Print this page
    
Revert "OS-8005 bhyve memory pressure needs to target ARC better (#354)"
This reverts commit a6033573eedd94118d2b9e65f45deca0bf4b42f7.
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/arc.c
          +++ new/usr/src/uts/common/fs/zfs/arc.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  
    | 
      ↓ open down ↓ | 
    12 lines elided | 
    
      ↑ open up ↑ | 
  
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23      - * Copyright 2020 Joyent, Inc.
       23 + * Copyright (c) 2019, Joyent, Inc.
  24   24   * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25   25   * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26   26   * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
  27   27   * Copyright (c) 2011, 2019, Delphix. All rights reserved.
  28   28   * Copyright (c) 2020, George Amanakis. All rights reserved.
  29   29   * Copyright (c) 2020, The FreeBSD Foundation [1]
  30   30   *
  31   31   * [1] Portions of this software were developed by Allan Jude
  32   32   *     under sponsorship from the FreeBSD Foundation.
  33   33   */
  34   34  
  35   35  /*
  36   36   * DVA-based Adjustable Replacement Cache
  37   37   *
  38   38   * While much of the theory of operation used here is
  39   39   * based on the self-tuning, low overhead replacement cache
  40   40   * presented by Megiddo and Modha at FAST 2003, there are some
  41   41   * significant differences:
  42   42   *
  43   43   * 1. The Megiddo and Modha model assumes any page is evictable.
  44   44   * Pages in its cache cannot be "locked" into memory.  This makes
  45   45   * the eviction algorithm simple: evict the last page in the list.
  46   46   * This also make the performance characteristics easy to reason
  47   47   * about.  Our cache is not so simple.  At any given moment, some
  48   48   * subset of the blocks in the cache are un-evictable because we
  49   49   * have handed out a reference to them.  Blocks are only evictable
  50   50   * when there are no external references active.  This makes
  51   51   * eviction far more problematic:  we choose to evict the evictable
  52   52   * blocks that are the "lowest" in the list.
  53   53   *
  54   54   * There are times when it is not possible to evict the requested
  55   55   * space.  In these circumstances we are unable to adjust the cache
  56   56   * size.  To prevent the cache growing unbounded at these times we
  57   57   * implement a "cache throttle" that slows the flow of new data
  58   58   * into the cache until we can make space available.
  59   59   *
  60   60   * 2. The Megiddo and Modha model assumes a fixed cache size.
  61   61   * Pages are evicted when the cache is full and there is a cache
  62   62   * miss.  Our model has a variable sized cache.  It grows with
  63   63   * high use, but also tries to react to memory pressure from the
  64   64   * operating system: decreasing its size when system memory is
  65   65   * tight.
  66   66   *
  67   67   * 3. The Megiddo and Modha model assumes a fixed page size. All
  68   68   * elements of the cache are therefore exactly the same size.  So
  69   69   * when adjusting the cache size following a cache miss, its simply
  70   70   * a matter of choosing a single page to evict.  In our model, we
  71   71   * have variable sized cache blocks (rangeing from 512 bytes to
  72   72   * 128K bytes).  We therefore choose a set of blocks to evict to make
  73   73   * space for a cache miss that approximates as closely as possible
  74   74   * the space used by the new block.
  75   75   *
  76   76   * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  77   77   * by N. Megiddo & D. Modha, FAST 2003
  78   78   */
  79   79  
  80   80  /*
  81   81   * The locking model:
  82   82   *
  83   83   * A new reference to a cache buffer can be obtained in two
  84   84   * ways: 1) via a hash table lookup using the DVA as a key,
  85   85   * or 2) via one of the ARC lists.  The arc_read() interface
  86   86   * uses method 1, while the internal ARC algorithms for
  87   87   * adjusting the cache use method 2.  We therefore provide two
  88   88   * types of locks: 1) the hash table lock array, and 2) the
  89   89   * ARC list locks.
  90   90   *
  91   91   * Buffers do not have their own mutexes, rather they rely on the
  92   92   * hash table mutexes for the bulk of their protection (i.e. most
  93   93   * fields in the arc_buf_hdr_t are protected by these mutexes).
  94   94   *
  95   95   * buf_hash_find() returns the appropriate mutex (held) when it
  96   96   * locates the requested buffer in the hash table.  It returns
  97   97   * NULL for the mutex if the buffer was not in the table.
  98   98   *
  99   99   * buf_hash_remove() expects the appropriate hash mutex to be
 100  100   * already held before it is invoked.
 101  101   *
 102  102   * Each ARC state also has a mutex which is used to protect the
 103  103   * buffer list associated with the state.  When attempting to
 104  104   * obtain a hash table lock while holding an ARC list lock you
 105  105   * must use: mutex_tryenter() to avoid deadlock.  Also note that
 106  106   * the active state mutex must be held before the ghost state mutex.
 107  107   *
 108  108   * Note that the majority of the performance stats are manipulated
 109  109   * with atomic operations.
 110  110   *
 111  111   * The L2ARC uses the l2ad_mtx on each vdev for the following:
 112  112   *
 113  113   *      - L2ARC buflist creation
 114  114   *      - L2ARC buflist eviction
 115  115   *      - L2ARC write completion, which walks L2ARC buflists
 116  116   *      - ARC header destruction, as it removes from L2ARC buflists
 117  117   *      - ARC header release, as it removes from L2ARC buflists
 118  118   */
 119  119  
 120  120  /*
 121  121   * ARC operation:
 122  122   *
 123  123   * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
 124  124   * This structure can point either to a block that is still in the cache or to
 125  125   * one that is only accessible in an L2 ARC device, or it can provide
 126  126   * information about a block that was recently evicted. If a block is
 127  127   * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
 128  128   * information to retrieve it from the L2ARC device. This information is
 129  129   * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
 130  130   * that is in this state cannot access the data directly.
 131  131   *
 132  132   * Blocks that are actively being referenced or have not been evicted
 133  133   * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
 134  134   * the arc_buf_hdr_t that will point to the data block in memory. A block can
 135  135   * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
 136  136   * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
 137  137   * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
 138  138   *
 139  139   * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
 140  140   * ability to store the physical data (b_pabd) associated with the DVA of the
 141  141   * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
 142  142   * it will match its on-disk compression characteristics. This behavior can be
 143  143   * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
 144  144   * compressed ARC functionality is disabled, the b_pabd will point to an
 145  145   * uncompressed version of the on-disk data.
 146  146   *
 147  147   * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
 148  148   * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
 149  149   * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
 150  150   * consumer. The ARC will provide references to this data and will keep it
 151  151   * cached until it is no longer in use. The ARC caches only the L1ARC's physical
 152  152   * data block and will evict any arc_buf_t that is no longer referenced. The
 153  153   * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
 154  154   * "overhead_size" kstat.
 155  155   *
 156  156   * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
 157  157   * compressed form. The typical case is that consumers will want uncompressed
 158  158   * data, and when that happens a new data buffer is allocated where the data is
 159  159   * decompressed for them to use. Currently the only consumer who wants
 160  160   * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
 161  161   * exists on disk. When this happens, the arc_buf_t's data buffer is shared
 162  162   * with the arc_buf_hdr_t.
 163  163   *
 164  164   * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
 165  165   * first one is owned by a compressed send consumer (and therefore references
 166  166   * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
 167  167   * used by any other consumer (and has its own uncompressed copy of the data
 168  168   * buffer).
 169  169   *
 170  170   *   arc_buf_hdr_t
 171  171   *   +-----------+
 172  172   *   | fields    |
 173  173   *   | common to |
 174  174   *   | L1- and   |
 175  175   *   | L2ARC     |
 176  176   *   +-----------+
 177  177   *   | l2arc_buf_hdr_t
 178  178   *   |           |
 179  179   *   +-----------+
 180  180   *   | l1arc_buf_hdr_t
 181  181   *   |           |              arc_buf_t
 182  182   *   | b_buf     +------------>+-----------+      arc_buf_t
 183  183   *   | b_pabd    +-+           |b_next     +---->+-----------+
 184  184   *   +-----------+ |           |-----------|     |b_next     +-->NULL
 185  185   *                 |           |b_comp = T |     +-----------+
 186  186   *                 |           |b_data     +-+   |b_comp = F |
 187  187   *                 |           +-----------+ |   |b_data     +-+
 188  188   *                 +->+------+               |   +-----------+ |
 189  189   *        compressed  |      |               |                 |
 190  190   *           data     |      |<--------------+                 | uncompressed
 191  191   *                    +------+          compressed,            |     data
 192  192   *                                        shared               +-->+------+
 193  193   *                                         data                    |      |
 194  194   *                                                                 |      |
 195  195   *                                                                 +------+
 196  196   *
 197  197   * When a consumer reads a block, the ARC must first look to see if the
 198  198   * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
 199  199   * arc_buf_t and either copies uncompressed data into a new data buffer from an
 200  200   * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
 201  201   * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
 202  202   * hdr is compressed and the desired compression characteristics of the
 203  203   * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
 204  204   * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
 205  205   * the last buffer in the hdr's b_buf list, however a shared compressed buf can
 206  206   * be anywhere in the hdr's list.
 207  207   *
 208  208   * The diagram below shows an example of an uncompressed ARC hdr that is
 209  209   * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
 210  210   * the last element in the buf list):
 211  211   *
 212  212   *                arc_buf_hdr_t
 213  213   *                +-----------+
 214  214   *                |           |
 215  215   *                |           |
 216  216   *                |           |
 217  217   *                +-----------+
 218  218   * l2arc_buf_hdr_t|           |
 219  219   *                |           |
 220  220   *                +-----------+
 221  221   * l1arc_buf_hdr_t|           |
 222  222   *                |           |                 arc_buf_t    (shared)
 223  223   *                |    b_buf  +------------>+---------+      arc_buf_t
 224  224   *                |           |             |b_next   +---->+---------+
 225  225   *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
 226  226   *                +-----------+ |           |         |     +---------+
 227  227   *                              |           |b_data   +-+   |         |
 228  228   *                              |           +---------+ |   |b_data   +-+
 229  229   *                              +->+------+             |   +---------+ |
 230  230   *                                 |      |             |               |
 231  231   *                   uncompressed  |      |             |               |
 232  232   *                        data     +------+             |               |
 233  233   *                                    ^                 +->+------+     |
 234  234   *                                    |       uncompressed |      |     |
 235  235   *                                    |           data     |      |     |
 236  236   *                                    |                    +------+     |
 237  237   *                                    +---------------------------------+
 238  238   *
 239  239   * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
 240  240   * since the physical block is about to be rewritten. The new data contents
 241  241   * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
 242  242   * it may compress the data before writing it to disk. The ARC will be called
 243  243   * with the transformed data and will bcopy the transformed on-disk block into
 244  244   * a newly allocated b_pabd. Writes are always done into buffers which have
 245  245   * either been loaned (and hence are new and don't have other readers) or
 246  246   * buffers which have been released (and hence have their own hdr, if there
 247  247   * were originally other readers of the buf's original hdr). This ensures that
 248  248   * the ARC only needs to update a single buf and its hdr after a write occurs.
 249  249   *
 250  250   * When the L2ARC is in use, it will also take advantage of the b_pabd. The
 251  251   * L2ARC will always write the contents of b_pabd to the L2ARC. This means
 252  252   * that when compressed ARC is enabled that the L2ARC blocks are identical
 253  253   * to the on-disk block in the main data pool. This provides a significant
 254  254   * advantage since the ARC can leverage the bp's checksum when reading from the
 255  255   * L2ARC to determine if the contents are valid. However, if the compressed
 256  256   * ARC is disabled, then the L2ARC's block must be transformed to look
 257  257   * like the physical block in the main data pool before comparing the
 258  258   * checksum and determining its validity.
 259  259   *
 260  260   * The L1ARC has a slightly different system for storing encrypted data.
 261  261   * Raw (encrypted + possibly compressed) data has a few subtle differences from
 262  262   * data that is just compressed. The biggest difference is that it is not
 263  263   * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
 264  264   * The other difference is that encryption cannot be treated as a suggestion.
 265  265   * If a caller would prefer compressed data, but they actually wind up with
 266  266   * uncompressed data the worst thing that could happen is there might be a
 267  267   * performance hit. If the caller requests encrypted data, however, we must be
 268  268   * sure they actually get it or else secret information could be leaked. Raw
 269  269   * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
 270  270   * may have both an encrypted version and a decrypted version of its data at
 271  271   * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
 272  272   * copied out of this header. To avoid complications with b_pabd, raw buffers
 273  273   * cannot be shared.
 274  274   */
 275  275  
 276  276  #include <sys/spa.h>
 277  277  #include <sys/zio.h>
 278  278  #include <sys/spa_impl.h>
 279  279  #include <sys/zio_compress.h>
 280  280  #include <sys/zio_checksum.h>
 281  281  #include <sys/zfs_context.h>
 282  282  #include <sys/arc.h>
 283  283  #include <sys/refcount.h>
 284  284  #include <sys/vdev.h>
 285  285  #include <sys/vdev_impl.h>
 286  286  #include <sys/dsl_pool.h>
 287  287  #include <sys/zfs_zone.h>
 288  288  #include <sys/zio_checksum.h>
 289  289  #include <sys/multilist.h>
 290  290  #include <sys/abd.h>
 291  291  #include <sys/zil.h>
 292  292  #include <sys/fm/fs/zfs.h>
 293  293  #ifdef _KERNEL
 294  294  #include <sys/vmsystm.h>
 295  295  #include <vm/anon.h>
 296  296  #include <sys/fs/swapnode.h>
 297  297  #include <sys/dnlc.h>
 298  298  #endif
 299  299  #include <sys/callb.h>
 300  300  #include <sys/kstat.h>
 301  301  #include <sys/zthr.h>
 302  302  #include <zfs_fletcher.h>
 303  303  #include <sys/arc_impl.h>
 304  304  #include <sys/aggsum.h>
 305  305  #include <sys/cityhash.h>
 306  306  #include <sys/param.h>
 307  307  
 308  308  #ifndef _KERNEL
 309  309  /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 310  310  boolean_t arc_watch = B_FALSE;
 311  311  int arc_procfd;
 312  312  #endif
 313  313  
 314  314  /*
 315  315   * This thread's job is to keep enough free memory in the system, by
 316  316   * calling arc_kmem_reap_now() plus arc_shrink(), which improves
 317  317   * arc_available_memory().
 318  318   */
 319  319  static zthr_t           *arc_reap_zthr;
 320  320  
 321  321  /*
 322  322   * This thread's job is to keep arc_size under arc_c, by calling
 323  323   * arc_adjust(), which improves arc_is_overflowing().
 324  324   */
 325  325  static zthr_t           *arc_adjust_zthr;
 326  326  
 327  327  static kmutex_t         arc_adjust_lock;
 328  328  static kcondvar_t       arc_adjust_waiters_cv;
 329  329  static boolean_t        arc_adjust_needed = B_FALSE;
 330  330  
 331  331  uint_t arc_reduce_dnlc_percent = 3;
 332  332  
 333  333  /*
 334  334   * The number of headers to evict in arc_evict_state_impl() before
 335  335   * dropping the sublist lock and evicting from another sublist. A lower
 336  336   * value means we're more likely to evict the "correct" header (i.e. the
 337  337   * oldest header in the arc state), but comes with higher overhead
 338  338   * (i.e. more invocations of arc_evict_state_impl()).
 339  339   */
 340  340  int zfs_arc_evict_batch_limit = 10;
 341  341  
 342  342  /* number of seconds before growing cache again */
 343  343  int arc_grow_retry = 60;
 344  344  
 345  345  /*
 346  346   * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
 347  347   * be converted to ticks, so with the default hz=100, a setting of 15 ms
 348  348   * will actually wait 2 ticks, or 20ms.
 349  349   */
 350  350  int arc_kmem_cache_reap_retry_ms = 1000;
 351  351  
 352  352  /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
 353  353  int zfs_arc_overflow_shift = 3;
 354  354  
 355  355  /* shift of arc_c for calculating both min and max arc_p */
 356  356  int arc_p_min_shift = 4;
 357  357  
 358  358  /* log2(fraction of arc to reclaim) */
 359  359  int arc_shrink_shift = 7;
 360  360  
 361  361  /*
 362  362   * log2(fraction of ARC which must be free to allow growing).
 363  363   * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 364  364   * when reading a new block into the ARC, we will evict an equal-sized block
 365  365   * from the ARC.
 366  366   *
 367  367   * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 368  368   * we will still not allow it to grow.
 369  369   */
 370  370  int                     arc_no_grow_shift = 5;
 371  371  
 372  372  
 373  373  /*
 374  374   * minimum lifespan of a prefetch block in clock ticks
 375  375   * (initialized in arc_init())
 376  376   */
 377  377  static int              zfs_arc_min_prefetch_ms = 1;
 378  378  static int              zfs_arc_min_prescient_prefetch_ms = 6;
 379  379  
 380  380  /*
 381  381   * If this percent of memory is free, don't throttle.
 382  382   */
 383  383  int arc_lotsfree_percent = 10;
 384  384  
 385  385  static boolean_t arc_initialized;
 386  386  
 387  387  /*
 388  388   * The arc has filled available memory and has now warmed up.
 389  389   */
 390  390  static boolean_t arc_warm;
 391  391  
 392  392  /*
 393  393   * log2 fraction of the zio arena to keep free.
 394  394   */
 395  395  int arc_zio_arena_free_shift = 2;
 396  396  
 397  397  /*
 398  398   * These tunables are for performance analysis.
 399  399   */
 400  400  uint64_t zfs_arc_max;
 401  401  uint64_t zfs_arc_min;
 402  402  uint64_t zfs_arc_meta_limit = 0;
 403  403  uint64_t zfs_arc_meta_min = 0;
 404  404  int zfs_arc_grow_retry = 0;
 405  405  int zfs_arc_shrink_shift = 0;
 406  406  int zfs_arc_p_min_shift = 0;
 407  407  int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 408  408  
 409  409  /*
 410  410   * ARC dirty data constraints for arc_tempreserve_space() throttle
 411  411   */
 412  412  uint_t zfs_arc_dirty_limit_percent = 50;        /* total dirty data limit */
 413  413  uint_t zfs_arc_anon_limit_percent = 25;         /* anon block dirty limit */
 414  414  uint_t zfs_arc_pool_dirty_percent = 20;         /* each pool's anon allowance */
 415  415  
 416  416  boolean_t zfs_compressed_arc_enabled = B_TRUE;
 417  417  
 418  418  /* The 6 states: */
 419  419  static arc_state_t ARC_anon;
 420  420  static arc_state_t ARC_mru;
 421  421  static arc_state_t ARC_mru_ghost;
 422  422  static arc_state_t ARC_mfu;
 423  423  static arc_state_t ARC_mfu_ghost;
 424  424  static arc_state_t ARC_l2c_only;
 425  425  
 426  426  arc_stats_t arc_stats = {
 427  427          { "hits",                       KSTAT_DATA_UINT64 },
 428  428          { "misses",                     KSTAT_DATA_UINT64 },
 429  429          { "demand_data_hits",           KSTAT_DATA_UINT64 },
 430  430          { "demand_data_misses",         KSTAT_DATA_UINT64 },
 431  431          { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 432  432          { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 433  433          { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 434  434          { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 435  435          { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 436  436          { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 437  437          { "mru_hits",                   KSTAT_DATA_UINT64 },
 438  438          { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 439  439          { "mfu_hits",                   KSTAT_DATA_UINT64 },
 440  440          { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 441  441          { "deleted",                    KSTAT_DATA_UINT64 },
 442  442          { "mutex_miss",                 KSTAT_DATA_UINT64 },
 443  443          { "access_skip",                KSTAT_DATA_UINT64 },
 444  444          { "evict_skip",                 KSTAT_DATA_UINT64 },
 445  445          { "evict_not_enough",           KSTAT_DATA_UINT64 },
 446  446          { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 447  447          { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 448  448          { "evict_l2_eligible_mfu",      KSTAT_DATA_UINT64 },
 449  449          { "evict_l2_eligible_mru",      KSTAT_DATA_UINT64 },
 450  450          { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 451  451          { "evict_l2_skip",              KSTAT_DATA_UINT64 },
 452  452          { "hash_elements",              KSTAT_DATA_UINT64 },
 453  453          { "hash_elements_max",          KSTAT_DATA_UINT64 },
 454  454          { "hash_collisions",            KSTAT_DATA_UINT64 },
 455  455          { "hash_chains",                KSTAT_DATA_UINT64 },
 456  456          { "hash_chain_max",             KSTAT_DATA_UINT64 },
 457  457          { "p",                          KSTAT_DATA_UINT64 },
 458  458          { "c",                          KSTAT_DATA_UINT64 },
 459  459          { "c_min",                      KSTAT_DATA_UINT64 },
 460  460          { "c_max",                      KSTAT_DATA_UINT64 },
 461  461          { "size",                       KSTAT_DATA_UINT64 },
 462  462          { "compressed_size",            KSTAT_DATA_UINT64 },
 463  463          { "uncompressed_size",          KSTAT_DATA_UINT64 },
 464  464          { "overhead_size",              KSTAT_DATA_UINT64 },
 465  465          { "hdr_size",                   KSTAT_DATA_UINT64 },
 466  466          { "data_size",                  KSTAT_DATA_UINT64 },
 467  467          { "metadata_size",              KSTAT_DATA_UINT64 },
 468  468          { "other_size",                 KSTAT_DATA_UINT64 },
 469  469          { "anon_size",                  KSTAT_DATA_UINT64 },
 470  470          { "anon_evictable_data",        KSTAT_DATA_UINT64 },
 471  471          { "anon_evictable_metadata",    KSTAT_DATA_UINT64 },
 472  472          { "mru_size",                   KSTAT_DATA_UINT64 },
 473  473          { "mru_evictable_data",         KSTAT_DATA_UINT64 },
 474  474          { "mru_evictable_metadata",     KSTAT_DATA_UINT64 },
 475  475          { "mru_ghost_size",             KSTAT_DATA_UINT64 },
 476  476          { "mru_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 477  477          { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 478  478          { "mfu_size",                   KSTAT_DATA_UINT64 },
 479  479          { "mfu_evictable_data",         KSTAT_DATA_UINT64 },
 480  480          { "mfu_evictable_metadata",     KSTAT_DATA_UINT64 },
 481  481          { "mfu_ghost_size",             KSTAT_DATA_UINT64 },
 482  482          { "mfu_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 483  483          { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 484  484          { "l2_hits",                    KSTAT_DATA_UINT64 },
 485  485          { "l2_misses",                  KSTAT_DATA_UINT64 },
 486  486          { "l2_prefetch_asize",          KSTAT_DATA_UINT64 },
 487  487          { "l2_mru_asize",               KSTAT_DATA_UINT64 },
 488  488          { "l2_mfu_asize",               KSTAT_DATA_UINT64 },
 489  489          { "l2_bufc_data_asize",         KSTAT_DATA_UINT64 },
 490  490          { "l2_bufc_metadata_asize",     KSTAT_DATA_UINT64 },
 491  491          { "l2_feeds",                   KSTAT_DATA_UINT64 },
 492  492          { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 493  493          { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 494  494          { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 495  495          { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 496  496          { "l2_writes_done",             KSTAT_DATA_UINT64 },
 497  497          { "l2_writes_error",            KSTAT_DATA_UINT64 },
 498  498          { "l2_writes_lock_retry",       KSTAT_DATA_UINT64 },
 499  499          { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 500  500          { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 501  501          { "l2_evict_l1cached",          KSTAT_DATA_UINT64 },
 502  502          { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 503  503          { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 504  504          { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 505  505          { "l2_io_error",                KSTAT_DATA_UINT64 },
 506  506          { "l2_size",                    KSTAT_DATA_UINT64 },
 507  507          { "l2_asize",                   KSTAT_DATA_UINT64 },
 508  508          { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 509  509          { "l2_log_blk_writes",          KSTAT_DATA_UINT64 },
 510  510          { "l2_log_blk_avg_asize",       KSTAT_DATA_UINT64 },
 511  511          { "l2_log_blk_asize",           KSTAT_DATA_UINT64 },
 512  512          { "l2_log_blk_count",           KSTAT_DATA_UINT64 },
 513  513          { "l2_data_to_meta_ratio",      KSTAT_DATA_UINT64 },
 514  514          { "l2_rebuild_success",         KSTAT_DATA_UINT64 },
 515  515          { "l2_rebuild_unsupported",     KSTAT_DATA_UINT64 },
 516  516          { "l2_rebuild_io_errors",       KSTAT_DATA_UINT64 },
 517  517          { "l2_rebuild_dh_errors",       KSTAT_DATA_UINT64 },
 518  518          { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
 519  519          { "l2_rebuild_lowmem",          KSTAT_DATA_UINT64 },
 520  520          { "l2_rebuild_size",            KSTAT_DATA_UINT64 },
 521  521          { "l2_rebuild_asize",           KSTAT_DATA_UINT64 },
 522  522          { "l2_rebuild_bufs",            KSTAT_DATA_UINT64 },
 523  523          { "l2_rebuild_bufs_precached",  KSTAT_DATA_UINT64 },
 524  524          { "l2_rebuild_log_blks",        KSTAT_DATA_UINT64 },
 525  525          { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 526  526          { "arc_meta_used",              KSTAT_DATA_UINT64 },
 527  527          { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 528  528          { "arc_meta_max",               KSTAT_DATA_UINT64 },
 529  529          { "arc_meta_min",               KSTAT_DATA_UINT64 },
 530  530          { "async_upgrade_sync",         KSTAT_DATA_UINT64 },
 531  531          { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
 532  532          { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
 533  533  };
 534  534  
 535  535  #define ARCSTAT_MAX(stat, val) {                                        \
 536  536          uint64_t m;                                                     \
 537  537          while ((val) > (m = arc_stats.stat.value.ui64) &&               \
 538  538              (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
 539  539                  continue;                                               \
 540  540  }
 541  541  
 542  542  #define ARCSTAT_MAXSTAT(stat) \
 543  543          ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 544  544  
 545  545  /*
 546  546   * We define a macro to allow ARC hits/misses to be easily broken down by
 547  547   * two separate conditions, giving a total of four different subtypes for
 548  548   * each of hits and misses (so eight statistics total).
 549  549   */
 550  550  #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 551  551          if (cond1) {                                                    \
 552  552                  if (cond2) {                                            \
 553  553                          ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 554  554                  } else {                                                \
 555  555                          ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 556  556                  }                                                       \
 557  557          } else {                                                        \
 558  558                  if (cond2) {                                            \
 559  559                          ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 560  560                  } else {                                                \
 561  561                          ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 562  562                  }                                                       \
 563  563          }
 564  564  
 565  565  /*
 566  566   * This macro allows us to use kstats as floating averages. Each time we
 567  567   * update this kstat, we first factor it and the update value by
 568  568   * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
 569  569   * average. This macro assumes that integer loads and stores are atomic, but
 570  570   * is not safe for multiple writers updating the kstat in parallel (only the
 571  571   * last writer's update will remain).
 572  572   */
 573  573  #define ARCSTAT_F_AVG_FACTOR    3
 574  574  #define ARCSTAT_F_AVG(stat, value) \
 575  575          do { \
 576  576                  uint64_t x = ARCSTAT(stat); \
 577  577                  x = x - x / ARCSTAT_F_AVG_FACTOR + \
 578  578                      (value) / ARCSTAT_F_AVG_FACTOR; \
 579  579                  ARCSTAT(stat) = x; \
 580  580                  _NOTE(CONSTCOND) \
 581  581          } while (0)
 582  582  
 583  583  kstat_t                 *arc_ksp;
 584  584  static arc_state_t      *arc_anon;
 585  585  static arc_state_t      *arc_mru;
 586  586  static arc_state_t      *arc_mru_ghost;
 587  587  static arc_state_t      *arc_mfu;
 588  588  static arc_state_t      *arc_mfu_ghost;
 589  589  static arc_state_t      *arc_l2c_only;
 590  590  
 591  591  /*
 592  592   * There are also some ARC variables that we want to export, but that are
 593  593   * updated so often that having the canonical representation be the statistic
 594  594   * variable causes a performance bottleneck. We want to use aggsum_t's for these
 595  595   * instead, but still be able to export the kstat in the same way as before.
 596  596   * The solution is to always use the aggsum version, except in the kstat update
 597  597   * callback.
 598  598   */
 599  599  aggsum_t arc_size;
 600  600  aggsum_t arc_meta_used;
 601  601  aggsum_t astat_data_size;
 602  602  aggsum_t astat_metadata_size;
 603  603  aggsum_t astat_hdr_size;
 604  604  aggsum_t astat_other_size;
 605  605  aggsum_t astat_l2_hdr_size;
 606  606  
 607  607  static int              arc_no_grow;    /* Don't try to grow cache size */
 608  608  static hrtime_t         arc_growtime;
 609  609  static uint64_t         arc_tempreserve;
 610  610  static uint64_t         arc_loaned_bytes;
 611  611  
 612  612  #define GHOST_STATE(state)      \
 613  613          ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 614  614          (state) == arc_l2c_only)
 615  615  
 616  616  #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
 617  617  #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
 618  618  #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
 619  619  #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_FLAG_PREFETCH)
 620  620  #define HDR_PRESCIENT_PREFETCH(hdr)     \
 621  621          ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
 622  622  #define HDR_COMPRESSION_ENABLED(hdr)    \
 623  623          ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
 624  624  
 625  625  #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_FLAG_L2CACHE)
 626  626  #define HDR_L2_READING(hdr)     \
 627  627          (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&  \
 628  628          ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
 629  629  #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
 630  630  #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
 631  631  #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
 632  632  #define HDR_PROTECTED(hdr)      ((hdr)->b_flags & ARC_FLAG_PROTECTED)
 633  633  #define HDR_NOAUTH(hdr)         ((hdr)->b_flags & ARC_FLAG_NOAUTH)
 634  634  #define HDR_SHARED_DATA(hdr)    ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
 635  635  
 636  636  #define HDR_ISTYPE_METADATA(hdr)        \
 637  637          ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
 638  638  #define HDR_ISTYPE_DATA(hdr)    (!HDR_ISTYPE_METADATA(hdr))
 639  639  
 640  640  #define HDR_HAS_L1HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
 641  641  #define HDR_HAS_L2HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
 642  642  #define HDR_HAS_RABD(hdr)       \
 643  643          (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&    \
 644  644          (hdr)->b_crypt_hdr.b_rabd != NULL)
 645  645  #define HDR_ENCRYPTED(hdr)      \
 646  646          (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
 647  647  #define HDR_AUTHENTICATED(hdr)  \
 648  648          (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
 649  649  
 650  650  /* For storing compression mode in b_flags */
 651  651  #define HDR_COMPRESS_OFFSET     (highbit64(ARC_FLAG_COMPRESS_0) - 1)
 652  652  
 653  653  #define HDR_GET_COMPRESS(hdr)   ((enum zio_compress)BF32_GET((hdr)->b_flags, \
 654  654          HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
 655  655  #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
 656  656          HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
 657  657  
 658  658  #define ARC_BUF_LAST(buf)       ((buf)->b_next == NULL)
 659  659  #define ARC_BUF_SHARED(buf)     ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
 660  660  #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
 661  661  #define ARC_BUF_ENCRYPTED(buf)  ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
 662  662  
 663  663  /*
 664  664   * Other sizes
 665  665   */
 666  666  
 667  667  #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 668  668  #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
 669  669  #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
 670  670  
 671  671  /*
 672  672   * Hash table routines
 673  673   */
 674  674  
 675  675  #define HT_LOCK_PAD     64
 676  676  
 677  677  struct ht_lock {
 678  678          kmutex_t        ht_lock;
 679  679  #ifdef _KERNEL
 680  680          unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
 681  681  #endif
 682  682  };
 683  683  
 684  684  #define BUF_LOCKS 256
 685  685  typedef struct buf_hash_table {
 686  686          uint64_t ht_mask;
 687  687          arc_buf_hdr_t **ht_table;
 688  688          struct ht_lock ht_locks[BUF_LOCKS];
 689  689  } buf_hash_table_t;
 690  690  
 691  691  static buf_hash_table_t buf_hash_table;
 692  692  
 693  693  #define BUF_HASH_INDEX(spa, dva, birth) \
 694  694          (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
 695  695  #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
 696  696  #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
 697  697  #define HDR_LOCK(hdr) \
 698  698          (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
 699  699  
 700  700  uint64_t zfs_crc64_table[256];
 701  701  
 702  702  /*
 703  703   * Level 2 ARC
 704  704   */
 705  705  
 706  706  #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
 707  707  #define L2ARC_HEADROOM          2                       /* num of writes */
 708  708  /*
 709  709   * If we discover during ARC scan any buffers to be compressed, we boost
 710  710   * our headroom for the next scanning cycle by this percentage multiple.
 711  711   */
 712  712  #define L2ARC_HEADROOM_BOOST    200
 713  713  #define L2ARC_FEED_SECS         1               /* caching interval secs */
 714  714  #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
 715  715  
 716  716  /*
 717  717   * We can feed L2ARC from two states of ARC buffers, mru and mfu,
 718  718   * and each of the state has two types: data and metadata.
 719  719   */
 720  720  #define L2ARC_FEED_TYPES        4
 721  721  
 722  722  
 723  723  #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
 724  724  #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
 725  725  
 726  726  /* L2ARC Performance Tunables */
 727  727  uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
 728  728  uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
 729  729  uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
 730  730  uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
 731  731  uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
 732  732  uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
 733  733  boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
 734  734  boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
 735  735  boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
 736  736  int l2arc_meta_percent = 33;                    /* limit on headers size */
 737  737  
 738  738  /*
 739  739   * L2ARC Internals
 740  740   */
 741  741  static list_t L2ARC_dev_list;                   /* device list */
 742  742  static list_t *l2arc_dev_list;                  /* device list pointer */
 743  743  static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
 744  744  static l2arc_dev_t *l2arc_dev_last;             /* last device used */
 745  745  static list_t L2ARC_free_on_write;              /* free after write buf list */
 746  746  static list_t *l2arc_free_on_write;             /* free after write list ptr */
 747  747  static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
 748  748  static uint64_t l2arc_ndev;                     /* number of devices */
 749  749  
 750  750  typedef struct l2arc_read_callback {
 751  751          arc_buf_hdr_t           *l2rcb_hdr;             /* read header */
 752  752          blkptr_t                l2rcb_bp;               /* original blkptr */
 753  753          zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
 754  754          int                     l2rcb_flags;            /* original flags */
 755  755          abd_t                   *l2rcb_abd;             /* temporary buffer */
 756  756  } l2arc_read_callback_t;
 757  757  
 758  758  typedef struct l2arc_data_free {
 759  759          /* protected by l2arc_free_on_write_mtx */
 760  760          abd_t           *l2df_abd;
 761  761          size_t          l2df_size;
 762  762          arc_buf_contents_t l2df_type;
 763  763          list_node_t     l2df_list_node;
 764  764  } l2arc_data_free_t;
 765  765  
 766  766  static kmutex_t l2arc_feed_thr_lock;
 767  767  static kcondvar_t l2arc_feed_thr_cv;
 768  768  static uint8_t l2arc_thread_exit;
 769  769  
 770  770  static kmutex_t l2arc_rebuild_thr_lock;
 771  771  static kcondvar_t l2arc_rebuild_thr_cv;
 772  772  
 773  773  enum arc_hdr_alloc_flags {
 774  774          ARC_HDR_ALLOC_RDATA = 0x1,
 775  775          ARC_HDR_DO_ADAPT = 0x2,
 776  776  };
 777  777  
 778  778  
 779  779  static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
 780  780  typedef enum arc_fill_flags {
 781  781          ARC_FILL_LOCKED         = 1 << 0, /* hdr lock is held */
 782  782          ARC_FILL_COMPRESSED     = 1 << 1, /* fill with compressed data */
 783  783          ARC_FILL_ENCRYPTED      = 1 << 2, /* fill with encrypted data */
 784  784          ARC_FILL_NOAUTH         = 1 << 3, /* don't attempt to authenticate */
 785  785          ARC_FILL_IN_PLACE       = 1 << 4  /* fill in place (special case) */
 786  786  } arc_fill_flags_t;
 787  787  
 788  788  static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
 789  789  static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
 790  790  static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
 791  791  static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
 792  792  static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
 793  793  static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t);
 794  794  static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, int);
 795  795  static void arc_access(arc_buf_hdr_t *, kmutex_t *);
 796  796  static boolean_t arc_is_overflowing();
 797  797  static void arc_buf_watch(arc_buf_t *);
 798  798  static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd);
 799  799  
 800  800  static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
 801  801  static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
 802  802  static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
 803  803  static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
 804  804  
 805  805  static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
 806  806  static void l2arc_read_done(zio_t *);
 807  807  static void l2arc_do_free_on_write(void);
 808  808  static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
 809  809      boolean_t state_only);
 810  810  
 811  811  #define l2arc_hdr_arcstats_increment(hdr) \
 812  812          l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
 813  813  #define l2arc_hdr_arcstats_decrement(hdr) \
 814  814          l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
 815  815  #define l2arc_hdr_arcstats_increment_state(hdr) \
 816  816          l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
 817  817  #define l2arc_hdr_arcstats_decrement_state(hdr) \
 818  818          l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
 819  819  
 820  820  /*
 821  821   * The arc_all_memory function is a ZoL enhancement that lives in their OSL
 822  822   * code. In user-space code, which is used primarily for testing, we return
 823  823   * half of all memory.
 824  824   */
 825  825  uint64_t
 826  826  arc_all_memory(void)
 827  827  {
 828  828  #ifdef _KERNEL
 829  829          return (ptob(physmem));
 830  830  #else
 831  831          return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2);
 832  832  #endif
 833  833  }
 834  834  
 835  835  /*
 836  836   * We use Cityhash for this. It's fast, and has good hash properties without
 837  837   * requiring any large static buffers.
 838  838   */
 839  839  static uint64_t
 840  840  buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
 841  841  {
 842  842          return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
 843  843  }
 844  844  
 845  845  #define HDR_EMPTY(hdr)                                          \
 846  846          ((hdr)->b_dva.dva_word[0] == 0 &&                       \
 847  847          (hdr)->b_dva.dva_word[1] == 0)
 848  848  
 849  849  #define HDR_EMPTY_OR_LOCKED(hdr)                                \
 850  850          (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
 851  851  
 852  852  #define HDR_EQUAL(spa, dva, birth, hdr)                         \
 853  853          ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&     \
 854  854          ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&     \
 855  855          ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
 856  856  
 857  857  static void
 858  858  buf_discard_identity(arc_buf_hdr_t *hdr)
 859  859  {
 860  860          hdr->b_dva.dva_word[0] = 0;
 861  861          hdr->b_dva.dva_word[1] = 0;
 862  862          hdr->b_birth = 0;
 863  863  }
 864  864  
 865  865  static arc_buf_hdr_t *
 866  866  buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
 867  867  {
 868  868          const dva_t *dva = BP_IDENTITY(bp);
 869  869          uint64_t birth = BP_PHYSICAL_BIRTH(bp);
 870  870          uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
 871  871          kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 872  872          arc_buf_hdr_t *hdr;
 873  873  
 874  874          mutex_enter(hash_lock);
 875  875          for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
 876  876              hdr = hdr->b_hash_next) {
 877  877                  if (HDR_EQUAL(spa, dva, birth, hdr)) {
 878  878                          *lockp = hash_lock;
 879  879                          return (hdr);
 880  880                  }
 881  881          }
 882  882          mutex_exit(hash_lock);
 883  883          *lockp = NULL;
 884  884          return (NULL);
 885  885  }
 886  886  
 887  887  /*
 888  888   * Insert an entry into the hash table.  If there is already an element
 889  889   * equal to elem in the hash table, then the already existing element
 890  890   * will be returned and the new element will not be inserted.
 891  891   * Otherwise returns NULL.
 892  892   * If lockp == NULL, the caller is assumed to already hold the hash lock.
 893  893   */
 894  894  static arc_buf_hdr_t *
 895  895  buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
 896  896  {
 897  897          uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 898  898          kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 899  899          arc_buf_hdr_t *fhdr;
 900  900          uint32_t i;
 901  901  
 902  902          ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
 903  903          ASSERT(hdr->b_birth != 0);
 904  904          ASSERT(!HDR_IN_HASH_TABLE(hdr));
 905  905  
 906  906          if (lockp != NULL) {
 907  907                  *lockp = hash_lock;
 908  908                  mutex_enter(hash_lock);
 909  909          } else {
 910  910                  ASSERT(MUTEX_HELD(hash_lock));
 911  911          }
 912  912  
 913  913          for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
 914  914              fhdr = fhdr->b_hash_next, i++) {
 915  915                  if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
 916  916                          return (fhdr);
 917  917          }
 918  918  
 919  919          hdr->b_hash_next = buf_hash_table.ht_table[idx];
 920  920          buf_hash_table.ht_table[idx] = hdr;
 921  921          arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
 922  922  
 923  923          /* collect some hash table performance data */
 924  924          if (i > 0) {
 925  925                  ARCSTAT_BUMP(arcstat_hash_collisions);
 926  926                  if (i == 1)
 927  927                          ARCSTAT_BUMP(arcstat_hash_chains);
 928  928  
 929  929                  ARCSTAT_MAX(arcstat_hash_chain_max, i);
 930  930          }
 931  931  
 932  932          ARCSTAT_BUMP(arcstat_hash_elements);
 933  933          ARCSTAT_MAXSTAT(arcstat_hash_elements);
 934  934  
 935  935          return (NULL);
 936  936  }
 937  937  
 938  938  static void
 939  939  buf_hash_remove(arc_buf_hdr_t *hdr)
 940  940  {
 941  941          arc_buf_hdr_t *fhdr, **hdrp;
 942  942          uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 943  943  
 944  944          ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
 945  945          ASSERT(HDR_IN_HASH_TABLE(hdr));
 946  946  
 947  947          hdrp = &buf_hash_table.ht_table[idx];
 948  948          while ((fhdr = *hdrp) != hdr) {
 949  949                  ASSERT3P(fhdr, !=, NULL);
 950  950                  hdrp = &fhdr->b_hash_next;
 951  951          }
 952  952          *hdrp = hdr->b_hash_next;
 953  953          hdr->b_hash_next = NULL;
 954  954          arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
 955  955  
 956  956          /* collect some hash table performance data */
 957  957          ARCSTAT_BUMPDOWN(arcstat_hash_elements);
 958  958  
 959  959          if (buf_hash_table.ht_table[idx] &&
 960  960              buf_hash_table.ht_table[idx]->b_hash_next == NULL)
 961  961                  ARCSTAT_BUMPDOWN(arcstat_hash_chains);
 962  962  }
 963  963  
 964  964  /*
 965  965   * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
 966  966   *              metadata and data are cached from ARC into L2ARC.
 967  967   */
 968  968  int l2arc_mfuonly = 0;
 969  969  
 970  970  /*
 971  971   * Global data structures and functions for the buf kmem cache.
 972  972   */
 973  973  
 974  974  static kmem_cache_t *hdr_full_cache;
 975  975  static kmem_cache_t *hdr_full_crypt_cache;
 976  976  static kmem_cache_t *hdr_l2only_cache;
 977  977  static kmem_cache_t *buf_cache;
 978  978  
 979  979  static void
 980  980  buf_fini(void)
 981  981  {
 982  982          int i;
 983  983  
 984  984          kmem_free(buf_hash_table.ht_table,
 985  985              (buf_hash_table.ht_mask + 1) * sizeof (void *));
 986  986          for (i = 0; i < BUF_LOCKS; i++)
 987  987                  mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
 988  988          kmem_cache_destroy(hdr_full_cache);
 989  989          kmem_cache_destroy(hdr_full_crypt_cache);
 990  990          kmem_cache_destroy(hdr_l2only_cache);
 991  991          kmem_cache_destroy(buf_cache);
 992  992  }
 993  993  
 994  994  /*
 995  995   * Constructor callback - called when the cache is empty
 996  996   * and a new buf is requested.
 997  997   */
 998  998  /* ARGSUSED */
 999  999  static int
1000 1000  hdr_full_cons(void *vbuf, void *unused, int kmflag)
1001 1001  {
1002 1002          arc_buf_hdr_t *hdr = vbuf;
1003 1003  
1004 1004          bzero(hdr, HDR_FULL_SIZE);
1005 1005          hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1006 1006          cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1007 1007          zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1008 1008          mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1009 1009          multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1010 1010          arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1011 1011  
1012 1012          return (0);
1013 1013  }
1014 1014  
1015 1015  /* ARGSUSED */
1016 1016  static int
1017 1017  hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1018 1018  {
1019 1019          arc_buf_hdr_t *hdr = vbuf;
1020 1020  
1021 1021          (void) hdr_full_cons(vbuf, unused, kmflag);
1022 1022          bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1023 1023          arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1024 1024  
1025 1025          return (0);
1026 1026  }
1027 1027  
1028 1028  /* ARGSUSED */
1029 1029  static int
1030 1030  hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1031 1031  {
1032 1032          arc_buf_hdr_t *hdr = vbuf;
1033 1033  
1034 1034          bzero(hdr, HDR_L2ONLY_SIZE);
1035 1035          arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1036 1036  
1037 1037          return (0);
1038 1038  }
1039 1039  
1040 1040  /* ARGSUSED */
1041 1041  static int
1042 1042  buf_cons(void *vbuf, void *unused, int kmflag)
1043 1043  {
1044 1044          arc_buf_t *buf = vbuf;
1045 1045  
1046 1046          bzero(buf, sizeof (arc_buf_t));
1047 1047          mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1048 1048          arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1049 1049  
1050 1050          return (0);
1051 1051  }
1052 1052  
1053 1053  /*
1054 1054   * Destructor callback - called when a cached buf is
1055 1055   * no longer required.
1056 1056   */
1057 1057  /* ARGSUSED */
1058 1058  static void
1059 1059  hdr_full_dest(void *vbuf, void *unused)
1060 1060  {
1061 1061          arc_buf_hdr_t *hdr = vbuf;
1062 1062  
1063 1063          ASSERT(HDR_EMPTY(hdr));
1064 1064          cv_destroy(&hdr->b_l1hdr.b_cv);
1065 1065          zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1066 1066          mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1067 1067          ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1068 1068          arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1069 1069  }
1070 1070  
1071 1071  /* ARGSUSED */
1072 1072  static void
1073 1073  hdr_full_crypt_dest(void *vbuf, void *unused)
1074 1074  {
1075 1075          arc_buf_hdr_t *hdr = vbuf;
1076 1076  
1077 1077          hdr_full_dest(hdr, unused);
1078 1078          arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1079 1079  }
1080 1080  
1081 1081  /* ARGSUSED */
1082 1082  static void
1083 1083  hdr_l2only_dest(void *vbuf, void *unused)
1084 1084  {
1085 1085          arc_buf_hdr_t *hdr = vbuf;
1086 1086  
1087 1087          ASSERT(HDR_EMPTY(hdr));
1088 1088          arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1089 1089  }
1090 1090  
1091 1091  /* ARGSUSED */
1092 1092  static void
1093 1093  buf_dest(void *vbuf, void *unused)
1094 1094  {
1095 1095          arc_buf_t *buf = vbuf;
1096 1096  
1097 1097          mutex_destroy(&buf->b_evict_lock);
1098 1098          arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1099 1099  }
1100 1100  
1101 1101  /*
1102 1102   * Reclaim callback -- invoked when memory is low.
1103 1103   */
1104 1104  /* ARGSUSED */
1105 1105  static void
1106 1106  hdr_recl(void *unused)
1107 1107  {
1108 1108          dprintf("hdr_recl called\n");
1109 1109          /*
1110 1110           * umem calls the reclaim func when we destroy the buf cache,
1111 1111           * which is after we do arc_fini().
1112 1112           */
1113 1113          if (arc_initialized)
1114 1114                  zthr_wakeup(arc_reap_zthr);
1115 1115  }
1116 1116  
1117 1117  static void
1118 1118  buf_init(void)
1119 1119  {
1120 1120          uint64_t *ct;
1121 1121          uint64_t hsize = 1ULL << 12;
1122 1122          int i, j;
1123 1123  
1124 1124          /*
1125 1125           * The hash table is big enough to fill all of physical memory
1126 1126           * with an average block size of zfs_arc_average_blocksize (default 8K).
1127 1127           * By default, the table will take up
1128 1128           * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1129 1129           */
1130 1130          while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1131 1131                  hsize <<= 1;
1132 1132  retry:
1133 1133          buf_hash_table.ht_mask = hsize - 1;
1134 1134          buf_hash_table.ht_table =
1135 1135              kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1136 1136          if (buf_hash_table.ht_table == NULL) {
1137 1137                  ASSERT(hsize > (1ULL << 8));
1138 1138                  hsize >>= 1;
1139 1139                  goto retry;
1140 1140          }
1141 1141  
1142 1142          hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1143 1143              0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1144 1144          hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1145 1145              HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1146 1146              hdr_recl, NULL, NULL, 0);
1147 1147          hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1148 1148              HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1149 1149              NULL, NULL, 0);
1150 1150          buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1151 1151              0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1152 1152  
1153 1153          for (i = 0; i < 256; i++)
1154 1154                  for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1155 1155                          *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1156 1156  
1157 1157          for (i = 0; i < BUF_LOCKS; i++) {
1158 1158                  mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1159 1159                      NULL, MUTEX_DEFAULT, NULL);
1160 1160          }
1161 1161  }
1162 1162  
1163 1163  /*
1164 1164   * This is the size that the buf occupies in memory. If the buf is compressed,
1165 1165   * it will correspond to the compressed size. You should use this method of
1166 1166   * getting the buf size unless you explicitly need the logical size.
1167 1167   */
1168 1168  int32_t
1169 1169  arc_buf_size(arc_buf_t *buf)
1170 1170  {
1171 1171          return (ARC_BUF_COMPRESSED(buf) ?
1172 1172              HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1173 1173  }
1174 1174  
1175 1175  int32_t
1176 1176  arc_buf_lsize(arc_buf_t *buf)
1177 1177  {
1178 1178          return (HDR_GET_LSIZE(buf->b_hdr));
1179 1179  }
1180 1180  
1181 1181  /*
1182 1182   * This function will return B_TRUE if the buffer is encrypted in memory.
1183 1183   * This buffer can be decrypted by calling arc_untransform().
1184 1184   */
1185 1185  boolean_t
1186 1186  arc_is_encrypted(arc_buf_t *buf)
1187 1187  {
1188 1188          return (ARC_BUF_ENCRYPTED(buf) != 0);
1189 1189  }
1190 1190  
1191 1191  /*
1192 1192   * Returns B_TRUE if the buffer represents data that has not had its MAC
1193 1193   * verified yet.
1194 1194   */
1195 1195  boolean_t
1196 1196  arc_is_unauthenticated(arc_buf_t *buf)
1197 1197  {
1198 1198          return (HDR_NOAUTH(buf->b_hdr) != 0);
1199 1199  }
1200 1200  
1201 1201  void
1202 1202  arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1203 1203      uint8_t *iv, uint8_t *mac)
1204 1204  {
1205 1205          arc_buf_hdr_t *hdr = buf->b_hdr;
1206 1206  
1207 1207          ASSERT(HDR_PROTECTED(hdr));
1208 1208  
1209 1209          bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1210 1210          bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1211 1211          bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1212 1212          *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1213 1213              /* CONSTCOND */
1214 1214              ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1215 1215  }
1216 1216  
1217 1217  /*
1218 1218   * Indicates how this buffer is compressed in memory. If it is not compressed
1219 1219   * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1220 1220   * arc_untransform() as long as it is also unencrypted.
1221 1221   */
1222 1222  enum zio_compress
1223 1223  arc_get_compression(arc_buf_t *buf)
1224 1224  {
1225 1225          return (ARC_BUF_COMPRESSED(buf) ?
1226 1226              HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1227 1227  }
1228 1228  
1229 1229  #define ARC_MINTIME     (hz>>4) /* 62 ms */
1230 1230  
1231 1231  /*
1232 1232   * Return the compression algorithm used to store this data in the ARC. If ARC
1233 1233   * compression is enabled or this is an encrypted block, this will be the same
1234 1234   * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1235 1235   */
1236 1236  static inline enum zio_compress
1237 1237  arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1238 1238  {
1239 1239          return (HDR_COMPRESSION_ENABLED(hdr) ?
1240 1240              HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1241 1241  }
1242 1242  
1243 1243  static inline boolean_t
1244 1244  arc_buf_is_shared(arc_buf_t *buf)
1245 1245  {
1246 1246          boolean_t shared = (buf->b_data != NULL &&
1247 1247              buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1248 1248              abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1249 1249              buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1250 1250          IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1251 1251          IMPLY(shared, ARC_BUF_SHARED(buf));
1252 1252          IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1253 1253  
1254 1254          /*
1255 1255           * It would be nice to assert arc_can_share() too, but the "hdr isn't
1256 1256           * already being shared" requirement prevents us from doing that.
1257 1257           */
1258 1258  
1259 1259          return (shared);
1260 1260  }
1261 1261  
1262 1262  /*
1263 1263   * Free the checksum associated with this header. If there is no checksum, this
1264 1264   * is a no-op.
1265 1265   */
1266 1266  static inline void
1267 1267  arc_cksum_free(arc_buf_hdr_t *hdr)
1268 1268  {
1269 1269          ASSERT(HDR_HAS_L1HDR(hdr));
1270 1270  
1271 1271          mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1272 1272          if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1273 1273                  kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1274 1274                  hdr->b_l1hdr.b_freeze_cksum = NULL;
1275 1275          }
1276 1276          mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1277 1277  }
1278 1278  
1279 1279  /*
1280 1280   * Return true iff at least one of the bufs on hdr is not compressed.
1281 1281   * Encrypted buffers count as compressed.
1282 1282   */
1283 1283  static boolean_t
1284 1284  arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1285 1285  {
1286 1286          ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1287 1287  
1288 1288          for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1289 1289                  if (!ARC_BUF_COMPRESSED(b)) {
1290 1290                          return (B_TRUE);
1291 1291                  }
1292 1292          }
1293 1293          return (B_FALSE);
1294 1294  }
1295 1295  
1296 1296  /*
1297 1297   * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1298 1298   * matches the checksum that is stored in the hdr. If there is no checksum,
1299 1299   * or if the buf is compressed, this is a no-op.
1300 1300   */
1301 1301  static void
1302 1302  arc_cksum_verify(arc_buf_t *buf)
1303 1303  {
1304 1304          arc_buf_hdr_t *hdr = buf->b_hdr;
1305 1305          zio_cksum_t zc;
1306 1306  
1307 1307          if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1308 1308                  return;
1309 1309  
1310 1310          if (ARC_BUF_COMPRESSED(buf))
1311 1311                  return;
1312 1312  
1313 1313          ASSERT(HDR_HAS_L1HDR(hdr));
1314 1314  
1315 1315          mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1316 1316  
1317 1317          if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1318 1318                  mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1319 1319                  return;
1320 1320          }
1321 1321  
1322 1322          fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1323 1323          if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1324 1324                  panic("buffer modified while frozen!");
1325 1325          mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1326 1326  }
1327 1327  
1328 1328  /*
1329 1329   * This function makes the assumption that data stored in the L2ARC
1330 1330   * will be transformed exactly as it is in the main pool. Because of
1331 1331   * this we can verify the checksum against the reading process's bp.
1332 1332   */
1333 1333  static boolean_t
1334 1334  arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1335 1335  {
1336 1336          enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1337 1337          boolean_t valid_cksum;
1338 1338  
1339 1339          ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1340 1340          VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1341 1341  
1342 1342          /*
1343 1343           * We rely on the blkptr's checksum to determine if the block
1344 1344           * is valid or not. When compressed arc is enabled, the l2arc
1345 1345           * writes the block to the l2arc just as it appears in the pool.
1346 1346           * This allows us to use the blkptr's checksum to validate the
1347 1347           * data that we just read off of the l2arc without having to store
1348 1348           * a separate checksum in the arc_buf_hdr_t. However, if compressed
1349 1349           * arc is disabled, then the data written to the l2arc is always
1350 1350           * uncompressed and won't match the block as it exists in the main
1351 1351           * pool. When this is the case, we must first compress it if it is
1352 1352           * compressed on the main pool before we can validate the checksum.
1353 1353           */
1354 1354          if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1355 1355                  ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1356 1356                  uint64_t lsize = HDR_GET_LSIZE(hdr);
1357 1357                  uint64_t csize;
1358 1358  
1359 1359                  abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1360 1360                  csize = zio_compress_data(compress, zio->io_abd,
1361 1361                      abd_to_buf(cdata), lsize);
1362 1362  
1363 1363                  ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1364 1364                  if (csize < HDR_GET_PSIZE(hdr)) {
1365 1365                          /*
1366 1366                           * Compressed blocks are always a multiple of the
1367 1367                           * smallest ashift in the pool. Ideally, we would
1368 1368                           * like to round up the csize to the next
1369 1369                           * spa_min_ashift but that value may have changed
1370 1370                           * since the block was last written. Instead,
1371 1371                           * we rely on the fact that the hdr's psize
1372 1372                           * was set to the psize of the block when it was
1373 1373                           * last written. We set the csize to that value
1374 1374                           * and zero out any part that should not contain
1375 1375                           * data.
1376 1376                           */
1377 1377                          abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1378 1378                          csize = HDR_GET_PSIZE(hdr);
1379 1379                  }
1380 1380                  zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1381 1381          }
1382 1382  
1383 1383          /*
1384 1384           * Block pointers always store the checksum for the logical data.
1385 1385           * If the block pointer has the gang bit set, then the checksum
1386 1386           * it represents is for the reconstituted data and not for an
1387 1387           * individual gang member. The zio pipeline, however, must be able to
1388 1388           * determine the checksum of each of the gang constituents so it
1389 1389           * treats the checksum comparison differently than what we need
1390 1390           * for l2arc blocks. This prevents us from using the
1391 1391           * zio_checksum_error() interface directly. Instead we must call the
1392 1392           * zio_checksum_error_impl() so that we can ensure the checksum is
1393 1393           * generated using the correct checksum algorithm and accounts for the
1394 1394           * logical I/O size and not just a gang fragment.
1395 1395           */
1396 1396          valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1397 1397              BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1398 1398              zio->io_offset, NULL) == 0);
1399 1399          zio_pop_transforms(zio);
1400 1400          return (valid_cksum);
1401 1401  }
1402 1402  
1403 1403  /*
1404 1404   * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1405 1405   * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1406 1406   * isn't modified later on. If buf is compressed or there is already a checksum
1407 1407   * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1408 1408   */
1409 1409  static void
1410 1410  arc_cksum_compute(arc_buf_t *buf)
1411 1411  {
1412 1412          arc_buf_hdr_t *hdr = buf->b_hdr;
1413 1413  
1414 1414          if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1415 1415                  return;
1416 1416  
1417 1417          ASSERT(HDR_HAS_L1HDR(hdr));
1418 1418  
1419 1419          mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1420 1420          if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1421 1421                  mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1422 1422                  return;
1423 1423          }
1424 1424  
1425 1425          ASSERT(!ARC_BUF_ENCRYPTED(buf));
1426 1426          ASSERT(!ARC_BUF_COMPRESSED(buf));
1427 1427          hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1428 1428              KM_SLEEP);
1429 1429          fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1430 1430              hdr->b_l1hdr.b_freeze_cksum);
1431 1431          mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1432 1432          arc_buf_watch(buf);
1433 1433  }
1434 1434  
1435 1435  #ifndef _KERNEL
1436 1436  typedef struct procctl {
1437 1437          long cmd;
1438 1438          prwatch_t prwatch;
1439 1439  } procctl_t;
1440 1440  #endif
1441 1441  
1442 1442  /* ARGSUSED */
1443 1443  static void
1444 1444  arc_buf_unwatch(arc_buf_t *buf)
1445 1445  {
1446 1446  #ifndef _KERNEL
1447 1447          if (arc_watch) {
1448 1448                  int result;
1449 1449                  procctl_t ctl;
1450 1450                  ctl.cmd = PCWATCH;
1451 1451                  ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1452 1452                  ctl.prwatch.pr_size = 0;
1453 1453                  ctl.prwatch.pr_wflags = 0;
1454 1454                  result = write(arc_procfd, &ctl, sizeof (ctl));
1455 1455                  ASSERT3U(result, ==, sizeof (ctl));
1456 1456          }
1457 1457  #endif
1458 1458  }
1459 1459  
1460 1460  /* ARGSUSED */
1461 1461  static void
1462 1462  arc_buf_watch(arc_buf_t *buf)
1463 1463  {
1464 1464  #ifndef _KERNEL
1465 1465          if (arc_watch) {
1466 1466                  int result;
1467 1467                  procctl_t ctl;
1468 1468                  ctl.cmd = PCWATCH;
1469 1469                  ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1470 1470                  ctl.prwatch.pr_size = arc_buf_size(buf);
1471 1471                  ctl.prwatch.pr_wflags = WA_WRITE;
1472 1472                  result = write(arc_procfd, &ctl, sizeof (ctl));
1473 1473                  ASSERT3U(result, ==, sizeof (ctl));
1474 1474          }
1475 1475  #endif
1476 1476  }
1477 1477  
1478 1478  static arc_buf_contents_t
1479 1479  arc_buf_type(arc_buf_hdr_t *hdr)
1480 1480  {
1481 1481          arc_buf_contents_t type;
1482 1482          if (HDR_ISTYPE_METADATA(hdr)) {
1483 1483                  type = ARC_BUFC_METADATA;
1484 1484          } else {
1485 1485                  type = ARC_BUFC_DATA;
1486 1486          }
1487 1487          VERIFY3U(hdr->b_type, ==, type);
1488 1488          return (type);
1489 1489  }
1490 1490  
1491 1491  boolean_t
1492 1492  arc_is_metadata(arc_buf_t *buf)
1493 1493  {
1494 1494          return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1495 1495  }
1496 1496  
1497 1497  static uint32_t
1498 1498  arc_bufc_to_flags(arc_buf_contents_t type)
1499 1499  {
1500 1500          switch (type) {
1501 1501          case ARC_BUFC_DATA:
1502 1502                  /* metadata field is 0 if buffer contains normal data */
1503 1503                  return (0);
1504 1504          case ARC_BUFC_METADATA:
1505 1505                  return (ARC_FLAG_BUFC_METADATA);
1506 1506          default:
1507 1507                  break;
1508 1508          }
1509 1509          panic("undefined ARC buffer type!");
1510 1510          return ((uint32_t)-1);
1511 1511  }
1512 1512  
1513 1513  void
1514 1514  arc_buf_thaw(arc_buf_t *buf)
1515 1515  {
1516 1516          arc_buf_hdr_t *hdr = buf->b_hdr;
1517 1517  
1518 1518          ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1519 1519          ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1520 1520  
1521 1521          arc_cksum_verify(buf);
1522 1522  
1523 1523          /*
1524 1524           * Compressed buffers do not manipulate the b_freeze_cksum.
1525 1525           */
1526 1526          if (ARC_BUF_COMPRESSED(buf))
1527 1527                  return;
1528 1528  
1529 1529          ASSERT(HDR_HAS_L1HDR(hdr));
1530 1530          arc_cksum_free(hdr);
1531 1531  
1532 1532          mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1533 1533  #ifdef ZFS_DEBUG
1534 1534          if (zfs_flags & ZFS_DEBUG_MODIFY) {
1535 1535                  if (hdr->b_l1hdr.b_thawed != NULL)
1536 1536                          kmem_free(hdr->b_l1hdr.b_thawed, 1);
1537 1537                  hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1538 1538          }
1539 1539  #endif
1540 1540  
1541 1541          mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1542 1542  
1543 1543          arc_buf_unwatch(buf);
1544 1544  }
1545 1545  
1546 1546  void
1547 1547  arc_buf_freeze(arc_buf_t *buf)
1548 1548  {
1549 1549          if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1550 1550                  return;
1551 1551  
1552 1552          if (ARC_BUF_COMPRESSED(buf))
1553 1553                  return;
1554 1554  
1555 1555          ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1556 1556          arc_cksum_compute(buf);
1557 1557  }
1558 1558  
1559 1559  /*
1560 1560   * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1561 1561   * the following functions should be used to ensure that the flags are
1562 1562   * updated in a thread-safe way. When manipulating the flags either
1563 1563   * the hash_lock must be held or the hdr must be undiscoverable. This
1564 1564   * ensures that we're not racing with any other threads when updating
1565 1565   * the flags.
1566 1566   */
1567 1567  static inline void
1568 1568  arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1569 1569  {
1570 1570          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1571 1571          hdr->b_flags |= flags;
1572 1572  }
1573 1573  
1574 1574  static inline void
1575 1575  arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1576 1576  {
1577 1577          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1578 1578          hdr->b_flags &= ~flags;
1579 1579  }
1580 1580  
1581 1581  /*
1582 1582   * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1583 1583   * done in a special way since we have to clear and set bits
1584 1584   * at the same time. Consumers that wish to set the compression bits
1585 1585   * must use this function to ensure that the flags are updated in
1586 1586   * thread-safe manner.
1587 1587   */
1588 1588  static void
1589 1589  arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1590 1590  {
1591 1591          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1592 1592  
1593 1593          /*
1594 1594           * Holes and embedded blocks will always have a psize = 0 so
1595 1595           * we ignore the compression of the blkptr and set the
1596 1596           * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1597 1597           * Holes and embedded blocks remain anonymous so we don't
1598 1598           * want to uncompress them. Mark them as uncompressed.
1599 1599           */
1600 1600          if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1601 1601                  arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1602 1602                  ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1603 1603          } else {
1604 1604                  arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1605 1605                  ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1606 1606          }
1607 1607  
1608 1608          HDR_SET_COMPRESS(hdr, cmp);
1609 1609          ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1610 1610  }
1611 1611  
1612 1612  /*
1613 1613   * Looks for another buf on the same hdr which has the data decompressed, copies
1614 1614   * from it, and returns true. If no such buf exists, returns false.
1615 1615   */
1616 1616  static boolean_t
1617 1617  arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1618 1618  {
1619 1619          arc_buf_hdr_t *hdr = buf->b_hdr;
1620 1620          boolean_t copied = B_FALSE;
1621 1621  
1622 1622          ASSERT(HDR_HAS_L1HDR(hdr));
1623 1623          ASSERT3P(buf->b_data, !=, NULL);
1624 1624          ASSERT(!ARC_BUF_COMPRESSED(buf));
1625 1625  
1626 1626          for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1627 1627              from = from->b_next) {
1628 1628                  /* can't use our own data buffer */
1629 1629                  if (from == buf) {
1630 1630                          continue;
1631 1631                  }
1632 1632  
1633 1633                  if (!ARC_BUF_COMPRESSED(from)) {
1634 1634                          bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1635 1635                          copied = B_TRUE;
1636 1636                          break;
1637 1637                  }
1638 1638          }
1639 1639  
1640 1640          /*
1641 1641           * Note: With encryption support, the following assertion is no longer
1642 1642           * necessarily valid. If we receive two back to back raw snapshots
1643 1643           * (send -w), the second receive can use a hdr with a cksum already
1644 1644           * calculated. This happens via:
1645 1645           *    dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf()
1646 1646           * The rsend/send_mixed_raw test case exercises this code path.
1647 1647           *
1648 1648           * There were no decompressed bufs, so there should not be a
1649 1649           * checksum on the hdr either.
1650 1650           * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1651 1651           */
1652 1652  
1653 1653          return (copied);
1654 1654  }
1655 1655  
1656 1656  /*
1657 1657   * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1658 1658   */
1659 1659  static uint64_t
1660 1660  arc_hdr_size(arc_buf_hdr_t *hdr)
1661 1661  {
1662 1662          uint64_t size;
1663 1663  
1664 1664          if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1665 1665              HDR_GET_PSIZE(hdr) > 0) {
1666 1666                  size = HDR_GET_PSIZE(hdr);
1667 1667          } else {
1668 1668                  ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1669 1669                  size = HDR_GET_LSIZE(hdr);
1670 1670          }
1671 1671          return (size);
1672 1672  }
1673 1673  
1674 1674  static int
1675 1675  arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1676 1676  {
1677 1677          int ret;
1678 1678          uint64_t csize;
1679 1679          uint64_t lsize = HDR_GET_LSIZE(hdr);
1680 1680          uint64_t psize = HDR_GET_PSIZE(hdr);
1681 1681          void *tmpbuf = NULL;
1682 1682          abd_t *abd = hdr->b_l1hdr.b_pabd;
1683 1683  
1684 1684          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1685 1685          ASSERT(HDR_AUTHENTICATED(hdr));
1686 1686          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1687 1687  
1688 1688          /*
1689 1689           * The MAC is calculated on the compressed data that is stored on disk.
1690 1690           * However, if compressed arc is disabled we will only have the
1691 1691           * decompressed data available to us now. Compress it into a temporary
1692 1692           * abd so we can verify the MAC. The performance overhead of this will
1693 1693           * be relatively low, since most objects in an encrypted objset will
1694 1694           * be encrypted (instead of authenticated) anyway.
1695 1695           */
1696 1696          if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1697 1697              !HDR_COMPRESSION_ENABLED(hdr)) {
1698 1698                  tmpbuf = zio_buf_alloc(lsize);
1699 1699                  abd = abd_get_from_buf(tmpbuf, lsize);
1700 1700                  abd_take_ownership_of_buf(abd, B_TRUE);
1701 1701  
1702 1702                  csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1703 1703                      hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1704 1704                  ASSERT3U(csize, <=, psize);
1705 1705                  abd_zero_off(abd, csize, psize - csize);
1706 1706          }
1707 1707  
1708 1708          /*
1709 1709           * Authentication is best effort. We authenticate whenever the key is
1710 1710           * available. If we succeed we clear ARC_FLAG_NOAUTH.
1711 1711           */
1712 1712          if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1713 1713                  ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1714 1714                  ASSERT3U(lsize, ==, psize);
1715 1715                  ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1716 1716                      psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1717 1717          } else {
1718 1718                  ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1719 1719                      hdr->b_crypt_hdr.b_mac);
1720 1720          }
1721 1721  
1722 1722          if (ret == 0)
1723 1723                  arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1724 1724          else if (ret != ENOENT)
1725 1725                  goto error;
1726 1726  
1727 1727          if (tmpbuf != NULL)
1728 1728                  abd_free(abd);
1729 1729  
1730 1730          return (0);
1731 1731  
1732 1732  error:
1733 1733          if (tmpbuf != NULL)
1734 1734                  abd_free(abd);
1735 1735  
1736 1736          return (ret);
1737 1737  }
1738 1738  
1739 1739  /*
1740 1740   * This function will take a header that only has raw encrypted data in
1741 1741   * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1742 1742   * b_l1hdr.b_pabd. If designated in the header flags, this function will
1743 1743   * also decompress the data.
1744 1744   */
1745 1745  static int
1746 1746  arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1747 1747  {
1748 1748          int ret;
1749 1749          abd_t *cabd = NULL;
1750 1750          void *tmp = NULL;
1751 1751          boolean_t no_crypt = B_FALSE;
1752 1752          boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1753 1753  
1754 1754          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1755 1755          ASSERT(HDR_ENCRYPTED(hdr));
1756 1756  
1757 1757          arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
1758 1758  
1759 1759          ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1760 1760              B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1761 1761              hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1762 1762              hdr->b_crypt_hdr.b_rabd, &no_crypt);
1763 1763          if (ret != 0)
1764 1764                  goto error;
1765 1765  
1766 1766          if (no_crypt) {
1767 1767                  abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1768 1768                      HDR_GET_PSIZE(hdr));
1769 1769          }
1770 1770  
1771 1771          /*
1772 1772           * If this header has disabled arc compression but the b_pabd is
1773 1773           * compressed after decrypting it, we need to decompress the newly
1774 1774           * decrypted data.
1775 1775           */
1776 1776          if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1777 1777              !HDR_COMPRESSION_ENABLED(hdr)) {
1778 1778                  /*
1779 1779                   * We want to make sure that we are correctly honoring the
1780 1780                   * zfs_abd_scatter_enabled setting, so we allocate an abd here
1781 1781                   * and then loan a buffer from it, rather than allocating a
1782 1782                   * linear buffer and wrapping it in an abd later.
1783 1783                   */
1784 1784                  cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE);
1785 1785                  tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1786 1786  
1787 1787                  ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1788 1788                      hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1789 1789                      HDR_GET_LSIZE(hdr));
1790 1790                  if (ret != 0) {
1791 1791                          abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1792 1792                          goto error;
1793 1793                  }
1794 1794  
1795 1795                  abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1796 1796                  arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1797 1797                      arc_hdr_size(hdr), hdr);
1798 1798                  hdr->b_l1hdr.b_pabd = cabd;
1799 1799          }
1800 1800  
1801 1801          return (0);
1802 1802  
1803 1803  error:
1804 1804          arc_hdr_free_pabd(hdr, B_FALSE);
1805 1805          if (cabd != NULL)
1806 1806                  arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1807 1807  
1808 1808          return (ret);
1809 1809  }
1810 1810  
1811 1811  /*
1812 1812   * This function is called during arc_buf_fill() to prepare the header's
1813 1813   * abd plaintext pointer for use. This involves authenticated protected
1814 1814   * data and decrypting encrypted data into the plaintext abd.
1815 1815   */
1816 1816  static int
1817 1817  arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1818 1818      const zbookmark_phys_t *zb, boolean_t noauth)
1819 1819  {
1820 1820          int ret;
1821 1821  
1822 1822          ASSERT(HDR_PROTECTED(hdr));
1823 1823  
1824 1824          if (hash_lock != NULL)
1825 1825                  mutex_enter(hash_lock);
1826 1826  
1827 1827          if (HDR_NOAUTH(hdr) && !noauth) {
1828 1828                  /*
1829 1829                   * The caller requested authenticated data but our data has
1830 1830                   * not been authenticated yet. Verify the MAC now if we can.
1831 1831                   */
1832 1832                  ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1833 1833                  if (ret != 0)
1834 1834                          goto error;
1835 1835          } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1836 1836                  /*
1837 1837                   * If we only have the encrypted version of the data, but the
1838 1838                   * unencrypted version was requested we take this opportunity
1839 1839                   * to store the decrypted version in the header for future use.
1840 1840                   */
1841 1841                  ret = arc_hdr_decrypt(hdr, spa, zb);
1842 1842                  if (ret != 0)
1843 1843                          goto error;
1844 1844          }
1845 1845  
1846 1846          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1847 1847  
1848 1848          if (hash_lock != NULL)
1849 1849                  mutex_exit(hash_lock);
1850 1850  
1851 1851          return (0);
1852 1852  
1853 1853  error:
1854 1854          if (hash_lock != NULL)
1855 1855                  mutex_exit(hash_lock);
1856 1856  
1857 1857          return (ret);
1858 1858  }
1859 1859  
1860 1860  /*
1861 1861   * This function is used by the dbuf code to decrypt bonus buffers in place.
1862 1862   * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1863 1863   * block, so we use the hash lock here to protect against concurrent calls to
1864 1864   * arc_buf_fill().
1865 1865   */
1866 1866  /* ARGSUSED */
1867 1867  static void
1868 1868  arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
1869 1869  {
1870 1870          arc_buf_hdr_t *hdr = buf->b_hdr;
1871 1871  
1872 1872          ASSERT(HDR_ENCRYPTED(hdr));
1873 1873          ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1874 1874          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1875 1875          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1876 1876  
1877 1877          zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1878 1878              arc_buf_size(buf));
1879 1879          buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1880 1880          buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1881 1881          hdr->b_crypt_hdr.b_ebufcnt -= 1;
1882 1882  }
1883 1883  
1884 1884  /*
1885 1885   * Given a buf that has a data buffer attached to it, this function will
1886 1886   * efficiently fill the buf with data of the specified compression setting from
1887 1887   * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1888 1888   * are already sharing a data buf, no copy is performed.
1889 1889   *
1890 1890   * If the buf is marked as compressed but uncompressed data was requested, this
1891 1891   * will allocate a new data buffer for the buf, remove that flag, and fill the
1892 1892   * buf with uncompressed data. You can't request a compressed buf on a hdr with
1893 1893   * uncompressed data, and (since we haven't added support for it yet) if you
1894 1894   * want compressed data your buf must already be marked as compressed and have
1895 1895   * the correct-sized data buffer.
1896 1896   */
1897 1897  static int
1898 1898  arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1899 1899      arc_fill_flags_t flags)
1900 1900  {
1901 1901          int error = 0;
1902 1902          arc_buf_hdr_t *hdr = buf->b_hdr;
1903 1903          boolean_t hdr_compressed =
1904 1904              (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1905 1905          boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1906 1906          boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1907 1907          dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1908 1908          kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1909 1909  
1910 1910          ASSERT3P(buf->b_data, !=, NULL);
1911 1911          IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1912 1912          IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1913 1913          IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1914 1914          IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1915 1915          IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1916 1916          IMPLY(encrypted, !ARC_BUF_SHARED(buf));
1917 1917  
1918 1918          /*
1919 1919           * If the caller wanted encrypted data we just need to copy it from
1920 1920           * b_rabd and potentially byteswap it. We won't be able to do any
1921 1921           * further transforms on it.
1922 1922           */
1923 1923          if (encrypted) {
1924 1924                  ASSERT(HDR_HAS_RABD(hdr));
1925 1925                  abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
1926 1926                      HDR_GET_PSIZE(hdr));
1927 1927                  goto byteswap;
1928 1928          }
1929 1929  
1930 1930          /*
1931 1931           * Adjust encrypted and authenticated headers to accomodate
1932 1932           * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
1933 1933           * allowed to fail decryption due to keys not being loaded
1934 1934           * without being marked as an IO error.
1935 1935           */
1936 1936          if (HDR_PROTECTED(hdr)) {
1937 1937                  error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
1938 1938                      zb, !!(flags & ARC_FILL_NOAUTH));
1939 1939                  if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
1940 1940                          return (error);
1941 1941                  } else if (error != 0) {
1942 1942                          if (hash_lock != NULL)
1943 1943                                  mutex_enter(hash_lock);
1944 1944                          arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
1945 1945                          if (hash_lock != NULL)
1946 1946                                  mutex_exit(hash_lock);
1947 1947                          return (error);
1948 1948                  }
1949 1949          }
1950 1950  
1951 1951          /*
1952 1952           * There is a special case here for dnode blocks which are
1953 1953           * decrypting their bonus buffers. These blocks may request to
1954 1954           * be decrypted in-place. This is necessary because there may
1955 1955           * be many dnodes pointing into this buffer and there is
1956 1956           * currently no method to synchronize replacing the backing
1957 1957           * b_data buffer and updating all of the pointers. Here we use
1958 1958           * the hash lock to ensure there are no races. If the need
1959 1959           * arises for other types to be decrypted in-place, they must
1960 1960           * add handling here as well.
1961 1961           */
1962 1962          if ((flags & ARC_FILL_IN_PLACE) != 0) {
1963 1963                  ASSERT(!hdr_compressed);
1964 1964                  ASSERT(!compressed);
1965 1965                  ASSERT(!encrypted);
1966 1966  
1967 1967                  if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
1968 1968                          ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1969 1969  
1970 1970                          if (hash_lock != NULL)
1971 1971                                  mutex_enter(hash_lock);
1972 1972                          arc_buf_untransform_in_place(buf, hash_lock);
1973 1973                          if (hash_lock != NULL)
1974 1974                                  mutex_exit(hash_lock);
1975 1975  
1976 1976                          /* Compute the hdr's checksum if necessary */
1977 1977                          arc_cksum_compute(buf);
1978 1978                  }
1979 1979  
1980 1980                  return (0);
1981 1981          }
1982 1982  
1983 1983          if (hdr_compressed == compressed) {
1984 1984                  if (!arc_buf_is_shared(buf)) {
1985 1985                          abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1986 1986                              arc_buf_size(buf));
1987 1987                  }
1988 1988          } else {
1989 1989                  ASSERT(hdr_compressed);
1990 1990                  ASSERT(!compressed);
1991 1991                  ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1992 1992  
1993 1993                  /*
1994 1994                   * If the buf is sharing its data with the hdr, unlink it and
1995 1995                   * allocate a new data buffer for the buf.
1996 1996                   */
1997 1997                  if (arc_buf_is_shared(buf)) {
1998 1998                          ASSERT(ARC_BUF_COMPRESSED(buf));
1999 1999  
2000 2000                          /* We need to give the buf its own b_data */
2001 2001                          buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2002 2002                          buf->b_data =
2003 2003                              arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2004 2004                          arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2005 2005  
2006 2006                          /* Previously overhead was 0; just add new overhead */
2007 2007                          ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2008 2008                  } else if (ARC_BUF_COMPRESSED(buf)) {
2009 2009                          /* We need to reallocate the buf's b_data */
2010 2010                          arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2011 2011                              buf);
2012 2012                          buf->b_data =
2013 2013                              arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2014 2014  
2015 2015                          /* We increased the size of b_data; update overhead */
2016 2016                          ARCSTAT_INCR(arcstat_overhead_size,
2017 2017                              HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2018 2018                  }
2019 2019  
2020 2020                  /*
2021 2021                   * Regardless of the buf's previous compression settings, it
2022 2022                   * should not be compressed at the end of this function.
2023 2023                   */
2024 2024                  buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2025 2025  
2026 2026                  /*
2027 2027                   * Try copying the data from another buf which already has a
2028 2028                   * decompressed version. If that's not possible, it's time to
2029 2029                   * bite the bullet and decompress the data from the hdr.
2030 2030                   */
2031 2031                  if (arc_buf_try_copy_decompressed_data(buf)) {
2032 2032                          /* Skip byteswapping and checksumming (already done) */
2033 2033                          ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2034 2034                          return (0);
2035 2035                  } else {
2036 2036                          error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2037 2037                              hdr->b_l1hdr.b_pabd, buf->b_data,
2038 2038                              HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2039 2039  
2040 2040                          /*
2041 2041                           * Absent hardware errors or software bugs, this should
2042 2042                           * be impossible, but log it anyway so we can debug it.
2043 2043                           */
2044 2044                          if (error != 0) {
2045 2045                                  zfs_dbgmsg(
2046 2046                                      "hdr %p, compress %d, psize %d, lsize %d",
2047 2047                                      hdr, arc_hdr_get_compress(hdr),
2048 2048                                      HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2049 2049                                  if (hash_lock != NULL)
2050 2050                                          mutex_enter(hash_lock);
2051 2051                                  arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2052 2052                                  if (hash_lock != NULL)
2053 2053                                          mutex_exit(hash_lock);
2054 2054                                  return (SET_ERROR(EIO));
2055 2055                          }
2056 2056                  }
2057 2057          }
2058 2058  
2059 2059  byteswap:
2060 2060          /* Byteswap the buf's data if necessary */
2061 2061          if (bswap != DMU_BSWAP_NUMFUNCS) {
2062 2062                  ASSERT(!HDR_SHARED_DATA(hdr));
2063 2063                  ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2064 2064                  dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2065 2065          }
2066 2066  
2067 2067          /* Compute the hdr's checksum if necessary */
2068 2068          arc_cksum_compute(buf);
2069 2069  
2070 2070          return (0);
2071 2071  }
2072 2072  
2073 2073  /*
2074 2074   * If this function is being called to decrypt an encrypted buffer or verify an
2075 2075   * authenticated one, the key must be loaded and a mapping must be made
2076 2076   * available in the keystore via spa_keystore_create_mapping() or one of its
2077 2077   * callers.
2078 2078   */
2079 2079  int
2080 2080  arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2081 2081      boolean_t in_place)
2082 2082  {
2083 2083          int ret;
2084 2084          arc_fill_flags_t flags = 0;
2085 2085  
2086 2086          if (in_place)
2087 2087                  flags |= ARC_FILL_IN_PLACE;
2088 2088  
2089 2089          ret = arc_buf_fill(buf, spa, zb, flags);
2090 2090          if (ret == ECKSUM) {
2091 2091                  /*
2092 2092                   * Convert authentication and decryption errors to EIO
2093 2093                   * (and generate an ereport) before leaving the ARC.
2094 2094                   */
2095 2095                  ret = SET_ERROR(EIO);
2096 2096                  spa_log_error(spa, zb);
2097 2097                  (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2098 2098                      spa, NULL, zb, NULL, 0, 0);
2099 2099          }
2100 2100  
2101 2101          return (ret);
2102 2102  }
2103 2103  
2104 2104  /*
2105 2105   * Increment the amount of evictable space in the arc_state_t's refcount.
2106 2106   * We account for the space used by the hdr and the arc buf individually
2107 2107   * so that we can add and remove them from the refcount individually.
2108 2108   */
2109 2109  static void
2110 2110  arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2111 2111  {
2112 2112          arc_buf_contents_t type = arc_buf_type(hdr);
2113 2113  
2114 2114          ASSERT(HDR_HAS_L1HDR(hdr));
2115 2115  
2116 2116          if (GHOST_STATE(state)) {
2117 2117                  ASSERT0(hdr->b_l1hdr.b_bufcnt);
2118 2118                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2119 2119                  ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2120 2120                  ASSERT(!HDR_HAS_RABD(hdr));
2121 2121                  (void) zfs_refcount_add_many(&state->arcs_esize[type],
2122 2122                      HDR_GET_LSIZE(hdr), hdr);
2123 2123                  return;
2124 2124          }
2125 2125  
2126 2126          ASSERT(!GHOST_STATE(state));
2127 2127          if (hdr->b_l1hdr.b_pabd != NULL) {
2128 2128                  (void) zfs_refcount_add_many(&state->arcs_esize[type],
2129 2129                      arc_hdr_size(hdr), hdr);
2130 2130          }
2131 2131          if (HDR_HAS_RABD(hdr)) {
2132 2132                  (void) zfs_refcount_add_many(&state->arcs_esize[type],
2133 2133                      HDR_GET_PSIZE(hdr), hdr);
2134 2134          }
2135 2135          for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2136 2136              buf = buf->b_next) {
2137 2137                  if (arc_buf_is_shared(buf))
2138 2138                          continue;
2139 2139                  (void) zfs_refcount_add_many(&state->arcs_esize[type],
2140 2140                      arc_buf_size(buf), buf);
2141 2141          }
2142 2142  }
2143 2143  
2144 2144  /*
2145 2145   * Decrement the amount of evictable space in the arc_state_t's refcount.
2146 2146   * We account for the space used by the hdr and the arc buf individually
2147 2147   * so that we can add and remove them from the refcount individually.
2148 2148   */
2149 2149  static void
2150 2150  arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2151 2151  {
2152 2152          arc_buf_contents_t type = arc_buf_type(hdr);
2153 2153  
2154 2154          ASSERT(HDR_HAS_L1HDR(hdr));
2155 2155  
2156 2156          if (GHOST_STATE(state)) {
2157 2157                  ASSERT0(hdr->b_l1hdr.b_bufcnt);
2158 2158                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2159 2159                  ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2160 2160                  ASSERT(!HDR_HAS_RABD(hdr));
2161 2161                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2162 2162                      HDR_GET_LSIZE(hdr), hdr);
2163 2163                  return;
2164 2164          }
2165 2165  
2166 2166          ASSERT(!GHOST_STATE(state));
2167 2167          if (hdr->b_l1hdr.b_pabd != NULL) {
2168 2168                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2169 2169                      arc_hdr_size(hdr), hdr);
2170 2170          }
2171 2171          if (HDR_HAS_RABD(hdr)) {
2172 2172                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2173 2173                      HDR_GET_PSIZE(hdr), hdr);
2174 2174          }
2175 2175          for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2176 2176              buf = buf->b_next) {
2177 2177                  if (arc_buf_is_shared(buf))
2178 2178                          continue;
2179 2179                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2180 2180                      arc_buf_size(buf), buf);
2181 2181          }
2182 2182  }
2183 2183  
2184 2184  /*
2185 2185   * Add a reference to this hdr indicating that someone is actively
2186 2186   * referencing that memory. When the refcount transitions from 0 to 1,
2187 2187   * we remove it from the respective arc_state_t list to indicate that
2188 2188   * it is not evictable.
2189 2189   */
2190 2190  static void
2191 2191  add_reference(arc_buf_hdr_t *hdr, void *tag)
2192 2192  {
2193 2193          ASSERT(HDR_HAS_L1HDR(hdr));
2194 2194          if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2195 2195                  ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2196 2196                  ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2197 2197                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2198 2198          }
2199 2199  
2200 2200          arc_state_t *state = hdr->b_l1hdr.b_state;
2201 2201  
2202 2202          if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2203 2203              (state != arc_anon)) {
2204 2204                  /* We don't use the L2-only state list. */
2205 2205                  if (state != arc_l2c_only) {
2206 2206                          multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2207 2207                              hdr);
2208 2208                          arc_evictable_space_decrement(hdr, state);
2209 2209                  }
2210 2210                  /* remove the prefetch flag if we get a reference */
2211 2211                  if (HDR_HAS_L2HDR(hdr))
2212 2212                          l2arc_hdr_arcstats_decrement_state(hdr);
2213 2213                  arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2214 2214                  if (HDR_HAS_L2HDR(hdr))
2215 2215                          l2arc_hdr_arcstats_increment_state(hdr);
2216 2216          }
2217 2217  }
2218 2218  
2219 2219  /*
2220 2220   * Remove a reference from this hdr. When the reference transitions from
2221 2221   * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2222 2222   * list making it eligible for eviction.
2223 2223   */
2224 2224  static int
2225 2225  remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2226 2226  {
2227 2227          int cnt;
2228 2228          arc_state_t *state = hdr->b_l1hdr.b_state;
2229 2229  
2230 2230          ASSERT(HDR_HAS_L1HDR(hdr));
2231 2231          ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2232 2232          ASSERT(!GHOST_STATE(state));
2233 2233  
2234 2234          /*
2235 2235           * arc_l2c_only counts as a ghost state so we don't need to explicitly
2236 2236           * check to prevent usage of the arc_l2c_only list.
2237 2237           */
2238 2238          if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2239 2239              (state != arc_anon)) {
2240 2240                  multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2241 2241                  ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2242 2242                  arc_evictable_space_increment(hdr, state);
2243 2243          }
2244 2244          return (cnt);
2245 2245  }
2246 2246  
2247 2247  /*
2248 2248   * Move the supplied buffer to the indicated state. The hash lock
2249 2249   * for the buffer must be held by the caller.
2250 2250   */
2251 2251  static void
2252 2252  arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2253 2253      kmutex_t *hash_lock)
2254 2254  {
2255 2255          arc_state_t *old_state;
2256 2256          int64_t refcnt;
2257 2257          uint32_t bufcnt;
2258 2258          boolean_t update_old, update_new;
2259 2259          arc_buf_contents_t buftype = arc_buf_type(hdr);
2260 2260  
2261 2261          /*
2262 2262           * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2263 2263           * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2264 2264           * L1 hdr doesn't always exist when we change state to arc_anon before
2265 2265           * destroying a header, in which case reallocating to add the L1 hdr is
2266 2266           * pointless.
2267 2267           */
2268 2268          if (HDR_HAS_L1HDR(hdr)) {
2269 2269                  old_state = hdr->b_l1hdr.b_state;
2270 2270                  refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2271 2271                  bufcnt = hdr->b_l1hdr.b_bufcnt;
2272 2272  
2273 2273                  update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2274 2274                      HDR_HAS_RABD(hdr));
2275 2275          } else {
2276 2276                  old_state = arc_l2c_only;
2277 2277                  refcnt = 0;
2278 2278                  bufcnt = 0;
2279 2279                  update_old = B_FALSE;
2280 2280          }
2281 2281          update_new = update_old;
2282 2282  
2283 2283          ASSERT(MUTEX_HELD(hash_lock));
2284 2284          ASSERT3P(new_state, !=, old_state);
2285 2285          ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2286 2286          ASSERT(old_state != arc_anon || bufcnt <= 1);
2287 2287  
2288 2288          /*
2289 2289           * If this buffer is evictable, transfer it from the
2290 2290           * old state list to the new state list.
2291 2291           */
2292 2292          if (refcnt == 0) {
2293 2293                  if (old_state != arc_anon && old_state != arc_l2c_only) {
2294 2294                          ASSERT(HDR_HAS_L1HDR(hdr));
2295 2295                          multilist_remove(old_state->arcs_list[buftype], hdr);
2296 2296  
2297 2297                          if (GHOST_STATE(old_state)) {
2298 2298                                  ASSERT0(bufcnt);
2299 2299                                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2300 2300                                  update_old = B_TRUE;
2301 2301                          }
2302 2302                          arc_evictable_space_decrement(hdr, old_state);
2303 2303                  }
2304 2304                  if (new_state != arc_anon && new_state != arc_l2c_only) {
2305 2305  
2306 2306                          /*
2307 2307                           * An L1 header always exists here, since if we're
2308 2308                           * moving to some L1-cached state (i.e. not l2c_only or
2309 2309                           * anonymous), we realloc the header to add an L1hdr
2310 2310                           * beforehand.
2311 2311                           */
2312 2312                          ASSERT(HDR_HAS_L1HDR(hdr));
2313 2313                          multilist_insert(new_state->arcs_list[buftype], hdr);
2314 2314  
2315 2315                          if (GHOST_STATE(new_state)) {
2316 2316                                  ASSERT0(bufcnt);
2317 2317                                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2318 2318                                  update_new = B_TRUE;
2319 2319                          }
2320 2320                          arc_evictable_space_increment(hdr, new_state);
2321 2321                  }
2322 2322          }
2323 2323  
2324 2324          ASSERT(!HDR_EMPTY(hdr));
2325 2325          if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2326 2326                  buf_hash_remove(hdr);
2327 2327  
2328 2328          /* adjust state sizes (ignore arc_l2c_only) */
2329 2329  
2330 2330          if (update_new && new_state != arc_l2c_only) {
2331 2331                  ASSERT(HDR_HAS_L1HDR(hdr));
2332 2332                  if (GHOST_STATE(new_state)) {
2333 2333                          ASSERT0(bufcnt);
2334 2334  
2335 2335                          /*
2336 2336                           * When moving a header to a ghost state, we first
2337 2337                           * remove all arc buffers. Thus, we'll have a
2338 2338                           * bufcnt of zero, and no arc buffer to use for
2339 2339                           * the reference. As a result, we use the arc
2340 2340                           * header pointer for the reference.
2341 2341                           */
2342 2342                          (void) zfs_refcount_add_many(&new_state->arcs_size,
2343 2343                              HDR_GET_LSIZE(hdr), hdr);
2344 2344                          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2345 2345                          ASSERT(!HDR_HAS_RABD(hdr));
2346 2346                  } else {
2347 2347                          uint32_t buffers = 0;
2348 2348  
2349 2349                          /*
2350 2350                           * Each individual buffer holds a unique reference,
2351 2351                           * thus we must remove each of these references one
2352 2352                           * at a time.
2353 2353                           */
2354 2354                          for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2355 2355                              buf = buf->b_next) {
2356 2356                                  ASSERT3U(bufcnt, !=, 0);
2357 2357                                  buffers++;
2358 2358  
2359 2359                                  /*
2360 2360                                   * When the arc_buf_t is sharing the data
2361 2361                                   * block with the hdr, the owner of the
2362 2362                                   * reference belongs to the hdr. Only
2363 2363                                   * add to the refcount if the arc_buf_t is
2364 2364                                   * not shared.
2365 2365                                   */
2366 2366                                  if (arc_buf_is_shared(buf))
2367 2367                                          continue;
2368 2368  
2369 2369                                  (void) zfs_refcount_add_many(
2370 2370                                      &new_state->arcs_size,
2371 2371                                      arc_buf_size(buf), buf);
2372 2372                          }
2373 2373                          ASSERT3U(bufcnt, ==, buffers);
2374 2374  
2375 2375                          if (hdr->b_l1hdr.b_pabd != NULL) {
2376 2376                                  (void) zfs_refcount_add_many(
2377 2377                                      &new_state->arcs_size,
2378 2378                                      arc_hdr_size(hdr), hdr);
2379 2379                          }
2380 2380  
2381 2381                          if (HDR_HAS_RABD(hdr)) {
2382 2382                                  (void) zfs_refcount_add_many(
2383 2383                                      &new_state->arcs_size,
2384 2384                                      HDR_GET_PSIZE(hdr), hdr);
2385 2385                          }
2386 2386                  }
2387 2387          }
2388 2388  
2389 2389          if (update_old && old_state != arc_l2c_only) {
2390 2390                  ASSERT(HDR_HAS_L1HDR(hdr));
2391 2391                  if (GHOST_STATE(old_state)) {
2392 2392                          ASSERT0(bufcnt);
2393 2393                          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2394 2394                          ASSERT(!HDR_HAS_RABD(hdr));
2395 2395  
2396 2396                          /*
2397 2397                           * When moving a header off of a ghost state,
2398 2398                           * the header will not contain any arc buffers.
2399 2399                           * We use the arc header pointer for the reference
2400 2400                           * which is exactly what we did when we put the
2401 2401                           * header on the ghost state.
2402 2402                           */
2403 2403  
2404 2404                          (void) zfs_refcount_remove_many(&old_state->arcs_size,
2405 2405                              HDR_GET_LSIZE(hdr), hdr);
2406 2406                  } else {
2407 2407                          uint32_t buffers = 0;
2408 2408  
2409 2409                          /*
2410 2410                           * Each individual buffer holds a unique reference,
2411 2411                           * thus we must remove each of these references one
2412 2412                           * at a time.
2413 2413                           */
2414 2414                          for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2415 2415                              buf = buf->b_next) {
2416 2416                                  ASSERT3U(bufcnt, !=, 0);
2417 2417                                  buffers++;
2418 2418  
2419 2419                                  /*
2420 2420                                   * When the arc_buf_t is sharing the data
2421 2421                                   * block with the hdr, the owner of the
2422 2422                                   * reference belongs to the hdr. Only
2423 2423                                   * add to the refcount if the arc_buf_t is
2424 2424                                   * not shared.
2425 2425                                   */
2426 2426                                  if (arc_buf_is_shared(buf))
2427 2427                                          continue;
2428 2428  
2429 2429                                  (void) zfs_refcount_remove_many(
2430 2430                                      &old_state->arcs_size, arc_buf_size(buf),
2431 2431                                      buf);
2432 2432                          }
2433 2433                          ASSERT3U(bufcnt, ==, buffers);
2434 2434                          ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2435 2435                              HDR_HAS_RABD(hdr));
2436 2436  
2437 2437                          if (hdr->b_l1hdr.b_pabd != NULL) {
2438 2438                                  (void) zfs_refcount_remove_many(
2439 2439                                      &old_state->arcs_size, arc_hdr_size(hdr),
2440 2440                                      hdr);
2441 2441                          }
2442 2442  
2443 2443                          if (HDR_HAS_RABD(hdr)) {
2444 2444                                  (void) zfs_refcount_remove_many(
2445 2445                                      &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2446 2446                                      hdr);
2447 2447                          }
2448 2448                  }
2449 2449          }
2450 2450  
2451 2451          if (HDR_HAS_L1HDR(hdr)) {
2452 2452                  hdr->b_l1hdr.b_state = new_state;
2453 2453  
2454 2454                  if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2455 2455                          l2arc_hdr_arcstats_decrement_state(hdr);
2456 2456                          hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2457 2457                          l2arc_hdr_arcstats_increment_state(hdr);
2458 2458                  }
2459 2459          }
2460 2460  
2461 2461          /*
2462 2462           * L2 headers should never be on the L2 state list since they don't
2463 2463           * have L1 headers allocated.
2464 2464           */
2465 2465          ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2466 2466              multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2467 2467  }
2468 2468  
2469 2469  void
2470 2470  arc_space_consume(uint64_t space, arc_space_type_t type)
2471 2471  {
2472 2472          ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2473 2473  
2474 2474          switch (type) {
2475 2475          case ARC_SPACE_DATA:
2476 2476                  aggsum_add(&astat_data_size, space);
2477 2477                  break;
2478 2478          case ARC_SPACE_META:
2479 2479                  aggsum_add(&astat_metadata_size, space);
2480 2480                  break;
2481 2481          case ARC_SPACE_OTHER:
2482 2482                  aggsum_add(&astat_other_size, space);
2483 2483                  break;
2484 2484          case ARC_SPACE_HDRS:
2485 2485                  aggsum_add(&astat_hdr_size, space);
2486 2486                  break;
2487 2487          case ARC_SPACE_L2HDRS:
2488 2488                  aggsum_add(&astat_l2_hdr_size, space);
2489 2489                  break;
2490 2490          }
2491 2491  
2492 2492          if (type != ARC_SPACE_DATA)
2493 2493                  aggsum_add(&arc_meta_used, space);
2494 2494  
2495 2495          aggsum_add(&arc_size, space);
2496 2496  }
2497 2497  
2498 2498  void
2499 2499  arc_space_return(uint64_t space, arc_space_type_t type)
2500 2500  {
2501 2501          ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2502 2502  
2503 2503          switch (type) {
2504 2504          case ARC_SPACE_DATA:
2505 2505                  aggsum_add(&astat_data_size, -space);
2506 2506                  break;
2507 2507          case ARC_SPACE_META:
2508 2508                  aggsum_add(&astat_metadata_size, -space);
2509 2509                  break;
2510 2510          case ARC_SPACE_OTHER:
2511 2511                  aggsum_add(&astat_other_size, -space);
2512 2512                  break;
2513 2513          case ARC_SPACE_HDRS:
2514 2514                  aggsum_add(&astat_hdr_size, -space);
2515 2515                  break;
2516 2516          case ARC_SPACE_L2HDRS:
2517 2517                  aggsum_add(&astat_l2_hdr_size, -space);
2518 2518                  break;
2519 2519          }
2520 2520  
2521 2521          if (type != ARC_SPACE_DATA) {
2522 2522                  ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2523 2523                  /*
2524 2524                   * We use the upper bound here rather than the precise value
2525 2525                   * because the arc_meta_max value doesn't need to be
2526 2526                   * precise. It's only consumed by humans via arcstats.
2527 2527                   */
2528 2528                  if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2529 2529                          arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2530 2530                  aggsum_add(&arc_meta_used, -space);
2531 2531          }
2532 2532  
2533 2533          ASSERT(aggsum_compare(&arc_size, space) >= 0);
2534 2534          aggsum_add(&arc_size, -space);
2535 2535  }
2536 2536  
2537 2537  /*
2538 2538   * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2539 2539   * with the hdr's b_pabd.
2540 2540   */
2541 2541  static boolean_t
2542 2542  arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2543 2543  {
2544 2544          /*
2545 2545           * The criteria for sharing a hdr's data are:
2546 2546           * 1. the buffer is not encrypted
2547 2547           * 2. the hdr's compression matches the buf's compression
2548 2548           * 3. the hdr doesn't need to be byteswapped
2549 2549           * 4. the hdr isn't already being shared
2550 2550           * 5. the buf is either compressed or it is the last buf in the hdr list
2551 2551           *
2552 2552           * Criterion #5 maintains the invariant that shared uncompressed
2553 2553           * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2554 2554           * might ask, "if a compressed buf is allocated first, won't that be the
2555 2555           * last thing in the list?", but in that case it's impossible to create
2556 2556           * a shared uncompressed buf anyway (because the hdr must be compressed
2557 2557           * to have the compressed buf). You might also think that #3 is
2558 2558           * sufficient to make this guarantee, however it's possible
2559 2559           * (specifically in the rare L2ARC write race mentioned in
2560 2560           * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2561 2561           * is sharable, but wasn't at the time of its allocation. Rather than
2562 2562           * allow a new shared uncompressed buf to be created and then shuffle
2563 2563           * the list around to make it the last element, this simply disallows
2564 2564           * sharing if the new buf isn't the first to be added.
2565 2565           */
2566 2566          ASSERT3P(buf->b_hdr, ==, hdr);
2567 2567          boolean_t hdr_compressed = arc_hdr_get_compress(hdr) !=
2568 2568              ZIO_COMPRESS_OFF;
2569 2569          boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2570 2570          return (!ARC_BUF_ENCRYPTED(buf) &&
2571 2571              buf_compressed == hdr_compressed &&
2572 2572              hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2573 2573              !HDR_SHARED_DATA(hdr) &&
2574 2574              (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2575 2575  }
2576 2576  
2577 2577  /*
2578 2578   * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2579 2579   * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2580 2580   * copy was made successfully, or an error code otherwise.
2581 2581   */
2582 2582  static int
2583 2583  arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2584 2584      void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2585 2585      boolean_t fill, arc_buf_t **ret)
2586 2586  {
2587 2587          arc_buf_t *buf;
2588 2588          arc_fill_flags_t flags = ARC_FILL_LOCKED;
2589 2589  
2590 2590          ASSERT(HDR_HAS_L1HDR(hdr));
2591 2591          ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2592 2592          VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2593 2593              hdr->b_type == ARC_BUFC_METADATA);
2594 2594          ASSERT3P(ret, !=, NULL);
2595 2595          ASSERT3P(*ret, ==, NULL);
2596 2596          IMPLY(encrypted, compressed);
2597 2597  
2598 2598          buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2599 2599          buf->b_hdr = hdr;
2600 2600          buf->b_data = NULL;
2601 2601          buf->b_next = hdr->b_l1hdr.b_buf;
2602 2602          buf->b_flags = 0;
2603 2603  
2604 2604          add_reference(hdr, tag);
2605 2605  
2606 2606          /*
2607 2607           * We're about to change the hdr's b_flags. We must either
2608 2608           * hold the hash_lock or be undiscoverable.
2609 2609           */
2610 2610          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2611 2611  
2612 2612          /*
2613 2613           * Only honor requests for compressed bufs if the hdr is actually
2614 2614           * compressed. This must be overriden if the buffer is encrypted since
2615 2615           * encrypted buffers cannot be decompressed.
2616 2616           */
2617 2617          if (encrypted) {
2618 2618                  buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2619 2619                  buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2620 2620                  flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2621 2621          } else if (compressed &&
2622 2622              arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2623 2623                  buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2624 2624                  flags |= ARC_FILL_COMPRESSED;
2625 2625          }
2626 2626  
2627 2627          if (noauth) {
2628 2628                  ASSERT0(encrypted);
2629 2629                  flags |= ARC_FILL_NOAUTH;
2630 2630          }
2631 2631  
2632 2632          /*
2633 2633           * If the hdr's data can be shared then we share the data buffer and
2634 2634           * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2635 2635           * allocate a new buffer to store the buf's data.
2636 2636           *
2637 2637           * There are two additional restrictions here because we're sharing
2638 2638           * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2639 2639           * actively involved in an L2ARC write, because if this buf is used by
2640 2640           * an arc_write() then the hdr's data buffer will be released when the
2641 2641           * write completes, even though the L2ARC write might still be using it.
2642 2642           * Second, the hdr's ABD must be linear so that the buf's user doesn't
2643 2643           * need to be ABD-aware.
2644 2644           */
2645 2645          boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2646 2646              hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
2647 2647  
2648 2648          /* Set up b_data and sharing */
2649 2649          if (can_share) {
2650 2650                  buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2651 2651                  buf->b_flags |= ARC_BUF_FLAG_SHARED;
2652 2652                  arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2653 2653          } else {
2654 2654                  buf->b_data =
2655 2655                      arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2656 2656                  ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2657 2657          }
2658 2658          VERIFY3P(buf->b_data, !=, NULL);
2659 2659  
2660 2660          hdr->b_l1hdr.b_buf = buf;
2661 2661          hdr->b_l1hdr.b_bufcnt += 1;
2662 2662          if (encrypted)
2663 2663                  hdr->b_crypt_hdr.b_ebufcnt += 1;
2664 2664  
2665 2665          /*
2666 2666           * If the user wants the data from the hdr, we need to either copy or
2667 2667           * decompress the data.
2668 2668           */
2669 2669          if (fill) {
2670 2670                  ASSERT3P(zb, !=, NULL);
2671 2671                  return (arc_buf_fill(buf, spa, zb, flags));
2672 2672          }
2673 2673  
2674 2674          return (0);
2675 2675  }
2676 2676  
2677 2677  static char *arc_onloan_tag = "onloan";
2678 2678  
2679 2679  static inline void
2680 2680  arc_loaned_bytes_update(int64_t delta)
2681 2681  {
2682 2682          atomic_add_64(&arc_loaned_bytes, delta);
2683 2683  
2684 2684          /* assert that it did not wrap around */
2685 2685          ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2686 2686  }
2687 2687  
2688 2688  /*
2689 2689   * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2690 2690   * flight data by arc_tempreserve_space() until they are "returned". Loaned
2691 2691   * buffers must be returned to the arc before they can be used by the DMU or
2692 2692   * freed.
2693 2693   */
2694 2694  arc_buf_t *
2695 2695  arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2696 2696  {
2697 2697          arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2698 2698              is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2699 2699  
2700 2700          arc_loaned_bytes_update(arc_buf_size(buf));
2701 2701  
2702 2702          return (buf);
2703 2703  }
2704 2704  
2705 2705  arc_buf_t *
2706 2706  arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2707 2707      enum zio_compress compression_type)
2708 2708  {
2709 2709          arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2710 2710              psize, lsize, compression_type);
2711 2711  
2712 2712          arc_loaned_bytes_update(arc_buf_size(buf));
2713 2713  
2714 2714          return (buf);
2715 2715  }
2716 2716  
2717 2717  arc_buf_t *
2718 2718  arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2719 2719      const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2720 2720      dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2721 2721      enum zio_compress compression_type)
2722 2722  {
2723 2723          arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2724 2724              byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2725 2725  
2726 2726          atomic_add_64(&arc_loaned_bytes, psize);
2727 2727          return (buf);
2728 2728  }
2729 2729  
2730 2730  /*
2731 2731   * Performance tuning of L2ARC persistence:
2732 2732   *
2733 2733   * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
2734 2734   *              an L2ARC device (either at pool import or later) will attempt
2735 2735   *              to rebuild L2ARC buffer contents.
2736 2736   * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
2737 2737   *              whether log blocks are written to the L2ARC device. If the L2ARC
2738 2738   *              device is less than 1GB, the amount of data l2arc_evict()
2739 2739   *              evicts is significant compared to the amount of restored L2ARC
2740 2740   *              data. In this case do not write log blocks in L2ARC in order
2741 2741   *              not to waste space.
2742 2742   */
2743 2743  int l2arc_rebuild_enabled = B_TRUE;
2744 2744  unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
2745 2745  
2746 2746  /* L2ARC persistence rebuild control routines. */
2747 2747  void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
2748 2748  static void l2arc_dev_rebuild_start(l2arc_dev_t *dev);
2749 2749  static int l2arc_rebuild(l2arc_dev_t *dev);
2750 2750  
2751 2751  /* L2ARC persistence read I/O routines. */
2752 2752  static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
2753 2753  static int l2arc_log_blk_read(l2arc_dev_t *dev,
2754 2754      const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
2755 2755      l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
2756 2756      zio_t *this_io, zio_t **next_io);
2757 2757  static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
2758 2758      const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
2759 2759  static void l2arc_log_blk_fetch_abort(zio_t *zio);
2760 2760  
2761 2761  /* L2ARC persistence block restoration routines. */
2762 2762  static void l2arc_log_blk_restore(l2arc_dev_t *dev,
2763 2763      const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
2764 2764  static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
2765 2765      l2arc_dev_t *dev);
2766 2766  
2767 2767  /* L2ARC persistence write I/O routines. */
2768 2768  static void l2arc_dev_hdr_update(l2arc_dev_t *dev);
2769 2769  static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
2770 2770      l2arc_write_callback_t *cb);
2771 2771  
2772 2772  /* L2ARC persistence auxilliary routines. */
2773 2773  boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
2774 2774      const l2arc_log_blkptr_t *lbp);
2775 2775  static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
2776 2776      const arc_buf_hdr_t *ab);
2777 2777  boolean_t l2arc_range_check_overlap(uint64_t bottom,
2778 2778      uint64_t top, uint64_t check);
2779 2779  static void l2arc_blk_fetch_done(zio_t *zio);
2780 2780  static inline uint64_t
2781 2781      l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
2782 2782  
2783 2783  /*
2784 2784   * Return a loaned arc buffer to the arc.
2785 2785   */
2786 2786  void
2787 2787  arc_return_buf(arc_buf_t *buf, void *tag)
2788 2788  {
2789 2789          arc_buf_hdr_t *hdr = buf->b_hdr;
2790 2790  
2791 2791          ASSERT3P(buf->b_data, !=, NULL);
2792 2792          ASSERT(HDR_HAS_L1HDR(hdr));
2793 2793          (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2794 2794          (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2795 2795  
2796 2796          arc_loaned_bytes_update(-arc_buf_size(buf));
2797 2797  }
2798 2798  
2799 2799  /* Detach an arc_buf from a dbuf (tag) */
2800 2800  void
2801 2801  arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2802 2802  {
2803 2803          arc_buf_hdr_t *hdr = buf->b_hdr;
2804 2804  
2805 2805          ASSERT3P(buf->b_data, !=, NULL);
2806 2806          ASSERT(HDR_HAS_L1HDR(hdr));
2807 2807          (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2808 2808          (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2809 2809  
2810 2810          arc_loaned_bytes_update(arc_buf_size(buf));
2811 2811  }
2812 2812  
2813 2813  static void
2814 2814  l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2815 2815  {
2816 2816          l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2817 2817  
2818 2818          df->l2df_abd = abd;
2819 2819          df->l2df_size = size;
2820 2820          df->l2df_type = type;
2821 2821          mutex_enter(&l2arc_free_on_write_mtx);
2822 2822          list_insert_head(l2arc_free_on_write, df);
2823 2823          mutex_exit(&l2arc_free_on_write_mtx);
2824 2824  }
2825 2825  
2826 2826  static void
2827 2827  arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2828 2828  {
2829 2829          arc_state_t *state = hdr->b_l1hdr.b_state;
2830 2830          arc_buf_contents_t type = arc_buf_type(hdr);
2831 2831          uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2832 2832  
2833 2833          /* protected by hash lock, if in the hash table */
2834 2834          if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2835 2835                  ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2836 2836                  ASSERT(state != arc_anon && state != arc_l2c_only);
2837 2837  
2838 2838                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2839 2839                      size, hdr);
2840 2840          }
2841 2841          (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2842 2842          if (type == ARC_BUFC_METADATA) {
2843 2843                  arc_space_return(size, ARC_SPACE_META);
2844 2844          } else {
2845 2845                  ASSERT(type == ARC_BUFC_DATA);
2846 2846                  arc_space_return(size, ARC_SPACE_DATA);
2847 2847          }
2848 2848  
2849 2849          if (free_rdata) {
2850 2850                  l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2851 2851          } else {
2852 2852                  l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2853 2853          }
2854 2854  }
2855 2855  
2856 2856  /*
2857 2857   * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2858 2858   * data buffer, we transfer the refcount ownership to the hdr and update
2859 2859   * the appropriate kstats.
2860 2860   */
2861 2861  static void
2862 2862  arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2863 2863  {
2864 2864          /* LINTED */
2865 2865          arc_state_t *state = hdr->b_l1hdr.b_state;
2866 2866  
2867 2867          ASSERT(arc_can_share(hdr, buf));
2868 2868          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2869 2869          ASSERT(!ARC_BUF_ENCRYPTED(buf));
2870 2870          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2871 2871  
2872 2872          /*
2873 2873           * Start sharing the data buffer. We transfer the
2874 2874           * refcount ownership to the hdr since it always owns
2875 2875           * the refcount whenever an arc_buf_t is shared.
2876 2876           */
2877 2877          zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2878 2878              arc_hdr_size(hdr), buf, hdr);
2879 2879          hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2880 2880          abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2881 2881              HDR_ISTYPE_METADATA(hdr));
2882 2882          arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2883 2883          buf->b_flags |= ARC_BUF_FLAG_SHARED;
2884 2884  
2885 2885          /*
2886 2886           * Since we've transferred ownership to the hdr we need
2887 2887           * to increment its compressed and uncompressed kstats and
2888 2888           * decrement the overhead size.
2889 2889           */
2890 2890          ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2891 2891          ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2892 2892          ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2893 2893  }
2894 2894  
2895 2895  static void
2896 2896  arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2897 2897  {
2898 2898          /* LINTED */
2899 2899          arc_state_t *state = hdr->b_l1hdr.b_state;
2900 2900  
2901 2901          ASSERT(arc_buf_is_shared(buf));
2902 2902          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2903 2903          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2904 2904  
2905 2905          /*
2906 2906           * We are no longer sharing this buffer so we need
2907 2907           * to transfer its ownership to the rightful owner.
2908 2908           */
2909 2909          zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2910 2910              arc_hdr_size(hdr), hdr, buf);
2911 2911          arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2912 2912          abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2913 2913          abd_put(hdr->b_l1hdr.b_pabd);
2914 2914          hdr->b_l1hdr.b_pabd = NULL;
2915 2915          buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2916 2916  
2917 2917          /*
2918 2918           * Since the buffer is no longer shared between
2919 2919           * the arc buf and the hdr, count it as overhead.
2920 2920           */
2921 2921          ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2922 2922          ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2923 2923          ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2924 2924  }
2925 2925  
2926 2926  /*
2927 2927   * Remove an arc_buf_t from the hdr's buf list and return the last
2928 2928   * arc_buf_t on the list. If no buffers remain on the list then return
2929 2929   * NULL.
2930 2930   */
2931 2931  static arc_buf_t *
2932 2932  arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2933 2933  {
2934 2934          arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2935 2935          arc_buf_t *lastbuf = NULL;
2936 2936  
2937 2937          ASSERT(HDR_HAS_L1HDR(hdr));
2938 2938          ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2939 2939  
2940 2940          /*
2941 2941           * Remove the buf from the hdr list and locate the last
2942 2942           * remaining buffer on the list.
2943 2943           */
2944 2944          while (*bufp != NULL) {
2945 2945                  if (*bufp == buf)
2946 2946                          *bufp = buf->b_next;
2947 2947  
2948 2948                  /*
2949 2949                   * If we've removed a buffer in the middle of
2950 2950                   * the list then update the lastbuf and update
2951 2951                   * bufp.
2952 2952                   */
2953 2953                  if (*bufp != NULL) {
2954 2954                          lastbuf = *bufp;
2955 2955                          bufp = &(*bufp)->b_next;
2956 2956                  }
2957 2957          }
2958 2958          buf->b_next = NULL;
2959 2959          ASSERT3P(lastbuf, !=, buf);
2960 2960          IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2961 2961          IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2962 2962          IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2963 2963  
2964 2964          return (lastbuf);
2965 2965  }
2966 2966  
2967 2967  /*
2968 2968   * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2969 2969   * list and free it.
2970 2970   */
2971 2971  static void
2972 2972  arc_buf_destroy_impl(arc_buf_t *buf)
2973 2973  {
2974 2974          arc_buf_hdr_t *hdr = buf->b_hdr;
2975 2975  
2976 2976          /*
2977 2977           * Free up the data associated with the buf but only if we're not
2978 2978           * sharing this with the hdr. If we are sharing it with the hdr, the
2979 2979           * hdr is responsible for doing the free.
2980 2980           */
2981 2981          if (buf->b_data != NULL) {
2982 2982                  /*
2983 2983                   * We're about to change the hdr's b_flags. We must either
2984 2984                   * hold the hash_lock or be undiscoverable.
2985 2985                   */
2986 2986                  ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2987 2987  
2988 2988                  arc_cksum_verify(buf);
2989 2989                  arc_buf_unwatch(buf);
2990 2990  
2991 2991                  if (arc_buf_is_shared(buf)) {
2992 2992                          arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2993 2993                  } else {
2994 2994                          uint64_t size = arc_buf_size(buf);
2995 2995                          arc_free_data_buf(hdr, buf->b_data, size, buf);
2996 2996                          ARCSTAT_INCR(arcstat_overhead_size, -size);
2997 2997                  }
2998 2998                  buf->b_data = NULL;
2999 2999  
3000 3000                  ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3001 3001                  hdr->b_l1hdr.b_bufcnt -= 1;
3002 3002  
3003 3003                  if (ARC_BUF_ENCRYPTED(buf)) {
3004 3004                          hdr->b_crypt_hdr.b_ebufcnt -= 1;
3005 3005  
3006 3006                          /*
3007 3007                           * If we have no more encrypted buffers and we've
3008 3008                           * already gotten a copy of the decrypted data we can
3009 3009                           * free b_rabd to save some space.
3010 3010                           */
3011 3011                          if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3012 3012                              HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3013 3013                              !HDR_IO_IN_PROGRESS(hdr)) {
3014 3014                                  arc_hdr_free_pabd(hdr, B_TRUE);
3015 3015                          }
3016 3016                  }
3017 3017          }
3018 3018  
3019 3019          arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3020 3020  
3021 3021          if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3022 3022                  /*
3023 3023                   * If the current arc_buf_t is sharing its data buffer with the
3024 3024                   * hdr, then reassign the hdr's b_pabd to share it with the new
3025 3025                   * buffer at the end of the list. The shared buffer is always
3026 3026                   * the last one on the hdr's buffer list.
3027 3027                   *
3028 3028                   * There is an equivalent case for compressed bufs, but since
3029 3029                   * they aren't guaranteed to be the last buf in the list and
3030 3030                   * that is an exceedingly rare case, we just allow that space be
3031 3031                   * wasted temporarily. We must also be careful not to share
3032 3032                   * encrypted buffers, since they cannot be shared.
3033 3033                   */
3034 3034                  if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3035 3035                          /* Only one buf can be shared at once */
3036 3036                          VERIFY(!arc_buf_is_shared(lastbuf));
3037 3037                          /* hdr is uncompressed so can't have compressed buf */
3038 3038                          VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3039 3039  
3040 3040                          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3041 3041                          arc_hdr_free_pabd(hdr, B_FALSE);
3042 3042  
3043 3043                          /*
3044 3044                           * We must setup a new shared block between the
3045 3045                           * last buffer and the hdr. The data would have
3046 3046                           * been allocated by the arc buf so we need to transfer
3047 3047                           * ownership to the hdr since it's now being shared.
3048 3048                           */
3049 3049                          arc_share_buf(hdr, lastbuf);
3050 3050                  }
3051 3051          } else if (HDR_SHARED_DATA(hdr)) {
3052 3052                  /*
3053 3053                   * Uncompressed shared buffers are always at the end
3054 3054                   * of the list. Compressed buffers don't have the
3055 3055                   * same requirements. This makes it hard to
3056 3056                   * simply assert that the lastbuf is shared so
3057 3057                   * we rely on the hdr's compression flags to determine
3058 3058                   * if we have a compressed, shared buffer.
3059 3059                   */
3060 3060                  ASSERT3P(lastbuf, !=, NULL);
3061 3061                  ASSERT(arc_buf_is_shared(lastbuf) ||
3062 3062                      arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3063 3063          }
3064 3064  
3065 3065          /*
3066 3066           * Free the checksum if we're removing the last uncompressed buf from
3067 3067           * this hdr.
3068 3068           */
3069 3069          if (!arc_hdr_has_uncompressed_buf(hdr)) {
3070 3070                  arc_cksum_free(hdr);
3071 3071          }
3072 3072  
3073 3073          /* clean up the buf */
3074 3074          buf->b_hdr = NULL;
3075 3075          kmem_cache_free(buf_cache, buf);
3076 3076  }
3077 3077  
3078 3078  static void
3079 3079  arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, int alloc_flags)
3080 3080  {
3081 3081          uint64_t size;
3082 3082          boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3083 3083          boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0);
3084 3084  
3085 3085          ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3086 3086          ASSERT(HDR_HAS_L1HDR(hdr));
3087 3087          ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3088 3088          IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3089 3089  
3090 3090          if (alloc_rdata) {
3091 3091                  size = HDR_GET_PSIZE(hdr);
3092 3092                  ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3093 3093                  hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3094 3094                      do_adapt);
3095 3095                  ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3096 3096          } else {
3097 3097                  size = arc_hdr_size(hdr);
3098 3098                  ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3099 3099                  hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3100 3100                      do_adapt);
3101 3101                  ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3102 3102          }
3103 3103  
3104 3104          ARCSTAT_INCR(arcstat_compressed_size, size);
3105 3105          ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3106 3106  }
3107 3107  
3108 3108  static void
3109 3109  arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3110 3110  {
3111 3111          uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3112 3112  
3113 3113          ASSERT(HDR_HAS_L1HDR(hdr));
3114 3114          ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3115 3115          IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3116 3116  
3117 3117  
3118 3118          /*
3119 3119           * If the hdr is currently being written to the l2arc then
3120 3120           * we defer freeing the data by adding it to the l2arc_free_on_write
3121 3121           * list. The l2arc will free the data once it's finished
3122 3122           * writing it to the l2arc device.
3123 3123           */
3124 3124          if (HDR_L2_WRITING(hdr)) {
3125 3125                  arc_hdr_free_on_write(hdr, free_rdata);
3126 3126                  ARCSTAT_BUMP(arcstat_l2_free_on_write);
3127 3127          } else if (free_rdata) {
3128 3128                  arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3129 3129          } else {
3130 3130                  arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3131 3131                      size, hdr);
3132 3132          }
3133 3133  
3134 3134          if (free_rdata) {
3135 3135                  hdr->b_crypt_hdr.b_rabd = NULL;
3136 3136          } else {
3137 3137                  hdr->b_l1hdr.b_pabd = NULL;
3138 3138          }
3139 3139  
3140 3140          if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3141 3141                  hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3142 3142  
3143 3143          ARCSTAT_INCR(arcstat_compressed_size, -size);
3144 3144          ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3145 3145  }
3146 3146  
3147 3147  static arc_buf_hdr_t *
3148 3148  arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3149 3149      boolean_t protected, enum zio_compress compression_type,
3150 3150      arc_buf_contents_t type, boolean_t alloc_rdata)
3151 3151  {
3152 3152          arc_buf_hdr_t *hdr;
3153 3153          int flags = ARC_HDR_DO_ADAPT;
3154 3154  
3155 3155          VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3156 3156          if (protected) {
3157 3157                  hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3158 3158          } else {
3159 3159                  hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3160 3160          }
3161 3161          flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0;
3162 3162          ASSERT(HDR_EMPTY(hdr));
3163 3163          ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3164 3164          ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3165 3165          HDR_SET_PSIZE(hdr, psize);
3166 3166          HDR_SET_LSIZE(hdr, lsize);
3167 3167          hdr->b_spa = spa;
3168 3168          hdr->b_type = type;
3169 3169          hdr->b_flags = 0;
3170 3170          arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3171 3171          arc_hdr_set_compress(hdr, compression_type);
3172 3172          if (protected)
3173 3173                  arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3174 3174  
3175 3175          hdr->b_l1hdr.b_state = arc_anon;
3176 3176          hdr->b_l1hdr.b_arc_access = 0;
3177 3177          hdr->b_l1hdr.b_bufcnt = 0;
3178 3178          hdr->b_l1hdr.b_buf = NULL;
3179 3179  
3180 3180          /*
3181 3181           * Allocate the hdr's buffer. This will contain either
3182 3182           * the compressed or uncompressed data depending on the block
3183 3183           * it references and compressed arc enablement.
3184 3184           */
3185 3185          arc_hdr_alloc_pabd(hdr, flags);
3186 3186          ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3187 3187  
3188 3188          return (hdr);
3189 3189  }
3190 3190  
3191 3191  /*
3192 3192   * Transition between the two allocation states for the arc_buf_hdr struct.
3193 3193   * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3194 3194   * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3195 3195   * version is used when a cache buffer is only in the L2ARC in order to reduce
3196 3196   * memory usage.
3197 3197   */
3198 3198  static arc_buf_hdr_t *
3199 3199  arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3200 3200  {
3201 3201          ASSERT(HDR_HAS_L2HDR(hdr));
3202 3202  
3203 3203          arc_buf_hdr_t *nhdr;
3204 3204          l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3205 3205  
3206 3206          ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3207 3207              (old == hdr_l2only_cache && new == hdr_full_cache));
3208 3208  
3209 3209          /*
3210 3210           * if the caller wanted a new full header and the header is to be
3211 3211           * encrypted we will actually allocate the header from the full crypt
3212 3212           * cache instead. The same applies to freeing from the old cache.
3213 3213           */
3214 3214          if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3215 3215                  new = hdr_full_crypt_cache;
3216 3216          if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3217 3217                  old = hdr_full_crypt_cache;
3218 3218  
3219 3219          nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3220 3220  
3221 3221          ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3222 3222          buf_hash_remove(hdr);
3223 3223  
3224 3224          bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3225 3225  
3226 3226          if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3227 3227                  arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3228 3228                  /*
3229 3229                   * arc_access and arc_change_state need to be aware that a
3230 3230                   * header has just come out of L2ARC, so we set its state to
3231 3231                   * l2c_only even though it's about to change.
3232 3232                   */
3233 3233                  nhdr->b_l1hdr.b_state = arc_l2c_only;
3234 3234  
3235 3235                  /* Verify previous threads set to NULL before freeing */
3236 3236                  ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3237 3237                  ASSERT(!HDR_HAS_RABD(hdr));
3238 3238          } else {
3239 3239                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3240 3240                  ASSERT0(hdr->b_l1hdr.b_bufcnt);
3241 3241                  ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3242 3242  
3243 3243                  /*
3244 3244                   * If we've reached here, We must have been called from
3245 3245                   * arc_evict_hdr(), as such we should have already been
3246 3246                   * removed from any ghost list we were previously on
3247 3247                   * (which protects us from racing with arc_evict_state),
3248 3248                   * thus no locking is needed during this check.
3249 3249                   */
3250 3250                  ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3251 3251  
3252 3252                  /*
3253 3253                   * A buffer must not be moved into the arc_l2c_only
3254 3254                   * state if it's not finished being written out to the
3255 3255                   * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3256 3256                   * might try to be accessed, even though it was removed.
3257 3257                   */
3258 3258                  VERIFY(!HDR_L2_WRITING(hdr));
3259 3259                  VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3260 3260                  ASSERT(!HDR_HAS_RABD(hdr));
3261 3261  
3262 3262  #ifdef ZFS_DEBUG
3263 3263                  if (hdr->b_l1hdr.b_thawed != NULL) {
3264 3264                          kmem_free(hdr->b_l1hdr.b_thawed, 1);
3265 3265                          hdr->b_l1hdr.b_thawed = NULL;
3266 3266                  }
3267 3267  #endif
3268 3268  
3269 3269                  arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3270 3270          }
3271 3271          /*
3272 3272           * The header has been reallocated so we need to re-insert it into any
3273 3273           * lists it was on.
3274 3274           */
3275 3275          (void) buf_hash_insert(nhdr, NULL);
3276 3276  
3277 3277          ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3278 3278  
3279 3279          mutex_enter(&dev->l2ad_mtx);
3280 3280  
3281 3281          /*
3282 3282           * We must place the realloc'ed header back into the list at
3283 3283           * the same spot. Otherwise, if it's placed earlier in the list,
3284 3284           * l2arc_write_buffers() could find it during the function's
3285 3285           * write phase, and try to write it out to the l2arc.
3286 3286           */
3287 3287          list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3288 3288          list_remove(&dev->l2ad_buflist, hdr);
3289 3289  
3290 3290          mutex_exit(&dev->l2ad_mtx);
3291 3291  
3292 3292          /*
3293 3293           * Since we're using the pointer address as the tag when
3294 3294           * incrementing and decrementing the l2ad_alloc refcount, we
3295 3295           * must remove the old pointer (that we're about to destroy) and
3296 3296           * add the new pointer to the refcount. Otherwise we'd remove
3297 3297           * the wrong pointer address when calling arc_hdr_destroy() later.
3298 3298           */
3299 3299  
3300 3300          (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3301 3301              hdr);
3302 3302          (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr),
3303 3303              nhdr);
3304 3304  
3305 3305          buf_discard_identity(hdr);
3306 3306          kmem_cache_free(old, hdr);
3307 3307  
3308 3308          return (nhdr);
3309 3309  }
3310 3310  
3311 3311  /*
3312 3312   * This function allows an L1 header to be reallocated as a crypt
3313 3313   * header and vice versa. If we are going to a crypt header, the
3314 3314   * new fields will be zeroed out.
3315 3315   */
3316 3316  static arc_buf_hdr_t *
3317 3317  arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3318 3318  {
3319 3319          arc_buf_hdr_t *nhdr;
3320 3320          arc_buf_t *buf;
3321 3321          kmem_cache_t *ncache, *ocache;
3322 3322  
3323 3323          ASSERT(HDR_HAS_L1HDR(hdr));
3324 3324          ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3325 3325          ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3326 3326          ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3327 3327          ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3328 3328          ASSERT3P(hdr->b_hash_next, ==, NULL);
3329 3329  
3330 3330          if (need_crypt) {
3331 3331                  ncache = hdr_full_crypt_cache;
3332 3332                  ocache = hdr_full_cache;
3333 3333          } else {
3334 3334                  ncache = hdr_full_cache;
3335 3335                  ocache = hdr_full_crypt_cache;
3336 3336          }
3337 3337  
3338 3338          nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3339 3339  
3340 3340          /*
3341 3341           * Copy all members that aren't locks or condvars to the new header.
3342 3342           * No lists are pointing to us (as we asserted above), so we don't
3343 3343           * need to worry about the list nodes.
3344 3344           */
3345 3345          nhdr->b_dva = hdr->b_dva;
3346 3346          nhdr->b_birth = hdr->b_birth;
3347 3347          nhdr->b_type = hdr->b_type;
3348 3348          nhdr->b_flags = hdr->b_flags;
3349 3349          nhdr->b_psize = hdr->b_psize;
3350 3350          nhdr->b_lsize = hdr->b_lsize;
3351 3351          nhdr->b_spa = hdr->b_spa;
3352 3352          nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev;
3353 3353          nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr;
3354 3354          nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3355 3355          nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3356 3356          nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3357 3357          nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3358 3358          nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3359 3359          nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3360 3360          nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3361 3361  #ifdef ZFS_DEBUG
3362 3362          if (hdr->b_l1hdr.b_thawed != NULL) {
3363 3363                  nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed;
3364 3364                  hdr->b_l1hdr.b_thawed = NULL;
3365 3365          }
3366 3366  #endif
3367 3367  
3368 3368          /*
3369 3369           * This refcount_add() exists only to ensure that the individual
3370 3370           * arc buffers always point to a header that is referenced, avoiding
3371 3371           * a small race condition that could trigger ASSERTs.
3372 3372           */
3373 3373          (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3374 3374          nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3375 3375          for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3376 3376                  mutex_enter(&buf->b_evict_lock);
3377 3377                  buf->b_hdr = nhdr;
3378 3378                  mutex_exit(&buf->b_evict_lock);
3379 3379          }
3380 3380          zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3381 3381          (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3382 3382          ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3383 3383  
3384 3384          if (need_crypt) {
3385 3385                  arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3386 3386          } else {
3387 3387                  arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3388 3388          }
3389 3389  
3390 3390          /* unset all members of the original hdr */
3391 3391          bzero(&hdr->b_dva, sizeof (dva_t));
3392 3392          hdr->b_birth = 0;
3393 3393          hdr->b_type = ARC_BUFC_INVALID;
3394 3394          hdr->b_flags = 0;
3395 3395          hdr->b_psize = 0;
3396 3396          hdr->b_lsize = 0;
3397 3397          hdr->b_spa = 0;
3398 3398          hdr->b_l2hdr.b_dev = NULL;
3399 3399          hdr->b_l2hdr.b_daddr = 0;
3400 3400          hdr->b_l1hdr.b_freeze_cksum = NULL;
3401 3401          hdr->b_l1hdr.b_buf = NULL;
3402 3402          hdr->b_l1hdr.b_bufcnt = 0;
3403 3403          hdr->b_l1hdr.b_byteswap = 0;
3404 3404          hdr->b_l1hdr.b_state = NULL;
3405 3405          hdr->b_l1hdr.b_arc_access = 0;
3406 3406          hdr->b_l1hdr.b_acb = NULL;
3407 3407          hdr->b_l1hdr.b_pabd = NULL;
3408 3408  
3409 3409          if (ocache == hdr_full_crypt_cache) {
3410 3410                  ASSERT(!HDR_HAS_RABD(hdr));
3411 3411                  hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3412 3412                  hdr->b_crypt_hdr.b_ebufcnt = 0;
3413 3413                  hdr->b_crypt_hdr.b_dsobj = 0;
3414 3414                  bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3415 3415                  bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3416 3416                  bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3417 3417          }
3418 3418  
3419 3419          buf_discard_identity(hdr);
3420 3420          kmem_cache_free(ocache, hdr);
3421 3421  
3422 3422          return (nhdr);
3423 3423  }
3424 3424  
3425 3425  /*
3426 3426   * This function is used by the send / receive code to convert a newly
3427 3427   * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3428 3428   * is also used to allow the root objset block to be uupdated without altering
3429 3429   * its embedded MACs. Both block types will always be uncompressed so we do not
3430 3430   * have to worry about compression type or psize.
3431 3431   */
3432 3432  void
3433 3433  arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3434 3434      dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3435 3435      const uint8_t *mac)
3436 3436  {
3437 3437          arc_buf_hdr_t *hdr = buf->b_hdr;
3438 3438  
3439 3439          ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3440 3440          ASSERT(HDR_HAS_L1HDR(hdr));
3441 3441          ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3442 3442  
3443 3443          buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3444 3444          if (!HDR_PROTECTED(hdr))
3445 3445                  hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3446 3446          hdr->b_crypt_hdr.b_dsobj = dsobj;
3447 3447          hdr->b_crypt_hdr.b_ot = ot;
3448 3448          hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3449 3449              DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3450 3450          if (!arc_hdr_has_uncompressed_buf(hdr))
3451 3451                  arc_cksum_free(hdr);
3452 3452  
3453 3453          if (salt != NULL)
3454 3454                  bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3455 3455          if (iv != NULL)
3456 3456                  bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3457 3457          if (mac != NULL)
3458 3458                  bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3459 3459  }
3460 3460  
3461 3461  /*
3462 3462   * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3463 3463   * The buf is returned thawed since we expect the consumer to modify it.
3464 3464   */
3465 3465  arc_buf_t *
3466 3466  arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3467 3467  {
3468 3468          arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3469 3469              B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3470 3470  
3471 3471          arc_buf_t *buf = NULL;
3472 3472          VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3473 3473              B_FALSE, B_FALSE, &buf));
3474 3474          arc_buf_thaw(buf);
3475 3475  
3476 3476          return (buf);
3477 3477  }
3478 3478  
3479 3479  /*
3480 3480   * Allocates an ARC buf header that's in an evicted & L2-cached state.
3481 3481   * This is used during l2arc reconstruction to make empty ARC buffers
3482 3482   * which circumvent the regular disk->arc->l2arc path and instead come
3483 3483   * into being in the reverse order, i.e. l2arc->arc.
3484 3484   */
3485 3485  arc_buf_hdr_t *
3486 3486  arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
3487 3487      dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
3488 3488      enum zio_compress compress, boolean_t protected,
3489 3489      boolean_t prefetch, arc_state_type_t arcs_state)
3490 3490  {
3491 3491          arc_buf_hdr_t   *hdr;
3492 3492  
3493 3493          ASSERT(size != 0);
3494 3494          hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
3495 3495          hdr->b_birth = birth;
3496 3496          hdr->b_type = type;
3497 3497          hdr->b_flags = 0;
3498 3498          arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
3499 3499          HDR_SET_LSIZE(hdr, size);
3500 3500          HDR_SET_PSIZE(hdr, psize);
3501 3501          arc_hdr_set_compress(hdr, compress);
3502 3502          if (protected)
3503 3503                  arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3504 3504          if (prefetch)
3505 3505                  arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
3506 3506          hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
3507 3507  
3508 3508          hdr->b_dva = dva;
3509 3509  
3510 3510          hdr->b_l2hdr.b_dev = dev;
3511 3511          hdr->b_l2hdr.b_daddr = daddr;
3512 3512          hdr->b_l2hdr.b_arcs_state = arcs_state;
3513 3513  
3514 3514          return (hdr);
3515 3515  }
3516 3516  
3517 3517  /*
3518 3518   * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3519 3519   * for bufs containing metadata.
3520 3520   */
3521 3521  arc_buf_t *
3522 3522  arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3523 3523      enum zio_compress compression_type)
3524 3524  {
3525 3525          ASSERT3U(lsize, >, 0);
3526 3526          ASSERT3U(lsize, >=, psize);
3527 3527          ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3528 3528          ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3529 3529  
3530 3530          arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3531 3531              B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3532 3532  
3533 3533          arc_buf_t *buf = NULL;
3534 3534          VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3535 3535              B_TRUE, B_FALSE, B_FALSE, &buf));
3536 3536          arc_buf_thaw(buf);
3537 3537          ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3538 3538  
3539 3539          if (!arc_buf_is_shared(buf)) {
3540 3540                  /*
3541 3541                   * To ensure that the hdr has the correct data in it if we call
3542 3542                   * arc_untransform() on this buf before it's been written to
3543 3543                   * disk, it's easiest if we just set up sharing between the
3544 3544                   * buf and the hdr.
3545 3545                   */
3546 3546                  ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3547 3547                  arc_hdr_free_pabd(hdr, B_FALSE);
3548 3548                  arc_share_buf(hdr, buf);
3549 3549          }
3550 3550  
3551 3551          return (buf);
3552 3552  }
3553 3553  
3554 3554  arc_buf_t *
3555 3555  arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3556 3556      const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3557 3557      dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3558 3558      enum zio_compress compression_type)
3559 3559  {
3560 3560          arc_buf_hdr_t *hdr;
3561 3561          arc_buf_t *buf;
3562 3562          arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3563 3563              ARC_BUFC_METADATA : ARC_BUFC_DATA;
3564 3564  
3565 3565          ASSERT3U(lsize, >, 0);
3566 3566          ASSERT3U(lsize, >=, psize);
3567 3567          ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3568 3568          ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3569 3569  
3570 3570          hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3571 3571              compression_type, type, B_TRUE);
3572 3572  
3573 3573          hdr->b_crypt_hdr.b_dsobj = dsobj;
3574 3574          hdr->b_crypt_hdr.b_ot = ot;
3575 3575          hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3576 3576              DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3577 3577          bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3578 3578          bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3579 3579          bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3580 3580  
3581 3581          /*
3582 3582           * This buffer will be considered encrypted even if the ot is not an
3583 3583           * encrypted type. It will become authenticated instead in
3584 3584           * arc_write_ready().
3585 3585           */
3586 3586          buf = NULL;
3587 3587          VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3588 3588              B_FALSE, B_FALSE, &buf));
3589 3589          arc_buf_thaw(buf);
3590 3590          ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3591 3591  
3592 3592          return (buf);
3593 3593  }
3594 3594  
3595 3595  static void
3596 3596  l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3597 3597      boolean_t state_only)
3598 3598  {
3599 3599          l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3600 3600          l2arc_dev_t *dev = l2hdr->b_dev;
3601 3601          uint64_t lsize = HDR_GET_LSIZE(hdr);
3602 3602          uint64_t psize = HDR_GET_PSIZE(hdr);
3603 3603          uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3604 3604          arc_buf_contents_t type = hdr->b_type;
3605 3605          int64_t lsize_s;
3606 3606          int64_t psize_s;
3607 3607          int64_t asize_s;
3608 3608  
3609 3609          if (incr) {
3610 3610                  lsize_s = lsize;
3611 3611                  psize_s = psize;
3612 3612                  asize_s = asize;
3613 3613          } else {
3614 3614                  lsize_s = -lsize;
3615 3615                  psize_s = -psize;
3616 3616                  asize_s = -asize;
3617 3617          }
3618 3618  
3619 3619          /* If the buffer is a prefetch, count it as such. */
3620 3620          if (HDR_PREFETCH(hdr)) {
3621 3621                  ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3622 3622          } else {
3623 3623                  /*
3624 3624                   * We use the value stored in the L2 header upon initial
3625 3625                   * caching in L2ARC. This value will be updated in case
3626 3626                   * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3627 3627                   * metadata (log entry) cannot currently be updated. Having
3628 3628                   * the ARC state in the L2 header solves the problem of a
3629 3629                   * possibly absent L1 header (apparent in buffers restored
3630 3630                   * from persistent L2ARC).
3631 3631                   */
3632 3632                  switch (hdr->b_l2hdr.b_arcs_state) {
3633 3633                          case ARC_STATE_MRU_GHOST:
3634 3634                          case ARC_STATE_MRU:
3635 3635                                  ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3636 3636                                  break;
3637 3637                          case ARC_STATE_MFU_GHOST:
3638 3638                          case ARC_STATE_MFU:
3639 3639                                  ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3640 3640                                  break;
3641 3641                          default:
3642 3642                                  break;
3643 3643                  }
3644 3644          }
3645 3645  
3646 3646          if (state_only)
3647 3647                  return;
3648 3648  
3649 3649          ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3650 3650          ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3651 3651  
3652 3652          switch (type) {
3653 3653                  case ARC_BUFC_DATA:
3654 3654                          ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3655 3655                          break;
3656 3656                  case ARC_BUFC_METADATA:
3657 3657                          ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3658 3658                          break;
3659 3659                  default:
3660 3660                          break;
3661 3661          }
3662 3662  }
3663 3663  
3664 3664  
3665 3665  static void
3666 3666  arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3667 3667  {
3668 3668          l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3669 3669          l2arc_dev_t *dev = l2hdr->b_dev;
3670 3670          uint64_t psize = HDR_GET_PSIZE(hdr);
3671 3671          uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3672 3672  
3673 3673          ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3674 3674          ASSERT(HDR_HAS_L2HDR(hdr));
3675 3675  
3676 3676          list_remove(&dev->l2ad_buflist, hdr);
3677 3677  
3678 3678          l2arc_hdr_arcstats_decrement(hdr);
3679 3679          vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3680 3680  
3681 3681          (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3682 3682              hdr);
3683 3683          arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3684 3684  }
3685 3685  
3686 3686  static void
3687 3687  arc_hdr_destroy(arc_buf_hdr_t *hdr)
3688 3688  {
3689 3689          if (HDR_HAS_L1HDR(hdr)) {
3690 3690                  ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3691 3691                      hdr->b_l1hdr.b_bufcnt > 0);
3692 3692                  ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3693 3693                  ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3694 3694          }
3695 3695          ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3696 3696          ASSERT(!HDR_IN_HASH_TABLE(hdr));
3697 3697  
3698 3698          if (HDR_HAS_L2HDR(hdr)) {
3699 3699                  l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3700 3700                  boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3701 3701  
3702 3702                  if (!buflist_held)
3703 3703                          mutex_enter(&dev->l2ad_mtx);
3704 3704  
3705 3705                  /*
3706 3706                   * Even though we checked this conditional above, we
3707 3707                   * need to check this again now that we have the
3708 3708                   * l2ad_mtx. This is because we could be racing with
3709 3709                   * another thread calling l2arc_evict() which might have
3710 3710                   * destroyed this header's L2 portion as we were waiting
3711 3711                   * to acquire the l2ad_mtx. If that happens, we don't
3712 3712                   * want to re-destroy the header's L2 portion.
3713 3713                   */
3714 3714                  if (HDR_HAS_L2HDR(hdr))
3715 3715                          arc_hdr_l2hdr_destroy(hdr);
3716 3716  
3717 3717                  if (!buflist_held)
3718 3718                          mutex_exit(&dev->l2ad_mtx);
3719 3719          }
3720 3720  
3721 3721          /*
3722 3722           * The header's identity can only be safely discarded once it is no
3723 3723           * longer discoverable.  This requires removing it from the hash table
3724 3724           * and the l2arc header list.  After this point the hash lock can not
3725 3725           * be used to protect the header.
3726 3726           */
3727 3727          if (!HDR_EMPTY(hdr))
3728 3728                  buf_discard_identity(hdr);
3729 3729  
3730 3730          if (HDR_HAS_L1HDR(hdr)) {
3731 3731                  arc_cksum_free(hdr);
3732 3732  
3733 3733                  while (hdr->b_l1hdr.b_buf != NULL)
3734 3734                          arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3735 3735  
3736 3736  #ifdef ZFS_DEBUG
3737 3737                  if (hdr->b_l1hdr.b_thawed != NULL) {
3738 3738                          kmem_free(hdr->b_l1hdr.b_thawed, 1);
3739 3739                          hdr->b_l1hdr.b_thawed = NULL;
3740 3740                  }
3741 3741  #endif
3742 3742  
3743 3743                  if (hdr->b_l1hdr.b_pabd != NULL)
3744 3744                          arc_hdr_free_pabd(hdr, B_FALSE);
3745 3745  
3746 3746                  if (HDR_HAS_RABD(hdr))
3747 3747                          arc_hdr_free_pabd(hdr, B_TRUE);
3748 3748          }
3749 3749  
3750 3750          ASSERT3P(hdr->b_hash_next, ==, NULL);
3751 3751          if (HDR_HAS_L1HDR(hdr)) {
3752 3752                  ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3753 3753                  ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3754 3754  
3755 3755                  if (!HDR_PROTECTED(hdr)) {
3756 3756                          kmem_cache_free(hdr_full_cache, hdr);
3757 3757                  } else {
3758 3758                          kmem_cache_free(hdr_full_crypt_cache, hdr);
3759 3759                  }
3760 3760          } else {
3761 3761                  kmem_cache_free(hdr_l2only_cache, hdr);
3762 3762          }
3763 3763  }
3764 3764  
3765 3765  void
3766 3766  arc_buf_destroy(arc_buf_t *buf, void* tag)
3767 3767  {
3768 3768          arc_buf_hdr_t *hdr = buf->b_hdr;
3769 3769  
3770 3770          if (hdr->b_l1hdr.b_state == arc_anon) {
3771 3771                  ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3772 3772                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3773 3773                  VERIFY0(remove_reference(hdr, NULL, tag));
3774 3774                  arc_hdr_destroy(hdr);
3775 3775                  return;
3776 3776          }
3777 3777  
3778 3778          kmutex_t *hash_lock = HDR_LOCK(hdr);
3779 3779          mutex_enter(hash_lock);
3780 3780  
3781 3781          ASSERT3P(hdr, ==, buf->b_hdr);
3782 3782          ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3783 3783          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3784 3784          ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3785 3785          ASSERT3P(buf->b_data, !=, NULL);
3786 3786  
3787 3787          (void) remove_reference(hdr, hash_lock, tag);
3788 3788          arc_buf_destroy_impl(buf);
3789 3789          mutex_exit(hash_lock);
3790 3790  }
3791 3791  
3792 3792  /*
3793 3793   * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3794 3794   * state of the header is dependent on its state prior to entering this
3795 3795   * function. The following transitions are possible:
3796 3796   *
3797 3797   *    - arc_mru -> arc_mru_ghost
3798 3798   *    - arc_mfu -> arc_mfu_ghost
3799 3799   *    - arc_mru_ghost -> arc_l2c_only
3800 3800   *    - arc_mru_ghost -> deleted
3801 3801   *    - arc_mfu_ghost -> arc_l2c_only
3802 3802   *    - arc_mfu_ghost -> deleted
3803 3803   */
3804 3804  static int64_t
3805 3805  arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3806 3806  {
3807 3807          arc_state_t *evicted_state, *state;
3808 3808          int64_t bytes_evicted = 0;
3809 3809          int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3810 3810              zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3811 3811  
3812 3812          ASSERT(MUTEX_HELD(hash_lock));
3813 3813          ASSERT(HDR_HAS_L1HDR(hdr));
3814 3814  
3815 3815          state = hdr->b_l1hdr.b_state;
3816 3816          if (GHOST_STATE(state)) {
3817 3817                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3818 3818                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3819 3819  
3820 3820                  /*
3821 3821                   * l2arc_write_buffers() relies on a header's L1 portion
3822 3822                   * (i.e. its b_pabd field) during its write phase.
3823 3823                   * Thus, we cannot push a header onto the arc_l2c_only
3824 3824                   * state (removing its L1 piece) until the header is
3825 3825                   * done being written to the l2arc.
3826 3826                   */
3827 3827                  if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3828 3828                          ARCSTAT_BUMP(arcstat_evict_l2_skip);
3829 3829                          return (bytes_evicted);
3830 3830                  }
3831 3831  
3832 3832                  ARCSTAT_BUMP(arcstat_deleted);
3833 3833                  bytes_evicted += HDR_GET_LSIZE(hdr);
3834 3834  
3835 3835                  DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3836 3836  
3837 3837                  if (HDR_HAS_L2HDR(hdr)) {
3838 3838                          ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3839 3839                          ASSERT(!HDR_HAS_RABD(hdr));
3840 3840                          /*
3841 3841                           * This buffer is cached on the 2nd Level ARC;
3842 3842                           * don't destroy the header.
3843 3843                           */
3844 3844                          arc_change_state(arc_l2c_only, hdr, hash_lock);
3845 3845                          /*
3846 3846                           * dropping from L1+L2 cached to L2-only,
3847 3847                           * realloc to remove the L1 header.
3848 3848                           */
3849 3849                          hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3850 3850                              hdr_l2only_cache);
3851 3851                  } else {
3852 3852                          arc_change_state(arc_anon, hdr, hash_lock);
3853 3853                          arc_hdr_destroy(hdr);
3854 3854                  }
3855 3855                  return (bytes_evicted);
3856 3856          }
3857 3857  
3858 3858          ASSERT(state == arc_mru || state == arc_mfu);
3859 3859          evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3860 3860  
3861 3861          /* prefetch buffers have a minimum lifespan */
3862 3862          if (HDR_IO_IN_PROGRESS(hdr) ||
3863 3863              ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3864 3864              ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3865 3865                  ARCSTAT_BUMP(arcstat_evict_skip);
3866 3866                  return (bytes_evicted);
3867 3867          }
3868 3868  
3869 3869          ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3870 3870          while (hdr->b_l1hdr.b_buf) {
3871 3871                  arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3872 3872                  if (!mutex_tryenter(&buf->b_evict_lock)) {
3873 3873                          ARCSTAT_BUMP(arcstat_mutex_miss);
3874 3874                          break;
3875 3875                  }
3876 3876                  if (buf->b_data != NULL)
3877 3877                          bytes_evicted += HDR_GET_LSIZE(hdr);
3878 3878                  mutex_exit(&buf->b_evict_lock);
3879 3879                  arc_buf_destroy_impl(buf);
3880 3880          }
3881 3881  
3882 3882          if (HDR_HAS_L2HDR(hdr)) {
3883 3883                  ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3884 3884          } else {
3885 3885                  if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3886 3886                          ARCSTAT_INCR(arcstat_evict_l2_eligible,
3887 3887                              HDR_GET_LSIZE(hdr));
3888 3888  
3889 3889                          switch (state->arcs_state) {
3890 3890                                  case ARC_STATE_MRU:
3891 3891                                          ARCSTAT_INCR(
3892 3892                                              arcstat_evict_l2_eligible_mru,
3893 3893                                              HDR_GET_LSIZE(hdr));
3894 3894                                          break;
3895 3895                                  case ARC_STATE_MFU:
3896 3896                                          ARCSTAT_INCR(
3897 3897                                              arcstat_evict_l2_eligible_mfu,
3898 3898                                              HDR_GET_LSIZE(hdr));
3899 3899                                          break;
3900 3900                                  default:
3901 3901                                          break;
3902 3902                          }
3903 3903                  } else {
3904 3904                          ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3905 3905                              HDR_GET_LSIZE(hdr));
3906 3906                  }
3907 3907          }
3908 3908  
3909 3909          if (hdr->b_l1hdr.b_bufcnt == 0) {
3910 3910                  arc_cksum_free(hdr);
3911 3911  
3912 3912                  bytes_evicted += arc_hdr_size(hdr);
3913 3913  
3914 3914                  /*
3915 3915                   * If this hdr is being evicted and has a compressed
3916 3916                   * buffer then we discard it here before we change states.
3917 3917                   * This ensures that the accounting is updated correctly
3918 3918                   * in arc_free_data_impl().
3919 3919                   */
3920 3920                  if (hdr->b_l1hdr.b_pabd != NULL)
3921 3921                          arc_hdr_free_pabd(hdr, B_FALSE);
3922 3922  
3923 3923                  if (HDR_HAS_RABD(hdr))
3924 3924                          arc_hdr_free_pabd(hdr, B_TRUE);
3925 3925  
3926 3926                  arc_change_state(evicted_state, hdr, hash_lock);
3927 3927                  ASSERT(HDR_IN_HASH_TABLE(hdr));
3928 3928                  arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3929 3929                  DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3930 3930          }
3931 3931  
3932 3932          return (bytes_evicted);
3933 3933  }
3934 3934  
3935 3935  static uint64_t
3936 3936  arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3937 3937      uint64_t spa, int64_t bytes)
3938 3938  {
3939 3939          multilist_sublist_t *mls;
3940 3940          uint64_t bytes_evicted = 0;
3941 3941          arc_buf_hdr_t *hdr;
3942 3942          kmutex_t *hash_lock;
3943 3943          int evict_count = 0;
3944 3944  
3945 3945          ASSERT3P(marker, !=, NULL);
3946 3946          IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3947 3947  
3948 3948          mls = multilist_sublist_lock(ml, idx);
3949 3949  
3950 3950          for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3951 3951              hdr = multilist_sublist_prev(mls, marker)) {
3952 3952                  if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3953 3953                      (evict_count >= zfs_arc_evict_batch_limit))
3954 3954                          break;
3955 3955  
3956 3956                  /*
3957 3957                   * To keep our iteration location, move the marker
3958 3958                   * forward. Since we're not holding hdr's hash lock, we
3959 3959                   * must be very careful and not remove 'hdr' from the
3960 3960                   * sublist. Otherwise, other consumers might mistake the
3961 3961                   * 'hdr' as not being on a sublist when they call the
3962 3962                   * multilist_link_active() function (they all rely on
3963 3963                   * the hash lock protecting concurrent insertions and
3964 3964                   * removals). multilist_sublist_move_forward() was
3965 3965                   * specifically implemented to ensure this is the case
3966 3966                   * (only 'marker' will be removed and re-inserted).
3967 3967                   */
3968 3968                  multilist_sublist_move_forward(mls, marker);
3969 3969  
3970 3970                  /*
3971 3971                   * The only case where the b_spa field should ever be
3972 3972                   * zero, is the marker headers inserted by
3973 3973                   * arc_evict_state(). It's possible for multiple threads
3974 3974                   * to be calling arc_evict_state() concurrently (e.g.
3975 3975                   * dsl_pool_close() and zio_inject_fault()), so we must
3976 3976                   * skip any markers we see from these other threads.
3977 3977                   */
3978 3978                  if (hdr->b_spa == 0)
3979 3979                          continue;
3980 3980  
3981 3981                  /* we're only interested in evicting buffers of a certain spa */
3982 3982                  if (spa != 0 && hdr->b_spa != spa) {
3983 3983                          ARCSTAT_BUMP(arcstat_evict_skip);
3984 3984                          continue;
3985 3985                  }
3986 3986  
3987 3987                  hash_lock = HDR_LOCK(hdr);
3988 3988  
3989 3989                  /*
3990 3990                   * We aren't calling this function from any code path
3991 3991                   * that would already be holding a hash lock, so we're
3992 3992                   * asserting on this assumption to be defensive in case
3993 3993                   * this ever changes. Without this check, it would be
3994 3994                   * possible to incorrectly increment arcstat_mutex_miss
3995 3995                   * below (e.g. if the code changed such that we called
3996 3996                   * this function with a hash lock held).
3997 3997                   */
3998 3998                  ASSERT(!MUTEX_HELD(hash_lock));
3999 3999  
4000 4000                  if (mutex_tryenter(hash_lock)) {
4001 4001                          uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
4002 4002                          mutex_exit(hash_lock);
4003 4003  
4004 4004                          bytes_evicted += evicted;
4005 4005  
4006 4006                          /*
4007 4007                           * If evicted is zero, arc_evict_hdr() must have
4008 4008                           * decided to skip this header, don't increment
4009 4009                           * evict_count in this case.
4010 4010                           */
4011 4011                          if (evicted != 0)
4012 4012                                  evict_count++;
4013 4013  
4014 4014                          /*
4015 4015                           * If arc_size isn't overflowing, signal any
4016 4016                           * threads that might happen to be waiting.
4017 4017                           *
4018 4018                           * For each header evicted, we wake up a single
4019 4019                           * thread. If we used cv_broadcast, we could
4020 4020                           * wake up "too many" threads causing arc_size
4021 4021                           * to significantly overflow arc_c; since
4022 4022                           * arc_get_data_impl() doesn't check for overflow
4023 4023                           * when it's woken up (it doesn't because it's
4024 4024                           * possible for the ARC to be overflowing while
4025 4025                           * full of un-evictable buffers, and the
4026 4026                           * function should proceed in this case).
4027 4027                           *
4028 4028                           * If threads are left sleeping, due to not
4029 4029                           * using cv_broadcast here, they will be woken
4030 4030                           * up via cv_broadcast in arc_adjust_cb() just
4031 4031                           * before arc_adjust_zthr sleeps.
4032 4032                           */
4033 4033                          mutex_enter(&arc_adjust_lock);
4034 4034                          if (!arc_is_overflowing())
4035 4035                                  cv_signal(&arc_adjust_waiters_cv);
4036 4036                          mutex_exit(&arc_adjust_lock);
4037 4037                  } else {
4038 4038                          ARCSTAT_BUMP(arcstat_mutex_miss);
4039 4039                  }
4040 4040          }
4041 4041  
4042 4042          multilist_sublist_unlock(mls);
4043 4043  
4044 4044          return (bytes_evicted);
4045 4045  }
4046 4046  
4047 4047  /*
4048 4048   * Evict buffers from the given arc state, until we've removed the
4049 4049   * specified number of bytes. Move the removed buffers to the
4050 4050   * appropriate evict state.
4051 4051   *
4052 4052   * This function makes a "best effort". It skips over any buffers
4053 4053   * it can't get a hash_lock on, and so, may not catch all candidates.
4054 4054   * It may also return without evicting as much space as requested.
4055 4055   *
4056 4056   * If bytes is specified using the special value ARC_EVICT_ALL, this
4057 4057   * will evict all available (i.e. unlocked and evictable) buffers from
4058 4058   * the given arc state; which is used by arc_flush().
4059 4059   */
4060 4060  static uint64_t
4061 4061  arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4062 4062      arc_buf_contents_t type)
4063 4063  {
4064 4064          uint64_t total_evicted = 0;
4065 4065          multilist_t *ml = state->arcs_list[type];
4066 4066          int num_sublists;
4067 4067          arc_buf_hdr_t **markers;
4068 4068  
4069 4069          IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4070 4070  
4071 4071          num_sublists = multilist_get_num_sublists(ml);
4072 4072  
4073 4073          /*
4074 4074           * If we've tried to evict from each sublist, made some
4075 4075           * progress, but still have not hit the target number of bytes
4076 4076           * to evict, we want to keep trying. The markers allow us to
4077 4077           * pick up where we left off for each individual sublist, rather
4078 4078           * than starting from the tail each time.
4079 4079           */
4080 4080          markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4081 4081          for (int i = 0; i < num_sublists; i++) {
4082 4082                  markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4083 4083  
4084 4084                  /*
4085 4085                   * A b_spa of 0 is used to indicate that this header is
4086 4086                   * a marker. This fact is used in arc_adjust_type() and
4087 4087                   * arc_evict_state_impl().
4088 4088                   */
4089 4089                  markers[i]->b_spa = 0;
4090 4090  
4091 4091                  multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4092 4092                  multilist_sublist_insert_tail(mls, markers[i]);
4093 4093                  multilist_sublist_unlock(mls);
4094 4094          }
4095 4095  
4096 4096          /*
4097 4097           * While we haven't hit our target number of bytes to evict, or
4098 4098           * we're evicting all available buffers.
4099 4099           */
4100 4100          while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4101 4101                  /*
4102 4102                   * Start eviction using a randomly selected sublist,
4103 4103                   * this is to try and evenly balance eviction across all
4104 4104                   * sublists. Always starting at the same sublist
4105 4105                   * (e.g. index 0) would cause evictions to favor certain
4106 4106                   * sublists over others.
4107 4107                   */
4108 4108                  int sublist_idx = multilist_get_random_index(ml);
4109 4109                  uint64_t scan_evicted = 0;
4110 4110  
4111 4111                  for (int i = 0; i < num_sublists; i++) {
4112 4112                          uint64_t bytes_remaining;
4113 4113                          uint64_t bytes_evicted;
4114 4114  
4115 4115                          if (bytes == ARC_EVICT_ALL)
4116 4116                                  bytes_remaining = ARC_EVICT_ALL;
4117 4117                          else if (total_evicted < bytes)
4118 4118                                  bytes_remaining = bytes - total_evicted;
4119 4119                          else
4120 4120                                  break;
4121 4121  
4122 4122                          bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4123 4123                              markers[sublist_idx], spa, bytes_remaining);
4124 4124  
4125 4125                          scan_evicted += bytes_evicted;
4126 4126                          total_evicted += bytes_evicted;
4127 4127  
4128 4128                          /* we've reached the end, wrap to the beginning */
4129 4129                          if (++sublist_idx >= num_sublists)
4130 4130                                  sublist_idx = 0;
4131 4131                  }
4132 4132  
4133 4133                  /*
4134 4134                   * If we didn't evict anything during this scan, we have
4135 4135                   * no reason to believe we'll evict more during another
4136 4136                   * scan, so break the loop.
4137 4137                   */
4138 4138                  if (scan_evicted == 0) {
4139 4139                          /* This isn't possible, let's make that obvious */
4140 4140                          ASSERT3S(bytes, !=, 0);
4141 4141  
4142 4142                          /*
4143 4143                           * When bytes is ARC_EVICT_ALL, the only way to
4144 4144                           * break the loop is when scan_evicted is zero.
4145 4145                           * In that case, we actually have evicted enough,
4146 4146                           * so we don't want to increment the kstat.
4147 4147                           */
4148 4148                          if (bytes != ARC_EVICT_ALL) {
4149 4149                                  ASSERT3S(total_evicted, <, bytes);
4150 4150                                  ARCSTAT_BUMP(arcstat_evict_not_enough);
4151 4151                          }
4152 4152  
4153 4153                          break;
4154 4154                  }
4155 4155          }
4156 4156  
4157 4157          for (int i = 0; i < num_sublists; i++) {
4158 4158                  multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4159 4159                  multilist_sublist_remove(mls, markers[i]);
4160 4160                  multilist_sublist_unlock(mls);
4161 4161  
4162 4162                  kmem_cache_free(hdr_full_cache, markers[i]);
4163 4163          }
4164 4164          kmem_free(markers, sizeof (*markers) * num_sublists);
4165 4165  
4166 4166          return (total_evicted);
4167 4167  }
4168 4168  
4169 4169  /*
4170 4170   * Flush all "evictable" data of the given type from the arc state
4171 4171   * specified. This will not evict any "active" buffers (i.e. referenced).
4172 4172   *
4173 4173   * When 'retry' is set to B_FALSE, the function will make a single pass
4174 4174   * over the state and evict any buffers that it can. Since it doesn't
4175 4175   * continually retry the eviction, it might end up leaving some buffers
4176 4176   * in the ARC due to lock misses.
4177 4177   *
4178 4178   * When 'retry' is set to B_TRUE, the function will continually retry the
4179 4179   * eviction until *all* evictable buffers have been removed from the
4180 4180   * state. As a result, if concurrent insertions into the state are
4181 4181   * allowed (e.g. if the ARC isn't shutting down), this function might
4182 4182   * wind up in an infinite loop, continually trying to evict buffers.
4183 4183   */
4184 4184  static uint64_t
4185 4185  arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4186 4186      boolean_t retry)
4187 4187  {
4188 4188          uint64_t evicted = 0;
4189 4189  
4190 4190          while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4191 4191                  evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4192 4192  
4193 4193                  if (!retry)
4194 4194                          break;
4195 4195          }
4196 4196  
4197 4197          return (evicted);
4198 4198  }
4199 4199  
4200 4200  /*
4201 4201   * Evict the specified number of bytes from the state specified,
4202 4202   * restricting eviction to the spa and type given. This function
4203 4203   * prevents us from trying to evict more from a state's list than
4204 4204   * is "evictable", and to skip evicting altogether when passed a
4205 4205   * negative value for "bytes". In contrast, arc_evict_state() will
4206 4206   * evict everything it can, when passed a negative value for "bytes".
4207 4207   */
4208 4208  static uint64_t
4209 4209  arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4210 4210      arc_buf_contents_t type)
4211 4211  {
4212 4212          int64_t delta;
4213 4213  
4214 4214          if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4215 4215                  delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4216 4216                      bytes);
4217 4217                  return (arc_evict_state(state, spa, delta, type));
4218 4218          }
4219 4219  
4220 4220          return (0);
4221 4221  }
4222 4222  
4223 4223  /*
4224 4224   * Evict metadata buffers from the cache, such that arc_meta_used is
4225 4225   * capped by the arc_meta_limit tunable.
4226 4226   */
4227 4227  static uint64_t
4228 4228  arc_adjust_meta(uint64_t meta_used)
4229 4229  {
4230 4230          uint64_t total_evicted = 0;
4231 4231          int64_t target;
4232 4232  
4233 4233          /*
4234 4234           * If we're over the meta limit, we want to evict enough
4235 4235           * metadata to get back under the meta limit. We don't want to
4236 4236           * evict so much that we drop the MRU below arc_p, though. If
4237 4237           * we're over the meta limit more than we're over arc_p, we
4238 4238           * evict some from the MRU here, and some from the MFU below.
4239 4239           */
4240 4240          target = MIN((int64_t)(meta_used - arc_meta_limit),
4241 4241              (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4242 4242              zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4243 4243  
4244 4244          total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4245 4245  
4246 4246          /*
4247 4247           * Similar to the above, we want to evict enough bytes to get us
4248 4248           * below the meta limit, but not so much as to drop us below the
4249 4249           * space allotted to the MFU (which is defined as arc_c - arc_p).
4250 4250           */
4251 4251          target = MIN((int64_t)(meta_used - arc_meta_limit),
4252 4252              (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4253 4253              (arc_c - arc_p)));
4254 4254  
4255 4255          total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4256 4256  
4257 4257          return (total_evicted);
4258 4258  }
4259 4259  
4260 4260  /*
4261 4261   * Return the type of the oldest buffer in the given arc state
4262 4262   *
4263 4263   * This function will select a random sublist of type ARC_BUFC_DATA and
4264 4264   * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4265 4265   * is compared, and the type which contains the "older" buffer will be
4266 4266   * returned.
4267 4267   */
4268 4268  static arc_buf_contents_t
4269 4269  arc_adjust_type(arc_state_t *state)
4270 4270  {
4271 4271          multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4272 4272          multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4273 4273          int data_idx = multilist_get_random_index(data_ml);
4274 4274          int meta_idx = multilist_get_random_index(meta_ml);
4275 4275          multilist_sublist_t *data_mls;
4276 4276          multilist_sublist_t *meta_mls;
4277 4277          arc_buf_contents_t type;
4278 4278          arc_buf_hdr_t *data_hdr;
4279 4279          arc_buf_hdr_t *meta_hdr;
4280 4280  
4281 4281          /*
4282 4282           * We keep the sublist lock until we're finished, to prevent
4283 4283           * the headers from being destroyed via arc_evict_state().
4284 4284           */
4285 4285          data_mls = multilist_sublist_lock(data_ml, data_idx);
4286 4286          meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4287 4287  
4288 4288          /*
4289 4289           * These two loops are to ensure we skip any markers that
4290 4290           * might be at the tail of the lists due to arc_evict_state().
4291 4291           */
4292 4292  
4293 4293          for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4294 4294              data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4295 4295                  if (data_hdr->b_spa != 0)
4296 4296                          break;
4297 4297          }
4298 4298  
4299 4299          for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4300 4300              meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4301 4301                  if (meta_hdr->b_spa != 0)
4302 4302                          break;
4303 4303          }
4304 4304  
4305 4305          if (data_hdr == NULL && meta_hdr == NULL) {
4306 4306                  type = ARC_BUFC_DATA;
4307 4307          } else if (data_hdr == NULL) {
4308 4308                  ASSERT3P(meta_hdr, !=, NULL);
4309 4309                  type = ARC_BUFC_METADATA;
4310 4310          } else if (meta_hdr == NULL) {
4311 4311                  ASSERT3P(data_hdr, !=, NULL);
4312 4312                  type = ARC_BUFC_DATA;
4313 4313          } else {
4314 4314                  ASSERT3P(data_hdr, !=, NULL);
4315 4315                  ASSERT3P(meta_hdr, !=, NULL);
4316 4316  
4317 4317                  /* The headers can't be on the sublist without an L1 header */
4318 4318                  ASSERT(HDR_HAS_L1HDR(data_hdr));
4319 4319                  ASSERT(HDR_HAS_L1HDR(meta_hdr));
4320 4320  
4321 4321                  if (data_hdr->b_l1hdr.b_arc_access <
4322 4322                      meta_hdr->b_l1hdr.b_arc_access) {
4323 4323                          type = ARC_BUFC_DATA;
4324 4324                  } else {
4325 4325                          type = ARC_BUFC_METADATA;
4326 4326                  }
4327 4327          }
4328 4328  
4329 4329          multilist_sublist_unlock(meta_mls);
4330 4330          multilist_sublist_unlock(data_mls);
4331 4331  
4332 4332          return (type);
4333 4333  }
4334 4334  
4335 4335  /*
4336 4336   * Evict buffers from the cache, such that arc_size is capped by arc_c.
4337 4337   */
4338 4338  static uint64_t
4339 4339  arc_adjust(void)
4340 4340  {
4341 4341          uint64_t total_evicted = 0;
4342 4342          uint64_t bytes;
4343 4343          int64_t target;
4344 4344          uint64_t asize = aggsum_value(&arc_size);
4345 4345          uint64_t ameta = aggsum_value(&arc_meta_used);
4346 4346  
4347 4347          /*
4348 4348           * If we're over arc_meta_limit, we want to correct that before
4349 4349           * potentially evicting data buffers below.
4350 4350           */
4351 4351          total_evicted += arc_adjust_meta(ameta);
4352 4352  
4353 4353          /*
4354 4354           * Adjust MRU size
4355 4355           *
4356 4356           * If we're over the target cache size, we want to evict enough
4357 4357           * from the list to get back to our target size. We don't want
4358 4358           * to evict too much from the MRU, such that it drops below
4359 4359           * arc_p. So, if we're over our target cache size more than
4360 4360           * the MRU is over arc_p, we'll evict enough to get back to
4361 4361           * arc_p here, and then evict more from the MFU below.
4362 4362           */
4363 4363          target = MIN((int64_t)(asize - arc_c),
4364 4364              (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4365 4365              zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4366 4366  
4367 4367          /*
4368 4368           * If we're below arc_meta_min, always prefer to evict data.
4369 4369           * Otherwise, try to satisfy the requested number of bytes to
4370 4370           * evict from the type which contains older buffers; in an
4371 4371           * effort to keep newer buffers in the cache regardless of their
4372 4372           * type. If we cannot satisfy the number of bytes from this
4373 4373           * type, spill over into the next type.
4374 4374           */
4375 4375          if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4376 4376              ameta > arc_meta_min) {
4377 4377                  bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4378 4378                  total_evicted += bytes;
4379 4379  
4380 4380                  /*
4381 4381                   * If we couldn't evict our target number of bytes from
4382 4382                   * metadata, we try to get the rest from data.
4383 4383                   */
4384 4384                  target -= bytes;
4385 4385  
4386 4386                  total_evicted +=
4387 4387                      arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4388 4388          } else {
4389 4389                  bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4390 4390                  total_evicted += bytes;
4391 4391  
4392 4392                  /*
4393 4393                   * If we couldn't evict our target number of bytes from
4394 4394                   * data, we try to get the rest from metadata.
4395 4395                   */
4396 4396                  target -= bytes;
4397 4397  
4398 4398                  total_evicted +=
4399 4399                      arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4400 4400          }
4401 4401  
4402 4402          /*
4403 4403           * Adjust MFU size
4404 4404           *
4405 4405           * Now that we've tried to evict enough from the MRU to get its
4406 4406           * size back to arc_p, if we're still above the target cache
4407 4407           * size, we evict the rest from the MFU.
4408 4408           */
4409 4409          target = asize - arc_c;
4410 4410  
4411 4411          if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4412 4412              ameta > arc_meta_min) {
4413 4413                  bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4414 4414                  total_evicted += bytes;
4415 4415  
4416 4416                  /*
4417 4417                   * If we couldn't evict our target number of bytes from
4418 4418                   * metadata, we try to get the rest from data.
4419 4419                   */
4420 4420                  target -= bytes;
4421 4421  
4422 4422                  total_evicted +=
4423 4423                      arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4424 4424          } else {
4425 4425                  bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4426 4426                  total_evicted += bytes;
4427 4427  
4428 4428                  /*
4429 4429                   * If we couldn't evict our target number of bytes from
4430 4430                   * data, we try to get the rest from data.
4431 4431                   */
4432 4432                  target -= bytes;
4433 4433  
4434 4434                  total_evicted +=
4435 4435                      arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4436 4436          }
4437 4437  
4438 4438          /*
4439 4439           * Adjust ghost lists
4440 4440           *
4441 4441           * In addition to the above, the ARC also defines target values
4442 4442           * for the ghost lists. The sum of the mru list and mru ghost
4443 4443           * list should never exceed the target size of the cache, and
4444 4444           * the sum of the mru list, mfu list, mru ghost list, and mfu
4445 4445           * ghost list should never exceed twice the target size of the
4446 4446           * cache. The following logic enforces these limits on the ghost
4447 4447           * caches, and evicts from them as needed.
4448 4448           */
4449 4449          target = zfs_refcount_count(&arc_mru->arcs_size) +
4450 4450              zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4451 4451  
4452 4452          bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4453 4453          total_evicted += bytes;
4454 4454  
4455 4455          target -= bytes;
4456 4456  
4457 4457          total_evicted +=
4458 4458              arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4459 4459  
4460 4460          /*
4461 4461           * We assume the sum of the mru list and mfu list is less than
4462 4462           * or equal to arc_c (we enforced this above), which means we
4463 4463           * can use the simpler of the two equations below:
4464 4464           *
4465 4465           *      mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4466 4466           *                  mru ghost + mfu ghost <= arc_c
4467 4467           */
4468 4468          target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4469 4469              zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4470 4470  
4471 4471          bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4472 4472          total_evicted += bytes;
4473 4473  
4474 4474          target -= bytes;
4475 4475  
4476 4476          total_evicted +=
4477 4477              arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4478 4478  
4479 4479          return (total_evicted);
4480 4480  }
4481 4481  
4482 4482  void
4483 4483  arc_flush(spa_t *spa, boolean_t retry)
4484 4484  {
4485 4485          uint64_t guid = 0;
4486 4486  
4487 4487          /*
4488 4488           * If retry is B_TRUE, a spa must not be specified since we have
4489 4489           * no good way to determine if all of a spa's buffers have been
4490 4490           * evicted from an arc state.
4491 4491           */
4492 4492          ASSERT(!retry || spa == 0);
4493 4493  
4494 4494          if (spa != NULL)
4495 4495                  guid = spa_load_guid(spa);
4496 4496  
4497 4497          (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4498 4498          (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4499 4499  
4500 4500          (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4501 4501          (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4502 4502  
4503 4503          (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4504 4504          (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4505 4505  
4506 4506          (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4507 4507          (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4508 4508  }
4509 4509  
4510 4510  static void
4511 4511  arc_reduce_target_size(int64_t to_free)
4512 4512  {
4513 4513          uint64_t asize = aggsum_value(&arc_size);
4514 4514          if (arc_c > arc_c_min) {
4515 4515  
4516 4516                  if (arc_c > arc_c_min + to_free)
4517 4517                          atomic_add_64(&arc_c, -to_free);
4518 4518                  else
4519 4519                          arc_c = arc_c_min;
4520 4520  
4521 4521                  atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4522 4522                  if (asize < arc_c)
4523 4523                          arc_c = MAX(asize, arc_c_min);
4524 4524                  if (arc_p > arc_c)
4525 4525                          arc_p = (arc_c >> 1);
4526 4526                  ASSERT(arc_c >= arc_c_min);
4527 4527                  ASSERT((int64_t)arc_p >= 0);
4528 4528          }
4529 4529  
4530 4530          if (asize > arc_c) {
4531 4531                  /* See comment in arc_adjust_cb_check() on why lock+flag */
4532 4532                  mutex_enter(&arc_adjust_lock);
4533 4533                  arc_adjust_needed = B_TRUE;
4534 4534                  mutex_exit(&arc_adjust_lock);
4535 4535                  zthr_wakeup(arc_adjust_zthr);
4536 4536          }
  
    | 
      ↓ open down ↓ | 
    4503 lines elided | 
    
      ↑ open up ↑ | 
  
4537 4537  }
4538 4538  
4539 4539  typedef enum free_memory_reason_t {
4540 4540          FMR_UNKNOWN,
4541 4541          FMR_NEEDFREE,
4542 4542          FMR_LOTSFREE,
4543 4543          FMR_SWAPFS_MINFREE,
4544 4544          FMR_PAGES_PP_MAXIMUM,
4545 4545          FMR_HEAP_ARENA,
4546 4546          FMR_ZIO_ARENA,
4547      -        FMR_VIRT_MACHINE,       /* 'VM' seems ambiguous in this context */
4548 4547  } free_memory_reason_t;
4549 4548  
4550 4549  int64_t last_free_memory;
4551 4550  free_memory_reason_t last_free_reason;
4552 4551  
4553 4552  /*
4554 4553   * Additional reserve of pages for pp_reserve.
4555 4554   */
4556 4555  int64_t arc_pages_pp_reserve = 64;
4557 4556  
4558 4557  /*
4559 4558   * Additional reserve of pages for swapfs.
4560 4559   */
4561 4560  int64_t arc_swapfs_reserve = 64;
4562 4561  
4563      -static volatile uint64_t arc_virt_machine_reserved;
4564      -
4565 4562  /*
4566      - * XXX: A possible concern is that we allow arc_virt_machine_reserved to
4567      - * get so large that we cause the arc to perform a lot of additional
4568      - * work to keep the arc extremely small. We may want to set limits to
4569      - * the size of arc_virt_machine_reserved and disallow reservations
4570      - * beyond that limit.
4571      - */
4572      -int
4573      -arc_virt_machine_reserve(size_t pages)
4574      -{
4575      -        uint64_t newv;
4576      -
4577      -        newv = atomic_add_64_nv(&arc_virt_machine_reserved, pages);
4578      -
4579      -        /*
4580      -         * Since arc_virt_machine_reserved effectively lowers arc_c_max
4581      -         * as needed for vmm memory, if this request would put the arc
4582      -         * under arc_c_min, we reject it.  arc_c_min should be a value that
4583      -         * ensures reasonable performance for non-VMM stuff, as well as keep
4584      -         * us from dipping below lotsfree, which could trigger the pager
4585      -         * (and send the system toa grinding halt while it pages).
4586      -         *
4587      -         * XXX: This is a bit hacky and might be better done w/ a mutex
4588      -         * instead of atomic ops.
4589      -         */
4590      -        if (newv + arc_c_min > arc_c_max) {
4591      -                atomic_add_64(&arc_virt_machine_reserved, -(int64_t)pages);
4592      -                return (ENOMEM);
4593      -        }
4594      -
4595      -        zthr_wakeup(arc_reap_zthr);
4596      -        return (0);
4597      -}
4598      -
4599      -void
4600      -arc_virt_machine_release(size_t pages)
4601      -{
4602      -        atomic_add_64(&arc_virt_machine_reserved, -(int64_t)pages);
4603      -}
4604      -
4605      -/*
4606 4563   * Return the amount of memory that can be consumed before reclaim will be
4607 4564   * needed.  Positive if there is sufficient free memory, negative indicates
4608 4565   * the amount of memory that needs to be freed up.
4609 4566   */
4610 4567  static int64_t
4611 4568  arc_available_memory(void)
4612 4569  {
4613 4570          int64_t lowest = INT64_MAX;
4614 4571          int64_t n;
4615 4572          free_memory_reason_t r = FMR_UNKNOWN;
4616 4573  
4617 4574  #ifdef _KERNEL
4618 4575          if (needfree > 0) {
4619 4576                  n = PAGESIZE * (-needfree);
4620 4577                  if (n < lowest) {
4621 4578                          lowest = n;
4622 4579                          r = FMR_NEEDFREE;
4623 4580                  }
4624 4581          }
4625 4582  
4626 4583          /*
4627 4584           * check that we're out of range of the pageout scanner.  It starts to
4628 4585           * schedule paging if freemem is less than lotsfree and needfree.
4629 4586           * lotsfree is the high-water mark for pageout, and needfree is the
4630 4587           * number of needed free pages.  We add extra pages here to make sure
4631 4588           * the scanner doesn't start up while we're freeing memory.
4632 4589           */
4633 4590          n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4634 4591          if (n < lowest) {
4635 4592                  lowest = n;
4636 4593                  r = FMR_LOTSFREE;
4637 4594          }
4638 4595  
4639 4596          /*
4640 4597           * check to make sure that swapfs has enough space so that anon
4641 4598           * reservations can still succeed. anon_resvmem() checks that the
4642 4599           * availrmem is greater than swapfs_minfree, and the number of reserved
4643 4600           * swap pages.  We also add a bit of extra here just to prevent
4644 4601           * circumstances from getting really dire.
4645 4602           */
4646 4603          n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4647 4604              desfree - arc_swapfs_reserve);
4648 4605          if (n < lowest) {
4649 4606                  lowest = n;
4650 4607                  r = FMR_SWAPFS_MINFREE;
4651 4608          }
4652 4609  
4653 4610  
4654 4611          /*
4655 4612           * Check that we have enough availrmem that memory locking (e.g., via
4656 4613           * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4657 4614           * stores the number of pages that cannot be locked; when availrmem
  
    | 
      ↓ open down ↓ | 
    42 lines elided | 
    
      ↑ open up ↑ | 
  
4658 4615           * drops below pages_pp_maximum, page locking mechanisms such as
4659 4616           * page_pp_lock() will fail.)
4660 4617           */
4661 4618          n = PAGESIZE * (availrmem - pages_pp_maximum -
4662 4619              arc_pages_pp_reserve);
4663 4620          if (n < lowest) {
4664 4621                  lowest = n;
4665 4622                  r = FMR_PAGES_PP_MAXIMUM;
4666 4623          }
4667 4624  
4668      -        /*
4669      -         * Check that we have enough memory for any virtual machines that
4670      -         * are running or starting. We add desfree to keep us out of
4671      -         * particularly dire circumstances.
4672      -         */
4673      -        n = PAGESIZE * (availrmem - arc_virt_machine_reserved - desfree);
4674      -        if (n < lowest) {
4675      -                lowest = n;
4676      -                r = FMR_VIRT_MACHINE;
4677      -        }
4678      -
4679 4625  #if defined(__i386)
4680 4626          /*
4681 4627           * If we're on an i386 platform, it's possible that we'll exhaust the
4682 4628           * kernel heap space before we ever run out of available physical
4683 4629           * memory.  Most checks of the size of the heap_area compare against
4684 4630           * tune.t_minarmem, which is the minimum available real memory that we
4685 4631           * can have in the system.  However, this is generally fixed at 25 pages
4686 4632           * which is so low that it's useless.  In this comparison, we seek to
4687 4633           * calculate the total heap-size, and reclaim if more than 3/4ths of the
4688 4634           * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4689 4635           * free)
4690 4636           */
4691 4637          n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4692 4638              (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4693 4639          if (n < lowest) {
4694 4640                  lowest = n;
4695 4641                  r = FMR_HEAP_ARENA;
4696 4642          }
4697 4643  #endif
4698 4644  
4699 4645          /*
4700 4646           * If zio data pages are being allocated out of a separate heap segment,
4701 4647           * then enforce that the size of available vmem for this arena remains
4702 4648           * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4703 4649           *
4704 4650           * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4705 4651           * memory (in the zio_arena) free, which can avoid memory
4706 4652           * fragmentation issues.
4707 4653           */
4708 4654          if (zio_arena != NULL) {
4709 4655                  n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4710 4656                      (vmem_size(zio_arena, VMEM_ALLOC) >>
4711 4657                      arc_zio_arena_free_shift);
4712 4658                  if (n < lowest) {
4713 4659                          lowest = n;
4714 4660                          r = FMR_ZIO_ARENA;
4715 4661                  }
4716 4662          }
4717 4663  #else
4718 4664          /* Every 100 calls, free a small amount */
4719 4665          if (spa_get_random(100) == 0)
4720 4666                  lowest = -1024;
4721 4667  #endif
4722 4668  
4723 4669          last_free_memory = lowest;
4724 4670          last_free_reason = r;
4725 4671  
4726 4672          return (lowest);
4727 4673  }
4728 4674  
4729 4675  
4730 4676  /*
4731 4677   * Determine if the system is under memory pressure and is asking
4732 4678   * to reclaim memory. A return value of B_TRUE indicates that the system
4733 4679   * is under memory pressure and that the arc should adjust accordingly.
4734 4680   */
4735 4681  static boolean_t
4736 4682  arc_reclaim_needed(void)
4737 4683  {
4738 4684          return (arc_available_memory() < 0);
4739 4685  }
4740 4686  
4741 4687  static void
4742 4688  arc_kmem_reap_soon(void)
4743 4689  {
4744 4690          size_t                  i;
4745 4691          kmem_cache_t            *prev_cache = NULL;
4746 4692          kmem_cache_t            *prev_data_cache = NULL;
4747 4693          extern kmem_cache_t     *zio_buf_cache[];
4748 4694          extern kmem_cache_t     *zio_data_buf_cache[];
4749 4695          extern kmem_cache_t     *zfs_btree_leaf_cache;
4750 4696          extern kmem_cache_t     *abd_chunk_cache;
4751 4697  
4752 4698  #ifdef _KERNEL
4753 4699          if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4754 4700                  /*
4755 4701                   * We are exceeding our meta-data cache limit.
4756 4702                   * Purge some DNLC entries to release holds on meta-data.
4757 4703                   */
4758 4704                  dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4759 4705          }
4760 4706  #if defined(__i386)
4761 4707          /*
4762 4708           * Reclaim unused memory from all kmem caches.
4763 4709           */
4764 4710          kmem_reap();
4765 4711  #endif
4766 4712  #endif
4767 4713  
4768 4714          for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4769 4715                  if (zio_buf_cache[i] != prev_cache) {
4770 4716                          prev_cache = zio_buf_cache[i];
4771 4717                          kmem_cache_reap_soon(zio_buf_cache[i]);
4772 4718                  }
4773 4719                  if (zio_data_buf_cache[i] != prev_data_cache) {
4774 4720                          prev_data_cache = zio_data_buf_cache[i];
4775 4721                          kmem_cache_reap_soon(zio_data_buf_cache[i]);
4776 4722                  }
4777 4723          }
4778 4724          kmem_cache_reap_soon(abd_chunk_cache);
4779 4725          kmem_cache_reap_soon(buf_cache);
4780 4726          kmem_cache_reap_soon(hdr_full_cache);
4781 4727          kmem_cache_reap_soon(hdr_l2only_cache);
4782 4728          kmem_cache_reap_soon(zfs_btree_leaf_cache);
4783 4729  
4784 4730          if (zio_arena != NULL) {
4785 4731                  /*
4786 4732                   * Ask the vmem arena to reclaim unused memory from its
4787 4733                   * quantum caches.
4788 4734                   */
4789 4735                  vmem_qcache_reap(zio_arena);
4790 4736          }
4791 4737  }
4792 4738  
4793 4739  /* ARGSUSED */
4794 4740  static boolean_t
4795 4741  arc_adjust_cb_check(void *arg, zthr_t *zthr)
4796 4742  {
4797 4743          /*
4798 4744           * This is necessary in order for the mdb ::arc dcmd to
4799 4745           * show up to date information. Since the ::arc command
4800 4746           * does not call the kstat's update function, without
4801 4747           * this call, the command may show stale stats for the
4802 4748           * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4803 4749           * with this change, the data might be up to 1 second
4804 4750           * out of date(the arc_adjust_zthr has a maximum sleep
4805 4751           * time of 1 second); but that should suffice.  The
4806 4752           * arc_state_t structures can be queried directly if more
4807 4753           * accurate information is needed.
4808 4754           */
4809 4755          if (arc_ksp != NULL)
4810 4756                  arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4811 4757  
4812 4758          /*
4813 4759           * We have to rely on arc_get_data_impl() to tell us when to adjust,
4814 4760           * rather than checking if we are overflowing here, so that we are
4815 4761           * sure to not leave arc_get_data_impl() waiting on
4816 4762           * arc_adjust_waiters_cv.  If we have become "not overflowing" since
4817 4763           * arc_get_data_impl() checked, we need to wake it up.  We could
4818 4764           * broadcast the CV here, but arc_get_data_impl() may have not yet
4819 4765           * gone to sleep.  We would need to use a mutex to ensure that this
4820 4766           * function doesn't broadcast until arc_get_data_impl() has gone to
4821 4767           * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
4822 4768           * such a lock would necessarily be incorrect with respect to the
4823 4769           * zthr_lock, which is held before this function is called, and is
4824 4770           * held by arc_get_data_impl() when it calls zthr_wakeup().
4825 4771           */
4826 4772          return (arc_adjust_needed);
4827 4773  }
4828 4774  
4829 4775  /*
4830 4776   * Keep arc_size under arc_c by running arc_adjust which evicts data
4831 4777   * from the ARC.
4832 4778   */
4833 4779  /* ARGSUSED */
4834 4780  static void
4835 4781  arc_adjust_cb(void *arg, zthr_t *zthr)
4836 4782  {
4837 4783          uint64_t evicted = 0;
4838 4784  
4839 4785          /* Evict from cache */
4840 4786          evicted = arc_adjust();
4841 4787  
4842 4788          /*
4843 4789           * If evicted is zero, we couldn't evict anything
4844 4790           * via arc_adjust(). This could be due to hash lock
4845 4791           * collisions, but more likely due to the majority of
4846 4792           * arc buffers being unevictable. Therefore, even if
4847 4793           * arc_size is above arc_c, another pass is unlikely to
4848 4794           * be helpful and could potentially cause us to enter an
4849 4795           * infinite loop.  Additionally, zthr_iscancelled() is
4850 4796           * checked here so that if the arc is shutting down, the
4851 4797           * broadcast will wake any remaining arc adjust waiters.
4852 4798           */
4853 4799          mutex_enter(&arc_adjust_lock);
4854 4800          arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4855 4801              evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4856 4802          if (!arc_adjust_needed) {
4857 4803                  /*
4858 4804                   * We're either no longer overflowing, or we
4859 4805                   * can't evict anything more, so we should wake
4860 4806                   * up any waiters.
4861 4807                   */
4862 4808                  cv_broadcast(&arc_adjust_waiters_cv);
4863 4809          }
4864 4810          mutex_exit(&arc_adjust_lock);
4865 4811  }
4866 4812  
4867 4813  /* ARGSUSED */
4868 4814  static boolean_t
4869 4815  arc_reap_cb_check(void *arg, zthr_t *zthr)
4870 4816  {
4871 4817          int64_t free_memory = arc_available_memory();
4872 4818  
4873 4819          /*
4874 4820           * If a kmem reap is already active, don't schedule more.  We must
4875 4821           * check for this because kmem_cache_reap_soon() won't actually
4876 4822           * block on the cache being reaped (this is to prevent callers from
4877 4823           * becoming implicitly blocked by a system-wide kmem reap -- which,
4878 4824           * on a system with many, many full magazines, can take minutes).
4879 4825           */
4880 4826          if (!kmem_cache_reap_active() &&
4881 4827              free_memory < 0) {
4882 4828                  arc_no_grow = B_TRUE;
4883 4829                  arc_warm = B_TRUE;
4884 4830                  /*
4885 4831                   * Wait at least zfs_grow_retry (default 60) seconds
4886 4832                   * before considering growing.
4887 4833                   */
4888 4834                  arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4889 4835                  return (B_TRUE);
4890 4836          } else if (free_memory < arc_c >> arc_no_grow_shift) {
4891 4837                  arc_no_grow = B_TRUE;
4892 4838          } else if (gethrtime() >= arc_growtime) {
4893 4839                  arc_no_grow = B_FALSE;
4894 4840          }
4895 4841  
4896 4842          return (B_FALSE);
4897 4843  }
4898 4844  
4899 4845  /*
4900 4846   * Keep enough free memory in the system by reaping the ARC's kmem
4901 4847   * caches.  To cause more slabs to be reapable, we may reduce the
4902 4848   * target size of the cache (arc_c), causing the arc_adjust_cb()
4903 4849   * to free more buffers.
4904 4850   */
4905 4851  /* ARGSUSED */
4906 4852  static void
4907 4853  arc_reap_cb(void *arg, zthr_t *zthr)
4908 4854  {
4909 4855          int64_t free_memory;
4910 4856  
4911 4857          /*
4912 4858           * Kick off asynchronous kmem_reap()'s of all our caches.
4913 4859           */
4914 4860          arc_kmem_reap_soon();
4915 4861  
4916 4862          /*
4917 4863           * Wait at least arc_kmem_cache_reap_retry_ms between
4918 4864           * arc_kmem_reap_soon() calls. Without this check it is possible to
4919 4865           * end up in a situation where we spend lots of time reaping
4920 4866           * caches, while we're near arc_c_min.  Waiting here also gives the
4921 4867           * subsequent free memory check a chance of finding that the
4922 4868           * asynchronous reap has already freed enough memory, and we don't
4923 4869           * need to call arc_reduce_target_size().
4924 4870           */
4925 4871          delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4926 4872  
4927 4873          /*
4928 4874           * Reduce the target size as needed to maintain the amount of free
4929 4875           * memory in the system at a fraction of the arc_size (1/128th by
4930 4876           * default).  If oversubscribed (free_memory < 0) then reduce the
4931 4877           * target arc_size by the deficit amount plus the fractional
4932 4878           * amount.  If free memory is positive but less then the fractional
4933 4879           * amount, reduce by what is needed to hit the fractional amount.
4934 4880           */
4935 4881          free_memory = arc_available_memory();
4936 4882  
4937 4883          int64_t to_free =
4938 4884              (arc_c >> arc_shrink_shift) - free_memory;
4939 4885          if (to_free > 0) {
4940 4886  #ifdef _KERNEL
4941 4887                  to_free = MAX(to_free, ptob(needfree));
4942 4888  #endif
4943 4889                  arc_reduce_target_size(to_free);
4944 4890          }
4945 4891  }
4946 4892  
4947 4893  /*
4948 4894   * Adapt arc info given the number of bytes we are trying to add and
4949 4895   * the state that we are coming from.  This function is only called
4950 4896   * when we are adding new content to the cache.
4951 4897   */
4952 4898  static void
4953 4899  arc_adapt(int bytes, arc_state_t *state)
4954 4900  {
4955 4901          int mult;
4956 4902          uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4957 4903          int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
4958 4904          int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
4959 4905  
4960 4906          ASSERT(bytes > 0);
4961 4907          /*
4962 4908           * Adapt the target size of the MRU list:
4963 4909           *      - if we just hit in the MRU ghost list, then increase
4964 4910           *        the target size of the MRU list.
4965 4911           *      - if we just hit in the MFU ghost list, then increase
4966 4912           *        the target size of the MFU list by decreasing the
4967 4913           *        target size of the MRU list.
4968 4914           */
4969 4915          if (state == arc_mru_ghost) {
4970 4916                  mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4971 4917                  mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4972 4918  
4973 4919                  arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4974 4920          } else if (state == arc_mfu_ghost) {
4975 4921                  uint64_t delta;
4976 4922  
4977 4923                  mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4978 4924                  mult = MIN(mult, 10);
4979 4925  
4980 4926                  delta = MIN(bytes * mult, arc_p);
4981 4927                  arc_p = MAX(arc_p_min, arc_p - delta);
4982 4928          }
4983 4929          ASSERT((int64_t)arc_p >= 0);
4984 4930  
4985 4931          /*
4986 4932           * Wake reap thread if we do not have any available memory
4987 4933           */
4988 4934          if (arc_reclaim_needed()) {
4989 4935                  zthr_wakeup(arc_reap_zthr);
4990 4936                  return;
4991 4937          }
4992 4938  
4993 4939  
4994 4940          if (arc_no_grow)
4995 4941                  return;
4996 4942  
4997 4943          if (arc_c >= arc_c_max)
4998 4944                  return;
4999 4945  
5000 4946          /*
5001 4947           * If we're within (2 * maxblocksize) bytes of the target
5002 4948           * cache size, increment the target cache size
5003 4949           */
5004 4950          if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
5005 4951              0) {
5006 4952                  atomic_add_64(&arc_c, (int64_t)bytes);
5007 4953                  if (arc_c > arc_c_max)
5008 4954                          arc_c = arc_c_max;
5009 4955                  else if (state == arc_anon)
5010 4956                          atomic_add_64(&arc_p, (int64_t)bytes);
5011 4957                  if (arc_p > arc_c)
5012 4958                          arc_p = arc_c;
5013 4959          }
5014 4960          ASSERT((int64_t)arc_p >= 0);
5015 4961  }
5016 4962  
5017 4963  /*
5018 4964   * Check if arc_size has grown past our upper threshold, determined by
5019 4965   * zfs_arc_overflow_shift.
5020 4966   */
5021 4967  static boolean_t
5022 4968  arc_is_overflowing(void)
5023 4969  {
5024 4970          /* Always allow at least one block of overflow */
5025 4971          uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5026 4972              arc_c >> zfs_arc_overflow_shift);
5027 4973  
5028 4974          /*
5029 4975           * We just compare the lower bound here for performance reasons. Our
5030 4976           * primary goals are to make sure that the arc never grows without
5031 4977           * bound, and that it can reach its maximum size. This check
5032 4978           * accomplishes both goals. The maximum amount we could run over by is
5033 4979           * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5034 4980           * in the ARC. In practice, that's in the tens of MB, which is low
5035 4981           * enough to be safe.
5036 4982           */
5037 4983          return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
5038 4984  }
5039 4985  
5040 4986  static abd_t *
5041 4987  arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5042 4988      boolean_t do_adapt)
5043 4989  {
5044 4990          arc_buf_contents_t type = arc_buf_type(hdr);
5045 4991  
5046 4992          arc_get_data_impl(hdr, size, tag, do_adapt);
5047 4993          if (type == ARC_BUFC_METADATA) {
5048 4994                  return (abd_alloc(size, B_TRUE));
5049 4995          } else {
5050 4996                  ASSERT(type == ARC_BUFC_DATA);
5051 4997                  return (abd_alloc(size, B_FALSE));
5052 4998          }
5053 4999  }
5054 5000  
5055 5001  static void *
5056 5002  arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5057 5003  {
5058 5004          arc_buf_contents_t type = arc_buf_type(hdr);
5059 5005  
5060 5006          arc_get_data_impl(hdr, size, tag, B_TRUE);
5061 5007          if (type == ARC_BUFC_METADATA) {
5062 5008                  return (zio_buf_alloc(size));
5063 5009          } else {
5064 5010                  ASSERT(type == ARC_BUFC_DATA);
5065 5011                  return (zio_data_buf_alloc(size));
5066 5012          }
5067 5013  }
5068 5014  
5069 5015  /*
5070 5016   * Allocate a block and return it to the caller. If we are hitting the
5071 5017   * hard limit for the cache size, we must sleep, waiting for the eviction
5072 5018   * thread to catch up. If we're past the target size but below the hard
5073 5019   * limit, we'll only signal the reclaim thread and continue on.
5074 5020   */
5075 5021  static void
5076 5022  arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5077 5023      boolean_t do_adapt)
5078 5024  {
5079 5025          arc_state_t *state = hdr->b_l1hdr.b_state;
5080 5026          arc_buf_contents_t type = arc_buf_type(hdr);
5081 5027  
5082 5028          if (do_adapt)
5083 5029                  arc_adapt(size, state);
5084 5030  
5085 5031          /*
5086 5032           * If arc_size is currently overflowing, and has grown past our
5087 5033           * upper limit, we must be adding data faster than the evict
5088 5034           * thread can evict. Thus, to ensure we don't compound the
5089 5035           * problem by adding more data and forcing arc_size to grow even
5090 5036           * further past its target size, we halt and wait for the
5091 5037           * eviction thread to catch up.
5092 5038           *
5093 5039           * It's also possible that the reclaim thread is unable to evict
5094 5040           * enough buffers to get arc_size below the overflow limit (e.g.
5095 5041           * due to buffers being un-evictable, or hash lock collisions).
5096 5042           * In this case, we want to proceed regardless if we're
5097 5043           * overflowing; thus we don't use a while loop here.
5098 5044           */
5099 5045          if (arc_is_overflowing()) {
5100 5046                  mutex_enter(&arc_adjust_lock);
5101 5047  
5102 5048                  /*
5103 5049                   * Now that we've acquired the lock, we may no longer be
5104 5050                   * over the overflow limit, lets check.
5105 5051                   *
5106 5052                   * We're ignoring the case of spurious wake ups. If that
5107 5053                   * were to happen, it'd let this thread consume an ARC
5108 5054                   * buffer before it should have (i.e. before we're under
5109 5055                   * the overflow limit and were signalled by the reclaim
5110 5056                   * thread). As long as that is a rare occurrence, it
5111 5057                   * shouldn't cause any harm.
5112 5058                   */
5113 5059                  if (arc_is_overflowing()) {
5114 5060                          arc_adjust_needed = B_TRUE;
5115 5061                          zthr_wakeup(arc_adjust_zthr);
5116 5062                          (void) cv_wait(&arc_adjust_waiters_cv,
5117 5063                              &arc_adjust_lock);
5118 5064                  }
5119 5065                  mutex_exit(&arc_adjust_lock);
5120 5066          }
5121 5067  
5122 5068          VERIFY3U(hdr->b_type, ==, type);
5123 5069          if (type == ARC_BUFC_METADATA) {
5124 5070                  arc_space_consume(size, ARC_SPACE_META);
5125 5071          } else {
5126 5072                  arc_space_consume(size, ARC_SPACE_DATA);
5127 5073          }
5128 5074  
5129 5075          /*
5130 5076           * Update the state size.  Note that ghost states have a
5131 5077           * "ghost size" and so don't need to be updated.
5132 5078           */
5133 5079          if (!GHOST_STATE(state)) {
5134 5080  
5135 5081                  (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5136 5082  
5137 5083                  /*
5138 5084                   * If this is reached via arc_read, the link is
5139 5085                   * protected by the hash lock. If reached via
5140 5086                   * arc_buf_alloc, the header should not be accessed by
5141 5087                   * any other thread. And, if reached via arc_read_done,
5142 5088                   * the hash lock will protect it if it's found in the
5143 5089                   * hash table; otherwise no other thread should be
5144 5090                   * trying to [add|remove]_reference it.
5145 5091                   */
5146 5092                  if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5147 5093                          ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5148 5094                          (void) zfs_refcount_add_many(&state->arcs_esize[type],
5149 5095                              size, tag);
5150 5096                  }
5151 5097  
5152 5098                  /*
5153 5099                   * If we are growing the cache, and we are adding anonymous
5154 5100                   * data, and we have outgrown arc_p, update arc_p
5155 5101                   */
5156 5102                  if (aggsum_compare(&arc_size, arc_c) < 0 &&
5157 5103                      hdr->b_l1hdr.b_state == arc_anon &&
5158 5104                      (zfs_refcount_count(&arc_anon->arcs_size) +
5159 5105                      zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5160 5106                          arc_p = MIN(arc_c, arc_p + size);
5161 5107          }
5162 5108  }
5163 5109  
5164 5110  static void
5165 5111  arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5166 5112  {
5167 5113          arc_free_data_impl(hdr, size, tag);
5168 5114          abd_free(abd);
5169 5115  }
5170 5116  
5171 5117  static void
5172 5118  arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5173 5119  {
5174 5120          arc_buf_contents_t type = arc_buf_type(hdr);
5175 5121  
5176 5122          arc_free_data_impl(hdr, size, tag);
5177 5123          if (type == ARC_BUFC_METADATA) {
5178 5124                  zio_buf_free(buf, size);
5179 5125          } else {
5180 5126                  ASSERT(type == ARC_BUFC_DATA);
5181 5127                  zio_data_buf_free(buf, size);
5182 5128          }
5183 5129  }
5184 5130  
5185 5131  /*
5186 5132   * Free the arc data buffer.
5187 5133   */
5188 5134  static void
5189 5135  arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5190 5136  {
5191 5137          arc_state_t *state = hdr->b_l1hdr.b_state;
5192 5138          arc_buf_contents_t type = arc_buf_type(hdr);
5193 5139  
5194 5140          /* protected by hash lock, if in the hash table */
5195 5141          if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5196 5142                  ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5197 5143                  ASSERT(state != arc_anon && state != arc_l2c_only);
5198 5144  
5199 5145                  (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5200 5146                      size, tag);
5201 5147          }
5202 5148          (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5203 5149  
5204 5150          VERIFY3U(hdr->b_type, ==, type);
5205 5151          if (type == ARC_BUFC_METADATA) {
5206 5152                  arc_space_return(size, ARC_SPACE_META);
5207 5153          } else {
5208 5154                  ASSERT(type == ARC_BUFC_DATA);
5209 5155                  arc_space_return(size, ARC_SPACE_DATA);
5210 5156          }
5211 5157  }
5212 5158  
5213 5159  /*
5214 5160   * This routine is called whenever a buffer is accessed.
5215 5161   * NOTE: the hash lock is dropped in this function.
5216 5162   */
5217 5163  static void
5218 5164  arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5219 5165  {
5220 5166          clock_t now;
5221 5167  
5222 5168          ASSERT(MUTEX_HELD(hash_lock));
5223 5169          ASSERT(HDR_HAS_L1HDR(hdr));
5224 5170  
5225 5171          if (hdr->b_l1hdr.b_state == arc_anon) {
5226 5172                  /*
5227 5173                   * This buffer is not in the cache, and does not
5228 5174                   * appear in our "ghost" list.  Add the new buffer
5229 5175                   * to the MRU state.
5230 5176                   */
5231 5177  
5232 5178                  ASSERT0(hdr->b_l1hdr.b_arc_access);
5233 5179                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5234 5180                  DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5235 5181                  arc_change_state(arc_mru, hdr, hash_lock);
5236 5182  
5237 5183          } else if (hdr->b_l1hdr.b_state == arc_mru) {
5238 5184                  now = ddi_get_lbolt();
5239 5185  
5240 5186                  /*
5241 5187                   * If this buffer is here because of a prefetch, then either:
5242 5188                   * - clear the flag if this is a "referencing" read
5243 5189                   *   (any subsequent access will bump this into the MFU state).
5244 5190                   * or
5245 5191                   * - move the buffer to the head of the list if this is
5246 5192                   *   another prefetch (to make it less likely to be evicted).
5247 5193                   */
5248 5194                  if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5249 5195                          if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5250 5196                                  /* link protected by hash lock */
5251 5197                                  ASSERT(multilist_link_active(
5252 5198                                      &hdr->b_l1hdr.b_arc_node));
5253 5199                          } else {
5254 5200                                  if (HDR_HAS_L2HDR(hdr))
5255 5201                                          l2arc_hdr_arcstats_decrement_state(hdr);
5256 5202                                  arc_hdr_clear_flags(hdr,
5257 5203                                      ARC_FLAG_PREFETCH |
5258 5204                                      ARC_FLAG_PRESCIENT_PREFETCH);
5259 5205                                  ARCSTAT_BUMP(arcstat_mru_hits);
5260 5206                                  if (HDR_HAS_L2HDR(hdr))
5261 5207                                          l2arc_hdr_arcstats_increment_state(hdr);
5262 5208                          }
5263 5209                          hdr->b_l1hdr.b_arc_access = now;
5264 5210                          return;
5265 5211                  }
5266 5212  
5267 5213                  /*
5268 5214                   * This buffer has been "accessed" only once so far,
5269 5215                   * but it is still in the cache. Move it to the MFU
5270 5216                   * state.
5271 5217                   */
5272 5218                  if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5273 5219                          /*
5274 5220                           * More than 125ms have passed since we
5275 5221                           * instantiated this buffer.  Move it to the
5276 5222                           * most frequently used state.
5277 5223                           */
5278 5224                          hdr->b_l1hdr.b_arc_access = now;
5279 5225                          DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5280 5226                          arc_change_state(arc_mfu, hdr, hash_lock);
5281 5227                  }
5282 5228                  ARCSTAT_BUMP(arcstat_mru_hits);
5283 5229          } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5284 5230                  arc_state_t     *new_state;
5285 5231                  /*
5286 5232                   * This buffer has been "accessed" recently, but
5287 5233                   * was evicted from the cache.  Move it to the
5288 5234                   * MFU state.
5289 5235                   */
5290 5236                  if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5291 5237                          new_state = arc_mru;
5292 5238                          if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5293 5239                                  if (HDR_HAS_L2HDR(hdr))
5294 5240                                          l2arc_hdr_arcstats_decrement_state(hdr);
5295 5241                                  arc_hdr_clear_flags(hdr,
5296 5242                                      ARC_FLAG_PREFETCH |
5297 5243                                      ARC_FLAG_PRESCIENT_PREFETCH);
5298 5244                                  if (HDR_HAS_L2HDR(hdr))
5299 5245                                          l2arc_hdr_arcstats_increment_state(hdr);
5300 5246                          }
5301 5247                          DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5302 5248                  } else {
5303 5249                          new_state = arc_mfu;
5304 5250                          DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5305 5251                  }
5306 5252  
5307 5253                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5308 5254                  arc_change_state(new_state, hdr, hash_lock);
5309 5255  
5310 5256                  ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5311 5257          } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5312 5258                  /*
5313 5259                   * This buffer has been accessed more than once and is
5314 5260                   * still in the cache.  Keep it in the MFU state.
5315 5261                   *
5316 5262                   * NOTE: an add_reference() that occurred when we did
5317 5263                   * the arc_read() will have kicked this off the list.
5318 5264                   * If it was a prefetch, we will explicitly move it to
5319 5265                   * the head of the list now.
5320 5266                   */
5321 5267                  ARCSTAT_BUMP(arcstat_mfu_hits);
5322 5268                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5323 5269          } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5324 5270                  arc_state_t     *new_state = arc_mfu;
5325 5271                  /*
5326 5272                   * This buffer has been accessed more than once but has
5327 5273                   * been evicted from the cache.  Move it back to the
5328 5274                   * MFU state.
5329 5275                   */
5330 5276  
5331 5277                  if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5332 5278                          /*
5333 5279                           * This is a prefetch access...
5334 5280                           * move this block back to the MRU state.
5335 5281                           */
5336 5282                          new_state = arc_mru;
5337 5283                  }
5338 5284  
5339 5285                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5340 5286                  DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5341 5287                  arc_change_state(new_state, hdr, hash_lock);
5342 5288  
5343 5289                  ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5344 5290          } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5345 5291                  /*
5346 5292                   * This buffer is on the 2nd Level ARC.
5347 5293                   */
5348 5294  
5349 5295                  hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5350 5296                  DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5351 5297                  arc_change_state(arc_mfu, hdr, hash_lock);
5352 5298          } else {
5353 5299                  ASSERT(!"invalid arc state");
5354 5300          }
5355 5301  }
5356 5302  
5357 5303  /*
5358 5304   * This routine is called by dbuf_hold() to update the arc_access() state
5359 5305   * which otherwise would be skipped for entries in the dbuf cache.
5360 5306   */
5361 5307  void
5362 5308  arc_buf_access(arc_buf_t *buf)
5363 5309  {
5364 5310          mutex_enter(&buf->b_evict_lock);
5365 5311          arc_buf_hdr_t *hdr = buf->b_hdr;
5366 5312  
5367 5313          /*
5368 5314           * Avoid taking the hash_lock when possible as an optimization.
5369 5315           * The header must be checked again under the hash_lock in order
5370 5316           * to handle the case where it is concurrently being released.
5371 5317           */
5372 5318          if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5373 5319                  mutex_exit(&buf->b_evict_lock);
5374 5320                  return;
5375 5321          }
5376 5322  
5377 5323          kmutex_t *hash_lock = HDR_LOCK(hdr);
5378 5324          mutex_enter(hash_lock);
5379 5325  
5380 5326          if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5381 5327                  mutex_exit(hash_lock);
5382 5328                  mutex_exit(&buf->b_evict_lock);
5383 5329                  ARCSTAT_BUMP(arcstat_access_skip);
5384 5330                  return;
5385 5331          }
5386 5332  
5387 5333          mutex_exit(&buf->b_evict_lock);
5388 5334  
5389 5335          ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5390 5336              hdr->b_l1hdr.b_state == arc_mfu);
5391 5337  
5392 5338          DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5393 5339          arc_access(hdr, hash_lock);
5394 5340          mutex_exit(hash_lock);
5395 5341  
5396 5342          ARCSTAT_BUMP(arcstat_hits);
5397 5343          ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5398 5344              demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5399 5345  }
5400 5346  
5401 5347  /* a generic arc_read_done_func_t which you can use */
5402 5348  /* ARGSUSED */
5403 5349  void
5404 5350  arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5405 5351      arc_buf_t *buf, void *arg)
5406 5352  {
5407 5353          if (buf == NULL)
5408 5354                  return;
5409 5355  
5410 5356          bcopy(buf->b_data, arg, arc_buf_size(buf));
5411 5357          arc_buf_destroy(buf, arg);
5412 5358  }
5413 5359  
5414 5360  /* a generic arc_read_done_func_t */
5415 5361  void
5416 5362  arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5417 5363      arc_buf_t *buf, void *arg)
5418 5364  {
5419 5365          arc_buf_t **bufp = arg;
5420 5366  
5421 5367          if (buf == NULL) {
5422 5368                  ASSERT(zio == NULL || zio->io_error != 0);
5423 5369                  *bufp = NULL;
5424 5370          } else {
5425 5371                  ASSERT(zio == NULL || zio->io_error == 0);
5426 5372                  *bufp = buf;
5427 5373                  ASSERT(buf->b_data != NULL);
5428 5374          }
5429 5375  }
5430 5376  
5431 5377  static void
5432 5378  arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp)
5433 5379  {
5434 5380          if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5435 5381                  ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5436 5382                  ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5437 5383          } else {
5438 5384                  if (HDR_COMPRESSION_ENABLED(hdr)) {
5439 5385                          ASSERT3U(arc_hdr_get_compress(hdr), ==,
5440 5386                              BP_GET_COMPRESS(bp));
5441 5387                  }
5442 5388                  ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5443 5389                  ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5444 5390                  ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5445 5391          }
5446 5392  }
5447 5393  
5448 5394  /*
5449 5395   * XXX this should be changed to return an error, and callers
5450 5396   * re-read from disk on failure (on nondebug bits).
5451 5397   */
5452 5398  static void
5453 5399  arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp)
5454 5400  {
5455 5401          arc_hdr_verify(hdr, bp);
5456 5402          if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
5457 5403                  return;
5458 5404          int err = 0;
5459 5405          abd_t *abd = NULL;
5460 5406          if (BP_IS_ENCRYPTED(bp)) {
5461 5407                  if (HDR_HAS_RABD(hdr)) {
5462 5408                          abd = hdr->b_crypt_hdr.b_rabd;
5463 5409                  }
5464 5410          } else if (HDR_COMPRESSION_ENABLED(hdr)) {
5465 5411                  abd = hdr->b_l1hdr.b_pabd;
5466 5412          }
5467 5413          if (abd != NULL) {
5468 5414                  /*
5469 5415                   * The offset is only used for labels, which are not
5470 5416                   * cached in the ARC, so it doesn't matter what we
5471 5417                   * pass for the offset parameter.
5472 5418                   */
5473 5419                  int psize = HDR_GET_PSIZE(hdr);
5474 5420                  err = zio_checksum_error_impl(spa, bp,
5475 5421                      BP_GET_CHECKSUM(bp), abd, psize, 0, NULL);
5476 5422                  if (err != 0) {
5477 5423                          /*
5478 5424                           * Use abd_copy_to_buf() rather than
5479 5425                           * abd_borrow_buf_copy() so that we are sure to
5480 5426                           * include the buf in crash dumps.
5481 5427                           */
5482 5428                          void *buf = kmem_alloc(psize, KM_SLEEP);
5483 5429                          abd_copy_to_buf(buf, abd, psize);
5484 5430                          panic("checksum of cached data doesn't match BP "
5485 5431                              "err=%u hdr=%p bp=%p abd=%p buf=%p",
5486 5432                              err, (void *)hdr, (void *)bp, (void *)abd, buf);
5487 5433                  }
5488 5434          }
5489 5435  }
5490 5436  
5491 5437  static void
5492 5438  arc_read_done(zio_t *zio)
5493 5439  {
5494 5440          blkptr_t        *bp = zio->io_bp;
5495 5441          arc_buf_hdr_t   *hdr = zio->io_private;
5496 5442          kmutex_t        *hash_lock = NULL;
5497 5443          arc_callback_t  *callback_list;
5498 5444          arc_callback_t  *acb;
5499 5445          boolean_t       freeable = B_FALSE;
5500 5446  
5501 5447          /*
5502 5448           * The hdr was inserted into hash-table and removed from lists
5503 5449           * prior to starting I/O.  We should find this header, since
5504 5450           * it's in the hash table, and it should be legit since it's
5505 5451           * not possible to evict it during the I/O.  The only possible
5506 5452           * reason for it not to be found is if we were freed during the
5507 5453           * read.
5508 5454           */
5509 5455          if (HDR_IN_HASH_TABLE(hdr)) {
5510 5456                  ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5511 5457                  ASSERT3U(hdr->b_dva.dva_word[0], ==,
5512 5458                      BP_IDENTITY(zio->io_bp)->dva_word[0]);
5513 5459                  ASSERT3U(hdr->b_dva.dva_word[1], ==,
5514 5460                      BP_IDENTITY(zio->io_bp)->dva_word[1]);
5515 5461  
5516 5462                  arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5517 5463                      &hash_lock);
5518 5464  
5519 5465                  ASSERT((found == hdr &&
5520 5466                      DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5521 5467                      (found == hdr && HDR_L2_READING(hdr)));
5522 5468                  ASSERT3P(hash_lock, !=, NULL);
5523 5469          }
5524 5470  
5525 5471          if (BP_IS_PROTECTED(bp)) {
5526 5472                  hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5527 5473                  hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5528 5474                  zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5529 5475                      hdr->b_crypt_hdr.b_iv);
5530 5476  
5531 5477                  if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5532 5478                          void *tmpbuf;
5533 5479  
5534 5480                          tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5535 5481                              sizeof (zil_chain_t));
5536 5482                          zio_crypt_decode_mac_zil(tmpbuf,
5537 5483                              hdr->b_crypt_hdr.b_mac);
5538 5484                          abd_return_buf(zio->io_abd, tmpbuf,
5539 5485                              sizeof (zil_chain_t));
5540 5486                  } else {
5541 5487                          zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5542 5488                  }
5543 5489          }
5544 5490  
5545 5491          if (zio->io_error == 0) {
5546 5492                  /* byteswap if necessary */
5547 5493                  if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5548 5494                          if (BP_GET_LEVEL(zio->io_bp) > 0) {
5549 5495                                  hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5550 5496                          } else {
5551 5497                                  hdr->b_l1hdr.b_byteswap =
5552 5498                                      DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5553 5499                          }
5554 5500                  } else {
5555 5501                          hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5556 5502                  }
5557 5503          }
5558 5504  
5559 5505          arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5560 5506  
5561 5507          callback_list = hdr->b_l1hdr.b_acb;
5562 5508          ASSERT3P(callback_list, !=, NULL);
5563 5509  
5564 5510          if (hash_lock && zio->io_error == 0 &&
5565 5511              hdr->b_l1hdr.b_state == arc_anon) {
5566 5512                  /*
5567 5513                   * Only call arc_access on anonymous buffers.  This is because
5568 5514                   * if we've issued an I/O for an evicted buffer, we've already
5569 5515                   * called arc_access (to prevent any simultaneous readers from
5570 5516                   * getting confused).
5571 5517                   */
5572 5518                  arc_access(hdr, hash_lock);
5573 5519          }
5574 5520  
5575 5521          /*
5576 5522           * If a read request has a callback (i.e. acb_done is not NULL), then we
5577 5523           * make a buf containing the data according to the parameters which were
5578 5524           * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5579 5525           * aren't needlessly decompressing the data multiple times.
5580 5526           */
5581 5527          int callback_cnt = 0;
5582 5528          for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5583 5529                  if (!acb->acb_done)
5584 5530                          continue;
5585 5531  
5586 5532                  callback_cnt++;
5587 5533  
5588 5534                  if (zio->io_error != 0)
5589 5535                          continue;
5590 5536  
5591 5537                  int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5592 5538                      &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5593 5539                      acb->acb_compressed, acb->acb_noauth, B_TRUE,
5594 5540                      &acb->acb_buf);
5595 5541  
5596 5542                  /*
5597 5543                   * Assert non-speculative zios didn't fail because an
5598 5544                   * encryption key wasn't loaded
5599 5545                   */
5600 5546                  ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5601 5547                      error != EACCES);
5602 5548  
5603 5549                  /*
5604 5550                   * If we failed to decrypt, report an error now (as the zio
5605 5551                   * layer would have done if it had done the transforms).
5606 5552                   */
5607 5553                  if (error == ECKSUM) {
5608 5554                          ASSERT(BP_IS_PROTECTED(bp));
5609 5555                          error = SET_ERROR(EIO);
5610 5556                          if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5611 5557                                  spa_log_error(zio->io_spa, &acb->acb_zb);
5612 5558                                  (void) zfs_ereport_post(
5613 5559                                      FM_EREPORT_ZFS_AUTHENTICATION,
5614 5560                                      zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
5615 5561                          }
5616 5562                  }
5617 5563  
5618 5564                  if (error != 0) {
5619 5565                          /*
5620 5566                           * Decompression failed.  Set io_error
5621 5567                           * so that when we call acb_done (below),
5622 5568                           * we will indicate that the read failed.
5623 5569                           * Note that in the unusual case where one
5624 5570                           * callback is compressed and another
5625 5571                           * uncompressed, we will mark all of them
5626 5572                           * as failed, even though the uncompressed
5627 5573                           * one can't actually fail.  In this case,
5628 5574                           * the hdr will not be anonymous, because
5629 5575                           * if there are multiple callbacks, it's
5630 5576                           * because multiple threads found the same
5631 5577                           * arc buf in the hash table.
5632 5578                           */
5633 5579                          zio->io_error = error;
5634 5580                  }
5635 5581          }
5636 5582  
5637 5583          /*
5638 5584           * If there are multiple callbacks, we must have the hash lock,
5639 5585           * because the only way for multiple threads to find this hdr is
5640 5586           * in the hash table.  This ensures that if there are multiple
5641 5587           * callbacks, the hdr is not anonymous.  If it were anonymous,
5642 5588           * we couldn't use arc_buf_destroy() in the error case below.
5643 5589           */
5644 5590          ASSERT(callback_cnt < 2 || hash_lock != NULL);
5645 5591  
5646 5592          hdr->b_l1hdr.b_acb = NULL;
5647 5593          arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5648 5594          if (callback_cnt == 0)
5649 5595                  ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5650 5596  
5651 5597          ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5652 5598              callback_list != NULL);
5653 5599  
5654 5600          if (zio->io_error == 0) {
5655 5601                  arc_hdr_verify(hdr, zio->io_bp);
5656 5602          } else {
5657 5603                  arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5658 5604                  if (hdr->b_l1hdr.b_state != arc_anon)
5659 5605                          arc_change_state(arc_anon, hdr, hash_lock);
5660 5606                  if (HDR_IN_HASH_TABLE(hdr))
5661 5607                          buf_hash_remove(hdr);
5662 5608                  freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5663 5609          }
5664 5610  
5665 5611          /*
5666 5612           * Broadcast before we drop the hash_lock to avoid the possibility
5667 5613           * that the hdr (and hence the cv) might be freed before we get to
5668 5614           * the cv_broadcast().
5669 5615           */
5670 5616          cv_broadcast(&hdr->b_l1hdr.b_cv);
5671 5617  
5672 5618          if (hash_lock != NULL) {
5673 5619                  mutex_exit(hash_lock);
5674 5620          } else {
5675 5621                  /*
5676 5622                   * This block was freed while we waited for the read to
5677 5623                   * complete.  It has been removed from the hash table and
5678 5624                   * moved to the anonymous state (so that it won't show up
5679 5625                   * in the cache).
5680 5626                   */
5681 5627                  ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5682 5628                  freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5683 5629          }
5684 5630  
5685 5631          /* execute each callback and free its structure */
5686 5632          while ((acb = callback_list) != NULL) {
5687 5633  
5688 5634                  if (acb->acb_done != NULL) {
5689 5635                          if (zio->io_error != 0 && acb->acb_buf != NULL) {
5690 5636                                  /*
5691 5637                                   * If arc_buf_alloc_impl() fails during
5692 5638                                   * decompression, the buf will still be
5693 5639                                   * allocated, and needs to be freed here.
5694 5640                                   */
5695 5641                                  arc_buf_destroy(acb->acb_buf, acb->acb_private);
5696 5642                                  acb->acb_buf = NULL;
5697 5643                          }
5698 5644                          acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5699 5645                              acb->acb_buf, acb->acb_private);
5700 5646                  }
5701 5647  
5702 5648                  if (acb->acb_zio_dummy != NULL) {
5703 5649                          acb->acb_zio_dummy->io_error = zio->io_error;
5704 5650                          zio_nowait(acb->acb_zio_dummy);
5705 5651                  }
5706 5652  
5707 5653                  callback_list = acb->acb_next;
5708 5654                  kmem_free(acb, sizeof (arc_callback_t));
5709 5655          }
5710 5656  
5711 5657          if (freeable)
5712 5658                  arc_hdr_destroy(hdr);
5713 5659  }
5714 5660  
5715 5661  /*
5716 5662   * "Read" the block at the specified DVA (in bp) via the
5717 5663   * cache.  If the block is found in the cache, invoke the provided
5718 5664   * callback immediately and return.  Note that the `zio' parameter
5719 5665   * in the callback will be NULL in this case, since no IO was
5720 5666   * required.  If the block is not in the cache pass the read request
5721 5667   * on to the spa with a substitute callback function, so that the
5722 5668   * requested block will be added to the cache.
5723 5669   *
5724 5670   * If a read request arrives for a block that has a read in-progress,
5725 5671   * either wait for the in-progress read to complete (and return the
5726 5672   * results); or, if this is a read with a "done" func, add a record
5727 5673   * to the read to invoke the "done" func when the read completes,
5728 5674   * and return; or just return.
5729 5675   *
5730 5676   * arc_read_done() will invoke all the requested "done" functions
5731 5677   * for readers of this block.
5732 5678   */
5733 5679  int
5734 5680  arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5735 5681      void *private, zio_priority_t priority, int zio_flags,
5736 5682      arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5737 5683  {
5738 5684          arc_buf_hdr_t *hdr = NULL;
5739 5685          kmutex_t *hash_lock = NULL;
5740 5686          zio_t *rzio;
5741 5687          uint64_t guid = spa_load_guid(spa);
5742 5688          boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5743 5689          boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5744 5690              (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5745 5691          boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5746 5692              (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5747 5693          int rc = 0;
5748 5694  
5749 5695          ASSERT(!BP_IS_EMBEDDED(bp) ||
5750 5696              BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5751 5697  
5752 5698  top:
5753 5699          if (!BP_IS_EMBEDDED(bp)) {
5754 5700                  /*
5755 5701                   * Embedded BP's have no DVA and require no I/O to "read".
5756 5702                   * Create an anonymous arc buf to back it.
5757 5703                   */
5758 5704                  hdr = buf_hash_find(guid, bp, &hash_lock);
5759 5705          }
5760 5706  
5761 5707          /*
5762 5708           * Determine if we have an L1 cache hit or a cache miss. For simplicity
5763 5709           * we maintain encrypted data seperately from compressed / uncompressed
5764 5710           * data. If the user is requesting raw encrypted data and we don't have
5765 5711           * that in the header we will read from disk to guarantee that we can
5766 5712           * get it even if the encryption keys aren't loaded.
5767 5713           */
5768 5714          if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5769 5715              (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5770 5716                  arc_buf_t *buf = NULL;
5771 5717                  *arc_flags |= ARC_FLAG_CACHED;
5772 5718  
5773 5719                  if (HDR_IO_IN_PROGRESS(hdr)) {
5774 5720                          zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5775 5721  
5776 5722                          ASSERT3P(head_zio, !=, NULL);
5777 5723                          if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5778 5724                              priority == ZIO_PRIORITY_SYNC_READ) {
5779 5725                                  /*
5780 5726                                   * This is a sync read that needs to wait for
5781 5727                                   * an in-flight async read. Request that the
5782 5728                                   * zio have its priority upgraded.
5783 5729                                   */
5784 5730                                  zio_change_priority(head_zio, priority);
5785 5731                                  DTRACE_PROBE1(arc__async__upgrade__sync,
5786 5732                                      arc_buf_hdr_t *, hdr);
5787 5733                                  ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5788 5734                          }
5789 5735                          if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5790 5736                                  arc_hdr_clear_flags(hdr,
5791 5737                                      ARC_FLAG_PREDICTIVE_PREFETCH);
5792 5738                          }
5793 5739  
5794 5740                          if (*arc_flags & ARC_FLAG_WAIT) {
5795 5741                                  cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5796 5742                                  mutex_exit(hash_lock);
5797 5743                                  goto top;
5798 5744                          }
5799 5745                          ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5800 5746  
5801 5747                          if (done) {
5802 5748                                  arc_callback_t *acb = NULL;
5803 5749  
5804 5750                                  acb = kmem_zalloc(sizeof (arc_callback_t),
5805 5751                                      KM_SLEEP);
5806 5752                                  acb->acb_done = done;
5807 5753                                  acb->acb_private = private;
5808 5754                                  acb->acb_compressed = compressed_read;
5809 5755                                  acb->acb_encrypted = encrypted_read;
5810 5756                                  acb->acb_noauth = noauth_read;
5811 5757                                  acb->acb_zb = *zb;
5812 5758                                  if (pio != NULL)
5813 5759                                          acb->acb_zio_dummy = zio_null(pio,
5814 5760                                              spa, NULL, NULL, NULL, zio_flags);
5815 5761  
5816 5762                                  ASSERT3P(acb->acb_done, !=, NULL);
5817 5763                                  acb->acb_zio_head = head_zio;
5818 5764                                  acb->acb_next = hdr->b_l1hdr.b_acb;
5819 5765                                  hdr->b_l1hdr.b_acb = acb;
5820 5766                                  mutex_exit(hash_lock);
5821 5767                                  return (0);
5822 5768                          }
5823 5769                          mutex_exit(hash_lock);
5824 5770                          return (0);
5825 5771                  }
5826 5772  
5827 5773                  ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5828 5774                      hdr->b_l1hdr.b_state == arc_mfu);
5829 5775  
5830 5776                  if (done) {
5831 5777                          if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5832 5778                                  /*
5833 5779                                   * This is a demand read which does not have to
5834 5780                                   * wait for i/o because we did a predictive
5835 5781                                   * prefetch i/o for it, which has completed.
5836 5782                                   */
5837 5783                                  DTRACE_PROBE1(
5838 5784                                      arc__demand__hit__predictive__prefetch,
5839 5785                                      arc_buf_hdr_t *, hdr);
5840 5786                                  ARCSTAT_BUMP(
5841 5787                                      arcstat_demand_hit_predictive_prefetch);
5842 5788                                  arc_hdr_clear_flags(hdr,
5843 5789                                      ARC_FLAG_PREDICTIVE_PREFETCH);
5844 5790                          }
5845 5791  
5846 5792                          if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5847 5793                                  ARCSTAT_BUMP(
5848 5794                                      arcstat_demand_hit_prescient_prefetch);
5849 5795                                  arc_hdr_clear_flags(hdr,
5850 5796                                      ARC_FLAG_PRESCIENT_PREFETCH);
5851 5797                          }
5852 5798  
5853 5799                          ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5854 5800  
5855 5801                          arc_hdr_verify_checksum(spa, hdr, bp);
5856 5802  
5857 5803                          /* Get a buf with the desired data in it. */
5858 5804                          rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5859 5805                              encrypted_read, compressed_read, noauth_read,
5860 5806                              B_TRUE, &buf);
5861 5807                          if (rc == ECKSUM) {
5862 5808                                  /*
5863 5809                                   * Convert authentication and decryption errors
5864 5810                                   * to EIO (and generate an ereport if needed)
5865 5811                                   * before leaving the ARC.
5866 5812                                   */
5867 5813                                  rc = SET_ERROR(EIO);
5868 5814                                  if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5869 5815                                          spa_log_error(spa, zb);
5870 5816                                          (void) zfs_ereport_post(
5871 5817                                              FM_EREPORT_ZFS_AUTHENTICATION,
5872 5818                                              spa, NULL, zb, NULL, 0, 0);
5873 5819                                  }
5874 5820                          }
5875 5821                          if (rc != 0) {
5876 5822                                  (void) remove_reference(hdr, hash_lock,
5877 5823                                      private);
5878 5824                                  arc_buf_destroy_impl(buf);
5879 5825                                  buf = NULL;
5880 5826                          }
5881 5827                          /* assert any errors weren't due to unloaded keys */
5882 5828                          ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5883 5829                              rc != EACCES);
5884 5830                  } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5885 5831                      zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5886 5832                          if (HDR_HAS_L2HDR(hdr))
5887 5833                                  l2arc_hdr_arcstats_decrement_state(hdr);
5888 5834                          arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5889 5835                          if (HDR_HAS_L2HDR(hdr))
5890 5836                                  l2arc_hdr_arcstats_increment_state(hdr);
5891 5837                  }
5892 5838                  DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5893 5839                  arc_access(hdr, hash_lock);
5894 5840                  if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5895 5841                          arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5896 5842                  if (*arc_flags & ARC_FLAG_L2CACHE)
5897 5843                          arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5898 5844                  mutex_exit(hash_lock);
5899 5845                  ARCSTAT_BUMP(arcstat_hits);
5900 5846                  ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5901 5847                      demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5902 5848                      data, metadata, hits);
5903 5849  
5904 5850                  if (done)
5905 5851                          done(NULL, zb, bp, buf, private);
5906 5852          } else {
5907 5853                  uint64_t lsize = BP_GET_LSIZE(bp);
5908 5854                  uint64_t psize = BP_GET_PSIZE(bp);
5909 5855                  arc_callback_t *acb;
5910 5856                  vdev_t *vd = NULL;
5911 5857                  uint64_t addr = 0;
5912 5858                  boolean_t devw = B_FALSE;
5913 5859                  uint64_t size;
5914 5860                  abd_t *hdr_abd;
5915 5861                  int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5916 5862  
5917 5863                  if (hdr == NULL) {
5918 5864                          /* this block is not in the cache */
5919 5865                          arc_buf_hdr_t *exists = NULL;
5920 5866                          arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5921 5867                          hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5922 5868                              BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
5923 5869                              encrypted_read);
5924 5870  
5925 5871                          if (!BP_IS_EMBEDDED(bp)) {
5926 5872                                  hdr->b_dva = *BP_IDENTITY(bp);
5927 5873                                  hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5928 5874                                  exists = buf_hash_insert(hdr, &hash_lock);
5929 5875                          }
5930 5876                          if (exists != NULL) {
5931 5877                                  /* somebody beat us to the hash insert */
5932 5878                                  mutex_exit(hash_lock);
5933 5879                                  buf_discard_identity(hdr);
5934 5880                                  arc_hdr_destroy(hdr);
5935 5881                                  goto top; /* restart the IO request */
5936 5882                          }
5937 5883                  } else {
5938 5884                          /*
5939 5885                           * This block is in the ghost cache or encrypted data
5940 5886                           * was requested and we didn't have it. If it was
5941 5887                           * L2-only (and thus didn't have an L1 hdr),
5942 5888                           * we realloc the header to add an L1 hdr.
5943 5889                           */
5944 5890                          if (!HDR_HAS_L1HDR(hdr)) {
5945 5891                                  hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5946 5892                                      hdr_full_cache);
5947 5893                          }
5948 5894  
5949 5895                          if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5950 5896                                  ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5951 5897                                  ASSERT(!HDR_HAS_RABD(hdr));
5952 5898                                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5953 5899                                  ASSERT0(zfs_refcount_count(
5954 5900                                      &hdr->b_l1hdr.b_refcnt));
5955 5901                                  ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5956 5902                                  ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5957 5903                          } else if (HDR_IO_IN_PROGRESS(hdr)) {
5958 5904                                  /*
5959 5905                                   * If this header already had an IO in progress
5960 5906                                   * and we are performing another IO to fetch
5961 5907                                   * encrypted data we must wait until the first
5962 5908                                   * IO completes so as not to confuse
5963 5909                                   * arc_read_done(). This should be very rare
5964 5910                                   * and so the performance impact shouldn't
5965 5911                                   * matter.
5966 5912                                   */
5967 5913                                  cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5968 5914                                  mutex_exit(hash_lock);
5969 5915                                  goto top;
5970 5916                          }
5971 5917  
5972 5918                          /*
5973 5919                           * This is a delicate dance that we play here.
5974 5920                           * This hdr might be in the ghost list so we access
5975 5921                           * it to move it out of the ghost list before we
5976 5922                           * initiate the read. If it's a prefetch then
5977 5923                           * it won't have a callback so we'll remove the
5978 5924                           * reference that arc_buf_alloc_impl() created. We
5979 5925                           * do this after we've called arc_access() to
5980 5926                           * avoid hitting an assert in remove_reference().
5981 5927                           */
5982 5928                          arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
5983 5929                          arc_access(hdr, hash_lock);
5984 5930                          arc_hdr_alloc_pabd(hdr, alloc_flags);
5985 5931                  }
5986 5932  
5987 5933                  if (encrypted_read) {
5988 5934                          ASSERT(HDR_HAS_RABD(hdr));
5989 5935                          size = HDR_GET_PSIZE(hdr);
5990 5936                          hdr_abd = hdr->b_crypt_hdr.b_rabd;
5991 5937                          zio_flags |= ZIO_FLAG_RAW;
5992 5938                  } else {
5993 5939                          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5994 5940                          size = arc_hdr_size(hdr);
5995 5941                          hdr_abd = hdr->b_l1hdr.b_pabd;
5996 5942  
5997 5943                          if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5998 5944                                  zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5999 5945                          }
6000 5946  
6001 5947                          /*
6002 5948                           * For authenticated bp's, we do not ask the ZIO layer
6003 5949                           * to authenticate them since this will cause the entire
6004 5950                           * IO to fail if the key isn't loaded. Instead, we
6005 5951                           * defer authentication until arc_buf_fill(), which will
6006 5952                           * verify the data when the key is available.
6007 5953                           */
6008 5954                          if (BP_IS_AUTHENTICATED(bp))
6009 5955                                  zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6010 5956                  }
6011 5957  
6012 5958                  if (*arc_flags & ARC_FLAG_PREFETCH &&
6013 5959                      zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6014 5960                          if (HDR_HAS_L2HDR(hdr))
6015 5961                                  l2arc_hdr_arcstats_decrement_state(hdr);
6016 5962                          arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6017 5963                          if (HDR_HAS_L2HDR(hdr))
6018 5964                                  l2arc_hdr_arcstats_increment_state(hdr);
6019 5965                  }
6020 5966                  if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6021 5967                          arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6022 5968  
6023 5969                  if (*arc_flags & ARC_FLAG_L2CACHE)
6024 5970                          arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6025 5971                  if (BP_IS_AUTHENTICATED(bp))
6026 5972                          arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6027 5973                  if (BP_GET_LEVEL(bp) > 0)
6028 5974                          arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6029 5975                  if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6030 5976                          arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6031 5977                  ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6032 5978  
6033 5979                  acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6034 5980                  acb->acb_done = done;
6035 5981                  acb->acb_private = private;
6036 5982                  acb->acb_compressed = compressed_read;
6037 5983                  acb->acb_encrypted = encrypted_read;
6038 5984                  acb->acb_noauth = noauth_read;
6039 5985                  acb->acb_zb = *zb;
6040 5986  
6041 5987                  ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6042 5988                  hdr->b_l1hdr.b_acb = acb;
6043 5989                  arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6044 5990  
6045 5991                  if (HDR_HAS_L2HDR(hdr) &&
6046 5992                      (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6047 5993                          devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6048 5994                          addr = hdr->b_l2hdr.b_daddr;
6049 5995                          /*
6050 5996                           * Lock out L2ARC device removal.
6051 5997                           */
6052 5998                          if (vdev_is_dead(vd) ||
6053 5999                              !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6054 6000                                  vd = NULL;
6055 6001                  }
6056 6002  
6057 6003                  /*
6058 6004                   * We count both async reads and scrub IOs as asynchronous so
6059 6005                   * that both can be upgraded in the event of a cache hit while
6060 6006                   * the read IO is still in-flight.
6061 6007                   */
6062 6008                  if (priority == ZIO_PRIORITY_ASYNC_READ ||
6063 6009                      priority == ZIO_PRIORITY_SCRUB)
6064 6010                          arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6065 6011                  else
6066 6012                          arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6067 6013  
6068 6014                  /*
6069 6015                   * At this point, we have a level 1 cache miss.  Try again in
6070 6016                   * L2ARC if possible.
6071 6017                   */
6072 6018                  ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6073 6019  
6074 6020                  DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
6075 6021                      uint64_t, lsize, zbookmark_phys_t *, zb);
6076 6022                  ARCSTAT_BUMP(arcstat_misses);
6077 6023                  ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6078 6024                      demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6079 6025                      data, metadata, misses);
6080 6026  
6081 6027                  if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6082 6028                          /*
6083 6029                           * Read from the L2ARC if the following are true:
6084 6030                           * 1. The L2ARC vdev was previously cached.
6085 6031                           * 2. This buffer still has L2ARC metadata.
6086 6032                           * 3. This buffer isn't currently writing to the L2ARC.
6087 6033                           * 4. The L2ARC entry wasn't evicted, which may
6088 6034                           *    also have invalidated the vdev.
6089 6035                           * 5. This isn't prefetch or l2arc_noprefetch is 0.
6090 6036                           */
6091 6037                          if (HDR_HAS_L2HDR(hdr) &&
6092 6038                              !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6093 6039                              !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6094 6040                                  l2arc_read_callback_t *cb;
6095 6041                                  abd_t *abd;
6096 6042                                  uint64_t asize;
6097 6043  
6098 6044                                  DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6099 6045                                  ARCSTAT_BUMP(arcstat_l2_hits);
6100 6046  
6101 6047                                  cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6102 6048                                      KM_SLEEP);
6103 6049                                  cb->l2rcb_hdr = hdr;
6104 6050                                  cb->l2rcb_bp = *bp;
6105 6051                                  cb->l2rcb_zb = *zb;
6106 6052                                  cb->l2rcb_flags = zio_flags;
6107 6053  
6108 6054                                  /*
6109 6055                                   * When Compressed ARC is disabled, but the
6110 6056                                   * L2ARC block is compressed, arc_hdr_size()
6111 6057                                   * will have returned LSIZE rather than PSIZE.
6112 6058                                   */
6113 6059                                  if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6114 6060                                      !HDR_COMPRESSION_ENABLED(hdr) &&
6115 6061                                      HDR_GET_PSIZE(hdr) != 0) {
6116 6062                                          size = HDR_GET_PSIZE(hdr);
6117 6063                                  }
6118 6064  
6119 6065                                  asize = vdev_psize_to_asize(vd, size);
6120 6066                                  if (asize != size) {
6121 6067                                          abd = abd_alloc_for_io(asize,
6122 6068                                              HDR_ISTYPE_METADATA(hdr));
6123 6069                                          cb->l2rcb_abd = abd;
6124 6070                                  } else {
6125 6071                                          abd = hdr_abd;
6126 6072                                  }
6127 6073  
6128 6074                                  ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6129 6075                                      addr + asize <= vd->vdev_psize -
6130 6076                                      VDEV_LABEL_END_SIZE);
6131 6077  
6132 6078                                  /*
6133 6079                                   * l2arc read.  The SCL_L2ARC lock will be
6134 6080                                   * released by l2arc_read_done().
6135 6081                                   * Issue a null zio if the underlying buffer
6136 6082                                   * was squashed to zero size by compression.
6137 6083                                   */
6138 6084                                  ASSERT3U(arc_hdr_get_compress(hdr), !=,
6139 6085                                      ZIO_COMPRESS_EMPTY);
6140 6086                                  rzio = zio_read_phys(pio, vd, addr,
6141 6087                                      asize, abd,
6142 6088                                      ZIO_CHECKSUM_OFF,
6143 6089                                      l2arc_read_done, cb, priority,
6144 6090                                      zio_flags | ZIO_FLAG_DONT_CACHE |
6145 6091                                      ZIO_FLAG_CANFAIL |
6146 6092                                      ZIO_FLAG_DONT_PROPAGATE |
6147 6093                                      ZIO_FLAG_DONT_RETRY, B_FALSE);
6148 6094                                  acb->acb_zio_head = rzio;
6149 6095  
6150 6096                                  if (hash_lock != NULL)
6151 6097                                          mutex_exit(hash_lock);
6152 6098  
6153 6099                                  DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6154 6100                                      zio_t *, rzio);
6155 6101                                  ARCSTAT_INCR(arcstat_l2_read_bytes,
6156 6102                                      HDR_GET_PSIZE(hdr));
6157 6103  
6158 6104                                  if (*arc_flags & ARC_FLAG_NOWAIT) {
6159 6105                                          zio_nowait(rzio);
6160 6106                                          return (0);
6161 6107                                  }
6162 6108  
6163 6109                                  ASSERT(*arc_flags & ARC_FLAG_WAIT);
6164 6110                                  if (zio_wait(rzio) == 0)
6165 6111                                          return (0);
6166 6112  
6167 6113                                  /* l2arc read error; goto zio_read() */
6168 6114                                  if (hash_lock != NULL)
6169 6115                                          mutex_enter(hash_lock);
6170 6116                          } else {
6171 6117                                  DTRACE_PROBE1(l2arc__miss,
6172 6118                                      arc_buf_hdr_t *, hdr);
6173 6119                                  ARCSTAT_BUMP(arcstat_l2_misses);
6174 6120                                  if (HDR_L2_WRITING(hdr))
6175 6121                                          ARCSTAT_BUMP(arcstat_l2_rw_clash);
6176 6122                                  spa_config_exit(spa, SCL_L2ARC, vd);
6177 6123                          }
6178 6124                  } else {
6179 6125                          if (vd != NULL)
6180 6126                                  spa_config_exit(spa, SCL_L2ARC, vd);
6181 6127                          if (l2arc_ndev != 0) {
6182 6128                                  DTRACE_PROBE1(l2arc__miss,
6183 6129                                      arc_buf_hdr_t *, hdr);
6184 6130                                  ARCSTAT_BUMP(arcstat_l2_misses);
6185 6131                          }
6186 6132                  }
6187 6133  
6188 6134                  rzio = zio_read(pio, spa, bp, hdr_abd, size,
6189 6135                      arc_read_done, hdr, priority, zio_flags, zb);
6190 6136                  acb->acb_zio_head = rzio;
6191 6137  
6192 6138                  if (hash_lock != NULL)
6193 6139                          mutex_exit(hash_lock);
6194 6140  
6195 6141                  /*
6196 6142                   * At this point, this read I/O has already missed in the ARC
6197 6143                   * and will be going through to the disk.  The I/O throttle
6198 6144                   * should delay this I/O if this zone is using more than its I/O
6199 6145                   * priority allows.
6200 6146                   */
6201 6147                  zfs_zone_io_throttle(ZFS_ZONE_IOP_READ);
6202 6148  
6203 6149                  if (*arc_flags & ARC_FLAG_WAIT)
6204 6150                          return (zio_wait(rzio));
6205 6151  
6206 6152                  ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6207 6153                  zio_nowait(rzio);
6208 6154          }
6209 6155          return (rc);
6210 6156  }
6211 6157  
6212 6158  /*
6213 6159   * Notify the arc that a block was freed, and thus will never be used again.
6214 6160   */
6215 6161  void
6216 6162  arc_freed(spa_t *spa, const blkptr_t *bp)
6217 6163  {
6218 6164          arc_buf_hdr_t *hdr;
6219 6165          kmutex_t *hash_lock;
6220 6166          uint64_t guid = spa_load_guid(spa);
6221 6167  
6222 6168          ASSERT(!BP_IS_EMBEDDED(bp));
6223 6169  
6224 6170          hdr = buf_hash_find(guid, bp, &hash_lock);
6225 6171          if (hdr == NULL)
6226 6172                  return;
6227 6173  
6228 6174          /*
6229 6175           * We might be trying to free a block that is still doing I/O
6230 6176           * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6231 6177           * dmu_sync-ed block). If this block is being prefetched, then it
6232 6178           * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6233 6179           * until the I/O completes. A block may also have a reference if it is
6234 6180           * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6235 6181           * have written the new block to its final resting place on disk but
6236 6182           * without the dedup flag set. This would have left the hdr in the MRU
6237 6183           * state and discoverable. When the txg finally syncs it detects that
6238 6184           * the block was overridden in open context and issues an override I/O.
6239 6185           * Since this is a dedup block, the override I/O will determine if the
6240 6186           * block is already in the DDT. If so, then it will replace the io_bp
6241 6187           * with the bp from the DDT and allow the I/O to finish. When the I/O
6242 6188           * reaches the done callback, dbuf_write_override_done, it will
6243 6189           * check to see if the io_bp and io_bp_override are identical.
6244 6190           * If they are not, then it indicates that the bp was replaced with
6245 6191           * the bp in the DDT and the override bp is freed. This allows
6246 6192           * us to arrive here with a reference on a block that is being
6247 6193           * freed. So if we have an I/O in progress, or a reference to
6248 6194           * this hdr, then we don't destroy the hdr.
6249 6195           */
6250 6196          if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6251 6197              zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6252 6198                  arc_change_state(arc_anon, hdr, hash_lock);
6253 6199                  arc_hdr_destroy(hdr);
6254 6200                  mutex_exit(hash_lock);
6255 6201          } else {
6256 6202                  mutex_exit(hash_lock);
6257 6203          }
6258 6204  
6259 6205  }
6260 6206  
6261 6207  /*
6262 6208   * Release this buffer from the cache, making it an anonymous buffer.  This
6263 6209   * must be done after a read and prior to modifying the buffer contents.
6264 6210   * If the buffer has more than one reference, we must make
6265 6211   * a new hdr for the buffer.
6266 6212   */
6267 6213  void
6268 6214  arc_release(arc_buf_t *buf, void *tag)
6269 6215  {
6270 6216          arc_buf_hdr_t *hdr = buf->b_hdr;
6271 6217  
6272 6218          /*
6273 6219           * It would be nice to assert that if its DMU metadata (level >
6274 6220           * 0 || it's the dnode file), then it must be syncing context.
6275 6221           * But we don't know that information at this level.
6276 6222           */
6277 6223  
6278 6224          mutex_enter(&buf->b_evict_lock);
6279 6225  
6280 6226          ASSERT(HDR_HAS_L1HDR(hdr));
6281 6227  
6282 6228          /*
6283 6229           * We don't grab the hash lock prior to this check, because if
6284 6230           * the buffer's header is in the arc_anon state, it won't be
6285 6231           * linked into the hash table.
6286 6232           */
6287 6233          if (hdr->b_l1hdr.b_state == arc_anon) {
6288 6234                  mutex_exit(&buf->b_evict_lock);
6289 6235                  /*
6290 6236                   * If we are called from dmu_convert_mdn_block_to_raw(),
6291 6237                   * a write might be in progress.  This is OK because
6292 6238                   * the caller won't change the content of this buffer,
6293 6239                   * only the flags (via arc_convert_to_raw()).
6294 6240                   */
6295 6241                  /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */
6296 6242                  ASSERT(!HDR_IN_HASH_TABLE(hdr));
6297 6243                  ASSERT(!HDR_HAS_L2HDR(hdr));
6298 6244                  ASSERT(HDR_EMPTY(hdr));
6299 6245  
6300 6246                  ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6301 6247                  ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6302 6248                  ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6303 6249  
6304 6250                  hdr->b_l1hdr.b_arc_access = 0;
6305 6251  
6306 6252                  /*
6307 6253                   * If the buf is being overridden then it may already
6308 6254                   * have a hdr that is not empty.
6309 6255                   */
6310 6256                  buf_discard_identity(hdr);
6311 6257                  arc_buf_thaw(buf);
6312 6258  
6313 6259                  return;
6314 6260          }
6315 6261  
6316 6262          kmutex_t *hash_lock = HDR_LOCK(hdr);
6317 6263          mutex_enter(hash_lock);
6318 6264  
6319 6265          /*
6320 6266           * This assignment is only valid as long as the hash_lock is
6321 6267           * held, we must be careful not to reference state or the
6322 6268           * b_state field after dropping the lock.
6323 6269           */
6324 6270          arc_state_t *state = hdr->b_l1hdr.b_state;
6325 6271          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6326 6272          ASSERT3P(state, !=, arc_anon);
6327 6273  
6328 6274          /* this buffer is not on any list */
6329 6275          ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6330 6276  
6331 6277          if (HDR_HAS_L2HDR(hdr)) {
6332 6278                  mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6333 6279  
6334 6280                  /*
6335 6281                   * We have to recheck this conditional again now that
6336 6282                   * we're holding the l2ad_mtx to prevent a race with
6337 6283                   * another thread which might be concurrently calling
6338 6284                   * l2arc_evict(). In that case, l2arc_evict() might have
6339 6285                   * destroyed the header's L2 portion as we were waiting
6340 6286                   * to acquire the l2ad_mtx.
6341 6287                   */
6342 6288                  if (HDR_HAS_L2HDR(hdr))
6343 6289                          arc_hdr_l2hdr_destroy(hdr);
6344 6290  
6345 6291                  mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6346 6292          }
6347 6293  
6348 6294          /*
6349 6295           * Do we have more than one buf?
6350 6296           */
6351 6297          if (hdr->b_l1hdr.b_bufcnt > 1) {
6352 6298                  arc_buf_hdr_t *nhdr;
6353 6299                  uint64_t spa = hdr->b_spa;
6354 6300                  uint64_t psize = HDR_GET_PSIZE(hdr);
6355 6301                  uint64_t lsize = HDR_GET_LSIZE(hdr);
6356 6302                  boolean_t protected = HDR_PROTECTED(hdr);
6357 6303                  enum zio_compress compress = arc_hdr_get_compress(hdr);
6358 6304                  arc_buf_contents_t type = arc_buf_type(hdr);
6359 6305                  VERIFY3U(hdr->b_type, ==, type);
6360 6306  
6361 6307                  ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6362 6308                  (void) remove_reference(hdr, hash_lock, tag);
6363 6309  
6364 6310                  if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6365 6311                          ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6366 6312                          ASSERT(ARC_BUF_LAST(buf));
6367 6313                  }
6368 6314  
6369 6315                  /*
6370 6316                   * Pull the data off of this hdr and attach it to
6371 6317                   * a new anonymous hdr. Also find the last buffer
6372 6318                   * in the hdr's buffer list.
6373 6319                   */
6374 6320                  arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6375 6321                  ASSERT3P(lastbuf, !=, NULL);
6376 6322  
6377 6323                  /*
6378 6324                   * If the current arc_buf_t and the hdr are sharing their data
6379 6325                   * buffer, then we must stop sharing that block.
6380 6326                   */
6381 6327                  if (arc_buf_is_shared(buf)) {
6382 6328                          ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6383 6329                          VERIFY(!arc_buf_is_shared(lastbuf));
6384 6330  
6385 6331                          /*
6386 6332                           * First, sever the block sharing relationship between
6387 6333                           * buf and the arc_buf_hdr_t.
6388 6334                           */
6389 6335                          arc_unshare_buf(hdr, buf);
6390 6336  
6391 6337                          /*
6392 6338                           * Now we need to recreate the hdr's b_pabd. Since we
6393 6339                           * have lastbuf handy, we try to share with it, but if
6394 6340                           * we can't then we allocate a new b_pabd and copy the
6395 6341                           * data from buf into it.
6396 6342                           */
6397 6343                          if (arc_can_share(hdr, lastbuf)) {
6398 6344                                  arc_share_buf(hdr, lastbuf);
6399 6345                          } else {
6400 6346                                  arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6401 6347                                  abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6402 6348                                      buf->b_data, psize);
6403 6349                          }
6404 6350                          VERIFY3P(lastbuf->b_data, !=, NULL);
6405 6351                  } else if (HDR_SHARED_DATA(hdr)) {
6406 6352                          /*
6407 6353                           * Uncompressed shared buffers are always at the end
6408 6354                           * of the list. Compressed buffers don't have the
6409 6355                           * same requirements. This makes it hard to
6410 6356                           * simply assert that the lastbuf is shared so
6411 6357                           * we rely on the hdr's compression flags to determine
6412 6358                           * if we have a compressed, shared buffer.
6413 6359                           */
6414 6360                          ASSERT(arc_buf_is_shared(lastbuf) ||
6415 6361                              arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6416 6362                          ASSERT(!ARC_BUF_SHARED(buf));
6417 6363                  }
6418 6364                  ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6419 6365                  ASSERT3P(state, !=, arc_l2c_only);
6420 6366  
6421 6367                  (void) zfs_refcount_remove_many(&state->arcs_size,
6422 6368                      arc_buf_size(buf), buf);
6423 6369  
6424 6370                  if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6425 6371                          ASSERT3P(state, !=, arc_l2c_only);
6426 6372                          (void) zfs_refcount_remove_many(
6427 6373                              &state->arcs_esize[type],
6428 6374                              arc_buf_size(buf), buf);
6429 6375                  }
6430 6376  
6431 6377                  hdr->b_l1hdr.b_bufcnt -= 1;
6432 6378                  if (ARC_BUF_ENCRYPTED(buf))
6433 6379                          hdr->b_crypt_hdr.b_ebufcnt -= 1;
6434 6380  
6435 6381                  arc_cksum_verify(buf);
6436 6382                  arc_buf_unwatch(buf);
6437 6383  
6438 6384                  /* if this is the last uncompressed buf free the checksum */
6439 6385                  if (!arc_hdr_has_uncompressed_buf(hdr))
6440 6386                          arc_cksum_free(hdr);
6441 6387  
6442 6388                  mutex_exit(hash_lock);
6443 6389  
6444 6390                  /*
6445 6391                   * Allocate a new hdr. The new hdr will contain a b_pabd
6446 6392                   * buffer which will be freed in arc_write().
6447 6393                   */
6448 6394                  nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6449 6395                      compress, type, HDR_HAS_RABD(hdr));
6450 6396                  ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6451 6397                  ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6452 6398                  ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6453 6399                  VERIFY3U(nhdr->b_type, ==, type);
6454 6400                  ASSERT(!HDR_SHARED_DATA(nhdr));
6455 6401  
6456 6402                  nhdr->b_l1hdr.b_buf = buf;
6457 6403                  nhdr->b_l1hdr.b_bufcnt = 1;
6458 6404                  if (ARC_BUF_ENCRYPTED(buf))
6459 6405                          nhdr->b_crypt_hdr.b_ebufcnt = 1;
6460 6406                  (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6461 6407                  buf->b_hdr = nhdr;
6462 6408  
6463 6409                  mutex_exit(&buf->b_evict_lock);
6464 6410                  (void) zfs_refcount_add_many(&arc_anon->arcs_size,
6465 6411                      arc_buf_size(buf), buf);
6466 6412          } else {
6467 6413                  mutex_exit(&buf->b_evict_lock);
6468 6414                  ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6469 6415                  /* protected by hash lock, or hdr is on arc_anon */
6470 6416                  ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6471 6417                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6472 6418                  arc_change_state(arc_anon, hdr, hash_lock);
6473 6419                  hdr->b_l1hdr.b_arc_access = 0;
6474 6420  
6475 6421                  mutex_exit(hash_lock);
6476 6422                  buf_discard_identity(hdr);
6477 6423                  arc_buf_thaw(buf);
6478 6424          }
6479 6425  }
6480 6426  
6481 6427  int
6482 6428  arc_released(arc_buf_t *buf)
6483 6429  {
6484 6430          int released;
6485 6431  
6486 6432          mutex_enter(&buf->b_evict_lock);
6487 6433          released = (buf->b_data != NULL &&
6488 6434              buf->b_hdr->b_l1hdr.b_state == arc_anon);
6489 6435          mutex_exit(&buf->b_evict_lock);
6490 6436          return (released);
6491 6437  }
6492 6438  
6493 6439  #ifdef ZFS_DEBUG
6494 6440  int
6495 6441  arc_referenced(arc_buf_t *buf)
6496 6442  {
6497 6443          int referenced;
6498 6444  
6499 6445          mutex_enter(&buf->b_evict_lock);
6500 6446          referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6501 6447          mutex_exit(&buf->b_evict_lock);
6502 6448          return (referenced);
6503 6449  }
6504 6450  #endif
6505 6451  
6506 6452  static void
6507 6453  arc_write_ready(zio_t *zio)
6508 6454  {
6509 6455          arc_write_callback_t *callback = zio->io_private;
6510 6456          arc_buf_t *buf = callback->awcb_buf;
6511 6457          arc_buf_hdr_t *hdr = buf->b_hdr;
6512 6458          blkptr_t *bp = zio->io_bp;
6513 6459          uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6514 6460  
6515 6461          ASSERT(HDR_HAS_L1HDR(hdr));
6516 6462          ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6517 6463          ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6518 6464  
6519 6465          /*
6520 6466           * If we're reexecuting this zio because the pool suspended, then
6521 6467           * cleanup any state that was previously set the first time the
6522 6468           * callback was invoked.
6523 6469           */
6524 6470          if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6525 6471                  arc_cksum_free(hdr);
6526 6472                  arc_buf_unwatch(buf);
6527 6473                  if (hdr->b_l1hdr.b_pabd != NULL) {
6528 6474                          if (arc_buf_is_shared(buf)) {
6529 6475                                  arc_unshare_buf(hdr, buf);
6530 6476                          } else {
6531 6477                                  arc_hdr_free_pabd(hdr, B_FALSE);
6532 6478                          }
6533 6479                  }
6534 6480  
6535 6481                  if (HDR_HAS_RABD(hdr))
6536 6482                          arc_hdr_free_pabd(hdr, B_TRUE);
6537 6483          }
6538 6484          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6539 6485          ASSERT(!HDR_HAS_RABD(hdr));
6540 6486          ASSERT(!HDR_SHARED_DATA(hdr));
6541 6487          ASSERT(!arc_buf_is_shared(buf));
6542 6488  
6543 6489          callback->awcb_ready(zio, buf, callback->awcb_private);
6544 6490  
6545 6491          if (HDR_IO_IN_PROGRESS(hdr))
6546 6492                  ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6547 6493  
6548 6494          arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6549 6495  
6550 6496          if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6551 6497                  hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6552 6498  
6553 6499          if (BP_IS_PROTECTED(bp)) {
6554 6500                  /* ZIL blocks are written through zio_rewrite */
6555 6501                  ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6556 6502                  ASSERT(HDR_PROTECTED(hdr));
6557 6503  
6558 6504                  if (BP_SHOULD_BYTESWAP(bp)) {
6559 6505                          if (BP_GET_LEVEL(bp) > 0) {
6560 6506                                  hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6561 6507                          } else {
6562 6508                                  hdr->b_l1hdr.b_byteswap =
6563 6509                                      DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6564 6510                          }
6565 6511                  } else {
6566 6512                          hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6567 6513                  }
6568 6514  
6569 6515                  hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6570 6516                  hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6571 6517                  zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6572 6518                      hdr->b_crypt_hdr.b_iv);
6573 6519                  zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6574 6520          }
6575 6521  
6576 6522          /*
6577 6523           * If this block was written for raw encryption but the zio layer
6578 6524           * ended up only authenticating it, adjust the buffer flags now.
6579 6525           */
6580 6526          if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6581 6527                  arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6582 6528                  buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6583 6529                  if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6584 6530                          buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6585 6531          } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6586 6532                  buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6587 6533                  buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6588 6534          }
6589 6535  
6590 6536          /* this must be done after the buffer flags are adjusted */
6591 6537          arc_cksum_compute(buf);
6592 6538  
6593 6539          enum zio_compress compress;
6594 6540          if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6595 6541                  compress = ZIO_COMPRESS_OFF;
6596 6542          } else {
6597 6543                  ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6598 6544                  compress = BP_GET_COMPRESS(bp);
6599 6545          }
6600 6546          HDR_SET_PSIZE(hdr, psize);
6601 6547          arc_hdr_set_compress(hdr, compress);
6602 6548  
6603 6549          if (zio->io_error != 0 || psize == 0)
6604 6550                  goto out;
6605 6551  
6606 6552          /*
6607 6553           * Fill the hdr with data. If the buffer is encrypted we have no choice
6608 6554           * but to copy the data into b_rabd. If the hdr is compressed, the data
6609 6555           * we want is available from the zio, otherwise we can take it from
6610 6556           * the buf.
6611 6557           *
6612 6558           * We might be able to share the buf's data with the hdr here. However,
6613 6559           * doing so would cause the ARC to be full of linear ABDs if we write a
6614 6560           * lot of shareable data. As a compromise, we check whether scattered
6615 6561           * ABDs are allowed, and assume that if they are then the user wants
6616 6562           * the ARC to be primarily filled with them regardless of the data being
6617 6563           * written. Therefore, if they're allowed then we allocate one and copy
6618 6564           * the data into it; otherwise, we share the data directly if we can.
6619 6565           */
6620 6566          if (ARC_BUF_ENCRYPTED(buf)) {
6621 6567                  ASSERT3U(psize, >, 0);
6622 6568                  ASSERT(ARC_BUF_COMPRESSED(buf));
6623 6569                  arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
6624 6570                  abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6625 6571          } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6626 6572                  /*
6627 6573                   * Ideally, we would always copy the io_abd into b_pabd, but the
6628 6574                   * user may have disabled compressed ARC, thus we must check the
6629 6575                   * hdr's compression setting rather than the io_bp's.
6630 6576                   */
6631 6577                  if (BP_IS_ENCRYPTED(bp)) {
6632 6578                          ASSERT3U(psize, >, 0);
6633 6579                          arc_hdr_alloc_pabd(hdr,
6634 6580                              ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
6635 6581                          abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6636 6582                  } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6637 6583                      !ARC_BUF_COMPRESSED(buf)) {
6638 6584                          ASSERT3U(psize, >, 0);
6639 6585                          arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6640 6586                          abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6641 6587                  } else {
6642 6588                          ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6643 6589                          arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6644 6590                          abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6645 6591                              arc_buf_size(buf));
6646 6592                  }
6647 6593          } else {
6648 6594                  ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6649 6595                  ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6650 6596                  ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6651 6597                  arc_share_buf(hdr, buf);
6652 6598          }
6653 6599  
6654 6600  out:
6655 6601          arc_hdr_verify(hdr, bp);
6656 6602  }
6657 6603  
6658 6604  static void
6659 6605  arc_write_children_ready(zio_t *zio)
6660 6606  {
6661 6607          arc_write_callback_t *callback = zio->io_private;
6662 6608          arc_buf_t *buf = callback->awcb_buf;
6663 6609  
6664 6610          callback->awcb_children_ready(zio, buf, callback->awcb_private);
6665 6611  }
6666 6612  
6667 6613  /*
6668 6614   * The SPA calls this callback for each physical write that happens on behalf
6669 6615   * of a logical write.  See the comment in dbuf_write_physdone() for details.
6670 6616   */
6671 6617  static void
6672 6618  arc_write_physdone(zio_t *zio)
6673 6619  {
6674 6620          arc_write_callback_t *cb = zio->io_private;
6675 6621          if (cb->awcb_physdone != NULL)
6676 6622                  cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6677 6623  }
6678 6624  
6679 6625  static void
6680 6626  arc_write_done(zio_t *zio)
6681 6627  {
6682 6628          arc_write_callback_t *callback = zio->io_private;
6683 6629          arc_buf_t *buf = callback->awcb_buf;
6684 6630          arc_buf_hdr_t *hdr = buf->b_hdr;
6685 6631  
6686 6632          ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6687 6633  
6688 6634          if (zio->io_error == 0) {
6689 6635                  arc_hdr_verify(hdr, zio->io_bp);
6690 6636  
6691 6637                  if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6692 6638                          buf_discard_identity(hdr);
6693 6639                  } else {
6694 6640                          hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6695 6641                          hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6696 6642                  }
6697 6643          } else {
6698 6644                  ASSERT(HDR_EMPTY(hdr));
6699 6645          }
6700 6646  
6701 6647          /*
6702 6648           * If the block to be written was all-zero or compressed enough to be
6703 6649           * embedded in the BP, no write was performed so there will be no
6704 6650           * dva/birth/checksum.  The buffer must therefore remain anonymous
6705 6651           * (and uncached).
6706 6652           */
6707 6653          if (!HDR_EMPTY(hdr)) {
6708 6654                  arc_buf_hdr_t *exists;
6709 6655                  kmutex_t *hash_lock;
6710 6656  
6711 6657                  ASSERT3U(zio->io_error, ==, 0);
6712 6658  
6713 6659                  arc_cksum_verify(buf);
6714 6660  
6715 6661                  exists = buf_hash_insert(hdr, &hash_lock);
6716 6662                  if (exists != NULL) {
6717 6663                          /*
6718 6664                           * This can only happen if we overwrite for
6719 6665                           * sync-to-convergence, because we remove
6720 6666                           * buffers from the hash table when we arc_free().
6721 6667                           */
6722 6668                          if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6723 6669                                  if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6724 6670                                          panic("bad overwrite, hdr=%p exists=%p",
6725 6671                                              (void *)hdr, (void *)exists);
6726 6672                                  ASSERT(zfs_refcount_is_zero(
6727 6673                                      &exists->b_l1hdr.b_refcnt));
6728 6674                                  arc_change_state(arc_anon, exists, hash_lock);
6729 6675                                  arc_hdr_destroy(exists);
6730 6676                                  mutex_exit(hash_lock);
6731 6677                                  exists = buf_hash_insert(hdr, &hash_lock);
6732 6678                                  ASSERT3P(exists, ==, NULL);
6733 6679                          } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6734 6680                                  /* nopwrite */
6735 6681                                  ASSERT(zio->io_prop.zp_nopwrite);
6736 6682                                  if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6737 6683                                          panic("bad nopwrite, hdr=%p exists=%p",
6738 6684                                              (void *)hdr, (void *)exists);
6739 6685                          } else {
6740 6686                                  /* Dedup */
6741 6687                                  ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6742 6688                                  ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6743 6689                                  ASSERT(BP_GET_DEDUP(zio->io_bp));
6744 6690                                  ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6745 6691                          }
6746 6692                  }
6747 6693                  arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6748 6694                  /* if it's not anon, we are doing a scrub */
6749 6695                  if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6750 6696                          arc_access(hdr, hash_lock);
6751 6697                  mutex_exit(hash_lock);
6752 6698          } else {
6753 6699                  arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6754 6700          }
6755 6701  
6756 6702          ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6757 6703          callback->awcb_done(zio, buf, callback->awcb_private);
6758 6704  
6759 6705          abd_put(zio->io_abd);
6760 6706          kmem_free(callback, sizeof (arc_write_callback_t));
6761 6707  }
6762 6708  
6763 6709  zio_t *
6764 6710  arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6765 6711      boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6766 6712      arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6767 6713      arc_write_done_func_t *done, void *private, zio_priority_t priority,
6768 6714      int zio_flags, const zbookmark_phys_t *zb)
6769 6715  {
6770 6716          arc_buf_hdr_t *hdr = buf->b_hdr;
6771 6717          arc_write_callback_t *callback;
6772 6718          zio_t *zio;
6773 6719          zio_prop_t localprop = *zp;
6774 6720  
6775 6721          ASSERT3P(ready, !=, NULL);
6776 6722          ASSERT3P(done, !=, NULL);
6777 6723          ASSERT(!HDR_IO_ERROR(hdr));
6778 6724          ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6779 6725          ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6780 6726          ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6781 6727          if (l2arc)
6782 6728                  arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6783 6729  
6784 6730          if (ARC_BUF_ENCRYPTED(buf)) {
6785 6731                  ASSERT(ARC_BUF_COMPRESSED(buf));
6786 6732                  localprop.zp_encrypt = B_TRUE;
6787 6733                  localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6788 6734                  /* CONSTCOND */
6789 6735                  localprop.zp_byteorder =
6790 6736                      (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6791 6737                      ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6792 6738                  bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6793 6739                      ZIO_DATA_SALT_LEN);
6794 6740                  bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6795 6741                      ZIO_DATA_IV_LEN);
6796 6742                  bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6797 6743                      ZIO_DATA_MAC_LEN);
6798 6744                  if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6799 6745                          localprop.zp_nopwrite = B_FALSE;
6800 6746                          localprop.zp_copies =
6801 6747                              MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6802 6748                  }
6803 6749                  zio_flags |= ZIO_FLAG_RAW;
6804 6750          } else if (ARC_BUF_COMPRESSED(buf)) {
6805 6751                  ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6806 6752                  localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6807 6753                  zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6808 6754          }
6809 6755  
6810 6756          callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6811 6757          callback->awcb_ready = ready;
6812 6758          callback->awcb_children_ready = children_ready;
6813 6759          callback->awcb_physdone = physdone;
6814 6760          callback->awcb_done = done;
6815 6761          callback->awcb_private = private;
6816 6762          callback->awcb_buf = buf;
6817 6763  
6818 6764          /*
6819 6765           * The hdr's b_pabd is now stale, free it now. A new data block
6820 6766           * will be allocated when the zio pipeline calls arc_write_ready().
6821 6767           */
6822 6768          if (hdr->b_l1hdr.b_pabd != NULL) {
6823 6769                  /*
6824 6770                   * If the buf is currently sharing the data block with
6825 6771                   * the hdr then we need to break that relationship here.
6826 6772                   * The hdr will remain with a NULL data pointer and the
6827 6773                   * buf will take sole ownership of the block.
6828 6774                   */
6829 6775                  if (arc_buf_is_shared(buf)) {
6830 6776                          arc_unshare_buf(hdr, buf);
6831 6777                  } else {
6832 6778                          arc_hdr_free_pabd(hdr, B_FALSE);
6833 6779                  }
6834 6780                  VERIFY3P(buf->b_data, !=, NULL);
6835 6781          }
6836 6782  
6837 6783          if (HDR_HAS_RABD(hdr))
6838 6784                  arc_hdr_free_pabd(hdr, B_TRUE);
6839 6785  
6840 6786          if (!(zio_flags & ZIO_FLAG_RAW))
6841 6787                  arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6842 6788  
6843 6789          ASSERT(!arc_buf_is_shared(buf));
6844 6790          ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6845 6791  
6846 6792          zio = zio_write(pio, spa, txg, bp,
6847 6793              abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6848 6794              HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6849 6795              (children_ready != NULL) ? arc_write_children_ready : NULL,
6850 6796              arc_write_physdone, arc_write_done, callback,
6851 6797              priority, zio_flags, zb);
6852 6798  
6853 6799          return (zio);
6854 6800  }
6855 6801  
6856 6802  static int
6857 6803  arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
6858 6804  {
6859 6805  #ifdef _KERNEL
6860 6806          uint64_t available_memory = ptob(freemem);
6861 6807  
6862 6808  #if defined(__i386)
6863 6809          available_memory =
6864 6810              MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6865 6811  #endif
6866 6812  
6867 6813          if (freemem > physmem * arc_lotsfree_percent / 100)
6868 6814                  return (0);
6869 6815  
6870 6816          if (txg > spa->spa_lowmem_last_txg) {
6871 6817                  spa->spa_lowmem_last_txg = txg;
6872 6818                  spa->spa_lowmem_page_load = 0;
6873 6819          }
6874 6820          /*
6875 6821           * If we are in pageout, we know that memory is already tight,
6876 6822           * the arc is already going to be evicting, so we just want to
6877 6823           * continue to let page writes occur as quickly as possible.
6878 6824           */
6879 6825          if (curproc == proc_pageout) {
6880 6826                  if (spa->spa_lowmem_page_load >
6881 6827                      MAX(ptob(minfree), available_memory) / 4)
6882 6828                          return (SET_ERROR(ERESTART));
6883 6829                  /* Note: reserve is inflated, so we deflate */
6884 6830                  atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
6885 6831                  return (0);
6886 6832          } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
6887 6833                  /* memory is low, delay before restarting */
6888 6834                  ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6889 6835                  return (SET_ERROR(EAGAIN));
6890 6836          }
6891 6837          spa->spa_lowmem_page_load = 0;
6892 6838  #endif /* _KERNEL */
6893 6839          return (0);
6894 6840  }
6895 6841  
6896 6842  void
6897 6843  arc_tempreserve_clear(uint64_t reserve)
6898 6844  {
6899 6845          atomic_add_64(&arc_tempreserve, -reserve);
6900 6846          ASSERT((int64_t)arc_tempreserve >= 0);
6901 6847  }
6902 6848  
6903 6849  int
6904 6850  arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6905 6851  {
6906 6852          int error;
6907 6853          uint64_t anon_size;
6908 6854  
6909 6855          if (reserve > arc_c/4 && !arc_no_grow)
6910 6856                  arc_c = MIN(arc_c_max, reserve * 4);
6911 6857          if (reserve > arc_c)
6912 6858                  return (SET_ERROR(ENOMEM));
6913 6859  
6914 6860          /*
6915 6861           * Don't count loaned bufs as in flight dirty data to prevent long
6916 6862           * network delays from blocking transactions that are ready to be
6917 6863           * assigned to a txg.
6918 6864           */
6919 6865  
6920 6866          /* assert that it has not wrapped around */
6921 6867          ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6922 6868  
6923 6869          anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
6924 6870              arc_loaned_bytes), 0);
6925 6871  
6926 6872          /*
6927 6873           * Writes will, almost always, require additional memory allocations
6928 6874           * in order to compress/encrypt/etc the data.  We therefore need to
6929 6875           * make sure that there is sufficient available memory for this.
6930 6876           */
6931 6877          error = arc_memory_throttle(spa, reserve, txg);
6932 6878          if (error != 0)
6933 6879                  return (error);
6934 6880  
6935 6881          /*
6936 6882           * Throttle writes when the amount of dirty data in the cache
6937 6883           * gets too large.  We try to keep the cache less than half full
6938 6884           * of dirty blocks so that our sync times don't grow too large.
6939 6885           *
6940 6886           * In the case of one pool being built on another pool, we want
6941 6887           * to make sure we don't end up throttling the lower (backing)
6942 6888           * pool when the upper pool is the majority contributor to dirty
6943 6889           * data. To insure we make forward progress during throttling, we
6944 6890           * also check the current pool's net dirty data and only throttle
6945 6891           * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6946 6892           * data in the cache.
6947 6893           *
6948 6894           * Note: if two requests come in concurrently, we might let them
6949 6895           * both succeed, when one of them should fail.  Not a huge deal.
6950 6896           */
6951 6897          uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6952 6898          uint64_t spa_dirty_anon = spa_dirty_data(spa);
6953 6899  
6954 6900          if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
6955 6901              anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
6956 6902              spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6957 6903                  uint64_t meta_esize =
6958 6904                      zfs_refcount_count(
6959 6905                      &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6960 6906                  uint64_t data_esize =
6961 6907                      zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6962 6908                  dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6963 6909                      "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6964 6910                      arc_tempreserve >> 10, meta_esize >> 10,
6965 6911                      data_esize >> 10, reserve >> 10, arc_c >> 10);
6966 6912                  return (SET_ERROR(ERESTART));
6967 6913          }
6968 6914          atomic_add_64(&arc_tempreserve, reserve);
6969 6915          return (0);
6970 6916  }
6971 6917  
6972 6918  static void
6973 6919  arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6974 6920      kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6975 6921  {
6976 6922          size->value.ui64 = zfs_refcount_count(&state->arcs_size);
6977 6923          evict_data->value.ui64 =
6978 6924              zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6979 6925          evict_metadata->value.ui64 =
6980 6926              zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6981 6927  }
6982 6928  
6983 6929  static int
6984 6930  arc_kstat_update(kstat_t *ksp, int rw)
6985 6931  {
6986 6932          arc_stats_t *as = ksp->ks_data;
6987 6933  
6988 6934          if (rw == KSTAT_WRITE) {
6989 6935                  return (EACCES);
6990 6936          } else {
6991 6937                  arc_kstat_update_state(arc_anon,
6992 6938                      &as->arcstat_anon_size,
6993 6939                      &as->arcstat_anon_evictable_data,
6994 6940                      &as->arcstat_anon_evictable_metadata);
6995 6941                  arc_kstat_update_state(arc_mru,
6996 6942                      &as->arcstat_mru_size,
6997 6943                      &as->arcstat_mru_evictable_data,
6998 6944                      &as->arcstat_mru_evictable_metadata);
6999 6945                  arc_kstat_update_state(arc_mru_ghost,
7000 6946                      &as->arcstat_mru_ghost_size,
7001 6947                      &as->arcstat_mru_ghost_evictable_data,
7002 6948                      &as->arcstat_mru_ghost_evictable_metadata);
7003 6949                  arc_kstat_update_state(arc_mfu,
7004 6950                      &as->arcstat_mfu_size,
7005 6951                      &as->arcstat_mfu_evictable_data,
7006 6952                      &as->arcstat_mfu_evictable_metadata);
7007 6953                  arc_kstat_update_state(arc_mfu_ghost,
7008 6954                      &as->arcstat_mfu_ghost_size,
7009 6955                      &as->arcstat_mfu_ghost_evictable_data,
7010 6956                      &as->arcstat_mfu_ghost_evictable_metadata);
7011 6957  
7012 6958                  ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
7013 6959                  ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
7014 6960                  ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
7015 6961                  ARCSTAT(arcstat_metadata_size) =
7016 6962                      aggsum_value(&astat_metadata_size);
7017 6963                  ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
7018 6964                  ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
7019 6965                  ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
7020 6966          }
7021 6967  
7022 6968          return (0);
7023 6969  }
7024 6970  
7025 6971  /*
7026 6972   * This function *must* return indices evenly distributed between all
7027 6973   * sublists of the multilist. This is needed due to how the ARC eviction
7028 6974   * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7029 6975   * distributed between all sublists and uses this assumption when
7030 6976   * deciding which sublist to evict from and how much to evict from it.
7031 6977   */
7032 6978  unsigned int
7033 6979  arc_state_multilist_index_func(multilist_t *ml, void *obj)
7034 6980  {
7035 6981          arc_buf_hdr_t *hdr = obj;
7036 6982  
7037 6983          /*
7038 6984           * We rely on b_dva to generate evenly distributed index
7039 6985           * numbers using buf_hash below. So, as an added precaution,
7040 6986           * let's make sure we never add empty buffers to the arc lists.
7041 6987           */
7042 6988          ASSERT(!HDR_EMPTY(hdr));
7043 6989  
7044 6990          /*
7045 6991           * The assumption here, is the hash value for a given
7046 6992           * arc_buf_hdr_t will remain constant throughout its lifetime
7047 6993           * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7048 6994           * Thus, we don't need to store the header's sublist index
7049 6995           * on insertion, as this index can be recalculated on removal.
7050 6996           *
7051 6997           * Also, the low order bits of the hash value are thought to be
7052 6998           * distributed evenly. Otherwise, in the case that the multilist
7053 6999           * has a power of two number of sublists, each sublists' usage
7054 7000           * would not be evenly distributed.
7055 7001           */
7056 7002          return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7057 7003              multilist_get_num_sublists(ml));
7058 7004  }
7059 7005  
7060 7006  static void
7061 7007  arc_state_init(void)
7062 7008  {
7063 7009          arc_anon = &ARC_anon;
7064 7010          arc_mru = &ARC_mru;
7065 7011          arc_mru_ghost = &ARC_mru_ghost;
7066 7012          arc_mfu = &ARC_mfu;
7067 7013          arc_mfu_ghost = &ARC_mfu_ghost;
7068 7014          arc_l2c_only = &ARC_l2c_only;
7069 7015  
7070 7016          arc_mru->arcs_list[ARC_BUFC_METADATA] =
7071 7017              multilist_create(sizeof (arc_buf_hdr_t),
7072 7018              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7073 7019              arc_state_multilist_index_func);
7074 7020          arc_mru->arcs_list[ARC_BUFC_DATA] =
7075 7021              multilist_create(sizeof (arc_buf_hdr_t),
7076 7022              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7077 7023              arc_state_multilist_index_func);
7078 7024          arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7079 7025              multilist_create(sizeof (arc_buf_hdr_t),
7080 7026              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7081 7027              arc_state_multilist_index_func);
7082 7028          arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7083 7029              multilist_create(sizeof (arc_buf_hdr_t),
7084 7030              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7085 7031              arc_state_multilist_index_func);
7086 7032          arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7087 7033              multilist_create(sizeof (arc_buf_hdr_t),
7088 7034              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7089 7035              arc_state_multilist_index_func);
7090 7036          arc_mfu->arcs_list[ARC_BUFC_DATA] =
7091 7037              multilist_create(sizeof (arc_buf_hdr_t),
7092 7038              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7093 7039              arc_state_multilist_index_func);
7094 7040          arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7095 7041              multilist_create(sizeof (arc_buf_hdr_t),
7096 7042              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7097 7043              arc_state_multilist_index_func);
7098 7044          arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7099 7045              multilist_create(sizeof (arc_buf_hdr_t),
7100 7046              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7101 7047              arc_state_multilist_index_func);
7102 7048          arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7103 7049              multilist_create(sizeof (arc_buf_hdr_t),
7104 7050              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7105 7051              arc_state_multilist_index_func);
7106 7052          arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7107 7053              multilist_create(sizeof (arc_buf_hdr_t),
7108 7054              offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7109 7055              arc_state_multilist_index_func);
7110 7056  
7111 7057          zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7112 7058          zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7113 7059          zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7114 7060          zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7115 7061          zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7116 7062          zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7117 7063          zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7118 7064          zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7119 7065          zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7120 7066          zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7121 7067          zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7122 7068          zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7123 7069  
7124 7070          zfs_refcount_create(&arc_anon->arcs_size);
7125 7071          zfs_refcount_create(&arc_mru->arcs_size);
7126 7072          zfs_refcount_create(&arc_mru_ghost->arcs_size);
7127 7073          zfs_refcount_create(&arc_mfu->arcs_size);
7128 7074          zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7129 7075          zfs_refcount_create(&arc_l2c_only->arcs_size);
7130 7076  
7131 7077          aggsum_init(&arc_meta_used, 0);
7132 7078          aggsum_init(&arc_size, 0);
7133 7079          aggsum_init(&astat_data_size, 0);
7134 7080          aggsum_init(&astat_metadata_size, 0);
7135 7081          aggsum_init(&astat_hdr_size, 0);
7136 7082          aggsum_init(&astat_other_size, 0);
7137 7083          aggsum_init(&astat_l2_hdr_size, 0);
7138 7084  
7139 7085          arc_anon->arcs_state = ARC_STATE_ANON;
7140 7086          arc_mru->arcs_state = ARC_STATE_MRU;
7141 7087          arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7142 7088          arc_mfu->arcs_state = ARC_STATE_MFU;
7143 7089          arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7144 7090          arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7145 7091  }
7146 7092  
7147 7093  static void
7148 7094  arc_state_fini(void)
7149 7095  {
7150 7096          zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7151 7097          zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7152 7098          zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7153 7099          zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7154 7100          zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7155 7101          zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7156 7102          zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7157 7103          zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7158 7104          zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7159 7105          zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7160 7106          zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7161 7107          zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7162 7108  
7163 7109          zfs_refcount_destroy(&arc_anon->arcs_size);
7164 7110          zfs_refcount_destroy(&arc_mru->arcs_size);
7165 7111          zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7166 7112          zfs_refcount_destroy(&arc_mfu->arcs_size);
7167 7113          zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7168 7114          zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7169 7115  
7170 7116          multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7171 7117          multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7172 7118          multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7173 7119          multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7174 7120          multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7175 7121          multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7176 7122          multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7177 7123          multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7178 7124          multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7179 7125          multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7180 7126  
7181 7127          aggsum_fini(&arc_meta_used);
7182 7128          aggsum_fini(&arc_size);
7183 7129          aggsum_fini(&astat_data_size);
7184 7130          aggsum_fini(&astat_metadata_size);
7185 7131          aggsum_fini(&astat_hdr_size);
7186 7132          aggsum_fini(&astat_other_size);
7187 7133          aggsum_fini(&astat_l2_hdr_size);
7188 7134  
7189 7135  }
7190 7136  
7191 7137  uint64_t
7192 7138  arc_max_bytes(void)
7193 7139  {
7194 7140          return (arc_c_max);
7195 7141  }
7196 7142  
7197 7143  void
7198 7144  arc_init(void)
7199 7145  {
7200 7146          /*
7201 7147           * allmem is "all memory that we could possibly use".
7202 7148           */
7203 7149  #ifdef _KERNEL
7204 7150          uint64_t allmem = ptob(physmem - swapfs_minfree);
7205 7151  #else
7206 7152          uint64_t allmem = (physmem * PAGESIZE) / 2;
7207 7153  #endif
7208 7154          mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
7209 7155          cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
7210 7156  
7211 7157          /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
7212 7158          arc_c_min = MAX(allmem / 32, 64 << 20);
7213 7159          /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
7214 7160          if (allmem >= 1 << 30)
7215 7161                  arc_c_max = allmem - (1 << 30);
7216 7162          else
7217 7163                  arc_c_max = arc_c_min;
7218 7164          arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
7219 7165  
7220 7166          /*
7221 7167           * In userland, there's only the memory pressure that we artificially
7222 7168           * create (see arc_available_memory()).  Don't let arc_c get too
7223 7169           * small, because it can cause transactions to be larger than
7224 7170           * arc_c, causing arc_tempreserve_space() to fail.
7225 7171           */
7226 7172  #ifndef _KERNEL
7227 7173          arc_c_min = arc_c_max / 2;
7228 7174  #endif
7229 7175  
7230 7176          /*
7231 7177           * Allow the tunables to override our calculations if they are
7232 7178           * reasonable (ie. over 64MB)
7233 7179           */
7234 7180          if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
7235 7181                  arc_c_max = zfs_arc_max;
7236 7182                  arc_c_min = MIN(arc_c_min, arc_c_max);
7237 7183          }
7238 7184          if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
7239 7185                  arc_c_min = zfs_arc_min;
7240 7186  
7241 7187          arc_c = arc_c_max;
7242 7188          arc_p = (arc_c >> 1);
7243 7189  
7244 7190          /* limit meta-data to 1/4 of the arc capacity */
7245 7191          arc_meta_limit = arc_c_max / 4;
7246 7192  
7247 7193  #ifdef _KERNEL
7248 7194          /*
7249 7195           * Metadata is stored in the kernel's heap.  Don't let us
7250 7196           * use more than half the heap for the ARC.
7251 7197           */
7252 7198          arc_meta_limit = MIN(arc_meta_limit,
7253 7199              vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
7254 7200  #endif
7255 7201  
7256 7202          /* Allow the tunable to override if it is reasonable */
7257 7203          if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
7258 7204                  arc_meta_limit = zfs_arc_meta_limit;
7259 7205  
7260 7206          if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
7261 7207                  arc_c_min = arc_meta_limit / 2;
7262 7208  
7263 7209          /* On larger-memory machines, we clamp the minimum at 1GB */
7264 7210          if (zfs_arc_min == 0)
7265 7211                  arc_c_min = MIN(arc_c_min, (1 << 30));
7266 7212  
7267 7213          if (zfs_arc_meta_min > 0) {
7268 7214                  arc_meta_min = zfs_arc_meta_min;
7269 7215          } else {
7270 7216                  arc_meta_min = arc_c_min / 2;
7271 7217          }
7272 7218  
7273 7219          if (zfs_arc_grow_retry > 0)
7274 7220                  arc_grow_retry = zfs_arc_grow_retry;
7275 7221  
7276 7222          if (zfs_arc_shrink_shift > 0)
7277 7223                  arc_shrink_shift = zfs_arc_shrink_shift;
7278 7224  
7279 7225          /*
7280 7226           * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
7281 7227           */
7282 7228          if (arc_no_grow_shift >= arc_shrink_shift)
7283 7229                  arc_no_grow_shift = arc_shrink_shift - 1;
7284 7230  
7285 7231          if (zfs_arc_p_min_shift > 0)
7286 7232                  arc_p_min_shift = zfs_arc_p_min_shift;
7287 7233  
7288 7234          /* if kmem_flags are set, lets try to use less memory */
7289 7235          if (kmem_debugging())
7290 7236                  arc_c = arc_c / 2;
7291 7237          if (arc_c < arc_c_min)
7292 7238                  arc_c = arc_c_min;
7293 7239  
7294 7240          arc_state_init();
7295 7241  
7296 7242          /*
7297 7243           * The arc must be "uninitialized", so that hdr_recl() (which is
7298 7244           * registered by buf_init()) will not access arc_reap_zthr before
7299 7245           * it is created.
7300 7246           */
7301 7247          ASSERT(!arc_initialized);
7302 7248          buf_init();
7303 7249  
7304 7250          arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7305 7251              sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7306 7252  
7307 7253          if (arc_ksp != NULL) {
7308 7254                  arc_ksp->ks_data = &arc_stats;
7309 7255                  arc_ksp->ks_update = arc_kstat_update;
7310 7256                  kstat_install(arc_ksp);
7311 7257          }
7312 7258  
7313 7259          arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
7314 7260              arc_adjust_cb, NULL);
7315 7261          arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7316 7262              arc_reap_cb, NULL, SEC2NSEC(1));
7317 7263  
7318 7264          arc_initialized = B_TRUE;
7319 7265          arc_warm = B_FALSE;
7320 7266  
7321 7267          /*
7322 7268           * Calculate maximum amount of dirty data per pool.
7323 7269           *
7324 7270           * If it has been set by /etc/system, take that.
7325 7271           * Otherwise, use a percentage of physical memory defined by
7326 7272           * zfs_dirty_data_max_percent (default 10%) with a cap at
7327 7273           * zfs_dirty_data_max_max (default 4GB).
7328 7274           */
7329 7275          if (zfs_dirty_data_max == 0) {
7330 7276                  zfs_dirty_data_max = physmem * PAGESIZE *
7331 7277                      zfs_dirty_data_max_percent / 100;
7332 7278                  zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7333 7279                      zfs_dirty_data_max_max);
7334 7280          }
7335 7281  }
7336 7282  
7337 7283  void
7338 7284  arc_fini(void)
7339 7285  {
7340 7286          /* Use B_TRUE to ensure *all* buffers are evicted */
7341 7287          arc_flush(NULL, B_TRUE);
7342 7288  
7343 7289          arc_initialized = B_FALSE;
7344 7290  
7345 7291          if (arc_ksp != NULL) {
7346 7292                  kstat_delete(arc_ksp);
7347 7293                  arc_ksp = NULL;
7348 7294          }
7349 7295  
7350 7296          (void) zthr_cancel(arc_adjust_zthr);
7351 7297          zthr_destroy(arc_adjust_zthr);
7352 7298  
7353 7299          (void) zthr_cancel(arc_reap_zthr);
7354 7300          zthr_destroy(arc_reap_zthr);
7355 7301  
7356 7302          mutex_destroy(&arc_adjust_lock);
7357 7303          cv_destroy(&arc_adjust_waiters_cv);
7358 7304  
7359 7305          /*
7360 7306           * buf_fini() must proceed arc_state_fini() because buf_fin() may
7361 7307           * trigger the release of kmem magazines, which can callback to
7362 7308           * arc_space_return() which accesses aggsums freed in act_state_fini().
7363 7309           */
7364 7310          buf_fini();
7365 7311          arc_state_fini();
7366 7312  
7367 7313          ASSERT0(arc_loaned_bytes);
7368 7314  }
7369 7315  
7370 7316  /*
7371 7317   * Level 2 ARC
7372 7318   *
7373 7319   * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7374 7320   * It uses dedicated storage devices to hold cached data, which are populated
7375 7321   * using large infrequent writes.  The main role of this cache is to boost
7376 7322   * the performance of random read workloads.  The intended L2ARC devices
7377 7323   * include short-stroked disks, solid state disks, and other media with
7378 7324   * substantially faster read latency than disk.
7379 7325   *
7380 7326   *                 +-----------------------+
7381 7327   *                 |         ARC           |
7382 7328   *                 +-----------------------+
7383 7329   *                    |         ^     ^
7384 7330   *                    |         |     |
7385 7331   *      l2arc_feed_thread()    arc_read()
7386 7332   *                    |         |     |
7387 7333   *                    |  l2arc read   |
7388 7334   *                    V         |     |
7389 7335   *               +---------------+    |
7390 7336   *               |     L2ARC     |    |
7391 7337   *               +---------------+    |
7392 7338   *                   |    ^           |
7393 7339   *          l2arc_write() |           |
7394 7340   *                   |    |           |
7395 7341   *                   V    |           |
7396 7342   *                 +-------+      +-------+
7397 7343   *                 | vdev  |      | vdev  |
7398 7344   *                 | cache |      | cache |
7399 7345   *                 +-------+      +-------+
7400 7346   *                 +=========+     .-----.
7401 7347   *                 :  L2ARC  :    |-_____-|
7402 7348   *                 : devices :    | Disks |
7403 7349   *                 +=========+    `-_____-'
7404 7350   *
7405 7351   * Read requests are satisfied from the following sources, in order:
7406 7352   *
7407 7353   *      1) ARC
7408 7354   *      2) vdev cache of L2ARC devices
7409 7355   *      3) L2ARC devices
7410 7356   *      4) vdev cache of disks
7411 7357   *      5) disks
7412 7358   *
7413 7359   * Some L2ARC device types exhibit extremely slow write performance.
7414 7360   * To accommodate for this there are some significant differences between
7415 7361   * the L2ARC and traditional cache design:
7416 7362   *
7417 7363   * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7418 7364   * the ARC behave as usual, freeing buffers and placing headers on ghost
7419 7365   * lists.  The ARC does not send buffers to the L2ARC during eviction as
7420 7366   * this would add inflated write latencies for all ARC memory pressure.
7421 7367   *
7422 7368   * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7423 7369   * It does this by periodically scanning buffers from the eviction-end of
7424 7370   * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7425 7371   * not already there. It scans until a headroom of buffers is satisfied,
7426 7372   * which itself is a buffer for ARC eviction. If a compressible buffer is
7427 7373   * found during scanning and selected for writing to an L2ARC device, we
7428 7374   * temporarily boost scanning headroom during the next scan cycle to make
7429 7375   * sure we adapt to compression effects (which might significantly reduce
7430 7376   * the data volume we write to L2ARC). The thread that does this is
7431 7377   * l2arc_feed_thread(), illustrated below; example sizes are included to
7432 7378   * provide a better sense of ratio than this diagram:
7433 7379   *
7434 7380   *             head -->                        tail
7435 7381   *              +---------------------+----------+
7436 7382   *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7437 7383   *              +---------------------+----------+   |   o L2ARC eligible
7438 7384   *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7439 7385   *              +---------------------+----------+   |
7440 7386   *                   15.9 Gbytes      ^ 32 Mbytes    |
7441 7387   *                                 headroom          |
7442 7388   *                                            l2arc_feed_thread()
7443 7389   *                                                   |
7444 7390   *                       l2arc write hand <--[oooo]--'
7445 7391   *                               |           8 Mbyte
7446 7392   *                               |          write max
7447 7393   *                               V
7448 7394   *                +==============================+
7449 7395   *      L2ARC dev |####|#|###|###|    |####| ... |
7450 7396   *                +==============================+
7451 7397   *                           32 Gbytes
7452 7398   *
7453 7399   * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7454 7400   * evicted, then the L2ARC has cached a buffer much sooner than it probably
7455 7401   * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7456 7402   * safe to say that this is an uncommon case, since buffers at the end of
7457 7403   * the ARC lists have moved there due to inactivity.
7458 7404   *
7459 7405   * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7460 7406   * then the L2ARC simply misses copying some buffers.  This serves as a
7461 7407   * pressure valve to prevent heavy read workloads from both stalling the ARC
7462 7408   * with waits and clogging the L2ARC with writes.  This also helps prevent
7463 7409   * the potential for the L2ARC to churn if it attempts to cache content too
7464 7410   * quickly, such as during backups of the entire pool.
7465 7411   *
7466 7412   * 5. After system boot and before the ARC has filled main memory, there are
7467 7413   * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7468 7414   * lists can remain mostly static.  Instead of searching from tail of these
7469 7415   * lists as pictured, the l2arc_feed_thread() will search from the list heads
7470 7416   * for eligible buffers, greatly increasing its chance of finding them.
7471 7417   *
7472 7418   * The L2ARC device write speed is also boosted during this time so that
7473 7419   * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7474 7420   * there are no L2ARC reads, and no fear of degrading read performance
7475 7421   * through increased writes.
7476 7422   *
7477 7423   * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7478 7424   * the vdev queue can aggregate them into larger and fewer writes.  Each
7479 7425   * device is written to in a rotor fashion, sweeping writes through
7480 7426   * available space then repeating.
7481 7427   *
7482 7428   * 7. The L2ARC does not store dirty content.  It never needs to flush
7483 7429   * write buffers back to disk based storage.
7484 7430   *
7485 7431   * 8. If an ARC buffer is written (and dirtied) which also exists in the
7486 7432   * L2ARC, the now stale L2ARC buffer is immediately dropped.
7487 7433   *
7488 7434   * The performance of the L2ARC can be tweaked by a number of tunables, which
7489 7435   * may be necessary for different workloads:
7490 7436   *
7491 7437   *      l2arc_write_max         max write bytes per interval
7492 7438   *      l2arc_write_boost       extra write bytes during device warmup
7493 7439   *      l2arc_noprefetch        skip caching prefetched buffers
7494 7440   *      l2arc_headroom          number of max device writes to precache
7495 7441   *      l2arc_headroom_boost    when we find compressed buffers during ARC
7496 7442   *                              scanning, we multiply headroom by this
7497 7443   *                              percentage factor for the next scan cycle,
7498 7444   *                              since more compressed buffers are likely to
7499 7445   *                              be present
7500 7446   *      l2arc_feed_secs         seconds between L2ARC writing
7501 7447   *
7502 7448   * Tunables may be removed or added as future performance improvements are
7503 7449   * integrated, and also may become zpool properties.
7504 7450   *
7505 7451   * There are three key functions that control how the L2ARC warms up:
7506 7452   *
7507 7453   *      l2arc_write_eligible()  check if a buffer is eligible to cache
7508 7454   *      l2arc_write_size()      calculate how much to write
7509 7455   *      l2arc_write_interval()  calculate sleep delay between writes
7510 7456   *
7511 7457   * These three functions determine what to write, how much, and how quickly
7512 7458   * to send writes.
7513 7459   *
7514 7460   * L2ARC persistence:
7515 7461   *
7516 7462   * When writing buffers to L2ARC, we periodically add some metadata to
7517 7463   * make sure we can pick them up after reboot, thus dramatically reducing
7518 7464   * the impact that any downtime has on the performance of storage systems
7519 7465   * with large caches.
7520 7466   *
7521 7467   * The implementation works fairly simply by integrating the following two
7522 7468   * modifications:
7523 7469   *
7524 7470   * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7525 7471   *    which is an additional piece of metadata which describes what's been
7526 7472   *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
7527 7473   *    main ARC buffers. There are 2 linked-lists of log blocks headed by
7528 7474   *    dh_start_lbps[2]. We alternate which chain we append to, so they are
7529 7475   *    time-wise and offset-wise interleaved, but that is an optimization rather
7530 7476   *    than for correctness. The log block also includes a pointer to the
7531 7477   *    previous block in its chain.
7532 7478   *
7533 7479   * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7534 7480   *    for our header bookkeeping purposes. This contains a device header,
7535 7481   *    which contains our top-level reference structures. We update it each
7536 7482   *    time we write a new log block, so that we're able to locate it in the
7537 7483   *    L2ARC device. If this write results in an inconsistent device header
7538 7484   *    (e.g. due to power failure), we detect this by verifying the header's
7539 7485   *    checksum and simply fail to reconstruct the L2ARC after reboot.
7540 7486   *
7541 7487   * Implementation diagram:
7542 7488   *
7543 7489   * +=== L2ARC device (not to scale) ======================================+
7544 7490   * |       ___two newest log block pointers__.__________                  |
7545 7491   * |      /                                   \dh_start_lbps[1]           |
7546 7492   * |     /                                     \         \dh_start_lbps[0]|
7547 7493   * |.___/__.                                    V         V               |
7548 7494   * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7549 7495   * ||   hdr|      ^         /^       /^        /         /                |
7550 7496   * |+------+  ...--\-------/  \-----/--\------/         /                 |
7551 7497   * |                \--------------/    \--------------/                  |
7552 7498   * +======================================================================+
7553 7499   *
7554 7500   * As can be seen on the diagram, rather than using a simple linked list,
7555 7501   * we use a pair of linked lists with alternating elements. This is a
7556 7502   * performance enhancement due to the fact that we only find out the
7557 7503   * address of the next log block access once the current block has been
7558 7504   * completely read in. Obviously, this hurts performance, because we'd be
7559 7505   * keeping the device's I/O queue at only a 1 operation deep, thus
7560 7506   * incurring a large amount of I/O round-trip latency. Having two lists
7561 7507   * allows us to fetch two log blocks ahead of where we are currently
7562 7508   * rebuilding L2ARC buffers.
7563 7509   *
7564 7510   * On-device data structures:
7565 7511   *
7566 7512   * L2ARC device header: l2arc_dev_hdr_phys_t
7567 7513   * L2ARC log block:     l2arc_log_blk_phys_t
7568 7514   *
7569 7515   * L2ARC reconstruction:
7570 7516   *
7571 7517   * When writing data, we simply write in the standard rotary fashion,
7572 7518   * evicting buffers as we go and simply writing new data over them (writing
7573 7519   * a new log block every now and then). This obviously means that once we
7574 7520   * loop around the end of the device, we will start cutting into an already
7575 7521   * committed log block (and its referenced data buffers), like so:
7576 7522   *
7577 7523   *    current write head__       __old tail
7578 7524   *                        \     /
7579 7525   *                        V    V
7580 7526   * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
7581 7527   *                         ^    ^^^^^^^^^___________________________________
7582 7528   *                         |                                                \
7583 7529   *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
7584 7530   *
7585 7531   * When importing the pool, we detect this situation and use it to stop
7586 7532   * our scanning process (see l2arc_rebuild).
7587 7533   *
7588 7534   * There is one significant caveat to consider when rebuilding ARC contents
7589 7535   * from an L2ARC device: what about invalidated buffers? Given the above
7590 7536   * construction, we cannot update blocks which we've already written to amend
7591 7537   * them to remove buffers which were invalidated. Thus, during reconstruction,
7592 7538   * we might be populating the cache with buffers for data that's not on the
7593 7539   * main pool anymore, or may have been overwritten!
7594 7540   *
7595 7541   * As it turns out, this isn't a problem. Every arc_read request includes
7596 7542   * both the DVA and, crucially, the birth TXG of the BP the caller is
7597 7543   * looking for. So even if the cache were populated by completely rotten
7598 7544   * blocks for data that had been long deleted and/or overwritten, we'll
7599 7545   * never actually return bad data from the cache, since the DVA with the
7600 7546   * birth TXG uniquely identify a block in space and time - once created,
7601 7547   * a block is immutable on disk. The worst thing we have done is wasted
7602 7548   * some time and memory at l2arc rebuild to reconstruct outdated ARC
7603 7549   * entries that will get dropped from the l2arc as it is being updated
7604 7550   * with new blocks.
7605 7551   *
7606 7552   * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
7607 7553   * hand are not restored. This is done by saving the offset (in bytes)
7608 7554   * l2arc_evict() has evicted to in the L2ARC device header and taking it
7609 7555   * into account when restoring buffers.
7610 7556   */
7611 7557  
7612 7558  static boolean_t
7613 7559  l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7614 7560  {
7615 7561          /*
7616 7562           * A buffer is *not* eligible for the L2ARC if it:
7617 7563           * 1. belongs to a different spa.
7618 7564           * 2. is already cached on the L2ARC.
7619 7565           * 3. has an I/O in progress (it may be an incomplete read).
7620 7566           * 4. is flagged not eligible (zfs property).
7621 7567           * 5. is a prefetch and l2arc_noprefetch is set.
7622 7568           */
7623 7569          if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7624 7570              HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) ||
7625 7571              (l2arc_noprefetch && HDR_PREFETCH(hdr)))
7626 7572                  return (B_FALSE);
7627 7573  
7628 7574          return (B_TRUE);
7629 7575  }
7630 7576  
7631 7577  static uint64_t
7632 7578  l2arc_write_size(l2arc_dev_t *dev)
7633 7579  {
7634 7580          uint64_t size, dev_size;
7635 7581  
7636 7582          /*
7637 7583           * Make sure our globals have meaningful values in case the user
7638 7584           * altered them.
7639 7585           */
7640 7586          size = l2arc_write_max;
7641 7587          if (size == 0) {
7642 7588                  cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7643 7589                      "be greater than zero, resetting it to the default (%d)",
7644 7590                      L2ARC_WRITE_SIZE);
7645 7591                  size = l2arc_write_max = L2ARC_WRITE_SIZE;
7646 7592          }
7647 7593  
7648 7594          if (arc_warm == B_FALSE)
7649 7595                  size += l2arc_write_boost;
7650 7596  
7651 7597          /*
7652 7598           * Make sure the write size does not exceed the size of the cache
7653 7599           * device. This is important in l2arc_evict(), otherwise infinite
7654 7600           * iteration can occur.
7655 7601           */
7656 7602          dev_size = dev->l2ad_end - dev->l2ad_start;
7657 7603          if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) {
7658 7604                  cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
7659 7605                      "plus the overhead of log blocks (persistent L2ARC, "
7660 7606                      "%" PRIu64 " bytes) exceeds the size of the cache device "
7661 7607                      "(guid %" PRIu64 "), resetting them to the default (%d)",
7662 7608                      l2arc_log_blk_overhead(size, dev),
7663 7609                      dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
7664 7610                  size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
7665 7611  
7666 7612                  if (arc_warm == B_FALSE)
7667 7613                          size += l2arc_write_boost;
7668 7614          }
7669 7615  
7670 7616          return (size);
7671 7617  
7672 7618  }
7673 7619  
7674 7620  static clock_t
7675 7621  l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7676 7622  {
7677 7623          clock_t interval, next, now;
7678 7624  
7679 7625          /*
7680 7626           * If the ARC lists are busy, increase our write rate; if the
7681 7627           * lists are stale, idle back.  This is achieved by checking
7682 7628           * how much we previously wrote - if it was more than half of
7683 7629           * what we wanted, schedule the next write much sooner.
7684 7630           */
7685 7631          if (l2arc_feed_again && wrote > (wanted / 2))
7686 7632                  interval = (hz * l2arc_feed_min_ms) / 1000;
7687 7633          else
7688 7634                  interval = hz * l2arc_feed_secs;
7689 7635  
7690 7636          now = ddi_get_lbolt();
7691 7637          next = MAX(now, MIN(now + interval, began + interval));
7692 7638  
7693 7639          return (next);
7694 7640  }
7695 7641  
7696 7642  /*
7697 7643   * Cycle through L2ARC devices.  This is how L2ARC load balances.
7698 7644   * If a device is returned, this also returns holding the spa config lock.
7699 7645   */
7700 7646  static l2arc_dev_t *
7701 7647  l2arc_dev_get_next(void)
7702 7648  {
7703 7649          l2arc_dev_t *first, *next = NULL;
7704 7650  
7705 7651          /*
7706 7652           * Lock out the removal of spas (spa_namespace_lock), then removal
7707 7653           * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7708 7654           * both locks will be dropped and a spa config lock held instead.
7709 7655           */
7710 7656          mutex_enter(&spa_namespace_lock);
7711 7657          mutex_enter(&l2arc_dev_mtx);
7712 7658  
7713 7659          /* if there are no vdevs, there is nothing to do */
7714 7660          if (l2arc_ndev == 0)
7715 7661                  goto out;
7716 7662  
7717 7663          first = NULL;
7718 7664          next = l2arc_dev_last;
7719 7665          do {
7720 7666                  /* loop around the list looking for a non-faulted vdev */
7721 7667                  if (next == NULL) {
7722 7668                          next = list_head(l2arc_dev_list);
7723 7669                  } else {
7724 7670                          next = list_next(l2arc_dev_list, next);
7725 7671                          if (next == NULL)
7726 7672                                  next = list_head(l2arc_dev_list);
7727 7673                  }
7728 7674  
7729 7675                  /* if we have come back to the start, bail out */
7730 7676                  if (first == NULL)
7731 7677                          first = next;
7732 7678                  else if (next == first)
7733 7679                          break;
7734 7680  
7735 7681          } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild);
7736 7682  
7737 7683          /* if we were unable to find any usable vdevs, return NULL */
7738 7684          if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild)
7739 7685                  next = NULL;
7740 7686  
7741 7687          l2arc_dev_last = next;
7742 7688  
7743 7689  out:
7744 7690          mutex_exit(&l2arc_dev_mtx);
7745 7691  
7746 7692          /*
7747 7693           * Grab the config lock to prevent the 'next' device from being
7748 7694           * removed while we are writing to it.
7749 7695           */
7750 7696          if (next != NULL)
7751 7697                  spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7752 7698          mutex_exit(&spa_namespace_lock);
7753 7699  
7754 7700          return (next);
7755 7701  }
7756 7702  
7757 7703  /*
7758 7704   * Free buffers that were tagged for destruction.
7759 7705   */
7760 7706  static void
7761 7707  l2arc_do_free_on_write()
7762 7708  {
7763 7709          list_t *buflist;
7764 7710          l2arc_data_free_t *df, *df_prev;
7765 7711  
7766 7712          mutex_enter(&l2arc_free_on_write_mtx);
7767 7713          buflist = l2arc_free_on_write;
7768 7714  
7769 7715          for (df = list_tail(buflist); df; df = df_prev) {
7770 7716                  df_prev = list_prev(buflist, df);
7771 7717                  ASSERT3P(df->l2df_abd, !=, NULL);
7772 7718                  abd_free(df->l2df_abd);
7773 7719                  list_remove(buflist, df);
7774 7720                  kmem_free(df, sizeof (l2arc_data_free_t));
7775 7721          }
7776 7722  
7777 7723          mutex_exit(&l2arc_free_on_write_mtx);
7778 7724  }
7779 7725  
7780 7726  /*
7781 7727   * A write to a cache device has completed.  Update all headers to allow
7782 7728   * reads from these buffers to begin.
7783 7729   */
7784 7730  static void
7785 7731  l2arc_write_done(zio_t *zio)
7786 7732  {
7787 7733          l2arc_write_callback_t  *cb;
7788 7734          l2arc_lb_abd_buf_t      *abd_buf;
7789 7735          l2arc_lb_ptr_buf_t      *lb_ptr_buf;
7790 7736          l2arc_dev_t             *dev;
7791 7737          l2arc_dev_hdr_phys_t    *l2dhdr;
7792 7738          list_t                  *buflist;
7793 7739          arc_buf_hdr_t           *head, *hdr, *hdr_prev;
7794 7740          kmutex_t                *hash_lock;
7795 7741          int64_t                 bytes_dropped = 0;
7796 7742  
7797 7743          cb = zio->io_private;
7798 7744          ASSERT3P(cb, !=, NULL);
7799 7745          dev = cb->l2wcb_dev;
7800 7746          l2dhdr = dev->l2ad_dev_hdr;
7801 7747          ASSERT3P(dev, !=, NULL);
7802 7748          head = cb->l2wcb_head;
7803 7749          ASSERT3P(head, !=, NULL);
7804 7750          buflist = &dev->l2ad_buflist;
7805 7751          ASSERT3P(buflist, !=, NULL);
7806 7752          DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7807 7753              l2arc_write_callback_t *, cb);
7808 7754  
7809 7755          /*
7810 7756           * All writes completed, or an error was hit.
7811 7757           */
7812 7758  top:
7813 7759          mutex_enter(&dev->l2ad_mtx);
7814 7760          for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7815 7761                  hdr_prev = list_prev(buflist, hdr);
7816 7762  
7817 7763                  hash_lock = HDR_LOCK(hdr);
7818 7764  
7819 7765                  /*
7820 7766                   * We cannot use mutex_enter or else we can deadlock
7821 7767                   * with l2arc_write_buffers (due to swapping the order
7822 7768                   * the hash lock and l2ad_mtx are taken).
7823 7769                   */
7824 7770                  if (!mutex_tryenter(hash_lock)) {
7825 7771                          /*
7826 7772                           * Missed the hash lock. We must retry so we
7827 7773                           * don't leave the ARC_FLAG_L2_WRITING bit set.
7828 7774                           */
7829 7775                          ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7830 7776  
7831 7777                          /*
7832 7778                           * We don't want to rescan the headers we've
7833 7779                           * already marked as having been written out, so
7834 7780                           * we reinsert the head node so we can pick up
7835 7781                           * where we left off.
7836 7782                           */
7837 7783                          list_remove(buflist, head);
7838 7784                          list_insert_after(buflist, hdr, head);
7839 7785  
7840 7786                          mutex_exit(&dev->l2ad_mtx);
7841 7787  
7842 7788                          /*
7843 7789                           * We wait for the hash lock to become available
7844 7790                           * to try and prevent busy waiting, and increase
7845 7791                           * the chance we'll be able to acquire the lock
7846 7792                           * the next time around.
7847 7793                           */
7848 7794                          mutex_enter(hash_lock);
7849 7795                          mutex_exit(hash_lock);
7850 7796                          goto top;
7851 7797                  }
7852 7798  
7853 7799                  /*
7854 7800                   * We could not have been moved into the arc_l2c_only
7855 7801                   * state while in-flight due to our ARC_FLAG_L2_WRITING
7856 7802                   * bit being set. Let's just ensure that's being enforced.
7857 7803                   */
7858 7804                  ASSERT(HDR_HAS_L1HDR(hdr));
7859 7805  
7860 7806                  if (zio->io_error != 0) {
7861 7807                          /*
7862 7808                           * Error - drop L2ARC entry.
7863 7809                           */
7864 7810                          list_remove(buflist, hdr);
7865 7811                          arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7866 7812  
7867 7813                          uint64_t psize = HDR_GET_PSIZE(hdr);
7868 7814                          l2arc_hdr_arcstats_decrement(hdr);
7869 7815  
7870 7816                          bytes_dropped +=
7871 7817                              vdev_psize_to_asize(dev->l2ad_vdev, psize);
7872 7818                          (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
7873 7819                              arc_hdr_size(hdr), hdr);
7874 7820                  }
7875 7821  
7876 7822                  /*
7877 7823                   * Allow ARC to begin reads and ghost list evictions to
7878 7824                   * this L2ARC entry.
7879 7825                   */
7880 7826                  arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7881 7827  
7882 7828                  mutex_exit(hash_lock);
7883 7829          }
7884 7830  
7885 7831          /*
7886 7832           * Free the allocated abd buffers for writing the log blocks.
7887 7833           * If the zio failed reclaim the allocated space and remove the
7888 7834           * pointers to these log blocks from the log block pointer list
7889 7835           * of the L2ARC device.
7890 7836           */
7891 7837          while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
7892 7838                  abd_free(abd_buf->abd);
7893 7839                  zio_buf_free(abd_buf, sizeof (*abd_buf));
7894 7840                  if (zio->io_error != 0) {
7895 7841                          lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
7896 7842                          /*
7897 7843                           * L2BLK_GET_PSIZE returns aligned size for log
7898 7844                           * blocks.
7899 7845                           */
7900 7846                          uint64_t asize =
7901 7847                              L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
7902 7848                          bytes_dropped += asize;
7903 7849                          ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
7904 7850                          ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
7905 7851                          zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
7906 7852                              lb_ptr_buf);
7907 7853                          zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
7908 7854                          kmem_free(lb_ptr_buf->lb_ptr,
7909 7855                              sizeof (l2arc_log_blkptr_t));
7910 7856                          kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
7911 7857                  }
7912 7858          }
7913 7859          list_destroy(&cb->l2wcb_abd_list);
7914 7860  
7915 7861          if (zio->io_error != 0) {
7916 7862                  ARCSTAT_BUMP(arcstat_l2_writes_error);
7917 7863  
7918 7864                  /*
7919 7865                   * Restore the lbps array in the header to its previous state.
7920 7866                   * If the list of log block pointers is empty, zero out the
7921 7867                   * log block pointers in the device header.
7922 7868                   */
7923 7869                  lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
7924 7870                  for (int i = 0; i < 2; i++) {
7925 7871                          if (lb_ptr_buf == NULL) {
7926 7872                                  /*
7927 7873                                   * If the list is empty zero out the device
7928 7874                                   * header. Otherwise zero out the second log
7929 7875                                   * block pointer in the header.
7930 7876                                   */
7931 7877                                  if (i == 0) {
7932 7878                                          bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
7933 7879                                  } else {
7934 7880                                          bzero(&l2dhdr->dh_start_lbps[i],
7935 7881                                              sizeof (l2arc_log_blkptr_t));
7936 7882                                  }
7937 7883                                  break;
7938 7884                          }
7939 7885                          bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
7940 7886                              sizeof (l2arc_log_blkptr_t));
7941 7887                          lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
7942 7888                              lb_ptr_buf);
7943 7889                  }
7944 7890          }
7945 7891  
7946 7892          atomic_inc_64(&l2arc_writes_done);
7947 7893          list_remove(buflist, head);
7948 7894          ASSERT(!HDR_HAS_L1HDR(head));
7949 7895          kmem_cache_free(hdr_l2only_cache, head);
7950 7896          mutex_exit(&dev->l2ad_mtx);
7951 7897  
7952 7898          ASSERT(dev->l2ad_vdev != NULL);
7953 7899          vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7954 7900  
7955 7901          l2arc_do_free_on_write();
7956 7902  
7957 7903          kmem_free(cb, sizeof (l2arc_write_callback_t));
7958 7904  }
7959 7905  
7960 7906  static int
7961 7907  l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
7962 7908  {
7963 7909          int ret;
7964 7910          spa_t *spa = zio->io_spa;
7965 7911          arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
7966 7912          blkptr_t *bp = zio->io_bp;
7967 7913          uint8_t salt[ZIO_DATA_SALT_LEN];
7968 7914          uint8_t iv[ZIO_DATA_IV_LEN];
7969 7915          uint8_t mac[ZIO_DATA_MAC_LEN];
7970 7916          boolean_t no_crypt = B_FALSE;
7971 7917  
7972 7918          /*
7973 7919           * ZIL data is never be written to the L2ARC, so we don't need
7974 7920           * special handling for its unique MAC storage.
7975 7921           */
7976 7922          ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7977 7923          ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
7978 7924          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7979 7925  
7980 7926          /*
7981 7927           * If the data was encrypted, decrypt it now. Note that
7982 7928           * we must check the bp here and not the hdr, since the
7983 7929           * hdr does not have its encryption parameters updated
7984 7930           * until arc_read_done().
7985 7931           */
7986 7932          if (BP_IS_ENCRYPTED(bp)) {
7987 7933                  abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
7988 7934                      B_TRUE);
7989 7935  
7990 7936                  zio_crypt_decode_params_bp(bp, salt, iv);
7991 7937                  zio_crypt_decode_mac_bp(bp, mac);
7992 7938  
7993 7939                  ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
7994 7940                      BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
7995 7941                      salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
7996 7942                      hdr->b_l1hdr.b_pabd, &no_crypt);
7997 7943                  if (ret != 0) {
7998 7944                          arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7999 7945                          goto error;
8000 7946                  }
8001 7947  
8002 7948                  /*
8003 7949                   * If we actually performed decryption, replace b_pabd
8004 7950                   * with the decrypted data. Otherwise we can just throw
8005 7951                   * our decryption buffer away.
8006 7952                   */
8007 7953                  if (!no_crypt) {
8008 7954                          arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8009 7955                              arc_hdr_size(hdr), hdr);
8010 7956                          hdr->b_l1hdr.b_pabd = eabd;
8011 7957                          zio->io_abd = eabd;
8012 7958                  } else {
8013 7959                          arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8014 7960                  }
8015 7961          }
8016 7962  
8017 7963          /*
8018 7964           * If the L2ARC block was compressed, but ARC compression
8019 7965           * is disabled we decompress the data into a new buffer and
8020 7966           * replace the existing data.
8021 7967           */
8022 7968          if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8023 7969              !HDR_COMPRESSION_ENABLED(hdr)) {
8024 7970                  abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8025 7971                      B_TRUE);
8026 7972                  void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8027 7973  
8028 7974                  ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8029 7975                      hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8030 7976                      HDR_GET_LSIZE(hdr));
8031 7977                  if (ret != 0) {
8032 7978                          abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8033 7979                          arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8034 7980                          goto error;
8035 7981                  }
8036 7982  
8037 7983                  abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8038 7984                  arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8039 7985                      arc_hdr_size(hdr), hdr);
8040 7986                  hdr->b_l1hdr.b_pabd = cabd;
8041 7987                  zio->io_abd = cabd;
8042 7988                  zio->io_size = HDR_GET_LSIZE(hdr);
8043 7989          }
8044 7990  
8045 7991          return (0);
8046 7992  
8047 7993  error:
8048 7994          return (ret);
8049 7995  }
8050 7996  
8051 7997  
8052 7998  /*
8053 7999   * A read to a cache device completed.  Validate buffer contents before
8054 8000   * handing over to the regular ARC routines.
8055 8001   */
8056 8002  static void
8057 8003  l2arc_read_done(zio_t *zio)
8058 8004  {
8059 8005          int tfm_error = 0;
8060 8006          l2arc_read_callback_t *cb = zio->io_private;
8061 8007          arc_buf_hdr_t *hdr;
8062 8008          kmutex_t *hash_lock;
8063 8009          boolean_t valid_cksum;
8064 8010          boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8065 8011              (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8066 8012  
8067 8013          ASSERT3P(zio->io_vd, !=, NULL);
8068 8014          ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8069 8015  
8070 8016          spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8071 8017  
8072 8018          ASSERT3P(cb, !=, NULL);
8073 8019          hdr = cb->l2rcb_hdr;
8074 8020          ASSERT3P(hdr, !=, NULL);
8075 8021  
8076 8022          hash_lock = HDR_LOCK(hdr);
8077 8023          mutex_enter(hash_lock);
8078 8024          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8079 8025  
8080 8026          /*
8081 8027           * If the data was read into a temporary buffer,
8082 8028           * move it and free the buffer.
8083 8029           */
8084 8030          if (cb->l2rcb_abd != NULL) {
8085 8031                  ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8086 8032                  if (zio->io_error == 0) {
8087 8033                          if (using_rdata) {
8088 8034                                  abd_copy(hdr->b_crypt_hdr.b_rabd,
8089 8035                                      cb->l2rcb_abd, arc_hdr_size(hdr));
8090 8036                          } else {
8091 8037                                  abd_copy(hdr->b_l1hdr.b_pabd,
8092 8038                                      cb->l2rcb_abd, arc_hdr_size(hdr));
8093 8039                          }
8094 8040                  }
8095 8041  
8096 8042                  /*
8097 8043                   * The following must be done regardless of whether
8098 8044                   * there was an error:
8099 8045                   * - free the temporary buffer
8100 8046                   * - point zio to the real ARC buffer
8101 8047                   * - set zio size accordingly
8102 8048                   * These are required because zio is either re-used for
8103 8049                   * an I/O of the block in the case of the error
8104 8050                   * or the zio is passed to arc_read_done() and it
8105 8051                   * needs real data.
8106 8052                   */
8107 8053                  abd_free(cb->l2rcb_abd);
8108 8054                  zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8109 8055  
8110 8056                  if (using_rdata) {
8111 8057                          ASSERT(HDR_HAS_RABD(hdr));
8112 8058                          zio->io_abd = zio->io_orig_abd =
8113 8059                              hdr->b_crypt_hdr.b_rabd;
8114 8060                  } else {
8115 8061                          ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8116 8062                          zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8117 8063                  }
8118 8064          }
8119 8065  
8120 8066          ASSERT3P(zio->io_abd, !=, NULL);
8121 8067  
8122 8068          /*
8123 8069           * Check this survived the L2ARC journey.
8124 8070           */
8125 8071          ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8126 8072              (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8127 8073          zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8128 8074          zio->io_bp = &zio->io_bp_copy;  /* XXX fix in L2ARC 2.0 */
8129 8075  
8130 8076          valid_cksum = arc_cksum_is_equal(hdr, zio);
8131 8077  
8132 8078          /*
8133 8079           * b_rabd will always match the data as it exists on disk if it is
8134 8080           * being used. Therefore if we are reading into b_rabd we do not
8135 8081           * attempt to untransform the data.
8136 8082           */
8137 8083          if (valid_cksum && !using_rdata)
8138 8084                  tfm_error = l2arc_untransform(zio, cb);
8139 8085  
8140 8086          if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8141 8087              !HDR_L2_EVICTED(hdr)) {
8142 8088                  mutex_exit(hash_lock);
8143 8089                  zio->io_private = hdr;
8144 8090                  arc_read_done(zio);
8145 8091          } else {
8146 8092                  /*
8147 8093                   * Buffer didn't survive caching.  Increment stats and
8148 8094                   * reissue to the original storage device.
8149 8095                   */
8150 8096                  if (zio->io_error != 0) {
8151 8097                          ARCSTAT_BUMP(arcstat_l2_io_error);
8152 8098                  } else {
8153 8099                          zio->io_error = SET_ERROR(EIO);
8154 8100                  }
8155 8101                  if (!valid_cksum || tfm_error != 0)
8156 8102                          ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8157 8103  
8158 8104                  /*
8159 8105                   * If there's no waiter, issue an async i/o to the primary
8160 8106                   * storage now.  If there *is* a waiter, the caller must
8161 8107                   * issue the i/o in a context where it's OK to block.
8162 8108                   */
8163 8109                  if (zio->io_waiter == NULL) {
8164 8110                          zio_t *pio = zio_unique_parent(zio);
8165 8111                          void *abd = (using_rdata) ?
8166 8112                              hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8167 8113  
8168 8114                          ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8169 8115  
8170 8116                          zio = zio_read(pio, zio->io_spa, zio->io_bp,
8171 8117                              abd, zio->io_size, arc_read_done,
8172 8118                              hdr, zio->io_priority, cb->l2rcb_flags,
8173 8119                              &cb->l2rcb_zb);
8174 8120  
8175 8121                          /*
8176 8122                           * Original ZIO will be freed, so we need to update
8177 8123                           * ARC header with the new ZIO pointer to be used
8178 8124                           * by zio_change_priority() in arc_read().
8179 8125                           */
8180 8126                          for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8181 8127                              acb != NULL; acb = acb->acb_next)
8182 8128                                  acb->acb_zio_head = zio;
8183 8129  
8184 8130                          mutex_exit(hash_lock);
8185 8131                          zio_nowait(zio);
8186 8132                  } else {
8187 8133                          mutex_exit(hash_lock);
8188 8134                  }
8189 8135          }
8190 8136  
8191 8137          kmem_free(cb, sizeof (l2arc_read_callback_t));
8192 8138  }
8193 8139  
8194 8140  /*
8195 8141   * This is the list priority from which the L2ARC will search for pages to
8196 8142   * cache.  This is used within loops (0..3) to cycle through lists in the
8197 8143   * desired order.  This order can have a significant effect on cache
8198 8144   * performance.
8199 8145   *
8200 8146   * Currently the metadata lists are hit first, MFU then MRU, followed by
8201 8147   * the data lists.  This function returns a locked list, and also returns
8202 8148   * the lock pointer.
8203 8149   */
8204 8150  static multilist_sublist_t *
8205 8151  l2arc_sublist_lock(int list_num)
8206 8152  {
8207 8153          multilist_t *ml = NULL;
8208 8154          unsigned int idx;
8209 8155  
8210 8156          ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8211 8157  
8212 8158          switch (list_num) {
8213 8159          case 0:
8214 8160                  ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
8215 8161                  break;
8216 8162          case 1:
8217 8163                  ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
8218 8164                  break;
8219 8165          case 2:
8220 8166                  ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
8221 8167                  break;
8222 8168          case 3:
8223 8169                  ml = arc_mru->arcs_list[ARC_BUFC_DATA];
8224 8170                  break;
8225 8171          default:
8226 8172                  return (NULL);
8227 8173          }
8228 8174  
8229 8175          /*
8230 8176           * Return a randomly-selected sublist. This is acceptable
8231 8177           * because the caller feeds only a little bit of data for each
8232 8178           * call (8MB). Subsequent calls will result in different
8233 8179           * sublists being selected.
8234 8180           */
8235 8181          idx = multilist_get_random_index(ml);
8236 8182          return (multilist_sublist_lock(ml, idx));
8237 8183  }
8238 8184  
8239 8185  /*
8240 8186   * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8241 8187   * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8242 8188   * overhead in processing to make sure there is enough headroom available
8243 8189   * when writing buffers.
8244 8190   */
8245 8191  static inline uint64_t
8246 8192  l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8247 8193  {
8248 8194          if (dev->l2ad_log_entries == 0) {
8249 8195                  return (0);
8250 8196          } else {
8251 8197                  uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8252 8198  
8253 8199                  uint64_t log_blocks = (log_entries +
8254 8200                      dev->l2ad_log_entries - 1) /
8255 8201                      dev->l2ad_log_entries;
8256 8202  
8257 8203                  return (vdev_psize_to_asize(dev->l2ad_vdev,
8258 8204                      sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8259 8205          }
8260 8206  }
8261 8207  
8262 8208  /*
8263 8209   * Evict buffers from the device write hand to the distance specified in
8264 8210   * bytes. This distance may span populated buffers, it may span nothing.
8265 8211   * This is clearing a region on the L2ARC device ready for writing.
8266 8212   * If the 'all' boolean is set, every buffer is evicted.
8267 8213   */
8268 8214  static void
8269 8215  l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8270 8216  {
8271 8217          list_t *buflist;
8272 8218          arc_buf_hdr_t *hdr, *hdr_prev;
8273 8219          kmutex_t *hash_lock;
8274 8220          uint64_t taddr;
8275 8221          l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8276 8222          boolean_t rerun;
8277 8223  
8278 8224          buflist = &dev->l2ad_buflist;
8279 8225  
8280 8226          /*
8281 8227           * We need to add in the worst case scenario of log block overhead.
8282 8228           */
8283 8229          distance += l2arc_log_blk_overhead(distance, dev);
8284 8230  
8285 8231  top:
8286 8232          rerun = B_FALSE;
8287 8233          if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
8288 8234                  /*
8289 8235                   * When there is no space to accommodate upcoming writes,
8290 8236                   * evict to the end. Then bump the write and evict hands
8291 8237                   * to the start and iterate. This iteration does not
8292 8238                   * happen indefinitely as we make sure in
8293 8239                   * l2arc_write_size() that when the write hand is reset,
8294 8240                   * the write size does not exceed the end of the device.
8295 8241                   */
8296 8242                  rerun = B_TRUE;
8297 8243                  taddr = dev->l2ad_end;
8298 8244          } else {
8299 8245                  taddr = dev->l2ad_hand + distance;
8300 8246          }
8301 8247          DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8302 8248              uint64_t, taddr, boolean_t, all);
8303 8249  
8304 8250          /*
8305 8251           * This check has to be placed after deciding whether to iterate
8306 8252           * (rerun).
8307 8253           */
8308 8254          if (!all && dev->l2ad_first) {
8309 8255                  /*
8310 8256                   * This is the first sweep through the device. There is
8311 8257                   * nothing to evict.
8312 8258                   */
8313 8259                  goto out;
8314 8260          }
8315 8261  
8316 8262          /*
8317 8263           * When rebuilding L2ARC we retrieve the evict hand from the header of
8318 8264           * the device. Of note, l2arc_evict() does not actually delete buffers
8319 8265           * from the cache device, but keeping track of the evict hand will be
8320 8266           * useful when TRIM is implemented.
8321 8267           */
8322 8268          dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8323 8269  
8324 8270  retry:
8325 8271          mutex_enter(&dev->l2ad_mtx);
8326 8272          /*
8327 8273           * We have to account for evicted log blocks. Run vdev_space_update()
8328 8274           * on log blocks whose offset (in bytes) is before the evicted offset
8329 8275           * (in bytes) by searching in the list of pointers to log blocks
8330 8276           * present in the L2ARC device.
8331 8277           */
8332 8278          for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8333 8279              lb_ptr_buf = lb_ptr_buf_prev) {
8334 8280  
8335 8281                  lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8336 8282  
8337 8283                  /* L2BLK_GET_PSIZE returns aligned size for log blocks */
8338 8284                  uint64_t asize = L2BLK_GET_PSIZE(
8339 8285                      (lb_ptr_buf->lb_ptr)->lbp_prop);
8340 8286  
8341 8287                  /*
8342 8288                   * We don't worry about log blocks left behind (ie
8343 8289                   * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8344 8290                   * will never write more than l2arc_evict() evicts.
8345 8291                   */
8346 8292                  if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8347 8293                          break;
8348 8294                  } else {
8349 8295                          vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
8350 8296                          ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8351 8297                          ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8352 8298                          zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8353 8299                              lb_ptr_buf);
8354 8300                          zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8355 8301                          list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8356 8302                          kmem_free(lb_ptr_buf->lb_ptr,
8357 8303                              sizeof (l2arc_log_blkptr_t));
8358 8304                          kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8359 8305                  }
8360 8306          }
8361 8307  
8362 8308          for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8363 8309                  hdr_prev = list_prev(buflist, hdr);
8364 8310  
8365 8311                  ASSERT(!HDR_EMPTY(hdr));
8366 8312                  hash_lock = HDR_LOCK(hdr);
8367 8313  
8368 8314                  /*
8369 8315                   * We cannot use mutex_enter or else we can deadlock
8370 8316                   * with l2arc_write_buffers (due to swapping the order
8371 8317                   * the hash lock and l2ad_mtx are taken).
8372 8318                   */
8373 8319                  if (!mutex_tryenter(hash_lock)) {
8374 8320                          /*
8375 8321                           * Missed the hash lock.  Retry.
8376 8322                           */
8377 8323                          ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8378 8324                          mutex_exit(&dev->l2ad_mtx);
8379 8325                          mutex_enter(hash_lock);
8380 8326                          mutex_exit(hash_lock);
8381 8327                          goto retry;
8382 8328                  }
8383 8329  
8384 8330                  /*
8385 8331                   * A header can't be on this list if it doesn't have L2 header.
8386 8332                   */
8387 8333                  ASSERT(HDR_HAS_L2HDR(hdr));
8388 8334  
8389 8335                  /* Ensure this header has finished being written. */
8390 8336                  ASSERT(!HDR_L2_WRITING(hdr));
8391 8337                  ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8392 8338  
8393 8339                  if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8394 8340                      hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8395 8341                          /*
8396 8342                           * We've evicted to the target address,
8397 8343                           * or the end of the device.
8398 8344                           */
8399 8345                          mutex_exit(hash_lock);
8400 8346                          break;
8401 8347                  }
8402 8348  
8403 8349                  if (!HDR_HAS_L1HDR(hdr)) {
8404 8350                          ASSERT(!HDR_L2_READING(hdr));
8405 8351                          /*
8406 8352                           * This doesn't exist in the ARC.  Destroy.
8407 8353                           * arc_hdr_destroy() will call list_remove()
8408 8354                           * and decrement arcstat_l2_lsize.
8409 8355                           */
8410 8356                          arc_change_state(arc_anon, hdr, hash_lock);
8411 8357                          arc_hdr_destroy(hdr);
8412 8358                  } else {
8413 8359                          ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8414 8360                          ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8415 8361                          /*
8416 8362                           * Invalidate issued or about to be issued
8417 8363                           * reads, since we may be about to write
8418 8364                           * over this location.
8419 8365                           */
8420 8366                          if (HDR_L2_READING(hdr)) {
8421 8367                                  ARCSTAT_BUMP(arcstat_l2_evict_reading);
8422 8368                                  arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8423 8369                          }
8424 8370  
8425 8371                          arc_hdr_l2hdr_destroy(hdr);
8426 8372                  }
8427 8373                  mutex_exit(hash_lock);
8428 8374          }
8429 8375          mutex_exit(&dev->l2ad_mtx);
8430 8376  
8431 8377  out:
8432 8378          /*
8433 8379           * We need to check if we evict all buffers, otherwise we may iterate
8434 8380           * unnecessarily.
8435 8381           */
8436 8382          if (!all && rerun) {
8437 8383                  /*
8438 8384                   * Bump device hand to the device start if it is approaching the
8439 8385                   * end. l2arc_evict() has already evicted ahead for this case.
8440 8386                   */
8441 8387                  dev->l2ad_hand = dev->l2ad_start;
8442 8388                  dev->l2ad_evict = dev->l2ad_start;
8443 8389                  dev->l2ad_first = B_FALSE;
8444 8390                  goto top;
8445 8391          }
8446 8392  
8447 8393          ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8448 8394          if (!dev->l2ad_first)
8449 8395                  ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
8450 8396  }
8451 8397  
8452 8398  /*
8453 8399   * Handle any abd transforms that might be required for writing to the L2ARC.
8454 8400   * If successful, this function will always return an abd with the data
8455 8401   * transformed as it is on disk in a new abd of asize bytes.
8456 8402   */
8457 8403  static int
8458 8404  l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8459 8405      abd_t **abd_out)
8460 8406  {
8461 8407          int ret;
8462 8408          void *tmp = NULL;
8463 8409          abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8464 8410          enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8465 8411          uint64_t psize = HDR_GET_PSIZE(hdr);
8466 8412          uint64_t size = arc_hdr_size(hdr);
8467 8413          boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8468 8414          boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8469 8415          dsl_crypto_key_t *dck = NULL;
8470 8416          uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8471 8417          boolean_t no_crypt = B_FALSE;
8472 8418  
8473 8419          ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8474 8420              !HDR_COMPRESSION_ENABLED(hdr)) ||
8475 8421              HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8476 8422          ASSERT3U(psize, <=, asize);
8477 8423  
8478 8424          /*
8479 8425           * If this data simply needs its own buffer, we simply allocate it
8480 8426           * and copy the data. This may be done to eliminate a dependency on a
8481 8427           * shared buffer or to reallocate the buffer to match asize.
8482 8428           */
8483 8429          if (HDR_HAS_RABD(hdr) && asize != psize) {
8484 8430                  ASSERT3U(asize, >=, psize);
8485 8431                  to_write = abd_alloc_for_io(asize, ismd);
8486 8432                  abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8487 8433                  if (psize != asize)
8488 8434                          abd_zero_off(to_write, psize, asize - psize);
8489 8435                  goto out;
8490 8436          }
8491 8437  
8492 8438          if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8493 8439              !HDR_ENCRYPTED(hdr)) {
8494 8440                  ASSERT3U(size, ==, psize);
8495 8441                  to_write = abd_alloc_for_io(asize, ismd);
8496 8442                  abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8497 8443                  if (size != asize)
8498 8444                          abd_zero_off(to_write, size, asize - size);
8499 8445                  goto out;
8500 8446          }
8501 8447  
8502 8448          if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8503 8449                  cabd = abd_alloc_for_io(asize, ismd);
8504 8450                  tmp = abd_borrow_buf(cabd, asize);
8505 8451  
8506 8452                  psize = zio_compress_data(compress, to_write, tmp, size);
8507 8453                  ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8508 8454                  if (psize < asize)
8509 8455                          bzero((char *)tmp + psize, asize - psize);
8510 8456                  psize = HDR_GET_PSIZE(hdr);
8511 8457                  abd_return_buf_copy(cabd, tmp, asize);
8512 8458                  to_write = cabd;
8513 8459          }
8514 8460  
8515 8461          if (HDR_ENCRYPTED(hdr)) {
8516 8462                  eabd = abd_alloc_for_io(asize, ismd);
8517 8463  
8518 8464                  /*
8519 8465                   * If the dataset was disowned before the buffer
8520 8466                   * made it to this point, the key to re-encrypt
8521 8467                   * it won't be available. In this case we simply
8522 8468                   * won't write the buffer to the L2ARC.
8523 8469                   */
8524 8470                  ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8525 8471                      FTAG, &dck);
8526 8472                  if (ret != 0)
8527 8473                          goto error;
8528 8474  
8529 8475                  ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8530 8476                      hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8531 8477                      hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8532 8478                      &no_crypt);
8533 8479                  if (ret != 0)
8534 8480                          goto error;
8535 8481  
8536 8482                  if (no_crypt)
8537 8483                          abd_copy(eabd, to_write, psize);
8538 8484  
8539 8485                  if (psize != asize)
8540 8486                          abd_zero_off(eabd, psize, asize - psize);
8541 8487  
8542 8488                  /* assert that the MAC we got here matches the one we saved */
8543 8489                  ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8544 8490                  spa_keystore_dsl_key_rele(spa, dck, FTAG);
8545 8491  
8546 8492                  if (to_write == cabd)
8547 8493                          abd_free(cabd);
8548 8494  
8549 8495                  to_write = eabd;
8550 8496          }
8551 8497  
8552 8498  out:
8553 8499          ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8554 8500          *abd_out = to_write;
8555 8501          return (0);
8556 8502  
8557 8503  error:
8558 8504          if (dck != NULL)
8559 8505                  spa_keystore_dsl_key_rele(spa, dck, FTAG);
8560 8506          if (cabd != NULL)
8561 8507                  abd_free(cabd);
8562 8508          if (eabd != NULL)
8563 8509                  abd_free(eabd);
8564 8510  
8565 8511          *abd_out = NULL;
8566 8512          return (ret);
8567 8513  }
8568 8514  
8569 8515  static void
8570 8516  l2arc_blk_fetch_done(zio_t *zio)
8571 8517  {
8572 8518          l2arc_read_callback_t *cb;
8573 8519  
8574 8520          cb = zio->io_private;
8575 8521          if (cb->l2rcb_abd != NULL)
8576 8522                  abd_put(cb->l2rcb_abd);
8577 8523          kmem_free(cb, sizeof (l2arc_read_callback_t));
8578 8524  }
8579 8525  
8580 8526  /*
8581 8527   * Find and write ARC buffers to the L2ARC device.
8582 8528   *
8583 8529   * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8584 8530   * for reading until they have completed writing.
8585 8531   * The headroom_boost is an in-out parameter used to maintain headroom boost
8586 8532   * state between calls to this function.
8587 8533   *
8588 8534   * Returns the number of bytes actually written (which may be smaller than
8589 8535   * the delta by which the device hand has changed due to alignment and the
8590 8536   * writing of log blocks).
8591 8537   */
8592 8538  static uint64_t
8593 8539  l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8594 8540  {
8595 8541          arc_buf_hdr_t           *hdr, *hdr_prev, *head;
8596 8542          uint64_t                write_asize, write_psize, write_lsize, headroom;
8597 8543          boolean_t               full;
8598 8544          l2arc_write_callback_t  *cb = NULL;
8599 8545          zio_t                   *pio, *wzio;
8600 8546          uint64_t                guid = spa_load_guid(spa);
8601 8547          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
8602 8548  
8603 8549          ASSERT3P(dev->l2ad_vdev, !=, NULL);
8604 8550  
8605 8551          pio = NULL;
8606 8552          write_lsize = write_asize = write_psize = 0;
8607 8553          full = B_FALSE;
8608 8554          head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8609 8555          arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8610 8556  
8611 8557          /*
8612 8558           * Copy buffers for L2ARC writing.
8613 8559           */
8614 8560          for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
8615 8561                  /*
8616 8562                   * If try == 1 or 3, we cache MRU metadata and data
8617 8563                   * respectively.
8618 8564                   */
8619 8565                  if (l2arc_mfuonly) {
8620 8566                          if (try == 1 || try == 3)
8621 8567                                  continue;
8622 8568                  }
8623 8569  
8624 8570                  multilist_sublist_t *mls = l2arc_sublist_lock(try);
8625 8571                  uint64_t passed_sz = 0;
8626 8572  
8627 8573                  VERIFY3P(mls, !=, NULL);
8628 8574  
8629 8575                  /*
8630 8576                   * L2ARC fast warmup.
8631 8577                   *
8632 8578                   * Until the ARC is warm and starts to evict, read from the
8633 8579                   * head of the ARC lists rather than the tail.
8634 8580                   */
8635 8581                  if (arc_warm == B_FALSE)
8636 8582                          hdr = multilist_sublist_head(mls);
8637 8583                  else
8638 8584                          hdr = multilist_sublist_tail(mls);
8639 8585  
8640 8586                  headroom = target_sz * l2arc_headroom;
8641 8587                  if (zfs_compressed_arc_enabled)
8642 8588                          headroom = (headroom * l2arc_headroom_boost) / 100;
8643 8589  
8644 8590                  for (; hdr; hdr = hdr_prev) {
8645 8591                          kmutex_t *hash_lock;
8646 8592                          abd_t *to_write = NULL;
8647 8593  
8648 8594                          if (arc_warm == B_FALSE)
8649 8595                                  hdr_prev = multilist_sublist_next(mls, hdr);
8650 8596                          else
8651 8597                                  hdr_prev = multilist_sublist_prev(mls, hdr);
8652 8598  
8653 8599                          hash_lock = HDR_LOCK(hdr);
8654 8600                          if (!mutex_tryenter(hash_lock)) {
8655 8601                                  /*
8656 8602                                   * Skip this buffer rather than waiting.
8657 8603                                   */
8658 8604                                  continue;
8659 8605                          }
8660 8606  
8661 8607                          passed_sz += HDR_GET_LSIZE(hdr);
8662 8608                          if (l2arc_headroom != 0 && passed_sz > headroom) {
8663 8609                                  /*
8664 8610                                   * Searched too far.
8665 8611                                   */
8666 8612                                  mutex_exit(hash_lock);
8667 8613                                  break;
8668 8614                          }
8669 8615  
8670 8616                          if (!l2arc_write_eligible(guid, hdr)) {
8671 8617                                  mutex_exit(hash_lock);
8672 8618                                  continue;
8673 8619                          }
8674 8620  
8675 8621                          /*
8676 8622                           * We rely on the L1 portion of the header below, so
8677 8623                           * it's invalid for this header to have been evicted out
8678 8624                           * of the ghost cache, prior to being written out. The
8679 8625                           * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8680 8626                           */
8681 8627                          ASSERT(HDR_HAS_L1HDR(hdr));
8682 8628  
8683 8629                          ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8684 8630                          ASSERT3U(arc_hdr_size(hdr), >, 0);
8685 8631                          ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8686 8632                              HDR_HAS_RABD(hdr));
8687 8633                          uint64_t psize = HDR_GET_PSIZE(hdr);
8688 8634                          uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8689 8635                              psize);
8690 8636  
8691 8637                          if ((write_asize + asize) > target_sz) {
8692 8638                                  full = B_TRUE;
8693 8639                                  mutex_exit(hash_lock);
8694 8640                                  break;
8695 8641                          }
8696 8642  
8697 8643                          /*
8698 8644                           * We rely on the L1 portion of the header below, so
8699 8645                           * it's invalid for this header to have been evicted out
8700 8646                           * of the ghost cache, prior to being written out. The
8701 8647                           * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8702 8648                           */
8703 8649                          arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8704 8650                          ASSERT(HDR_HAS_L1HDR(hdr));
8705 8651  
8706 8652                          ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8707 8653                          ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8708 8654                              HDR_HAS_RABD(hdr));
8709 8655                          ASSERT3U(arc_hdr_size(hdr), >, 0);
8710 8656  
8711 8657                          /*
8712 8658                           * If this header has b_rabd, we can use this since it
8713 8659                           * must always match the data exactly as it exists on
8714 8660                           * disk. Otherwise, the L2ARC can normally use the
8715 8661                           * hdr's data, but if we're sharing data between the
8716 8662                           * hdr and one of its bufs, L2ARC needs its own copy of
8717 8663                           * the data so that the ZIO below can't race with the
8718 8664                           * buf consumer. To ensure that this copy will be
8719 8665                           * available for the lifetime of the ZIO and be cleaned
8720 8666                           * up afterwards, we add it to the l2arc_free_on_write
8721 8667                           * queue. If we need to apply any transforms to the
8722 8668                           * data (compression, encryption) we will also need the
8723 8669                           * extra buffer.
8724 8670                           */
8725 8671                          if (HDR_HAS_RABD(hdr) && psize == asize) {
8726 8672                                  to_write = hdr->b_crypt_hdr.b_rabd;
8727 8673                          } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8728 8674                              HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8729 8675                              !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8730 8676                              psize == asize) {
8731 8677                                  to_write = hdr->b_l1hdr.b_pabd;
8732 8678                          } else {
8733 8679                                  int ret;
8734 8680                                  arc_buf_contents_t type = arc_buf_type(hdr);
8735 8681  
8736 8682                                  ret = l2arc_apply_transforms(spa, hdr, asize,
8737 8683                                      &to_write);
8738 8684                                  if (ret != 0) {
8739 8685                                          arc_hdr_clear_flags(hdr,
8740 8686                                              ARC_FLAG_L2_WRITING);
8741 8687                                          mutex_exit(hash_lock);
8742 8688                                          continue;
8743 8689                                  }
8744 8690  
8745 8691                                  l2arc_free_abd_on_write(to_write, asize, type);
8746 8692                          }
8747 8693  
8748 8694                          if (pio == NULL) {
8749 8695                                  /*
8750 8696                                   * Insert a dummy header on the buflist so
8751 8697                                   * l2arc_write_done() can find where the
8752 8698                                   * write buffers begin without searching.
8753 8699                                   */
8754 8700                                  mutex_enter(&dev->l2ad_mtx);
8755 8701                                  list_insert_head(&dev->l2ad_buflist, head);
8756 8702                                  mutex_exit(&dev->l2ad_mtx);
8757 8703  
8758 8704                                  cb = kmem_alloc(
8759 8705                                      sizeof (l2arc_write_callback_t), KM_SLEEP);
8760 8706                                  cb->l2wcb_dev = dev;
8761 8707                                  cb->l2wcb_head = head;
8762 8708                                  /*
8763 8709                                   * Create a list to save allocated abd buffers
8764 8710                                   * for l2arc_log_blk_commit().
8765 8711                                   */
8766 8712                                  list_create(&cb->l2wcb_abd_list,
8767 8713                                      sizeof (l2arc_lb_abd_buf_t),
8768 8714                                      offsetof(l2arc_lb_abd_buf_t, node));
8769 8715                                  pio = zio_root(spa, l2arc_write_done, cb,
8770 8716                                      ZIO_FLAG_CANFAIL);
8771 8717                          }
8772 8718  
8773 8719                          hdr->b_l2hdr.b_dev = dev;
8774 8720                          hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8775 8721                          hdr->b_l2hdr.b_arcs_state =
8776 8722                              hdr->b_l1hdr.b_state->arcs_state;
8777 8723                          arc_hdr_set_flags(hdr,
8778 8724                              ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
8779 8725  
8780 8726                          mutex_enter(&dev->l2ad_mtx);
8781 8727                          list_insert_head(&dev->l2ad_buflist, hdr);
8782 8728                          mutex_exit(&dev->l2ad_mtx);
8783 8729  
8784 8730                          (void) zfs_refcount_add_many(&dev->l2ad_alloc,
8785 8731                              arc_hdr_size(hdr), hdr);
8786 8732  
8787 8733                          wzio = zio_write_phys(pio, dev->l2ad_vdev,
8788 8734                              hdr->b_l2hdr.b_daddr, asize, to_write,
8789 8735                              ZIO_CHECKSUM_OFF, NULL, hdr,
8790 8736                              ZIO_PRIORITY_ASYNC_WRITE,
8791 8737                              ZIO_FLAG_CANFAIL, B_FALSE);
8792 8738  
8793 8739                          write_lsize += HDR_GET_LSIZE(hdr);
8794 8740                          DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8795 8741                              zio_t *, wzio);
8796 8742  
8797 8743                          write_psize += psize;
8798 8744                          write_asize += asize;
8799 8745                          dev->l2ad_hand += asize;
8800 8746                          l2arc_hdr_arcstats_increment(hdr);
8801 8747                          vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
8802 8748  
8803 8749                          mutex_exit(hash_lock);
8804 8750  
8805 8751                          /*
8806 8752                           * Append buf info to current log and commit if full.
8807 8753                           * arcstat_l2_{size,asize} kstats are updated
8808 8754                           * internally.
8809 8755                           */
8810 8756                          if (l2arc_log_blk_insert(dev, hdr))
8811 8757                                  l2arc_log_blk_commit(dev, pio, cb);
8812 8758  
8813 8759                          (void) zio_nowait(wzio);
8814 8760                  }
8815 8761  
8816 8762                  multilist_sublist_unlock(mls);
8817 8763  
8818 8764                  if (full == B_TRUE)
8819 8765                          break;
8820 8766          }
8821 8767  
8822 8768          /* No buffers selected for writing? */
8823 8769          if (pio == NULL) {
8824 8770                  ASSERT0(write_lsize);
8825 8771                  ASSERT(!HDR_HAS_L1HDR(head));
8826 8772                  kmem_cache_free(hdr_l2only_cache, head);
8827 8773  
8828 8774                  /*
8829 8775                   * Although we did not write any buffers l2ad_evict may
8830 8776                   * have advanced.
8831 8777                   */
8832 8778                  if (dev->l2ad_evict != l2dhdr->dh_evict)
8833 8779                          l2arc_dev_hdr_update(dev);
8834 8780  
8835 8781                  return (0);
8836 8782          }
8837 8783  
8838 8784          if (!dev->l2ad_first)
8839 8785                  ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8840 8786  
8841 8787          ASSERT3U(write_asize, <=, target_sz);
8842 8788          ARCSTAT_BUMP(arcstat_l2_writes_sent);
8843 8789          ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8844 8790  
8845 8791          dev->l2ad_writing = B_TRUE;
8846 8792          (void) zio_wait(pio);
8847 8793          dev->l2ad_writing = B_FALSE;
8848 8794  
8849 8795          /*
8850 8796           * Update the device header after the zio completes as
8851 8797           * l2arc_write_done() may have updated the memory holding the log block
8852 8798           * pointers in the device header.
8853 8799           */
8854 8800          l2arc_dev_hdr_update(dev);
8855 8801  
8856 8802          return (write_asize);
8857 8803  }
8858 8804  
8859 8805  static boolean_t
8860 8806  l2arc_hdr_limit_reached(void)
8861 8807  {
8862 8808          int64_t s = aggsum_upper_bound(&astat_l2_hdr_size);
8863 8809  
8864 8810          return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
8865 8811              (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
8866 8812  }
8867 8813  
8868 8814  /*
8869 8815   * This thread feeds the L2ARC at regular intervals.  This is the beating
8870 8816   * heart of the L2ARC.
8871 8817   */
8872 8818  /* ARGSUSED */
8873 8819  static void
8874 8820  l2arc_feed_thread(void *unused)
8875 8821  {
8876 8822          callb_cpr_t cpr;
8877 8823          l2arc_dev_t *dev;
8878 8824          spa_t *spa;
8879 8825          uint64_t size, wrote;
8880 8826          clock_t begin, next = ddi_get_lbolt();
8881 8827  
8882 8828          CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8883 8829  
8884 8830          mutex_enter(&l2arc_feed_thr_lock);
8885 8831  
8886 8832          while (l2arc_thread_exit == 0) {
8887 8833                  CALLB_CPR_SAFE_BEGIN(&cpr);
8888 8834                  (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
8889 8835                      next);
8890 8836                  CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8891 8837                  next = ddi_get_lbolt() + hz;
8892 8838  
8893 8839                  /*
8894 8840                   * Quick check for L2ARC devices.
8895 8841                   */
8896 8842                  mutex_enter(&l2arc_dev_mtx);
8897 8843                  if (l2arc_ndev == 0) {
8898 8844                          mutex_exit(&l2arc_dev_mtx);
8899 8845                          continue;
8900 8846                  }
8901 8847                  mutex_exit(&l2arc_dev_mtx);
8902 8848                  begin = ddi_get_lbolt();
8903 8849  
8904 8850                  /*
8905 8851                   * This selects the next l2arc device to write to, and in
8906 8852                   * doing so the next spa to feed from: dev->l2ad_spa.   This
8907 8853                   * will return NULL if there are now no l2arc devices or if
8908 8854                   * they are all faulted.
8909 8855                   *
8910 8856                   * If a device is returned, its spa's config lock is also
8911 8857                   * held to prevent device removal.  l2arc_dev_get_next()
8912 8858                   * will grab and release l2arc_dev_mtx.
8913 8859                   */
8914 8860                  if ((dev = l2arc_dev_get_next()) == NULL)
8915 8861                          continue;
8916 8862  
8917 8863                  spa = dev->l2ad_spa;
8918 8864                  ASSERT3P(spa, !=, NULL);
8919 8865  
8920 8866                  /*
8921 8867                   * If the pool is read-only then force the feed thread to
8922 8868                   * sleep a little longer.
8923 8869                   */
8924 8870                  if (!spa_writeable(spa)) {
8925 8871                          next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8926 8872                          spa_config_exit(spa, SCL_L2ARC, dev);
8927 8873                          continue;
8928 8874                  }
8929 8875  
8930 8876                  /*
8931 8877                   * Avoid contributing to memory pressure.
8932 8878                   */
8933 8879                  if (l2arc_hdr_limit_reached()) {
8934 8880                          ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8935 8881                          spa_config_exit(spa, SCL_L2ARC, dev);
8936 8882                          continue;
8937 8883                  }
8938 8884  
8939 8885                  ARCSTAT_BUMP(arcstat_l2_feeds);
8940 8886  
8941 8887                  size = l2arc_write_size(dev);
8942 8888  
8943 8889                  /*
8944 8890                   * Evict L2ARC buffers that will be overwritten.
8945 8891                   */
8946 8892                  l2arc_evict(dev, size, B_FALSE);
8947 8893  
8948 8894                  /*
8949 8895                   * Write ARC buffers.
8950 8896                   */
8951 8897                  wrote = l2arc_write_buffers(spa, dev, size);
8952 8898  
8953 8899                  /*
8954 8900                   * Calculate interval between writes.
8955 8901                   */
8956 8902                  next = l2arc_write_interval(begin, size, wrote);
8957 8903                  spa_config_exit(spa, SCL_L2ARC, dev);
8958 8904          }
8959 8905  
8960 8906          l2arc_thread_exit = 0;
8961 8907          cv_broadcast(&l2arc_feed_thr_cv);
8962 8908          CALLB_CPR_EXIT(&cpr);           /* drops l2arc_feed_thr_lock */
8963 8909          thread_exit();
8964 8910  }
8965 8911  
8966 8912  boolean_t
8967 8913  l2arc_vdev_present(vdev_t *vd)
8968 8914  {
8969 8915          return (l2arc_vdev_get(vd) != NULL);
8970 8916  }
8971 8917  
8972 8918  /*
8973 8919   * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
8974 8920   * the vdev_t isn't an L2ARC device.
8975 8921   */
8976 8922  static l2arc_dev_t *
8977 8923  l2arc_vdev_get(vdev_t *vd)
8978 8924  {
8979 8925          l2arc_dev_t     *dev;
8980 8926  
8981 8927          mutex_enter(&l2arc_dev_mtx);
8982 8928          for (dev = list_head(l2arc_dev_list); dev != NULL;
8983 8929              dev = list_next(l2arc_dev_list, dev)) {
8984 8930                  if (dev->l2ad_vdev == vd)
8985 8931                          break;
8986 8932          }
8987 8933          mutex_exit(&l2arc_dev_mtx);
8988 8934  
8989 8935          return (dev);
8990 8936  }
8991 8937  
8992 8938  /*
8993 8939   * Add a vdev for use by the L2ARC.  By this point the spa has already
8994 8940   * validated the vdev and opened it.
8995 8941   */
8996 8942  void
8997 8943  l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8998 8944  {
8999 8945          l2arc_dev_t             *adddev;
9000 8946          uint64_t                l2dhdr_asize;
9001 8947  
9002 8948          ASSERT(!l2arc_vdev_present(vd));
9003 8949  
9004 8950          /*
9005 8951           * Create a new l2arc device entry.
9006 8952           */
9007 8953          adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9008 8954          adddev->l2ad_spa = spa;
9009 8955          adddev->l2ad_vdev = vd;
9010 8956          /* leave extra size for an l2arc device header */
9011 8957          l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9012 8958              MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9013 8959          adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9014 8960          adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9015 8961          ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9016 8962          adddev->l2ad_hand = adddev->l2ad_start;
9017 8963          adddev->l2ad_evict = adddev->l2ad_start;
9018 8964          adddev->l2ad_first = B_TRUE;
9019 8965          adddev->l2ad_writing = B_FALSE;
9020 8966          adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9021 8967  
9022 8968          mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9023 8969          /*
9024 8970           * This is a list of all ARC buffers that are still valid on the
9025 8971           * device.
9026 8972           */
9027 8973          list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9028 8974              offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9029 8975  
9030 8976          /*
9031 8977           * This is a list of pointers to log blocks that are still present
9032 8978           * on the device.
9033 8979           */
9034 8980          list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9035 8981              offsetof(l2arc_lb_ptr_buf_t, node));
9036 8982  
9037 8983          vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9038 8984          zfs_refcount_create(&adddev->l2ad_alloc);
9039 8985          zfs_refcount_create(&adddev->l2ad_lb_asize);
9040 8986          zfs_refcount_create(&adddev->l2ad_lb_count);
9041 8987  
9042 8988          /*
9043 8989           * Add device to global list
9044 8990           */
9045 8991          mutex_enter(&l2arc_dev_mtx);
9046 8992          list_insert_head(l2arc_dev_list, adddev);
9047 8993          atomic_inc_64(&l2arc_ndev);
9048 8994          mutex_exit(&l2arc_dev_mtx);
9049 8995  
9050 8996          /*
9051 8997           * Decide if vdev is eligible for L2ARC rebuild
9052 8998           */
9053 8999          l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE);
9054 9000  }
9055 9001  
9056 9002  void
9057 9003  l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9058 9004  {
9059 9005          l2arc_dev_t             *dev = NULL;
9060 9006          l2arc_dev_hdr_phys_t    *l2dhdr;
9061 9007          uint64_t                l2dhdr_asize;
9062 9008          spa_t                   *spa;
9063 9009  
9064 9010          dev = l2arc_vdev_get(vd);
9065 9011          ASSERT3P(dev, !=, NULL);
9066 9012          spa = dev->l2ad_spa;
9067 9013          l2dhdr = dev->l2ad_dev_hdr;
9068 9014          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9069 9015  
9070 9016          /*
9071 9017           * The L2ARC has to hold at least the payload of one log block for
9072 9018           * them to be restored (persistent L2ARC). The payload of a log block
9073 9019           * depends on the amount of its log entries. We always write log blocks
9074 9020           * with 1022 entries. How many of them are committed or restored depends
9075 9021           * on the size of the L2ARC device. Thus the maximum payload of
9076 9022           * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9077 9023           * is less than that, we reduce the amount of committed and restored
9078 9024           * log entries per block so as to enable persistence.
9079 9025           */
9080 9026          if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9081 9027                  dev->l2ad_log_entries = 0;
9082 9028          } else {
9083 9029                  dev->l2ad_log_entries = MIN((dev->l2ad_end -
9084 9030                      dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9085 9031                      L2ARC_LOG_BLK_MAX_ENTRIES);
9086 9032          }
9087 9033  
9088 9034          /*
9089 9035           * Read the device header, if an error is returned do not rebuild L2ARC.
9090 9036           */
9091 9037          if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9092 9038                  /*
9093 9039                   * If we are onlining a cache device (vdev_reopen) that was
9094 9040                   * still present (l2arc_vdev_present()) and rebuild is enabled,
9095 9041                   * we should evict all ARC buffers and pointers to log blocks
9096 9042                   * and reclaim their space before restoring its contents to
9097 9043                   * L2ARC.
9098 9044                   */
9099 9045                  if (reopen) {
9100 9046                          if (!l2arc_rebuild_enabled) {
9101 9047                                  return;
9102 9048                          } else {
9103 9049                                  l2arc_evict(dev, 0, B_TRUE);
9104 9050                                  /* start a new log block */
9105 9051                                  dev->l2ad_log_ent_idx = 0;
9106 9052                                  dev->l2ad_log_blk_payload_asize = 0;
9107 9053                                  dev->l2ad_log_blk_payload_start = 0;
9108 9054                          }
9109 9055                  }
9110 9056                  /*
9111 9057                   * Just mark the device as pending for a rebuild. We won't
9112 9058                   * be starting a rebuild in line here as it would block pool
9113 9059                   * import. Instead spa_load_impl will hand that off to an
9114 9060                   * async task which will call l2arc_spa_rebuild_start.
9115 9061                   */
9116 9062                  dev->l2ad_rebuild = B_TRUE;
9117 9063          } else if (spa_writeable(spa)) {
9118 9064                  /*
9119 9065                   * In this case create a new header. We zero out the memory
9120 9066                   * holding the header to reset dh_start_lbps.
9121 9067                   */
9122 9068                  bzero(l2dhdr, l2dhdr_asize);
9123 9069                  l2arc_dev_hdr_update(dev);
9124 9070          }
9125 9071  }
9126 9072  
9127 9073  /*
9128 9074   * Remove a vdev from the L2ARC.
9129 9075   */
9130 9076  void
9131 9077  l2arc_remove_vdev(vdev_t *vd)
9132 9078  {
9133 9079          l2arc_dev_t *remdev = NULL;
9134 9080  
9135 9081          /*
9136 9082           * Find the device by vdev
9137 9083           */
9138 9084          remdev = l2arc_vdev_get(vd);
9139 9085          ASSERT3P(remdev, !=, NULL);
9140 9086  
9141 9087          /*
9142 9088           * Cancel any ongoing or scheduled rebuild.
9143 9089           */
9144 9090          mutex_enter(&l2arc_rebuild_thr_lock);
9145 9091          if (remdev->l2ad_rebuild_began == B_TRUE) {
9146 9092                  remdev->l2ad_rebuild_cancel = B_TRUE;
9147 9093                  while (remdev->l2ad_rebuild == B_TRUE)
9148 9094                          cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9149 9095          }
9150 9096          mutex_exit(&l2arc_rebuild_thr_lock);
9151 9097  
9152 9098          /*
9153 9099           * Remove device from global list
9154 9100           */
9155 9101          mutex_enter(&l2arc_dev_mtx);
9156 9102          list_remove(l2arc_dev_list, remdev);
9157 9103          l2arc_dev_last = NULL;          /* may have been invalidated */
9158 9104          atomic_dec_64(&l2arc_ndev);
9159 9105          mutex_exit(&l2arc_dev_mtx);
9160 9106  
9161 9107          /*
9162 9108           * Clear all buflists and ARC references.  L2ARC device flush.
9163 9109           */
9164 9110          l2arc_evict(remdev, 0, B_TRUE);
9165 9111          list_destroy(&remdev->l2ad_buflist);
9166 9112          ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9167 9113          list_destroy(&remdev->l2ad_lbptr_list);
9168 9114          mutex_destroy(&remdev->l2ad_mtx);
9169 9115          zfs_refcount_destroy(&remdev->l2ad_alloc);
9170 9116          zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9171 9117          zfs_refcount_destroy(&remdev->l2ad_lb_count);
9172 9118          kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9173 9119          kmem_free(remdev, sizeof (l2arc_dev_t));
9174 9120  }
9175 9121  
9176 9122  void
9177 9123  l2arc_init(void)
9178 9124  {
9179 9125          l2arc_thread_exit = 0;
9180 9126          l2arc_ndev = 0;
9181 9127          l2arc_writes_sent = 0;
9182 9128          l2arc_writes_done = 0;
9183 9129  
9184 9130          mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9185 9131          cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9186 9132          mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9187 9133          cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9188 9134          mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9189 9135          mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9190 9136  
9191 9137          l2arc_dev_list = &L2ARC_dev_list;
9192 9138          l2arc_free_on_write = &L2ARC_free_on_write;
9193 9139          list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9194 9140              offsetof(l2arc_dev_t, l2ad_node));
9195 9141          list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9196 9142              offsetof(l2arc_data_free_t, l2df_list_node));
9197 9143  }
9198 9144  
9199 9145  void
9200 9146  l2arc_fini(void)
9201 9147  {
9202 9148          /*
9203 9149           * This is called from dmu_fini(), which is called from spa_fini();
9204 9150           * Because of this, we can assume that all l2arc devices have
9205 9151           * already been removed when the pools themselves were removed.
9206 9152           */
9207 9153  
9208 9154          l2arc_do_free_on_write();
9209 9155  
9210 9156          mutex_destroy(&l2arc_feed_thr_lock);
9211 9157          cv_destroy(&l2arc_feed_thr_cv);
9212 9158          mutex_destroy(&l2arc_rebuild_thr_lock);
9213 9159          cv_destroy(&l2arc_rebuild_thr_cv);
9214 9160          mutex_destroy(&l2arc_dev_mtx);
9215 9161          mutex_destroy(&l2arc_free_on_write_mtx);
9216 9162  
9217 9163          list_destroy(l2arc_dev_list);
9218 9164          list_destroy(l2arc_free_on_write);
9219 9165  }
9220 9166  
9221 9167  void
9222 9168  l2arc_start(void)
9223 9169  {
9224 9170          if (!(spa_mode_global & FWRITE))
9225 9171                  return;
9226 9172  
9227 9173          (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9228 9174              TS_RUN, minclsyspri);
9229 9175  }
9230 9176  
9231 9177  void
9232 9178  l2arc_stop(void)
9233 9179  {
9234 9180          if (!(spa_mode_global & FWRITE))
9235 9181                  return;
9236 9182  
9237 9183          mutex_enter(&l2arc_feed_thr_lock);
9238 9184          cv_signal(&l2arc_feed_thr_cv);  /* kick thread out of startup */
9239 9185          l2arc_thread_exit = 1;
9240 9186          while (l2arc_thread_exit != 0)
9241 9187                  cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9242 9188          mutex_exit(&l2arc_feed_thr_lock);
9243 9189  }
9244 9190  
9245 9191  /*
9246 9192   * Punches out rebuild threads for the L2ARC devices in a spa. This should
9247 9193   * be called after pool import from the spa async thread, since starting
9248 9194   * these threads directly from spa_import() will make them part of the
9249 9195   * "zpool import" context and delay process exit (and thus pool import).
9250 9196   */
9251 9197  void
9252 9198  l2arc_spa_rebuild_start(spa_t *spa)
9253 9199  {
9254 9200          ASSERT(MUTEX_HELD(&spa_namespace_lock));
9255 9201  
9256 9202          /*
9257 9203           * Locate the spa's l2arc devices and kick off rebuild threads.
9258 9204           */
9259 9205          for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9260 9206                  l2arc_dev_t *dev =
9261 9207                      l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9262 9208                  if (dev == NULL) {
9263 9209                          /* Don't attempt a rebuild if the vdev is UNAVAIL */
9264 9210                          continue;
9265 9211                  }
9266 9212                  mutex_enter(&l2arc_rebuild_thr_lock);
9267 9213                  if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9268 9214                          dev->l2ad_rebuild_began = B_TRUE;
9269 9215                          (void) thread_create(NULL, 0,
9270 9216                              (void (*)(void *))l2arc_dev_rebuild_start,
9271 9217                              dev, 0, &p0, TS_RUN, minclsyspri);
9272 9218                  }
9273 9219                  mutex_exit(&l2arc_rebuild_thr_lock);
9274 9220          }
9275 9221  }
9276 9222  
9277 9223  /*
9278 9224   * Main entry point for L2ARC rebuilding.
9279 9225   */
9280 9226  static void
9281 9227  l2arc_dev_rebuild_start(l2arc_dev_t *dev)
9282 9228  {
9283 9229          VERIFY(!dev->l2ad_rebuild_cancel);
9284 9230          VERIFY(dev->l2ad_rebuild);
9285 9231          (void) l2arc_rebuild(dev);
9286 9232          mutex_enter(&l2arc_rebuild_thr_lock);
9287 9233          dev->l2ad_rebuild_began = B_FALSE;
9288 9234          dev->l2ad_rebuild = B_FALSE;
9289 9235          mutex_exit(&l2arc_rebuild_thr_lock);
9290 9236  
9291 9237          thread_exit();
9292 9238  }
9293 9239  
9294 9240  /*
9295 9241   * This function implements the actual L2ARC metadata rebuild. It:
9296 9242   * starts reading the log block chain and restores each block's contents
9297 9243   * to memory (reconstructing arc_buf_hdr_t's).
9298 9244   *
9299 9245   * Operation stops under any of the following conditions:
9300 9246   *
9301 9247   * 1) We reach the end of the log block chain.
9302 9248   * 2) We encounter *any* error condition (cksum errors, io errors)
9303 9249   */
9304 9250  static int
9305 9251  l2arc_rebuild(l2arc_dev_t *dev)
9306 9252  {
9307 9253          vdev_t                  *vd = dev->l2ad_vdev;
9308 9254          spa_t                   *spa = vd->vdev_spa;
9309 9255          int                     err = 0;
9310 9256          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9311 9257          l2arc_log_blk_phys_t    *this_lb, *next_lb;
9312 9258          zio_t                   *this_io = NULL, *next_io = NULL;
9313 9259          l2arc_log_blkptr_t      lbps[2];
9314 9260          l2arc_lb_ptr_buf_t      *lb_ptr_buf;
9315 9261          boolean_t               lock_held;
9316 9262  
9317 9263          this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9318 9264          next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9319 9265  
9320 9266          /*
9321 9267           * We prevent device removal while issuing reads to the device,
9322 9268           * then during the rebuilding phases we drop this lock again so
9323 9269           * that a spa_unload or device remove can be initiated - this is
9324 9270           * safe, because the spa will signal us to stop before removing
9325 9271           * our device and wait for us to stop.
9326 9272           */
9327 9273          spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9328 9274          lock_held = B_TRUE;
9329 9275  
9330 9276          /*
9331 9277           * Retrieve the persistent L2ARC device state.
9332 9278           * L2BLK_GET_PSIZE returns aligned size for log blocks.
9333 9279           */
9334 9280          dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9335 9281          dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9336 9282              L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9337 9283              dev->l2ad_start);
9338 9284          dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9339 9285  
9340 9286          /*
9341 9287           * In case the zfs module parameter l2arc_rebuild_enabled is false
9342 9288           * we do not start the rebuild process.
9343 9289           */
9344 9290          if (!l2arc_rebuild_enabled)
9345 9291                  goto out;
9346 9292  
9347 9293          /* Prepare the rebuild process */
9348 9294          bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
9349 9295  
9350 9296          /* Start the rebuild process */
9351 9297          for (;;) {
9352 9298                  if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9353 9299                          break;
9354 9300  
9355 9301                  if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9356 9302                      this_lb, next_lb, this_io, &next_io)) != 0)
9357 9303                          goto out;
9358 9304  
9359 9305                  /*
9360 9306                   * Our memory pressure valve. If the system is running low
9361 9307                   * on memory, rather than swamping memory with new ARC buf
9362 9308                   * hdrs, we opt not to rebuild the L2ARC. At this point,
9363 9309                   * however, we have already set up our L2ARC dev to chain in
9364 9310                   * new metadata log blocks, so the user may choose to offline/
9365 9311                   * online the L2ARC dev at a later time (or re-import the pool)
9366 9312                   * to reconstruct it (when there's less memory pressure).
9367 9313                   */
9368 9314                  if (l2arc_hdr_limit_reached()) {
9369 9315                          ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9370 9316                          cmn_err(CE_NOTE, "System running low on memory, "
9371 9317                              "aborting L2ARC rebuild.");
9372 9318                          err = SET_ERROR(ENOMEM);
9373 9319                          goto out;
9374 9320                  }
9375 9321  
9376 9322                  spa_config_exit(spa, SCL_L2ARC, vd);
9377 9323                  lock_held = B_FALSE;
9378 9324  
9379 9325                  /*
9380 9326                   * Now that we know that the next_lb checks out alright, we
9381 9327                   * can start reconstruction from this log block.
9382 9328                   * L2BLK_GET_PSIZE returns aligned size for log blocks.
9383 9329                   */
9384 9330                  uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9385 9331                  l2arc_log_blk_restore(dev, this_lb, asize);
9386 9332  
9387 9333                  /*
9388 9334                   * log block restored, include its pointer in the list of
9389 9335                   * pointers to log blocks present in the L2ARC device.
9390 9336                   */
9391 9337                  lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9392 9338                  lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9393 9339                      KM_SLEEP);
9394 9340                  bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
9395 9341                      sizeof (l2arc_log_blkptr_t));
9396 9342                  mutex_enter(&dev->l2ad_mtx);
9397 9343                  list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9398 9344                  ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9399 9345                  ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9400 9346                  zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9401 9347                  zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9402 9348                  mutex_exit(&dev->l2ad_mtx);
9403 9349                  vdev_space_update(vd, asize, 0, 0);
9404 9350  
9405 9351                  /* BEGIN CSTYLED */
9406 9352                  /*
9407 9353                   * Protection against loops of log blocks:
9408 9354                   *
9409 9355                   *                                     l2ad_hand  l2ad_evict
9410 9356                   *                                         V          V
9411 9357                   * l2ad_start |=======================================| l2ad_end
9412 9358                   *             -----|||----|||---|||----|||
9413 9359                   *                  (3)    (2)   (1)    (0)
9414 9360                   *             ---|||---|||----|||---|||
9415 9361                   *                (7)   (6)    (5)   (4)
9416 9362                   *
9417 9363                   * In this situation the pointer of log block (4) passes
9418 9364                   * l2arc_log_blkptr_valid() but the log block should not be
9419 9365                   * restored as it is overwritten by the payload of log block
9420 9366                   * (0). Only log blocks (0)-(3) should be restored. We check
9421 9367                   * whether l2ad_evict lies in between the payload starting
9422 9368                   * offset of the next log block (lbps[1].lbp_payload_start)
9423 9369                   * and the payload starting offset of the present log block
9424 9370                   * (lbps[0].lbp_payload_start). If true and this isn't the
9425 9371                   * first pass, we are looping from the beginning and we should
9426 9372                   * stop.
9427 9373                   */
9428 9374                  /* END CSTYLED */
9429 9375                  if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9430 9376                      lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9431 9377                      !dev->l2ad_first)
9432 9378                          goto out;
9433 9379  
9434 9380                  for (;;) {
9435 9381                          mutex_enter(&l2arc_rebuild_thr_lock);
9436 9382                          if (dev->l2ad_rebuild_cancel) {
9437 9383                                  dev->l2ad_rebuild = B_FALSE;
9438 9384                                  cv_signal(&l2arc_rebuild_thr_cv);
9439 9385                                  mutex_exit(&l2arc_rebuild_thr_lock);
9440 9386                                  err = SET_ERROR(ECANCELED);
9441 9387                                  goto out;
9442 9388                          }
9443 9389                          mutex_exit(&l2arc_rebuild_thr_lock);
9444 9390                          if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9445 9391                              RW_READER)) {
9446 9392                                  lock_held = B_TRUE;
9447 9393                                  break;
9448 9394                          }
9449 9395                          /*
9450 9396                           * L2ARC config lock held by somebody in writer,
9451 9397                           * possibly due to them trying to remove us. They'll
9452 9398                           * likely to want us to shut down, so after a little
9453 9399                           * delay, we check l2ad_rebuild_cancel and retry
9454 9400                           * the lock again.
9455 9401                           */
9456 9402                          delay(1);
9457 9403                  }
9458 9404  
9459 9405                  /*
9460 9406                   * Continue with the next log block.
9461 9407                   */
9462 9408                  lbps[0] = lbps[1];
9463 9409                  lbps[1] = this_lb->lb_prev_lbp;
9464 9410                  PTR_SWAP(this_lb, next_lb);
9465 9411                  this_io = next_io;
9466 9412                  next_io = NULL;
9467 9413          }
9468 9414  
9469 9415          if (this_io != NULL)
9470 9416                  l2arc_log_blk_fetch_abort(this_io);
9471 9417  out:
9472 9418          if (next_io != NULL)
9473 9419                  l2arc_log_blk_fetch_abort(next_io);
9474 9420          kmem_free(this_lb, sizeof (*this_lb));
9475 9421          kmem_free(next_lb, sizeof (*next_lb));
9476 9422  
9477 9423          if (!l2arc_rebuild_enabled) {
9478 9424                  spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9479 9425                      "disabled");
9480 9426          } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9481 9427                  ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9482 9428                  spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9483 9429                      "successful, restored %llu blocks",
9484 9430                      (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9485 9431          } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9486 9432                  /*
9487 9433                   * No error but also nothing restored, meaning the lbps array
9488 9434                   * in the device header points to invalid/non-present log
9489 9435                   * blocks. Reset the header.
9490 9436                   */
9491 9437                  spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9492 9438                      "no valid log blocks");
9493 9439                  bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
9494 9440                  l2arc_dev_hdr_update(dev);
9495 9441          } else if (err == ECANCELED) {
9496 9442                  /*
9497 9443                   * In case the rebuild was canceled do not log to spa history
9498 9444                   * log as the pool may be in the process of being removed.
9499 9445                   */
9500 9446                  zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
9501 9447                      zfs_refcount_count(&dev->l2ad_lb_count));
9502 9448          } else if (err != 0) {
9503 9449                  spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9504 9450                      "aborted, restored %llu blocks",
9505 9451                      (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9506 9452          }
9507 9453  
9508 9454          if (lock_held)
9509 9455                  spa_config_exit(spa, SCL_L2ARC, vd);
9510 9456  
9511 9457          return (err);
9512 9458  }
9513 9459  
9514 9460  /*
9515 9461   * Attempts to read the device header on the provided L2ARC device and writes
9516 9462   * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9517 9463   * error code is returned.
9518 9464   */
9519 9465  static int
9520 9466  l2arc_dev_hdr_read(l2arc_dev_t *dev)
9521 9467  {
9522 9468          int                     err;
9523 9469          uint64_t                guid;
9524 9470          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9525 9471          const uint64_t          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9526 9472          abd_t                   *abd;
9527 9473  
9528 9474          guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9529 9475  
9530 9476          abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9531 9477  
9532 9478          err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
9533 9479              VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
9534 9480              ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
9535 9481              ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9536 9482              ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9537 9483              ZIO_FLAG_SPECULATIVE, B_FALSE));
9538 9484  
9539 9485          abd_put(abd);
9540 9486  
9541 9487          if (err != 0) {
9542 9488                  ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
9543 9489                  zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
9544 9490                      "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9545 9491                  return (err);
9546 9492          }
9547 9493  
9548 9494          if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
9549 9495                  byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
9550 9496  
9551 9497          if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
9552 9498              l2dhdr->dh_spa_guid != guid ||
9553 9499              l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
9554 9500              l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
9555 9501              l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
9556 9502              l2dhdr->dh_end != dev->l2ad_end ||
9557 9503              !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
9558 9504              l2dhdr->dh_evict)) {
9559 9505                  /*
9560 9506                   * Attempt to rebuild a device containing no actual dev hdr
9561 9507                   * or containing a header from some other pool or from another
9562 9508                   * version of persistent L2ARC.
9563 9509                   */
9564 9510                  ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
9565 9511                  return (SET_ERROR(ENOTSUP));
9566 9512          }
9567 9513  
9568 9514          return (0);
9569 9515  }
9570 9516  
9571 9517  /*
9572 9518   * Reads L2ARC log blocks from storage and validates their contents.
9573 9519   *
9574 9520   * This function implements a simple fetcher to make sure that while
9575 9521   * we're processing one buffer the L2ARC is already fetching the next
9576 9522   * one in the chain.
9577 9523   *
9578 9524   * The arguments this_lp and next_lp point to the current and next log block
9579 9525   * address in the block chain. Similarly, this_lb and next_lb hold the
9580 9526   * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
9581 9527   *
9582 9528   * The `this_io' and `next_io' arguments are used for block fetching.
9583 9529   * When issuing the first blk IO during rebuild, you should pass NULL for
9584 9530   * `this_io'. This function will then issue a sync IO to read the block and
9585 9531   * also issue an async IO to fetch the next block in the block chain. The
9586 9532   * fetched IO is returned in `next_io'. On subsequent calls to this
9587 9533   * function, pass the value returned in `next_io' from the previous call
9588 9534   * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
9589 9535   * Prior to the call, you should initialize your `next_io' pointer to be
9590 9536   * NULL. If no fetch IO was issued, the pointer is left set at NULL.
9591 9537   *
9592 9538   * On success, this function returns 0, otherwise it returns an appropriate
9593 9539   * error code. On error the fetching IO is aborted and cleared before
9594 9540   * returning from this function. Therefore, if we return `success', the
9595 9541   * caller can assume that we have taken care of cleanup of fetch IOs.
9596 9542   */
9597 9543  static int
9598 9544  l2arc_log_blk_read(l2arc_dev_t *dev,
9599 9545      const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
9600 9546      l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
9601 9547      zio_t *this_io, zio_t **next_io)
9602 9548  {
9603 9549          int             err = 0;
9604 9550          zio_cksum_t     cksum;
9605 9551          abd_t           *abd = NULL;
9606 9552          uint64_t        asize;
9607 9553  
9608 9554          ASSERT(this_lbp != NULL && next_lbp != NULL);
9609 9555          ASSERT(this_lb != NULL && next_lb != NULL);
9610 9556          ASSERT(next_io != NULL && *next_io == NULL);
9611 9557          ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
9612 9558  
9613 9559          /*
9614 9560           * Check to see if we have issued the IO for this log block in a
9615 9561           * previous run. If not, this is the first call, so issue it now.
9616 9562           */
9617 9563          if (this_io == NULL) {
9618 9564                  this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
9619 9565                      this_lb);
9620 9566          }
9621 9567  
9622 9568          /*
9623 9569           * Peek to see if we can start issuing the next IO immediately.
9624 9570           */
9625 9571          if (l2arc_log_blkptr_valid(dev, next_lbp)) {
9626 9572                  /*
9627 9573                   * Start issuing IO for the next log block early - this
9628 9574                   * should help keep the L2ARC device busy while we
9629 9575                   * decompress and restore this log block.
9630 9576                   */
9631 9577                  *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
9632 9578                      next_lb);
9633 9579          }
9634 9580  
9635 9581          /* Wait for the IO to read this log block to complete */
9636 9582          if ((err = zio_wait(this_io)) != 0) {
9637 9583                  ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
9638 9584                  zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
9639 9585                      "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr,
9640 9586                      dev->l2ad_vdev->vdev_guid);
9641 9587                  goto cleanup;
9642 9588          }
9643 9589  
9644 9590          /*
9645 9591           * Make sure the buffer checks out.
9646 9592           * L2BLK_GET_PSIZE returns aligned size for log blocks.
9647 9593           */
9648 9594          asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
9649 9595          fletcher_4_native(this_lb, asize, NULL, &cksum);
9650 9596          if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
9651 9597                  ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
9652 9598                  zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
9653 9599                      "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
9654 9600                      this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid,
9655 9601                      dev->l2ad_hand, dev->l2ad_evict);
9656 9602                  err = SET_ERROR(ECKSUM);
9657 9603                  goto cleanup;
9658 9604          }
9659 9605  
9660 9606          /* Now we can take our time decoding this buffer */
9661 9607          switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
9662 9608          case ZIO_COMPRESS_OFF:
9663 9609                  break;
9664 9610          case ZIO_COMPRESS_LZ4:
9665 9611                  abd = abd_alloc_for_io(asize, B_TRUE);
9666 9612                  abd_copy_from_buf_off(abd, this_lb, 0, asize);
9667 9613                  if ((err = zio_decompress_data(
9668 9614                      L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
9669 9615                      abd, this_lb, asize, sizeof (*this_lb))) != 0) {
9670 9616                          err = SET_ERROR(EINVAL);
9671 9617                          goto cleanup;
9672 9618                  }
9673 9619                  break;
9674 9620          default:
9675 9621                  err = SET_ERROR(EINVAL);
9676 9622                  goto cleanup;
9677 9623          }
9678 9624          if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
9679 9625                  byteswap_uint64_array(this_lb, sizeof (*this_lb));
9680 9626          if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
9681 9627                  err = SET_ERROR(EINVAL);
9682 9628                  goto cleanup;
9683 9629          }
9684 9630  cleanup:
9685 9631          /* Abort an in-flight fetch I/O in case of error */
9686 9632          if (err != 0 && *next_io != NULL) {
9687 9633                  l2arc_log_blk_fetch_abort(*next_io);
9688 9634                  *next_io = NULL;
9689 9635          }
9690 9636          if (abd != NULL)
9691 9637                  abd_free(abd);
9692 9638          return (err);
9693 9639  }
9694 9640  
9695 9641  /*
9696 9642   * Restores the payload of a log block to ARC. This creates empty ARC hdr
9697 9643   * entries which only contain an l2arc hdr, essentially restoring the
9698 9644   * buffers to their L2ARC evicted state. This function also updates space
9699 9645   * usage on the L2ARC vdev to make sure it tracks restored buffers.
9700 9646   */
9701 9647  static void
9702 9648  l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
9703 9649      uint64_t lb_asize)
9704 9650  {
9705 9651          uint64_t        size = 0, asize = 0;
9706 9652          uint64_t        log_entries = dev->l2ad_log_entries;
9707 9653  
9708 9654          /*
9709 9655           * Usually arc_adapt() is called only for data, not headers, but
9710 9656           * since we may allocate significant amount of memory here, let ARC
9711 9657           * grow its arc_c.
9712 9658           */
9713 9659          arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
9714 9660  
9715 9661          for (int i = log_entries - 1; i >= 0; i--) {
9716 9662                  /*
9717 9663                   * Restore goes in the reverse temporal direction to preserve
9718 9664                   * correct temporal ordering of buffers in the l2ad_buflist.
9719 9665                   * l2arc_hdr_restore also does a list_insert_tail instead of
9720 9666                   * list_insert_head on the l2ad_buflist:
9721 9667                   *
9722 9668                   *              LIST    l2ad_buflist            LIST
9723 9669                   *              HEAD  <------ (time) ------     TAIL
9724 9670                   * direction    +-----+-----+-----+-----+-----+    direction
9725 9671                   * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
9726 9672                   * fill         +-----+-----+-----+-----+-----+
9727 9673                   *              ^                               ^
9728 9674                   *              |                               |
9729 9675                   *              |                               |
9730 9676                   *      l2arc_feed_thread               l2arc_rebuild
9731 9677                   *      will place new bufs here        restores bufs here
9732 9678                   *
9733 9679                   * During l2arc_rebuild() the device is not used by
9734 9680                   * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
9735 9681                   */
9736 9682                  size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
9737 9683                  asize += vdev_psize_to_asize(dev->l2ad_vdev,
9738 9684                      L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
9739 9685                  l2arc_hdr_restore(&lb->lb_entries[i], dev);
9740 9686          }
9741 9687  
9742 9688          /*
9743 9689           * Record rebuild stats:
9744 9690           *      size            Logical size of restored buffers in the L2ARC
9745 9691           *      asize           Aligned size of restored buffers in the L2ARC
9746 9692           */
9747 9693          ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
9748 9694          ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
9749 9695          ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
9750 9696          ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
9751 9697          ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
9752 9698          ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
9753 9699  }
9754 9700  
9755 9701  /*
9756 9702   * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
9757 9703   * into a state indicating that it has been evicted to L2ARC.
9758 9704   */
9759 9705  static void
9760 9706  l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
9761 9707  {
9762 9708          arc_buf_hdr_t           *hdr, *exists;
9763 9709          kmutex_t                *hash_lock;
9764 9710          arc_buf_contents_t      type = L2BLK_GET_TYPE((le)->le_prop);
9765 9711          uint64_t                asize;
9766 9712  
9767 9713          /*
9768 9714           * Do all the allocation before grabbing any locks, this lets us
9769 9715           * sleep if memory is full and we don't have to deal with failed
9770 9716           * allocations.
9771 9717           */
9772 9718          hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
9773 9719              dev, le->le_dva, le->le_daddr,
9774 9720              L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
9775 9721              L2BLK_GET_COMPRESS((le)->le_prop),
9776 9722              L2BLK_GET_PROTECTED((le)->le_prop),
9777 9723              L2BLK_GET_PREFETCH((le)->le_prop),
9778 9724              L2BLK_GET_STATE((le)->le_prop));
9779 9725          asize = vdev_psize_to_asize(dev->l2ad_vdev,
9780 9726              L2BLK_GET_PSIZE((le)->le_prop));
9781 9727  
9782 9728          /*
9783 9729           * vdev_space_update() has to be called before arc_hdr_destroy() to
9784 9730           * avoid underflow since the latter also calls vdev_space_update().
9785 9731           */
9786 9732          l2arc_hdr_arcstats_increment(hdr);
9787 9733          vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9788 9734  
9789 9735          mutex_enter(&dev->l2ad_mtx);
9790 9736          list_insert_tail(&dev->l2ad_buflist, hdr);
9791 9737          (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
9792 9738          mutex_exit(&dev->l2ad_mtx);
9793 9739  
9794 9740          exists = buf_hash_insert(hdr, &hash_lock);
9795 9741          if (exists) {
9796 9742                  /* Buffer was already cached, no need to restore it. */
9797 9743                  arc_hdr_destroy(hdr);
9798 9744                  /*
9799 9745                   * If the buffer is already cached, check whether it has
9800 9746                   * L2ARC metadata. If not, enter them and update the flag.
9801 9747                   * This is important is case of onlining a cache device, since
9802 9748                   * we previously evicted all L2ARC metadata from ARC.
9803 9749                   */
9804 9750                  if (!HDR_HAS_L2HDR(exists)) {
9805 9751                          arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
9806 9752                          exists->b_l2hdr.b_dev = dev;
9807 9753                          exists->b_l2hdr.b_daddr = le->le_daddr;
9808 9754                          exists->b_l2hdr.b_arcs_state =
9809 9755                              L2BLK_GET_STATE((le)->le_prop);
9810 9756                          mutex_enter(&dev->l2ad_mtx);
9811 9757                          list_insert_tail(&dev->l2ad_buflist, exists);
9812 9758                          (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9813 9759                              arc_hdr_size(exists), exists);
9814 9760                          mutex_exit(&dev->l2ad_mtx);
9815 9761                          l2arc_hdr_arcstats_increment(exists);
9816 9762                          vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9817 9763                  }
9818 9764                  ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
9819 9765          }
9820 9766  
9821 9767          mutex_exit(hash_lock);
9822 9768  }
9823 9769  
9824 9770  /*
9825 9771   * Starts an asynchronous read IO to read a log block. This is used in log
9826 9772   * block reconstruction to start reading the next block before we are done
9827 9773   * decoding and reconstructing the current block, to keep the l2arc device
9828 9774   * nice and hot with read IO to process.
9829 9775   * The returned zio will contain newly allocated memory buffers for the IO
9830 9776   * data which should then be freed by the caller once the zio is no longer
9831 9777   * needed (i.e. due to it having completed). If you wish to abort this
9832 9778   * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
9833 9779   * care of disposing of the allocated buffers correctly.
9834 9780   */
9835 9781  static zio_t *
9836 9782  l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
9837 9783      l2arc_log_blk_phys_t *lb)
9838 9784  {
9839 9785          uint32_t                asize;
9840 9786          zio_t                   *pio;
9841 9787          l2arc_read_callback_t   *cb;
9842 9788  
9843 9789          /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9844 9790          asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
9845 9791          ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
9846 9792  
9847 9793          cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
9848 9794          cb->l2rcb_abd = abd_get_from_buf(lb, asize);
9849 9795          pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
9850 9796              ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
9851 9797              ZIO_FLAG_DONT_RETRY);
9852 9798          (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
9853 9799              cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9854 9800              ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9855 9801              ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
9856 9802  
9857 9803          return (pio);
9858 9804  }
9859 9805  
9860 9806  /*
9861 9807   * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
9862 9808   * buffers allocated for it.
9863 9809   */
9864 9810  static void
9865 9811  l2arc_log_blk_fetch_abort(zio_t *zio)
9866 9812  {
9867 9813          (void) zio_wait(zio);
9868 9814  }
9869 9815  
9870 9816  /*
9871 9817   * Creates a zio to update the device header on an l2arc device.
9872 9818   */
9873 9819  static void
9874 9820  l2arc_dev_hdr_update(l2arc_dev_t *dev)
9875 9821  {
9876 9822          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9877 9823          const uint64_t          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9878 9824          abd_t                   *abd;
9879 9825          int                     err;
9880 9826  
9881 9827          VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
9882 9828  
9883 9829          l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
9884 9830          l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
9885 9831          l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9886 9832          l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
9887 9833          l2dhdr->dh_log_entries = dev->l2ad_log_entries;
9888 9834          l2dhdr->dh_evict = dev->l2ad_evict;
9889 9835          l2dhdr->dh_start = dev->l2ad_start;
9890 9836          l2dhdr->dh_end = dev->l2ad_end;
9891 9837          l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
9892 9838          l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
9893 9839          l2dhdr->dh_flags = 0;
9894 9840          if (dev->l2ad_first)
9895 9841                  l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
9896 9842  
9897 9843          abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9898 9844  
9899 9845          err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
9900 9846              VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
9901 9847              NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
9902 9848  
9903 9849          abd_put(abd);
9904 9850  
9905 9851          if (err != 0) {
9906 9852                  zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
9907 9853                      "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9908 9854          }
9909 9855  }
9910 9856  
9911 9857  /*
9912 9858   * Commits a log block to the L2ARC device. This routine is invoked from
9913 9859   * l2arc_write_buffers when the log block fills up.
9914 9860   * This function allocates some memory to temporarily hold the serialized
9915 9861   * buffer to be written. This is then released in l2arc_write_done.
9916 9862   */
9917 9863  static void
9918 9864  l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
9919 9865  {
9920 9866          l2arc_log_blk_phys_t    *lb = &dev->l2ad_log_blk;
9921 9867          l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9922 9868          uint64_t                psize, asize;
9923 9869          zio_t                   *wzio;
9924 9870          l2arc_lb_abd_buf_t      *abd_buf;
9925 9871          uint8_t                 *tmpbuf;
9926 9872          l2arc_lb_ptr_buf_t      *lb_ptr_buf;
9927 9873  
9928 9874          VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
9929 9875  
9930 9876          tmpbuf = zio_buf_alloc(sizeof (*lb));
9931 9877          abd_buf = zio_buf_alloc(sizeof (*abd_buf));
9932 9878          abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
9933 9879          lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9934 9880          lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
9935 9881  
9936 9882          /* link the buffer into the block chain */
9937 9883          lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
9938 9884          lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
9939 9885  
9940 9886          /*
9941 9887           * l2arc_log_blk_commit() may be called multiple times during a single
9942 9888           * l2arc_write_buffers() call. Save the allocated abd buffers in a list
9943 9889           * so we can free them in l2arc_write_done() later on.
9944 9890           */
9945 9891          list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
9946 9892  
9947 9893          /* try to compress the buffer */
9948 9894          psize = zio_compress_data(ZIO_COMPRESS_LZ4,
9949 9895              abd_buf->abd, tmpbuf, sizeof (*lb));
9950 9896  
9951 9897          /* a log block is never entirely zero */
9952 9898          ASSERT(psize != 0);
9953 9899          asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
9954 9900          ASSERT(asize <= sizeof (*lb));
9955 9901  
9956 9902          /*
9957 9903           * Update the start log block pointer in the device header to point
9958 9904           * to the log block we're about to write.
9959 9905           */
9960 9906          l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
9961 9907          l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
9962 9908          l2dhdr->dh_start_lbps[0].lbp_payload_asize =
9963 9909              dev->l2ad_log_blk_payload_asize;
9964 9910          l2dhdr->dh_start_lbps[0].lbp_payload_start =
9965 9911              dev->l2ad_log_blk_payload_start;
9966 9912          _NOTE(CONSTCOND)
9967 9913          L2BLK_SET_LSIZE(
9968 9914              (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
9969 9915          L2BLK_SET_PSIZE(
9970 9916              (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
9971 9917          L2BLK_SET_CHECKSUM(
9972 9918              (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9973 9919              ZIO_CHECKSUM_FLETCHER_4);
9974 9920          if (asize < sizeof (*lb)) {
9975 9921                  /* compression succeeded */
9976 9922                  bzero(tmpbuf + psize, asize - psize);
9977 9923                  L2BLK_SET_COMPRESS(
9978 9924                      (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9979 9925                      ZIO_COMPRESS_LZ4);
9980 9926          } else {
9981 9927                  /* compression failed */
9982 9928                  bcopy(lb, tmpbuf, sizeof (*lb));
9983 9929                  L2BLK_SET_COMPRESS(
9984 9930                      (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9985 9931                      ZIO_COMPRESS_OFF);
9986 9932          }
9987 9933  
9988 9934          /* checksum what we're about to write */
9989 9935          fletcher_4_native(tmpbuf, asize, NULL,
9990 9936              &l2dhdr->dh_start_lbps[0].lbp_cksum);
9991 9937  
9992 9938          abd_put(abd_buf->abd);
9993 9939  
9994 9940          /* perform the write itself */
9995 9941          abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
9996 9942          abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
9997 9943          wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
9998 9944              asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9999 9945              ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10000 9946          DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10001 9947          (void) zio_nowait(wzio);
10002 9948  
10003 9949          dev->l2ad_hand += asize;
10004 9950          /*
10005 9951           * Include the committed log block's pointer  in the list of pointers
10006 9952           * to log blocks present in the L2ARC device.
10007 9953           */
10008 9954          bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
10009 9955              sizeof (l2arc_log_blkptr_t));
10010 9956          mutex_enter(&dev->l2ad_mtx);
10011 9957          list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10012 9958          ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10013 9959          ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10014 9960          zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10015 9961          zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10016 9962          mutex_exit(&dev->l2ad_mtx);
10017 9963          vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10018 9964  
10019 9965          /* bump the kstats */
10020 9966          ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10021 9967          ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10022 9968          ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10023 9969          ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10024 9970              dev->l2ad_log_blk_payload_asize / asize);
10025 9971  
10026 9972          /* start a new log block */
10027 9973          dev->l2ad_log_ent_idx = 0;
10028 9974          dev->l2ad_log_blk_payload_asize = 0;
10029 9975          dev->l2ad_log_blk_payload_start = 0;
10030 9976  }
10031 9977  
10032 9978  /*
10033 9979   * Validates an L2ARC log block address to make sure that it can be read
10034 9980   * from the provided L2ARC device.
10035 9981   */
10036 9982  boolean_t
10037 9983  l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10038 9984  {
10039 9985          /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10040 9986          uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10041 9987          uint64_t end = lbp->lbp_daddr + asize - 1;
10042 9988          uint64_t start = lbp->lbp_payload_start;
10043 9989          boolean_t evicted = B_FALSE;
10044 9990  
10045 9991          /* BEGIN CSTYLED */
10046 9992          /*
10047 9993           * A log block is valid if all of the following conditions are true:
10048 9994           * - it fits entirely (including its payload) between l2ad_start and
10049 9995           *   l2ad_end
10050 9996           * - it has a valid size
10051 9997           * - neither the log block itself nor part of its payload was evicted
10052 9998           *   by l2arc_evict():
10053 9999           *
10054 10000           *              l2ad_hand          l2ad_evict
10055 10001           *              |                        |      lbp_daddr
10056 10002           *              |     start              |      |  end
10057 10003           *              |     |                  |      |  |
10058 10004           *              V     V                  V      V  V
10059 10005           *   l2ad_start ============================================ l2ad_end
10060 10006           *                    --------------------------||||
10061 10007           *                              ^                ^
10062 10008           *                              |               log block
10063 10009           *                              payload
10064 10010           */
10065 10011          /* END CSTYLED */
10066 10012          evicted =
10067 10013              l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10068 10014              l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10069 10015              l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10070 10016              l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10071 10017  
10072 10018          return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10073 10019              asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10074 10020              (!evicted || dev->l2ad_first));
10075 10021  }
10076 10022  
10077 10023  /*
10078 10024   * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10079 10025   * the device. The buffer being inserted must be present in L2ARC.
10080 10026   * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10081 10027   * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10082 10028   */
10083 10029  static boolean_t
10084 10030  l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10085 10031  {
10086 10032          l2arc_log_blk_phys_t    *lb = &dev->l2ad_log_blk;
10087 10033          l2arc_log_ent_phys_t    *le;
10088 10034  
10089 10035          if (dev->l2ad_log_entries == 0)
10090 10036                  return (B_FALSE);
10091 10037  
10092 10038          int index = dev->l2ad_log_ent_idx++;
10093 10039  
10094 10040          ASSERT3S(index, <, dev->l2ad_log_entries);
10095 10041          ASSERT(HDR_HAS_L2HDR(hdr));
10096 10042  
10097 10043          le = &lb->lb_entries[index];
10098 10044          bzero(le, sizeof (*le));
10099 10045          le->le_dva = hdr->b_dva;
10100 10046          le->le_birth = hdr->b_birth;
10101 10047          le->le_daddr = hdr->b_l2hdr.b_daddr;
10102 10048          if (index == 0)
10103 10049                  dev->l2ad_log_blk_payload_start = le->le_daddr;
10104 10050          L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10105 10051          L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10106 10052          L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10107 10053          L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10108 10054          L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10109 10055          L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10110 10056          L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
10111 10057  
10112 10058          dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10113 10059              HDR_GET_PSIZE(hdr));
10114 10060  
10115 10061          return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10116 10062  }
10117 10063  
10118 10064  /*
10119 10065   * Checks whether a given L2ARC device address sits in a time-sequential
10120 10066   * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10121 10067   * just do a range comparison, we need to handle the situation in which the
10122 10068   * range wraps around the end of the L2ARC device. Arguments:
10123 10069   *      bottom -- Lower end of the range to check (written to earlier).
10124 10070   *      top    -- Upper end of the range to check (written to later).
10125 10071   *      check  -- The address for which we want to determine if it sits in
10126 10072   *                between the top and bottom.
10127 10073   *
10128 10074   * The 3-way conditional below represents the following cases:
10129 10075   *
10130 10076   *      bottom < top : Sequentially ordered case:
10131 10077   *        <check>--------+-------------------+
10132 10078   *                       |  (overlap here?)  |
10133 10079   *       L2ARC dev       V                   V
10134 10080   *       |---------------<bottom>============<top>--------------|
10135 10081   *
10136 10082   *      bottom > top: Looped-around case:
10137 10083   *                            <check>--------+------------------+
10138 10084   *                                           |  (overlap here?) |
10139 10085   *       L2ARC dev                           V                  V
10140 10086   *       |===============<top>---------------<bottom>===========|
10141 10087   *       ^               ^
10142 10088   *       |  (or here?)   |
10143 10089   *       +---------------+---------<check>
10144 10090   *
10145 10091   *      top == bottom : Just a single address comparison.
10146 10092   */
10147 10093  boolean_t
10148 10094  l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10149 10095  {
10150 10096          if (bottom < top)
10151 10097                  return (bottom <= check && check <= top);
10152 10098          else if (bottom > top)
10153 10099                  return (check <= top || bottom <= check);
10154 10100          else
10155 10101                  return (check == top);
10156 10102  }
  
    | 
      ↓ open down ↓ | 
    5468 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX