mac_bw_lock);
3341 3354 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain,
3342 3355 tail, count, sz);
3343 3356 } else {
3344 3357 mp = mp_chain;
3345 3358 chain_sz = 0;
3346 3359 count1 = 0;
3347 3360 tail = NULL;
3348 3361 head = NULL;
3349 3362 while (mp != NULL) {
3350 3363 sz1 = msgdsize(mp);
3351 3364 if (mac_bw->mac_bw_sz + chain_sz + sz1 >
3352 3365 mac_bw->mac_bw_drop_threshold)
3353 3366 break;
3354 3367 chain_sz += sz1;
3355 3368 count1++;
3356 3369 tail = mp;
3357 3370 mp = mp->b_next;
3358 3371 }
3359 3372 mutex_exit(&mac_bw->mac_bw_lock);
3360 3373 if (tail != NULL) {
3361 3374 head = tail->b_next;
3362 3375 tail->b_next = NULL;
3363 3376 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs,
3364 3377 mp_chain, tail, count1, chain_sz);
3365 3378 sz -= chain_sz;
3366 3379 count -= count1;
3367 3380 } else {
3368 3381 /* Can't pick up any */
3369 3382 head = mp_chain;
3370 3383 }
3371 3384 if (head != NULL) {
3372 3385 /* Drop any packet over the threshold */
3373 3386 srs_rx->sr_stat.mrs_sdrops += count;
3374 3387 mutex_enter(&mac_bw->mac_bw_lock);
3375 3388 mac_bw->mac_bw_drop_bytes += sz;
3376 3389 mutex_exit(&mac_bw->mac_bw_lock);
3377 3390 freemsgchain(head);
3378 3391 }
3379 3392 }
3380 3393 MAC_SRS_WORKER_WAKEUP(mac_srs);
3381 3394 mutex_exit(&mac_srs->srs_lock);
3382 3395 return;
3383 3396 }
3384 3397 }
3385 3398
3386 3399 /*
3387 3400 * If the total number of packets queued in the SRS and
3388 3401 * its associated soft rings exceeds the max allowed,
3389 3402 * then drop the chain. If we are polling capable, this
3390 3403 * shouldn't be happening.
3391 3404 */
3392 3405 if (!(mac_srs->srs_type & SRST_BW_CONTROL) &&
3393 3406 (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) {
3394 3407 mac_bw = mac_srs->srs_bw;
3395 3408 srs_rx->sr_stat.mrs_sdrops += count;
3396 3409 mutex_enter(&mac_bw->mac_bw_lock);
3397 3410 mac_bw->mac_bw_drop_bytes += sz;
3398 3411 mutex_exit(&mac_bw->mac_bw_lock);
3399 3412 freemsgchain(mp_chain);
3400 3413 mutex_exit(&mac_srs->srs_lock);
3401 3414 return;
3402 3415 }
3403 3416
3404 3417 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz);
3405 3418
3406 3419 if (!(mac_srs->srs_state & SRS_PROC)) {
3407 3420 /*
3408 3421 * If we are coming via loopback, if we are not optimizing for
3409 3422 * latency, or if our stack is running deep, we should signal
3410 3423 * the worker thread.
3411 3424 */
3412 3425 if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT) ||
3413 3426 MAC_RX_SRS_TOODEEP()) {
3414 3427 /*
3415 3428 * For loopback, We need to let the worker take
3416 3429 * over as we don't want to continue in the same
3417 3430 * thread even if we can. This could lead to stack
3418 3431 * overflows and may also end up using
3419 3432 * resources (cpu) incorrectly.
3420 3433 */
3421 3434 cv_signal(&mac_srs->srs_async);
3422 3435 } else {
3423 3436 /*
3424 3437 * Seems like no one is processing the SRS and
3425 3438 * there is no backlog. We also inline process
3426 3439 * our packet if its a single packet in non
3427 3440 * latency optimized case (in latency optimized
3428 3441 * case, we inline process chains of any size).
3429 3442 */
3430 3443 mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST);
3431 3444 }
3432 3445 }
3433 3446 mutex_exit(&mac_srs->srs_lock);
3434 3447 }
3435 3448
3436 3449 /* TX SIDE ROUTINES (RUNTIME) */
3437 3450
3438 3451 /*
3439 3452 * mac_tx_srs_no_desc
3440 3453 *
3441 3454 * This routine is called by Tx single ring default mode
3442 3455 * when Tx ring runs out of descs.
3443 3456 */
3444 3457 mac_tx_cookie_t
3445 3458 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3446 3459 uint16_t flag, mblk_t **ret_mp)
3447 3460 {
3448 3461 mac_tx_cookie_t cookie = NULL;
3449 3462 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3450 3463 boolean_t wakeup_worker = B_TRUE;
3451 3464 uint32_t tx_mode = srs_tx->st_mode;
3452 3465 int cnt, sz;
3453 3466 mblk_t *tail;
3454 3467
3455 3468 ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW);
3456 3469 if (flag & MAC_DROP_ON_NO_DESC) {
3457 3470 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3458 3471 } else {
3459 3472 if (mac_srs->srs_first != NULL)
3460 3473 wakeup_worker = B_FALSE;
3461 3474 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3462 3475 if (flag & MAC_TX_NO_ENQUEUE) {
3463 3476 /*
3464 3477 * If TX_QUEUED is not set, queue the
3465 3478 * packet and let mac_tx_srs_drain()
3466 3479 * set the TX_BLOCKED bit for the
3467 3480 * reasons explained above. Otherwise,
3468 3481 * return the mblks.
3469 3482 */
3470 3483 if (wakeup_worker) {
3471 3484 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3472 3485 mp_chain, tail, cnt, sz);
3473 3486 } else {
3474 3487 MAC_TX_SET_NO_ENQUEUE(mac_srs,
3475 3488 mp_chain, ret_mp, cookie);
3476 3489 }
3477 3490 } else {
3478 3491 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
3479 3492 tail, cnt, sz, cookie);
3480 3493 }
3481 3494 if (wakeup_worker)
3482 3495 cv_signal(&mac_srs->srs_async);
3483 3496 }
3484 3497 return (cookie);
3485 3498 }
3486 3499
3487 3500 /*
3488 3501 * mac_tx_srs_enqueue
3489 3502 *
3490 3503 * This routine is called when Tx SRS is operating in either serializer
3491 3504 * or bandwidth mode. In serializer mode, a packet will get enqueued
3492 3505 * when a thread cannot enter SRS exclusively. In bandwidth mode,
3493 3506 * packets gets queued if allowed byte-count limit for a tick is
3494 3507 * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and
3495 3508 * MAC_TX_NO_ENQUEUE is set is different than when operaing in either
3496 3509 * the default mode or fanout mode. Here packets get dropped or
3497 3510 * returned back to the caller only after hi-watermark worth of data
3498 3511 * is queued.
3499 3512 */
3500 3513 static mac_tx_cookie_t
3501 3514 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3502 3515 uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp)
3503 3516 {
3504 3517 mac_tx_cookie_t cookie = NULL;
3505 3518 int cnt, sz;
3506 3519 mblk_t *tail;
3507 3520 boolean_t wakeup_worker = B_TRUE;
3508 3521
3509 3522 /*
3510 3523 * Ignore fanout hint if we don't have multiple tx rings.
3511 3524 */
3512 3525 if (!MAC_TX_SOFT_RINGS(mac_srs))
3513 3526 fanout_hint = 0;
3514 3527
3515 3528 if (mac_srs->srs_first != NULL)
3516 3529 wakeup_worker = B_FALSE;
3517 3530 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3518 3531 if (flag & MAC_DROP_ON_NO_DESC) {
3519 3532 if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) {
3520 3533 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3521 3534 } else {
3522 3535 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3523 3536 mp_chain, tail, cnt, sz);
3524 3537 }
3525 3538 } else if (flag & MAC_TX_NO_ENQUEUE) {
3526 3539 if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) ||
3527 3540 (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) {
3528 3541 MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain,
3529 3542 ret_mp, cookie);
3530 3543 } else {
3531 3544 mp_chain->b_prev = (mblk_t *)fanout_hint;
3532 3545 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3533 3546 mp_chain, tail, cnt, sz);
3534 3547 }
3535 3548 } else {
3536 3549 /*
3537 3550 * If you are BW_ENFORCED, just enqueue the
3538 3551 * packet. srs_worker will drain it at the
3539 3552 * prescribed rate. Before enqueueing, save
3540 3553 * the fanout hint.
3541 3554 */
3542 3555 mp_chain->b_prev = (mblk_t *)fanout_hint;
3543 3556 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
3544 3557 tail, cnt, sz, cookie);
3545 3558 }
3546 3559 if (wakeup_worker)
3547 3560 cv_signal(&mac_srs->srs_async);
3548 3561 return (cookie);
3549 3562 }
3550 3563
3551 3564 /*
3552 3565 * There are seven tx modes:
3553 3566 *
3554 3567 * 1) Default mode (SRS_TX_DEFAULT)
3555 3568 * 2) Serialization mode (SRS_TX_SERIALIZE)
3556 3569 * 3) Fanout mode (SRS_TX_FANOUT)
3557 3570 * 4) Bandwdith mode (SRS_TX_BW)
3558 3571 * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT)
3559 3572 * 6) aggr Tx mode (SRS_TX_AGGR)
3560 3573 * 7) aggr Tx bw mode (SRS_TX_BW_AGGR)
3561 3574 *
3562 3575 * The tx mode in which an SRS operates is decided in mac_tx_srs_setup()
3563 3576 * based on the number of Tx rings requested for an SRS and whether
3564 3577 * bandwidth control is requested or not.
3565 3578 *
3566 3579 * The default mode (i.e., no fanout/no bandwidth) is used when the
3567 3580 * underlying NIC does not have Tx rings or just one Tx ring. In this mode,
3568 3581 * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send().
3569 3582 * When the underlying Tx ring runs out of Tx descs, it starts queueing up
3570 3583 * packets in SRS. When flow-control is relieved, the srs_worker drains
3571 3584 * the queued packets and informs blocked clients to restart sending
3572 3585 * packets.
3573 3586 *
3574 3587 * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This
3575 3588 * mode is used when the link has no Tx rings or only one Tx ring.
3576 3589 *
3577 3590 * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple
3578 3591 * Tx rings. Each Tx ring will have a soft ring associated with it.
3579 3592 * These soft rings will be hung off the Tx SRS. Queueing if it happens
3580 3593 * due to lack of Tx desc will be in individual soft ring (and not srs)
3581 3594 * associated with Tx ring.
3582 3595 *
3583 3596 * In the TX_BW mode, tx srs will allow packets to go down to Tx ring
3584 3597 * only if bw is available. Otherwise the packets will be queued in
3585 3598 * SRS. If fanout to multiple Tx rings is configured, the packets will
3586 3599 * be fanned out among the soft rings associated with the Tx rings.
3587 3600 *
3588 3601 * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine
3589 3602 * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring
3590 3603 * belonging to a port on which the packet has to be sent. Aggr will
3591 3604 * always have a pseudo Tx ring associated with it even when it is an
3592 3605 * aggregation over a single NIC that has no Tx rings. Even in such a
3593 3606 * case, the single pseudo Tx ring will have a soft ring associated with
3594 3607 * it and the soft ring will hang off the SRS.
3595 3608 *
3596 3609 * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used.
3597 3610 * In this mode, the bandwidth is first applied on the outgoing packets
3598 3611 * and later mac_tx_addr_mode() function is called to send the packet out
3599 3612 * of one of the pseudo Tx rings.
3600 3613 *
3601 3614 * Four flags are used in srs_state for indicating flow control
3602 3615 * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT.
3603 3616 * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the
3604 3617 * driver below.
3605 3618 * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat
3606 3619 * and flow-control pressure is applied back to clients. The clients expect
3607 3620 * wakeup when flow-control is relieved.
3608 3621 * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk
3609 3622 * got returned back to client either due to lack of Tx descs or due to bw
3610 3623 * control reasons. The clients expect a wakeup when condition is relieved.
3611 3624 *
3612 3625 * The fourth argument to mac_tx() is the flag. Normally it will be 0 but
3613 3626 * some clients set the following values too: MAC_DROP_ON_NO_DESC,
3614 3627 * MAC_TX_NO_ENQUEUE
3615 3628 * Mac clients that do not want packets to be enqueued in the mac layer set
3616 3629 * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or
3617 3630 * Tx soft rings but instead get dropped when the NIC runs out of desc. The
3618 3631 * behaviour of this flag is different when the Tx is running in serializer
3619 3632 * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet
3620 3633 * get dropped when Tx high watermark is reached.
3621 3634 * There are some mac clients like vsw, aggr that want the mblks to be
3622 3635 * returned back to clients instead of being queued in Tx SRS (or Tx soft
3623 3636 * rings) under flow-control (i.e., out of desc or exceeding bw limits)
3624 3637 * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set.
3625 3638 * In the default and Tx fanout mode, the un-transmitted mblks will be
3626 3639 * returned back to the clients when the driver runs out of Tx descs.
3627 3640 * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or
3628 3641 * soft ring) so that the clients can be woken up when Tx desc become
3629 3642 * available. When running in serializer or bandwidth mode mode,
3630 3643 * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached.
3631 3644 */
3632 3645
3633 3646 mac_tx_func_t
3634 3647 mac_tx_get_func(uint32_t mode)
3635 3648 {
3636 3649 return (mac_tx_mode_list[mode].mac_tx_func);
3637 3650 }
3638 3651
3639 3652 /* ARGSUSED */
3640 3653 static mac_tx_cookie_t
3641 3654 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3642 3655 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3643 3656 {
3644 3657 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3645 3658 mac_tx_stats_t stats;
3646 3659 mac_tx_cookie_t cookie = NULL;
3647 3660
3648 3661 ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT);
3649 3662
3650 3663 /* Regular case with a single Tx ring */
3651 3664 /*
3652 3665 * SRS_TX_BLOCKED is set when underlying NIC runs
3653 3666 * out of Tx descs and messages start getting
3654 3667 * queued. It won't get reset until
3655 3668 * tx_srs_drain() completely drains out the
3656 3669 * messages.
3657 3670 */
3658 3671 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
3659 3672 /* Tx descs/resources not available */
3660 3673 mutex_enter(&mac_srs->srs_lock);
3661 3674 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
3662 3675 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain,
3663 3676 flag, ret_mp);
3664 3677 mutex_exit(&mac_srs->srs_lock);
3665 3678 return (cookie);
3666 3679 }
3667 3680 /*
3668 3681 * While we were computing mblk count, the
3669 3682 * flow control condition got relieved.
3670 3683 * Continue with the transmission.
3671 3684 */
3672 3685 mutex_exit(&mac_srs->srs_lock);
3673 3686 }
3674 3687
3675 3688 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3676 3689 mp_chain, &stats);
3677 3690
3678 3691 /*
3679 3692 * Multiple threads could be here sending packets.
3680 3693 * Under such conditions, it is not possible to
3681 3694 * automically set SRS_TX_BLOCKED bit to indicate
3682 3695 * out of tx desc condition. To atomically set
3683 3696 * this, we queue the returned packet and do
3684 3697 * the setting of SRS_TX_BLOCKED in
3685 3698 * mac_tx_srs_drain().
3686 3699 */
3687 3700 if (mp_chain != NULL) {
3688 3701 mutex_enter(&mac_srs->srs_lock);
3689 3702 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp);
3690 3703 mutex_exit(&mac_srs->srs_lock);
3691 3704 return (cookie);
3692 3705 }
3693 3706 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3694 3707
3695 3708 return (NULL);
3696 3709 }
3697 3710
3698 3711 /*
3699 3712 * mac_tx_serialize_mode
3700 3713 *
3701 3714 * This is an experimental mode implemented as per the request of PAE.
3702 3715 * In this mode, all callers attempting to send a packet to the NIC
3703 3716 * will get serialized. Only one thread at any time will access the
3704 3717 * NIC to send the packet out.
3705 3718 */
3706 3719 /* ARGSUSED */
3707 3720 static mac_tx_cookie_t
3708 3721 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3709 3722 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3710 3723 {
3711 3724 mac_tx_stats_t stats;
3712 3725 mac_tx_cookie_t cookie = NULL;
3713 3726 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3714 3727
3715 3728 /* Single ring, serialize below */
3716 3729 ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE);
3717 3730 mutex_enter(&mac_srs->srs_lock);
3718 3731 if ((mac_srs->srs_first != NULL) ||
3719 3732 (mac_srs->srs_state & SRS_PROC)) {
3720 3733 /*
3721 3734 * In serialization mode, queue all packets until
3722 3735 * TX_HIWAT is set.
3723 3736 * If drop bit is set, drop if TX_HIWAT is set.
3724 3737 * If no_enqueue is set, still enqueue until hiwat
3725 3738 * is set and return mblks after TX_HIWAT is set.
3726 3739 */
3727 3740 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain,
3728 3741 flag, NULL, ret_mp);
3729 3742 mutex_exit(&mac_srs->srs_lock);
3730 3743 return (cookie);
3731 3744 }
3732 3745 /*
3733 3746 * No packets queued, nothing on proc and no flow
3734 3747 * control condition. Fast-path, ok. Do inline
3735 3748 * processing.
3736 3749 */
3737 3750 mac_srs->srs_state |= SRS_PROC;
3738 3751 mutex_exit(&mac_srs->srs_lock);
3739 3752
3740 3753 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3741 3754 mp_chain, &stats);
3742 3755
3743 3756 mutex_enter(&mac_srs->srs_lock);
3744 3757 mac_srs->srs_state &= ~SRS_PROC;
3745 3758 if (mp_chain != NULL) {
3746 3759 cookie = mac_tx_srs_enqueue(mac_srs,
3747 3760 mp_chain, flag, NULL, ret_mp);
3748 3761 }
3749 3762 if (mac_srs->srs_first != NULL) {
3750 3763 /*
3751 3764 * We processed inline our packet and a new
3752 3765 * packet/s got queued while we were
3753 3766 * processing. Wakeup srs worker
3754 3767 */
3755 3768 cv_signal(&mac_srs->srs_async);
3756 3769 }
3757 3770 mutex_exit(&mac_srs->srs_lock);
3758 3771
3759 3772 if (cookie == NULL)
3760 3773 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3761 3774
3762 3775 return (cookie);
3763 3776 }
3764 3777
3765 3778 /*
3766 3779 * mac_tx_fanout_mode
|
↓ open down ↓ |
679 lines elided |
↑ open up ↑ |
3767 3780 *
3768 3781 * In this mode, the SRS will have access to multiple Tx rings to send
3769 3782 * the packet out. The fanout hint that is passed as an argument is
3770 3783 * used to find an appropriate ring to fanout the traffic. Each Tx
3771 3784 * ring, in turn, will have a soft ring associated with it. If a Tx
3772 3785 * ring runs out of Tx desc's the returned packet will be queued in
3773 3786 * the soft ring associated with that Tx ring. The srs itself will not
3774 3787 * queue any packets.
3775 3788 */
3776 3789
3777 -#define MAC_TX_SOFT_RING_PROCESS(chain) { \
3790 +#define MAC_TX_SOFT_RING_PROCESS(chain) { \
3778 3791 index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count), \
3779 3792 softring = mac_srs->srs_tx_soft_rings[index]; \
3780 3793 cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \
3781 3794 DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index); \
3782 3795 }
3783 3796
3784 3797 static mac_tx_cookie_t
3785 3798 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3786 3799 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3787 3800 {
3788 3801 mac_soft_ring_t *softring;
3789 3802 uint64_t hash;
3790 3803 uint_t index;
3791 3804 mac_tx_cookie_t cookie = NULL;
3792 3805
3793 3806 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3794 3807 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT);
3795 3808 if (fanout_hint != 0) {
3796 3809 /*
3797 3810 * The hint is specified by the caller, simply pass the
3798 3811 * whole chain to the soft ring.
3799 3812 */
3800 3813 hash = HASH_HINT(fanout_hint);
3801 3814 MAC_TX_SOFT_RING_PROCESS(mp_chain);
3802 3815 } else {
3803 3816 mblk_t *last_mp, *cur_mp, *sub_chain;
3804 3817 uint64_t last_hash = 0;
3805 3818 uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media;
3806 3819
3807 3820 /*
3808 3821 * Compute the hash from the contents (headers) of the
3809 3822 * packets of the mblk chain. Split the chains into
3810 3823 * subchains of the same conversation.
3811 3824 *
3812 3825 * Since there may be more than one ring used for
3813 3826 * sub-chains of the same call, and since the caller
3814 3827 * does not maintain per conversation state since it
3815 3828 * passed a zero hint, unsent subchains will be
3816 3829 * dropped.
3817 3830 */
3818 3831
3819 3832 flag |= MAC_DROP_ON_NO_DESC;
3820 3833 ret_mp = NULL;
3821 3834
3822 3835 ASSERT(ret_mp == NULL);
3823 3836
3824 3837 sub_chain = NULL;
3825 3838 last_mp = NULL;
3826 3839
3827 3840 for (cur_mp = mp_chain; cur_mp != NULL;
3828 3841 cur_mp = cur_mp->b_next) {
3829 3842 hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4,
3830 3843 B_TRUE);
3831 3844 if (last_hash != 0 && hash != last_hash) {
3832 3845 /*
3833 3846 * Starting a different subchain, send current
3834 3847 * chain out.
3835 3848 */
3836 3849 ASSERT(last_mp != NULL);
3837 3850 last_mp->b_next = NULL;
3838 3851 MAC_TX_SOFT_RING_PROCESS(sub_chain);
3839 3852 sub_chain = NULL;
3840 3853 }
3841 3854
3842 3855 /* add packet to subchain */
3843 3856 if (sub_chain == NULL)
3844 3857 sub_chain = cur_mp;
3845 3858 last_mp = cur_mp;
3846 3859 last_hash = hash;
3847 3860 }
3848 3861
3849 3862 if (sub_chain != NULL) {
3850 3863 /* send last subchain */
3851 3864 ASSERT(last_mp != NULL);
3852 3865 last_mp->b_next = NULL;
3853 3866 MAC_TX_SOFT_RING_PROCESS(sub_chain);
3854 3867 }
3855 3868
3856 3869 cookie = NULL;
3857 3870 }
3858 3871
3859 3872 return (cookie);
3860 3873 }
3861 3874
3862 3875 /*
3863 3876 * mac_tx_bw_mode
3864 3877 *
3865 3878 * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring
3866 3879 * only if bw is available. Otherwise the packets will be queued in
3867 3880 * SRS. If the SRS has multiple Tx rings, then packets will get fanned
3868 3881 * out to a Tx rings.
3869 3882 */
3870 3883 static mac_tx_cookie_t
3871 3884 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3872 3885 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3873 3886 {
3874 3887 int cnt, sz;
3875 3888 mblk_t *tail;
3876 3889 mac_tx_cookie_t cookie = NULL;
3877 3890 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3878 3891 clock_t now;
3879 3892
3880 3893 ASSERT(TX_BANDWIDTH_MODE(mac_srs));
3881 3894 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
3882 3895 mutex_enter(&mac_srs->srs_lock);
3883 3896 if (mac_srs->srs_bw->mac_bw_limit == 0) {
3884 3897 /*
3885 3898 * zero bandwidth, no traffic is sent: drop the packets,
3886 3899 * or return the whole chain if the caller requests all
3887 3900 * unsent packets back.
3888 3901 */
3889 3902 if (flag & MAC_TX_NO_ENQUEUE) {
3890 3903 cookie = (mac_tx_cookie_t)mac_srs;
3891 3904 *ret_mp = mp_chain;
3892 3905 } else {
3893 3906 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3894 3907 }
3895 3908 mutex_exit(&mac_srs->srs_lock);
3896 3909 return (cookie);
3897 3910 } else if ((mac_srs->srs_first != NULL) ||
3898 3911 (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
3899 3912 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3900 3913 fanout_hint, ret_mp);
3901 3914 mutex_exit(&mac_srs->srs_lock);
3902 3915 return (cookie);
3903 3916 }
3904 3917 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3905 3918 now = ddi_get_lbolt();
3906 3919 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
3907 3920 mac_srs->srs_bw->mac_bw_curr_time = now;
3908 3921 mac_srs->srs_bw->mac_bw_used = 0;
3909 3922 } else if (mac_srs->srs_bw->mac_bw_used >
3910 3923 mac_srs->srs_bw->mac_bw_limit) {
3911 3924 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
3912 3925 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3913 3926 mp_chain, tail, cnt, sz);
3914 3927 /*
3915 3928 * Wakeup worker thread. Note that worker
3916 3929 * thread has to be woken up so that it
3917 3930 * can fire up the timer to be woken up
3918 3931 * on the next tick. Also once
3919 3932 * BW_ENFORCED is set, it can only be
3920 3933 * reset by srs_worker thread. Until then
3921 3934 * all packets will get queued up in SRS
3922 3935 * and hence this this code path won't be
3923 3936 * entered until BW_ENFORCED is reset.
3924 3937 */
3925 3938 cv_signal(&mac_srs->srs_async);
3926 3939 mutex_exit(&mac_srs->srs_lock);
3927 3940 return (cookie);
3928 3941 }
3929 3942
3930 3943 mac_srs->srs_bw->mac_bw_used += sz;
3931 3944 mutex_exit(&mac_srs->srs_lock);
3932 3945
3933 3946 if (srs_tx->st_mode == SRS_TX_BW_FANOUT) {
3934 3947 mac_soft_ring_t *softring;
3935 3948 uint_t indx, hash;
3936 3949
3937 3950 hash = HASH_HINT(fanout_hint);
3938 3951 indx = COMPUTE_INDEX(hash,
3939 3952 mac_srs->srs_tx_ring_count);
3940 3953 softring = mac_srs->srs_tx_soft_rings[indx];
3941 3954 return (mac_tx_soft_ring_process(softring, mp_chain, flag,
3942 3955 ret_mp));
3943 3956 } else if (srs_tx->st_mode == SRS_TX_BW_AGGR) {
3944 3957 return (mac_tx_aggr_mode(mac_srs, mp_chain,
3945 3958 fanout_hint, flag, ret_mp));
3946 3959 } else {
3947 3960 mac_tx_stats_t stats;
3948 3961
3949 3962 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3950 3963 mp_chain, &stats);
3951 3964
3952 3965 if (mp_chain != NULL) {
3953 3966 mutex_enter(&mac_srs->srs_lock);
3954 3967 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3955 3968 if (mac_srs->srs_bw->mac_bw_used > sz)
3956 3969 mac_srs->srs_bw->mac_bw_used -= sz;
3957 3970 else
3958 3971 mac_srs->srs_bw->mac_bw_used = 0;
3959 3972 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3960 3973 fanout_hint, ret_mp);
3961 3974 mutex_exit(&mac_srs->srs_lock);
3962 3975 return (cookie);
3963 3976 }
3964 3977 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3965 3978
3966 3979 return (NULL);
3967 3980 }
3968 3981 }
3969 3982
3970 3983 /*
3971 3984 * mac_tx_aggr_mode
3972 3985 *
3973 3986 * This routine invokes an aggr function, aggr_find_tx_ring(), to find
3974 3987 * a (pseudo) Tx ring belonging to a port on which the packet has to
3975 3988 * be sent. aggr_find_tx_ring() first finds the outgoing port based on
3976 3989 * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick
3977 3990 * a Tx ring from the selected port.
3978 3991 *
3979 3992 * Note that a port can be deleted from the aggregation. In such a case,
3980 3993 * the aggregation layer first separates the port from the rest of the
3981 3994 * ports making sure that port (and thus any Tx rings associated with
3982 3995 * it) won't get selected in the call to aggr_find_tx_ring() function.
3983 3996 * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring
3984 3997 * handles one by one which in turn will quiesce the Tx SRS and remove
3985 3998 * the soft ring associated with the pseudo Tx ring. Unlike Rx side
3986 3999 * where a cookie is used to protect against mac_rx_ring() calls on
3987 4000 * rings that have been removed, no such cookie is needed on the Tx
3988 4001 * side as the pseudo Tx ring won't be available anymore to
3989 4002 * aggr_find_tx_ring() once the port has been removed.
3990 4003 */
3991 4004 static mac_tx_cookie_t
3992 4005 mac_tx_aggr_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3993 4006 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3994 4007 {
3995 4008 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3996 4009 mac_tx_ring_fn_t find_tx_ring_fn;
3997 4010 mac_ring_handle_t ring = NULL;
3998 4011 void *arg;
3999 4012 mac_soft_ring_t *sringp;
4000 4013
4001 4014 find_tx_ring_fn = srs_tx->st_capab_aggr.mca_find_tx_ring_fn;
4002 4015 arg = srs_tx->st_capab_aggr.mca_arg;
4003 4016 if (find_tx_ring_fn(arg, mp_chain, fanout_hint, &ring) == NULL)
4004 4017 return (NULL);
4005 4018 sringp = srs_tx->st_soft_rings[((mac_ring_t *)ring)->mr_index];
4006 4019 return (mac_tx_soft_ring_process(sringp, mp_chain, flag, ret_mp));
4007 4020 }
4008 4021
4009 4022 void
4010 4023 mac_tx_invoke_callbacks(mac_client_impl_t *mcip, mac_tx_cookie_t cookie)
4011 4024 {
4012 4025 mac_cb_t *mcb;
4013 4026 mac_tx_notify_cb_t *mtnfp;
4014 4027
4015 4028 /* Wakeup callback registered clients */
4016 4029 MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info);
4017 4030 for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL;
4018 4031 mcb = mcb->mcb_nextp) {
4019 4032 mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp;
4020 4033 mtnfp->mtnf_fn(mtnfp->mtnf_arg, cookie);
4021 4034 }
4022 4035 MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info,
4023 4036 &mcip->mci_tx_notify_cb_list);
4024 4037 }
4025 4038
4026 4039 /* ARGSUSED */
4027 4040 void
4028 4041 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
4029 4042 {
4030 4043 mblk_t *head, *tail;
4031 4044 size_t sz;
4032 4045 uint32_t tx_mode;
4033 4046 uint_t saved_pkt_count;
4034 4047 mac_tx_stats_t stats;
4035 4048 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
4036 4049 clock_t now;
4037 4050
4038 4051 saved_pkt_count = 0;
4039 4052 ASSERT(mutex_owned(&mac_srs->srs_lock));
4040 4053 ASSERT(!(mac_srs->srs_state & SRS_PROC));
4041 4054
4042 4055 mac_srs->srs_state |= SRS_PROC;
4043 4056
4044 4057 tx_mode = srs_tx->st_mode;
4045 4058 if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) {
4046 4059 if (mac_srs->srs_first != NULL) {
4047 4060 head = mac_srs->srs_first;
4048 4061 tail = mac_srs->srs_last;
4049 4062 saved_pkt_count = mac_srs->srs_count;
4050 4063 mac_srs->srs_first = NULL;
4051 4064 mac_srs->srs_last = NULL;
4052 4065 mac_srs->srs_count = 0;
4053 4066 mutex_exit(&mac_srs->srs_lock);
4054 4067
4055 4068 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
4056 4069 head, &stats);
4057 4070
4058 4071 mutex_enter(&mac_srs->srs_lock);
4059 4072 if (head != NULL) {
4060 4073 /* Device out of tx desc, set block */
4061 4074 if (head->b_next == NULL)
4062 4075 VERIFY(head == tail);
4063 4076 tail->b_next = mac_srs->srs_first;
4064 4077 mac_srs->srs_first = head;
4065 4078 mac_srs->srs_count +=
4066 4079 (saved_pkt_count - stats.mts_opackets);
4067 4080 if (mac_srs->srs_last == NULL)
4068 4081 mac_srs->srs_last = tail;
4069 4082 MAC_TX_SRS_BLOCK(mac_srs, head);
4070 4083 } else {
4071 4084 srs_tx->st_woken_up = B_FALSE;
4072 4085 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4073 4086 }
4074 4087 }
4075 4088 } else if (tx_mode == SRS_TX_BW) {
4076 4089 /*
4077 4090 * We are here because the timer fired and we have some data
4078 4091 * to tranmit. Also mac_tx_srs_worker should have reset
4079 4092 * SRS_BW_ENFORCED flag
4080 4093 */
4081 4094 ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED));
4082 4095 head = tail = mac_srs->srs_first;
4083 4096 while (mac_srs->srs_first != NULL) {
4084 4097 tail = mac_srs->srs_first;
4085 4098 tail->b_prev = NULL;
4086 4099 mac_srs->srs_first = tail->b_next;
4087 4100 if (mac_srs->srs_first == NULL)
4088 4101 mac_srs->srs_last = NULL;
4089 4102 mac_srs->srs_count--;
4090 4103 sz = msgdsize(tail);
4091 4104 mac_srs->srs_size -= sz;
4092 4105 saved_pkt_count++;
4093 4106 MAC_TX_UPDATE_BW_INFO(mac_srs, sz);
4094 4107
4095 4108 if (mac_srs->srs_bw->mac_bw_used <
4096 4109 mac_srs->srs_bw->mac_bw_limit)
4097 4110 continue;
4098 4111
4099 4112 now = ddi_get_lbolt();
4100 4113 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
4101 4114 mac_srs->srs_bw->mac_bw_curr_time = now;
4102 4115 mac_srs->srs_bw->mac_bw_used = sz;
4103 4116 continue;
4104 4117 }
4105 4118 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
4106 4119 break;
4107 4120 }
4108 4121
4109 4122 ASSERT((head == NULL && tail == NULL) ||
4110 4123 (head != NULL && tail != NULL));
4111 4124 if (tail != NULL) {
4112 4125 tail->b_next = NULL;
4113 4126 mutex_exit(&mac_srs->srs_lock);
4114 4127
4115 4128 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
4116 4129 head, &stats);
4117 4130
4118 4131 mutex_enter(&mac_srs->srs_lock);
4119 4132 if (head != NULL) {
4120 4133 uint_t size_sent;
4121 4134
4122 4135 /* Device out of tx desc, set block */
4123 4136 if (head->b_next == NULL)
4124 4137 VERIFY(head == tail);
4125 4138 tail->b_next = mac_srs->srs_first;
4126 4139 mac_srs->srs_first = head;
4127 4140 mac_srs->srs_count +=
4128 4141 (saved_pkt_count - stats.mts_opackets);
4129 4142 if (mac_srs->srs_last == NULL)
4130 4143 mac_srs->srs_last = tail;
4131 4144 size_sent = sz - stats.mts_obytes;
4132 4145 mac_srs->srs_size += size_sent;
4133 4146 mac_srs->srs_bw->mac_bw_sz += size_sent;
4134 4147 if (mac_srs->srs_bw->mac_bw_used > size_sent) {
4135 4148 mac_srs->srs_bw->mac_bw_used -=
4136 4149 size_sent;
4137 4150 } else {
4138 4151 mac_srs->srs_bw->mac_bw_used = 0;
4139 4152 }
4140 4153 MAC_TX_SRS_BLOCK(mac_srs, head);
4141 4154 } else {
4142 4155 srs_tx->st_woken_up = B_FALSE;
4143 4156 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4144 4157 }
4145 4158 }
4146 4159 } else if (tx_mode == SRS_TX_BW_FANOUT || tx_mode == SRS_TX_BW_AGGR) {
4147 4160 mblk_t *prev;
4148 4161 uint64_t hint;
4149 4162
4150 4163 /*
4151 4164 * We are here because the timer fired and we
4152 4165 * have some quota to tranmit.
4153 4166 */
4154 4167 prev = NULL;
4155 4168 head = tail = mac_srs->srs_first;
4156 4169 while (mac_srs->srs_first != NULL) {
4157 4170 tail = mac_srs->srs_first;
4158 4171 mac_srs->srs_first = tail->b_next;
4159 4172 if (mac_srs->srs_first == NULL)
4160 4173 mac_srs->srs_last = NULL;
4161 4174 mac_srs->srs_count--;
4162 4175 sz = msgdsize(tail);
4163 4176 mac_srs->srs_size -= sz;
4164 4177 mac_srs->srs_bw->mac_bw_used += sz;
4165 4178 if (prev == NULL)
4166 4179 hint = (ulong_t)tail->b_prev;
4167 4180 if (hint != (ulong_t)tail->b_prev) {
4168 4181 prev->b_next = NULL;
4169 4182 mutex_exit(&mac_srs->srs_lock);
4170 4183 TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
4171 4184 head = tail;
4172 4185 hint = (ulong_t)tail->b_prev;
4173 4186 mutex_enter(&mac_srs->srs_lock);
4174 4187 }
4175 4188
4176 4189 prev = tail;
4177 4190 tail->b_prev = NULL;
4178 4191 if (mac_srs->srs_bw->mac_bw_used <
4179 4192 mac_srs->srs_bw->mac_bw_limit)
4180 4193 continue;
4181 4194
4182 4195 now = ddi_get_lbolt();
4183 4196 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
4184 4197 mac_srs->srs_bw->mac_bw_curr_time = now;
4185 4198 mac_srs->srs_bw->mac_bw_used = 0;
4186 4199 continue;
4187 4200 }
4188 4201 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
4189 4202 break;
4190 4203 }
4191 4204 ASSERT((head == NULL && tail == NULL) ||
4192 4205 (head != NULL && tail != NULL));
4193 4206 if (tail != NULL) {
4194 4207 tail->b_next = NULL;
4195 4208 mutex_exit(&mac_srs->srs_lock);
4196 4209 TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
4197 4210 mutex_enter(&mac_srs->srs_lock);
4198 4211 }
4199 4212 }
4200 4213 /*
4201 4214 * SRS_TX_FANOUT case not considered here because packets
4202 4215 * won't be queued in the SRS for this case. Packets will
4203 4216 * be sent directly to soft rings underneath and if there
4204 4217 * is any queueing at all, it would be in Tx side soft
4205 4218 * rings.
4206 4219 */
4207 4220
4208 4221 /*
4209 4222 * When srs_count becomes 0, reset SRS_TX_HIWAT and
4210 4223 * SRS_TX_WAKEUP_CLIENT and wakeup registered clients.
4211 4224 */
4212 4225 if (mac_srs->srs_count == 0 && (mac_srs->srs_state &
4213 4226 (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) {
4214 4227 mac_client_impl_t *mcip = mac_srs->srs_mcip;
4215 4228 boolean_t wakeup_required = B_FALSE;
4216 4229
4217 4230 if (mac_srs->srs_state &
4218 4231 (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) {
4219 4232 wakeup_required = B_TRUE;
4220 4233 }
4221 4234 mac_srs->srs_state &= ~(SRS_TX_HIWAT |
4222 4235 SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED);
4223 4236 mutex_exit(&mac_srs->srs_lock);
4224 4237 if (wakeup_required) {
4225 4238 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)mac_srs);
4226 4239 /*
4227 4240 * If the client is not the primary MAC client, then we
4228 4241 * need to send the notification to the clients upper
4229 4242 * MAC, i.e. mci_upper_mip.
4230 4243 */
4231 4244 mac_tx_notify(mcip->mci_upper_mip != NULL ?
4232 4245 mcip->mci_upper_mip : mcip->mci_mip);
4233 4246 }
4234 4247 mutex_enter(&mac_srs->srs_lock);
4235 4248 }
4236 4249 mac_srs->srs_state &= ~SRS_PROC;
4237 4250 }
4238 4251
4239 4252 /*
4240 4253 * Given a packet, get the flow_entry that identifies the flow
4241 4254 * to which that packet belongs. The flow_entry will contain
4242 4255 * the transmit function to be used to send the packet. If the
4243 4256 * function returns NULL, the packet should be sent using the
4244 4257 * underlying NIC.
4245 4258 */
4246 4259 static flow_entry_t *
4247 4260 mac_tx_classify(mac_impl_t *mip, mblk_t *mp)
4248 4261 {
4249 4262 flow_entry_t *flent = NULL;
4250 4263 mac_client_impl_t *mcip;
4251 4264 int err;
4252 4265
4253 4266 /*
4254 4267 * Do classification on the packet.
4255 4268 */
4256 4269 err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent);
4257 4270 if (err != 0)
4258 4271 return (NULL);
4259 4272
4260 4273 /*
4261 4274 * This flent might just be an additional one on the MAC client,
4262 4275 * i.e. for classification purposes (different fdesc), however
4263 4276 * the resources, SRS et. al., are in the mci_flent, so if
4264 4277 * this isn't the mci_flent, we need to get it.
4265 4278 */
4266 4279 if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) {
4267 4280 FLOW_REFRELE(flent);
4268 4281 flent = mcip->mci_flent;
4269 4282 FLOW_TRY_REFHOLD(flent, err);
4270 4283 if (err != 0)
4271 4284 return (NULL);
4272 4285 }
4273 4286
4274 4287 return (flent);
4275 4288 }
4276 4289
4277 4290 /*
4278 4291 * This macro is only meant to be used by mac_tx_send().
4279 4292 */
4280 4293 #define CHECK_VID_AND_ADD_TAG(mp) { \
4281 4294 if (vid_check) { \
4282 4295 int err = 0; \
4283 4296 \
4284 4297 MAC_VID_CHECK(src_mcip, (mp), err); \
4285 4298 if (err != 0) { \
4286 4299 freemsg((mp)); \
4287 4300 (mp) = next; \
4288 4301 oerrors++; \
4289 4302 continue; \
4290 4303 } \
4291 4304 } \
4292 4305 if (add_tag) { \
4293 4306 (mp) = mac_add_vlan_tag((mp), 0, vid); \
4294 4307 if ((mp) == NULL) { \
4295 4308 (mp) = next; \
4296 4309 oerrors++; \
4297 4310 continue; \
4298 4311 } \
4299 4312 } \
4300 4313 }
4301 4314
4302 4315 mblk_t *
4303 4316 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain,
4304 4317 mac_tx_stats_t *stats)
4305 4318 {
4306 4319 mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch;
4307 4320 mac_impl_t *mip = src_mcip->mci_mip;
4308 4321 uint_t obytes = 0, opackets = 0, oerrors = 0;
4309 4322 mblk_t *mp = NULL, *next;
4310 4323 boolean_t vid_check, add_tag;
4311 4324 uint16_t vid = 0;
4312 4325
4313 4326 if (mip->mi_nclients > 1) {
4314 4327 vid_check = MAC_VID_CHECK_NEEDED(src_mcip);
4315 4328 add_tag = MAC_TAG_NEEDED(src_mcip);
4316 4329 if (add_tag)
4317 4330 vid = mac_client_vid(mch);
4318 4331 } else {
4319 4332 ASSERT(mip->mi_nclients == 1);
4320 4333 vid_check = add_tag = B_FALSE;
4321 4334 }
4322 4335
4323 4336 /*
4324 4337 * Fastpath: if there's only one client, we simply send
4325 4338 * the packet down to the underlying NIC.
4326 4339 */
4327 4340 if (mip->mi_nactiveclients == 1) {
4328 4341 DTRACE_PROBE2(fastpath,
4329 4342 mac_client_impl_t *, src_mcip, mblk_t *, mp_chain);
4330 4343
4331 4344 mp = mp_chain;
4332 4345 while (mp != NULL) {
4333 4346 next = mp->b_next;
4334 4347 mp->b_next = NULL;
4335 4348 opackets++;
4336 4349 obytes += (mp->b_cont == NULL ? MBLKL(mp) :
4337 4350 msgdsize(mp));
4338 4351
4339 4352 CHECK_VID_AND_ADD_TAG(mp);
4340 4353 MAC_TX(mip, ring, mp, src_mcip);
4341 4354
4342 4355 /*
4343 4356 * If the driver is out of descriptors and does a
4344 4357 * partial send it will return a chain of unsent
4345 4358 * mblks. Adjust the accounting stats.
4346 4359 */
4347 4360 if (mp != NULL) {
4348 4361 opackets--;
4349 4362 obytes -= msgdsize(mp);
4350 4363 mp->b_next = next;
4351 4364 break;
4352 4365 }
4353 4366 mp = next;
4354 4367 }
4355 4368 goto done;
4356 4369 }
4357 4370
4358 4371 /*
4359 4372 * No fastpath, we either have more than one MAC client
4360 4373 * defined on top of the same MAC, or one or more MAC
4361 4374 * client promiscuous callbacks.
4362 4375 */
4363 4376 DTRACE_PROBE3(slowpath, mac_client_impl_t *,
4364 4377 src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain);
4365 4378
4366 4379 mp = mp_chain;
4367 4380 while (mp != NULL) {
4368 4381 flow_entry_t *dst_flow_ent;
4369 4382 void *flow_cookie;
4370 4383 size_t pkt_size;
4371 4384 mblk_t *mp1;
4372 4385
4373 4386 next = mp->b_next;
4374 4387 mp->b_next = NULL;
4375 4388 opackets++;
4376 4389 pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp));
4377 4390 obytes += pkt_size;
4378 4391 CHECK_VID_AND_ADD_TAG(mp);
4379 4392
4380 4393 /*
4381 4394 * Find the destination.
4382 4395 */
4383 4396 dst_flow_ent = mac_tx_classify(mip, mp);
4384 4397
4385 4398 if (dst_flow_ent != NULL) {
4386 4399 size_t hdrsize;
4387 4400 int err = 0;
4388 4401
4389 4402 if (mip->mi_info.mi_nativemedia == DL_ETHER) {
4390 4403 struct ether_vlan_header *evhp =
4391 4404 (struct ether_vlan_header *)mp->b_rptr;
4392 4405
4393 4406 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN)
4394 4407 hdrsize = sizeof (*evhp);
4395 4408 else
4396 4409 hdrsize = sizeof (struct ether_header);
4397 4410 } else {
4398 4411 mac_header_info_t mhi;
4399 4412
4400 4413 err = mac_header_info((mac_handle_t)mip,
4401 4414 mp, &mhi);
4402 4415 if (err == 0)
4403 4416 hdrsize = mhi.mhi_hdrsize;
4404 4417 }
4405 4418
4406 4419 /*
4407 4420 * Got a matching flow. It's either another
4408 4421 * MAC client, or a broadcast/multicast flow.
4409 4422 * Make sure the packet size is within the
4410 4423 * allowed size. If not drop the packet and
4411 4424 * move to next packet.
4412 4425 */
4413 4426 if (err != 0 ||
4414 4427 (pkt_size - hdrsize) > mip->mi_sdu_max) {
4415 4428 oerrors++;
4416 4429 DTRACE_PROBE2(loopback__drop, size_t, pkt_size,
4417 4430 mblk_t *, mp);
4418 4431 freemsg(mp);
4419 4432 mp = next;
4420 4433 FLOW_REFRELE(dst_flow_ent);
4421 4434 continue;
4422 4435 }
4423 4436 flow_cookie = mac_flow_get_client_cookie(dst_flow_ent);
4424 4437 if (flow_cookie != NULL) {
4425 4438 /*
4426 4439 * The vnic_bcast_send function expects
4427 4440 * to receive the sender MAC client
4428 4441 * as value for arg2.
4429 4442 */
4430 4443 mac_bcast_send(flow_cookie, src_mcip, mp,
4431 4444 B_TRUE);
4432 4445 } else {
4433 4446 /*
4434 4447 * loopback the packet to a local MAC
4435 4448 * client. We force a context switch
4436 4449 * if both source and destination MAC
4437 4450 * clients are used by IP, i.e.
4438 4451 * bypass is set.
4439 4452 */
4440 4453 boolean_t do_switch;
4441 4454 mac_client_impl_t *dst_mcip =
4442 4455 dst_flow_ent->fe_mcip;
4443 4456
4444 4457 /*
4445 4458 * Check if there are promiscuous mode
4446 4459 * callbacks defined. This check is
4447 4460 * done here in the 'else' case and
4448 4461 * not in other cases because this
4449 4462 * path is for local loopback
4450 4463 * communication which does not go
4451 4464 * through MAC_TX(). For paths that go
4452 4465 * through MAC_TX(), the promisc_list
4453 4466 * check is done inside the MAC_TX()
4454 4467 * macro.
4455 4468 */
4456 4469 if (mip->mi_promisc_list != NULL)
4457 4470 mac_promisc_dispatch(mip, mp, src_mcip);
4458 4471
4459 4472 do_switch = ((src_mcip->mci_state_flags &
4460 4473 dst_mcip->mci_state_flags &
4461 4474 MCIS_CLIENT_POLL_CAPABLE) != 0);
4462 4475
4463 4476 if ((mp1 = mac_fix_cksum(mp)) != NULL) {
4464 4477 (dst_flow_ent->fe_cb_fn)(
4465 4478 dst_flow_ent->fe_cb_arg1,
4466 4479 dst_flow_ent->fe_cb_arg2,
4467 4480 mp1, do_switch);
4468 4481 }
4469 4482 }
4470 4483 FLOW_REFRELE(dst_flow_ent);
4471 4484 } else {
4472 4485 /*
4473 4486 * Unknown destination, send via the underlying
4474 4487 * NIC.
4475 4488 */
4476 4489 MAC_TX(mip, ring, mp, src_mcip);
4477 4490 if (mp != NULL) {
4478 4491 /*
4479 4492 * Adjust for the last packet that
4480 4493 * could not be transmitted
4481 4494 */
4482 4495 opackets--;
4483 4496 obytes -= pkt_size;
4484 4497 mp->b_next = next;
4485 4498 break;
4486 4499 }
4487 4500 }
4488 4501 mp = next;
4489 4502 }
4490 4503
4491 4504 done:
4492 4505 stats->mts_obytes = obytes;
4493 4506 stats->mts_opackets = opackets;
4494 4507 stats->mts_oerrors = oerrors;
4495 4508 return (mp);
4496 4509 }
4497 4510
4498 4511 /*
4499 4512 * mac_tx_srs_ring_present
4500 4513 *
4501 4514 * Returns whether the specified ring is part of the specified SRS.
4502 4515 */
4503 4516 boolean_t
4504 4517 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
4505 4518 {
4506 4519 int i;
4507 4520 mac_soft_ring_t *soft_ring;
4508 4521
4509 4522 if (srs->srs_tx.st_arg2 == tx_ring)
4510 4523 return (B_TRUE);
4511 4524
4512 4525 for (i = 0; i < srs->srs_tx_ring_count; i++) {
4513 4526 soft_ring = srs->srs_tx_soft_rings[i];
4514 4527 if (soft_ring->s_ring_tx_arg2 == tx_ring)
4515 4528 return (B_TRUE);
4516 4529 }
4517 4530
4518 4531 return (B_FALSE);
4519 4532 }
4520 4533
4521 4534 /*
4522 4535 * mac_tx_srs_get_soft_ring
4523 4536 *
4524 4537 * Returns the TX soft ring associated with the given ring, if present.
4525 4538 */
4526 4539 mac_soft_ring_t *
4527 4540 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
4528 4541 {
4529 4542 int i;
4530 4543 mac_soft_ring_t *soft_ring;
4531 4544
4532 4545 if (srs->srs_tx.st_arg2 == tx_ring)
4533 4546 return (NULL);
4534 4547
4535 4548 for (i = 0; i < srs->srs_tx_ring_count; i++) {
4536 4549 soft_ring = srs->srs_tx_soft_rings[i];
4537 4550 if (soft_ring->s_ring_tx_arg2 == tx_ring)
4538 4551 return (soft_ring);
4539 4552 }
4540 4553
4541 4554 return (NULL);
4542 4555 }
4543 4556
4544 4557 /*
4545 4558 * mac_tx_srs_wakeup
4546 4559 *
4547 4560 * Called when Tx desc become available. Wakeup the appropriate worker
4548 4561 * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the
4549 4562 * state field.
4550 4563 */
4551 4564 void
4552 4565 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring)
4553 4566 {
4554 4567 int i;
4555 4568 mac_soft_ring_t *sringp;
4556 4569 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
4557 4570
4558 4571 mutex_enter(&mac_srs->srs_lock);
4559 4572 /*
4560 4573 * srs_tx_ring_count == 0 is the single ring mode case. In
4561 4574 * this mode, there will not be Tx soft rings associated
4562 4575 * with the SRS.
4563 4576 */
4564 4577 if (!MAC_TX_SOFT_RINGS(mac_srs)) {
4565 4578 if (srs_tx->st_arg2 == ring &&
4566 4579 mac_srs->srs_state & SRS_TX_BLOCKED) {
4567 4580 mac_srs->srs_state &= ~SRS_TX_BLOCKED;
4568 4581 srs_tx->st_stat.mts_unblockcnt++;
4569 4582 cv_signal(&mac_srs->srs_async);
4570 4583 }
4571 4584 /*
4572 4585 * A wakeup can come before tx_srs_drain() could
4573 4586 * grab srs lock and set SRS_TX_BLOCKED. So
4574 4587 * always set woken_up flag when we come here.
4575 4588 */
4576 4589 srs_tx->st_woken_up = B_TRUE;
4577 4590 mutex_exit(&mac_srs->srs_lock);
4578 4591 return;
4579 4592 }
4580 4593
4581 4594 /*
4582 4595 * If you are here, it is for FANOUT, BW_FANOUT,
4583 4596 * AGGR_MODE or AGGR_BW_MODE case
4584 4597 */
4585 4598 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
4586 4599 sringp = mac_srs->srs_tx_soft_rings[i];
4587 4600 mutex_enter(&sringp->s_ring_lock);
4588 4601 if (sringp->s_ring_tx_arg2 == ring) {
4589 4602 if (sringp->s_ring_state & S_RING_BLOCK) {
4590 4603 sringp->s_ring_state &= ~S_RING_BLOCK;
4591 4604 sringp->s_st_stat.mts_unblockcnt++;
4592 4605 cv_signal(&sringp->s_ring_async);
4593 4606 }
4594 4607 sringp->s_ring_tx_woken_up = B_TRUE;
4595 4608 }
4596 4609 mutex_exit(&sringp->s_ring_lock);
4597 4610 }
4598 4611 mutex_exit(&mac_srs->srs_lock);
4599 4612 }
4600 4613
4601 4614 /*
4602 4615 * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash
4603 4616 * the blocked clients again.
4604 4617 */
4605 4618 void
4606 4619 mac_tx_notify(mac_impl_t *mip)
4607 4620 {
|
↓ open down ↓ |
820 lines elided |
↑ open up ↑ |
4608 4621 i_mac_notify(mip, MAC_NOTE_TX);
4609 4622 }
4610 4623
4611 4624 /*
4612 4625 * RX SOFTRING RELATED FUNCTIONS
4613 4626 *
4614 4627 * These functions really belong in mac_soft_ring.c and here for
4615 4628 * a short period.
4616 4629 */
4617 4630
4618 -#define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
4631 +#define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
4619 4632 /* \
4620 4633 * Enqueue our mblk chain. \
4621 4634 */ \
4622 4635 ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock)); \
4623 4636 \
4624 4637 if ((ringp)->s_ring_last != NULL) \
4625 4638 (ringp)->s_ring_last->b_next = (mp); \
4626 4639 else \
4627 4640 (ringp)->s_ring_first = (mp); \
4628 4641 (ringp)->s_ring_last = (tail); \
4629 4642 (ringp)->s_ring_count += (cnt); \
4630 4643 ASSERT((ringp)->s_ring_count > 0); \
4631 4644 if ((ringp)->s_ring_type & ST_RING_BW_CTL) { \
4632 4645 (ringp)->s_ring_size += sz; \
4633 4646 } \
4634 4647 }
4635 4648
4636 4649 /*
4637 4650 * Default entry point to deliver a packet chain to a MAC client.
4638 4651 * If the MAC client has flows, do the classification with these
4639 4652 * flows as well.
4640 4653 */
4641 4654 /* ARGSUSED */
4642 4655 void
4643 4656 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain,
4644 4657 mac_header_info_t *arg3)
4645 4658 {
4646 4659 mac_client_impl_t *mcip = arg1;
4647 4660
4648 4661 if (mcip->mci_nvids == 1 &&
4649 4662 !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) {
4650 4663 /*
4651 4664 * If the client has exactly one VID associated with it
4652 4665 * and striping of VLAN header is not disabled,
4653 4666 * remove the VLAN tag from the packet before
4654 4667 * passing it on to the client's receive callback.
4655 4668 * Note that this needs to be done after we dispatch
4656 4669 * the packet to the promiscuous listeners of the
4657 4670 * client, since they expect to see the whole
4658 4671 * frame including the VLAN headers.
4659 4672 */
4660 4673 mp_chain = mac_strip_vlan_tag_chain(mp_chain);
4661 4674 }
4662 4675
4663 4676 mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE);
4664 4677 }
4665 4678
4666 4679 /*
4667 4680 * mac_rx_soft_ring_process
4668 4681 *
4669 4682 * process a chain for a given soft ring. The number of packets queued
4670 4683 * in the SRS and its associated soft rings (including this one) is
4671 4684 * very small (tracked by srs_poll_pkt_cnt), then allow the entering
4672 4685 * thread (interrupt or poll thread) to do inline processing. This
4673 4686 * helps keep the latency down under low load.
4674 4687 *
4675 4688 * The proc and arg for each mblk is already stored in the mblk in
4676 4689 * appropriate places.
4677 4690 */
4678 4691 /* ARGSUSED */
4679 4692 void
4680 4693 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp,
4681 4694 mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz)
4682 4695 {
4683 4696 mac_direct_rx_t proc;
4684 4697 void *arg1;
4685 4698 mac_resource_handle_t arg2;
4686 4699 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4687 4700
4688 4701 ASSERT(ringp != NULL);
4689 4702 ASSERT(mp_chain != NULL);
4690 4703 ASSERT(tail != NULL);
4691 4704 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4692 4705
4693 4706 mutex_enter(&ringp->s_ring_lock);
4694 4707 ringp->s_ring_total_inpkt += cnt;
4695 4708 ringp->s_ring_total_rbytes += sz;
4696 4709 if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) &&
4697 4710 !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) {
4698 4711 /* If on processor or blanking on, then enqueue and return */
4699 4712 if (ringp->s_ring_state & S_RING_BLANK ||
4700 4713 ringp->s_ring_state & S_RING_PROC) {
4701 4714 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4702 4715 mutex_exit(&ringp->s_ring_lock);
4703 4716 return;
4704 4717 }
4705 4718 proc = ringp->s_ring_rx_func;
4706 4719 arg1 = ringp->s_ring_rx_arg1;
4707 4720 arg2 = ringp->s_ring_rx_arg2;
4708 4721 /*
4709 4722 * See if anything is already queued. If we are the
4710 4723 * first packet, do inline processing else queue the
4711 4724 * packet and do the drain.
4712 4725 */
4713 4726 if (ringp->s_ring_first == NULL) {
4714 4727 /*
4715 4728 * Fast-path, ok to process and nothing queued.
4716 4729 */
4717 4730 ringp->s_ring_run = curthread;
4718 4731 ringp->s_ring_state |= (S_RING_PROC);
4719 4732
4720 4733 mutex_exit(&ringp->s_ring_lock);
4721 4734
4722 4735 /*
4723 4736 * We are the chain of 1 packet so
4724 4737 * go through this fast path.
4725 4738 */
4726 4739 ASSERT(mp_chain->b_next == NULL);
4727 4740
4728 4741 (*proc)(arg1, arg2, mp_chain, NULL);
4729 4742
4730 4743 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4731 4744 /*
4732 4745 * If we have a soft ring set which is doing
4733 4746 * bandwidth control, we need to decrement
4734 4747 * srs_size and count so it the SRS can have a
4735 4748 * accurate idea of what is the real data
4736 4749 * queued between SRS and its soft rings. We
4737 4750 * decrement the counters only when the packet
4738 4751 * gets processed by both SRS and the soft ring.
4739 4752 */
4740 4753 mutex_enter(&mac_srs->srs_lock);
4741 4754 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
4742 4755 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
4743 4756 mutex_exit(&mac_srs->srs_lock);
4744 4757
4745 4758 mutex_enter(&ringp->s_ring_lock);
4746 4759 ringp->s_ring_run = NULL;
4747 4760 ringp->s_ring_state &= ~S_RING_PROC;
4748 4761 if (ringp->s_ring_state & S_RING_CLIENT_WAIT)
4749 4762 cv_signal(&ringp->s_ring_client_cv);
4750 4763
4751 4764 if ((ringp->s_ring_first == NULL) ||
4752 4765 (ringp->s_ring_state & S_RING_BLANK)) {
4753 4766 /*
4754 4767 * We processed inline our packet and
4755 4768 * nothing new has arrived or our
4756 4769 * receiver doesn't want to receive
4757 4770 * any packets. We are done.
4758 4771 */
4759 4772 mutex_exit(&ringp->s_ring_lock);
4760 4773 return;
4761 4774 }
4762 4775 } else {
4763 4776 SOFT_RING_ENQUEUE_CHAIN(ringp,
4764 4777 mp_chain, tail, cnt, sz);
4765 4778 }
4766 4779
4767 4780 /*
4768 4781 * We are here because either we couldn't do inline
4769 4782 * processing (because something was already
4770 4783 * queued), or we had a chain of more than one
4771 4784 * packet, or something else arrived after we were
4772 4785 * done with inline processing.
4773 4786 */
4774 4787 ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
4775 4788 ASSERT(ringp->s_ring_first != NULL);
4776 4789
4777 4790 ringp->s_ring_drain_func(ringp);
4778 4791 mutex_exit(&ringp->s_ring_lock);
4779 4792 return;
4780 4793 } else {
4781 4794 /* ST_RING_WORKER_ONLY case */
4782 4795 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4783 4796 mac_soft_ring_worker_wakeup(ringp);
4784 4797 mutex_exit(&ringp->s_ring_lock);
|
↓ open down ↓ |
156 lines elided |
↑ open up ↑ |
4785 4798 }
4786 4799 }
4787 4800
4788 4801 /*
4789 4802 * TX SOFTRING RELATED FUNCTIONS
4790 4803 *
4791 4804 * These functions really belong in mac_soft_ring.c and here for
4792 4805 * a short period.
4793 4806 */
4794 4807
4795 -#define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
4808 +#define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
4796 4809 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); \
4797 4810 ringp->s_ring_state |= S_RING_ENQUEUED; \
4798 4811 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); \
4799 4812 }
4800 4813
4801 4814 /*
4802 4815 * mac_tx_sring_queued
4803 4816 *
4804 4817 * When we are out of transmit descriptors and we already have a
4805 4818 * queue that exceeds hiwat (or the client called us with
4806 4819 * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the
4807 4820 * soft ring pointer as the opaque cookie for the client enable
4808 4821 * flow control.
4809 4822 */
4810 4823 static mac_tx_cookie_t
4811 4824 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag,
4812 4825 mblk_t **ret_mp)
4813 4826 {
4814 4827 int cnt;
4815 4828 size_t sz;
4816 4829 mblk_t *tail;
4817 4830 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4818 4831 mac_tx_cookie_t cookie = NULL;
4819 4832 boolean_t wakeup_worker = B_TRUE;
4820 4833
4821 4834 ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
4822 4835 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
4823 4836 if (flag & MAC_DROP_ON_NO_DESC) {
4824 4837 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
4825 4838 /* increment freed stats */
4826 4839 ringp->s_ring_drops += cnt;
4827 4840 cookie = (mac_tx_cookie_t)ringp;
4828 4841 } else {
4829 4842 if (ringp->s_ring_first != NULL)
4830 4843 wakeup_worker = B_FALSE;
4831 4844
4832 4845 if (flag & MAC_TX_NO_ENQUEUE) {
4833 4846 /*
4834 4847 * If QUEUED is not set, queue the packet
4835 4848 * and let mac_tx_soft_ring_drain() set
4836 4849 * the TX_BLOCKED bit for the reasons
4837 4850 * explained above. Otherwise, return the
4838 4851 * mblks.
4839 4852 */
4840 4853 if (wakeup_worker) {
4841 4854 TX_SOFT_RING_ENQUEUE_CHAIN(ringp,
4842 4855 mp_chain, tail, cnt, sz);
4843 4856 } else {
4844 4857 ringp->s_ring_state |= S_RING_WAKEUP_CLIENT;
4845 4858 cookie = (mac_tx_cookie_t)ringp;
4846 4859 *ret_mp = mp_chain;
4847 4860 }
4848 4861 } else {
4849 4862 boolean_t enqueue = B_TRUE;
4850 4863
4851 4864 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
4852 4865 /*
4853 4866 * flow-controlled. Store ringp in cookie
4854 4867 * so that it can be returned as
4855 4868 * mac_tx_cookie_t to client
4856 4869 */
4857 4870 ringp->s_ring_state |= S_RING_TX_HIWAT;
4858 4871 cookie = (mac_tx_cookie_t)ringp;
4859 4872 ringp->s_ring_hiwat_cnt++;
4860 4873 if (ringp->s_ring_count >
4861 4874 ringp->s_ring_tx_max_q_cnt) {
4862 4875 /* increment freed stats */
4863 4876 ringp->s_ring_drops += cnt;
4864 4877 /*
4865 4878 * b_prev may be set to the fanout hint
4866 4879 * hence can't use freemsg directly
4867 4880 */
4868 4881 mac_pkt_drop(NULL, NULL,
4869 4882 mp_chain, B_FALSE);
4870 4883 DTRACE_PROBE1(tx_queued_hiwat,
4871 4884 mac_soft_ring_t *, ringp);
4872 4885 enqueue = B_FALSE;
4873 4886 }
4874 4887 }
4875 4888 if (enqueue) {
4876 4889 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain,
4877 4890 tail, cnt, sz);
4878 4891 }
4879 4892 }
4880 4893 if (wakeup_worker)
4881 4894 cv_signal(&ringp->s_ring_async);
4882 4895 }
4883 4896 return (cookie);
4884 4897 }
4885 4898
4886 4899
4887 4900 /*
4888 4901 * mac_tx_soft_ring_process
4889 4902 *
4890 4903 * This routine is called when fanning out outgoing traffic among
4891 4904 * multipe Tx rings.
4892 4905 * Note that a soft ring is associated with a h/w Tx ring.
4893 4906 */
4894 4907 mac_tx_cookie_t
4895 4908 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain,
4896 4909 uint16_t flag, mblk_t **ret_mp)
4897 4910 {
4898 4911 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4899 4912 int cnt;
4900 4913 size_t sz;
4901 4914 mblk_t *tail;
4902 4915 mac_tx_cookie_t cookie = NULL;
4903 4916
4904 4917 ASSERT(ringp != NULL);
4905 4918 ASSERT(mp_chain != NULL);
4906 4919 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4907 4920 /*
4908 4921 * The following modes can come here: SRS_TX_BW_FANOUT,
4909 4922 * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR.
4910 4923 */
4911 4924 ASSERT(MAC_TX_SOFT_RINGS(mac_srs));
4912 4925 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
4913 4926 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT ||
4914 4927 mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4915 4928 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4916 4929
4917 4930 if (ringp->s_ring_type & ST_RING_WORKER_ONLY) {
4918 4931 /* Serialization mode */
4919 4932
4920 4933 mutex_enter(&ringp->s_ring_lock);
4921 4934 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
4922 4935 cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4923 4936 flag, ret_mp);
4924 4937 mutex_exit(&ringp->s_ring_lock);
4925 4938 return (cookie);
4926 4939 }
4927 4940 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
4928 4941 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4929 4942 if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) {
4930 4943 /*
4931 4944 * If ring is blocked due to lack of Tx
4932 4945 * descs, just return. Worker thread
4933 4946 * will get scheduled when Tx desc's
4934 4947 * become available.
4935 4948 */
4936 4949 mutex_exit(&ringp->s_ring_lock);
4937 4950 return (cookie);
4938 4951 }
4939 4952 mac_soft_ring_worker_wakeup(ringp);
4940 4953 mutex_exit(&ringp->s_ring_lock);
4941 4954 return (cookie);
4942 4955 } else {
4943 4956 /* Default fanout mode */
4944 4957 /*
4945 4958 * S_RING_BLOCKED is set when underlying NIC runs
4946 4959 * out of Tx descs and messages start getting
4947 4960 * queued. It won't get reset until
4948 4961 * tx_srs_drain() completely drains out the
4949 4962 * messages.
4950 4963 */
4951 4964 mac_tx_stats_t stats;
4952 4965
4953 4966 if (ringp->s_ring_state & S_RING_ENQUEUED) {
4954 4967 /* Tx descs/resources not available */
4955 4968 mutex_enter(&ringp->s_ring_lock);
4956 4969 if (ringp->s_ring_state & S_RING_ENQUEUED) {
4957 4970 cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4958 4971 flag, ret_mp);
4959 4972 mutex_exit(&ringp->s_ring_lock);
4960 4973 return (cookie);
4961 4974 }
4962 4975 /*
4963 4976 * While we were computing mblk count, the
4964 4977 * flow control condition got relieved.
4965 4978 * Continue with the transmission.
4966 4979 */
4967 4980 mutex_exit(&ringp->s_ring_lock);
4968 4981 }
4969 4982
4970 4983 mp_chain = mac_tx_send(ringp->s_ring_tx_arg1,
4971 4984 ringp->s_ring_tx_arg2, mp_chain, &stats);
4972 4985
4973 4986 /*
4974 4987 * Multiple threads could be here sending packets.
4975 4988 * Under such conditions, it is not possible to
4976 4989 * automically set S_RING_BLOCKED bit to indicate
4977 4990 * out of tx desc condition. To atomically set
4978 4991 * this, we queue the returned packet and do
4979 4992 * the setting of S_RING_BLOCKED in
4980 4993 * mac_tx_soft_ring_drain().
4981 4994 */
4982 4995 if (mp_chain != NULL) {
4983 4996 mutex_enter(&ringp->s_ring_lock);
4984 4997 cookie =
4985 4998 mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp);
4986 4999 mutex_exit(&ringp->s_ring_lock);
4987 5000 return (cookie);
4988 5001 }
4989 5002 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4990 5003 SOFTRING_TX_STATS_UPDATE(ringp, &stats);
4991 5004
4992 5005 return (NULL);
4993 5006 }
4994 5007 }
|
↓ open down ↓ |
189 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX