1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright 2020 Joyent, Inc.
  24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
  27  * Copyright (c) 2011, 2019, Delphix. All rights reserved.
  28  * Copyright (c) 2020, George Amanakis. All rights reserved.
  29  * Copyright (c) 2020, The FreeBSD Foundation [1]
  30  *
  31  * [1] Portions of this software were developed by Allan Jude
  32  *     under sponsorship from the FreeBSD Foundation.
  33  */
  34 
  35 /*
  36  * DVA-based Adjustable Replacement Cache
  37  *
  38  * While much of the theory of operation used here is
  39  * based on the self-tuning, low overhead replacement cache
  40  * presented by Megiddo and Modha at FAST 2003, there are some
  41  * significant differences:
  42  *
  43  * 1. The Megiddo and Modha model assumes any page is evictable.
  44  * Pages in its cache cannot be "locked" into memory.  This makes
  45  * the eviction algorithm simple: evict the last page in the list.
  46  * This also make the performance characteristics easy to reason
  47  * about.  Our cache is not so simple.  At any given moment, some
  48  * subset of the blocks in the cache are un-evictable because we
  49  * have handed out a reference to them.  Blocks are only evictable
  50  * when there are no external references active.  This makes
  51  * eviction far more problematic:  we choose to evict the evictable
  52  * blocks that are the "lowest" in the list.
  53  *
  54  * There are times when it is not possible to evict the requested
  55  * space.  In these circumstances we are unable to adjust the cache
  56  * size.  To prevent the cache growing unbounded at these times we
  57  * implement a "cache throttle" that slows the flow of new data
  58  * into the cache until we can make space available.
  59  *
  60  * 2. The Megiddo and Modha model assumes a fixed cache size.
  61  * Pages are evicted when the cache is full and there is a cache
  62  * miss.  Our model has a variable sized cache.  It grows with
  63  * high use, but also tries to react to memory pressure from the
  64  * operating system: decreasing its size when system memory is
  65  * tight.
  66  *
  67  * 3. The Megiddo and Modha model assumes a fixed page size. All
  68  * elements of the cache are therefore exactly the same size.  So
  69  * when adjusting the cache size following a cache miss, its simply
  70  * a matter of choosing a single page to evict.  In our model, we
  71  * have variable sized cache blocks (rangeing from 512 bytes to
  72  * 128K bytes).  We therefore choose a set of blocks to evict to make
  73  * space for a cache miss that approximates as closely as possible
  74  * the space used by the new block.
  75  *
  76  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  77  * by N. Megiddo & D. Modha, FAST 2003
  78  */
  79 
  80 /*
  81  * The locking model:
  82  *
  83  * A new reference to a cache buffer can be obtained in two
  84  * ways: 1) via a hash table lookup using the DVA as a key,
  85  * or 2) via one of the ARC lists.  The arc_read() interface
  86  * uses method 1, while the internal ARC algorithms for
  87  * adjusting the cache use method 2.  We therefore provide two
  88  * types of locks: 1) the hash table lock array, and 2) the
  89  * ARC list locks.
  90  *
  91  * Buffers do not have their own mutexes, rather they rely on the
  92  * hash table mutexes for the bulk of their protection (i.e. most
  93  * fields in the arc_buf_hdr_t are protected by these mutexes).
  94  *
  95  * buf_hash_find() returns the appropriate mutex (held) when it
  96  * locates the requested buffer in the hash table.  It returns
  97  * NULL for the mutex if the buffer was not in the table.
  98  *
  99  * buf_hash_remove() expects the appropriate hash mutex to be
 100  * already held before it is invoked.
 101  *
 102  * Each ARC state also has a mutex which is used to protect the
 103  * buffer list associated with the state.  When attempting to
 104  * obtain a hash table lock while holding an ARC list lock you
 105  * must use: mutex_tryenter() to avoid deadlock.  Also note that
 106  * the active state mutex must be held before the ghost state mutex.
 107  *
 108  * Note that the majority of the performance stats are manipulated
 109  * with atomic operations.
 110  *
 111  * The L2ARC uses the l2ad_mtx on each vdev for the following:
 112  *
 113  *      - L2ARC buflist creation
 114  *      - L2ARC buflist eviction
 115  *      - L2ARC write completion, which walks L2ARC buflists
 116  *      - ARC header destruction, as it removes from L2ARC buflists
 117  *      - ARC header release, as it removes from L2ARC buflists
 118  */
 119 
 120 /*
 121  * ARC operation:
 122  *
 123  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
 124  * This structure can point either to a block that is still in the cache or to
 125  * one that is only accessible in an L2 ARC device, or it can provide
 126  * information about a block that was recently evicted. If a block is
 127  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
 128  * information to retrieve it from the L2ARC device. This information is
 129  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
 130  * that is in this state cannot access the data directly.
 131  *
 132  * Blocks that are actively being referenced or have not been evicted
 133  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
 134  * the arc_buf_hdr_t that will point to the data block in memory. A block can
 135  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
 136  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
 137  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
 138  *
 139  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
 140  * ability to store the physical data (b_pabd) associated with the DVA of the
 141  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
 142  * it will match its on-disk compression characteristics. This behavior can be
 143  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
 144  * compressed ARC functionality is disabled, the b_pabd will point to an
 145  * uncompressed version of the on-disk data.
 146  *
 147  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
 148  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
 149  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
 150  * consumer. The ARC will provide references to this data and will keep it
 151  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
 152  * data block and will evict any arc_buf_t that is no longer referenced. The
 153  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
 154  * "overhead_size" kstat.
 155  *
 156  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
 157  * compressed form. The typical case is that consumers will want uncompressed
 158  * data, and when that happens a new data buffer is allocated where the data is
 159  * decompressed for them to use. Currently the only consumer who wants
 160  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
 161  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
 162  * with the arc_buf_hdr_t.
 163  *
 164  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
 165  * first one is owned by a compressed send consumer (and therefore references
 166  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
 167  * used by any other consumer (and has its own uncompressed copy of the data
 168  * buffer).
 169  *
 170  *   arc_buf_hdr_t
 171  *   +-----------+
 172  *   | fields    |
 173  *   | common to |
 174  *   | L1- and   |
 175  *   | L2ARC     |
 176  *   +-----------+
 177  *   | l2arc_buf_hdr_t
 178  *   |           |
 179  *   +-----------+
 180  *   | l1arc_buf_hdr_t
 181  *   |           |              arc_buf_t
 182  *   | b_buf     +------------>+-----------+      arc_buf_t
 183  *   | b_pabd    +-+           |b_next     +---->+-----------+
 184  *   +-----------+ |           |-----------|     |b_next     +-->NULL
 185  *                 |           |b_comp = T |     +-----------+
 186  *                 |           |b_data     +-+   |b_comp = F |
 187  *                 |           +-----------+ |   |b_data     +-+
 188  *                 +->+------+               |   +-----------+ |
 189  *        compressed  |      |               |                 |
 190  *           data     |      |<--------------+                 | uncompressed
 191  *                    +------+          compressed,            |     data
 192  *                                        shared               +-->+------+
 193  *                                         data                    |      |
 194  *                                                                 |      |
 195  *                                                                 +------+
 196  *
 197  * When a consumer reads a block, the ARC must first look to see if the
 198  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
 199  * arc_buf_t and either copies uncompressed data into a new data buffer from an
 200  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
 201  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
 202  * hdr is compressed and the desired compression characteristics of the
 203  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
 204  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
 205  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
 206  * be anywhere in the hdr's list.
 207  *
 208  * The diagram below shows an example of an uncompressed ARC hdr that is
 209  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
 210  * the last element in the buf list):
 211  *
 212  *                arc_buf_hdr_t
 213  *                +-----------+
 214  *                |           |
 215  *                |           |
 216  *                |           |
 217  *                +-----------+
 218  * l2arc_buf_hdr_t|           |
 219  *                |           |
 220  *                +-----------+
 221  * l1arc_buf_hdr_t|           |
 222  *                |           |                 arc_buf_t    (shared)
 223  *                |    b_buf  +------------>+---------+      arc_buf_t
 224  *                |           |             |b_next   +---->+---------+
 225  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
 226  *                +-----------+ |           |         |     +---------+
 227  *                              |           |b_data   +-+   |         |
 228  *                              |           +---------+ |   |b_data   +-+
 229  *                              +->+------+             |   +---------+ |
 230  *                                 |      |             |               |
 231  *                   uncompressed  |      |             |               |
 232  *                        data     +------+             |               |
 233  *                                    ^                 +->+------+     |
 234  *                                    |       uncompressed |      |     |
 235  *                                    |           data     |      |     |
 236  *                                    |                    +------+     |
 237  *                                    +---------------------------------+
 238  *
 239  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
 240  * since the physical block is about to be rewritten. The new data contents
 241  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
 242  * it may compress the data before writing it to disk. The ARC will be called
 243  * with the transformed data and will bcopy the transformed on-disk block into
 244  * a newly allocated b_pabd. Writes are always done into buffers which have
 245  * either been loaned (and hence are new and don't have other readers) or
 246  * buffers which have been released (and hence have their own hdr, if there
 247  * were originally other readers of the buf's original hdr). This ensures that
 248  * the ARC only needs to update a single buf and its hdr after a write occurs.
 249  *
 250  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
 251  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
 252  * that when compressed ARC is enabled that the L2ARC blocks are identical
 253  * to the on-disk block in the main data pool. This provides a significant
 254  * advantage since the ARC can leverage the bp's checksum when reading from the
 255  * L2ARC to determine if the contents are valid. However, if the compressed
 256  * ARC is disabled, then the L2ARC's block must be transformed to look
 257  * like the physical block in the main data pool before comparing the
 258  * checksum and determining its validity.
 259  *
 260  * The L1ARC has a slightly different system for storing encrypted data.
 261  * Raw (encrypted + possibly compressed) data has a few subtle differences from
 262  * data that is just compressed. The biggest difference is that it is not
 263  * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
 264  * The other difference is that encryption cannot be treated as a suggestion.
 265  * If a caller would prefer compressed data, but they actually wind up with
 266  * uncompressed data the worst thing that could happen is there might be a
 267  * performance hit. If the caller requests encrypted data, however, we must be
 268  * sure they actually get it or else secret information could be leaked. Raw
 269  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
 270  * may have both an encrypted version and a decrypted version of its data at
 271  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
 272  * copied out of this header. To avoid complications with b_pabd, raw buffers
 273  * cannot be shared.
 274  */
 275 
 276 #include <sys/spa.h>
 277 #include <sys/zio.h>
 278 #include <sys/spa_impl.h>
 279 #include <sys/zio_compress.h>
 280 #include <sys/zio_checksum.h>
 281 #include <sys/zfs_context.h>
 282 #include <sys/arc.h>
 283 #include <sys/refcount.h>
 284 #include <sys/vdev.h>
 285 #include <sys/vdev_impl.h>
 286 #include <sys/dsl_pool.h>
 287 #include <sys/zfs_zone.h>
 288 #include <sys/zio_checksum.h>
 289 #include <sys/multilist.h>
 290 #include <sys/abd.h>
 291 #include <sys/zil.h>
 292 #include <sys/fm/fs/zfs.h>
 293 #ifdef _KERNEL
 294 #include <sys/vmsystm.h>
 295 #include <vm/anon.h>
 296 #include <sys/fs/swapnode.h>
 297 #include <sys/dnlc.h>
 298 #endif
 299 #include <sys/callb.h>
 300 #include <sys/kstat.h>
 301 #include <sys/zthr.h>
 302 #include <zfs_fletcher.h>
 303 #include <sys/arc_impl.h>
 304 #include <sys/aggsum.h>
 305 #include <sys/cityhash.h>
 306 #include <sys/param.h>
 307 
 308 #ifndef _KERNEL
 309 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 310 boolean_t arc_watch = B_FALSE;
 311 int arc_procfd;
 312 #endif
 313 
 314 /*
 315  * This thread's job is to keep enough free memory in the system, by
 316  * calling arc_kmem_reap_now() plus arc_shrink(), which improves
 317  * arc_available_memory().
 318  */
 319 static zthr_t           *arc_reap_zthr;
 320 
 321 /*
 322  * This thread's job is to keep arc_size under arc_c, by calling
 323  * arc_adjust(), which improves arc_is_overflowing().
 324  */
 325 static zthr_t           *arc_adjust_zthr;
 326 
 327 static kmutex_t         arc_adjust_lock;
 328 static kcondvar_t       arc_adjust_waiters_cv;
 329 static boolean_t        arc_adjust_needed = B_FALSE;
 330 
 331 uint_t arc_reduce_dnlc_percent = 3;
 332 
 333 /*
 334  * The number of headers to evict in arc_evict_state_impl() before
 335  * dropping the sublist lock and evicting from another sublist. A lower
 336  * value means we're more likely to evict the "correct" header (i.e. the
 337  * oldest header in the arc state), but comes with higher overhead
 338  * (i.e. more invocations of arc_evict_state_impl()).
 339  */
 340 int zfs_arc_evict_batch_limit = 10;
 341 
 342 /* number of seconds before growing cache again */
 343 int arc_grow_retry = 60;
 344 
 345 /*
 346  * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
 347  * be converted to ticks, so with the default hz=100, a setting of 15 ms
 348  * will actually wait 2 ticks, or 20ms.
 349  */
 350 int arc_kmem_cache_reap_retry_ms = 1000;
 351 
 352 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
 353 int zfs_arc_overflow_shift = 3;
 354 
 355 /* shift of arc_c for calculating both min and max arc_p */
 356 int arc_p_min_shift = 4;
 357 
 358 /* log2(fraction of arc to reclaim) */
 359 int arc_shrink_shift = 7;
 360 
 361 /*
 362  * log2(fraction of ARC which must be free to allow growing).
 363  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 364  * when reading a new block into the ARC, we will evict an equal-sized block
 365  * from the ARC.
 366  *
 367  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 368  * we will still not allow it to grow.
 369  */
 370 int                     arc_no_grow_shift = 5;
 371 
 372 
 373 /*
 374  * minimum lifespan of a prefetch block in clock ticks
 375  * (initialized in arc_init())
 376  */
 377 static int              zfs_arc_min_prefetch_ms = 1;
 378 static int              zfs_arc_min_prescient_prefetch_ms = 6;
 379 
 380 /*
 381  * If this percent of memory is free, don't throttle.
 382  */
 383 int arc_lotsfree_percent = 10;
 384 
 385 static boolean_t arc_initialized;
 386 
 387 /*
 388  * The arc has filled available memory and has now warmed up.
 389  */
 390 static boolean_t arc_warm;
 391 
 392 /*
 393  * log2 fraction of the zio arena to keep free.
 394  */
 395 int arc_zio_arena_free_shift = 2;
 396 
 397 /*
 398  * These tunables are for performance analysis.
 399  */
 400 uint64_t zfs_arc_max;
 401 uint64_t zfs_arc_min;
 402 uint64_t zfs_arc_meta_limit = 0;
 403 uint64_t zfs_arc_meta_min = 0;
 404 int zfs_arc_grow_retry = 0;
 405 int zfs_arc_shrink_shift = 0;
 406 int zfs_arc_p_min_shift = 0;
 407 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 408 
 409 /*
 410  * ARC dirty data constraints for arc_tempreserve_space() throttle
 411  */
 412 uint_t zfs_arc_dirty_limit_percent = 50;        /* total dirty data limit */
 413 uint_t zfs_arc_anon_limit_percent = 25;         /* anon block dirty limit */
 414 uint_t zfs_arc_pool_dirty_percent = 20;         /* each pool's anon allowance */
 415 
 416 boolean_t zfs_compressed_arc_enabled = B_TRUE;
 417 
 418 /* The 6 states: */
 419 static arc_state_t ARC_anon;
 420 static arc_state_t ARC_mru;
 421 static arc_state_t ARC_mru_ghost;
 422 static arc_state_t ARC_mfu;
 423 static arc_state_t ARC_mfu_ghost;
 424 static arc_state_t ARC_l2c_only;
 425 
 426 arc_stats_t arc_stats = {
 427         { "hits",                       KSTAT_DATA_UINT64 },
 428         { "misses",                     KSTAT_DATA_UINT64 },
 429         { "demand_data_hits",           KSTAT_DATA_UINT64 },
 430         { "demand_data_misses",         KSTAT_DATA_UINT64 },
 431         { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 432         { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 433         { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 434         { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 435         { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 436         { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 437         { "mru_hits",                   KSTAT_DATA_UINT64 },
 438         { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 439         { "mfu_hits",                   KSTAT_DATA_UINT64 },
 440         { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 441         { "deleted",                    KSTAT_DATA_UINT64 },
 442         { "mutex_miss",                 KSTAT_DATA_UINT64 },
 443         { "access_skip",                KSTAT_DATA_UINT64 },
 444         { "evict_skip",                 KSTAT_DATA_UINT64 },
 445         { "evict_not_enough",           KSTAT_DATA_UINT64 },
 446         { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 447         { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 448         { "evict_l2_eligible_mfu",      KSTAT_DATA_UINT64 },
 449         { "evict_l2_eligible_mru",      KSTAT_DATA_UINT64 },
 450         { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 451         { "evict_l2_skip",              KSTAT_DATA_UINT64 },
 452         { "hash_elements",              KSTAT_DATA_UINT64 },
 453         { "hash_elements_max",          KSTAT_DATA_UINT64 },
 454         { "hash_collisions",            KSTAT_DATA_UINT64 },
 455         { "hash_chains",                KSTAT_DATA_UINT64 },
 456         { "hash_chain_max",             KSTAT_DATA_UINT64 },
 457         { "p",                          KSTAT_DATA_UINT64 },
 458         { "c",                          KSTAT_DATA_UINT64 },
 459         { "c_min",                      KSTAT_DATA_UINT64 },
 460         { "c_max",                      KSTAT_DATA_UINT64 },
 461         { "size",                       KSTAT_DATA_UINT64 },
 462         { "compressed_size",            KSTAT_DATA_UINT64 },
 463         { "uncompressed_size",          KSTAT_DATA_UINT64 },
 464         { "overhead_size",              KSTAT_DATA_UINT64 },
 465         { "hdr_size",                   KSTAT_DATA_UINT64 },
 466         { "data_size",                  KSTAT_DATA_UINT64 },
 467         { "metadata_size",              KSTAT_DATA_UINT64 },
 468         { "other_size",                 KSTAT_DATA_UINT64 },
 469         { "anon_size",                  KSTAT_DATA_UINT64 },
 470         { "anon_evictable_data",        KSTAT_DATA_UINT64 },
 471         { "anon_evictable_metadata",    KSTAT_DATA_UINT64 },
 472         { "mru_size",                   KSTAT_DATA_UINT64 },
 473         { "mru_evictable_data",         KSTAT_DATA_UINT64 },
 474         { "mru_evictable_metadata",     KSTAT_DATA_UINT64 },
 475         { "mru_ghost_size",             KSTAT_DATA_UINT64 },
 476         { "mru_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 477         { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 478         { "mfu_size",                   KSTAT_DATA_UINT64 },
 479         { "mfu_evictable_data",         KSTAT_DATA_UINT64 },
 480         { "mfu_evictable_metadata",     KSTAT_DATA_UINT64 },
 481         { "mfu_ghost_size",             KSTAT_DATA_UINT64 },
 482         { "mfu_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 483         { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 484         { "l2_hits",                    KSTAT_DATA_UINT64 },
 485         { "l2_misses",                  KSTAT_DATA_UINT64 },
 486         { "l2_prefetch_asize",          KSTAT_DATA_UINT64 },
 487         { "l2_mru_asize",               KSTAT_DATA_UINT64 },
 488         { "l2_mfu_asize",               KSTAT_DATA_UINT64 },
 489         { "l2_bufc_data_asize",         KSTAT_DATA_UINT64 },
 490         { "l2_bufc_metadata_asize",     KSTAT_DATA_UINT64 },
 491         { "l2_feeds",                   KSTAT_DATA_UINT64 },
 492         { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 493         { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 494         { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 495         { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 496         { "l2_writes_done",             KSTAT_DATA_UINT64 },
 497         { "l2_writes_error",            KSTAT_DATA_UINT64 },
 498         { "l2_writes_lock_retry",       KSTAT_DATA_UINT64 },
 499         { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 500         { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 501         { "l2_evict_l1cached",          KSTAT_DATA_UINT64 },
 502         { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 503         { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 504         { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 505         { "l2_io_error",                KSTAT_DATA_UINT64 },
 506         { "l2_size",                    KSTAT_DATA_UINT64 },
 507         { "l2_asize",                   KSTAT_DATA_UINT64 },
 508         { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 509         { "l2_log_blk_writes",          KSTAT_DATA_UINT64 },
 510         { "l2_log_blk_avg_asize",       KSTAT_DATA_UINT64 },
 511         { "l2_log_blk_asize",           KSTAT_DATA_UINT64 },
 512         { "l2_log_blk_count",           KSTAT_DATA_UINT64 },
 513         { "l2_data_to_meta_ratio",      KSTAT_DATA_UINT64 },
 514         { "l2_rebuild_success",         KSTAT_DATA_UINT64 },
 515         { "l2_rebuild_unsupported",     KSTAT_DATA_UINT64 },
 516         { "l2_rebuild_io_errors",       KSTAT_DATA_UINT64 },
 517         { "l2_rebuild_dh_errors",       KSTAT_DATA_UINT64 },
 518         { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
 519         { "l2_rebuild_lowmem",          KSTAT_DATA_UINT64 },
 520         { "l2_rebuild_size",            KSTAT_DATA_UINT64 },
 521         { "l2_rebuild_asize",           KSTAT_DATA_UINT64 },
 522         { "l2_rebuild_bufs",            KSTAT_DATA_UINT64 },
 523         { "l2_rebuild_bufs_precached",  KSTAT_DATA_UINT64 },
 524         { "l2_rebuild_log_blks",        KSTAT_DATA_UINT64 },
 525         { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 526         { "arc_meta_used",              KSTAT_DATA_UINT64 },
 527         { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 528         { "arc_meta_max",               KSTAT_DATA_UINT64 },
 529         { "arc_meta_min",               KSTAT_DATA_UINT64 },
 530         { "async_upgrade_sync",         KSTAT_DATA_UINT64 },
 531         { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
 532         { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
 533 };
 534 
 535 #define ARCSTAT_MAX(stat, val) {                                        \
 536         uint64_t m;                                                     \
 537         while ((val) > (m = arc_stats.stat.value.ui64) &&            \
 538             (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))     \
 539                 continue;                                               \
 540 }
 541 
 542 #define ARCSTAT_MAXSTAT(stat) \
 543         ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 544 
 545 /*
 546  * We define a macro to allow ARC hits/misses to be easily broken down by
 547  * two separate conditions, giving a total of four different subtypes for
 548  * each of hits and misses (so eight statistics total).
 549  */
 550 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 551         if (cond1) {                                                    \
 552                 if (cond2) {                                            \
 553                         ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 554                 } else {                                                \
 555                         ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 556                 }                                                       \
 557         } else {                                                        \
 558                 if (cond2) {                                            \
 559                         ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 560                 } else {                                                \
 561                         ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 562                 }                                                       \
 563         }
 564 
 565 /*
 566  * This macro allows us to use kstats as floating averages. Each time we
 567  * update this kstat, we first factor it and the update value by
 568  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
 569  * average. This macro assumes that integer loads and stores are atomic, but
 570  * is not safe for multiple writers updating the kstat in parallel (only the
 571  * last writer's update will remain).
 572  */
 573 #define ARCSTAT_F_AVG_FACTOR    3
 574 #define ARCSTAT_F_AVG(stat, value) \
 575         do { \
 576                 uint64_t x = ARCSTAT(stat); \
 577                 x = x - x / ARCSTAT_F_AVG_FACTOR + \
 578                     (value) / ARCSTAT_F_AVG_FACTOR; \
 579                 ARCSTAT(stat) = x; \
 580                 _NOTE(CONSTCOND) \
 581         } while (0)
 582 
 583 kstat_t                 *arc_ksp;
 584 static arc_state_t      *arc_anon;
 585 static arc_state_t      *arc_mru;
 586 static arc_state_t      *arc_mru_ghost;
 587 static arc_state_t      *arc_mfu;
 588 static arc_state_t      *arc_mfu_ghost;
 589 static arc_state_t      *arc_l2c_only;
 590 
 591 /*
 592  * There are also some ARC variables that we want to export, but that are
 593  * updated so often that having the canonical representation be the statistic
 594  * variable causes a performance bottleneck. We want to use aggsum_t's for these
 595  * instead, but still be able to export the kstat in the same way as before.
 596  * The solution is to always use the aggsum version, except in the kstat update
 597  * callback.
 598  */
 599 aggsum_t arc_size;
 600 aggsum_t arc_meta_used;
 601 aggsum_t astat_data_size;
 602 aggsum_t astat_metadata_size;
 603 aggsum_t astat_hdr_size;
 604 aggsum_t astat_other_size;
 605 aggsum_t astat_l2_hdr_size;
 606 
 607 static int              arc_no_grow;    /* Don't try to grow cache size */
 608 static hrtime_t         arc_growtime;
 609 static uint64_t         arc_tempreserve;
 610 static uint64_t         arc_loaned_bytes;
 611 
 612 #define GHOST_STATE(state)      \
 613         ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 614         (state) == arc_l2c_only)
 615 
 616 #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
 617 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
 618 #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
 619 #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_FLAG_PREFETCH)
 620 #define HDR_PRESCIENT_PREFETCH(hdr)     \
 621         ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
 622 #define HDR_COMPRESSION_ENABLED(hdr)    \
 623         ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
 624 
 625 #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_FLAG_L2CACHE)
 626 #define HDR_L2_READING(hdr)     \
 627         (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&   \
 628         ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
 629 #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
 630 #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
 631 #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
 632 #define HDR_PROTECTED(hdr)      ((hdr)->b_flags & ARC_FLAG_PROTECTED)
 633 #define HDR_NOAUTH(hdr)         ((hdr)->b_flags & ARC_FLAG_NOAUTH)
 634 #define HDR_SHARED_DATA(hdr)    ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
 635 
 636 #define HDR_ISTYPE_METADATA(hdr)        \
 637         ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
 638 #define HDR_ISTYPE_DATA(hdr)    (!HDR_ISTYPE_METADATA(hdr))
 639 
 640 #define HDR_HAS_L1HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
 641 #define HDR_HAS_L2HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
 642 #define HDR_HAS_RABD(hdr)       \
 643         (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&    \
 644         (hdr)->b_crypt_hdr.b_rabd != NULL)
 645 #define HDR_ENCRYPTED(hdr)      \
 646         (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
 647 #define HDR_AUTHENTICATED(hdr)  \
 648         (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
 649 
 650 /* For storing compression mode in b_flags */
 651 #define HDR_COMPRESS_OFFSET     (highbit64(ARC_FLAG_COMPRESS_0) - 1)
 652 
 653 #define HDR_GET_COMPRESS(hdr)   ((enum zio_compress)BF32_GET((hdr)->b_flags, \
 654         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
 655 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
 656         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
 657 
 658 #define ARC_BUF_LAST(buf)       ((buf)->b_next == NULL)
 659 #define ARC_BUF_SHARED(buf)     ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
 660 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
 661 #define ARC_BUF_ENCRYPTED(buf)  ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
 662 
 663 /*
 664  * Other sizes
 665  */
 666 
 667 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 668 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
 669 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
 670 
 671 /*
 672  * Hash table routines
 673  */
 674 
 675 #define HT_LOCK_PAD     64
 676 
 677 struct ht_lock {
 678         kmutex_t        ht_lock;
 679 #ifdef _KERNEL
 680         unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
 681 #endif
 682 };
 683 
 684 #define BUF_LOCKS 256
 685 typedef struct buf_hash_table {
 686         uint64_t ht_mask;
 687         arc_buf_hdr_t **ht_table;
 688         struct ht_lock ht_locks[BUF_LOCKS];
 689 } buf_hash_table_t;
 690 
 691 static buf_hash_table_t buf_hash_table;
 692 
 693 #define BUF_HASH_INDEX(spa, dva, birth) \
 694         (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
 695 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
 696 #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
 697 #define HDR_LOCK(hdr) \
 698         (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
 699 
 700 uint64_t zfs_crc64_table[256];
 701 
 702 /*
 703  * Level 2 ARC
 704  */
 705 
 706 #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
 707 #define L2ARC_HEADROOM          2                       /* num of writes */
 708 /*
 709  * If we discover during ARC scan any buffers to be compressed, we boost
 710  * our headroom for the next scanning cycle by this percentage multiple.
 711  */
 712 #define L2ARC_HEADROOM_BOOST    200
 713 #define L2ARC_FEED_SECS         1               /* caching interval secs */
 714 #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
 715 
 716 /*
 717  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
 718  * and each of the state has two types: data and metadata.
 719  */
 720 #define L2ARC_FEED_TYPES        4
 721 
 722 
 723 #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
 724 #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
 725 
 726 /* L2ARC Performance Tunables */
 727 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
 728 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
 729 uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
 730 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
 731 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
 732 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
 733 boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
 734 boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
 735 boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
 736 int l2arc_meta_percent = 33;                    /* limit on headers size */
 737 
 738 /*
 739  * L2ARC Internals
 740  */
 741 static list_t L2ARC_dev_list;                   /* device list */
 742 static list_t *l2arc_dev_list;                  /* device list pointer */
 743 static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
 744 static l2arc_dev_t *l2arc_dev_last;             /* last device used */
 745 static list_t L2ARC_free_on_write;              /* free after write buf list */
 746 static list_t *l2arc_free_on_write;             /* free after write list ptr */
 747 static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
 748 static uint64_t l2arc_ndev;                     /* number of devices */
 749 
 750 typedef struct l2arc_read_callback {
 751         arc_buf_hdr_t           *l2rcb_hdr;             /* read header */
 752         blkptr_t                l2rcb_bp;               /* original blkptr */
 753         zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
 754         int                     l2rcb_flags;            /* original flags */
 755         abd_t                   *l2rcb_abd;             /* temporary buffer */
 756 } l2arc_read_callback_t;
 757 
 758 typedef struct l2arc_data_free {
 759         /* protected by l2arc_free_on_write_mtx */
 760         abd_t           *l2df_abd;
 761         size_t          l2df_size;
 762         arc_buf_contents_t l2df_type;
 763         list_node_t     l2df_list_node;
 764 } l2arc_data_free_t;
 765 
 766 static kmutex_t l2arc_feed_thr_lock;
 767 static kcondvar_t l2arc_feed_thr_cv;
 768 static uint8_t l2arc_thread_exit;
 769 
 770 static kmutex_t l2arc_rebuild_thr_lock;
 771 static kcondvar_t l2arc_rebuild_thr_cv;
 772 
 773 enum arc_hdr_alloc_flags {
 774         ARC_HDR_ALLOC_RDATA = 0x1,
 775         ARC_HDR_DO_ADAPT = 0x2,
 776 };
 777 
 778 
 779 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
 780 typedef enum arc_fill_flags {
 781         ARC_FILL_LOCKED         = 1 << 0, /* hdr lock is held */
 782         ARC_FILL_COMPRESSED     = 1 << 1, /* fill with compressed data */
 783         ARC_FILL_ENCRYPTED      = 1 << 2, /* fill with encrypted data */
 784         ARC_FILL_NOAUTH         = 1 << 3, /* don't attempt to authenticate */
 785         ARC_FILL_IN_PLACE       = 1 << 4  /* fill in place (special case) */
 786 } arc_fill_flags_t;
 787 
 788 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
 789 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
 790 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
 791 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
 792 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
 793 static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t);
 794 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, int);
 795 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
 796 static boolean_t arc_is_overflowing();
 797 static void arc_buf_watch(arc_buf_t *);
 798 static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd);
 799 
 800 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
 801 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
 802 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
 803 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
 804 
 805 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
 806 static void l2arc_read_done(zio_t *);
 807 static void l2arc_do_free_on_write(void);
 808 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
 809     boolean_t state_only);
 810 
 811 #define l2arc_hdr_arcstats_increment(hdr) \
 812         l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
 813 #define l2arc_hdr_arcstats_decrement(hdr) \
 814         l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
 815 #define l2arc_hdr_arcstats_increment_state(hdr) \
 816         l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
 817 #define l2arc_hdr_arcstats_decrement_state(hdr) \
 818         l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
 819 
 820 /*
 821  * The arc_all_memory function is a ZoL enhancement that lives in their OSL
 822  * code. In user-space code, which is used primarily for testing, we return
 823  * half of all memory.
 824  */
 825 uint64_t
 826 arc_all_memory(void)
 827 {
 828 #ifdef _KERNEL
 829         return (ptob(physmem));
 830 #else
 831         return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2);
 832 #endif
 833 }
 834 
 835 /*
 836  * We use Cityhash for this. It's fast, and has good hash properties without
 837  * requiring any large static buffers.
 838  */
 839 static uint64_t
 840 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
 841 {
 842         return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
 843 }
 844 
 845 #define HDR_EMPTY(hdr)                                          \
 846         ((hdr)->b_dva.dva_word[0] == 0 &&                    \
 847         (hdr)->b_dva.dva_word[1] == 0)
 848 
 849 #define HDR_EMPTY_OR_LOCKED(hdr)                                \
 850         (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
 851 
 852 #define HDR_EQUAL(spa, dva, birth, hdr)                         \
 853         ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&       \
 854         ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&       \
 855         ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
 856 
 857 static void
 858 buf_discard_identity(arc_buf_hdr_t *hdr)
 859 {
 860         hdr->b_dva.dva_word[0] = 0;
 861         hdr->b_dva.dva_word[1] = 0;
 862         hdr->b_birth = 0;
 863 }
 864 
 865 static arc_buf_hdr_t *
 866 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
 867 {
 868         const dva_t *dva = BP_IDENTITY(bp);
 869         uint64_t birth = BP_PHYSICAL_BIRTH(bp);
 870         uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
 871         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 872         arc_buf_hdr_t *hdr;
 873 
 874         mutex_enter(hash_lock);
 875         for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
 876             hdr = hdr->b_hash_next) {
 877                 if (HDR_EQUAL(spa, dva, birth, hdr)) {
 878                         *lockp = hash_lock;
 879                         return (hdr);
 880                 }
 881         }
 882         mutex_exit(hash_lock);
 883         *lockp = NULL;
 884         return (NULL);
 885 }
 886 
 887 /*
 888  * Insert an entry into the hash table.  If there is already an element
 889  * equal to elem in the hash table, then the already existing element
 890  * will be returned and the new element will not be inserted.
 891  * Otherwise returns NULL.
 892  * If lockp == NULL, the caller is assumed to already hold the hash lock.
 893  */
 894 static arc_buf_hdr_t *
 895 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
 896 {
 897         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 898         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 899         arc_buf_hdr_t *fhdr;
 900         uint32_t i;
 901 
 902         ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
 903         ASSERT(hdr->b_birth != 0);
 904         ASSERT(!HDR_IN_HASH_TABLE(hdr));
 905 
 906         if (lockp != NULL) {
 907                 *lockp = hash_lock;
 908                 mutex_enter(hash_lock);
 909         } else {
 910                 ASSERT(MUTEX_HELD(hash_lock));
 911         }
 912 
 913         for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
 914             fhdr = fhdr->b_hash_next, i++) {
 915                 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
 916                         return (fhdr);
 917         }
 918 
 919         hdr->b_hash_next = buf_hash_table.ht_table[idx];
 920         buf_hash_table.ht_table[idx] = hdr;
 921         arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
 922 
 923         /* collect some hash table performance data */
 924         if (i > 0) {
 925                 ARCSTAT_BUMP(arcstat_hash_collisions);
 926                 if (i == 1)
 927                         ARCSTAT_BUMP(arcstat_hash_chains);
 928 
 929                 ARCSTAT_MAX(arcstat_hash_chain_max, i);
 930         }
 931 
 932         ARCSTAT_BUMP(arcstat_hash_elements);
 933         ARCSTAT_MAXSTAT(arcstat_hash_elements);
 934 
 935         return (NULL);
 936 }
 937 
 938 static void
 939 buf_hash_remove(arc_buf_hdr_t *hdr)
 940 {
 941         arc_buf_hdr_t *fhdr, **hdrp;
 942         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 943 
 944         ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
 945         ASSERT(HDR_IN_HASH_TABLE(hdr));
 946 
 947         hdrp = &buf_hash_table.ht_table[idx];
 948         while ((fhdr = *hdrp) != hdr) {
 949                 ASSERT3P(fhdr, !=, NULL);
 950                 hdrp = &fhdr->b_hash_next;
 951         }
 952         *hdrp = hdr->b_hash_next;
 953         hdr->b_hash_next = NULL;
 954         arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
 955 
 956         /* collect some hash table performance data */
 957         ARCSTAT_BUMPDOWN(arcstat_hash_elements);
 958 
 959         if (buf_hash_table.ht_table[idx] &&
 960             buf_hash_table.ht_table[idx]->b_hash_next == NULL)
 961                 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
 962 }
 963 
 964 /*
 965  * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
 966  *              metadata and data are cached from ARC into L2ARC.
 967  */
 968 int l2arc_mfuonly = 0;
 969 
 970 /*
 971  * Global data structures and functions for the buf kmem cache.
 972  */
 973 
 974 static kmem_cache_t *hdr_full_cache;
 975 static kmem_cache_t *hdr_full_crypt_cache;
 976 static kmem_cache_t *hdr_l2only_cache;
 977 static kmem_cache_t *buf_cache;
 978 
 979 static void
 980 buf_fini(void)
 981 {
 982         int i;
 983 
 984         kmem_free(buf_hash_table.ht_table,
 985             (buf_hash_table.ht_mask + 1) * sizeof (void *));
 986         for (i = 0; i < BUF_LOCKS; i++)
 987                 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
 988         kmem_cache_destroy(hdr_full_cache);
 989         kmem_cache_destroy(hdr_full_crypt_cache);
 990         kmem_cache_destroy(hdr_l2only_cache);
 991         kmem_cache_destroy(buf_cache);
 992 }
 993 
 994 /*
 995  * Constructor callback - called when the cache is empty
 996  * and a new buf is requested.
 997  */
 998 /* ARGSUSED */
 999 static int
1000 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1001 {
1002         arc_buf_hdr_t *hdr = vbuf;
1003 
1004         bzero(hdr, HDR_FULL_SIZE);
1005         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1006         cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1007         zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1008         mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1009         multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1010         arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1011 
1012         return (0);
1013 }
1014 
1015 /* ARGSUSED */
1016 static int
1017 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1018 {
1019         arc_buf_hdr_t *hdr = vbuf;
1020 
1021         (void) hdr_full_cons(vbuf, unused, kmflag);
1022         bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1023         arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1024 
1025         return (0);
1026 }
1027 
1028 /* ARGSUSED */
1029 static int
1030 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1031 {
1032         arc_buf_hdr_t *hdr = vbuf;
1033 
1034         bzero(hdr, HDR_L2ONLY_SIZE);
1035         arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1036 
1037         return (0);
1038 }
1039 
1040 /* ARGSUSED */
1041 static int
1042 buf_cons(void *vbuf, void *unused, int kmflag)
1043 {
1044         arc_buf_t *buf = vbuf;
1045 
1046         bzero(buf, sizeof (arc_buf_t));
1047         mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1048         arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1049 
1050         return (0);
1051 }
1052 
1053 /*
1054  * Destructor callback - called when a cached buf is
1055  * no longer required.
1056  */
1057 /* ARGSUSED */
1058 static void
1059 hdr_full_dest(void *vbuf, void *unused)
1060 {
1061         arc_buf_hdr_t *hdr = vbuf;
1062 
1063         ASSERT(HDR_EMPTY(hdr));
1064         cv_destroy(&hdr->b_l1hdr.b_cv);
1065         zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1066         mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1067         ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1068         arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1069 }
1070 
1071 /* ARGSUSED */
1072 static void
1073 hdr_full_crypt_dest(void *vbuf, void *unused)
1074 {
1075         arc_buf_hdr_t *hdr = vbuf;
1076 
1077         hdr_full_dest(hdr, unused);
1078         arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1079 }
1080 
1081 /* ARGSUSED */
1082 static void
1083 hdr_l2only_dest(void *vbuf, void *unused)
1084 {
1085         arc_buf_hdr_t *hdr = vbuf;
1086 
1087         ASSERT(HDR_EMPTY(hdr));
1088         arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1089 }
1090 
1091 /* ARGSUSED */
1092 static void
1093 buf_dest(void *vbuf, void *unused)
1094 {
1095         arc_buf_t *buf = vbuf;
1096 
1097         mutex_destroy(&buf->b_evict_lock);
1098         arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1099 }
1100 
1101 /*
1102  * Reclaim callback -- invoked when memory is low.
1103  */
1104 /* ARGSUSED */
1105 static void
1106 hdr_recl(void *unused)
1107 {
1108         dprintf("hdr_recl called\n");
1109         /*
1110          * umem calls the reclaim func when we destroy the buf cache,
1111          * which is after we do arc_fini().
1112          */
1113         if (arc_initialized)
1114                 zthr_wakeup(arc_reap_zthr);
1115 }
1116 
1117 static void
1118 buf_init(void)
1119 {
1120         uint64_t *ct;
1121         uint64_t hsize = 1ULL << 12;
1122         int i, j;
1123 
1124         /*
1125          * The hash table is big enough to fill all of physical memory
1126          * with an average block size of zfs_arc_average_blocksize (default 8K).
1127          * By default, the table will take up
1128          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1129          */
1130         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1131                 hsize <<= 1;
1132 retry:
1133         buf_hash_table.ht_mask = hsize - 1;
1134         buf_hash_table.ht_table =
1135             kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1136         if (buf_hash_table.ht_table == NULL) {
1137                 ASSERT(hsize > (1ULL << 8));
1138                 hsize >>= 1;
1139                 goto retry;
1140         }
1141 
1142         hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1143             0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1144         hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1145             HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1146             hdr_recl, NULL, NULL, 0);
1147         hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1148             HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1149             NULL, NULL, 0);
1150         buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1151             0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1152 
1153         for (i = 0; i < 256; i++)
1154                 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1155                         *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1156 
1157         for (i = 0; i < BUF_LOCKS; i++) {
1158                 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1159                     NULL, MUTEX_DEFAULT, NULL);
1160         }
1161 }
1162 
1163 /*
1164  * This is the size that the buf occupies in memory. If the buf is compressed,
1165  * it will correspond to the compressed size. You should use this method of
1166  * getting the buf size unless you explicitly need the logical size.
1167  */
1168 int32_t
1169 arc_buf_size(arc_buf_t *buf)
1170 {
1171         return (ARC_BUF_COMPRESSED(buf) ?
1172             HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1173 }
1174 
1175 int32_t
1176 arc_buf_lsize(arc_buf_t *buf)
1177 {
1178         return (HDR_GET_LSIZE(buf->b_hdr));
1179 }
1180 
1181 /*
1182  * This function will return B_TRUE if the buffer is encrypted in memory.
1183  * This buffer can be decrypted by calling arc_untransform().
1184  */
1185 boolean_t
1186 arc_is_encrypted(arc_buf_t *buf)
1187 {
1188         return (ARC_BUF_ENCRYPTED(buf) != 0);
1189 }
1190 
1191 /*
1192  * Returns B_TRUE if the buffer represents data that has not had its MAC
1193  * verified yet.
1194  */
1195 boolean_t
1196 arc_is_unauthenticated(arc_buf_t *buf)
1197 {
1198         return (HDR_NOAUTH(buf->b_hdr) != 0);
1199 }
1200 
1201 void
1202 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1203     uint8_t *iv, uint8_t *mac)
1204 {
1205         arc_buf_hdr_t *hdr = buf->b_hdr;
1206 
1207         ASSERT(HDR_PROTECTED(hdr));
1208 
1209         bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1210         bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1211         bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1212         *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1213             /* CONSTCOND */
1214             ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1215 }
1216 
1217 /*
1218  * Indicates how this buffer is compressed in memory. If it is not compressed
1219  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1220  * arc_untransform() as long as it is also unencrypted.
1221  */
1222 enum zio_compress
1223 arc_get_compression(arc_buf_t *buf)
1224 {
1225         return (ARC_BUF_COMPRESSED(buf) ?
1226             HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1227 }
1228 
1229 #define ARC_MINTIME     (hz>>4) /* 62 ms */
1230 
1231 /*
1232  * Return the compression algorithm used to store this data in the ARC. If ARC
1233  * compression is enabled or this is an encrypted block, this will be the same
1234  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1235  */
1236 static inline enum zio_compress
1237 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1238 {
1239         return (HDR_COMPRESSION_ENABLED(hdr) ?
1240             HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1241 }
1242 
1243 static inline boolean_t
1244 arc_buf_is_shared(arc_buf_t *buf)
1245 {
1246         boolean_t shared = (buf->b_data != NULL &&
1247             buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1248             abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1249             buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1250         IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1251         IMPLY(shared, ARC_BUF_SHARED(buf));
1252         IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1253 
1254         /*
1255          * It would be nice to assert arc_can_share() too, but the "hdr isn't
1256          * already being shared" requirement prevents us from doing that.
1257          */
1258 
1259         return (shared);
1260 }
1261 
1262 /*
1263  * Free the checksum associated with this header. If there is no checksum, this
1264  * is a no-op.
1265  */
1266 static inline void
1267 arc_cksum_free(arc_buf_hdr_t *hdr)
1268 {
1269         ASSERT(HDR_HAS_L1HDR(hdr));
1270 
1271         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1272         if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1273                 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1274                 hdr->b_l1hdr.b_freeze_cksum = NULL;
1275         }
1276         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1277 }
1278 
1279 /*
1280  * Return true iff at least one of the bufs on hdr is not compressed.
1281  * Encrypted buffers count as compressed.
1282  */
1283 static boolean_t
1284 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1285 {
1286         ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1287 
1288         for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1289                 if (!ARC_BUF_COMPRESSED(b)) {
1290                         return (B_TRUE);
1291                 }
1292         }
1293         return (B_FALSE);
1294 }
1295 
1296 /*
1297  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1298  * matches the checksum that is stored in the hdr. If there is no checksum,
1299  * or if the buf is compressed, this is a no-op.
1300  */
1301 static void
1302 arc_cksum_verify(arc_buf_t *buf)
1303 {
1304         arc_buf_hdr_t *hdr = buf->b_hdr;
1305         zio_cksum_t zc;
1306 
1307         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1308                 return;
1309 
1310         if (ARC_BUF_COMPRESSED(buf))
1311                 return;
1312 
1313         ASSERT(HDR_HAS_L1HDR(hdr));
1314 
1315         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1316 
1317         if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1318                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1319                 return;
1320         }
1321 
1322         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1323         if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1324                 panic("buffer modified while frozen!");
1325         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1326 }
1327 
1328 /*
1329  * This function makes the assumption that data stored in the L2ARC
1330  * will be transformed exactly as it is in the main pool. Because of
1331  * this we can verify the checksum against the reading process's bp.
1332  */
1333 static boolean_t
1334 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1335 {
1336         enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1337         boolean_t valid_cksum;
1338 
1339         ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1340         VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1341 
1342         /*
1343          * We rely on the blkptr's checksum to determine if the block
1344          * is valid or not. When compressed arc is enabled, the l2arc
1345          * writes the block to the l2arc just as it appears in the pool.
1346          * This allows us to use the blkptr's checksum to validate the
1347          * data that we just read off of the l2arc without having to store
1348          * a separate checksum in the arc_buf_hdr_t. However, if compressed
1349          * arc is disabled, then the data written to the l2arc is always
1350          * uncompressed and won't match the block as it exists in the main
1351          * pool. When this is the case, we must first compress it if it is
1352          * compressed on the main pool before we can validate the checksum.
1353          */
1354         if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1355                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1356                 uint64_t lsize = HDR_GET_LSIZE(hdr);
1357                 uint64_t csize;
1358 
1359                 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1360                 csize = zio_compress_data(compress, zio->io_abd,
1361                     abd_to_buf(cdata), lsize);
1362 
1363                 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1364                 if (csize < HDR_GET_PSIZE(hdr)) {
1365                         /*
1366                          * Compressed blocks are always a multiple of the
1367                          * smallest ashift in the pool. Ideally, we would
1368                          * like to round up the csize to the next
1369                          * spa_min_ashift but that value may have changed
1370                          * since the block was last written. Instead,
1371                          * we rely on the fact that the hdr's psize
1372                          * was set to the psize of the block when it was
1373                          * last written. We set the csize to that value
1374                          * and zero out any part that should not contain
1375                          * data.
1376                          */
1377                         abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1378                         csize = HDR_GET_PSIZE(hdr);
1379                 }
1380                 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1381         }
1382 
1383         /*
1384          * Block pointers always store the checksum for the logical data.
1385          * If the block pointer has the gang bit set, then the checksum
1386          * it represents is for the reconstituted data and not for an
1387          * individual gang member. The zio pipeline, however, must be able to
1388          * determine the checksum of each of the gang constituents so it
1389          * treats the checksum comparison differently than what we need
1390          * for l2arc blocks. This prevents us from using the
1391          * zio_checksum_error() interface directly. Instead we must call the
1392          * zio_checksum_error_impl() so that we can ensure the checksum is
1393          * generated using the correct checksum algorithm and accounts for the
1394          * logical I/O size and not just a gang fragment.
1395          */
1396         valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1397             BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1398             zio->io_offset, NULL) == 0);
1399         zio_pop_transforms(zio);
1400         return (valid_cksum);
1401 }
1402 
1403 /*
1404  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1405  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1406  * isn't modified later on. If buf is compressed or there is already a checksum
1407  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1408  */
1409 static void
1410 arc_cksum_compute(arc_buf_t *buf)
1411 {
1412         arc_buf_hdr_t *hdr = buf->b_hdr;
1413 
1414         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1415                 return;
1416 
1417         ASSERT(HDR_HAS_L1HDR(hdr));
1418 
1419         mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1420         if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1421                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1422                 return;
1423         }
1424 
1425         ASSERT(!ARC_BUF_ENCRYPTED(buf));
1426         ASSERT(!ARC_BUF_COMPRESSED(buf));
1427         hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1428             KM_SLEEP);
1429         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1430             hdr->b_l1hdr.b_freeze_cksum);
1431         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1432         arc_buf_watch(buf);
1433 }
1434 
1435 #ifndef _KERNEL
1436 typedef struct procctl {
1437         long cmd;
1438         prwatch_t prwatch;
1439 } procctl_t;
1440 #endif
1441 
1442 /* ARGSUSED */
1443 static void
1444 arc_buf_unwatch(arc_buf_t *buf)
1445 {
1446 #ifndef _KERNEL
1447         if (arc_watch) {
1448                 int result;
1449                 procctl_t ctl;
1450                 ctl.cmd = PCWATCH;
1451                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1452                 ctl.prwatch.pr_size = 0;
1453                 ctl.prwatch.pr_wflags = 0;
1454                 result = write(arc_procfd, &ctl, sizeof (ctl));
1455                 ASSERT3U(result, ==, sizeof (ctl));
1456         }
1457 #endif
1458 }
1459 
1460 /* ARGSUSED */
1461 static void
1462 arc_buf_watch(arc_buf_t *buf)
1463 {
1464 #ifndef _KERNEL
1465         if (arc_watch) {
1466                 int result;
1467                 procctl_t ctl;
1468                 ctl.cmd = PCWATCH;
1469                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1470                 ctl.prwatch.pr_size = arc_buf_size(buf);
1471                 ctl.prwatch.pr_wflags = WA_WRITE;
1472                 result = write(arc_procfd, &ctl, sizeof (ctl));
1473                 ASSERT3U(result, ==, sizeof (ctl));
1474         }
1475 #endif
1476 }
1477 
1478 static arc_buf_contents_t
1479 arc_buf_type(arc_buf_hdr_t *hdr)
1480 {
1481         arc_buf_contents_t type;
1482         if (HDR_ISTYPE_METADATA(hdr)) {
1483                 type = ARC_BUFC_METADATA;
1484         } else {
1485                 type = ARC_BUFC_DATA;
1486         }
1487         VERIFY3U(hdr->b_type, ==, type);
1488         return (type);
1489 }
1490 
1491 boolean_t
1492 arc_is_metadata(arc_buf_t *buf)
1493 {
1494         return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1495 }
1496 
1497 static uint32_t
1498 arc_bufc_to_flags(arc_buf_contents_t type)
1499 {
1500         switch (type) {
1501         case ARC_BUFC_DATA:
1502                 /* metadata field is 0 if buffer contains normal data */
1503                 return (0);
1504         case ARC_BUFC_METADATA:
1505                 return (ARC_FLAG_BUFC_METADATA);
1506         default:
1507                 break;
1508         }
1509         panic("undefined ARC buffer type!");
1510         return ((uint32_t)-1);
1511 }
1512 
1513 void
1514 arc_buf_thaw(arc_buf_t *buf)
1515 {
1516         arc_buf_hdr_t *hdr = buf->b_hdr;
1517 
1518         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1519         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1520 
1521         arc_cksum_verify(buf);
1522 
1523         /*
1524          * Compressed buffers do not manipulate the b_freeze_cksum.
1525          */
1526         if (ARC_BUF_COMPRESSED(buf))
1527                 return;
1528 
1529         ASSERT(HDR_HAS_L1HDR(hdr));
1530         arc_cksum_free(hdr);
1531 
1532         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1533 #ifdef ZFS_DEBUG
1534         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1535                 if (hdr->b_l1hdr.b_thawed != NULL)
1536                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
1537                 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1538         }
1539 #endif
1540 
1541         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1542 
1543         arc_buf_unwatch(buf);
1544 }
1545 
1546 void
1547 arc_buf_freeze(arc_buf_t *buf)
1548 {
1549         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1550                 return;
1551 
1552         if (ARC_BUF_COMPRESSED(buf))
1553                 return;
1554 
1555         ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1556         arc_cksum_compute(buf);
1557 }
1558 
1559 /*
1560  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1561  * the following functions should be used to ensure that the flags are
1562  * updated in a thread-safe way. When manipulating the flags either
1563  * the hash_lock must be held or the hdr must be undiscoverable. This
1564  * ensures that we're not racing with any other threads when updating
1565  * the flags.
1566  */
1567 static inline void
1568 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1569 {
1570         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1571         hdr->b_flags |= flags;
1572 }
1573 
1574 static inline void
1575 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1576 {
1577         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1578         hdr->b_flags &= ~flags;
1579 }
1580 
1581 /*
1582  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1583  * done in a special way since we have to clear and set bits
1584  * at the same time. Consumers that wish to set the compression bits
1585  * must use this function to ensure that the flags are updated in
1586  * thread-safe manner.
1587  */
1588 static void
1589 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1590 {
1591         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1592 
1593         /*
1594          * Holes and embedded blocks will always have a psize = 0 so
1595          * we ignore the compression of the blkptr and set the
1596          * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1597          * Holes and embedded blocks remain anonymous so we don't
1598          * want to uncompress them. Mark them as uncompressed.
1599          */
1600         if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1601                 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1602                 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1603         } else {
1604                 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1605                 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1606         }
1607 
1608         HDR_SET_COMPRESS(hdr, cmp);
1609         ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1610 }
1611 
1612 /*
1613  * Looks for another buf on the same hdr which has the data decompressed, copies
1614  * from it, and returns true. If no such buf exists, returns false.
1615  */
1616 static boolean_t
1617 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1618 {
1619         arc_buf_hdr_t *hdr = buf->b_hdr;
1620         boolean_t copied = B_FALSE;
1621 
1622         ASSERT(HDR_HAS_L1HDR(hdr));
1623         ASSERT3P(buf->b_data, !=, NULL);
1624         ASSERT(!ARC_BUF_COMPRESSED(buf));
1625 
1626         for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1627             from = from->b_next) {
1628                 /* can't use our own data buffer */
1629                 if (from == buf) {
1630                         continue;
1631                 }
1632 
1633                 if (!ARC_BUF_COMPRESSED(from)) {
1634                         bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1635                         copied = B_TRUE;
1636                         break;
1637                 }
1638         }
1639 
1640         /*
1641          * Note: With encryption support, the following assertion is no longer
1642          * necessarily valid. If we receive two back to back raw snapshots
1643          * (send -w), the second receive can use a hdr with a cksum already
1644          * calculated. This happens via:
1645          *    dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf()
1646          * The rsend/send_mixed_raw test case exercises this code path.
1647          *
1648          * There were no decompressed bufs, so there should not be a
1649          * checksum on the hdr either.
1650          * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1651          */
1652 
1653         return (copied);
1654 }
1655 
1656 /*
1657  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1658  */
1659 static uint64_t
1660 arc_hdr_size(arc_buf_hdr_t *hdr)
1661 {
1662         uint64_t size;
1663 
1664         if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1665             HDR_GET_PSIZE(hdr) > 0) {
1666                 size = HDR_GET_PSIZE(hdr);
1667         } else {
1668                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1669                 size = HDR_GET_LSIZE(hdr);
1670         }
1671         return (size);
1672 }
1673 
1674 static int
1675 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1676 {
1677         int ret;
1678         uint64_t csize;
1679         uint64_t lsize = HDR_GET_LSIZE(hdr);
1680         uint64_t psize = HDR_GET_PSIZE(hdr);
1681         void *tmpbuf = NULL;
1682         abd_t *abd = hdr->b_l1hdr.b_pabd;
1683 
1684         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1685         ASSERT(HDR_AUTHENTICATED(hdr));
1686         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1687 
1688         /*
1689          * The MAC is calculated on the compressed data that is stored on disk.
1690          * However, if compressed arc is disabled we will only have the
1691          * decompressed data available to us now. Compress it into a temporary
1692          * abd so we can verify the MAC. The performance overhead of this will
1693          * be relatively low, since most objects in an encrypted objset will
1694          * be encrypted (instead of authenticated) anyway.
1695          */
1696         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1697             !HDR_COMPRESSION_ENABLED(hdr)) {
1698                 tmpbuf = zio_buf_alloc(lsize);
1699                 abd = abd_get_from_buf(tmpbuf, lsize);
1700                 abd_take_ownership_of_buf(abd, B_TRUE);
1701 
1702                 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1703                     hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1704                 ASSERT3U(csize, <=, psize);
1705                 abd_zero_off(abd, csize, psize - csize);
1706         }
1707 
1708         /*
1709          * Authentication is best effort. We authenticate whenever the key is
1710          * available. If we succeed we clear ARC_FLAG_NOAUTH.
1711          */
1712         if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1713                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1714                 ASSERT3U(lsize, ==, psize);
1715                 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1716                     psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1717         } else {
1718                 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1719                     hdr->b_crypt_hdr.b_mac);
1720         }
1721 
1722         if (ret == 0)
1723                 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1724         else if (ret != ENOENT)
1725                 goto error;
1726 
1727         if (tmpbuf != NULL)
1728                 abd_free(abd);
1729 
1730         return (0);
1731 
1732 error:
1733         if (tmpbuf != NULL)
1734                 abd_free(abd);
1735 
1736         return (ret);
1737 }
1738 
1739 /*
1740  * This function will take a header that only has raw encrypted data in
1741  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1742  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1743  * also decompress the data.
1744  */
1745 static int
1746 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1747 {
1748         int ret;
1749         abd_t *cabd = NULL;
1750         void *tmp = NULL;
1751         boolean_t no_crypt = B_FALSE;
1752         boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1753 
1754         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1755         ASSERT(HDR_ENCRYPTED(hdr));
1756 
1757         arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
1758 
1759         ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1760             B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1761             hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1762             hdr->b_crypt_hdr.b_rabd, &no_crypt);
1763         if (ret != 0)
1764                 goto error;
1765 
1766         if (no_crypt) {
1767                 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1768                     HDR_GET_PSIZE(hdr));
1769         }
1770 
1771         /*
1772          * If this header has disabled arc compression but the b_pabd is
1773          * compressed after decrypting it, we need to decompress the newly
1774          * decrypted data.
1775          */
1776         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1777             !HDR_COMPRESSION_ENABLED(hdr)) {
1778                 /*
1779                  * We want to make sure that we are correctly honoring the
1780                  * zfs_abd_scatter_enabled setting, so we allocate an abd here
1781                  * and then loan a buffer from it, rather than allocating a
1782                  * linear buffer and wrapping it in an abd later.
1783                  */
1784                 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE);
1785                 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1786 
1787                 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1788                     hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1789                     HDR_GET_LSIZE(hdr));
1790                 if (ret != 0) {
1791                         abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1792                         goto error;
1793                 }
1794 
1795                 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1796                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1797                     arc_hdr_size(hdr), hdr);
1798                 hdr->b_l1hdr.b_pabd = cabd;
1799         }
1800 
1801         return (0);
1802 
1803 error:
1804         arc_hdr_free_pabd(hdr, B_FALSE);
1805         if (cabd != NULL)
1806                 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1807 
1808         return (ret);
1809 }
1810 
1811 /*
1812  * This function is called during arc_buf_fill() to prepare the header's
1813  * abd plaintext pointer for use. This involves authenticated protected
1814  * data and decrypting encrypted data into the plaintext abd.
1815  */
1816 static int
1817 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1818     const zbookmark_phys_t *zb, boolean_t noauth)
1819 {
1820         int ret;
1821 
1822         ASSERT(HDR_PROTECTED(hdr));
1823 
1824         if (hash_lock != NULL)
1825                 mutex_enter(hash_lock);
1826 
1827         if (HDR_NOAUTH(hdr) && !noauth) {
1828                 /*
1829                  * The caller requested authenticated data but our data has
1830                  * not been authenticated yet. Verify the MAC now if we can.
1831                  */
1832                 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1833                 if (ret != 0)
1834                         goto error;
1835         } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1836                 /*
1837                  * If we only have the encrypted version of the data, but the
1838                  * unencrypted version was requested we take this opportunity
1839                  * to store the decrypted version in the header for future use.
1840                  */
1841                 ret = arc_hdr_decrypt(hdr, spa, zb);
1842                 if (ret != 0)
1843                         goto error;
1844         }
1845 
1846         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1847 
1848         if (hash_lock != NULL)
1849                 mutex_exit(hash_lock);
1850 
1851         return (0);
1852 
1853 error:
1854         if (hash_lock != NULL)
1855                 mutex_exit(hash_lock);
1856 
1857         return (ret);
1858 }
1859 
1860 /*
1861  * This function is used by the dbuf code to decrypt bonus buffers in place.
1862  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1863  * block, so we use the hash lock here to protect against concurrent calls to
1864  * arc_buf_fill().
1865  */
1866 /* ARGSUSED */
1867 static void
1868 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
1869 {
1870         arc_buf_hdr_t *hdr = buf->b_hdr;
1871 
1872         ASSERT(HDR_ENCRYPTED(hdr));
1873         ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1874         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1875         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1876 
1877         zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1878             arc_buf_size(buf));
1879         buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1880         buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1881         hdr->b_crypt_hdr.b_ebufcnt -= 1;
1882 }
1883 
1884 /*
1885  * Given a buf that has a data buffer attached to it, this function will
1886  * efficiently fill the buf with data of the specified compression setting from
1887  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1888  * are already sharing a data buf, no copy is performed.
1889  *
1890  * If the buf is marked as compressed but uncompressed data was requested, this
1891  * will allocate a new data buffer for the buf, remove that flag, and fill the
1892  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1893  * uncompressed data, and (since we haven't added support for it yet) if you
1894  * want compressed data your buf must already be marked as compressed and have
1895  * the correct-sized data buffer.
1896  */
1897 static int
1898 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1899     arc_fill_flags_t flags)
1900 {
1901         int error = 0;
1902         arc_buf_hdr_t *hdr = buf->b_hdr;
1903         boolean_t hdr_compressed =
1904             (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1905         boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1906         boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1907         dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1908         kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1909 
1910         ASSERT3P(buf->b_data, !=, NULL);
1911         IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1912         IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1913         IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1914         IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1915         IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1916         IMPLY(encrypted, !ARC_BUF_SHARED(buf));
1917 
1918         /*
1919          * If the caller wanted encrypted data we just need to copy it from
1920          * b_rabd and potentially byteswap it. We won't be able to do any
1921          * further transforms on it.
1922          */
1923         if (encrypted) {
1924                 ASSERT(HDR_HAS_RABD(hdr));
1925                 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
1926                     HDR_GET_PSIZE(hdr));
1927                 goto byteswap;
1928         }
1929 
1930         /*
1931          * Adjust encrypted and authenticated headers to accomodate
1932          * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
1933          * allowed to fail decryption due to keys not being loaded
1934          * without being marked as an IO error.
1935          */
1936         if (HDR_PROTECTED(hdr)) {
1937                 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
1938                     zb, !!(flags & ARC_FILL_NOAUTH));
1939                 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
1940                         return (error);
1941                 } else if (error != 0) {
1942                         if (hash_lock != NULL)
1943                                 mutex_enter(hash_lock);
1944                         arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
1945                         if (hash_lock != NULL)
1946                                 mutex_exit(hash_lock);
1947                         return (error);
1948                 }
1949         }
1950 
1951         /*
1952          * There is a special case here for dnode blocks which are
1953          * decrypting their bonus buffers. These blocks may request to
1954          * be decrypted in-place. This is necessary because there may
1955          * be many dnodes pointing into this buffer and there is
1956          * currently no method to synchronize replacing the backing
1957          * b_data buffer and updating all of the pointers. Here we use
1958          * the hash lock to ensure there are no races. If the need
1959          * arises for other types to be decrypted in-place, they must
1960          * add handling here as well.
1961          */
1962         if ((flags & ARC_FILL_IN_PLACE) != 0) {
1963                 ASSERT(!hdr_compressed);
1964                 ASSERT(!compressed);
1965                 ASSERT(!encrypted);
1966 
1967                 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
1968                         ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1969 
1970                         if (hash_lock != NULL)
1971                                 mutex_enter(hash_lock);
1972                         arc_buf_untransform_in_place(buf, hash_lock);
1973                         if (hash_lock != NULL)
1974                                 mutex_exit(hash_lock);
1975 
1976                         /* Compute the hdr's checksum if necessary */
1977                         arc_cksum_compute(buf);
1978                 }
1979 
1980                 return (0);
1981         }
1982 
1983         if (hdr_compressed == compressed) {
1984                 if (!arc_buf_is_shared(buf)) {
1985                         abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1986                             arc_buf_size(buf));
1987                 }
1988         } else {
1989                 ASSERT(hdr_compressed);
1990                 ASSERT(!compressed);
1991                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1992 
1993                 /*
1994                  * If the buf is sharing its data with the hdr, unlink it and
1995                  * allocate a new data buffer for the buf.
1996                  */
1997                 if (arc_buf_is_shared(buf)) {
1998                         ASSERT(ARC_BUF_COMPRESSED(buf));
1999 
2000                         /* We need to give the buf its own b_data */
2001                         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2002                         buf->b_data =
2003                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2004                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2005 
2006                         /* Previously overhead was 0; just add new overhead */
2007                         ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2008                 } else if (ARC_BUF_COMPRESSED(buf)) {
2009                         /* We need to reallocate the buf's b_data */
2010                         arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2011                             buf);
2012                         buf->b_data =
2013                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2014 
2015                         /* We increased the size of b_data; update overhead */
2016                         ARCSTAT_INCR(arcstat_overhead_size,
2017                             HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2018                 }
2019 
2020                 /*
2021                  * Regardless of the buf's previous compression settings, it
2022                  * should not be compressed at the end of this function.
2023                  */
2024                 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2025 
2026                 /*
2027                  * Try copying the data from another buf which already has a
2028                  * decompressed version. If that's not possible, it's time to
2029                  * bite the bullet and decompress the data from the hdr.
2030                  */
2031                 if (arc_buf_try_copy_decompressed_data(buf)) {
2032                         /* Skip byteswapping and checksumming (already done) */
2033                         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2034                         return (0);
2035                 } else {
2036                         error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2037                             hdr->b_l1hdr.b_pabd, buf->b_data,
2038                             HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2039 
2040                         /*
2041                          * Absent hardware errors or software bugs, this should
2042                          * be impossible, but log it anyway so we can debug it.
2043                          */
2044                         if (error != 0) {
2045                                 zfs_dbgmsg(
2046                                     "hdr %p, compress %d, psize %d, lsize %d",
2047                                     hdr, arc_hdr_get_compress(hdr),
2048                                     HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2049                                 if (hash_lock != NULL)
2050                                         mutex_enter(hash_lock);
2051                                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2052                                 if (hash_lock != NULL)
2053                                         mutex_exit(hash_lock);
2054                                 return (SET_ERROR(EIO));
2055                         }
2056                 }
2057         }
2058 
2059 byteswap:
2060         /* Byteswap the buf's data if necessary */
2061         if (bswap != DMU_BSWAP_NUMFUNCS) {
2062                 ASSERT(!HDR_SHARED_DATA(hdr));
2063                 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2064                 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2065         }
2066 
2067         /* Compute the hdr's checksum if necessary */
2068         arc_cksum_compute(buf);
2069 
2070         return (0);
2071 }
2072 
2073 /*
2074  * If this function is being called to decrypt an encrypted buffer or verify an
2075  * authenticated one, the key must be loaded and a mapping must be made
2076  * available in the keystore via spa_keystore_create_mapping() or one of its
2077  * callers.
2078  */
2079 int
2080 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2081     boolean_t in_place)
2082 {
2083         int ret;
2084         arc_fill_flags_t flags = 0;
2085 
2086         if (in_place)
2087                 flags |= ARC_FILL_IN_PLACE;
2088 
2089         ret = arc_buf_fill(buf, spa, zb, flags);
2090         if (ret == ECKSUM) {
2091                 /*
2092                  * Convert authentication and decryption errors to EIO
2093                  * (and generate an ereport) before leaving the ARC.
2094                  */
2095                 ret = SET_ERROR(EIO);
2096                 spa_log_error(spa, zb);
2097                 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2098                     spa, NULL, zb, NULL, 0, 0);
2099         }
2100 
2101         return (ret);
2102 }
2103 
2104 /*
2105  * Increment the amount of evictable space in the arc_state_t's refcount.
2106  * We account for the space used by the hdr and the arc buf individually
2107  * so that we can add and remove them from the refcount individually.
2108  */
2109 static void
2110 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2111 {
2112         arc_buf_contents_t type = arc_buf_type(hdr);
2113 
2114         ASSERT(HDR_HAS_L1HDR(hdr));
2115 
2116         if (GHOST_STATE(state)) {
2117                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2118                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2119                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2120                 ASSERT(!HDR_HAS_RABD(hdr));
2121                 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2122                     HDR_GET_LSIZE(hdr), hdr);
2123                 return;
2124         }
2125 
2126         ASSERT(!GHOST_STATE(state));
2127         if (hdr->b_l1hdr.b_pabd != NULL) {
2128                 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2129                     arc_hdr_size(hdr), hdr);
2130         }
2131         if (HDR_HAS_RABD(hdr)) {
2132                 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2133                     HDR_GET_PSIZE(hdr), hdr);
2134         }
2135         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2136             buf = buf->b_next) {
2137                 if (arc_buf_is_shared(buf))
2138                         continue;
2139                 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2140                     arc_buf_size(buf), buf);
2141         }
2142 }
2143 
2144 /*
2145  * Decrement the amount of evictable space in the arc_state_t's refcount.
2146  * We account for the space used by the hdr and the arc buf individually
2147  * so that we can add and remove them from the refcount individually.
2148  */
2149 static void
2150 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2151 {
2152         arc_buf_contents_t type = arc_buf_type(hdr);
2153 
2154         ASSERT(HDR_HAS_L1HDR(hdr));
2155 
2156         if (GHOST_STATE(state)) {
2157                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2158                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2159                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2160                 ASSERT(!HDR_HAS_RABD(hdr));
2161                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2162                     HDR_GET_LSIZE(hdr), hdr);
2163                 return;
2164         }
2165 
2166         ASSERT(!GHOST_STATE(state));
2167         if (hdr->b_l1hdr.b_pabd != NULL) {
2168                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2169                     arc_hdr_size(hdr), hdr);
2170         }
2171         if (HDR_HAS_RABD(hdr)) {
2172                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2173                     HDR_GET_PSIZE(hdr), hdr);
2174         }
2175         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2176             buf = buf->b_next) {
2177                 if (arc_buf_is_shared(buf))
2178                         continue;
2179                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2180                     arc_buf_size(buf), buf);
2181         }
2182 }
2183 
2184 /*
2185  * Add a reference to this hdr indicating that someone is actively
2186  * referencing that memory. When the refcount transitions from 0 to 1,
2187  * we remove it from the respective arc_state_t list to indicate that
2188  * it is not evictable.
2189  */
2190 static void
2191 add_reference(arc_buf_hdr_t *hdr, void *tag)
2192 {
2193         ASSERT(HDR_HAS_L1HDR(hdr));
2194         if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2195                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2196                 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2197                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2198         }
2199 
2200         arc_state_t *state = hdr->b_l1hdr.b_state;
2201 
2202         if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2203             (state != arc_anon)) {
2204                 /* We don't use the L2-only state list. */
2205                 if (state != arc_l2c_only) {
2206                         multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2207                             hdr);
2208                         arc_evictable_space_decrement(hdr, state);
2209                 }
2210                 /* remove the prefetch flag if we get a reference */
2211                 if (HDR_HAS_L2HDR(hdr))
2212                         l2arc_hdr_arcstats_decrement_state(hdr);
2213                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2214                 if (HDR_HAS_L2HDR(hdr))
2215                         l2arc_hdr_arcstats_increment_state(hdr);
2216         }
2217 }
2218 
2219 /*
2220  * Remove a reference from this hdr. When the reference transitions from
2221  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2222  * list making it eligible for eviction.
2223  */
2224 static int
2225 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2226 {
2227         int cnt;
2228         arc_state_t *state = hdr->b_l1hdr.b_state;
2229 
2230         ASSERT(HDR_HAS_L1HDR(hdr));
2231         ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2232         ASSERT(!GHOST_STATE(state));
2233 
2234         /*
2235          * arc_l2c_only counts as a ghost state so we don't need to explicitly
2236          * check to prevent usage of the arc_l2c_only list.
2237          */
2238         if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2239             (state != arc_anon)) {
2240                 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2241                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2242                 arc_evictable_space_increment(hdr, state);
2243         }
2244         return (cnt);
2245 }
2246 
2247 /*
2248  * Move the supplied buffer to the indicated state. The hash lock
2249  * for the buffer must be held by the caller.
2250  */
2251 static void
2252 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2253     kmutex_t *hash_lock)
2254 {
2255         arc_state_t *old_state;
2256         int64_t refcnt;
2257         uint32_t bufcnt;
2258         boolean_t update_old, update_new;
2259         arc_buf_contents_t buftype = arc_buf_type(hdr);
2260 
2261         /*
2262          * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2263          * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2264          * L1 hdr doesn't always exist when we change state to arc_anon before
2265          * destroying a header, in which case reallocating to add the L1 hdr is
2266          * pointless.
2267          */
2268         if (HDR_HAS_L1HDR(hdr)) {
2269                 old_state = hdr->b_l1hdr.b_state;
2270                 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2271                 bufcnt = hdr->b_l1hdr.b_bufcnt;
2272 
2273                 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2274                     HDR_HAS_RABD(hdr));
2275         } else {
2276                 old_state = arc_l2c_only;
2277                 refcnt = 0;
2278                 bufcnt = 0;
2279                 update_old = B_FALSE;
2280         }
2281         update_new = update_old;
2282 
2283         ASSERT(MUTEX_HELD(hash_lock));
2284         ASSERT3P(new_state, !=, old_state);
2285         ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2286         ASSERT(old_state != arc_anon || bufcnt <= 1);
2287 
2288         /*
2289          * If this buffer is evictable, transfer it from the
2290          * old state list to the new state list.
2291          */
2292         if (refcnt == 0) {
2293                 if (old_state != arc_anon && old_state != arc_l2c_only) {
2294                         ASSERT(HDR_HAS_L1HDR(hdr));
2295                         multilist_remove(old_state->arcs_list[buftype], hdr);
2296 
2297                         if (GHOST_STATE(old_state)) {
2298                                 ASSERT0(bufcnt);
2299                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2300                                 update_old = B_TRUE;
2301                         }
2302                         arc_evictable_space_decrement(hdr, old_state);
2303                 }
2304                 if (new_state != arc_anon && new_state != arc_l2c_only) {
2305 
2306                         /*
2307                          * An L1 header always exists here, since if we're
2308                          * moving to some L1-cached state (i.e. not l2c_only or
2309                          * anonymous), we realloc the header to add an L1hdr
2310                          * beforehand.
2311                          */
2312                         ASSERT(HDR_HAS_L1HDR(hdr));
2313                         multilist_insert(new_state->arcs_list[buftype], hdr);
2314 
2315                         if (GHOST_STATE(new_state)) {
2316                                 ASSERT0(bufcnt);
2317                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2318                                 update_new = B_TRUE;
2319                         }
2320                         arc_evictable_space_increment(hdr, new_state);
2321                 }
2322         }
2323 
2324         ASSERT(!HDR_EMPTY(hdr));
2325         if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2326                 buf_hash_remove(hdr);
2327 
2328         /* adjust state sizes (ignore arc_l2c_only) */
2329 
2330         if (update_new && new_state != arc_l2c_only) {
2331                 ASSERT(HDR_HAS_L1HDR(hdr));
2332                 if (GHOST_STATE(new_state)) {
2333                         ASSERT0(bufcnt);
2334 
2335                         /*
2336                          * When moving a header to a ghost state, we first
2337                          * remove all arc buffers. Thus, we'll have a
2338                          * bufcnt of zero, and no arc buffer to use for
2339                          * the reference. As a result, we use the arc
2340                          * header pointer for the reference.
2341                          */
2342                         (void) zfs_refcount_add_many(&new_state->arcs_size,
2343                             HDR_GET_LSIZE(hdr), hdr);
2344                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2345                         ASSERT(!HDR_HAS_RABD(hdr));
2346                 } else {
2347                         uint32_t buffers = 0;
2348 
2349                         /*
2350                          * Each individual buffer holds a unique reference,
2351                          * thus we must remove each of these references one
2352                          * at a time.
2353                          */
2354                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2355                             buf = buf->b_next) {
2356                                 ASSERT3U(bufcnt, !=, 0);
2357                                 buffers++;
2358 
2359                                 /*
2360                                  * When the arc_buf_t is sharing the data
2361                                  * block with the hdr, the owner of the
2362                                  * reference belongs to the hdr. Only
2363                                  * add to the refcount if the arc_buf_t is
2364                                  * not shared.
2365                                  */
2366                                 if (arc_buf_is_shared(buf))
2367                                         continue;
2368 
2369                                 (void) zfs_refcount_add_many(
2370                                     &new_state->arcs_size,
2371                                     arc_buf_size(buf), buf);
2372                         }
2373                         ASSERT3U(bufcnt, ==, buffers);
2374 
2375                         if (hdr->b_l1hdr.b_pabd != NULL) {
2376                                 (void) zfs_refcount_add_many(
2377                                     &new_state->arcs_size,
2378                                     arc_hdr_size(hdr), hdr);
2379                         }
2380 
2381                         if (HDR_HAS_RABD(hdr)) {
2382                                 (void) zfs_refcount_add_many(
2383                                     &new_state->arcs_size,
2384                                     HDR_GET_PSIZE(hdr), hdr);
2385                         }
2386                 }
2387         }
2388 
2389         if (update_old && old_state != arc_l2c_only) {
2390                 ASSERT(HDR_HAS_L1HDR(hdr));
2391                 if (GHOST_STATE(old_state)) {
2392                         ASSERT0(bufcnt);
2393                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2394                         ASSERT(!HDR_HAS_RABD(hdr));
2395 
2396                         /*
2397                          * When moving a header off of a ghost state,
2398                          * the header will not contain any arc buffers.
2399                          * We use the arc header pointer for the reference
2400                          * which is exactly what we did when we put the
2401                          * header on the ghost state.
2402                          */
2403 
2404                         (void) zfs_refcount_remove_many(&old_state->arcs_size,
2405                             HDR_GET_LSIZE(hdr), hdr);
2406                 } else {
2407                         uint32_t buffers = 0;
2408 
2409                         /*
2410                          * Each individual buffer holds a unique reference,
2411                          * thus we must remove each of these references one
2412                          * at a time.
2413                          */
2414                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2415                             buf = buf->b_next) {
2416                                 ASSERT3U(bufcnt, !=, 0);
2417                                 buffers++;
2418 
2419                                 /*
2420                                  * When the arc_buf_t is sharing the data
2421                                  * block with the hdr, the owner of the
2422                                  * reference belongs to the hdr. Only
2423                                  * add to the refcount if the arc_buf_t is
2424                                  * not shared.
2425                                  */
2426                                 if (arc_buf_is_shared(buf))
2427                                         continue;
2428 
2429                                 (void) zfs_refcount_remove_many(
2430                                     &old_state->arcs_size, arc_buf_size(buf),
2431                                     buf);
2432                         }
2433                         ASSERT3U(bufcnt, ==, buffers);
2434                         ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2435                             HDR_HAS_RABD(hdr));
2436 
2437                         if (hdr->b_l1hdr.b_pabd != NULL) {
2438                                 (void) zfs_refcount_remove_many(
2439                                     &old_state->arcs_size, arc_hdr_size(hdr),
2440                                     hdr);
2441                         }
2442 
2443                         if (HDR_HAS_RABD(hdr)) {
2444                                 (void) zfs_refcount_remove_many(
2445                                     &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2446                                     hdr);
2447                         }
2448                 }
2449         }
2450 
2451         if (HDR_HAS_L1HDR(hdr)) {
2452                 hdr->b_l1hdr.b_state = new_state;
2453 
2454                 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2455                         l2arc_hdr_arcstats_decrement_state(hdr);
2456                         hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2457                         l2arc_hdr_arcstats_increment_state(hdr);
2458                 }
2459         }
2460 
2461         /*
2462          * L2 headers should never be on the L2 state list since they don't
2463          * have L1 headers allocated.
2464          */
2465         ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2466             multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2467 }
2468 
2469 void
2470 arc_space_consume(uint64_t space, arc_space_type_t type)
2471 {
2472         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2473 
2474         switch (type) {
2475         case ARC_SPACE_DATA:
2476                 aggsum_add(&astat_data_size, space);
2477                 break;
2478         case ARC_SPACE_META:
2479                 aggsum_add(&astat_metadata_size, space);
2480                 break;
2481         case ARC_SPACE_OTHER:
2482                 aggsum_add(&astat_other_size, space);
2483                 break;
2484         case ARC_SPACE_HDRS:
2485                 aggsum_add(&astat_hdr_size, space);
2486                 break;
2487         case ARC_SPACE_L2HDRS:
2488                 aggsum_add(&astat_l2_hdr_size, space);
2489                 break;
2490         }
2491 
2492         if (type != ARC_SPACE_DATA)
2493                 aggsum_add(&arc_meta_used, space);
2494 
2495         aggsum_add(&arc_size, space);
2496 }
2497 
2498 void
2499 arc_space_return(uint64_t space, arc_space_type_t type)
2500 {
2501         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2502 
2503         switch (type) {
2504         case ARC_SPACE_DATA:
2505                 aggsum_add(&astat_data_size, -space);
2506                 break;
2507         case ARC_SPACE_META:
2508                 aggsum_add(&astat_metadata_size, -space);
2509                 break;
2510         case ARC_SPACE_OTHER:
2511                 aggsum_add(&astat_other_size, -space);
2512                 break;
2513         case ARC_SPACE_HDRS:
2514                 aggsum_add(&astat_hdr_size, -space);
2515                 break;
2516         case ARC_SPACE_L2HDRS:
2517                 aggsum_add(&astat_l2_hdr_size, -space);
2518                 break;
2519         }
2520 
2521         if (type != ARC_SPACE_DATA) {
2522                 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2523                 /*
2524                  * We use the upper bound here rather than the precise value
2525                  * because the arc_meta_max value doesn't need to be
2526                  * precise. It's only consumed by humans via arcstats.
2527                  */
2528                 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2529                         arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2530                 aggsum_add(&arc_meta_used, -space);
2531         }
2532 
2533         ASSERT(aggsum_compare(&arc_size, space) >= 0);
2534         aggsum_add(&arc_size, -space);
2535 }
2536 
2537 /*
2538  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2539  * with the hdr's b_pabd.
2540  */
2541 static boolean_t
2542 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2543 {
2544         /*
2545          * The criteria for sharing a hdr's data are:
2546          * 1. the buffer is not encrypted
2547          * 2. the hdr's compression matches the buf's compression
2548          * 3. the hdr doesn't need to be byteswapped
2549          * 4. the hdr isn't already being shared
2550          * 5. the buf is either compressed or it is the last buf in the hdr list
2551          *
2552          * Criterion #5 maintains the invariant that shared uncompressed
2553          * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2554          * might ask, "if a compressed buf is allocated first, won't that be the
2555          * last thing in the list?", but in that case it's impossible to create
2556          * a shared uncompressed buf anyway (because the hdr must be compressed
2557          * to have the compressed buf). You might also think that #3 is
2558          * sufficient to make this guarantee, however it's possible
2559          * (specifically in the rare L2ARC write race mentioned in
2560          * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2561          * is sharable, but wasn't at the time of its allocation. Rather than
2562          * allow a new shared uncompressed buf to be created and then shuffle
2563          * the list around to make it the last element, this simply disallows
2564          * sharing if the new buf isn't the first to be added.
2565          */
2566         ASSERT3P(buf->b_hdr, ==, hdr);
2567         boolean_t hdr_compressed = arc_hdr_get_compress(hdr) !=
2568             ZIO_COMPRESS_OFF;
2569         boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2570         return (!ARC_BUF_ENCRYPTED(buf) &&
2571             buf_compressed == hdr_compressed &&
2572             hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2573             !HDR_SHARED_DATA(hdr) &&
2574             (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2575 }
2576 
2577 /*
2578  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2579  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2580  * copy was made successfully, or an error code otherwise.
2581  */
2582 static int
2583 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2584     void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2585     boolean_t fill, arc_buf_t **ret)
2586 {
2587         arc_buf_t *buf;
2588         arc_fill_flags_t flags = ARC_FILL_LOCKED;
2589 
2590         ASSERT(HDR_HAS_L1HDR(hdr));
2591         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2592         VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2593             hdr->b_type == ARC_BUFC_METADATA);
2594         ASSERT3P(ret, !=, NULL);
2595         ASSERT3P(*ret, ==, NULL);
2596         IMPLY(encrypted, compressed);
2597 
2598         buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2599         buf->b_hdr = hdr;
2600         buf->b_data = NULL;
2601         buf->b_next = hdr->b_l1hdr.b_buf;
2602         buf->b_flags = 0;
2603 
2604         add_reference(hdr, tag);
2605 
2606         /*
2607          * We're about to change the hdr's b_flags. We must either
2608          * hold the hash_lock or be undiscoverable.
2609          */
2610         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2611 
2612         /*
2613          * Only honor requests for compressed bufs if the hdr is actually
2614          * compressed. This must be overriden if the buffer is encrypted since
2615          * encrypted buffers cannot be decompressed.
2616          */
2617         if (encrypted) {
2618                 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2619                 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2620                 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2621         } else if (compressed &&
2622             arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2623                 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2624                 flags |= ARC_FILL_COMPRESSED;
2625         }
2626 
2627         if (noauth) {
2628                 ASSERT0(encrypted);
2629                 flags |= ARC_FILL_NOAUTH;
2630         }
2631 
2632         /*
2633          * If the hdr's data can be shared then we share the data buffer and
2634          * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2635          * allocate a new buffer to store the buf's data.
2636          *
2637          * There are two additional restrictions here because we're sharing
2638          * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2639          * actively involved in an L2ARC write, because if this buf is used by
2640          * an arc_write() then the hdr's data buffer will be released when the
2641          * write completes, even though the L2ARC write might still be using it.
2642          * Second, the hdr's ABD must be linear so that the buf's user doesn't
2643          * need to be ABD-aware.
2644          */
2645         boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2646             hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
2647 
2648         /* Set up b_data and sharing */
2649         if (can_share) {
2650                 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2651                 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2652                 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2653         } else {
2654                 buf->b_data =
2655                     arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2656                 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2657         }
2658         VERIFY3P(buf->b_data, !=, NULL);
2659 
2660         hdr->b_l1hdr.b_buf = buf;
2661         hdr->b_l1hdr.b_bufcnt += 1;
2662         if (encrypted)
2663                 hdr->b_crypt_hdr.b_ebufcnt += 1;
2664 
2665         /*
2666          * If the user wants the data from the hdr, we need to either copy or
2667          * decompress the data.
2668          */
2669         if (fill) {
2670                 ASSERT3P(zb, !=, NULL);
2671                 return (arc_buf_fill(buf, spa, zb, flags));
2672         }
2673 
2674         return (0);
2675 }
2676 
2677 static char *arc_onloan_tag = "onloan";
2678 
2679 static inline void
2680 arc_loaned_bytes_update(int64_t delta)
2681 {
2682         atomic_add_64(&arc_loaned_bytes, delta);
2683 
2684         /* assert that it did not wrap around */
2685         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2686 }
2687 
2688 /*
2689  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2690  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2691  * buffers must be returned to the arc before they can be used by the DMU or
2692  * freed.
2693  */
2694 arc_buf_t *
2695 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2696 {
2697         arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2698             is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2699 
2700         arc_loaned_bytes_update(arc_buf_size(buf));
2701 
2702         return (buf);
2703 }
2704 
2705 arc_buf_t *
2706 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2707     enum zio_compress compression_type)
2708 {
2709         arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2710             psize, lsize, compression_type);
2711 
2712         arc_loaned_bytes_update(arc_buf_size(buf));
2713 
2714         return (buf);
2715 }
2716 
2717 arc_buf_t *
2718 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2719     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2720     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2721     enum zio_compress compression_type)
2722 {
2723         arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2724             byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2725 
2726         atomic_add_64(&arc_loaned_bytes, psize);
2727         return (buf);
2728 }
2729 
2730 /*
2731  * Performance tuning of L2ARC persistence:
2732  *
2733  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
2734  *              an L2ARC device (either at pool import or later) will attempt
2735  *              to rebuild L2ARC buffer contents.
2736  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
2737  *              whether log blocks are written to the L2ARC device. If the L2ARC
2738  *              device is less than 1GB, the amount of data l2arc_evict()
2739  *              evicts is significant compared to the amount of restored L2ARC
2740  *              data. In this case do not write log blocks in L2ARC in order
2741  *              not to waste space.
2742  */
2743 int l2arc_rebuild_enabled = B_TRUE;
2744 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
2745 
2746 /* L2ARC persistence rebuild control routines. */
2747 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
2748 static void l2arc_dev_rebuild_start(l2arc_dev_t *dev);
2749 static int l2arc_rebuild(l2arc_dev_t *dev);
2750 
2751 /* L2ARC persistence read I/O routines. */
2752 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
2753 static int l2arc_log_blk_read(l2arc_dev_t *dev,
2754     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
2755     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
2756     zio_t *this_io, zio_t **next_io);
2757 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
2758     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
2759 static void l2arc_log_blk_fetch_abort(zio_t *zio);
2760 
2761 /* L2ARC persistence block restoration routines. */
2762 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
2763     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
2764 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
2765     l2arc_dev_t *dev);
2766 
2767 /* L2ARC persistence write I/O routines. */
2768 static void l2arc_dev_hdr_update(l2arc_dev_t *dev);
2769 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
2770     l2arc_write_callback_t *cb);
2771 
2772 /* L2ARC persistence auxilliary routines. */
2773 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
2774     const l2arc_log_blkptr_t *lbp);
2775 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
2776     const arc_buf_hdr_t *ab);
2777 boolean_t l2arc_range_check_overlap(uint64_t bottom,
2778     uint64_t top, uint64_t check);
2779 static void l2arc_blk_fetch_done(zio_t *zio);
2780 static inline uint64_t
2781     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
2782 
2783 /*
2784  * Return a loaned arc buffer to the arc.
2785  */
2786 void
2787 arc_return_buf(arc_buf_t *buf, void *tag)
2788 {
2789         arc_buf_hdr_t *hdr = buf->b_hdr;
2790 
2791         ASSERT3P(buf->b_data, !=, NULL);
2792         ASSERT(HDR_HAS_L1HDR(hdr));
2793         (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2794         (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2795 
2796         arc_loaned_bytes_update(-arc_buf_size(buf));
2797 }
2798 
2799 /* Detach an arc_buf from a dbuf (tag) */
2800 void
2801 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2802 {
2803         arc_buf_hdr_t *hdr = buf->b_hdr;
2804 
2805         ASSERT3P(buf->b_data, !=, NULL);
2806         ASSERT(HDR_HAS_L1HDR(hdr));
2807         (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2808         (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2809 
2810         arc_loaned_bytes_update(arc_buf_size(buf));
2811 }
2812 
2813 static void
2814 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2815 {
2816         l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2817 
2818         df->l2df_abd = abd;
2819         df->l2df_size = size;
2820         df->l2df_type = type;
2821         mutex_enter(&l2arc_free_on_write_mtx);
2822         list_insert_head(l2arc_free_on_write, df);
2823         mutex_exit(&l2arc_free_on_write_mtx);
2824 }
2825 
2826 static void
2827 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2828 {
2829         arc_state_t *state = hdr->b_l1hdr.b_state;
2830         arc_buf_contents_t type = arc_buf_type(hdr);
2831         uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2832 
2833         /* protected by hash lock, if in the hash table */
2834         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2835                 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2836                 ASSERT(state != arc_anon && state != arc_l2c_only);
2837 
2838                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2839                     size, hdr);
2840         }
2841         (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2842         if (type == ARC_BUFC_METADATA) {
2843                 arc_space_return(size, ARC_SPACE_META);
2844         } else {
2845                 ASSERT(type == ARC_BUFC_DATA);
2846                 arc_space_return(size, ARC_SPACE_DATA);
2847         }
2848 
2849         if (free_rdata) {
2850                 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2851         } else {
2852                 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2853         }
2854 }
2855 
2856 /*
2857  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2858  * data buffer, we transfer the refcount ownership to the hdr and update
2859  * the appropriate kstats.
2860  */
2861 static void
2862 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2863 {
2864         /* LINTED */
2865         arc_state_t *state = hdr->b_l1hdr.b_state;
2866 
2867         ASSERT(arc_can_share(hdr, buf));
2868         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2869         ASSERT(!ARC_BUF_ENCRYPTED(buf));
2870         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2871 
2872         /*
2873          * Start sharing the data buffer. We transfer the
2874          * refcount ownership to the hdr since it always owns
2875          * the refcount whenever an arc_buf_t is shared.
2876          */
2877         zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2878             arc_hdr_size(hdr), buf, hdr);
2879         hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2880         abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2881             HDR_ISTYPE_METADATA(hdr));
2882         arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2883         buf->b_flags |= ARC_BUF_FLAG_SHARED;
2884 
2885         /*
2886          * Since we've transferred ownership to the hdr we need
2887          * to increment its compressed and uncompressed kstats and
2888          * decrement the overhead size.
2889          */
2890         ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2891         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2892         ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2893 }
2894 
2895 static void
2896 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2897 {
2898         /* LINTED */
2899         arc_state_t *state = hdr->b_l1hdr.b_state;
2900 
2901         ASSERT(arc_buf_is_shared(buf));
2902         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2903         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2904 
2905         /*
2906          * We are no longer sharing this buffer so we need
2907          * to transfer its ownership to the rightful owner.
2908          */
2909         zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2910             arc_hdr_size(hdr), hdr, buf);
2911         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2912         abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2913         abd_put(hdr->b_l1hdr.b_pabd);
2914         hdr->b_l1hdr.b_pabd = NULL;
2915         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2916 
2917         /*
2918          * Since the buffer is no longer shared between
2919          * the arc buf and the hdr, count it as overhead.
2920          */
2921         ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2922         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2923         ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2924 }
2925 
2926 /*
2927  * Remove an arc_buf_t from the hdr's buf list and return the last
2928  * arc_buf_t on the list. If no buffers remain on the list then return
2929  * NULL.
2930  */
2931 static arc_buf_t *
2932 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2933 {
2934         arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2935         arc_buf_t *lastbuf = NULL;
2936 
2937         ASSERT(HDR_HAS_L1HDR(hdr));
2938         ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2939 
2940         /*
2941          * Remove the buf from the hdr list and locate the last
2942          * remaining buffer on the list.
2943          */
2944         while (*bufp != NULL) {
2945                 if (*bufp == buf)
2946                         *bufp = buf->b_next;
2947 
2948                 /*
2949                  * If we've removed a buffer in the middle of
2950                  * the list then update the lastbuf and update
2951                  * bufp.
2952                  */
2953                 if (*bufp != NULL) {
2954                         lastbuf = *bufp;
2955                         bufp = &(*bufp)->b_next;
2956                 }
2957         }
2958         buf->b_next = NULL;
2959         ASSERT3P(lastbuf, !=, buf);
2960         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2961         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2962         IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2963 
2964         return (lastbuf);
2965 }
2966 
2967 /*
2968  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2969  * list and free it.
2970  */
2971 static void
2972 arc_buf_destroy_impl(arc_buf_t *buf)
2973 {
2974         arc_buf_hdr_t *hdr = buf->b_hdr;
2975 
2976         /*
2977          * Free up the data associated with the buf but only if we're not
2978          * sharing this with the hdr. If we are sharing it with the hdr, the
2979          * hdr is responsible for doing the free.
2980          */
2981         if (buf->b_data != NULL) {
2982                 /*
2983                  * We're about to change the hdr's b_flags. We must either
2984                  * hold the hash_lock or be undiscoverable.
2985                  */
2986                 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2987 
2988                 arc_cksum_verify(buf);
2989                 arc_buf_unwatch(buf);
2990 
2991                 if (arc_buf_is_shared(buf)) {
2992                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2993                 } else {
2994                         uint64_t size = arc_buf_size(buf);
2995                         arc_free_data_buf(hdr, buf->b_data, size, buf);
2996                         ARCSTAT_INCR(arcstat_overhead_size, -size);
2997                 }
2998                 buf->b_data = NULL;
2999 
3000                 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3001                 hdr->b_l1hdr.b_bufcnt -= 1;
3002 
3003                 if (ARC_BUF_ENCRYPTED(buf)) {
3004                         hdr->b_crypt_hdr.b_ebufcnt -= 1;
3005 
3006                         /*
3007                          * If we have no more encrypted buffers and we've
3008                          * already gotten a copy of the decrypted data we can
3009                          * free b_rabd to save some space.
3010                          */
3011                         if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3012                             HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3013                             !HDR_IO_IN_PROGRESS(hdr)) {
3014                                 arc_hdr_free_pabd(hdr, B_TRUE);
3015                         }
3016                 }
3017         }
3018 
3019         arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3020 
3021         if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3022                 /*
3023                  * If the current arc_buf_t is sharing its data buffer with the
3024                  * hdr, then reassign the hdr's b_pabd to share it with the new
3025                  * buffer at the end of the list. The shared buffer is always
3026                  * the last one on the hdr's buffer list.
3027                  *
3028                  * There is an equivalent case for compressed bufs, but since
3029                  * they aren't guaranteed to be the last buf in the list and
3030                  * that is an exceedingly rare case, we just allow that space be
3031                  * wasted temporarily. We must also be careful not to share
3032                  * encrypted buffers, since they cannot be shared.
3033                  */
3034                 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3035                         /* Only one buf can be shared at once */
3036                         VERIFY(!arc_buf_is_shared(lastbuf));
3037                         /* hdr is uncompressed so can't have compressed buf */
3038                         VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3039 
3040                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3041                         arc_hdr_free_pabd(hdr, B_FALSE);
3042 
3043                         /*
3044                          * We must setup a new shared block between the
3045                          * last buffer and the hdr. The data would have
3046                          * been allocated by the arc buf so we need to transfer
3047                          * ownership to the hdr since it's now being shared.
3048                          */
3049                         arc_share_buf(hdr, lastbuf);
3050                 }
3051         } else if (HDR_SHARED_DATA(hdr)) {
3052                 /*
3053                  * Uncompressed shared buffers are always at the end
3054                  * of the list. Compressed buffers don't have the
3055                  * same requirements. This makes it hard to
3056                  * simply assert that the lastbuf is shared so
3057                  * we rely on the hdr's compression flags to determine
3058                  * if we have a compressed, shared buffer.
3059                  */
3060                 ASSERT3P(lastbuf, !=, NULL);
3061                 ASSERT(arc_buf_is_shared(lastbuf) ||
3062                     arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3063         }
3064 
3065         /*
3066          * Free the checksum if we're removing the last uncompressed buf from
3067          * this hdr.
3068          */
3069         if (!arc_hdr_has_uncompressed_buf(hdr)) {
3070                 arc_cksum_free(hdr);
3071         }
3072 
3073         /* clean up the buf */
3074         buf->b_hdr = NULL;
3075         kmem_cache_free(buf_cache, buf);
3076 }
3077 
3078 static void
3079 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, int alloc_flags)
3080 {
3081         uint64_t size;
3082         boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3083         boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0);
3084 
3085         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3086         ASSERT(HDR_HAS_L1HDR(hdr));
3087         ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3088         IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3089 
3090         if (alloc_rdata) {
3091                 size = HDR_GET_PSIZE(hdr);
3092                 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3093                 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3094                     do_adapt);
3095                 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3096         } else {
3097                 size = arc_hdr_size(hdr);
3098                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3099                 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3100                     do_adapt);
3101                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3102         }
3103 
3104         ARCSTAT_INCR(arcstat_compressed_size, size);
3105         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3106 }
3107 
3108 static void
3109 arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3110 {
3111         uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3112 
3113         ASSERT(HDR_HAS_L1HDR(hdr));
3114         ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3115         IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3116 
3117 
3118         /*
3119          * If the hdr is currently being written to the l2arc then
3120          * we defer freeing the data by adding it to the l2arc_free_on_write
3121          * list. The l2arc will free the data once it's finished
3122          * writing it to the l2arc device.
3123          */
3124         if (HDR_L2_WRITING(hdr)) {
3125                 arc_hdr_free_on_write(hdr, free_rdata);
3126                 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3127         } else if (free_rdata) {
3128                 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3129         } else {
3130                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3131                     size, hdr);
3132         }
3133 
3134         if (free_rdata) {
3135                 hdr->b_crypt_hdr.b_rabd = NULL;
3136         } else {
3137                 hdr->b_l1hdr.b_pabd = NULL;
3138         }
3139 
3140         if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3141                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3142 
3143         ARCSTAT_INCR(arcstat_compressed_size, -size);
3144         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3145 }
3146 
3147 static arc_buf_hdr_t *
3148 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3149     boolean_t protected, enum zio_compress compression_type,
3150     arc_buf_contents_t type, boolean_t alloc_rdata)
3151 {
3152         arc_buf_hdr_t *hdr;
3153         int flags = ARC_HDR_DO_ADAPT;
3154 
3155         VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3156         if (protected) {
3157                 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3158         } else {
3159                 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3160         }
3161         flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0;
3162         ASSERT(HDR_EMPTY(hdr));
3163         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3164         ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3165         HDR_SET_PSIZE(hdr, psize);
3166         HDR_SET_LSIZE(hdr, lsize);
3167         hdr->b_spa = spa;
3168         hdr->b_type = type;
3169         hdr->b_flags = 0;
3170         arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3171         arc_hdr_set_compress(hdr, compression_type);
3172         if (protected)
3173                 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3174 
3175         hdr->b_l1hdr.b_state = arc_anon;
3176         hdr->b_l1hdr.b_arc_access = 0;
3177         hdr->b_l1hdr.b_bufcnt = 0;
3178         hdr->b_l1hdr.b_buf = NULL;
3179 
3180         /*
3181          * Allocate the hdr's buffer. This will contain either
3182          * the compressed or uncompressed data depending on the block
3183          * it references and compressed arc enablement.
3184          */
3185         arc_hdr_alloc_pabd(hdr, flags);
3186         ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3187 
3188         return (hdr);
3189 }
3190 
3191 /*
3192  * Transition between the two allocation states for the arc_buf_hdr struct.
3193  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3194  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3195  * version is used when a cache buffer is only in the L2ARC in order to reduce
3196  * memory usage.
3197  */
3198 static arc_buf_hdr_t *
3199 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3200 {
3201         ASSERT(HDR_HAS_L2HDR(hdr));
3202 
3203         arc_buf_hdr_t *nhdr;
3204         l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3205 
3206         ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3207             (old == hdr_l2only_cache && new == hdr_full_cache));
3208 
3209         /*
3210          * if the caller wanted a new full header and the header is to be
3211          * encrypted we will actually allocate the header from the full crypt
3212          * cache instead. The same applies to freeing from the old cache.
3213          */
3214         if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3215                 new = hdr_full_crypt_cache;
3216         if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3217                 old = hdr_full_crypt_cache;
3218 
3219         nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3220 
3221         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3222         buf_hash_remove(hdr);
3223 
3224         bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3225 
3226         if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3227                 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3228                 /*
3229                  * arc_access and arc_change_state need to be aware that a
3230                  * header has just come out of L2ARC, so we set its state to
3231                  * l2c_only even though it's about to change.
3232                  */
3233                 nhdr->b_l1hdr.b_state = arc_l2c_only;
3234 
3235                 /* Verify previous threads set to NULL before freeing */
3236                 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3237                 ASSERT(!HDR_HAS_RABD(hdr));
3238         } else {
3239                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3240                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3241                 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3242 
3243                 /*
3244                  * If we've reached here, We must have been called from
3245                  * arc_evict_hdr(), as such we should have already been
3246                  * removed from any ghost list we were previously on
3247                  * (which protects us from racing with arc_evict_state),
3248                  * thus no locking is needed during this check.
3249                  */
3250                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3251 
3252                 /*
3253                  * A buffer must not be moved into the arc_l2c_only
3254                  * state if it's not finished being written out to the
3255                  * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3256                  * might try to be accessed, even though it was removed.
3257                  */
3258                 VERIFY(!HDR_L2_WRITING(hdr));
3259                 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3260                 ASSERT(!HDR_HAS_RABD(hdr));
3261 
3262 #ifdef ZFS_DEBUG
3263                 if (hdr->b_l1hdr.b_thawed != NULL) {
3264                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
3265                         hdr->b_l1hdr.b_thawed = NULL;
3266                 }
3267 #endif
3268 
3269                 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3270         }
3271         /*
3272          * The header has been reallocated so we need to re-insert it into any
3273          * lists it was on.
3274          */
3275         (void) buf_hash_insert(nhdr, NULL);
3276 
3277         ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3278 
3279         mutex_enter(&dev->l2ad_mtx);
3280 
3281         /*
3282          * We must place the realloc'ed header back into the list at
3283          * the same spot. Otherwise, if it's placed earlier in the list,
3284          * l2arc_write_buffers() could find it during the function's
3285          * write phase, and try to write it out to the l2arc.
3286          */
3287         list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3288         list_remove(&dev->l2ad_buflist, hdr);
3289 
3290         mutex_exit(&dev->l2ad_mtx);
3291 
3292         /*
3293          * Since we're using the pointer address as the tag when
3294          * incrementing and decrementing the l2ad_alloc refcount, we
3295          * must remove the old pointer (that we're about to destroy) and
3296          * add the new pointer to the refcount. Otherwise we'd remove
3297          * the wrong pointer address when calling arc_hdr_destroy() later.
3298          */
3299 
3300         (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3301             hdr);
3302         (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr),
3303             nhdr);
3304 
3305         buf_discard_identity(hdr);
3306         kmem_cache_free(old, hdr);
3307 
3308         return (nhdr);
3309 }
3310 
3311 /*
3312  * This function allows an L1 header to be reallocated as a crypt
3313  * header and vice versa. If we are going to a crypt header, the
3314  * new fields will be zeroed out.
3315  */
3316 static arc_buf_hdr_t *
3317 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3318 {
3319         arc_buf_hdr_t *nhdr;
3320         arc_buf_t *buf;
3321         kmem_cache_t *ncache, *ocache;
3322 
3323         ASSERT(HDR_HAS_L1HDR(hdr));
3324         ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3325         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3326         ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3327         ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3328         ASSERT3P(hdr->b_hash_next, ==, NULL);
3329 
3330         if (need_crypt) {
3331                 ncache = hdr_full_crypt_cache;
3332                 ocache = hdr_full_cache;
3333         } else {
3334                 ncache = hdr_full_cache;
3335                 ocache = hdr_full_crypt_cache;
3336         }
3337 
3338         nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3339 
3340         /*
3341          * Copy all members that aren't locks or condvars to the new header.
3342          * No lists are pointing to us (as we asserted above), so we don't
3343          * need to worry about the list nodes.
3344          */
3345         nhdr->b_dva = hdr->b_dva;
3346         nhdr->b_birth = hdr->b_birth;
3347         nhdr->b_type = hdr->b_type;
3348         nhdr->b_flags = hdr->b_flags;
3349         nhdr->b_psize = hdr->b_psize;
3350         nhdr->b_lsize = hdr->b_lsize;
3351         nhdr->b_spa = hdr->b_spa;
3352         nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev;
3353         nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr;
3354         nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3355         nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3356         nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3357         nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3358         nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3359         nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3360         nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3361 #ifdef ZFS_DEBUG
3362         if (hdr->b_l1hdr.b_thawed != NULL) {
3363                 nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed;
3364                 hdr->b_l1hdr.b_thawed = NULL;
3365         }
3366 #endif
3367 
3368         /*
3369          * This refcount_add() exists only to ensure that the individual
3370          * arc buffers always point to a header that is referenced, avoiding
3371          * a small race condition that could trigger ASSERTs.
3372          */
3373         (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3374         nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3375         for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3376                 mutex_enter(&buf->b_evict_lock);
3377                 buf->b_hdr = nhdr;
3378                 mutex_exit(&buf->b_evict_lock);
3379         }
3380         zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3381         (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3382         ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3383 
3384         if (need_crypt) {
3385                 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3386         } else {
3387                 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3388         }
3389 
3390         /* unset all members of the original hdr */
3391         bzero(&hdr->b_dva, sizeof (dva_t));
3392         hdr->b_birth = 0;
3393         hdr->b_type = ARC_BUFC_INVALID;
3394         hdr->b_flags = 0;
3395         hdr->b_psize = 0;
3396         hdr->b_lsize = 0;
3397         hdr->b_spa = 0;
3398         hdr->b_l2hdr.b_dev = NULL;
3399         hdr->b_l2hdr.b_daddr = 0;
3400         hdr->b_l1hdr.b_freeze_cksum = NULL;
3401         hdr->b_l1hdr.b_buf = NULL;
3402         hdr->b_l1hdr.b_bufcnt = 0;
3403         hdr->b_l1hdr.b_byteswap = 0;
3404         hdr->b_l1hdr.b_state = NULL;
3405         hdr->b_l1hdr.b_arc_access = 0;
3406         hdr->b_l1hdr.b_acb = NULL;
3407         hdr->b_l1hdr.b_pabd = NULL;
3408 
3409         if (ocache == hdr_full_crypt_cache) {
3410                 ASSERT(!HDR_HAS_RABD(hdr));
3411                 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3412                 hdr->b_crypt_hdr.b_ebufcnt = 0;
3413                 hdr->b_crypt_hdr.b_dsobj = 0;
3414                 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3415                 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3416                 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3417         }
3418 
3419         buf_discard_identity(hdr);
3420         kmem_cache_free(ocache, hdr);
3421 
3422         return (nhdr);
3423 }
3424 
3425 /*
3426  * This function is used by the send / receive code to convert a newly
3427  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3428  * is also used to allow the root objset block to be uupdated without altering
3429  * its embedded MACs. Both block types will always be uncompressed so we do not
3430  * have to worry about compression type or psize.
3431  */
3432 void
3433 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3434     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3435     const uint8_t *mac)
3436 {
3437         arc_buf_hdr_t *hdr = buf->b_hdr;
3438 
3439         ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3440         ASSERT(HDR_HAS_L1HDR(hdr));
3441         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3442 
3443         buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3444         if (!HDR_PROTECTED(hdr))
3445                 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3446         hdr->b_crypt_hdr.b_dsobj = dsobj;
3447         hdr->b_crypt_hdr.b_ot = ot;
3448         hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3449             DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3450         if (!arc_hdr_has_uncompressed_buf(hdr))
3451                 arc_cksum_free(hdr);
3452 
3453         if (salt != NULL)
3454                 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3455         if (iv != NULL)
3456                 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3457         if (mac != NULL)
3458                 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3459 }
3460 
3461 /*
3462  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3463  * The buf is returned thawed since we expect the consumer to modify it.
3464  */
3465 arc_buf_t *
3466 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3467 {
3468         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3469             B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3470 
3471         arc_buf_t *buf = NULL;
3472         VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3473             B_FALSE, B_FALSE, &buf));
3474         arc_buf_thaw(buf);
3475 
3476         return (buf);
3477 }
3478 
3479 /*
3480  * Allocates an ARC buf header that's in an evicted & L2-cached state.
3481  * This is used during l2arc reconstruction to make empty ARC buffers
3482  * which circumvent the regular disk->arc->l2arc path and instead come
3483  * into being in the reverse order, i.e. l2arc->arc.
3484  */
3485 arc_buf_hdr_t *
3486 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
3487     dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
3488     enum zio_compress compress, boolean_t protected,
3489     boolean_t prefetch, arc_state_type_t arcs_state)
3490 {
3491         arc_buf_hdr_t   *hdr;
3492 
3493         ASSERT(size != 0);
3494         hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
3495         hdr->b_birth = birth;
3496         hdr->b_type = type;
3497         hdr->b_flags = 0;
3498         arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
3499         HDR_SET_LSIZE(hdr, size);
3500         HDR_SET_PSIZE(hdr, psize);
3501         arc_hdr_set_compress(hdr, compress);
3502         if (protected)
3503                 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3504         if (prefetch)
3505                 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
3506         hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
3507 
3508         hdr->b_dva = dva;
3509 
3510         hdr->b_l2hdr.b_dev = dev;
3511         hdr->b_l2hdr.b_daddr = daddr;
3512         hdr->b_l2hdr.b_arcs_state = arcs_state;
3513 
3514         return (hdr);
3515 }
3516 
3517 /*
3518  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3519  * for bufs containing metadata.
3520  */
3521 arc_buf_t *
3522 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3523     enum zio_compress compression_type)
3524 {
3525         ASSERT3U(lsize, >, 0);
3526         ASSERT3U(lsize, >=, psize);
3527         ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3528         ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3529 
3530         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3531             B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3532 
3533         arc_buf_t *buf = NULL;
3534         VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3535             B_TRUE, B_FALSE, B_FALSE, &buf));
3536         arc_buf_thaw(buf);
3537         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3538 
3539         if (!arc_buf_is_shared(buf)) {
3540                 /*
3541                  * To ensure that the hdr has the correct data in it if we call
3542                  * arc_untransform() on this buf before it's been written to
3543                  * disk, it's easiest if we just set up sharing between the
3544                  * buf and the hdr.
3545                  */
3546                 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3547                 arc_hdr_free_pabd(hdr, B_FALSE);
3548                 arc_share_buf(hdr, buf);
3549         }
3550 
3551         return (buf);
3552 }
3553 
3554 arc_buf_t *
3555 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3556     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3557     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3558     enum zio_compress compression_type)
3559 {
3560         arc_buf_hdr_t *hdr;
3561         arc_buf_t *buf;
3562         arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3563             ARC_BUFC_METADATA : ARC_BUFC_DATA;
3564 
3565         ASSERT3U(lsize, >, 0);
3566         ASSERT3U(lsize, >=, psize);
3567         ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3568         ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3569 
3570         hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3571             compression_type, type, B_TRUE);
3572 
3573         hdr->b_crypt_hdr.b_dsobj = dsobj;
3574         hdr->b_crypt_hdr.b_ot = ot;
3575         hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3576             DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3577         bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3578         bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3579         bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3580 
3581         /*
3582          * This buffer will be considered encrypted even if the ot is not an
3583          * encrypted type. It will become authenticated instead in
3584          * arc_write_ready().
3585          */
3586         buf = NULL;
3587         VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3588             B_FALSE, B_FALSE, &buf));
3589         arc_buf_thaw(buf);
3590         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3591 
3592         return (buf);
3593 }
3594 
3595 static void
3596 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3597     boolean_t state_only)
3598 {
3599         l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3600         l2arc_dev_t *dev = l2hdr->b_dev;
3601         uint64_t lsize = HDR_GET_LSIZE(hdr);
3602         uint64_t psize = HDR_GET_PSIZE(hdr);
3603         uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3604         arc_buf_contents_t type = hdr->b_type;
3605         int64_t lsize_s;
3606         int64_t psize_s;
3607         int64_t asize_s;
3608 
3609         if (incr) {
3610                 lsize_s = lsize;
3611                 psize_s = psize;
3612                 asize_s = asize;
3613         } else {
3614                 lsize_s = -lsize;
3615                 psize_s = -psize;
3616                 asize_s = -asize;
3617         }
3618 
3619         /* If the buffer is a prefetch, count it as such. */
3620         if (HDR_PREFETCH(hdr)) {
3621                 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3622         } else {
3623                 /*
3624                  * We use the value stored in the L2 header upon initial
3625                  * caching in L2ARC. This value will be updated in case
3626                  * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3627                  * metadata (log entry) cannot currently be updated. Having
3628                  * the ARC state in the L2 header solves the problem of a
3629                  * possibly absent L1 header (apparent in buffers restored
3630                  * from persistent L2ARC).
3631                  */
3632                 switch (hdr->b_l2hdr.b_arcs_state) {
3633                         case ARC_STATE_MRU_GHOST:
3634                         case ARC_STATE_MRU:
3635                                 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3636                                 break;
3637                         case ARC_STATE_MFU_GHOST:
3638                         case ARC_STATE_MFU:
3639                                 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3640                                 break;
3641                         default:
3642                                 break;
3643                 }
3644         }
3645 
3646         if (state_only)
3647                 return;
3648 
3649         ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3650         ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3651 
3652         switch (type) {
3653                 case ARC_BUFC_DATA:
3654                         ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3655                         break;
3656                 case ARC_BUFC_METADATA:
3657                         ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3658                         break;
3659                 default:
3660                         break;
3661         }
3662 }
3663 
3664 
3665 static void
3666 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3667 {
3668         l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3669         l2arc_dev_t *dev = l2hdr->b_dev;
3670         uint64_t psize = HDR_GET_PSIZE(hdr);
3671         uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3672 
3673         ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3674         ASSERT(HDR_HAS_L2HDR(hdr));
3675 
3676         list_remove(&dev->l2ad_buflist, hdr);
3677 
3678         l2arc_hdr_arcstats_decrement(hdr);
3679         vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3680 
3681         (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3682             hdr);
3683         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3684 }
3685 
3686 static void
3687 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3688 {
3689         if (HDR_HAS_L1HDR(hdr)) {
3690                 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3691                     hdr->b_l1hdr.b_bufcnt > 0);
3692                 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3693                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3694         }
3695         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3696         ASSERT(!HDR_IN_HASH_TABLE(hdr));
3697 
3698         if (HDR_HAS_L2HDR(hdr)) {
3699                 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3700                 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3701 
3702                 if (!buflist_held)
3703                         mutex_enter(&dev->l2ad_mtx);
3704 
3705                 /*
3706                  * Even though we checked this conditional above, we
3707                  * need to check this again now that we have the
3708                  * l2ad_mtx. This is because we could be racing with
3709                  * another thread calling l2arc_evict() which might have
3710                  * destroyed this header's L2 portion as we were waiting
3711                  * to acquire the l2ad_mtx. If that happens, we don't
3712                  * want to re-destroy the header's L2 portion.
3713                  */
3714                 if (HDR_HAS_L2HDR(hdr))
3715                         arc_hdr_l2hdr_destroy(hdr);
3716 
3717                 if (!buflist_held)
3718                         mutex_exit(&dev->l2ad_mtx);
3719         }
3720 
3721         /*
3722          * The header's identity can only be safely discarded once it is no
3723          * longer discoverable.  This requires removing it from the hash table
3724          * and the l2arc header list.  After this point the hash lock can not
3725          * be used to protect the header.
3726          */
3727         if (!HDR_EMPTY(hdr))
3728                 buf_discard_identity(hdr);
3729 
3730         if (HDR_HAS_L1HDR(hdr)) {
3731                 arc_cksum_free(hdr);
3732 
3733                 while (hdr->b_l1hdr.b_buf != NULL)
3734                         arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3735 
3736 #ifdef ZFS_DEBUG
3737                 if (hdr->b_l1hdr.b_thawed != NULL) {
3738                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
3739                         hdr->b_l1hdr.b_thawed = NULL;
3740                 }
3741 #endif
3742 
3743                 if (hdr->b_l1hdr.b_pabd != NULL)
3744                         arc_hdr_free_pabd(hdr, B_FALSE);
3745 
3746                 if (HDR_HAS_RABD(hdr))
3747                         arc_hdr_free_pabd(hdr, B_TRUE);
3748         }
3749 
3750         ASSERT3P(hdr->b_hash_next, ==, NULL);
3751         if (HDR_HAS_L1HDR(hdr)) {
3752                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3753                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3754 
3755                 if (!HDR_PROTECTED(hdr)) {
3756                         kmem_cache_free(hdr_full_cache, hdr);
3757                 } else {
3758                         kmem_cache_free(hdr_full_crypt_cache, hdr);
3759                 }
3760         } else {
3761                 kmem_cache_free(hdr_l2only_cache, hdr);
3762         }
3763 }
3764 
3765 void
3766 arc_buf_destroy(arc_buf_t *buf, void* tag)
3767 {
3768         arc_buf_hdr_t *hdr = buf->b_hdr;
3769 
3770         if (hdr->b_l1hdr.b_state == arc_anon) {
3771                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3772                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3773                 VERIFY0(remove_reference(hdr, NULL, tag));
3774                 arc_hdr_destroy(hdr);
3775                 return;
3776         }
3777 
3778         kmutex_t *hash_lock = HDR_LOCK(hdr);
3779         mutex_enter(hash_lock);
3780 
3781         ASSERT3P(hdr, ==, buf->b_hdr);
3782         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3783         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3784         ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3785         ASSERT3P(buf->b_data, !=, NULL);
3786 
3787         (void) remove_reference(hdr, hash_lock, tag);
3788         arc_buf_destroy_impl(buf);
3789         mutex_exit(hash_lock);
3790 }
3791 
3792 /*
3793  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3794  * state of the header is dependent on its state prior to entering this
3795  * function. The following transitions are possible:
3796  *
3797  *    - arc_mru -> arc_mru_ghost
3798  *    - arc_mfu -> arc_mfu_ghost
3799  *    - arc_mru_ghost -> arc_l2c_only
3800  *    - arc_mru_ghost -> deleted
3801  *    - arc_mfu_ghost -> arc_l2c_only
3802  *    - arc_mfu_ghost -> deleted
3803  */
3804 static int64_t
3805 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3806 {
3807         arc_state_t *evicted_state, *state;
3808         int64_t bytes_evicted = 0;
3809         int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3810             zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3811 
3812         ASSERT(MUTEX_HELD(hash_lock));
3813         ASSERT(HDR_HAS_L1HDR(hdr));
3814 
3815         state = hdr->b_l1hdr.b_state;
3816         if (GHOST_STATE(state)) {
3817                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3818                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3819 
3820                 /*
3821                  * l2arc_write_buffers() relies on a header's L1 portion
3822                  * (i.e. its b_pabd field) during its write phase.
3823                  * Thus, we cannot push a header onto the arc_l2c_only
3824                  * state (removing its L1 piece) until the header is
3825                  * done being written to the l2arc.
3826                  */
3827                 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3828                         ARCSTAT_BUMP(arcstat_evict_l2_skip);
3829                         return (bytes_evicted);
3830                 }
3831 
3832                 ARCSTAT_BUMP(arcstat_deleted);
3833                 bytes_evicted += HDR_GET_LSIZE(hdr);
3834 
3835                 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3836 
3837                 if (HDR_HAS_L2HDR(hdr)) {
3838                         ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3839                         ASSERT(!HDR_HAS_RABD(hdr));
3840                         /*
3841                          * This buffer is cached on the 2nd Level ARC;
3842                          * don't destroy the header.
3843                          */
3844                         arc_change_state(arc_l2c_only, hdr, hash_lock);
3845                         /*
3846                          * dropping from L1+L2 cached to L2-only,
3847                          * realloc to remove the L1 header.
3848                          */
3849                         hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3850                             hdr_l2only_cache);
3851                 } else {
3852                         arc_change_state(arc_anon, hdr, hash_lock);
3853                         arc_hdr_destroy(hdr);
3854                 }
3855                 return (bytes_evicted);
3856         }
3857 
3858         ASSERT(state == arc_mru || state == arc_mfu);
3859         evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3860 
3861         /* prefetch buffers have a minimum lifespan */
3862         if (HDR_IO_IN_PROGRESS(hdr) ||
3863             ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3864             ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3865                 ARCSTAT_BUMP(arcstat_evict_skip);
3866                 return (bytes_evicted);
3867         }
3868 
3869         ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3870         while (hdr->b_l1hdr.b_buf) {
3871                 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3872                 if (!mutex_tryenter(&buf->b_evict_lock)) {
3873                         ARCSTAT_BUMP(arcstat_mutex_miss);
3874                         break;
3875                 }
3876                 if (buf->b_data != NULL)
3877                         bytes_evicted += HDR_GET_LSIZE(hdr);
3878                 mutex_exit(&buf->b_evict_lock);
3879                 arc_buf_destroy_impl(buf);
3880         }
3881 
3882         if (HDR_HAS_L2HDR(hdr)) {
3883                 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3884         } else {
3885                 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3886                         ARCSTAT_INCR(arcstat_evict_l2_eligible,
3887                             HDR_GET_LSIZE(hdr));
3888 
3889                         switch (state->arcs_state) {
3890                                 case ARC_STATE_MRU:
3891                                         ARCSTAT_INCR(
3892                                             arcstat_evict_l2_eligible_mru,
3893                                             HDR_GET_LSIZE(hdr));
3894                                         break;
3895                                 case ARC_STATE_MFU:
3896                                         ARCSTAT_INCR(
3897                                             arcstat_evict_l2_eligible_mfu,
3898                                             HDR_GET_LSIZE(hdr));
3899                                         break;
3900                                 default:
3901                                         break;
3902                         }
3903                 } else {
3904                         ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3905                             HDR_GET_LSIZE(hdr));
3906                 }
3907         }
3908 
3909         if (hdr->b_l1hdr.b_bufcnt == 0) {
3910                 arc_cksum_free(hdr);
3911 
3912                 bytes_evicted += arc_hdr_size(hdr);
3913 
3914                 /*
3915                  * If this hdr is being evicted and has a compressed
3916                  * buffer then we discard it here before we change states.
3917                  * This ensures that the accounting is updated correctly
3918                  * in arc_free_data_impl().
3919                  */
3920                 if (hdr->b_l1hdr.b_pabd != NULL)
3921                         arc_hdr_free_pabd(hdr, B_FALSE);
3922 
3923                 if (HDR_HAS_RABD(hdr))
3924                         arc_hdr_free_pabd(hdr, B_TRUE);
3925 
3926                 arc_change_state(evicted_state, hdr, hash_lock);
3927                 ASSERT(HDR_IN_HASH_TABLE(hdr));
3928                 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3929                 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3930         }
3931 
3932         return (bytes_evicted);
3933 }
3934 
3935 static uint64_t
3936 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3937     uint64_t spa, int64_t bytes)
3938 {
3939         multilist_sublist_t *mls;
3940         uint64_t bytes_evicted = 0;
3941         arc_buf_hdr_t *hdr;
3942         kmutex_t *hash_lock;
3943         int evict_count = 0;
3944 
3945         ASSERT3P(marker, !=, NULL);
3946         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3947 
3948         mls = multilist_sublist_lock(ml, idx);
3949 
3950         for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3951             hdr = multilist_sublist_prev(mls, marker)) {
3952                 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3953                     (evict_count >= zfs_arc_evict_batch_limit))
3954                         break;
3955 
3956                 /*
3957                  * To keep our iteration location, move the marker
3958                  * forward. Since we're not holding hdr's hash lock, we
3959                  * must be very careful and not remove 'hdr' from the
3960                  * sublist. Otherwise, other consumers might mistake the
3961                  * 'hdr' as not being on a sublist when they call the
3962                  * multilist_link_active() function (they all rely on
3963                  * the hash lock protecting concurrent insertions and
3964                  * removals). multilist_sublist_move_forward() was
3965                  * specifically implemented to ensure this is the case
3966                  * (only 'marker' will be removed and re-inserted).
3967                  */
3968                 multilist_sublist_move_forward(mls, marker);
3969 
3970                 /*
3971                  * The only case where the b_spa field should ever be
3972                  * zero, is the marker headers inserted by
3973                  * arc_evict_state(). It's possible for multiple threads
3974                  * to be calling arc_evict_state() concurrently (e.g.
3975                  * dsl_pool_close() and zio_inject_fault()), so we must
3976                  * skip any markers we see from these other threads.
3977                  */
3978                 if (hdr->b_spa == 0)
3979                         continue;
3980 
3981                 /* we're only interested in evicting buffers of a certain spa */
3982                 if (spa != 0 && hdr->b_spa != spa) {
3983                         ARCSTAT_BUMP(arcstat_evict_skip);
3984                         continue;
3985                 }
3986 
3987                 hash_lock = HDR_LOCK(hdr);
3988 
3989                 /*
3990                  * We aren't calling this function from any code path
3991                  * that would already be holding a hash lock, so we're
3992                  * asserting on this assumption to be defensive in case
3993                  * this ever changes. Without this check, it would be
3994                  * possible to incorrectly increment arcstat_mutex_miss
3995                  * below (e.g. if the code changed such that we called
3996                  * this function with a hash lock held).
3997                  */
3998                 ASSERT(!MUTEX_HELD(hash_lock));
3999 
4000                 if (mutex_tryenter(hash_lock)) {
4001                         uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
4002                         mutex_exit(hash_lock);
4003 
4004                         bytes_evicted += evicted;
4005 
4006                         /*
4007                          * If evicted is zero, arc_evict_hdr() must have
4008                          * decided to skip this header, don't increment
4009                          * evict_count in this case.
4010                          */
4011                         if (evicted != 0)
4012                                 evict_count++;
4013 
4014                         /*
4015                          * If arc_size isn't overflowing, signal any
4016                          * threads that might happen to be waiting.
4017                          *
4018                          * For each header evicted, we wake up a single
4019                          * thread. If we used cv_broadcast, we could
4020                          * wake up "too many" threads causing arc_size
4021                          * to significantly overflow arc_c; since
4022                          * arc_get_data_impl() doesn't check for overflow
4023                          * when it's woken up (it doesn't because it's
4024                          * possible for the ARC to be overflowing while
4025                          * full of un-evictable buffers, and the
4026                          * function should proceed in this case).
4027                          *
4028                          * If threads are left sleeping, due to not
4029                          * using cv_broadcast here, they will be woken
4030                          * up via cv_broadcast in arc_adjust_cb() just
4031                          * before arc_adjust_zthr sleeps.
4032                          */
4033                         mutex_enter(&arc_adjust_lock);
4034                         if (!arc_is_overflowing())
4035                                 cv_signal(&arc_adjust_waiters_cv);
4036                         mutex_exit(&arc_adjust_lock);
4037                 } else {
4038                         ARCSTAT_BUMP(arcstat_mutex_miss);
4039                 }
4040         }
4041 
4042         multilist_sublist_unlock(mls);
4043 
4044         return (bytes_evicted);
4045 }
4046 
4047 /*
4048  * Evict buffers from the given arc state, until we've removed the
4049  * specified number of bytes. Move the removed buffers to the
4050  * appropriate evict state.
4051  *
4052  * This function makes a "best effort". It skips over any buffers
4053  * it can't get a hash_lock on, and so, may not catch all candidates.
4054  * It may also return without evicting as much space as requested.
4055  *
4056  * If bytes is specified using the special value ARC_EVICT_ALL, this
4057  * will evict all available (i.e. unlocked and evictable) buffers from
4058  * the given arc state; which is used by arc_flush().
4059  */
4060 static uint64_t
4061 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4062     arc_buf_contents_t type)
4063 {
4064         uint64_t total_evicted = 0;
4065         multilist_t *ml = state->arcs_list[type];
4066         int num_sublists;
4067         arc_buf_hdr_t **markers;
4068 
4069         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4070 
4071         num_sublists = multilist_get_num_sublists(ml);
4072 
4073         /*
4074          * If we've tried to evict from each sublist, made some
4075          * progress, but still have not hit the target number of bytes
4076          * to evict, we want to keep trying. The markers allow us to
4077          * pick up where we left off for each individual sublist, rather
4078          * than starting from the tail each time.
4079          */
4080         markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4081         for (int i = 0; i < num_sublists; i++) {
4082                 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4083 
4084                 /*
4085                  * A b_spa of 0 is used to indicate that this header is
4086                  * a marker. This fact is used in arc_adjust_type() and
4087                  * arc_evict_state_impl().
4088                  */
4089                 markers[i]->b_spa = 0;
4090 
4091                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4092                 multilist_sublist_insert_tail(mls, markers[i]);
4093                 multilist_sublist_unlock(mls);
4094         }
4095 
4096         /*
4097          * While we haven't hit our target number of bytes to evict, or
4098          * we're evicting all available buffers.
4099          */
4100         while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4101                 /*
4102                  * Start eviction using a randomly selected sublist,
4103                  * this is to try and evenly balance eviction across all
4104                  * sublists. Always starting at the same sublist
4105                  * (e.g. index 0) would cause evictions to favor certain
4106                  * sublists over others.
4107                  */
4108                 int sublist_idx = multilist_get_random_index(ml);
4109                 uint64_t scan_evicted = 0;
4110 
4111                 for (int i = 0; i < num_sublists; i++) {
4112                         uint64_t bytes_remaining;
4113                         uint64_t bytes_evicted;
4114 
4115                         if (bytes == ARC_EVICT_ALL)
4116                                 bytes_remaining = ARC_EVICT_ALL;
4117                         else if (total_evicted < bytes)
4118                                 bytes_remaining = bytes - total_evicted;
4119                         else
4120                                 break;
4121 
4122                         bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4123                             markers[sublist_idx], spa, bytes_remaining);
4124 
4125                         scan_evicted += bytes_evicted;
4126                         total_evicted += bytes_evicted;
4127 
4128                         /* we've reached the end, wrap to the beginning */
4129                         if (++sublist_idx >= num_sublists)
4130                                 sublist_idx = 0;
4131                 }
4132 
4133                 /*
4134                  * If we didn't evict anything during this scan, we have
4135                  * no reason to believe we'll evict more during another
4136                  * scan, so break the loop.
4137                  */
4138                 if (scan_evicted == 0) {
4139                         /* This isn't possible, let's make that obvious */
4140                         ASSERT3S(bytes, !=, 0);
4141 
4142                         /*
4143                          * When bytes is ARC_EVICT_ALL, the only way to
4144                          * break the loop is when scan_evicted is zero.
4145                          * In that case, we actually have evicted enough,
4146                          * so we don't want to increment the kstat.
4147                          */
4148                         if (bytes != ARC_EVICT_ALL) {
4149                                 ASSERT3S(total_evicted, <, bytes);
4150                                 ARCSTAT_BUMP(arcstat_evict_not_enough);
4151                         }
4152 
4153                         break;
4154                 }
4155         }
4156 
4157         for (int i = 0; i < num_sublists; i++) {
4158                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4159                 multilist_sublist_remove(mls, markers[i]);
4160                 multilist_sublist_unlock(mls);
4161 
4162                 kmem_cache_free(hdr_full_cache, markers[i]);
4163         }
4164         kmem_free(markers, sizeof (*markers) * num_sublists);
4165 
4166         return (total_evicted);
4167 }
4168 
4169 /*
4170  * Flush all "evictable" data of the given type from the arc state
4171  * specified. This will not evict any "active" buffers (i.e. referenced).
4172  *
4173  * When 'retry' is set to B_FALSE, the function will make a single pass
4174  * over the state and evict any buffers that it can. Since it doesn't
4175  * continually retry the eviction, it might end up leaving some buffers
4176  * in the ARC due to lock misses.
4177  *
4178  * When 'retry' is set to B_TRUE, the function will continually retry the
4179  * eviction until *all* evictable buffers have been removed from the
4180  * state. As a result, if concurrent insertions into the state are
4181  * allowed (e.g. if the ARC isn't shutting down), this function might
4182  * wind up in an infinite loop, continually trying to evict buffers.
4183  */
4184 static uint64_t
4185 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4186     boolean_t retry)
4187 {
4188         uint64_t evicted = 0;
4189 
4190         while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4191                 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4192 
4193                 if (!retry)
4194                         break;
4195         }
4196 
4197         return (evicted);
4198 }
4199 
4200 /*
4201  * Evict the specified number of bytes from the state specified,
4202  * restricting eviction to the spa and type given. This function
4203  * prevents us from trying to evict more from a state's list than
4204  * is "evictable", and to skip evicting altogether when passed a
4205  * negative value for "bytes". In contrast, arc_evict_state() will
4206  * evict everything it can, when passed a negative value for "bytes".
4207  */
4208 static uint64_t
4209 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4210     arc_buf_contents_t type)
4211 {
4212         int64_t delta;
4213 
4214         if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4215                 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4216                     bytes);
4217                 return (arc_evict_state(state, spa, delta, type));
4218         }
4219 
4220         return (0);
4221 }
4222 
4223 /*
4224  * Evict metadata buffers from the cache, such that arc_meta_used is
4225  * capped by the arc_meta_limit tunable.
4226  */
4227 static uint64_t
4228 arc_adjust_meta(uint64_t meta_used)
4229 {
4230         uint64_t total_evicted = 0;
4231         int64_t target;
4232 
4233         /*
4234          * If we're over the meta limit, we want to evict enough
4235          * metadata to get back under the meta limit. We don't want to
4236          * evict so much that we drop the MRU below arc_p, though. If
4237          * we're over the meta limit more than we're over arc_p, we
4238          * evict some from the MRU here, and some from the MFU below.
4239          */
4240         target = MIN((int64_t)(meta_used - arc_meta_limit),
4241             (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4242             zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4243 
4244         total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4245 
4246         /*
4247          * Similar to the above, we want to evict enough bytes to get us
4248          * below the meta limit, but not so much as to drop us below the
4249          * space allotted to the MFU (which is defined as arc_c - arc_p).
4250          */
4251         target = MIN((int64_t)(meta_used - arc_meta_limit),
4252             (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4253             (arc_c - arc_p)));
4254 
4255         total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4256 
4257         return (total_evicted);
4258 }
4259 
4260 /*
4261  * Return the type of the oldest buffer in the given arc state
4262  *
4263  * This function will select a random sublist of type ARC_BUFC_DATA and
4264  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4265  * is compared, and the type which contains the "older" buffer will be
4266  * returned.
4267  */
4268 static arc_buf_contents_t
4269 arc_adjust_type(arc_state_t *state)
4270 {
4271         multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4272         multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4273         int data_idx = multilist_get_random_index(data_ml);
4274         int meta_idx = multilist_get_random_index(meta_ml);
4275         multilist_sublist_t *data_mls;
4276         multilist_sublist_t *meta_mls;
4277         arc_buf_contents_t type;
4278         arc_buf_hdr_t *data_hdr;
4279         arc_buf_hdr_t *meta_hdr;
4280 
4281         /*
4282          * We keep the sublist lock until we're finished, to prevent
4283          * the headers from being destroyed via arc_evict_state().
4284          */
4285         data_mls = multilist_sublist_lock(data_ml, data_idx);
4286         meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4287 
4288         /*
4289          * These two loops are to ensure we skip any markers that
4290          * might be at the tail of the lists due to arc_evict_state().
4291          */
4292 
4293         for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4294             data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4295                 if (data_hdr->b_spa != 0)
4296                         break;
4297         }
4298 
4299         for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4300             meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4301                 if (meta_hdr->b_spa != 0)
4302                         break;
4303         }
4304 
4305         if (data_hdr == NULL && meta_hdr == NULL) {
4306                 type = ARC_BUFC_DATA;
4307         } else if (data_hdr == NULL) {
4308                 ASSERT3P(meta_hdr, !=, NULL);
4309                 type = ARC_BUFC_METADATA;
4310         } else if (meta_hdr == NULL) {
4311                 ASSERT3P(data_hdr, !=, NULL);
4312                 type = ARC_BUFC_DATA;
4313         } else {
4314                 ASSERT3P(data_hdr, !=, NULL);
4315                 ASSERT3P(meta_hdr, !=, NULL);
4316 
4317                 /* The headers can't be on the sublist without an L1 header */
4318                 ASSERT(HDR_HAS_L1HDR(data_hdr));
4319                 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4320 
4321                 if (data_hdr->b_l1hdr.b_arc_access <
4322                     meta_hdr->b_l1hdr.b_arc_access) {
4323                         type = ARC_BUFC_DATA;
4324                 } else {
4325                         type = ARC_BUFC_METADATA;
4326                 }
4327         }
4328 
4329         multilist_sublist_unlock(meta_mls);
4330         multilist_sublist_unlock(data_mls);
4331 
4332         return (type);
4333 }
4334 
4335 /*
4336  * Evict buffers from the cache, such that arc_size is capped by arc_c.
4337  */
4338 static uint64_t
4339 arc_adjust(void)
4340 {
4341         uint64_t total_evicted = 0;
4342         uint64_t bytes;
4343         int64_t target;
4344         uint64_t asize = aggsum_value(&arc_size);
4345         uint64_t ameta = aggsum_value(&arc_meta_used);
4346 
4347         /*
4348          * If we're over arc_meta_limit, we want to correct that before
4349          * potentially evicting data buffers below.
4350          */
4351         total_evicted += arc_adjust_meta(ameta);
4352 
4353         /*
4354          * Adjust MRU size
4355          *
4356          * If we're over the target cache size, we want to evict enough
4357          * from the list to get back to our target size. We don't want
4358          * to evict too much from the MRU, such that it drops below
4359          * arc_p. So, if we're over our target cache size more than
4360          * the MRU is over arc_p, we'll evict enough to get back to
4361          * arc_p here, and then evict more from the MFU below.
4362          */
4363         target = MIN((int64_t)(asize - arc_c),
4364             (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4365             zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4366 
4367         /*
4368          * If we're below arc_meta_min, always prefer to evict data.
4369          * Otherwise, try to satisfy the requested number of bytes to
4370          * evict from the type which contains older buffers; in an
4371          * effort to keep newer buffers in the cache regardless of their
4372          * type. If we cannot satisfy the number of bytes from this
4373          * type, spill over into the next type.
4374          */
4375         if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4376             ameta > arc_meta_min) {
4377                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4378                 total_evicted += bytes;
4379 
4380                 /*
4381                  * If we couldn't evict our target number of bytes from
4382                  * metadata, we try to get the rest from data.
4383                  */
4384                 target -= bytes;
4385 
4386                 total_evicted +=
4387                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4388         } else {
4389                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4390                 total_evicted += bytes;
4391 
4392                 /*
4393                  * If we couldn't evict our target number of bytes from
4394                  * data, we try to get the rest from metadata.
4395                  */
4396                 target -= bytes;
4397 
4398                 total_evicted +=
4399                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4400         }
4401 
4402         /*
4403          * Adjust MFU size
4404          *
4405          * Now that we've tried to evict enough from the MRU to get its
4406          * size back to arc_p, if we're still above the target cache
4407          * size, we evict the rest from the MFU.
4408          */
4409         target = asize - arc_c;
4410 
4411         if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4412             ameta > arc_meta_min) {
4413                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4414                 total_evicted += bytes;
4415 
4416                 /*
4417                  * If we couldn't evict our target number of bytes from
4418                  * metadata, we try to get the rest from data.
4419                  */
4420                 target -= bytes;
4421 
4422                 total_evicted +=
4423                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4424         } else {
4425                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4426                 total_evicted += bytes;
4427 
4428                 /*
4429                  * If we couldn't evict our target number of bytes from
4430                  * data, we try to get the rest from data.
4431                  */
4432                 target -= bytes;
4433 
4434                 total_evicted +=
4435                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4436         }
4437 
4438         /*
4439          * Adjust ghost lists
4440          *
4441          * In addition to the above, the ARC also defines target values
4442          * for the ghost lists. The sum of the mru list and mru ghost
4443          * list should never exceed the target size of the cache, and
4444          * the sum of the mru list, mfu list, mru ghost list, and mfu
4445          * ghost list should never exceed twice the target size of the
4446          * cache. The following logic enforces these limits on the ghost
4447          * caches, and evicts from them as needed.
4448          */
4449         target = zfs_refcount_count(&arc_mru->arcs_size) +
4450             zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4451 
4452         bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4453         total_evicted += bytes;
4454 
4455         target -= bytes;
4456 
4457         total_evicted +=
4458             arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4459 
4460         /*
4461          * We assume the sum of the mru list and mfu list is less than
4462          * or equal to arc_c (we enforced this above), which means we
4463          * can use the simpler of the two equations below:
4464          *
4465          *      mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4466          *                  mru ghost + mfu ghost <= arc_c
4467          */
4468         target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4469             zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4470 
4471         bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4472         total_evicted += bytes;
4473 
4474         target -= bytes;
4475 
4476         total_evicted +=
4477             arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4478 
4479         return (total_evicted);
4480 }
4481 
4482 void
4483 arc_flush(spa_t *spa, boolean_t retry)
4484 {
4485         uint64_t guid = 0;
4486 
4487         /*
4488          * If retry is B_TRUE, a spa must not be specified since we have
4489          * no good way to determine if all of a spa's buffers have been
4490          * evicted from an arc state.
4491          */
4492         ASSERT(!retry || spa == 0);
4493 
4494         if (spa != NULL)
4495                 guid = spa_load_guid(spa);
4496 
4497         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4498         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4499 
4500         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4501         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4502 
4503         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4504         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4505 
4506         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4507         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4508 }
4509 
4510 static void
4511 arc_reduce_target_size(int64_t to_free)
4512 {
4513         uint64_t asize = aggsum_value(&arc_size);
4514         if (arc_c > arc_c_min) {
4515 
4516                 if (arc_c > arc_c_min + to_free)
4517                         atomic_add_64(&arc_c, -to_free);
4518                 else
4519                         arc_c = arc_c_min;
4520 
4521                 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4522                 if (asize < arc_c)
4523                         arc_c = MAX(asize, arc_c_min);
4524                 if (arc_p > arc_c)
4525                         arc_p = (arc_c >> 1);
4526                 ASSERT(arc_c >= arc_c_min);
4527                 ASSERT((int64_t)arc_p >= 0);
4528         }
4529 
4530         if (asize > arc_c) {
4531                 /* See comment in arc_adjust_cb_check() on why lock+flag */
4532                 mutex_enter(&arc_adjust_lock);
4533                 arc_adjust_needed = B_TRUE;
4534                 mutex_exit(&arc_adjust_lock);
4535                 zthr_wakeup(arc_adjust_zthr);
4536         }
4537 }
4538 
4539 typedef enum free_memory_reason_t {
4540         FMR_UNKNOWN,
4541         FMR_NEEDFREE,
4542         FMR_LOTSFREE,
4543         FMR_SWAPFS_MINFREE,
4544         FMR_PAGES_PP_MAXIMUM,
4545         FMR_HEAP_ARENA,
4546         FMR_ZIO_ARENA,
4547         FMR_VIRT_MACHINE,       /* 'VM' seems ambiguous in this context */
4548 } free_memory_reason_t;
4549 
4550 int64_t last_free_memory;
4551 free_memory_reason_t last_free_reason;
4552 
4553 /*
4554  * Additional reserve of pages for pp_reserve.
4555  */
4556 int64_t arc_pages_pp_reserve = 64;
4557 
4558 /*
4559  * Additional reserve of pages for swapfs.
4560  */
4561 int64_t arc_swapfs_reserve = 64;
4562 
4563 static volatile uint64_t arc_virt_machine_reserved;
4564 
4565 /*
4566  * XXX: A possible concern is that we allow arc_virt_machine_reserved to
4567  * get so large that we cause the arc to perform a lot of additional
4568  * work to keep the arc extremely small. We may want to set limits to
4569  * the size of arc_virt_machine_reserved and disallow reservations
4570  * beyond that limit.
4571  */
4572 int
4573 arc_virt_machine_reserve(size_t pages)
4574 {
4575         uint64_t newv;
4576 
4577         newv = atomic_add_64_nv(&arc_virt_machine_reserved, pages);
4578 
4579         /*
4580          * Since arc_virt_machine_reserved effectively lowers arc_c_max
4581          * as needed for vmm memory, if this request would put the arc
4582          * under arc_c_min, we reject it.  arc_c_min should be a value that
4583          * ensures reasonable performance for non-VMM stuff, as well as keep
4584          * us from dipping below lotsfree, which could trigger the pager
4585          * (and send the system toa grinding halt while it pages).
4586          *
4587          * XXX: This is a bit hacky and might be better done w/ a mutex
4588          * instead of atomic ops.
4589          */
4590         if (newv + arc_c_min > arc_c_max) {
4591                 atomic_add_64(&arc_virt_machine_reserved, -(int64_t)pages);
4592                 return (ENOMEM);
4593         }
4594 
4595         zthr_wakeup(arc_reap_zthr);
4596         return (0);
4597 }
4598 
4599 void
4600 arc_virt_machine_release(size_t pages)
4601 {
4602         atomic_add_64(&arc_virt_machine_reserved, -(int64_t)pages);
4603 }
4604 
4605 /*
4606  * Return the amount of memory that can be consumed before reclaim will be
4607  * needed.  Positive if there is sufficient free memory, negative indicates
4608  * the amount of memory that needs to be freed up.
4609  */
4610 static int64_t
4611 arc_available_memory(void)
4612 {
4613         int64_t lowest = INT64_MAX;
4614         int64_t n;
4615         free_memory_reason_t r = FMR_UNKNOWN;
4616 
4617 #ifdef _KERNEL
4618         if (needfree > 0) {
4619                 n = PAGESIZE * (-needfree);
4620                 if (n < lowest) {
4621                         lowest = n;
4622                         r = FMR_NEEDFREE;
4623                 }
4624         }
4625 
4626         /*
4627          * check that we're out of range of the pageout scanner.  It starts to
4628          * schedule paging if freemem is less than lotsfree and needfree.
4629          * lotsfree is the high-water mark for pageout, and needfree is the
4630          * number of needed free pages.  We add extra pages here to make sure
4631          * the scanner doesn't start up while we're freeing memory.
4632          */
4633         n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4634         if (n < lowest) {
4635                 lowest = n;
4636                 r = FMR_LOTSFREE;
4637         }
4638 
4639         /*
4640          * check to make sure that swapfs has enough space so that anon
4641          * reservations can still succeed. anon_resvmem() checks that the
4642          * availrmem is greater than swapfs_minfree, and the number of reserved
4643          * swap pages.  We also add a bit of extra here just to prevent
4644          * circumstances from getting really dire.
4645          */
4646         n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4647             desfree - arc_swapfs_reserve);
4648         if (n < lowest) {
4649                 lowest = n;
4650                 r = FMR_SWAPFS_MINFREE;
4651         }
4652 
4653 
4654         /*
4655          * Check that we have enough availrmem that memory locking (e.g., via
4656          * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4657          * stores the number of pages that cannot be locked; when availrmem
4658          * drops below pages_pp_maximum, page locking mechanisms such as
4659          * page_pp_lock() will fail.)
4660          */
4661         n = PAGESIZE * (availrmem - pages_pp_maximum -
4662             arc_pages_pp_reserve);
4663         if (n < lowest) {
4664                 lowest = n;
4665                 r = FMR_PAGES_PP_MAXIMUM;
4666         }
4667 
4668         /*
4669          * Check that we have enough memory for any virtual machines that
4670          * are running or starting. We add desfree to keep us out of
4671          * particularly dire circumstances.
4672          */
4673         n = PAGESIZE * (availrmem - arc_virt_machine_reserved - desfree);
4674         if (n < lowest) {
4675                 lowest = n;
4676                 r = FMR_VIRT_MACHINE;
4677         }
4678 
4679 #if defined(__i386)
4680         /*
4681          * If we're on an i386 platform, it's possible that we'll exhaust the
4682          * kernel heap space before we ever run out of available physical
4683          * memory.  Most checks of the size of the heap_area compare against
4684          * tune.t_minarmem, which is the minimum available real memory that we
4685          * can have in the system.  However, this is generally fixed at 25 pages
4686          * which is so low that it's useless.  In this comparison, we seek to
4687          * calculate the total heap-size, and reclaim if more than 3/4ths of the
4688          * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4689          * free)
4690          */
4691         n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4692             (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4693         if (n < lowest) {
4694                 lowest = n;
4695                 r = FMR_HEAP_ARENA;
4696         }
4697 #endif
4698 
4699         /*
4700          * If zio data pages are being allocated out of a separate heap segment,
4701          * then enforce that the size of available vmem for this arena remains
4702          * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4703          *
4704          * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4705          * memory (in the zio_arena) free, which can avoid memory
4706          * fragmentation issues.
4707          */
4708         if (zio_arena != NULL) {
4709                 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4710                     (vmem_size(zio_arena, VMEM_ALLOC) >>
4711                     arc_zio_arena_free_shift);
4712                 if (n < lowest) {
4713                         lowest = n;
4714                         r = FMR_ZIO_ARENA;
4715                 }
4716         }
4717 #else
4718         /* Every 100 calls, free a small amount */
4719         if (spa_get_random(100) == 0)
4720                 lowest = -1024;
4721 #endif
4722 
4723         last_free_memory = lowest;
4724         last_free_reason = r;
4725 
4726         return (lowest);
4727 }
4728 
4729 
4730 /*
4731  * Determine if the system is under memory pressure and is asking
4732  * to reclaim memory. A return value of B_TRUE indicates that the system
4733  * is under memory pressure and that the arc should adjust accordingly.
4734  */
4735 static boolean_t
4736 arc_reclaim_needed(void)
4737 {
4738         return (arc_available_memory() < 0);
4739 }
4740 
4741 static void
4742 arc_kmem_reap_soon(void)
4743 {
4744         size_t                  i;
4745         kmem_cache_t            *prev_cache = NULL;
4746         kmem_cache_t            *prev_data_cache = NULL;
4747         extern kmem_cache_t     *zio_buf_cache[];
4748         extern kmem_cache_t     *zio_data_buf_cache[];
4749         extern kmem_cache_t     *zfs_btree_leaf_cache;
4750         extern kmem_cache_t     *abd_chunk_cache;
4751 
4752 #ifdef _KERNEL
4753         if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4754                 /*
4755                  * We are exceeding our meta-data cache limit.
4756                  * Purge some DNLC entries to release holds on meta-data.
4757                  */
4758                 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4759         }
4760 #if defined(__i386)
4761         /*
4762          * Reclaim unused memory from all kmem caches.
4763          */
4764         kmem_reap();
4765 #endif
4766 #endif
4767 
4768         for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4769                 if (zio_buf_cache[i] != prev_cache) {
4770                         prev_cache = zio_buf_cache[i];
4771                         kmem_cache_reap_soon(zio_buf_cache[i]);
4772                 }
4773                 if (zio_data_buf_cache[i] != prev_data_cache) {
4774                         prev_data_cache = zio_data_buf_cache[i];
4775                         kmem_cache_reap_soon(zio_data_buf_cache[i]);
4776                 }
4777         }
4778         kmem_cache_reap_soon(abd_chunk_cache);
4779         kmem_cache_reap_soon(buf_cache);
4780         kmem_cache_reap_soon(hdr_full_cache);
4781         kmem_cache_reap_soon(hdr_l2only_cache);
4782         kmem_cache_reap_soon(zfs_btree_leaf_cache);
4783 
4784         if (zio_arena != NULL) {
4785                 /*
4786                  * Ask the vmem arena to reclaim unused memory from its
4787                  * quantum caches.
4788                  */
4789                 vmem_qcache_reap(zio_arena);
4790         }
4791 }
4792 
4793 /* ARGSUSED */
4794 static boolean_t
4795 arc_adjust_cb_check(void *arg, zthr_t *zthr)
4796 {
4797         /*
4798          * This is necessary in order for the mdb ::arc dcmd to
4799          * show up to date information. Since the ::arc command
4800          * does not call the kstat's update function, without
4801          * this call, the command may show stale stats for the
4802          * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4803          * with this change, the data might be up to 1 second
4804          * out of date(the arc_adjust_zthr has a maximum sleep
4805          * time of 1 second); but that should suffice.  The
4806          * arc_state_t structures can be queried directly if more
4807          * accurate information is needed.
4808          */
4809         if (arc_ksp != NULL)
4810                 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4811 
4812         /*
4813          * We have to rely on arc_get_data_impl() to tell us when to adjust,
4814          * rather than checking if we are overflowing here, so that we are
4815          * sure to not leave arc_get_data_impl() waiting on
4816          * arc_adjust_waiters_cv.  If we have become "not overflowing" since
4817          * arc_get_data_impl() checked, we need to wake it up.  We could
4818          * broadcast the CV here, but arc_get_data_impl() may have not yet
4819          * gone to sleep.  We would need to use a mutex to ensure that this
4820          * function doesn't broadcast until arc_get_data_impl() has gone to
4821          * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
4822          * such a lock would necessarily be incorrect with respect to the
4823          * zthr_lock, which is held before this function is called, and is
4824          * held by arc_get_data_impl() when it calls zthr_wakeup().
4825          */
4826         return (arc_adjust_needed);
4827 }
4828 
4829 /*
4830  * Keep arc_size under arc_c by running arc_adjust which evicts data
4831  * from the ARC.
4832  */
4833 /* ARGSUSED */
4834 static void
4835 arc_adjust_cb(void *arg, zthr_t *zthr)
4836 {
4837         uint64_t evicted = 0;
4838 
4839         /* Evict from cache */
4840         evicted = arc_adjust();
4841 
4842         /*
4843          * If evicted is zero, we couldn't evict anything
4844          * via arc_adjust(). This could be due to hash lock
4845          * collisions, but more likely due to the majority of
4846          * arc buffers being unevictable. Therefore, even if
4847          * arc_size is above arc_c, another pass is unlikely to
4848          * be helpful and could potentially cause us to enter an
4849          * infinite loop.  Additionally, zthr_iscancelled() is
4850          * checked here so that if the arc is shutting down, the
4851          * broadcast will wake any remaining arc adjust waiters.
4852          */
4853         mutex_enter(&arc_adjust_lock);
4854         arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4855             evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4856         if (!arc_adjust_needed) {
4857                 /*
4858                  * We're either no longer overflowing, or we
4859                  * can't evict anything more, so we should wake
4860                  * up any waiters.
4861                  */
4862                 cv_broadcast(&arc_adjust_waiters_cv);
4863         }
4864         mutex_exit(&arc_adjust_lock);
4865 }
4866 
4867 /* ARGSUSED */
4868 static boolean_t
4869 arc_reap_cb_check(void *arg, zthr_t *zthr)
4870 {
4871         int64_t free_memory = arc_available_memory();
4872 
4873         /*
4874          * If a kmem reap is already active, don't schedule more.  We must
4875          * check for this because kmem_cache_reap_soon() won't actually
4876          * block on the cache being reaped (this is to prevent callers from
4877          * becoming implicitly blocked by a system-wide kmem reap -- which,
4878          * on a system with many, many full magazines, can take minutes).
4879          */
4880         if (!kmem_cache_reap_active() &&
4881             free_memory < 0) {
4882                 arc_no_grow = B_TRUE;
4883                 arc_warm = B_TRUE;
4884                 /*
4885                  * Wait at least zfs_grow_retry (default 60) seconds
4886                  * before considering growing.
4887                  */
4888                 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4889                 return (B_TRUE);
4890         } else if (free_memory < arc_c >> arc_no_grow_shift) {
4891                 arc_no_grow = B_TRUE;
4892         } else if (gethrtime() >= arc_growtime) {
4893                 arc_no_grow = B_FALSE;
4894         }
4895 
4896         return (B_FALSE);
4897 }
4898 
4899 /*
4900  * Keep enough free memory in the system by reaping the ARC's kmem
4901  * caches.  To cause more slabs to be reapable, we may reduce the
4902  * target size of the cache (arc_c), causing the arc_adjust_cb()
4903  * to free more buffers.
4904  */
4905 /* ARGSUSED */
4906 static void
4907 arc_reap_cb(void *arg, zthr_t *zthr)
4908 {
4909         int64_t free_memory;
4910 
4911         /*
4912          * Kick off asynchronous kmem_reap()'s of all our caches.
4913          */
4914         arc_kmem_reap_soon();
4915 
4916         /*
4917          * Wait at least arc_kmem_cache_reap_retry_ms between
4918          * arc_kmem_reap_soon() calls. Without this check it is possible to
4919          * end up in a situation where we spend lots of time reaping
4920          * caches, while we're near arc_c_min.  Waiting here also gives the
4921          * subsequent free memory check a chance of finding that the
4922          * asynchronous reap has already freed enough memory, and we don't
4923          * need to call arc_reduce_target_size().
4924          */
4925         delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4926 
4927         /*
4928          * Reduce the target size as needed to maintain the amount of free
4929          * memory in the system at a fraction of the arc_size (1/128th by
4930          * default).  If oversubscribed (free_memory < 0) then reduce the
4931          * target arc_size by the deficit amount plus the fractional
4932          * amount.  If free memory is positive but less then the fractional
4933          * amount, reduce by what is needed to hit the fractional amount.
4934          */
4935         free_memory = arc_available_memory();
4936 
4937         int64_t to_free =
4938             (arc_c >> arc_shrink_shift) - free_memory;
4939         if (to_free > 0) {
4940 #ifdef _KERNEL
4941                 to_free = MAX(to_free, ptob(needfree));
4942 #endif
4943                 arc_reduce_target_size(to_free);
4944         }
4945 }
4946 
4947 /*
4948  * Adapt arc info given the number of bytes we are trying to add and
4949  * the state that we are coming from.  This function is only called
4950  * when we are adding new content to the cache.
4951  */
4952 static void
4953 arc_adapt(int bytes, arc_state_t *state)
4954 {
4955         int mult;
4956         uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4957         int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
4958         int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
4959 
4960         ASSERT(bytes > 0);
4961         /*
4962          * Adapt the target size of the MRU list:
4963          *      - if we just hit in the MRU ghost list, then increase
4964          *        the target size of the MRU list.
4965          *      - if we just hit in the MFU ghost list, then increase
4966          *        the target size of the MFU list by decreasing the
4967          *        target size of the MRU list.
4968          */
4969         if (state == arc_mru_ghost) {
4970                 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4971                 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4972 
4973                 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4974         } else if (state == arc_mfu_ghost) {
4975                 uint64_t delta;
4976 
4977                 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4978                 mult = MIN(mult, 10);
4979 
4980                 delta = MIN(bytes * mult, arc_p);
4981                 arc_p = MAX(arc_p_min, arc_p - delta);
4982         }
4983         ASSERT((int64_t)arc_p >= 0);
4984 
4985         /*
4986          * Wake reap thread if we do not have any available memory
4987          */
4988         if (arc_reclaim_needed()) {
4989                 zthr_wakeup(arc_reap_zthr);
4990                 return;
4991         }
4992 
4993 
4994         if (arc_no_grow)
4995                 return;
4996 
4997         if (arc_c >= arc_c_max)
4998                 return;
4999 
5000         /*
5001          * If we're within (2 * maxblocksize) bytes of the target
5002          * cache size, increment the target cache size
5003          */
5004         if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
5005             0) {
5006                 atomic_add_64(&arc_c, (int64_t)bytes);
5007                 if (arc_c > arc_c_max)
5008                         arc_c = arc_c_max;
5009                 else if (state == arc_anon)
5010                         atomic_add_64(&arc_p, (int64_t)bytes);
5011                 if (arc_p > arc_c)
5012                         arc_p = arc_c;
5013         }
5014         ASSERT((int64_t)arc_p >= 0);
5015 }
5016 
5017 /*
5018  * Check if arc_size has grown past our upper threshold, determined by
5019  * zfs_arc_overflow_shift.
5020  */
5021 static boolean_t
5022 arc_is_overflowing(void)
5023 {
5024         /* Always allow at least one block of overflow */
5025         uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5026             arc_c >> zfs_arc_overflow_shift);
5027 
5028         /*
5029          * We just compare the lower bound here for performance reasons. Our
5030          * primary goals are to make sure that the arc never grows without
5031          * bound, and that it can reach its maximum size. This check
5032          * accomplishes both goals. The maximum amount we could run over by is
5033          * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5034          * in the ARC. In practice, that's in the tens of MB, which is low
5035          * enough to be safe.
5036          */
5037         return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
5038 }
5039 
5040 static abd_t *
5041 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5042     boolean_t do_adapt)
5043 {
5044         arc_buf_contents_t type = arc_buf_type(hdr);
5045 
5046         arc_get_data_impl(hdr, size, tag, do_adapt);
5047         if (type == ARC_BUFC_METADATA) {
5048                 return (abd_alloc(size, B_TRUE));
5049         } else {
5050                 ASSERT(type == ARC_BUFC_DATA);
5051                 return (abd_alloc(size, B_FALSE));
5052         }
5053 }
5054 
5055 static void *
5056 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5057 {
5058         arc_buf_contents_t type = arc_buf_type(hdr);
5059 
5060         arc_get_data_impl(hdr, size, tag, B_TRUE);
5061         if (type == ARC_BUFC_METADATA) {
5062                 return (zio_buf_alloc(size));
5063         } else {
5064                 ASSERT(type == ARC_BUFC_DATA);
5065                 return (zio_data_buf_alloc(size));
5066         }
5067 }
5068 
5069 /*
5070  * Allocate a block and return it to the caller. If we are hitting the
5071  * hard limit for the cache size, we must sleep, waiting for the eviction
5072  * thread to catch up. If we're past the target size but below the hard
5073  * limit, we'll only signal the reclaim thread and continue on.
5074  */
5075 static void
5076 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5077     boolean_t do_adapt)
5078 {
5079         arc_state_t *state = hdr->b_l1hdr.b_state;
5080         arc_buf_contents_t type = arc_buf_type(hdr);
5081 
5082         if (do_adapt)
5083                 arc_adapt(size, state);
5084 
5085         /*
5086          * If arc_size is currently overflowing, and has grown past our
5087          * upper limit, we must be adding data faster than the evict
5088          * thread can evict. Thus, to ensure we don't compound the
5089          * problem by adding more data and forcing arc_size to grow even
5090          * further past its target size, we halt and wait for the
5091          * eviction thread to catch up.
5092          *
5093          * It's also possible that the reclaim thread is unable to evict
5094          * enough buffers to get arc_size below the overflow limit (e.g.
5095          * due to buffers being un-evictable, or hash lock collisions).
5096          * In this case, we want to proceed regardless if we're
5097          * overflowing; thus we don't use a while loop here.
5098          */
5099         if (arc_is_overflowing()) {
5100                 mutex_enter(&arc_adjust_lock);
5101 
5102                 /*
5103                  * Now that we've acquired the lock, we may no longer be
5104                  * over the overflow limit, lets check.
5105                  *
5106                  * We're ignoring the case of spurious wake ups. If that
5107                  * were to happen, it'd let this thread consume an ARC
5108                  * buffer before it should have (i.e. before we're under
5109                  * the overflow limit and were signalled by the reclaim
5110                  * thread). As long as that is a rare occurrence, it
5111                  * shouldn't cause any harm.
5112                  */
5113                 if (arc_is_overflowing()) {
5114                         arc_adjust_needed = B_TRUE;
5115                         zthr_wakeup(arc_adjust_zthr);
5116                         (void) cv_wait(&arc_adjust_waiters_cv,
5117                             &arc_adjust_lock);
5118                 }
5119                 mutex_exit(&arc_adjust_lock);
5120         }
5121 
5122         VERIFY3U(hdr->b_type, ==, type);
5123         if (type == ARC_BUFC_METADATA) {
5124                 arc_space_consume(size, ARC_SPACE_META);
5125         } else {
5126                 arc_space_consume(size, ARC_SPACE_DATA);
5127         }
5128 
5129         /*
5130          * Update the state size.  Note that ghost states have a
5131          * "ghost size" and so don't need to be updated.
5132          */
5133         if (!GHOST_STATE(state)) {
5134 
5135                 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5136 
5137                 /*
5138                  * If this is reached via arc_read, the link is
5139                  * protected by the hash lock. If reached via
5140                  * arc_buf_alloc, the header should not be accessed by
5141                  * any other thread. And, if reached via arc_read_done,
5142                  * the hash lock will protect it if it's found in the
5143                  * hash table; otherwise no other thread should be
5144                  * trying to [add|remove]_reference it.
5145                  */
5146                 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5147                         ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5148                         (void) zfs_refcount_add_many(&state->arcs_esize[type],
5149                             size, tag);
5150                 }
5151 
5152                 /*
5153                  * If we are growing the cache, and we are adding anonymous
5154                  * data, and we have outgrown arc_p, update arc_p
5155                  */
5156                 if (aggsum_compare(&arc_size, arc_c) < 0 &&
5157                     hdr->b_l1hdr.b_state == arc_anon &&
5158                     (zfs_refcount_count(&arc_anon->arcs_size) +
5159                     zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5160                         arc_p = MIN(arc_c, arc_p + size);
5161         }
5162 }
5163 
5164 static void
5165 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5166 {
5167         arc_free_data_impl(hdr, size, tag);
5168         abd_free(abd);
5169 }
5170 
5171 static void
5172 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5173 {
5174         arc_buf_contents_t type = arc_buf_type(hdr);
5175 
5176         arc_free_data_impl(hdr, size, tag);
5177         if (type == ARC_BUFC_METADATA) {
5178                 zio_buf_free(buf, size);
5179         } else {
5180                 ASSERT(type == ARC_BUFC_DATA);
5181                 zio_data_buf_free(buf, size);
5182         }
5183 }
5184 
5185 /*
5186  * Free the arc data buffer.
5187  */
5188 static void
5189 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5190 {
5191         arc_state_t *state = hdr->b_l1hdr.b_state;
5192         arc_buf_contents_t type = arc_buf_type(hdr);
5193 
5194         /* protected by hash lock, if in the hash table */
5195         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5196                 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5197                 ASSERT(state != arc_anon && state != arc_l2c_only);
5198 
5199                 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5200                     size, tag);
5201         }
5202         (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5203 
5204         VERIFY3U(hdr->b_type, ==, type);
5205         if (type == ARC_BUFC_METADATA) {
5206                 arc_space_return(size, ARC_SPACE_META);
5207         } else {
5208                 ASSERT(type == ARC_BUFC_DATA);
5209                 arc_space_return(size, ARC_SPACE_DATA);
5210         }
5211 }
5212 
5213 /*
5214  * This routine is called whenever a buffer is accessed.
5215  * NOTE: the hash lock is dropped in this function.
5216  */
5217 static void
5218 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5219 {
5220         clock_t now;
5221 
5222         ASSERT(MUTEX_HELD(hash_lock));
5223         ASSERT(HDR_HAS_L1HDR(hdr));
5224 
5225         if (hdr->b_l1hdr.b_state == arc_anon) {
5226                 /*
5227                  * This buffer is not in the cache, and does not
5228                  * appear in our "ghost" list.  Add the new buffer
5229                  * to the MRU state.
5230                  */
5231 
5232                 ASSERT0(hdr->b_l1hdr.b_arc_access);
5233                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5234                 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5235                 arc_change_state(arc_mru, hdr, hash_lock);
5236 
5237         } else if (hdr->b_l1hdr.b_state == arc_mru) {
5238                 now = ddi_get_lbolt();
5239 
5240                 /*
5241                  * If this buffer is here because of a prefetch, then either:
5242                  * - clear the flag if this is a "referencing" read
5243                  *   (any subsequent access will bump this into the MFU state).
5244                  * or
5245                  * - move the buffer to the head of the list if this is
5246                  *   another prefetch (to make it less likely to be evicted).
5247                  */
5248                 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5249                         if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5250                                 /* link protected by hash lock */
5251                                 ASSERT(multilist_link_active(
5252                                     &hdr->b_l1hdr.b_arc_node));
5253                         } else {
5254                                 if (HDR_HAS_L2HDR(hdr))
5255                                         l2arc_hdr_arcstats_decrement_state(hdr);
5256                                 arc_hdr_clear_flags(hdr,
5257                                     ARC_FLAG_PREFETCH |
5258                                     ARC_FLAG_PRESCIENT_PREFETCH);
5259                                 ARCSTAT_BUMP(arcstat_mru_hits);
5260                                 if (HDR_HAS_L2HDR(hdr))
5261                                         l2arc_hdr_arcstats_increment_state(hdr);
5262                         }
5263                         hdr->b_l1hdr.b_arc_access = now;
5264                         return;
5265                 }
5266 
5267                 /*
5268                  * This buffer has been "accessed" only once so far,
5269                  * but it is still in the cache. Move it to the MFU
5270                  * state.
5271                  */
5272                 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5273                         /*
5274                          * More than 125ms have passed since we
5275                          * instantiated this buffer.  Move it to the
5276                          * most frequently used state.
5277                          */
5278                         hdr->b_l1hdr.b_arc_access = now;
5279                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5280                         arc_change_state(arc_mfu, hdr, hash_lock);
5281                 }
5282                 ARCSTAT_BUMP(arcstat_mru_hits);
5283         } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5284                 arc_state_t     *new_state;
5285                 /*
5286                  * This buffer has been "accessed" recently, but
5287                  * was evicted from the cache.  Move it to the
5288                  * MFU state.
5289                  */
5290                 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5291                         new_state = arc_mru;
5292                         if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5293                                 if (HDR_HAS_L2HDR(hdr))
5294                                         l2arc_hdr_arcstats_decrement_state(hdr);
5295                                 arc_hdr_clear_flags(hdr,
5296                                     ARC_FLAG_PREFETCH |
5297                                     ARC_FLAG_PRESCIENT_PREFETCH);
5298                                 if (HDR_HAS_L2HDR(hdr))
5299                                         l2arc_hdr_arcstats_increment_state(hdr);
5300                         }
5301                         DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5302                 } else {
5303                         new_state = arc_mfu;
5304                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5305                 }
5306 
5307                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5308                 arc_change_state(new_state, hdr, hash_lock);
5309 
5310                 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5311         } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5312                 /*
5313                  * This buffer has been accessed more than once and is
5314                  * still in the cache.  Keep it in the MFU state.
5315                  *
5316                  * NOTE: an add_reference() that occurred when we did
5317                  * the arc_read() will have kicked this off the list.
5318                  * If it was a prefetch, we will explicitly move it to
5319                  * the head of the list now.
5320                  */
5321                 ARCSTAT_BUMP(arcstat_mfu_hits);
5322                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5323         } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5324                 arc_state_t     *new_state = arc_mfu;
5325                 /*
5326                  * This buffer has been accessed more than once but has
5327                  * been evicted from the cache.  Move it back to the
5328                  * MFU state.
5329                  */
5330 
5331                 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5332                         /*
5333                          * This is a prefetch access...
5334                          * move this block back to the MRU state.
5335                          */
5336                         new_state = arc_mru;
5337                 }
5338 
5339                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5340                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5341                 arc_change_state(new_state, hdr, hash_lock);
5342 
5343                 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5344         } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5345                 /*
5346                  * This buffer is on the 2nd Level ARC.
5347                  */
5348 
5349                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5350                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5351                 arc_change_state(arc_mfu, hdr, hash_lock);
5352         } else {
5353                 ASSERT(!"invalid arc state");
5354         }
5355 }
5356 
5357 /*
5358  * This routine is called by dbuf_hold() to update the arc_access() state
5359  * which otherwise would be skipped for entries in the dbuf cache.
5360  */
5361 void
5362 arc_buf_access(arc_buf_t *buf)
5363 {
5364         mutex_enter(&buf->b_evict_lock);
5365         arc_buf_hdr_t *hdr = buf->b_hdr;
5366 
5367         /*
5368          * Avoid taking the hash_lock when possible as an optimization.
5369          * The header must be checked again under the hash_lock in order
5370          * to handle the case where it is concurrently being released.
5371          */
5372         if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5373                 mutex_exit(&buf->b_evict_lock);
5374                 return;
5375         }
5376 
5377         kmutex_t *hash_lock = HDR_LOCK(hdr);
5378         mutex_enter(hash_lock);
5379 
5380         if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5381                 mutex_exit(hash_lock);
5382                 mutex_exit(&buf->b_evict_lock);
5383                 ARCSTAT_BUMP(arcstat_access_skip);
5384                 return;
5385         }
5386 
5387         mutex_exit(&buf->b_evict_lock);
5388 
5389         ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5390             hdr->b_l1hdr.b_state == arc_mfu);
5391 
5392         DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5393         arc_access(hdr, hash_lock);
5394         mutex_exit(hash_lock);
5395 
5396         ARCSTAT_BUMP(arcstat_hits);
5397         ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5398             demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5399 }
5400 
5401 /* a generic arc_read_done_func_t which you can use */
5402 /* ARGSUSED */
5403 void
5404 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5405     arc_buf_t *buf, void *arg)
5406 {
5407         if (buf == NULL)
5408                 return;
5409 
5410         bcopy(buf->b_data, arg, arc_buf_size(buf));
5411         arc_buf_destroy(buf, arg);
5412 }
5413 
5414 /* a generic arc_read_done_func_t */
5415 void
5416 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5417     arc_buf_t *buf, void *arg)
5418 {
5419         arc_buf_t **bufp = arg;
5420 
5421         if (buf == NULL) {
5422                 ASSERT(zio == NULL || zio->io_error != 0);
5423                 *bufp = NULL;
5424         } else {
5425                 ASSERT(zio == NULL || zio->io_error == 0);
5426                 *bufp = buf;
5427                 ASSERT(buf->b_data != NULL);
5428         }
5429 }
5430 
5431 static void
5432 arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp)
5433 {
5434         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5435                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5436                 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5437         } else {
5438                 if (HDR_COMPRESSION_ENABLED(hdr)) {
5439                         ASSERT3U(arc_hdr_get_compress(hdr), ==,
5440                             BP_GET_COMPRESS(bp));
5441                 }
5442                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5443                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5444                 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5445         }
5446 }
5447 
5448 /*
5449  * XXX this should be changed to return an error, and callers
5450  * re-read from disk on failure (on nondebug bits).
5451  */
5452 static void
5453 arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp)
5454 {
5455         arc_hdr_verify(hdr, bp);
5456         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
5457                 return;
5458         int err = 0;
5459         abd_t *abd = NULL;
5460         if (BP_IS_ENCRYPTED(bp)) {
5461                 if (HDR_HAS_RABD(hdr)) {
5462                         abd = hdr->b_crypt_hdr.b_rabd;
5463                 }
5464         } else if (HDR_COMPRESSION_ENABLED(hdr)) {
5465                 abd = hdr->b_l1hdr.b_pabd;
5466         }
5467         if (abd != NULL) {
5468                 /*
5469                  * The offset is only used for labels, which are not
5470                  * cached in the ARC, so it doesn't matter what we
5471                  * pass for the offset parameter.
5472                  */
5473                 int psize = HDR_GET_PSIZE(hdr);
5474                 err = zio_checksum_error_impl(spa, bp,
5475                     BP_GET_CHECKSUM(bp), abd, psize, 0, NULL);
5476                 if (err != 0) {
5477                         /*
5478                          * Use abd_copy_to_buf() rather than
5479                          * abd_borrow_buf_copy() so that we are sure to
5480                          * include the buf in crash dumps.
5481                          */
5482                         void *buf = kmem_alloc(psize, KM_SLEEP);
5483                         abd_copy_to_buf(buf, abd, psize);
5484                         panic("checksum of cached data doesn't match BP "
5485                             "err=%u hdr=%p bp=%p abd=%p buf=%p",
5486                             err, (void *)hdr, (void *)bp, (void *)abd, buf);
5487                 }
5488         }
5489 }
5490 
5491 static void
5492 arc_read_done(zio_t *zio)
5493 {
5494         blkptr_t        *bp = zio->io_bp;
5495         arc_buf_hdr_t   *hdr = zio->io_private;
5496         kmutex_t        *hash_lock = NULL;
5497         arc_callback_t  *callback_list;
5498         arc_callback_t  *acb;
5499         boolean_t       freeable = B_FALSE;
5500 
5501         /*
5502          * The hdr was inserted into hash-table and removed from lists
5503          * prior to starting I/O.  We should find this header, since
5504          * it's in the hash table, and it should be legit since it's
5505          * not possible to evict it during the I/O.  The only possible
5506          * reason for it not to be found is if we were freed during the
5507          * read.
5508          */
5509         if (HDR_IN_HASH_TABLE(hdr)) {
5510                 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5511                 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5512                     BP_IDENTITY(zio->io_bp)->dva_word[0]);
5513                 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5514                     BP_IDENTITY(zio->io_bp)->dva_word[1]);
5515 
5516                 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5517                     &hash_lock);
5518 
5519                 ASSERT((found == hdr &&
5520                     DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5521                     (found == hdr && HDR_L2_READING(hdr)));
5522                 ASSERT3P(hash_lock, !=, NULL);
5523         }
5524 
5525         if (BP_IS_PROTECTED(bp)) {
5526                 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5527                 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5528                 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5529                     hdr->b_crypt_hdr.b_iv);
5530 
5531                 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5532                         void *tmpbuf;
5533 
5534                         tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5535                             sizeof (zil_chain_t));
5536                         zio_crypt_decode_mac_zil(tmpbuf,
5537                             hdr->b_crypt_hdr.b_mac);
5538                         abd_return_buf(zio->io_abd, tmpbuf,
5539                             sizeof (zil_chain_t));
5540                 } else {
5541                         zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5542                 }
5543         }
5544 
5545         if (zio->io_error == 0) {
5546                 /* byteswap if necessary */
5547                 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5548                         if (BP_GET_LEVEL(zio->io_bp) > 0) {
5549                                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5550                         } else {
5551                                 hdr->b_l1hdr.b_byteswap =
5552                                     DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5553                         }
5554                 } else {
5555                         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5556                 }
5557         }
5558 
5559         arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5560 
5561         callback_list = hdr->b_l1hdr.b_acb;
5562         ASSERT3P(callback_list, !=, NULL);
5563 
5564         if (hash_lock && zio->io_error == 0 &&
5565             hdr->b_l1hdr.b_state == arc_anon) {
5566                 /*
5567                  * Only call arc_access on anonymous buffers.  This is because
5568                  * if we've issued an I/O for an evicted buffer, we've already
5569                  * called arc_access (to prevent any simultaneous readers from
5570                  * getting confused).
5571                  */
5572                 arc_access(hdr, hash_lock);
5573         }
5574 
5575         /*
5576          * If a read request has a callback (i.e. acb_done is not NULL), then we
5577          * make a buf containing the data according to the parameters which were
5578          * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5579          * aren't needlessly decompressing the data multiple times.
5580          */
5581         int callback_cnt = 0;
5582         for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5583                 if (!acb->acb_done)
5584                         continue;
5585 
5586                 callback_cnt++;
5587 
5588                 if (zio->io_error != 0)
5589                         continue;
5590 
5591                 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5592                     &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5593                     acb->acb_compressed, acb->acb_noauth, B_TRUE,
5594                     &acb->acb_buf);
5595 
5596                 /*
5597                  * Assert non-speculative zios didn't fail because an
5598                  * encryption key wasn't loaded
5599                  */
5600                 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5601                     error != EACCES);
5602 
5603                 /*
5604                  * If we failed to decrypt, report an error now (as the zio
5605                  * layer would have done if it had done the transforms).
5606                  */
5607                 if (error == ECKSUM) {
5608                         ASSERT(BP_IS_PROTECTED(bp));
5609                         error = SET_ERROR(EIO);
5610                         if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5611                                 spa_log_error(zio->io_spa, &acb->acb_zb);
5612                                 (void) zfs_ereport_post(
5613                                     FM_EREPORT_ZFS_AUTHENTICATION,
5614                                     zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
5615                         }
5616                 }
5617 
5618                 if (error != 0) {
5619                         /*
5620                          * Decompression failed.  Set io_error
5621                          * so that when we call acb_done (below),
5622                          * we will indicate that the read failed.
5623                          * Note that in the unusual case where one
5624                          * callback is compressed and another
5625                          * uncompressed, we will mark all of them
5626                          * as failed, even though the uncompressed
5627                          * one can't actually fail.  In this case,
5628                          * the hdr will not be anonymous, because
5629                          * if there are multiple callbacks, it's
5630                          * because multiple threads found the same
5631                          * arc buf in the hash table.
5632                          */
5633                         zio->io_error = error;
5634                 }
5635         }
5636 
5637         /*
5638          * If there are multiple callbacks, we must have the hash lock,
5639          * because the only way for multiple threads to find this hdr is
5640          * in the hash table.  This ensures that if there are multiple
5641          * callbacks, the hdr is not anonymous.  If it were anonymous,
5642          * we couldn't use arc_buf_destroy() in the error case below.
5643          */
5644         ASSERT(callback_cnt < 2 || hash_lock != NULL);
5645 
5646         hdr->b_l1hdr.b_acb = NULL;
5647         arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5648         if (callback_cnt == 0)
5649                 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5650 
5651         ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5652             callback_list != NULL);
5653 
5654         if (zio->io_error == 0) {
5655                 arc_hdr_verify(hdr, zio->io_bp);
5656         } else {
5657                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5658                 if (hdr->b_l1hdr.b_state != arc_anon)
5659                         arc_change_state(arc_anon, hdr, hash_lock);
5660                 if (HDR_IN_HASH_TABLE(hdr))
5661                         buf_hash_remove(hdr);
5662                 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5663         }
5664 
5665         /*
5666          * Broadcast before we drop the hash_lock to avoid the possibility
5667          * that the hdr (and hence the cv) might be freed before we get to
5668          * the cv_broadcast().
5669          */
5670         cv_broadcast(&hdr->b_l1hdr.b_cv);
5671 
5672         if (hash_lock != NULL) {
5673                 mutex_exit(hash_lock);
5674         } else {
5675                 /*
5676                  * This block was freed while we waited for the read to
5677                  * complete.  It has been removed from the hash table and
5678                  * moved to the anonymous state (so that it won't show up
5679                  * in the cache).
5680                  */
5681                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5682                 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5683         }
5684 
5685         /* execute each callback and free its structure */
5686         while ((acb = callback_list) != NULL) {
5687 
5688                 if (acb->acb_done != NULL) {
5689                         if (zio->io_error != 0 && acb->acb_buf != NULL) {
5690                                 /*
5691                                  * If arc_buf_alloc_impl() fails during
5692                                  * decompression, the buf will still be
5693                                  * allocated, and needs to be freed here.
5694                                  */
5695                                 arc_buf_destroy(acb->acb_buf, acb->acb_private);
5696                                 acb->acb_buf = NULL;
5697                         }
5698                         acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5699                             acb->acb_buf, acb->acb_private);
5700                 }
5701 
5702                 if (acb->acb_zio_dummy != NULL) {
5703                         acb->acb_zio_dummy->io_error = zio->io_error;
5704                         zio_nowait(acb->acb_zio_dummy);
5705                 }
5706 
5707                 callback_list = acb->acb_next;
5708                 kmem_free(acb, sizeof (arc_callback_t));
5709         }
5710 
5711         if (freeable)
5712                 arc_hdr_destroy(hdr);
5713 }
5714 
5715 /*
5716  * "Read" the block at the specified DVA (in bp) via the
5717  * cache.  If the block is found in the cache, invoke the provided
5718  * callback immediately and return.  Note that the `zio' parameter
5719  * in the callback will be NULL in this case, since no IO was
5720  * required.  If the block is not in the cache pass the read request
5721  * on to the spa with a substitute callback function, so that the
5722  * requested block will be added to the cache.
5723  *
5724  * If a read request arrives for a block that has a read in-progress,
5725  * either wait for the in-progress read to complete (and return the
5726  * results); or, if this is a read with a "done" func, add a record
5727  * to the read to invoke the "done" func when the read completes,
5728  * and return; or just return.
5729  *
5730  * arc_read_done() will invoke all the requested "done" functions
5731  * for readers of this block.
5732  */
5733 int
5734 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5735     void *private, zio_priority_t priority, int zio_flags,
5736     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5737 {
5738         arc_buf_hdr_t *hdr = NULL;
5739         kmutex_t *hash_lock = NULL;
5740         zio_t *rzio;
5741         uint64_t guid = spa_load_guid(spa);
5742         boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5743         boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5744             (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5745         boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5746             (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5747         int rc = 0;
5748 
5749         ASSERT(!BP_IS_EMBEDDED(bp) ||
5750             BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5751 
5752 top:
5753         if (!BP_IS_EMBEDDED(bp)) {
5754                 /*
5755                  * Embedded BP's have no DVA and require no I/O to "read".
5756                  * Create an anonymous arc buf to back it.
5757                  */
5758                 hdr = buf_hash_find(guid, bp, &hash_lock);
5759         }
5760 
5761         /*
5762          * Determine if we have an L1 cache hit or a cache miss. For simplicity
5763          * we maintain encrypted data seperately from compressed / uncompressed
5764          * data. If the user is requesting raw encrypted data and we don't have
5765          * that in the header we will read from disk to guarantee that we can
5766          * get it even if the encryption keys aren't loaded.
5767          */
5768         if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5769             (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5770                 arc_buf_t *buf = NULL;
5771                 *arc_flags |= ARC_FLAG_CACHED;
5772 
5773                 if (HDR_IO_IN_PROGRESS(hdr)) {
5774                         zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5775 
5776                         ASSERT3P(head_zio, !=, NULL);
5777                         if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5778                             priority == ZIO_PRIORITY_SYNC_READ) {
5779                                 /*
5780                                  * This is a sync read that needs to wait for
5781                                  * an in-flight async read. Request that the
5782                                  * zio have its priority upgraded.
5783                                  */
5784                                 zio_change_priority(head_zio, priority);
5785                                 DTRACE_PROBE1(arc__async__upgrade__sync,
5786                                     arc_buf_hdr_t *, hdr);
5787                                 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5788                         }
5789                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5790                                 arc_hdr_clear_flags(hdr,
5791                                     ARC_FLAG_PREDICTIVE_PREFETCH);
5792                         }
5793 
5794                         if (*arc_flags & ARC_FLAG_WAIT) {
5795                                 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5796                                 mutex_exit(hash_lock);
5797                                 goto top;
5798                         }
5799                         ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5800 
5801                         if (done) {
5802                                 arc_callback_t *acb = NULL;
5803 
5804                                 acb = kmem_zalloc(sizeof (arc_callback_t),
5805                                     KM_SLEEP);
5806                                 acb->acb_done = done;
5807                                 acb->acb_private = private;
5808                                 acb->acb_compressed = compressed_read;
5809                                 acb->acb_encrypted = encrypted_read;
5810                                 acb->acb_noauth = noauth_read;
5811                                 acb->acb_zb = *zb;
5812                                 if (pio != NULL)
5813                                         acb->acb_zio_dummy = zio_null(pio,
5814                                             spa, NULL, NULL, NULL, zio_flags);
5815 
5816                                 ASSERT3P(acb->acb_done, !=, NULL);
5817                                 acb->acb_zio_head = head_zio;
5818                                 acb->acb_next = hdr->b_l1hdr.b_acb;
5819                                 hdr->b_l1hdr.b_acb = acb;
5820                                 mutex_exit(hash_lock);
5821                                 return (0);
5822                         }
5823                         mutex_exit(hash_lock);
5824                         return (0);
5825                 }
5826 
5827                 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5828                     hdr->b_l1hdr.b_state == arc_mfu);
5829 
5830                 if (done) {
5831                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5832                                 /*
5833                                  * This is a demand read which does not have to
5834                                  * wait for i/o because we did a predictive
5835                                  * prefetch i/o for it, which has completed.
5836                                  */
5837                                 DTRACE_PROBE1(
5838                                     arc__demand__hit__predictive__prefetch,
5839                                     arc_buf_hdr_t *, hdr);
5840                                 ARCSTAT_BUMP(
5841                                     arcstat_demand_hit_predictive_prefetch);
5842                                 arc_hdr_clear_flags(hdr,
5843                                     ARC_FLAG_PREDICTIVE_PREFETCH);
5844                         }
5845 
5846                         if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5847                                 ARCSTAT_BUMP(
5848                                     arcstat_demand_hit_prescient_prefetch);
5849                                 arc_hdr_clear_flags(hdr,
5850                                     ARC_FLAG_PRESCIENT_PREFETCH);
5851                         }
5852 
5853                         ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5854 
5855                         arc_hdr_verify_checksum(spa, hdr, bp);
5856 
5857                         /* Get a buf with the desired data in it. */
5858                         rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5859                             encrypted_read, compressed_read, noauth_read,
5860                             B_TRUE, &buf);
5861                         if (rc == ECKSUM) {
5862                                 /*
5863                                  * Convert authentication and decryption errors
5864                                  * to EIO (and generate an ereport if needed)
5865                                  * before leaving the ARC.
5866                                  */
5867                                 rc = SET_ERROR(EIO);
5868                                 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5869                                         spa_log_error(spa, zb);
5870                                         (void) zfs_ereport_post(
5871                                             FM_EREPORT_ZFS_AUTHENTICATION,
5872                                             spa, NULL, zb, NULL, 0, 0);
5873                                 }
5874                         }
5875                         if (rc != 0) {
5876                                 (void) remove_reference(hdr, hash_lock,
5877                                     private);
5878                                 arc_buf_destroy_impl(buf);
5879                                 buf = NULL;
5880                         }
5881                         /* assert any errors weren't due to unloaded keys */
5882                         ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5883                             rc != EACCES);
5884                 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5885                     zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5886                         if (HDR_HAS_L2HDR(hdr))
5887                                 l2arc_hdr_arcstats_decrement_state(hdr);
5888                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5889                         if (HDR_HAS_L2HDR(hdr))
5890                                 l2arc_hdr_arcstats_increment_state(hdr);
5891                 }
5892                 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5893                 arc_access(hdr, hash_lock);
5894                 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5895                         arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5896                 if (*arc_flags & ARC_FLAG_L2CACHE)
5897                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5898                 mutex_exit(hash_lock);
5899                 ARCSTAT_BUMP(arcstat_hits);
5900                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5901                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5902                     data, metadata, hits);
5903 
5904                 if (done)
5905                         done(NULL, zb, bp, buf, private);
5906         } else {
5907                 uint64_t lsize = BP_GET_LSIZE(bp);
5908                 uint64_t psize = BP_GET_PSIZE(bp);
5909                 arc_callback_t *acb;
5910                 vdev_t *vd = NULL;
5911                 uint64_t addr = 0;
5912                 boolean_t devw = B_FALSE;
5913                 uint64_t size;
5914                 abd_t *hdr_abd;
5915                 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5916 
5917                 if (hdr == NULL) {
5918                         /* this block is not in the cache */
5919                         arc_buf_hdr_t *exists = NULL;
5920                         arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5921                         hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5922                             BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
5923                             encrypted_read);
5924 
5925                         if (!BP_IS_EMBEDDED(bp)) {
5926                                 hdr->b_dva = *BP_IDENTITY(bp);
5927                                 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5928                                 exists = buf_hash_insert(hdr, &hash_lock);
5929                         }
5930                         if (exists != NULL) {
5931                                 /* somebody beat us to the hash insert */
5932                                 mutex_exit(hash_lock);
5933                                 buf_discard_identity(hdr);
5934                                 arc_hdr_destroy(hdr);
5935                                 goto top; /* restart the IO request */
5936                         }
5937                 } else {
5938                         /*
5939                          * This block is in the ghost cache or encrypted data
5940                          * was requested and we didn't have it. If it was
5941                          * L2-only (and thus didn't have an L1 hdr),
5942                          * we realloc the header to add an L1 hdr.
5943                          */
5944                         if (!HDR_HAS_L1HDR(hdr)) {
5945                                 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5946                                     hdr_full_cache);
5947                         }
5948 
5949                         if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5950                                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5951                                 ASSERT(!HDR_HAS_RABD(hdr));
5952                                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5953                                 ASSERT0(zfs_refcount_count(
5954                                     &hdr->b_l1hdr.b_refcnt));
5955                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5956                                 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5957                         } else if (HDR_IO_IN_PROGRESS(hdr)) {
5958                                 /*
5959                                  * If this header already had an IO in progress
5960                                  * and we are performing another IO to fetch
5961                                  * encrypted data we must wait until the first
5962                                  * IO completes so as not to confuse
5963                                  * arc_read_done(). This should be very rare
5964                                  * and so the performance impact shouldn't
5965                                  * matter.
5966                                  */
5967                                 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5968                                 mutex_exit(hash_lock);
5969                                 goto top;
5970                         }
5971 
5972                         /*
5973                          * This is a delicate dance that we play here.
5974                          * This hdr might be in the ghost list so we access
5975                          * it to move it out of the ghost list before we
5976                          * initiate the read. If it's a prefetch then
5977                          * it won't have a callback so we'll remove the
5978                          * reference that arc_buf_alloc_impl() created. We
5979                          * do this after we've called arc_access() to
5980                          * avoid hitting an assert in remove_reference().
5981                          */
5982                         arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
5983                         arc_access(hdr, hash_lock);
5984                         arc_hdr_alloc_pabd(hdr, alloc_flags);
5985                 }
5986 
5987                 if (encrypted_read) {
5988                         ASSERT(HDR_HAS_RABD(hdr));
5989                         size = HDR_GET_PSIZE(hdr);
5990                         hdr_abd = hdr->b_crypt_hdr.b_rabd;
5991                         zio_flags |= ZIO_FLAG_RAW;
5992                 } else {
5993                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5994                         size = arc_hdr_size(hdr);
5995                         hdr_abd = hdr->b_l1hdr.b_pabd;
5996 
5997                         if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5998                                 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5999                         }
6000 
6001                         /*
6002                          * For authenticated bp's, we do not ask the ZIO layer
6003                          * to authenticate them since this will cause the entire
6004                          * IO to fail if the key isn't loaded. Instead, we
6005                          * defer authentication until arc_buf_fill(), which will
6006                          * verify the data when the key is available.
6007                          */
6008                         if (BP_IS_AUTHENTICATED(bp))
6009                                 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6010                 }
6011 
6012                 if (*arc_flags & ARC_FLAG_PREFETCH &&
6013                     zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6014                         if (HDR_HAS_L2HDR(hdr))
6015                                 l2arc_hdr_arcstats_decrement_state(hdr);
6016                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6017                         if (HDR_HAS_L2HDR(hdr))
6018                                 l2arc_hdr_arcstats_increment_state(hdr);
6019                 }
6020                 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6021                         arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6022 
6023                 if (*arc_flags & ARC_FLAG_L2CACHE)
6024                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6025                 if (BP_IS_AUTHENTICATED(bp))
6026                         arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6027                 if (BP_GET_LEVEL(bp) > 0)
6028                         arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6029                 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6030                         arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6031                 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6032 
6033                 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6034                 acb->acb_done = done;
6035                 acb->acb_private = private;
6036                 acb->acb_compressed = compressed_read;
6037                 acb->acb_encrypted = encrypted_read;
6038                 acb->acb_noauth = noauth_read;
6039                 acb->acb_zb = *zb;
6040 
6041                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6042                 hdr->b_l1hdr.b_acb = acb;
6043                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6044 
6045                 if (HDR_HAS_L2HDR(hdr) &&
6046                     (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6047                         devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6048                         addr = hdr->b_l2hdr.b_daddr;
6049                         /*
6050                          * Lock out L2ARC device removal.
6051                          */
6052                         if (vdev_is_dead(vd) ||
6053                             !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6054                                 vd = NULL;
6055                 }
6056 
6057                 /*
6058                  * We count both async reads and scrub IOs as asynchronous so
6059                  * that both can be upgraded in the event of a cache hit while
6060                  * the read IO is still in-flight.
6061                  */
6062                 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6063                     priority == ZIO_PRIORITY_SCRUB)
6064                         arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6065                 else
6066                         arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6067 
6068                 /*
6069                  * At this point, we have a level 1 cache miss.  Try again in
6070                  * L2ARC if possible.
6071                  */
6072                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6073 
6074                 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
6075                     uint64_t, lsize, zbookmark_phys_t *, zb);
6076                 ARCSTAT_BUMP(arcstat_misses);
6077                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6078                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6079                     data, metadata, misses);
6080 
6081                 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6082                         /*
6083                          * Read from the L2ARC if the following are true:
6084                          * 1. The L2ARC vdev was previously cached.
6085                          * 2. This buffer still has L2ARC metadata.
6086                          * 3. This buffer isn't currently writing to the L2ARC.
6087                          * 4. The L2ARC entry wasn't evicted, which may
6088                          *    also have invalidated the vdev.
6089                          * 5. This isn't prefetch or l2arc_noprefetch is 0.
6090                          */
6091                         if (HDR_HAS_L2HDR(hdr) &&
6092                             !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6093                             !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6094                                 l2arc_read_callback_t *cb;
6095                                 abd_t *abd;
6096                                 uint64_t asize;
6097 
6098                                 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6099                                 ARCSTAT_BUMP(arcstat_l2_hits);
6100 
6101                                 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6102                                     KM_SLEEP);
6103                                 cb->l2rcb_hdr = hdr;
6104                                 cb->l2rcb_bp = *bp;
6105                                 cb->l2rcb_zb = *zb;
6106                                 cb->l2rcb_flags = zio_flags;
6107 
6108                                 /*
6109                                  * When Compressed ARC is disabled, but the
6110                                  * L2ARC block is compressed, arc_hdr_size()
6111                                  * will have returned LSIZE rather than PSIZE.
6112                                  */
6113                                 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6114                                     !HDR_COMPRESSION_ENABLED(hdr) &&
6115                                     HDR_GET_PSIZE(hdr) != 0) {
6116                                         size = HDR_GET_PSIZE(hdr);
6117                                 }
6118 
6119                                 asize = vdev_psize_to_asize(vd, size);
6120                                 if (asize != size) {
6121                                         abd = abd_alloc_for_io(asize,
6122                                             HDR_ISTYPE_METADATA(hdr));
6123                                         cb->l2rcb_abd = abd;
6124                                 } else {
6125                                         abd = hdr_abd;
6126                                 }
6127 
6128                                 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6129                                     addr + asize <= vd->vdev_psize -
6130                                     VDEV_LABEL_END_SIZE);
6131 
6132                                 /*
6133                                  * l2arc read.  The SCL_L2ARC lock will be
6134                                  * released by l2arc_read_done().
6135                                  * Issue a null zio if the underlying buffer
6136                                  * was squashed to zero size by compression.
6137                                  */
6138                                 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6139                                     ZIO_COMPRESS_EMPTY);
6140                                 rzio = zio_read_phys(pio, vd, addr,
6141                                     asize, abd,
6142                                     ZIO_CHECKSUM_OFF,
6143                                     l2arc_read_done, cb, priority,
6144                                     zio_flags | ZIO_FLAG_DONT_CACHE |
6145                                     ZIO_FLAG_CANFAIL |
6146                                     ZIO_FLAG_DONT_PROPAGATE |
6147                                     ZIO_FLAG_DONT_RETRY, B_FALSE);
6148                                 acb->acb_zio_head = rzio;
6149 
6150                                 if (hash_lock != NULL)
6151                                         mutex_exit(hash_lock);
6152 
6153                                 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6154                                     zio_t *, rzio);
6155                                 ARCSTAT_INCR(arcstat_l2_read_bytes,
6156                                     HDR_GET_PSIZE(hdr));
6157 
6158                                 if (*arc_flags & ARC_FLAG_NOWAIT) {
6159                                         zio_nowait(rzio);
6160                                         return (0);
6161                                 }
6162 
6163                                 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6164                                 if (zio_wait(rzio) == 0)
6165                                         return (0);
6166 
6167                                 /* l2arc read error; goto zio_read() */
6168                                 if (hash_lock != NULL)
6169                                         mutex_enter(hash_lock);
6170                         } else {
6171                                 DTRACE_PROBE1(l2arc__miss,
6172                                     arc_buf_hdr_t *, hdr);
6173                                 ARCSTAT_BUMP(arcstat_l2_misses);
6174                                 if (HDR_L2_WRITING(hdr))
6175                                         ARCSTAT_BUMP(arcstat_l2_rw_clash);
6176                                 spa_config_exit(spa, SCL_L2ARC, vd);
6177                         }
6178                 } else {
6179                         if (vd != NULL)
6180                                 spa_config_exit(spa, SCL_L2ARC, vd);
6181                         if (l2arc_ndev != 0) {
6182                                 DTRACE_PROBE1(l2arc__miss,
6183                                     arc_buf_hdr_t *, hdr);
6184                                 ARCSTAT_BUMP(arcstat_l2_misses);
6185                         }
6186                 }
6187 
6188                 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6189                     arc_read_done, hdr, priority, zio_flags, zb);
6190                 acb->acb_zio_head = rzio;
6191 
6192                 if (hash_lock != NULL)
6193                         mutex_exit(hash_lock);
6194 
6195                 /*
6196                  * At this point, this read I/O has already missed in the ARC
6197                  * and will be going through to the disk.  The I/O throttle
6198                  * should delay this I/O if this zone is using more than its I/O
6199                  * priority allows.
6200                  */
6201                 zfs_zone_io_throttle(ZFS_ZONE_IOP_READ);
6202 
6203                 if (*arc_flags & ARC_FLAG_WAIT)
6204                         return (zio_wait(rzio));
6205 
6206                 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6207                 zio_nowait(rzio);
6208         }
6209         return (rc);
6210 }
6211 
6212 /*
6213  * Notify the arc that a block was freed, and thus will never be used again.
6214  */
6215 void
6216 arc_freed(spa_t *spa, const blkptr_t *bp)
6217 {
6218         arc_buf_hdr_t *hdr;
6219         kmutex_t *hash_lock;
6220         uint64_t guid = spa_load_guid(spa);
6221 
6222         ASSERT(!BP_IS_EMBEDDED(bp));
6223 
6224         hdr = buf_hash_find(guid, bp, &hash_lock);
6225         if (hdr == NULL)
6226                 return;
6227 
6228         /*
6229          * We might be trying to free a block that is still doing I/O
6230          * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6231          * dmu_sync-ed block). If this block is being prefetched, then it
6232          * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6233          * until the I/O completes. A block may also have a reference if it is
6234          * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6235          * have written the new block to its final resting place on disk but
6236          * without the dedup flag set. This would have left the hdr in the MRU
6237          * state and discoverable. When the txg finally syncs it detects that
6238          * the block was overridden in open context and issues an override I/O.
6239          * Since this is a dedup block, the override I/O will determine if the
6240          * block is already in the DDT. If so, then it will replace the io_bp
6241          * with the bp from the DDT and allow the I/O to finish. When the I/O
6242          * reaches the done callback, dbuf_write_override_done, it will
6243          * check to see if the io_bp and io_bp_override are identical.
6244          * If they are not, then it indicates that the bp was replaced with
6245          * the bp in the DDT and the override bp is freed. This allows
6246          * us to arrive here with a reference on a block that is being
6247          * freed. So if we have an I/O in progress, or a reference to
6248          * this hdr, then we don't destroy the hdr.
6249          */
6250         if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6251             zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6252                 arc_change_state(arc_anon, hdr, hash_lock);
6253                 arc_hdr_destroy(hdr);
6254                 mutex_exit(hash_lock);
6255         } else {
6256                 mutex_exit(hash_lock);
6257         }
6258 
6259 }
6260 
6261 /*
6262  * Release this buffer from the cache, making it an anonymous buffer.  This
6263  * must be done after a read and prior to modifying the buffer contents.
6264  * If the buffer has more than one reference, we must make
6265  * a new hdr for the buffer.
6266  */
6267 void
6268 arc_release(arc_buf_t *buf, void *tag)
6269 {
6270         arc_buf_hdr_t *hdr = buf->b_hdr;
6271 
6272         /*
6273          * It would be nice to assert that if its DMU metadata (level >
6274          * 0 || it's the dnode file), then it must be syncing context.
6275          * But we don't know that information at this level.
6276          */
6277 
6278         mutex_enter(&buf->b_evict_lock);
6279 
6280         ASSERT(HDR_HAS_L1HDR(hdr));
6281 
6282         /*
6283          * We don't grab the hash lock prior to this check, because if
6284          * the buffer's header is in the arc_anon state, it won't be
6285          * linked into the hash table.
6286          */
6287         if (hdr->b_l1hdr.b_state == arc_anon) {
6288                 mutex_exit(&buf->b_evict_lock);
6289                 /*
6290                  * If we are called from dmu_convert_mdn_block_to_raw(),
6291                  * a write might be in progress.  This is OK because
6292                  * the caller won't change the content of this buffer,
6293                  * only the flags (via arc_convert_to_raw()).
6294                  */
6295                 /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */
6296                 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6297                 ASSERT(!HDR_HAS_L2HDR(hdr));
6298                 ASSERT(HDR_EMPTY(hdr));
6299 
6300                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6301                 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6302                 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6303 
6304                 hdr->b_l1hdr.b_arc_access = 0;
6305 
6306                 /*
6307                  * If the buf is being overridden then it may already
6308                  * have a hdr that is not empty.
6309                  */
6310                 buf_discard_identity(hdr);
6311                 arc_buf_thaw(buf);
6312 
6313                 return;
6314         }
6315 
6316         kmutex_t *hash_lock = HDR_LOCK(hdr);
6317         mutex_enter(hash_lock);
6318 
6319         /*
6320          * This assignment is only valid as long as the hash_lock is
6321          * held, we must be careful not to reference state or the
6322          * b_state field after dropping the lock.
6323          */
6324         arc_state_t *state = hdr->b_l1hdr.b_state;
6325         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6326         ASSERT3P(state, !=, arc_anon);
6327 
6328         /* this buffer is not on any list */
6329         ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6330 
6331         if (HDR_HAS_L2HDR(hdr)) {
6332                 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6333 
6334                 /*
6335                  * We have to recheck this conditional again now that
6336                  * we're holding the l2ad_mtx to prevent a race with
6337                  * another thread which might be concurrently calling
6338                  * l2arc_evict(). In that case, l2arc_evict() might have
6339                  * destroyed the header's L2 portion as we were waiting
6340                  * to acquire the l2ad_mtx.
6341                  */
6342                 if (HDR_HAS_L2HDR(hdr))
6343                         arc_hdr_l2hdr_destroy(hdr);
6344 
6345                 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6346         }
6347 
6348         /*
6349          * Do we have more than one buf?
6350          */
6351         if (hdr->b_l1hdr.b_bufcnt > 1) {
6352                 arc_buf_hdr_t *nhdr;
6353                 uint64_t spa = hdr->b_spa;
6354                 uint64_t psize = HDR_GET_PSIZE(hdr);
6355                 uint64_t lsize = HDR_GET_LSIZE(hdr);
6356                 boolean_t protected = HDR_PROTECTED(hdr);
6357                 enum zio_compress compress = arc_hdr_get_compress(hdr);
6358                 arc_buf_contents_t type = arc_buf_type(hdr);
6359                 VERIFY3U(hdr->b_type, ==, type);
6360 
6361                 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6362                 (void) remove_reference(hdr, hash_lock, tag);
6363 
6364                 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6365                         ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6366                         ASSERT(ARC_BUF_LAST(buf));
6367                 }
6368 
6369                 /*
6370                  * Pull the data off of this hdr and attach it to
6371                  * a new anonymous hdr. Also find the last buffer
6372                  * in the hdr's buffer list.
6373                  */
6374                 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6375                 ASSERT3P(lastbuf, !=, NULL);
6376 
6377                 /*
6378                  * If the current arc_buf_t and the hdr are sharing their data
6379                  * buffer, then we must stop sharing that block.
6380                  */
6381                 if (arc_buf_is_shared(buf)) {
6382                         ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6383                         VERIFY(!arc_buf_is_shared(lastbuf));
6384 
6385                         /*
6386                          * First, sever the block sharing relationship between
6387                          * buf and the arc_buf_hdr_t.
6388                          */
6389                         arc_unshare_buf(hdr, buf);
6390 
6391                         /*
6392                          * Now we need to recreate the hdr's b_pabd. Since we
6393                          * have lastbuf handy, we try to share with it, but if
6394                          * we can't then we allocate a new b_pabd and copy the
6395                          * data from buf into it.
6396                          */
6397                         if (arc_can_share(hdr, lastbuf)) {
6398                                 arc_share_buf(hdr, lastbuf);
6399                         } else {
6400                                 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6401                                 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6402                                     buf->b_data, psize);
6403                         }
6404                         VERIFY3P(lastbuf->b_data, !=, NULL);
6405                 } else if (HDR_SHARED_DATA(hdr)) {
6406                         /*
6407                          * Uncompressed shared buffers are always at the end
6408                          * of the list. Compressed buffers don't have the
6409                          * same requirements. This makes it hard to
6410                          * simply assert that the lastbuf is shared so
6411                          * we rely on the hdr's compression flags to determine
6412                          * if we have a compressed, shared buffer.
6413                          */
6414                         ASSERT(arc_buf_is_shared(lastbuf) ||
6415                             arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6416                         ASSERT(!ARC_BUF_SHARED(buf));
6417                 }
6418                 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6419                 ASSERT3P(state, !=, arc_l2c_only);
6420 
6421                 (void) zfs_refcount_remove_many(&state->arcs_size,
6422                     arc_buf_size(buf), buf);
6423 
6424                 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6425                         ASSERT3P(state, !=, arc_l2c_only);
6426                         (void) zfs_refcount_remove_many(
6427                             &state->arcs_esize[type],
6428                             arc_buf_size(buf), buf);
6429                 }
6430 
6431                 hdr->b_l1hdr.b_bufcnt -= 1;
6432                 if (ARC_BUF_ENCRYPTED(buf))
6433                         hdr->b_crypt_hdr.b_ebufcnt -= 1;
6434 
6435                 arc_cksum_verify(buf);
6436                 arc_buf_unwatch(buf);
6437 
6438                 /* if this is the last uncompressed buf free the checksum */
6439                 if (!arc_hdr_has_uncompressed_buf(hdr))
6440                         arc_cksum_free(hdr);
6441 
6442                 mutex_exit(hash_lock);
6443 
6444                 /*
6445                  * Allocate a new hdr. The new hdr will contain a b_pabd
6446                  * buffer which will be freed in arc_write().
6447                  */
6448                 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6449                     compress, type, HDR_HAS_RABD(hdr));
6450                 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6451                 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6452                 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6453                 VERIFY3U(nhdr->b_type, ==, type);
6454                 ASSERT(!HDR_SHARED_DATA(nhdr));
6455 
6456                 nhdr->b_l1hdr.b_buf = buf;
6457                 nhdr->b_l1hdr.b_bufcnt = 1;
6458                 if (ARC_BUF_ENCRYPTED(buf))
6459                         nhdr->b_crypt_hdr.b_ebufcnt = 1;
6460                 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6461                 buf->b_hdr = nhdr;
6462 
6463                 mutex_exit(&buf->b_evict_lock);
6464                 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
6465                     arc_buf_size(buf), buf);
6466         } else {
6467                 mutex_exit(&buf->b_evict_lock);
6468                 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6469                 /* protected by hash lock, or hdr is on arc_anon */
6470                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6471                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6472                 arc_change_state(arc_anon, hdr, hash_lock);
6473                 hdr->b_l1hdr.b_arc_access = 0;
6474 
6475                 mutex_exit(hash_lock);
6476                 buf_discard_identity(hdr);
6477                 arc_buf_thaw(buf);
6478         }
6479 }
6480 
6481 int
6482 arc_released(arc_buf_t *buf)
6483 {
6484         int released;
6485 
6486         mutex_enter(&buf->b_evict_lock);
6487         released = (buf->b_data != NULL &&
6488             buf->b_hdr->b_l1hdr.b_state == arc_anon);
6489         mutex_exit(&buf->b_evict_lock);
6490         return (released);
6491 }
6492 
6493 #ifdef ZFS_DEBUG
6494 int
6495 arc_referenced(arc_buf_t *buf)
6496 {
6497         int referenced;
6498 
6499         mutex_enter(&buf->b_evict_lock);
6500         referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6501         mutex_exit(&buf->b_evict_lock);
6502         return (referenced);
6503 }
6504 #endif
6505 
6506 static void
6507 arc_write_ready(zio_t *zio)
6508 {
6509         arc_write_callback_t *callback = zio->io_private;
6510         arc_buf_t *buf = callback->awcb_buf;
6511         arc_buf_hdr_t *hdr = buf->b_hdr;
6512         blkptr_t *bp = zio->io_bp;
6513         uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6514 
6515         ASSERT(HDR_HAS_L1HDR(hdr));
6516         ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6517         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6518 
6519         /*
6520          * If we're reexecuting this zio because the pool suspended, then
6521          * cleanup any state that was previously set the first time the
6522          * callback was invoked.
6523          */
6524         if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6525                 arc_cksum_free(hdr);
6526                 arc_buf_unwatch(buf);
6527                 if (hdr->b_l1hdr.b_pabd != NULL) {
6528                         if (arc_buf_is_shared(buf)) {
6529                                 arc_unshare_buf(hdr, buf);
6530                         } else {
6531                                 arc_hdr_free_pabd(hdr, B_FALSE);
6532                         }
6533                 }
6534 
6535                 if (HDR_HAS_RABD(hdr))
6536                         arc_hdr_free_pabd(hdr, B_TRUE);
6537         }
6538         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6539         ASSERT(!HDR_HAS_RABD(hdr));
6540         ASSERT(!HDR_SHARED_DATA(hdr));
6541         ASSERT(!arc_buf_is_shared(buf));
6542 
6543         callback->awcb_ready(zio, buf, callback->awcb_private);
6544 
6545         if (HDR_IO_IN_PROGRESS(hdr))
6546                 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6547 
6548         arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6549 
6550         if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6551                 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6552 
6553         if (BP_IS_PROTECTED(bp)) {
6554                 /* ZIL blocks are written through zio_rewrite */
6555                 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6556                 ASSERT(HDR_PROTECTED(hdr));
6557 
6558                 if (BP_SHOULD_BYTESWAP(bp)) {
6559                         if (BP_GET_LEVEL(bp) > 0) {
6560                                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6561                         } else {
6562                                 hdr->b_l1hdr.b_byteswap =
6563                                     DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6564                         }
6565                 } else {
6566                         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6567                 }
6568 
6569                 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6570                 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6571                 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6572                     hdr->b_crypt_hdr.b_iv);
6573                 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6574         }
6575 
6576         /*
6577          * If this block was written for raw encryption but the zio layer
6578          * ended up only authenticating it, adjust the buffer flags now.
6579          */
6580         if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6581                 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6582                 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6583                 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6584                         buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6585         } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6586                 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6587                 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6588         }
6589 
6590         /* this must be done after the buffer flags are adjusted */
6591         arc_cksum_compute(buf);
6592 
6593         enum zio_compress compress;
6594         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6595                 compress = ZIO_COMPRESS_OFF;
6596         } else {
6597                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6598                 compress = BP_GET_COMPRESS(bp);
6599         }
6600         HDR_SET_PSIZE(hdr, psize);
6601         arc_hdr_set_compress(hdr, compress);
6602 
6603         if (zio->io_error != 0 || psize == 0)
6604                 goto out;
6605 
6606         /*
6607          * Fill the hdr with data. If the buffer is encrypted we have no choice
6608          * but to copy the data into b_rabd. If the hdr is compressed, the data
6609          * we want is available from the zio, otherwise we can take it from
6610          * the buf.
6611          *
6612          * We might be able to share the buf's data with the hdr here. However,
6613          * doing so would cause the ARC to be full of linear ABDs if we write a
6614          * lot of shareable data. As a compromise, we check whether scattered
6615          * ABDs are allowed, and assume that if they are then the user wants
6616          * the ARC to be primarily filled with them regardless of the data being
6617          * written. Therefore, if they're allowed then we allocate one and copy
6618          * the data into it; otherwise, we share the data directly if we can.
6619          */
6620         if (ARC_BUF_ENCRYPTED(buf)) {
6621                 ASSERT3U(psize, >, 0);
6622                 ASSERT(ARC_BUF_COMPRESSED(buf));
6623                 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
6624                 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6625         } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6626                 /*
6627                  * Ideally, we would always copy the io_abd into b_pabd, but the
6628                  * user may have disabled compressed ARC, thus we must check the
6629                  * hdr's compression setting rather than the io_bp's.
6630                  */
6631                 if (BP_IS_ENCRYPTED(bp)) {
6632                         ASSERT3U(psize, >, 0);
6633                         arc_hdr_alloc_pabd(hdr,
6634                             ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
6635                         abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6636                 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6637                     !ARC_BUF_COMPRESSED(buf)) {
6638                         ASSERT3U(psize, >, 0);
6639                         arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6640                         abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6641                 } else {
6642                         ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6643                         arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT);
6644                         abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6645                             arc_buf_size(buf));
6646                 }
6647         } else {
6648                 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6649                 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6650                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6651                 arc_share_buf(hdr, buf);
6652         }
6653 
6654 out:
6655         arc_hdr_verify(hdr, bp);
6656 }
6657 
6658 static void
6659 arc_write_children_ready(zio_t *zio)
6660 {
6661         arc_write_callback_t *callback = zio->io_private;
6662         arc_buf_t *buf = callback->awcb_buf;
6663 
6664         callback->awcb_children_ready(zio, buf, callback->awcb_private);
6665 }
6666 
6667 /*
6668  * The SPA calls this callback for each physical write that happens on behalf
6669  * of a logical write.  See the comment in dbuf_write_physdone() for details.
6670  */
6671 static void
6672 arc_write_physdone(zio_t *zio)
6673 {
6674         arc_write_callback_t *cb = zio->io_private;
6675         if (cb->awcb_physdone != NULL)
6676                 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6677 }
6678 
6679 static void
6680 arc_write_done(zio_t *zio)
6681 {
6682         arc_write_callback_t *callback = zio->io_private;
6683         arc_buf_t *buf = callback->awcb_buf;
6684         arc_buf_hdr_t *hdr = buf->b_hdr;
6685 
6686         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6687 
6688         if (zio->io_error == 0) {
6689                 arc_hdr_verify(hdr, zio->io_bp);
6690 
6691                 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6692                         buf_discard_identity(hdr);
6693                 } else {
6694                         hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6695                         hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6696                 }
6697         } else {
6698                 ASSERT(HDR_EMPTY(hdr));
6699         }
6700 
6701         /*
6702          * If the block to be written was all-zero or compressed enough to be
6703          * embedded in the BP, no write was performed so there will be no
6704          * dva/birth/checksum.  The buffer must therefore remain anonymous
6705          * (and uncached).
6706          */
6707         if (!HDR_EMPTY(hdr)) {
6708                 arc_buf_hdr_t *exists;
6709                 kmutex_t *hash_lock;
6710 
6711                 ASSERT3U(zio->io_error, ==, 0);
6712 
6713                 arc_cksum_verify(buf);
6714 
6715                 exists = buf_hash_insert(hdr, &hash_lock);
6716                 if (exists != NULL) {
6717                         /*
6718                          * This can only happen if we overwrite for
6719                          * sync-to-convergence, because we remove
6720                          * buffers from the hash table when we arc_free().
6721                          */
6722                         if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6723                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6724                                         panic("bad overwrite, hdr=%p exists=%p",
6725                                             (void *)hdr, (void *)exists);
6726                                 ASSERT(zfs_refcount_is_zero(
6727                                     &exists->b_l1hdr.b_refcnt));
6728                                 arc_change_state(arc_anon, exists, hash_lock);
6729                                 arc_hdr_destroy(exists);
6730                                 mutex_exit(hash_lock);
6731                                 exists = buf_hash_insert(hdr, &hash_lock);
6732                                 ASSERT3P(exists, ==, NULL);
6733                         } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6734                                 /* nopwrite */
6735                                 ASSERT(zio->io_prop.zp_nopwrite);
6736                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6737                                         panic("bad nopwrite, hdr=%p exists=%p",
6738                                             (void *)hdr, (void *)exists);
6739                         } else {
6740                                 /* Dedup */
6741                                 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6742                                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6743                                 ASSERT(BP_GET_DEDUP(zio->io_bp));
6744                                 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6745                         }
6746                 }
6747                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6748                 /* if it's not anon, we are doing a scrub */
6749                 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6750                         arc_access(hdr, hash_lock);
6751                 mutex_exit(hash_lock);
6752         } else {
6753                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6754         }
6755 
6756         ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6757         callback->awcb_done(zio, buf, callback->awcb_private);
6758 
6759         abd_put(zio->io_abd);
6760         kmem_free(callback, sizeof (arc_write_callback_t));
6761 }
6762 
6763 zio_t *
6764 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6765     boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6766     arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6767     arc_write_done_func_t *done, void *private, zio_priority_t priority,
6768     int zio_flags, const zbookmark_phys_t *zb)
6769 {
6770         arc_buf_hdr_t *hdr = buf->b_hdr;
6771         arc_write_callback_t *callback;
6772         zio_t *zio;
6773         zio_prop_t localprop = *zp;
6774 
6775         ASSERT3P(ready, !=, NULL);
6776         ASSERT3P(done, !=, NULL);
6777         ASSERT(!HDR_IO_ERROR(hdr));
6778         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6779         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6780         ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6781         if (l2arc)
6782                 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6783 
6784         if (ARC_BUF_ENCRYPTED(buf)) {
6785                 ASSERT(ARC_BUF_COMPRESSED(buf));
6786                 localprop.zp_encrypt = B_TRUE;
6787                 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6788                 /* CONSTCOND */
6789                 localprop.zp_byteorder =
6790                     (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6791                     ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6792                 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6793                     ZIO_DATA_SALT_LEN);
6794                 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6795                     ZIO_DATA_IV_LEN);
6796                 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6797                     ZIO_DATA_MAC_LEN);
6798                 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6799                         localprop.zp_nopwrite = B_FALSE;
6800                         localprop.zp_copies =
6801                             MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6802                 }
6803                 zio_flags |= ZIO_FLAG_RAW;
6804         } else if (ARC_BUF_COMPRESSED(buf)) {
6805                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6806                 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6807                 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6808         }
6809 
6810         callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6811         callback->awcb_ready = ready;
6812         callback->awcb_children_ready = children_ready;
6813         callback->awcb_physdone = physdone;
6814         callback->awcb_done = done;
6815         callback->awcb_private = private;
6816         callback->awcb_buf = buf;
6817 
6818         /*
6819          * The hdr's b_pabd is now stale, free it now. A new data block
6820          * will be allocated when the zio pipeline calls arc_write_ready().
6821          */
6822         if (hdr->b_l1hdr.b_pabd != NULL) {
6823                 /*
6824                  * If the buf is currently sharing the data block with
6825                  * the hdr then we need to break that relationship here.
6826                  * The hdr will remain with a NULL data pointer and the
6827                  * buf will take sole ownership of the block.
6828                  */
6829                 if (arc_buf_is_shared(buf)) {
6830                         arc_unshare_buf(hdr, buf);
6831                 } else {
6832                         arc_hdr_free_pabd(hdr, B_FALSE);
6833                 }
6834                 VERIFY3P(buf->b_data, !=, NULL);
6835         }
6836 
6837         if (HDR_HAS_RABD(hdr))
6838                 arc_hdr_free_pabd(hdr, B_TRUE);
6839 
6840         if (!(zio_flags & ZIO_FLAG_RAW))
6841                 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6842 
6843         ASSERT(!arc_buf_is_shared(buf));
6844         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6845 
6846         zio = zio_write(pio, spa, txg, bp,
6847             abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6848             HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6849             (children_ready != NULL) ? arc_write_children_ready : NULL,
6850             arc_write_physdone, arc_write_done, callback,
6851             priority, zio_flags, zb);
6852 
6853         return (zio);
6854 }
6855 
6856 static int
6857 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
6858 {
6859 #ifdef _KERNEL
6860         uint64_t available_memory = ptob(freemem);
6861 
6862 #if defined(__i386)
6863         available_memory =
6864             MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6865 #endif
6866 
6867         if (freemem > physmem * arc_lotsfree_percent / 100)
6868                 return (0);
6869 
6870         if (txg > spa->spa_lowmem_last_txg) {
6871                 spa->spa_lowmem_last_txg = txg;
6872                 spa->spa_lowmem_page_load = 0;
6873         }
6874         /*
6875          * If we are in pageout, we know that memory is already tight,
6876          * the arc is already going to be evicting, so we just want to
6877          * continue to let page writes occur as quickly as possible.
6878          */
6879         if (curproc == proc_pageout) {
6880                 if (spa->spa_lowmem_page_load >
6881                     MAX(ptob(minfree), available_memory) / 4)
6882                         return (SET_ERROR(ERESTART));
6883                 /* Note: reserve is inflated, so we deflate */
6884                 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
6885                 return (0);
6886         } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
6887                 /* memory is low, delay before restarting */
6888                 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6889                 return (SET_ERROR(EAGAIN));
6890         }
6891         spa->spa_lowmem_page_load = 0;
6892 #endif /* _KERNEL */
6893         return (0);
6894 }
6895 
6896 void
6897 arc_tempreserve_clear(uint64_t reserve)
6898 {
6899         atomic_add_64(&arc_tempreserve, -reserve);
6900         ASSERT((int64_t)arc_tempreserve >= 0);
6901 }
6902 
6903 int
6904 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6905 {
6906         int error;
6907         uint64_t anon_size;
6908 
6909         if (reserve > arc_c/4 && !arc_no_grow)
6910                 arc_c = MIN(arc_c_max, reserve * 4);
6911         if (reserve > arc_c)
6912                 return (SET_ERROR(ENOMEM));
6913 
6914         /*
6915          * Don't count loaned bufs as in flight dirty data to prevent long
6916          * network delays from blocking transactions that are ready to be
6917          * assigned to a txg.
6918          */
6919 
6920         /* assert that it has not wrapped around */
6921         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6922 
6923         anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
6924             arc_loaned_bytes), 0);
6925 
6926         /*
6927          * Writes will, almost always, require additional memory allocations
6928          * in order to compress/encrypt/etc the data.  We therefore need to
6929          * make sure that there is sufficient available memory for this.
6930          */
6931         error = arc_memory_throttle(spa, reserve, txg);
6932         if (error != 0)
6933                 return (error);
6934 
6935         /*
6936          * Throttle writes when the amount of dirty data in the cache
6937          * gets too large.  We try to keep the cache less than half full
6938          * of dirty blocks so that our sync times don't grow too large.
6939          *
6940          * In the case of one pool being built on another pool, we want
6941          * to make sure we don't end up throttling the lower (backing)
6942          * pool when the upper pool is the majority contributor to dirty
6943          * data. To insure we make forward progress during throttling, we
6944          * also check the current pool's net dirty data and only throttle
6945          * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6946          * data in the cache.
6947          *
6948          * Note: if two requests come in concurrently, we might let them
6949          * both succeed, when one of them should fail.  Not a huge deal.
6950          */
6951         uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6952         uint64_t spa_dirty_anon = spa_dirty_data(spa);
6953 
6954         if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
6955             anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
6956             spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6957                 uint64_t meta_esize =
6958                     zfs_refcount_count(
6959                     &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6960                 uint64_t data_esize =
6961                     zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6962                 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6963                     "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6964                     arc_tempreserve >> 10, meta_esize >> 10,
6965                     data_esize >> 10, reserve >> 10, arc_c >> 10);
6966                 return (SET_ERROR(ERESTART));
6967         }
6968         atomic_add_64(&arc_tempreserve, reserve);
6969         return (0);
6970 }
6971 
6972 static void
6973 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6974     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6975 {
6976         size->value.ui64 = zfs_refcount_count(&state->arcs_size);
6977         evict_data->value.ui64 =
6978             zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6979         evict_metadata->value.ui64 =
6980             zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6981 }
6982 
6983 static int
6984 arc_kstat_update(kstat_t *ksp, int rw)
6985 {
6986         arc_stats_t *as = ksp->ks_data;
6987 
6988         if (rw == KSTAT_WRITE) {
6989                 return (EACCES);
6990         } else {
6991                 arc_kstat_update_state(arc_anon,
6992                     &as->arcstat_anon_size,
6993                     &as->arcstat_anon_evictable_data,
6994                     &as->arcstat_anon_evictable_metadata);
6995                 arc_kstat_update_state(arc_mru,
6996                     &as->arcstat_mru_size,
6997                     &as->arcstat_mru_evictable_data,
6998                     &as->arcstat_mru_evictable_metadata);
6999                 arc_kstat_update_state(arc_mru_ghost,
7000                     &as->arcstat_mru_ghost_size,
7001                     &as->arcstat_mru_ghost_evictable_data,
7002                     &as->arcstat_mru_ghost_evictable_metadata);
7003                 arc_kstat_update_state(arc_mfu,
7004                     &as->arcstat_mfu_size,
7005                     &as->arcstat_mfu_evictable_data,
7006                     &as->arcstat_mfu_evictable_metadata);
7007                 arc_kstat_update_state(arc_mfu_ghost,
7008                     &as->arcstat_mfu_ghost_size,
7009                     &as->arcstat_mfu_ghost_evictable_data,
7010                     &as->arcstat_mfu_ghost_evictable_metadata);
7011 
7012                 ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
7013                 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
7014                 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
7015                 ARCSTAT(arcstat_metadata_size) =
7016                     aggsum_value(&astat_metadata_size);
7017                 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
7018                 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
7019                 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
7020         }
7021 
7022         return (0);
7023 }
7024 
7025 /*
7026  * This function *must* return indices evenly distributed between all
7027  * sublists of the multilist. This is needed due to how the ARC eviction
7028  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7029  * distributed between all sublists and uses this assumption when
7030  * deciding which sublist to evict from and how much to evict from it.
7031  */
7032 unsigned int
7033 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7034 {
7035         arc_buf_hdr_t *hdr = obj;
7036 
7037         /*
7038          * We rely on b_dva to generate evenly distributed index
7039          * numbers using buf_hash below. So, as an added precaution,
7040          * let's make sure we never add empty buffers to the arc lists.
7041          */
7042         ASSERT(!HDR_EMPTY(hdr));
7043 
7044         /*
7045          * The assumption here, is the hash value for a given
7046          * arc_buf_hdr_t will remain constant throughout its lifetime
7047          * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7048          * Thus, we don't need to store the header's sublist index
7049          * on insertion, as this index can be recalculated on removal.
7050          *
7051          * Also, the low order bits of the hash value are thought to be
7052          * distributed evenly. Otherwise, in the case that the multilist
7053          * has a power of two number of sublists, each sublists' usage
7054          * would not be evenly distributed.
7055          */
7056         return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7057             multilist_get_num_sublists(ml));
7058 }
7059 
7060 static void
7061 arc_state_init(void)
7062 {
7063         arc_anon = &ARC_anon;
7064         arc_mru = &ARC_mru;
7065         arc_mru_ghost = &ARC_mru_ghost;
7066         arc_mfu = &ARC_mfu;
7067         arc_mfu_ghost = &ARC_mfu_ghost;
7068         arc_l2c_only = &ARC_l2c_only;
7069 
7070         arc_mru->arcs_list[ARC_BUFC_METADATA] =
7071             multilist_create(sizeof (arc_buf_hdr_t),
7072             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7073             arc_state_multilist_index_func);
7074         arc_mru->arcs_list[ARC_BUFC_DATA] =
7075             multilist_create(sizeof (arc_buf_hdr_t),
7076             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7077             arc_state_multilist_index_func);
7078         arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7079             multilist_create(sizeof (arc_buf_hdr_t),
7080             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7081             arc_state_multilist_index_func);
7082         arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7083             multilist_create(sizeof (arc_buf_hdr_t),
7084             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7085             arc_state_multilist_index_func);
7086         arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7087             multilist_create(sizeof (arc_buf_hdr_t),
7088             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7089             arc_state_multilist_index_func);
7090         arc_mfu->arcs_list[ARC_BUFC_DATA] =
7091             multilist_create(sizeof (arc_buf_hdr_t),
7092             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7093             arc_state_multilist_index_func);
7094         arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7095             multilist_create(sizeof (arc_buf_hdr_t),
7096             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7097             arc_state_multilist_index_func);
7098         arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7099             multilist_create(sizeof (arc_buf_hdr_t),
7100             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7101             arc_state_multilist_index_func);
7102         arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7103             multilist_create(sizeof (arc_buf_hdr_t),
7104             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7105             arc_state_multilist_index_func);
7106         arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7107             multilist_create(sizeof (arc_buf_hdr_t),
7108             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7109             arc_state_multilist_index_func);
7110 
7111         zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7112         zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7113         zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7114         zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7115         zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7116         zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7117         zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7118         zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7119         zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7120         zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7121         zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7122         zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7123 
7124         zfs_refcount_create(&arc_anon->arcs_size);
7125         zfs_refcount_create(&arc_mru->arcs_size);
7126         zfs_refcount_create(&arc_mru_ghost->arcs_size);
7127         zfs_refcount_create(&arc_mfu->arcs_size);
7128         zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7129         zfs_refcount_create(&arc_l2c_only->arcs_size);
7130 
7131         aggsum_init(&arc_meta_used, 0);
7132         aggsum_init(&arc_size, 0);
7133         aggsum_init(&astat_data_size, 0);
7134         aggsum_init(&astat_metadata_size, 0);
7135         aggsum_init(&astat_hdr_size, 0);
7136         aggsum_init(&astat_other_size, 0);
7137         aggsum_init(&astat_l2_hdr_size, 0);
7138 
7139         arc_anon->arcs_state = ARC_STATE_ANON;
7140         arc_mru->arcs_state = ARC_STATE_MRU;
7141         arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7142         arc_mfu->arcs_state = ARC_STATE_MFU;
7143         arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7144         arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7145 }
7146 
7147 static void
7148 arc_state_fini(void)
7149 {
7150         zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7151         zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7152         zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7153         zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7154         zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7155         zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7156         zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7157         zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7158         zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7159         zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7160         zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7161         zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7162 
7163         zfs_refcount_destroy(&arc_anon->arcs_size);
7164         zfs_refcount_destroy(&arc_mru->arcs_size);
7165         zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7166         zfs_refcount_destroy(&arc_mfu->arcs_size);
7167         zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7168         zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7169 
7170         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7171         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7172         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7173         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7174         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7175         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7176         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7177         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7178         multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7179         multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7180 
7181         aggsum_fini(&arc_meta_used);
7182         aggsum_fini(&arc_size);
7183         aggsum_fini(&astat_data_size);
7184         aggsum_fini(&astat_metadata_size);
7185         aggsum_fini(&astat_hdr_size);
7186         aggsum_fini(&astat_other_size);
7187         aggsum_fini(&astat_l2_hdr_size);
7188 
7189 }
7190 
7191 uint64_t
7192 arc_max_bytes(void)
7193 {
7194         return (arc_c_max);
7195 }
7196 
7197 void
7198 arc_init(void)
7199 {
7200         /*
7201          * allmem is "all memory that we could possibly use".
7202          */
7203 #ifdef _KERNEL
7204         uint64_t allmem = ptob(physmem - swapfs_minfree);
7205 #else
7206         uint64_t allmem = (physmem * PAGESIZE) / 2;
7207 #endif
7208         mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
7209         cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
7210 
7211         /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
7212         arc_c_min = MAX(allmem / 32, 64 << 20);
7213         /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
7214         if (allmem >= 1 << 30)
7215                 arc_c_max = allmem - (1 << 30);
7216         else
7217                 arc_c_max = arc_c_min;
7218         arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
7219 
7220         /*
7221          * In userland, there's only the memory pressure that we artificially
7222          * create (see arc_available_memory()).  Don't let arc_c get too
7223          * small, because it can cause transactions to be larger than
7224          * arc_c, causing arc_tempreserve_space() to fail.
7225          */
7226 #ifndef _KERNEL
7227         arc_c_min = arc_c_max / 2;
7228 #endif
7229 
7230         /*
7231          * Allow the tunables to override our calculations if they are
7232          * reasonable (ie. over 64MB)
7233          */
7234         if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
7235                 arc_c_max = zfs_arc_max;
7236                 arc_c_min = MIN(arc_c_min, arc_c_max);
7237         }
7238         if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
7239                 arc_c_min = zfs_arc_min;
7240 
7241         arc_c = arc_c_max;
7242         arc_p = (arc_c >> 1);
7243 
7244         /* limit meta-data to 1/4 of the arc capacity */
7245         arc_meta_limit = arc_c_max / 4;
7246 
7247 #ifdef _KERNEL
7248         /*
7249          * Metadata is stored in the kernel's heap.  Don't let us
7250          * use more than half the heap for the ARC.
7251          */
7252         arc_meta_limit = MIN(arc_meta_limit,
7253             vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
7254 #endif
7255 
7256         /* Allow the tunable to override if it is reasonable */
7257         if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
7258                 arc_meta_limit = zfs_arc_meta_limit;
7259 
7260         if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
7261                 arc_c_min = arc_meta_limit / 2;
7262 
7263         /* On larger-memory machines, we clamp the minimum at 1GB */
7264         if (zfs_arc_min == 0)
7265                 arc_c_min = MIN(arc_c_min, (1 << 30));
7266 
7267         if (zfs_arc_meta_min > 0) {
7268                 arc_meta_min = zfs_arc_meta_min;
7269         } else {
7270                 arc_meta_min = arc_c_min / 2;
7271         }
7272 
7273         if (zfs_arc_grow_retry > 0)
7274                 arc_grow_retry = zfs_arc_grow_retry;
7275 
7276         if (zfs_arc_shrink_shift > 0)
7277                 arc_shrink_shift = zfs_arc_shrink_shift;
7278 
7279         /*
7280          * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
7281          */
7282         if (arc_no_grow_shift >= arc_shrink_shift)
7283                 arc_no_grow_shift = arc_shrink_shift - 1;
7284 
7285         if (zfs_arc_p_min_shift > 0)
7286                 arc_p_min_shift = zfs_arc_p_min_shift;
7287 
7288         /* if kmem_flags are set, lets try to use less memory */
7289         if (kmem_debugging())
7290                 arc_c = arc_c / 2;
7291         if (arc_c < arc_c_min)
7292                 arc_c = arc_c_min;
7293 
7294         arc_state_init();
7295 
7296         /*
7297          * The arc must be "uninitialized", so that hdr_recl() (which is
7298          * registered by buf_init()) will not access arc_reap_zthr before
7299          * it is created.
7300          */
7301         ASSERT(!arc_initialized);
7302         buf_init();
7303 
7304         arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7305             sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7306 
7307         if (arc_ksp != NULL) {
7308                 arc_ksp->ks_data = &arc_stats;
7309                 arc_ksp->ks_update = arc_kstat_update;
7310                 kstat_install(arc_ksp);
7311         }
7312 
7313         arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
7314             arc_adjust_cb, NULL);
7315         arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7316             arc_reap_cb, NULL, SEC2NSEC(1));
7317 
7318         arc_initialized = B_TRUE;
7319         arc_warm = B_FALSE;
7320 
7321         /*
7322          * Calculate maximum amount of dirty data per pool.
7323          *
7324          * If it has been set by /etc/system, take that.
7325          * Otherwise, use a percentage of physical memory defined by
7326          * zfs_dirty_data_max_percent (default 10%) with a cap at
7327          * zfs_dirty_data_max_max (default 4GB).
7328          */
7329         if (zfs_dirty_data_max == 0) {
7330                 zfs_dirty_data_max = physmem * PAGESIZE *
7331                     zfs_dirty_data_max_percent / 100;
7332                 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7333                     zfs_dirty_data_max_max);
7334         }
7335 }
7336 
7337 void
7338 arc_fini(void)
7339 {
7340         /* Use B_TRUE to ensure *all* buffers are evicted */
7341         arc_flush(NULL, B_TRUE);
7342 
7343         arc_initialized = B_FALSE;
7344 
7345         if (arc_ksp != NULL) {
7346                 kstat_delete(arc_ksp);
7347                 arc_ksp = NULL;
7348         }
7349 
7350         (void) zthr_cancel(arc_adjust_zthr);
7351         zthr_destroy(arc_adjust_zthr);
7352 
7353         (void) zthr_cancel(arc_reap_zthr);
7354         zthr_destroy(arc_reap_zthr);
7355 
7356         mutex_destroy(&arc_adjust_lock);
7357         cv_destroy(&arc_adjust_waiters_cv);
7358 
7359         /*
7360          * buf_fini() must proceed arc_state_fini() because buf_fin() may
7361          * trigger the release of kmem magazines, which can callback to
7362          * arc_space_return() which accesses aggsums freed in act_state_fini().
7363          */
7364         buf_fini();
7365         arc_state_fini();
7366 
7367         ASSERT0(arc_loaned_bytes);
7368 }
7369 
7370 /*
7371  * Level 2 ARC
7372  *
7373  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7374  * It uses dedicated storage devices to hold cached data, which are populated
7375  * using large infrequent writes.  The main role of this cache is to boost
7376  * the performance of random read workloads.  The intended L2ARC devices
7377  * include short-stroked disks, solid state disks, and other media with
7378  * substantially faster read latency than disk.
7379  *
7380  *                 +-----------------------+
7381  *                 |         ARC           |
7382  *                 +-----------------------+
7383  *                    |         ^     ^
7384  *                    |         |     |
7385  *      l2arc_feed_thread()    arc_read()
7386  *                    |         |     |
7387  *                    |  l2arc read   |
7388  *                    V         |     |
7389  *               +---------------+    |
7390  *               |     L2ARC     |    |
7391  *               +---------------+    |
7392  *                   |    ^           |
7393  *          l2arc_write() |           |
7394  *                   |    |           |
7395  *                   V    |           |
7396  *                 +-------+      +-------+
7397  *                 | vdev  |      | vdev  |
7398  *                 | cache |      | cache |
7399  *                 +-------+      +-------+
7400  *                 +=========+     .-----.
7401  *                 :  L2ARC  :    |-_____-|
7402  *                 : devices :    | Disks |
7403  *                 +=========+    `-_____-'
7404  *
7405  * Read requests are satisfied from the following sources, in order:
7406  *
7407  *      1) ARC
7408  *      2) vdev cache of L2ARC devices
7409  *      3) L2ARC devices
7410  *      4) vdev cache of disks
7411  *      5) disks
7412  *
7413  * Some L2ARC device types exhibit extremely slow write performance.
7414  * To accommodate for this there are some significant differences between
7415  * the L2ARC and traditional cache design:
7416  *
7417  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7418  * the ARC behave as usual, freeing buffers and placing headers on ghost
7419  * lists.  The ARC does not send buffers to the L2ARC during eviction as
7420  * this would add inflated write latencies for all ARC memory pressure.
7421  *
7422  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7423  * It does this by periodically scanning buffers from the eviction-end of
7424  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7425  * not already there. It scans until a headroom of buffers is satisfied,
7426  * which itself is a buffer for ARC eviction. If a compressible buffer is
7427  * found during scanning and selected for writing to an L2ARC device, we
7428  * temporarily boost scanning headroom during the next scan cycle to make
7429  * sure we adapt to compression effects (which might significantly reduce
7430  * the data volume we write to L2ARC). The thread that does this is
7431  * l2arc_feed_thread(), illustrated below; example sizes are included to
7432  * provide a better sense of ratio than this diagram:
7433  *
7434  *             head -->                        tail
7435  *              +---------------------+----------+
7436  *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7437  *              +---------------------+----------+   |   o L2ARC eligible
7438  *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7439  *              +---------------------+----------+   |
7440  *                   15.9 Gbytes      ^ 32 Mbytes    |
7441  *                                 headroom          |
7442  *                                            l2arc_feed_thread()
7443  *                                                   |
7444  *                       l2arc write hand <--[oooo]--'
7445  *                               |           8 Mbyte
7446  *                               |          write max
7447  *                               V
7448  *                +==============================+
7449  *      L2ARC dev |####|#|###|###|    |####| ... |
7450  *                +==============================+
7451  *                           32 Gbytes
7452  *
7453  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7454  * evicted, then the L2ARC has cached a buffer much sooner than it probably
7455  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7456  * safe to say that this is an uncommon case, since buffers at the end of
7457  * the ARC lists have moved there due to inactivity.
7458  *
7459  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7460  * then the L2ARC simply misses copying some buffers.  This serves as a
7461  * pressure valve to prevent heavy read workloads from both stalling the ARC
7462  * with waits and clogging the L2ARC with writes.  This also helps prevent
7463  * the potential for the L2ARC to churn if it attempts to cache content too
7464  * quickly, such as during backups of the entire pool.
7465  *
7466  * 5. After system boot and before the ARC has filled main memory, there are
7467  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7468  * lists can remain mostly static.  Instead of searching from tail of these
7469  * lists as pictured, the l2arc_feed_thread() will search from the list heads
7470  * for eligible buffers, greatly increasing its chance of finding them.
7471  *
7472  * The L2ARC device write speed is also boosted during this time so that
7473  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7474  * there are no L2ARC reads, and no fear of degrading read performance
7475  * through increased writes.
7476  *
7477  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7478  * the vdev queue can aggregate them into larger and fewer writes.  Each
7479  * device is written to in a rotor fashion, sweeping writes through
7480  * available space then repeating.
7481  *
7482  * 7. The L2ARC does not store dirty content.  It never needs to flush
7483  * write buffers back to disk based storage.
7484  *
7485  * 8. If an ARC buffer is written (and dirtied) which also exists in the
7486  * L2ARC, the now stale L2ARC buffer is immediately dropped.
7487  *
7488  * The performance of the L2ARC can be tweaked by a number of tunables, which
7489  * may be necessary for different workloads:
7490  *
7491  *      l2arc_write_max         max write bytes per interval
7492  *      l2arc_write_boost       extra write bytes during device warmup
7493  *      l2arc_noprefetch        skip caching prefetched buffers
7494  *      l2arc_headroom          number of max device writes to precache
7495  *      l2arc_headroom_boost    when we find compressed buffers during ARC
7496  *                              scanning, we multiply headroom by this
7497  *                              percentage factor for the next scan cycle,
7498  *                              since more compressed buffers are likely to
7499  *                              be present
7500  *      l2arc_feed_secs         seconds between L2ARC writing
7501  *
7502  * Tunables may be removed or added as future performance improvements are
7503  * integrated, and also may become zpool properties.
7504  *
7505  * There are three key functions that control how the L2ARC warms up:
7506  *
7507  *      l2arc_write_eligible()  check if a buffer is eligible to cache
7508  *      l2arc_write_size()      calculate how much to write
7509  *      l2arc_write_interval()  calculate sleep delay between writes
7510  *
7511  * These three functions determine what to write, how much, and how quickly
7512  * to send writes.
7513  *
7514  * L2ARC persistence:
7515  *
7516  * When writing buffers to L2ARC, we periodically add some metadata to
7517  * make sure we can pick them up after reboot, thus dramatically reducing
7518  * the impact that any downtime has on the performance of storage systems
7519  * with large caches.
7520  *
7521  * The implementation works fairly simply by integrating the following two
7522  * modifications:
7523  *
7524  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7525  *    which is an additional piece of metadata which describes what's been
7526  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
7527  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
7528  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
7529  *    time-wise and offset-wise interleaved, but that is an optimization rather
7530  *    than for correctness. The log block also includes a pointer to the
7531  *    previous block in its chain.
7532  *
7533  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7534  *    for our header bookkeeping purposes. This contains a device header,
7535  *    which contains our top-level reference structures. We update it each
7536  *    time we write a new log block, so that we're able to locate it in the
7537  *    L2ARC device. If this write results in an inconsistent device header
7538  *    (e.g. due to power failure), we detect this by verifying the header's
7539  *    checksum and simply fail to reconstruct the L2ARC after reboot.
7540  *
7541  * Implementation diagram:
7542  *
7543  * +=== L2ARC device (not to scale) ======================================+
7544  * |       ___two newest log block pointers__.__________                  |
7545  * |      /                                   \dh_start_lbps[1]           |
7546  * |     /                                     \         \dh_start_lbps[0]|
7547  * |.___/__.                                    V         V               |
7548  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7549  * ||   hdr|      ^         /^       /^        /         /                |
7550  * |+------+  ...--\-------/  \-----/--\------/         /                 |
7551  * |                \--------------/    \--------------/                  |
7552  * +======================================================================+
7553  *
7554  * As can be seen on the diagram, rather than using a simple linked list,
7555  * we use a pair of linked lists with alternating elements. This is a
7556  * performance enhancement due to the fact that we only find out the
7557  * address of the next log block access once the current block has been
7558  * completely read in. Obviously, this hurts performance, because we'd be
7559  * keeping the device's I/O queue at only a 1 operation deep, thus
7560  * incurring a large amount of I/O round-trip latency. Having two lists
7561  * allows us to fetch two log blocks ahead of where we are currently
7562  * rebuilding L2ARC buffers.
7563  *
7564  * On-device data structures:
7565  *
7566  * L2ARC device header: l2arc_dev_hdr_phys_t
7567  * L2ARC log block:     l2arc_log_blk_phys_t
7568  *
7569  * L2ARC reconstruction:
7570  *
7571  * When writing data, we simply write in the standard rotary fashion,
7572  * evicting buffers as we go and simply writing new data over them (writing
7573  * a new log block every now and then). This obviously means that once we
7574  * loop around the end of the device, we will start cutting into an already
7575  * committed log block (and its referenced data buffers), like so:
7576  *
7577  *    current write head__       __old tail
7578  *                        \     /
7579  *                        V    V
7580  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
7581  *                         ^    ^^^^^^^^^___________________________________
7582  *                         |                                                \
7583  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
7584  *
7585  * When importing the pool, we detect this situation and use it to stop
7586  * our scanning process (see l2arc_rebuild).
7587  *
7588  * There is one significant caveat to consider when rebuilding ARC contents
7589  * from an L2ARC device: what about invalidated buffers? Given the above
7590  * construction, we cannot update blocks which we've already written to amend
7591  * them to remove buffers which were invalidated. Thus, during reconstruction,
7592  * we might be populating the cache with buffers for data that's not on the
7593  * main pool anymore, or may have been overwritten!
7594  *
7595  * As it turns out, this isn't a problem. Every arc_read request includes
7596  * both the DVA and, crucially, the birth TXG of the BP the caller is
7597  * looking for. So even if the cache were populated by completely rotten
7598  * blocks for data that had been long deleted and/or overwritten, we'll
7599  * never actually return bad data from the cache, since the DVA with the
7600  * birth TXG uniquely identify a block in space and time - once created,
7601  * a block is immutable on disk. The worst thing we have done is wasted
7602  * some time and memory at l2arc rebuild to reconstruct outdated ARC
7603  * entries that will get dropped from the l2arc as it is being updated
7604  * with new blocks.
7605  *
7606  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
7607  * hand are not restored. This is done by saving the offset (in bytes)
7608  * l2arc_evict() has evicted to in the L2ARC device header and taking it
7609  * into account when restoring buffers.
7610  */
7611 
7612 static boolean_t
7613 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7614 {
7615         /*
7616          * A buffer is *not* eligible for the L2ARC if it:
7617          * 1. belongs to a different spa.
7618          * 2. is already cached on the L2ARC.
7619          * 3. has an I/O in progress (it may be an incomplete read).
7620          * 4. is flagged not eligible (zfs property).
7621          * 5. is a prefetch and l2arc_noprefetch is set.
7622          */
7623         if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7624             HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) ||
7625             (l2arc_noprefetch && HDR_PREFETCH(hdr)))
7626                 return (B_FALSE);
7627 
7628         return (B_TRUE);
7629 }
7630 
7631 static uint64_t
7632 l2arc_write_size(l2arc_dev_t *dev)
7633 {
7634         uint64_t size, dev_size;
7635 
7636         /*
7637          * Make sure our globals have meaningful values in case the user
7638          * altered them.
7639          */
7640         size = l2arc_write_max;
7641         if (size == 0) {
7642                 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7643                     "be greater than zero, resetting it to the default (%d)",
7644                     L2ARC_WRITE_SIZE);
7645                 size = l2arc_write_max = L2ARC_WRITE_SIZE;
7646         }
7647 
7648         if (arc_warm == B_FALSE)
7649                 size += l2arc_write_boost;
7650 
7651         /*
7652          * Make sure the write size does not exceed the size of the cache
7653          * device. This is important in l2arc_evict(), otherwise infinite
7654          * iteration can occur.
7655          */
7656         dev_size = dev->l2ad_end - dev->l2ad_start;
7657         if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) {
7658                 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
7659                     "plus the overhead of log blocks (persistent L2ARC, "
7660                     "%" PRIu64 " bytes) exceeds the size of the cache device "
7661                     "(guid %" PRIu64 "), resetting them to the default (%d)",
7662                     l2arc_log_blk_overhead(size, dev),
7663                     dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
7664                 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
7665 
7666                 if (arc_warm == B_FALSE)
7667                         size += l2arc_write_boost;
7668         }
7669 
7670         return (size);
7671 
7672 }
7673 
7674 static clock_t
7675 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7676 {
7677         clock_t interval, next, now;
7678 
7679         /*
7680          * If the ARC lists are busy, increase our write rate; if the
7681          * lists are stale, idle back.  This is achieved by checking
7682          * how much we previously wrote - if it was more than half of
7683          * what we wanted, schedule the next write much sooner.
7684          */
7685         if (l2arc_feed_again && wrote > (wanted / 2))
7686                 interval = (hz * l2arc_feed_min_ms) / 1000;
7687         else
7688                 interval = hz * l2arc_feed_secs;
7689 
7690         now = ddi_get_lbolt();
7691         next = MAX(now, MIN(now + interval, began + interval));
7692 
7693         return (next);
7694 }
7695 
7696 /*
7697  * Cycle through L2ARC devices.  This is how L2ARC load balances.
7698  * If a device is returned, this also returns holding the spa config lock.
7699  */
7700 static l2arc_dev_t *
7701 l2arc_dev_get_next(void)
7702 {
7703         l2arc_dev_t *first, *next = NULL;
7704 
7705         /*
7706          * Lock out the removal of spas (spa_namespace_lock), then removal
7707          * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7708          * both locks will be dropped and a spa config lock held instead.
7709          */
7710         mutex_enter(&spa_namespace_lock);
7711         mutex_enter(&l2arc_dev_mtx);
7712 
7713         /* if there are no vdevs, there is nothing to do */
7714         if (l2arc_ndev == 0)
7715                 goto out;
7716 
7717         first = NULL;
7718         next = l2arc_dev_last;
7719         do {
7720                 /* loop around the list looking for a non-faulted vdev */
7721                 if (next == NULL) {
7722                         next = list_head(l2arc_dev_list);
7723                 } else {
7724                         next = list_next(l2arc_dev_list, next);
7725                         if (next == NULL)
7726                                 next = list_head(l2arc_dev_list);
7727                 }
7728 
7729                 /* if we have come back to the start, bail out */
7730                 if (first == NULL)
7731                         first = next;
7732                 else if (next == first)
7733                         break;
7734 
7735         } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild);
7736 
7737         /* if we were unable to find any usable vdevs, return NULL */
7738         if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild)
7739                 next = NULL;
7740 
7741         l2arc_dev_last = next;
7742 
7743 out:
7744         mutex_exit(&l2arc_dev_mtx);
7745 
7746         /*
7747          * Grab the config lock to prevent the 'next' device from being
7748          * removed while we are writing to it.
7749          */
7750         if (next != NULL)
7751                 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7752         mutex_exit(&spa_namespace_lock);
7753 
7754         return (next);
7755 }
7756 
7757 /*
7758  * Free buffers that were tagged for destruction.
7759  */
7760 static void
7761 l2arc_do_free_on_write()
7762 {
7763         list_t *buflist;
7764         l2arc_data_free_t *df, *df_prev;
7765 
7766         mutex_enter(&l2arc_free_on_write_mtx);
7767         buflist = l2arc_free_on_write;
7768 
7769         for (df = list_tail(buflist); df; df = df_prev) {
7770                 df_prev = list_prev(buflist, df);
7771                 ASSERT3P(df->l2df_abd, !=, NULL);
7772                 abd_free(df->l2df_abd);
7773                 list_remove(buflist, df);
7774                 kmem_free(df, sizeof (l2arc_data_free_t));
7775         }
7776 
7777         mutex_exit(&l2arc_free_on_write_mtx);
7778 }
7779 
7780 /*
7781  * A write to a cache device has completed.  Update all headers to allow
7782  * reads from these buffers to begin.
7783  */
7784 static void
7785 l2arc_write_done(zio_t *zio)
7786 {
7787         l2arc_write_callback_t  *cb;
7788         l2arc_lb_abd_buf_t      *abd_buf;
7789         l2arc_lb_ptr_buf_t      *lb_ptr_buf;
7790         l2arc_dev_t             *dev;
7791         l2arc_dev_hdr_phys_t    *l2dhdr;
7792         list_t                  *buflist;
7793         arc_buf_hdr_t           *head, *hdr, *hdr_prev;
7794         kmutex_t                *hash_lock;
7795         int64_t                 bytes_dropped = 0;
7796 
7797         cb = zio->io_private;
7798         ASSERT3P(cb, !=, NULL);
7799         dev = cb->l2wcb_dev;
7800         l2dhdr = dev->l2ad_dev_hdr;
7801         ASSERT3P(dev, !=, NULL);
7802         head = cb->l2wcb_head;
7803         ASSERT3P(head, !=, NULL);
7804         buflist = &dev->l2ad_buflist;
7805         ASSERT3P(buflist, !=, NULL);
7806         DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7807             l2arc_write_callback_t *, cb);
7808 
7809         /*
7810          * All writes completed, or an error was hit.
7811          */
7812 top:
7813         mutex_enter(&dev->l2ad_mtx);
7814         for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7815                 hdr_prev = list_prev(buflist, hdr);
7816 
7817                 hash_lock = HDR_LOCK(hdr);
7818 
7819                 /*
7820                  * We cannot use mutex_enter or else we can deadlock
7821                  * with l2arc_write_buffers (due to swapping the order
7822                  * the hash lock and l2ad_mtx are taken).
7823                  */
7824                 if (!mutex_tryenter(hash_lock)) {
7825                         /*
7826                          * Missed the hash lock. We must retry so we
7827                          * don't leave the ARC_FLAG_L2_WRITING bit set.
7828                          */
7829                         ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7830 
7831                         /*
7832                          * We don't want to rescan the headers we've
7833                          * already marked as having been written out, so
7834                          * we reinsert the head node so we can pick up
7835                          * where we left off.
7836                          */
7837                         list_remove(buflist, head);
7838                         list_insert_after(buflist, hdr, head);
7839 
7840                         mutex_exit(&dev->l2ad_mtx);
7841 
7842                         /*
7843                          * We wait for the hash lock to become available
7844                          * to try and prevent busy waiting, and increase
7845                          * the chance we'll be able to acquire the lock
7846                          * the next time around.
7847                          */
7848                         mutex_enter(hash_lock);
7849                         mutex_exit(hash_lock);
7850                         goto top;
7851                 }
7852 
7853                 /*
7854                  * We could not have been moved into the arc_l2c_only
7855                  * state while in-flight due to our ARC_FLAG_L2_WRITING
7856                  * bit being set. Let's just ensure that's being enforced.
7857                  */
7858                 ASSERT(HDR_HAS_L1HDR(hdr));
7859 
7860                 if (zio->io_error != 0) {
7861                         /*
7862                          * Error - drop L2ARC entry.
7863                          */
7864                         list_remove(buflist, hdr);
7865                         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7866 
7867                         uint64_t psize = HDR_GET_PSIZE(hdr);
7868                         l2arc_hdr_arcstats_decrement(hdr);
7869 
7870                         bytes_dropped +=
7871                             vdev_psize_to_asize(dev->l2ad_vdev, psize);
7872                         (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
7873                             arc_hdr_size(hdr), hdr);
7874                 }
7875 
7876                 /*
7877                  * Allow ARC to begin reads and ghost list evictions to
7878                  * this L2ARC entry.
7879                  */
7880                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7881 
7882                 mutex_exit(hash_lock);
7883         }
7884 
7885         /*
7886          * Free the allocated abd buffers for writing the log blocks.
7887          * If the zio failed reclaim the allocated space and remove the
7888          * pointers to these log blocks from the log block pointer list
7889          * of the L2ARC device.
7890          */
7891         while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
7892                 abd_free(abd_buf->abd);
7893                 zio_buf_free(abd_buf, sizeof (*abd_buf));
7894                 if (zio->io_error != 0) {
7895                         lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
7896                         /*
7897                          * L2BLK_GET_PSIZE returns aligned size for log
7898                          * blocks.
7899                          */
7900                         uint64_t asize =
7901                             L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
7902                         bytes_dropped += asize;
7903                         ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
7904                         ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
7905                         zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
7906                             lb_ptr_buf);
7907                         zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
7908                         kmem_free(lb_ptr_buf->lb_ptr,
7909                             sizeof (l2arc_log_blkptr_t));
7910                         kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
7911                 }
7912         }
7913         list_destroy(&cb->l2wcb_abd_list);
7914 
7915         if (zio->io_error != 0) {
7916                 ARCSTAT_BUMP(arcstat_l2_writes_error);
7917 
7918                 /*
7919                  * Restore the lbps array in the header to its previous state.
7920                  * If the list of log block pointers is empty, zero out the
7921                  * log block pointers in the device header.
7922                  */
7923                 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
7924                 for (int i = 0; i < 2; i++) {
7925                         if (lb_ptr_buf == NULL) {
7926                                 /*
7927                                  * If the list is empty zero out the device
7928                                  * header. Otherwise zero out the second log
7929                                  * block pointer in the header.
7930                                  */
7931                                 if (i == 0) {
7932                                         bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
7933                                 } else {
7934                                         bzero(&l2dhdr->dh_start_lbps[i],
7935                                             sizeof (l2arc_log_blkptr_t));
7936                                 }
7937                                 break;
7938                         }
7939                         bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
7940                             sizeof (l2arc_log_blkptr_t));
7941                         lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
7942                             lb_ptr_buf);
7943                 }
7944         }
7945 
7946         atomic_inc_64(&l2arc_writes_done);
7947         list_remove(buflist, head);
7948         ASSERT(!HDR_HAS_L1HDR(head));
7949         kmem_cache_free(hdr_l2only_cache, head);
7950         mutex_exit(&dev->l2ad_mtx);
7951 
7952         ASSERT(dev->l2ad_vdev != NULL);
7953         vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7954 
7955         l2arc_do_free_on_write();
7956 
7957         kmem_free(cb, sizeof (l2arc_write_callback_t));
7958 }
7959 
7960 static int
7961 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
7962 {
7963         int ret;
7964         spa_t *spa = zio->io_spa;
7965         arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
7966         blkptr_t *bp = zio->io_bp;
7967         uint8_t salt[ZIO_DATA_SALT_LEN];
7968         uint8_t iv[ZIO_DATA_IV_LEN];
7969         uint8_t mac[ZIO_DATA_MAC_LEN];
7970         boolean_t no_crypt = B_FALSE;
7971 
7972         /*
7973          * ZIL data is never be written to the L2ARC, so we don't need
7974          * special handling for its unique MAC storage.
7975          */
7976         ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7977         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
7978         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7979 
7980         /*
7981          * If the data was encrypted, decrypt it now. Note that
7982          * we must check the bp here and not the hdr, since the
7983          * hdr does not have its encryption parameters updated
7984          * until arc_read_done().
7985          */
7986         if (BP_IS_ENCRYPTED(bp)) {
7987                 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
7988                     B_TRUE);
7989 
7990                 zio_crypt_decode_params_bp(bp, salt, iv);
7991                 zio_crypt_decode_mac_bp(bp, mac);
7992 
7993                 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
7994                     BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
7995                     salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
7996                     hdr->b_l1hdr.b_pabd, &no_crypt);
7997                 if (ret != 0) {
7998                         arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7999                         goto error;
8000                 }
8001 
8002                 /*
8003                  * If we actually performed decryption, replace b_pabd
8004                  * with the decrypted data. Otherwise we can just throw
8005                  * our decryption buffer away.
8006                  */
8007                 if (!no_crypt) {
8008                         arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8009                             arc_hdr_size(hdr), hdr);
8010                         hdr->b_l1hdr.b_pabd = eabd;
8011                         zio->io_abd = eabd;
8012                 } else {
8013                         arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8014                 }
8015         }
8016 
8017         /*
8018          * If the L2ARC block was compressed, but ARC compression
8019          * is disabled we decompress the data into a new buffer and
8020          * replace the existing data.
8021          */
8022         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8023             !HDR_COMPRESSION_ENABLED(hdr)) {
8024                 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8025                     B_TRUE);
8026                 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8027 
8028                 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8029                     hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8030                     HDR_GET_LSIZE(hdr));
8031                 if (ret != 0) {
8032                         abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8033                         arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8034                         goto error;
8035                 }
8036 
8037                 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8038                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8039                     arc_hdr_size(hdr), hdr);
8040                 hdr->b_l1hdr.b_pabd = cabd;
8041                 zio->io_abd = cabd;
8042                 zio->io_size = HDR_GET_LSIZE(hdr);
8043         }
8044 
8045         return (0);
8046 
8047 error:
8048         return (ret);
8049 }
8050 
8051 
8052 /*
8053  * A read to a cache device completed.  Validate buffer contents before
8054  * handing over to the regular ARC routines.
8055  */
8056 static void
8057 l2arc_read_done(zio_t *zio)
8058 {
8059         int tfm_error = 0;
8060         l2arc_read_callback_t *cb = zio->io_private;
8061         arc_buf_hdr_t *hdr;
8062         kmutex_t *hash_lock;
8063         boolean_t valid_cksum;
8064         boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8065             (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8066 
8067         ASSERT3P(zio->io_vd, !=, NULL);
8068         ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8069 
8070         spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8071 
8072         ASSERT3P(cb, !=, NULL);
8073         hdr = cb->l2rcb_hdr;
8074         ASSERT3P(hdr, !=, NULL);
8075 
8076         hash_lock = HDR_LOCK(hdr);
8077         mutex_enter(hash_lock);
8078         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8079 
8080         /*
8081          * If the data was read into a temporary buffer,
8082          * move it and free the buffer.
8083          */
8084         if (cb->l2rcb_abd != NULL) {
8085                 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8086                 if (zio->io_error == 0) {
8087                         if (using_rdata) {
8088                                 abd_copy(hdr->b_crypt_hdr.b_rabd,
8089                                     cb->l2rcb_abd, arc_hdr_size(hdr));
8090                         } else {
8091                                 abd_copy(hdr->b_l1hdr.b_pabd,
8092                                     cb->l2rcb_abd, arc_hdr_size(hdr));
8093                         }
8094                 }
8095 
8096                 /*
8097                  * The following must be done regardless of whether
8098                  * there was an error:
8099                  * - free the temporary buffer
8100                  * - point zio to the real ARC buffer
8101                  * - set zio size accordingly
8102                  * These are required because zio is either re-used for
8103                  * an I/O of the block in the case of the error
8104                  * or the zio is passed to arc_read_done() and it
8105                  * needs real data.
8106                  */
8107                 abd_free(cb->l2rcb_abd);
8108                 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8109 
8110                 if (using_rdata) {
8111                         ASSERT(HDR_HAS_RABD(hdr));
8112                         zio->io_abd = zio->io_orig_abd =
8113                             hdr->b_crypt_hdr.b_rabd;
8114                 } else {
8115                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8116                         zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8117                 }
8118         }
8119 
8120         ASSERT3P(zio->io_abd, !=, NULL);
8121 
8122         /*
8123          * Check this survived the L2ARC journey.
8124          */
8125         ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8126             (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8127         zio->io_bp_copy = cb->l2rcb_bp;   /* XXX fix in L2ARC 2.0 */
8128         zio->io_bp = &zio->io_bp_copy;        /* XXX fix in L2ARC 2.0 */
8129 
8130         valid_cksum = arc_cksum_is_equal(hdr, zio);
8131 
8132         /*
8133          * b_rabd will always match the data as it exists on disk if it is
8134          * being used. Therefore if we are reading into b_rabd we do not
8135          * attempt to untransform the data.
8136          */
8137         if (valid_cksum && !using_rdata)
8138                 tfm_error = l2arc_untransform(zio, cb);
8139 
8140         if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8141             !HDR_L2_EVICTED(hdr)) {
8142                 mutex_exit(hash_lock);
8143                 zio->io_private = hdr;
8144                 arc_read_done(zio);
8145         } else {
8146                 /*
8147                  * Buffer didn't survive caching.  Increment stats and
8148                  * reissue to the original storage device.
8149                  */
8150                 if (zio->io_error != 0) {
8151                         ARCSTAT_BUMP(arcstat_l2_io_error);
8152                 } else {
8153                         zio->io_error = SET_ERROR(EIO);
8154                 }
8155                 if (!valid_cksum || tfm_error != 0)
8156                         ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8157 
8158                 /*
8159                  * If there's no waiter, issue an async i/o to the primary
8160                  * storage now.  If there *is* a waiter, the caller must
8161                  * issue the i/o in a context where it's OK to block.
8162                  */
8163                 if (zio->io_waiter == NULL) {
8164                         zio_t *pio = zio_unique_parent(zio);
8165                         void *abd = (using_rdata) ?
8166                             hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8167 
8168                         ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8169 
8170                         zio = zio_read(pio, zio->io_spa, zio->io_bp,
8171                             abd, zio->io_size, arc_read_done,
8172                             hdr, zio->io_priority, cb->l2rcb_flags,
8173                             &cb->l2rcb_zb);
8174 
8175                         /*
8176                          * Original ZIO will be freed, so we need to update
8177                          * ARC header with the new ZIO pointer to be used
8178                          * by zio_change_priority() in arc_read().
8179                          */
8180                         for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8181                             acb != NULL; acb = acb->acb_next)
8182                                 acb->acb_zio_head = zio;
8183 
8184                         mutex_exit(hash_lock);
8185                         zio_nowait(zio);
8186                 } else {
8187                         mutex_exit(hash_lock);
8188                 }
8189         }
8190 
8191         kmem_free(cb, sizeof (l2arc_read_callback_t));
8192 }
8193 
8194 /*
8195  * This is the list priority from which the L2ARC will search for pages to
8196  * cache.  This is used within loops (0..3) to cycle through lists in the
8197  * desired order.  This order can have a significant effect on cache
8198  * performance.
8199  *
8200  * Currently the metadata lists are hit first, MFU then MRU, followed by
8201  * the data lists.  This function returns a locked list, and also returns
8202  * the lock pointer.
8203  */
8204 static multilist_sublist_t *
8205 l2arc_sublist_lock(int list_num)
8206 {
8207         multilist_t *ml = NULL;
8208         unsigned int idx;
8209 
8210         ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8211 
8212         switch (list_num) {
8213         case 0:
8214                 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
8215                 break;
8216         case 1:
8217                 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
8218                 break;
8219         case 2:
8220                 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
8221                 break;
8222         case 3:
8223                 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
8224                 break;
8225         default:
8226                 return (NULL);
8227         }
8228 
8229         /*
8230          * Return a randomly-selected sublist. This is acceptable
8231          * because the caller feeds only a little bit of data for each
8232          * call (8MB). Subsequent calls will result in different
8233          * sublists being selected.
8234          */
8235         idx = multilist_get_random_index(ml);
8236         return (multilist_sublist_lock(ml, idx));
8237 }
8238 
8239 /*
8240  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8241  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8242  * overhead in processing to make sure there is enough headroom available
8243  * when writing buffers.
8244  */
8245 static inline uint64_t
8246 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8247 {
8248         if (dev->l2ad_log_entries == 0) {
8249                 return (0);
8250         } else {
8251                 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8252 
8253                 uint64_t log_blocks = (log_entries +
8254                     dev->l2ad_log_entries - 1) /
8255                     dev->l2ad_log_entries;
8256 
8257                 return (vdev_psize_to_asize(dev->l2ad_vdev,
8258                     sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8259         }
8260 }
8261 
8262 /*
8263  * Evict buffers from the device write hand to the distance specified in
8264  * bytes. This distance may span populated buffers, it may span nothing.
8265  * This is clearing a region on the L2ARC device ready for writing.
8266  * If the 'all' boolean is set, every buffer is evicted.
8267  */
8268 static void
8269 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8270 {
8271         list_t *buflist;
8272         arc_buf_hdr_t *hdr, *hdr_prev;
8273         kmutex_t *hash_lock;
8274         uint64_t taddr;
8275         l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8276         boolean_t rerun;
8277 
8278         buflist = &dev->l2ad_buflist;
8279 
8280         /*
8281          * We need to add in the worst case scenario of log block overhead.
8282          */
8283         distance += l2arc_log_blk_overhead(distance, dev);
8284 
8285 top:
8286         rerun = B_FALSE;
8287         if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
8288                 /*
8289                  * When there is no space to accommodate upcoming writes,
8290                  * evict to the end. Then bump the write and evict hands
8291                  * to the start and iterate. This iteration does not
8292                  * happen indefinitely as we make sure in
8293                  * l2arc_write_size() that when the write hand is reset,
8294                  * the write size does not exceed the end of the device.
8295                  */
8296                 rerun = B_TRUE;
8297                 taddr = dev->l2ad_end;
8298         } else {
8299                 taddr = dev->l2ad_hand + distance;
8300         }
8301         DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8302             uint64_t, taddr, boolean_t, all);
8303 
8304         /*
8305          * This check has to be placed after deciding whether to iterate
8306          * (rerun).
8307          */
8308         if (!all && dev->l2ad_first) {
8309                 /*
8310                  * This is the first sweep through the device. There is
8311                  * nothing to evict.
8312                  */
8313                 goto out;
8314         }
8315 
8316         /*
8317          * When rebuilding L2ARC we retrieve the evict hand from the header of
8318          * the device. Of note, l2arc_evict() does not actually delete buffers
8319          * from the cache device, but keeping track of the evict hand will be
8320          * useful when TRIM is implemented.
8321          */
8322         dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8323 
8324 retry:
8325         mutex_enter(&dev->l2ad_mtx);
8326         /*
8327          * We have to account for evicted log blocks. Run vdev_space_update()
8328          * on log blocks whose offset (in bytes) is before the evicted offset
8329          * (in bytes) by searching in the list of pointers to log blocks
8330          * present in the L2ARC device.
8331          */
8332         for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8333             lb_ptr_buf = lb_ptr_buf_prev) {
8334 
8335                 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8336 
8337                 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
8338                 uint64_t asize = L2BLK_GET_PSIZE(
8339                     (lb_ptr_buf->lb_ptr)->lbp_prop);
8340 
8341                 /*
8342                  * We don't worry about log blocks left behind (ie
8343                  * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8344                  * will never write more than l2arc_evict() evicts.
8345                  */
8346                 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8347                         break;
8348                 } else {
8349                         vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
8350                         ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8351                         ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8352                         zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8353                             lb_ptr_buf);
8354                         zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8355                         list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8356                         kmem_free(lb_ptr_buf->lb_ptr,
8357                             sizeof (l2arc_log_blkptr_t));
8358                         kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8359                 }
8360         }
8361 
8362         for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8363                 hdr_prev = list_prev(buflist, hdr);
8364 
8365                 ASSERT(!HDR_EMPTY(hdr));
8366                 hash_lock = HDR_LOCK(hdr);
8367 
8368                 /*
8369                  * We cannot use mutex_enter or else we can deadlock
8370                  * with l2arc_write_buffers (due to swapping the order
8371                  * the hash lock and l2ad_mtx are taken).
8372                  */
8373                 if (!mutex_tryenter(hash_lock)) {
8374                         /*
8375                          * Missed the hash lock.  Retry.
8376                          */
8377                         ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8378                         mutex_exit(&dev->l2ad_mtx);
8379                         mutex_enter(hash_lock);
8380                         mutex_exit(hash_lock);
8381                         goto retry;
8382                 }
8383 
8384                 /*
8385                  * A header can't be on this list if it doesn't have L2 header.
8386                  */
8387                 ASSERT(HDR_HAS_L2HDR(hdr));
8388 
8389                 /* Ensure this header has finished being written. */
8390                 ASSERT(!HDR_L2_WRITING(hdr));
8391                 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8392 
8393                 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8394                     hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8395                         /*
8396                          * We've evicted to the target address,
8397                          * or the end of the device.
8398                          */
8399                         mutex_exit(hash_lock);
8400                         break;
8401                 }
8402 
8403                 if (!HDR_HAS_L1HDR(hdr)) {
8404                         ASSERT(!HDR_L2_READING(hdr));
8405                         /*
8406                          * This doesn't exist in the ARC.  Destroy.
8407                          * arc_hdr_destroy() will call list_remove()
8408                          * and decrement arcstat_l2_lsize.
8409                          */
8410                         arc_change_state(arc_anon, hdr, hash_lock);
8411                         arc_hdr_destroy(hdr);
8412                 } else {
8413                         ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8414                         ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8415                         /*
8416                          * Invalidate issued or about to be issued
8417                          * reads, since we may be about to write
8418                          * over this location.
8419                          */
8420                         if (HDR_L2_READING(hdr)) {
8421                                 ARCSTAT_BUMP(arcstat_l2_evict_reading);
8422                                 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8423                         }
8424 
8425                         arc_hdr_l2hdr_destroy(hdr);
8426                 }
8427                 mutex_exit(hash_lock);
8428         }
8429         mutex_exit(&dev->l2ad_mtx);
8430 
8431 out:
8432         /*
8433          * We need to check if we evict all buffers, otherwise we may iterate
8434          * unnecessarily.
8435          */
8436         if (!all && rerun) {
8437                 /*
8438                  * Bump device hand to the device start if it is approaching the
8439                  * end. l2arc_evict() has already evicted ahead for this case.
8440                  */
8441                 dev->l2ad_hand = dev->l2ad_start;
8442                 dev->l2ad_evict = dev->l2ad_start;
8443                 dev->l2ad_first = B_FALSE;
8444                 goto top;
8445         }
8446 
8447         ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8448         if (!dev->l2ad_first)
8449                 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
8450 }
8451 
8452 /*
8453  * Handle any abd transforms that might be required for writing to the L2ARC.
8454  * If successful, this function will always return an abd with the data
8455  * transformed as it is on disk in a new abd of asize bytes.
8456  */
8457 static int
8458 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8459     abd_t **abd_out)
8460 {
8461         int ret;
8462         void *tmp = NULL;
8463         abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8464         enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8465         uint64_t psize = HDR_GET_PSIZE(hdr);
8466         uint64_t size = arc_hdr_size(hdr);
8467         boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8468         boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8469         dsl_crypto_key_t *dck = NULL;
8470         uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8471         boolean_t no_crypt = B_FALSE;
8472 
8473         ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8474             !HDR_COMPRESSION_ENABLED(hdr)) ||
8475             HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8476         ASSERT3U(psize, <=, asize);
8477 
8478         /*
8479          * If this data simply needs its own buffer, we simply allocate it
8480          * and copy the data. This may be done to eliminate a dependency on a
8481          * shared buffer or to reallocate the buffer to match asize.
8482          */
8483         if (HDR_HAS_RABD(hdr) && asize != psize) {
8484                 ASSERT3U(asize, >=, psize);
8485                 to_write = abd_alloc_for_io(asize, ismd);
8486                 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8487                 if (psize != asize)
8488                         abd_zero_off(to_write, psize, asize - psize);
8489                 goto out;
8490         }
8491 
8492         if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8493             !HDR_ENCRYPTED(hdr)) {
8494                 ASSERT3U(size, ==, psize);
8495                 to_write = abd_alloc_for_io(asize, ismd);
8496                 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8497                 if (size != asize)
8498                         abd_zero_off(to_write, size, asize - size);
8499                 goto out;
8500         }
8501 
8502         if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8503                 cabd = abd_alloc_for_io(asize, ismd);
8504                 tmp = abd_borrow_buf(cabd, asize);
8505 
8506                 psize = zio_compress_data(compress, to_write, tmp, size);
8507                 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8508                 if (psize < asize)
8509                         bzero((char *)tmp + psize, asize - psize);
8510                 psize = HDR_GET_PSIZE(hdr);
8511                 abd_return_buf_copy(cabd, tmp, asize);
8512                 to_write = cabd;
8513         }
8514 
8515         if (HDR_ENCRYPTED(hdr)) {
8516                 eabd = abd_alloc_for_io(asize, ismd);
8517 
8518                 /*
8519                  * If the dataset was disowned before the buffer
8520                  * made it to this point, the key to re-encrypt
8521                  * it won't be available. In this case we simply
8522                  * won't write the buffer to the L2ARC.
8523                  */
8524                 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8525                     FTAG, &dck);
8526                 if (ret != 0)
8527                         goto error;
8528 
8529                 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8530                     hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8531                     hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8532                     &no_crypt);
8533                 if (ret != 0)
8534                         goto error;
8535 
8536                 if (no_crypt)
8537                         abd_copy(eabd, to_write, psize);
8538 
8539                 if (psize != asize)
8540                         abd_zero_off(eabd, psize, asize - psize);
8541 
8542                 /* assert that the MAC we got here matches the one we saved */
8543                 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8544                 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8545 
8546                 if (to_write == cabd)
8547                         abd_free(cabd);
8548 
8549                 to_write = eabd;
8550         }
8551 
8552 out:
8553         ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8554         *abd_out = to_write;
8555         return (0);
8556 
8557 error:
8558         if (dck != NULL)
8559                 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8560         if (cabd != NULL)
8561                 abd_free(cabd);
8562         if (eabd != NULL)
8563                 abd_free(eabd);
8564 
8565         *abd_out = NULL;
8566         return (ret);
8567 }
8568 
8569 static void
8570 l2arc_blk_fetch_done(zio_t *zio)
8571 {
8572         l2arc_read_callback_t *cb;
8573 
8574         cb = zio->io_private;
8575         if (cb->l2rcb_abd != NULL)
8576                 abd_put(cb->l2rcb_abd);
8577         kmem_free(cb, sizeof (l2arc_read_callback_t));
8578 }
8579 
8580 /*
8581  * Find and write ARC buffers to the L2ARC device.
8582  *
8583  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8584  * for reading until they have completed writing.
8585  * The headroom_boost is an in-out parameter used to maintain headroom boost
8586  * state between calls to this function.
8587  *
8588  * Returns the number of bytes actually written (which may be smaller than
8589  * the delta by which the device hand has changed due to alignment and the
8590  * writing of log blocks).
8591  */
8592 static uint64_t
8593 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8594 {
8595         arc_buf_hdr_t           *hdr, *hdr_prev, *head;
8596         uint64_t                write_asize, write_psize, write_lsize, headroom;
8597         boolean_t               full;
8598         l2arc_write_callback_t  *cb = NULL;
8599         zio_t                   *pio, *wzio;
8600         uint64_t                guid = spa_load_guid(spa);
8601         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
8602 
8603         ASSERT3P(dev->l2ad_vdev, !=, NULL);
8604 
8605         pio = NULL;
8606         write_lsize = write_asize = write_psize = 0;
8607         full = B_FALSE;
8608         head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8609         arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8610 
8611         /*
8612          * Copy buffers for L2ARC writing.
8613          */
8614         for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
8615                 /*
8616                  * If try == 1 or 3, we cache MRU metadata and data
8617                  * respectively.
8618                  */
8619                 if (l2arc_mfuonly) {
8620                         if (try == 1 || try == 3)
8621                                 continue;
8622                 }
8623 
8624                 multilist_sublist_t *mls = l2arc_sublist_lock(try);
8625                 uint64_t passed_sz = 0;
8626 
8627                 VERIFY3P(mls, !=, NULL);
8628 
8629                 /*
8630                  * L2ARC fast warmup.
8631                  *
8632                  * Until the ARC is warm and starts to evict, read from the
8633                  * head of the ARC lists rather than the tail.
8634                  */
8635                 if (arc_warm == B_FALSE)
8636                         hdr = multilist_sublist_head(mls);
8637                 else
8638                         hdr = multilist_sublist_tail(mls);
8639 
8640                 headroom = target_sz * l2arc_headroom;
8641                 if (zfs_compressed_arc_enabled)
8642                         headroom = (headroom * l2arc_headroom_boost) / 100;
8643 
8644                 for (; hdr; hdr = hdr_prev) {
8645                         kmutex_t *hash_lock;
8646                         abd_t *to_write = NULL;
8647 
8648                         if (arc_warm == B_FALSE)
8649                                 hdr_prev = multilist_sublist_next(mls, hdr);
8650                         else
8651                                 hdr_prev = multilist_sublist_prev(mls, hdr);
8652 
8653                         hash_lock = HDR_LOCK(hdr);
8654                         if (!mutex_tryenter(hash_lock)) {
8655                                 /*
8656                                  * Skip this buffer rather than waiting.
8657                                  */
8658                                 continue;
8659                         }
8660 
8661                         passed_sz += HDR_GET_LSIZE(hdr);
8662                         if (l2arc_headroom != 0 && passed_sz > headroom) {
8663                                 /*
8664                                  * Searched too far.
8665                                  */
8666                                 mutex_exit(hash_lock);
8667                                 break;
8668                         }
8669 
8670                         if (!l2arc_write_eligible(guid, hdr)) {
8671                                 mutex_exit(hash_lock);
8672                                 continue;
8673                         }
8674 
8675                         /*
8676                          * We rely on the L1 portion of the header below, so
8677                          * it's invalid for this header to have been evicted out
8678                          * of the ghost cache, prior to being written out. The
8679                          * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8680                          */
8681                         ASSERT(HDR_HAS_L1HDR(hdr));
8682 
8683                         ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8684                         ASSERT3U(arc_hdr_size(hdr), >, 0);
8685                         ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8686                             HDR_HAS_RABD(hdr));
8687                         uint64_t psize = HDR_GET_PSIZE(hdr);
8688                         uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8689                             psize);
8690 
8691                         if ((write_asize + asize) > target_sz) {
8692                                 full = B_TRUE;
8693                                 mutex_exit(hash_lock);
8694                                 break;
8695                         }
8696 
8697                         /*
8698                          * We rely on the L1 portion of the header below, so
8699                          * it's invalid for this header to have been evicted out
8700                          * of the ghost cache, prior to being written out. The
8701                          * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8702                          */
8703                         arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8704                         ASSERT(HDR_HAS_L1HDR(hdr));
8705 
8706                         ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8707                         ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8708                             HDR_HAS_RABD(hdr));
8709                         ASSERT3U(arc_hdr_size(hdr), >, 0);
8710 
8711                         /*
8712                          * If this header has b_rabd, we can use this since it
8713                          * must always match the data exactly as it exists on
8714                          * disk. Otherwise, the L2ARC can normally use the
8715                          * hdr's data, but if we're sharing data between the
8716                          * hdr and one of its bufs, L2ARC needs its own copy of
8717                          * the data so that the ZIO below can't race with the
8718                          * buf consumer. To ensure that this copy will be
8719                          * available for the lifetime of the ZIO and be cleaned
8720                          * up afterwards, we add it to the l2arc_free_on_write
8721                          * queue. If we need to apply any transforms to the
8722                          * data (compression, encryption) we will also need the
8723                          * extra buffer.
8724                          */
8725                         if (HDR_HAS_RABD(hdr) && psize == asize) {
8726                                 to_write = hdr->b_crypt_hdr.b_rabd;
8727                         } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8728                             HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8729                             !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8730                             psize == asize) {
8731                                 to_write = hdr->b_l1hdr.b_pabd;
8732                         } else {
8733                                 int ret;
8734                                 arc_buf_contents_t type = arc_buf_type(hdr);
8735 
8736                                 ret = l2arc_apply_transforms(spa, hdr, asize,
8737                                     &to_write);
8738                                 if (ret != 0) {
8739                                         arc_hdr_clear_flags(hdr,
8740                                             ARC_FLAG_L2_WRITING);
8741                                         mutex_exit(hash_lock);
8742                                         continue;
8743                                 }
8744 
8745                                 l2arc_free_abd_on_write(to_write, asize, type);
8746                         }
8747 
8748                         if (pio == NULL) {
8749                                 /*
8750                                  * Insert a dummy header on the buflist so
8751                                  * l2arc_write_done() can find where the
8752                                  * write buffers begin without searching.
8753                                  */
8754                                 mutex_enter(&dev->l2ad_mtx);
8755                                 list_insert_head(&dev->l2ad_buflist, head);
8756                                 mutex_exit(&dev->l2ad_mtx);
8757 
8758                                 cb = kmem_alloc(
8759                                     sizeof (l2arc_write_callback_t), KM_SLEEP);
8760                                 cb->l2wcb_dev = dev;
8761                                 cb->l2wcb_head = head;
8762                                 /*
8763                                  * Create a list to save allocated abd buffers
8764                                  * for l2arc_log_blk_commit().
8765                                  */
8766                                 list_create(&cb->l2wcb_abd_list,
8767                                     sizeof (l2arc_lb_abd_buf_t),
8768                                     offsetof(l2arc_lb_abd_buf_t, node));
8769                                 pio = zio_root(spa, l2arc_write_done, cb,
8770                                     ZIO_FLAG_CANFAIL);
8771                         }
8772 
8773                         hdr->b_l2hdr.b_dev = dev;
8774                         hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8775                         hdr->b_l2hdr.b_arcs_state =
8776                             hdr->b_l1hdr.b_state->arcs_state;
8777                         arc_hdr_set_flags(hdr,
8778                             ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
8779 
8780                         mutex_enter(&dev->l2ad_mtx);
8781                         list_insert_head(&dev->l2ad_buflist, hdr);
8782                         mutex_exit(&dev->l2ad_mtx);
8783 
8784                         (void) zfs_refcount_add_many(&dev->l2ad_alloc,
8785                             arc_hdr_size(hdr), hdr);
8786 
8787                         wzio = zio_write_phys(pio, dev->l2ad_vdev,
8788                             hdr->b_l2hdr.b_daddr, asize, to_write,
8789                             ZIO_CHECKSUM_OFF, NULL, hdr,
8790                             ZIO_PRIORITY_ASYNC_WRITE,
8791                             ZIO_FLAG_CANFAIL, B_FALSE);
8792 
8793                         write_lsize += HDR_GET_LSIZE(hdr);
8794                         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8795                             zio_t *, wzio);
8796 
8797                         write_psize += psize;
8798                         write_asize += asize;
8799                         dev->l2ad_hand += asize;
8800                         l2arc_hdr_arcstats_increment(hdr);
8801                         vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
8802 
8803                         mutex_exit(hash_lock);
8804 
8805                         /*
8806                          * Append buf info to current log and commit if full.
8807                          * arcstat_l2_{size,asize} kstats are updated
8808                          * internally.
8809                          */
8810                         if (l2arc_log_blk_insert(dev, hdr))
8811                                 l2arc_log_blk_commit(dev, pio, cb);
8812 
8813                         (void) zio_nowait(wzio);
8814                 }
8815 
8816                 multilist_sublist_unlock(mls);
8817 
8818                 if (full == B_TRUE)
8819                         break;
8820         }
8821 
8822         /* No buffers selected for writing? */
8823         if (pio == NULL) {
8824                 ASSERT0(write_lsize);
8825                 ASSERT(!HDR_HAS_L1HDR(head));
8826                 kmem_cache_free(hdr_l2only_cache, head);
8827 
8828                 /*
8829                  * Although we did not write any buffers l2ad_evict may
8830                  * have advanced.
8831                  */
8832                 if (dev->l2ad_evict != l2dhdr->dh_evict)
8833                         l2arc_dev_hdr_update(dev);
8834 
8835                 return (0);
8836         }
8837 
8838         if (!dev->l2ad_first)
8839                 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8840 
8841         ASSERT3U(write_asize, <=, target_sz);
8842         ARCSTAT_BUMP(arcstat_l2_writes_sent);
8843         ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8844 
8845         dev->l2ad_writing = B_TRUE;
8846         (void) zio_wait(pio);
8847         dev->l2ad_writing = B_FALSE;
8848 
8849         /*
8850          * Update the device header after the zio completes as
8851          * l2arc_write_done() may have updated the memory holding the log block
8852          * pointers in the device header.
8853          */
8854         l2arc_dev_hdr_update(dev);
8855 
8856         return (write_asize);
8857 }
8858 
8859 static boolean_t
8860 l2arc_hdr_limit_reached(void)
8861 {
8862         int64_t s = aggsum_upper_bound(&astat_l2_hdr_size);
8863 
8864         return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
8865             (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
8866 }
8867 
8868 /*
8869  * This thread feeds the L2ARC at regular intervals.  This is the beating
8870  * heart of the L2ARC.
8871  */
8872 /* ARGSUSED */
8873 static void
8874 l2arc_feed_thread(void *unused)
8875 {
8876         callb_cpr_t cpr;
8877         l2arc_dev_t *dev;
8878         spa_t *spa;
8879         uint64_t size, wrote;
8880         clock_t begin, next = ddi_get_lbolt();
8881 
8882         CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8883 
8884         mutex_enter(&l2arc_feed_thr_lock);
8885 
8886         while (l2arc_thread_exit == 0) {
8887                 CALLB_CPR_SAFE_BEGIN(&cpr);
8888                 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
8889                     next);
8890                 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8891                 next = ddi_get_lbolt() + hz;
8892 
8893                 /*
8894                  * Quick check for L2ARC devices.
8895                  */
8896                 mutex_enter(&l2arc_dev_mtx);
8897                 if (l2arc_ndev == 0) {
8898                         mutex_exit(&l2arc_dev_mtx);
8899                         continue;
8900                 }
8901                 mutex_exit(&l2arc_dev_mtx);
8902                 begin = ddi_get_lbolt();
8903 
8904                 /*
8905                  * This selects the next l2arc device to write to, and in
8906                  * doing so the next spa to feed from: dev->l2ad_spa.   This
8907                  * will return NULL if there are now no l2arc devices or if
8908                  * they are all faulted.
8909                  *
8910                  * If a device is returned, its spa's config lock is also
8911                  * held to prevent device removal.  l2arc_dev_get_next()
8912                  * will grab and release l2arc_dev_mtx.
8913                  */
8914                 if ((dev = l2arc_dev_get_next()) == NULL)
8915                         continue;
8916 
8917                 spa = dev->l2ad_spa;
8918                 ASSERT3P(spa, !=, NULL);
8919 
8920                 /*
8921                  * If the pool is read-only then force the feed thread to
8922                  * sleep a little longer.
8923                  */
8924                 if (!spa_writeable(spa)) {
8925                         next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8926                         spa_config_exit(spa, SCL_L2ARC, dev);
8927                         continue;
8928                 }
8929 
8930                 /*
8931                  * Avoid contributing to memory pressure.
8932                  */
8933                 if (l2arc_hdr_limit_reached()) {
8934                         ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8935                         spa_config_exit(spa, SCL_L2ARC, dev);
8936                         continue;
8937                 }
8938 
8939                 ARCSTAT_BUMP(arcstat_l2_feeds);
8940 
8941                 size = l2arc_write_size(dev);
8942 
8943                 /*
8944                  * Evict L2ARC buffers that will be overwritten.
8945                  */
8946                 l2arc_evict(dev, size, B_FALSE);
8947 
8948                 /*
8949                  * Write ARC buffers.
8950                  */
8951                 wrote = l2arc_write_buffers(spa, dev, size);
8952 
8953                 /*
8954                  * Calculate interval between writes.
8955                  */
8956                 next = l2arc_write_interval(begin, size, wrote);
8957                 spa_config_exit(spa, SCL_L2ARC, dev);
8958         }
8959 
8960         l2arc_thread_exit = 0;
8961         cv_broadcast(&l2arc_feed_thr_cv);
8962         CALLB_CPR_EXIT(&cpr);               /* drops l2arc_feed_thr_lock */
8963         thread_exit();
8964 }
8965 
8966 boolean_t
8967 l2arc_vdev_present(vdev_t *vd)
8968 {
8969         return (l2arc_vdev_get(vd) != NULL);
8970 }
8971 
8972 /*
8973  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
8974  * the vdev_t isn't an L2ARC device.
8975  */
8976 static l2arc_dev_t *
8977 l2arc_vdev_get(vdev_t *vd)
8978 {
8979         l2arc_dev_t     *dev;
8980 
8981         mutex_enter(&l2arc_dev_mtx);
8982         for (dev = list_head(l2arc_dev_list); dev != NULL;
8983             dev = list_next(l2arc_dev_list, dev)) {
8984                 if (dev->l2ad_vdev == vd)
8985                         break;
8986         }
8987         mutex_exit(&l2arc_dev_mtx);
8988 
8989         return (dev);
8990 }
8991 
8992 /*
8993  * Add a vdev for use by the L2ARC.  By this point the spa has already
8994  * validated the vdev and opened it.
8995  */
8996 void
8997 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8998 {
8999         l2arc_dev_t             *adddev;
9000         uint64_t                l2dhdr_asize;
9001 
9002         ASSERT(!l2arc_vdev_present(vd));
9003 
9004         /*
9005          * Create a new l2arc device entry.
9006          */
9007         adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9008         adddev->l2ad_spa = spa;
9009         adddev->l2ad_vdev = vd;
9010         /* leave extra size for an l2arc device header */
9011         l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9012             MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9013         adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9014         adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9015         ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9016         adddev->l2ad_hand = adddev->l2ad_start;
9017         adddev->l2ad_evict = adddev->l2ad_start;
9018         adddev->l2ad_first = B_TRUE;
9019         adddev->l2ad_writing = B_FALSE;
9020         adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9021 
9022         mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9023         /*
9024          * This is a list of all ARC buffers that are still valid on the
9025          * device.
9026          */
9027         list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9028             offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9029 
9030         /*
9031          * This is a list of pointers to log blocks that are still present
9032          * on the device.
9033          */
9034         list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9035             offsetof(l2arc_lb_ptr_buf_t, node));
9036 
9037         vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9038         zfs_refcount_create(&adddev->l2ad_alloc);
9039         zfs_refcount_create(&adddev->l2ad_lb_asize);
9040         zfs_refcount_create(&adddev->l2ad_lb_count);
9041 
9042         /*
9043          * Add device to global list
9044          */
9045         mutex_enter(&l2arc_dev_mtx);
9046         list_insert_head(l2arc_dev_list, adddev);
9047         atomic_inc_64(&l2arc_ndev);
9048         mutex_exit(&l2arc_dev_mtx);
9049 
9050         /*
9051          * Decide if vdev is eligible for L2ARC rebuild
9052          */
9053         l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE);
9054 }
9055 
9056 void
9057 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9058 {
9059         l2arc_dev_t             *dev = NULL;
9060         l2arc_dev_hdr_phys_t    *l2dhdr;
9061         uint64_t                l2dhdr_asize;
9062         spa_t                   *spa;
9063 
9064         dev = l2arc_vdev_get(vd);
9065         ASSERT3P(dev, !=, NULL);
9066         spa = dev->l2ad_spa;
9067         l2dhdr = dev->l2ad_dev_hdr;
9068         l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9069 
9070         /*
9071          * The L2ARC has to hold at least the payload of one log block for
9072          * them to be restored (persistent L2ARC). The payload of a log block
9073          * depends on the amount of its log entries. We always write log blocks
9074          * with 1022 entries. How many of them are committed or restored depends
9075          * on the size of the L2ARC device. Thus the maximum payload of
9076          * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9077          * is less than that, we reduce the amount of committed and restored
9078          * log entries per block so as to enable persistence.
9079          */
9080         if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9081                 dev->l2ad_log_entries = 0;
9082         } else {
9083                 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9084                     dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9085                     L2ARC_LOG_BLK_MAX_ENTRIES);
9086         }
9087 
9088         /*
9089          * Read the device header, if an error is returned do not rebuild L2ARC.
9090          */
9091         if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9092                 /*
9093                  * If we are onlining a cache device (vdev_reopen) that was
9094                  * still present (l2arc_vdev_present()) and rebuild is enabled,
9095                  * we should evict all ARC buffers and pointers to log blocks
9096                  * and reclaim their space before restoring its contents to
9097                  * L2ARC.
9098                  */
9099                 if (reopen) {
9100                         if (!l2arc_rebuild_enabled) {
9101                                 return;
9102                         } else {
9103                                 l2arc_evict(dev, 0, B_TRUE);
9104                                 /* start a new log block */
9105                                 dev->l2ad_log_ent_idx = 0;
9106                                 dev->l2ad_log_blk_payload_asize = 0;
9107                                 dev->l2ad_log_blk_payload_start = 0;
9108                         }
9109                 }
9110                 /*
9111                  * Just mark the device as pending for a rebuild. We won't
9112                  * be starting a rebuild in line here as it would block pool
9113                  * import. Instead spa_load_impl will hand that off to an
9114                  * async task which will call l2arc_spa_rebuild_start.
9115                  */
9116                 dev->l2ad_rebuild = B_TRUE;
9117         } else if (spa_writeable(spa)) {
9118                 /*
9119                  * In this case create a new header. We zero out the memory
9120                  * holding the header to reset dh_start_lbps.
9121                  */
9122                 bzero(l2dhdr, l2dhdr_asize);
9123                 l2arc_dev_hdr_update(dev);
9124         }
9125 }
9126 
9127 /*
9128  * Remove a vdev from the L2ARC.
9129  */
9130 void
9131 l2arc_remove_vdev(vdev_t *vd)
9132 {
9133         l2arc_dev_t *remdev = NULL;
9134 
9135         /*
9136          * Find the device by vdev
9137          */
9138         remdev = l2arc_vdev_get(vd);
9139         ASSERT3P(remdev, !=, NULL);
9140 
9141         /*
9142          * Cancel any ongoing or scheduled rebuild.
9143          */
9144         mutex_enter(&l2arc_rebuild_thr_lock);
9145         if (remdev->l2ad_rebuild_began == B_TRUE) {
9146                 remdev->l2ad_rebuild_cancel = B_TRUE;
9147                 while (remdev->l2ad_rebuild == B_TRUE)
9148                         cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9149         }
9150         mutex_exit(&l2arc_rebuild_thr_lock);
9151 
9152         /*
9153          * Remove device from global list
9154          */
9155         mutex_enter(&l2arc_dev_mtx);
9156         list_remove(l2arc_dev_list, remdev);
9157         l2arc_dev_last = NULL;          /* may have been invalidated */
9158         atomic_dec_64(&l2arc_ndev);
9159         mutex_exit(&l2arc_dev_mtx);
9160 
9161         /*
9162          * Clear all buflists and ARC references.  L2ARC device flush.
9163          */
9164         l2arc_evict(remdev, 0, B_TRUE);
9165         list_destroy(&remdev->l2ad_buflist);
9166         ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9167         list_destroy(&remdev->l2ad_lbptr_list);
9168         mutex_destroy(&remdev->l2ad_mtx);
9169         zfs_refcount_destroy(&remdev->l2ad_alloc);
9170         zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9171         zfs_refcount_destroy(&remdev->l2ad_lb_count);
9172         kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9173         kmem_free(remdev, sizeof (l2arc_dev_t));
9174 }
9175 
9176 void
9177 l2arc_init(void)
9178 {
9179         l2arc_thread_exit = 0;
9180         l2arc_ndev = 0;
9181         l2arc_writes_sent = 0;
9182         l2arc_writes_done = 0;
9183 
9184         mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9185         cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9186         mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9187         cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9188         mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9189         mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9190 
9191         l2arc_dev_list = &L2ARC_dev_list;
9192         l2arc_free_on_write = &L2ARC_free_on_write;
9193         list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9194             offsetof(l2arc_dev_t, l2ad_node));
9195         list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9196             offsetof(l2arc_data_free_t, l2df_list_node));
9197 }
9198 
9199 void
9200 l2arc_fini(void)
9201 {
9202         /*
9203          * This is called from dmu_fini(), which is called from spa_fini();
9204          * Because of this, we can assume that all l2arc devices have
9205          * already been removed when the pools themselves were removed.
9206          */
9207 
9208         l2arc_do_free_on_write();
9209 
9210         mutex_destroy(&l2arc_feed_thr_lock);
9211         cv_destroy(&l2arc_feed_thr_cv);
9212         mutex_destroy(&l2arc_rebuild_thr_lock);
9213         cv_destroy(&l2arc_rebuild_thr_cv);
9214         mutex_destroy(&l2arc_dev_mtx);
9215         mutex_destroy(&l2arc_free_on_write_mtx);
9216 
9217         list_destroy(l2arc_dev_list);
9218         list_destroy(l2arc_free_on_write);
9219 }
9220 
9221 void
9222 l2arc_start(void)
9223 {
9224         if (!(spa_mode_global & FWRITE))
9225                 return;
9226 
9227         (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9228             TS_RUN, minclsyspri);
9229 }
9230 
9231 void
9232 l2arc_stop(void)
9233 {
9234         if (!(spa_mode_global & FWRITE))
9235                 return;
9236 
9237         mutex_enter(&l2arc_feed_thr_lock);
9238         cv_signal(&l2arc_feed_thr_cv);      /* kick thread out of startup */
9239         l2arc_thread_exit = 1;
9240         while (l2arc_thread_exit != 0)
9241                 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9242         mutex_exit(&l2arc_feed_thr_lock);
9243 }
9244 
9245 /*
9246  * Punches out rebuild threads for the L2ARC devices in a spa. This should
9247  * be called after pool import from the spa async thread, since starting
9248  * these threads directly from spa_import() will make them part of the
9249  * "zpool import" context and delay process exit (and thus pool import).
9250  */
9251 void
9252 l2arc_spa_rebuild_start(spa_t *spa)
9253 {
9254         ASSERT(MUTEX_HELD(&spa_namespace_lock));
9255 
9256         /*
9257          * Locate the spa's l2arc devices and kick off rebuild threads.
9258          */
9259         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9260                 l2arc_dev_t *dev =
9261                     l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9262                 if (dev == NULL) {
9263                         /* Don't attempt a rebuild if the vdev is UNAVAIL */
9264                         continue;
9265                 }
9266                 mutex_enter(&l2arc_rebuild_thr_lock);
9267                 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9268                         dev->l2ad_rebuild_began = B_TRUE;
9269                         (void) thread_create(NULL, 0,
9270                             (void (*)(void *))l2arc_dev_rebuild_start,
9271                             dev, 0, &p0, TS_RUN, minclsyspri);
9272                 }
9273                 mutex_exit(&l2arc_rebuild_thr_lock);
9274         }
9275 }
9276 
9277 /*
9278  * Main entry point for L2ARC rebuilding.
9279  */
9280 static void
9281 l2arc_dev_rebuild_start(l2arc_dev_t *dev)
9282 {
9283         VERIFY(!dev->l2ad_rebuild_cancel);
9284         VERIFY(dev->l2ad_rebuild);
9285         (void) l2arc_rebuild(dev);
9286         mutex_enter(&l2arc_rebuild_thr_lock);
9287         dev->l2ad_rebuild_began = B_FALSE;
9288         dev->l2ad_rebuild = B_FALSE;
9289         mutex_exit(&l2arc_rebuild_thr_lock);
9290 
9291         thread_exit();
9292 }
9293 
9294 /*
9295  * This function implements the actual L2ARC metadata rebuild. It:
9296  * starts reading the log block chain and restores each block's contents
9297  * to memory (reconstructing arc_buf_hdr_t's).
9298  *
9299  * Operation stops under any of the following conditions:
9300  *
9301  * 1) We reach the end of the log block chain.
9302  * 2) We encounter *any* error condition (cksum errors, io errors)
9303  */
9304 static int
9305 l2arc_rebuild(l2arc_dev_t *dev)
9306 {
9307         vdev_t                  *vd = dev->l2ad_vdev;
9308         spa_t                   *spa = vd->vdev_spa;
9309         int                     err = 0;
9310         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9311         l2arc_log_blk_phys_t    *this_lb, *next_lb;
9312         zio_t                   *this_io = NULL, *next_io = NULL;
9313         l2arc_log_blkptr_t      lbps[2];
9314         l2arc_lb_ptr_buf_t      *lb_ptr_buf;
9315         boolean_t               lock_held;
9316 
9317         this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9318         next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9319 
9320         /*
9321          * We prevent device removal while issuing reads to the device,
9322          * then during the rebuilding phases we drop this lock again so
9323          * that a spa_unload or device remove can be initiated - this is
9324          * safe, because the spa will signal us to stop before removing
9325          * our device and wait for us to stop.
9326          */
9327         spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9328         lock_held = B_TRUE;
9329 
9330         /*
9331          * Retrieve the persistent L2ARC device state.
9332          * L2BLK_GET_PSIZE returns aligned size for log blocks.
9333          */
9334         dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9335         dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9336             L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9337             dev->l2ad_start);
9338         dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9339 
9340         /*
9341          * In case the zfs module parameter l2arc_rebuild_enabled is false
9342          * we do not start the rebuild process.
9343          */
9344         if (!l2arc_rebuild_enabled)
9345                 goto out;
9346 
9347         /* Prepare the rebuild process */
9348         bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
9349 
9350         /* Start the rebuild process */
9351         for (;;) {
9352                 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9353                         break;
9354 
9355                 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9356                     this_lb, next_lb, this_io, &next_io)) != 0)
9357                         goto out;
9358 
9359                 /*
9360                  * Our memory pressure valve. If the system is running low
9361                  * on memory, rather than swamping memory with new ARC buf
9362                  * hdrs, we opt not to rebuild the L2ARC. At this point,
9363                  * however, we have already set up our L2ARC dev to chain in
9364                  * new metadata log blocks, so the user may choose to offline/
9365                  * online the L2ARC dev at a later time (or re-import the pool)
9366                  * to reconstruct it (when there's less memory pressure).
9367                  */
9368                 if (l2arc_hdr_limit_reached()) {
9369                         ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9370                         cmn_err(CE_NOTE, "System running low on memory, "
9371                             "aborting L2ARC rebuild.");
9372                         err = SET_ERROR(ENOMEM);
9373                         goto out;
9374                 }
9375 
9376                 spa_config_exit(spa, SCL_L2ARC, vd);
9377                 lock_held = B_FALSE;
9378 
9379                 /*
9380                  * Now that we know that the next_lb checks out alright, we
9381                  * can start reconstruction from this log block.
9382                  * L2BLK_GET_PSIZE returns aligned size for log blocks.
9383                  */
9384                 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9385                 l2arc_log_blk_restore(dev, this_lb, asize);
9386 
9387                 /*
9388                  * log block restored, include its pointer in the list of
9389                  * pointers to log blocks present in the L2ARC device.
9390                  */
9391                 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9392                 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9393                     KM_SLEEP);
9394                 bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
9395                     sizeof (l2arc_log_blkptr_t));
9396                 mutex_enter(&dev->l2ad_mtx);
9397                 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9398                 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9399                 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9400                 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9401                 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9402                 mutex_exit(&dev->l2ad_mtx);
9403                 vdev_space_update(vd, asize, 0, 0);
9404 
9405                 /* BEGIN CSTYLED */
9406                 /*
9407                  * Protection against loops of log blocks:
9408                  *
9409                  *                                     l2ad_hand  l2ad_evict
9410                  *                                         V          V
9411                  * l2ad_start |=======================================| l2ad_end
9412                  *             -----|||----|||---|||----|||
9413                  *                  (3)    (2)   (1)    (0)
9414                  *             ---|||---|||----|||---|||
9415                  *                (7)   (6)    (5)   (4)
9416                  *
9417                  * In this situation the pointer of log block (4) passes
9418                  * l2arc_log_blkptr_valid() but the log block should not be
9419                  * restored as it is overwritten by the payload of log block
9420                  * (0). Only log blocks (0)-(3) should be restored. We check
9421                  * whether l2ad_evict lies in between the payload starting
9422                  * offset of the next log block (lbps[1].lbp_payload_start)
9423                  * and the payload starting offset of the present log block
9424                  * (lbps[0].lbp_payload_start). If true and this isn't the
9425                  * first pass, we are looping from the beginning and we should
9426                  * stop.
9427                  */
9428                 /* END CSTYLED */
9429                 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9430                     lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9431                     !dev->l2ad_first)
9432                         goto out;
9433 
9434                 for (;;) {
9435                         mutex_enter(&l2arc_rebuild_thr_lock);
9436                         if (dev->l2ad_rebuild_cancel) {
9437                                 dev->l2ad_rebuild = B_FALSE;
9438                                 cv_signal(&l2arc_rebuild_thr_cv);
9439                                 mutex_exit(&l2arc_rebuild_thr_lock);
9440                                 err = SET_ERROR(ECANCELED);
9441                                 goto out;
9442                         }
9443                         mutex_exit(&l2arc_rebuild_thr_lock);
9444                         if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9445                             RW_READER)) {
9446                                 lock_held = B_TRUE;
9447                                 break;
9448                         }
9449                         /*
9450                          * L2ARC config lock held by somebody in writer,
9451                          * possibly due to them trying to remove us. They'll
9452                          * likely to want us to shut down, so after a little
9453                          * delay, we check l2ad_rebuild_cancel and retry
9454                          * the lock again.
9455                          */
9456                         delay(1);
9457                 }
9458 
9459                 /*
9460                  * Continue with the next log block.
9461                  */
9462                 lbps[0] = lbps[1];
9463                 lbps[1] = this_lb->lb_prev_lbp;
9464                 PTR_SWAP(this_lb, next_lb);
9465                 this_io = next_io;
9466                 next_io = NULL;
9467         }
9468 
9469         if (this_io != NULL)
9470                 l2arc_log_blk_fetch_abort(this_io);
9471 out:
9472         if (next_io != NULL)
9473                 l2arc_log_blk_fetch_abort(next_io);
9474         kmem_free(this_lb, sizeof (*this_lb));
9475         kmem_free(next_lb, sizeof (*next_lb));
9476 
9477         if (!l2arc_rebuild_enabled) {
9478                 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9479                     "disabled");
9480         } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9481                 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9482                 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9483                     "successful, restored %llu blocks",
9484                     (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9485         } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9486                 /*
9487                  * No error but also nothing restored, meaning the lbps array
9488                  * in the device header points to invalid/non-present log
9489                  * blocks. Reset the header.
9490                  */
9491                 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9492                     "no valid log blocks");
9493                 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
9494                 l2arc_dev_hdr_update(dev);
9495         } else if (err == ECANCELED) {
9496                 /*
9497                  * In case the rebuild was canceled do not log to spa history
9498                  * log as the pool may be in the process of being removed.
9499                  */
9500                 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
9501                     zfs_refcount_count(&dev->l2ad_lb_count));
9502         } else if (err != 0) {
9503                 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9504                     "aborted, restored %llu blocks",
9505                     (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9506         }
9507 
9508         if (lock_held)
9509                 spa_config_exit(spa, SCL_L2ARC, vd);
9510 
9511         return (err);
9512 }
9513 
9514 /*
9515  * Attempts to read the device header on the provided L2ARC device and writes
9516  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9517  * error code is returned.
9518  */
9519 static int
9520 l2arc_dev_hdr_read(l2arc_dev_t *dev)
9521 {
9522         int                     err;
9523         uint64_t                guid;
9524         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9525         const uint64_t          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9526         abd_t                   *abd;
9527 
9528         guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9529 
9530         abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9531 
9532         err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
9533             VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
9534             ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
9535             ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9536             ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9537             ZIO_FLAG_SPECULATIVE, B_FALSE));
9538 
9539         abd_put(abd);
9540 
9541         if (err != 0) {
9542                 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
9543                 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
9544                     "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9545                 return (err);
9546         }
9547 
9548         if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
9549                 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
9550 
9551         if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
9552             l2dhdr->dh_spa_guid != guid ||
9553             l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
9554             l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
9555             l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
9556             l2dhdr->dh_end != dev->l2ad_end ||
9557             !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
9558             l2dhdr->dh_evict)) {
9559                 /*
9560                  * Attempt to rebuild a device containing no actual dev hdr
9561                  * or containing a header from some other pool or from another
9562                  * version of persistent L2ARC.
9563                  */
9564                 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
9565                 return (SET_ERROR(ENOTSUP));
9566         }
9567 
9568         return (0);
9569 }
9570 
9571 /*
9572  * Reads L2ARC log blocks from storage and validates their contents.
9573  *
9574  * This function implements a simple fetcher to make sure that while
9575  * we're processing one buffer the L2ARC is already fetching the next
9576  * one in the chain.
9577  *
9578  * The arguments this_lp and next_lp point to the current and next log block
9579  * address in the block chain. Similarly, this_lb and next_lb hold the
9580  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
9581  *
9582  * The `this_io' and `next_io' arguments are used for block fetching.
9583  * When issuing the first blk IO during rebuild, you should pass NULL for
9584  * `this_io'. This function will then issue a sync IO to read the block and
9585  * also issue an async IO to fetch the next block in the block chain. The
9586  * fetched IO is returned in `next_io'. On subsequent calls to this
9587  * function, pass the value returned in `next_io' from the previous call
9588  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
9589  * Prior to the call, you should initialize your `next_io' pointer to be
9590  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
9591  *
9592  * On success, this function returns 0, otherwise it returns an appropriate
9593  * error code. On error the fetching IO is aborted and cleared before
9594  * returning from this function. Therefore, if we return `success', the
9595  * caller can assume that we have taken care of cleanup of fetch IOs.
9596  */
9597 static int
9598 l2arc_log_blk_read(l2arc_dev_t *dev,
9599     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
9600     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
9601     zio_t *this_io, zio_t **next_io)
9602 {
9603         int             err = 0;
9604         zio_cksum_t     cksum;
9605         abd_t           *abd = NULL;
9606         uint64_t        asize;
9607 
9608         ASSERT(this_lbp != NULL && next_lbp != NULL);
9609         ASSERT(this_lb != NULL && next_lb != NULL);
9610         ASSERT(next_io != NULL && *next_io == NULL);
9611         ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
9612 
9613         /*
9614          * Check to see if we have issued the IO for this log block in a
9615          * previous run. If not, this is the first call, so issue it now.
9616          */
9617         if (this_io == NULL) {
9618                 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
9619                     this_lb);
9620         }
9621 
9622         /*
9623          * Peek to see if we can start issuing the next IO immediately.
9624          */
9625         if (l2arc_log_blkptr_valid(dev, next_lbp)) {
9626                 /*
9627                  * Start issuing IO for the next log block early - this
9628                  * should help keep the L2ARC device busy while we
9629                  * decompress and restore this log block.
9630                  */
9631                 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
9632                     next_lb);
9633         }
9634 
9635         /* Wait for the IO to read this log block to complete */
9636         if ((err = zio_wait(this_io)) != 0) {
9637                 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
9638                 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
9639                     "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr,
9640                     dev->l2ad_vdev->vdev_guid);
9641                 goto cleanup;
9642         }
9643 
9644         /*
9645          * Make sure the buffer checks out.
9646          * L2BLK_GET_PSIZE returns aligned size for log blocks.
9647          */
9648         asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
9649         fletcher_4_native(this_lb, asize, NULL, &cksum);
9650         if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
9651                 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
9652                 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
9653                     "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
9654                     this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid,
9655                     dev->l2ad_hand, dev->l2ad_evict);
9656                 err = SET_ERROR(ECKSUM);
9657                 goto cleanup;
9658         }
9659 
9660         /* Now we can take our time decoding this buffer */
9661         switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
9662         case ZIO_COMPRESS_OFF:
9663                 break;
9664         case ZIO_COMPRESS_LZ4:
9665                 abd = abd_alloc_for_io(asize, B_TRUE);
9666                 abd_copy_from_buf_off(abd, this_lb, 0, asize);
9667                 if ((err = zio_decompress_data(
9668                     L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
9669                     abd, this_lb, asize, sizeof (*this_lb))) != 0) {
9670                         err = SET_ERROR(EINVAL);
9671                         goto cleanup;
9672                 }
9673                 break;
9674         default:
9675                 err = SET_ERROR(EINVAL);
9676                 goto cleanup;
9677         }
9678         if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
9679                 byteswap_uint64_array(this_lb, sizeof (*this_lb));
9680         if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
9681                 err = SET_ERROR(EINVAL);
9682                 goto cleanup;
9683         }
9684 cleanup:
9685         /* Abort an in-flight fetch I/O in case of error */
9686         if (err != 0 && *next_io != NULL) {
9687                 l2arc_log_blk_fetch_abort(*next_io);
9688                 *next_io = NULL;
9689         }
9690         if (abd != NULL)
9691                 abd_free(abd);
9692         return (err);
9693 }
9694 
9695 /*
9696  * Restores the payload of a log block to ARC. This creates empty ARC hdr
9697  * entries which only contain an l2arc hdr, essentially restoring the
9698  * buffers to their L2ARC evicted state. This function also updates space
9699  * usage on the L2ARC vdev to make sure it tracks restored buffers.
9700  */
9701 static void
9702 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
9703     uint64_t lb_asize)
9704 {
9705         uint64_t        size = 0, asize = 0;
9706         uint64_t        log_entries = dev->l2ad_log_entries;
9707 
9708         /*
9709          * Usually arc_adapt() is called only for data, not headers, but
9710          * since we may allocate significant amount of memory here, let ARC
9711          * grow its arc_c.
9712          */
9713         arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
9714 
9715         for (int i = log_entries - 1; i >= 0; i--) {
9716                 /*
9717                  * Restore goes in the reverse temporal direction to preserve
9718                  * correct temporal ordering of buffers in the l2ad_buflist.
9719                  * l2arc_hdr_restore also does a list_insert_tail instead of
9720                  * list_insert_head on the l2ad_buflist:
9721                  *
9722                  *              LIST    l2ad_buflist            LIST
9723                  *              HEAD  <------ (time) ------  TAIL
9724                  * direction    +-----+-----+-----+-----+-----+    direction
9725                  * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
9726                  * fill         +-----+-----+-----+-----+-----+
9727                  *              ^                               ^
9728                  *              |                               |
9729                  *              |                               |
9730                  *      l2arc_feed_thread               l2arc_rebuild
9731                  *      will place new bufs here        restores bufs here
9732                  *
9733                  * During l2arc_rebuild() the device is not used by
9734                  * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
9735                  */
9736                 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
9737                 asize += vdev_psize_to_asize(dev->l2ad_vdev,
9738                     L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
9739                 l2arc_hdr_restore(&lb->lb_entries[i], dev);
9740         }
9741 
9742         /*
9743          * Record rebuild stats:
9744          *      size            Logical size of restored buffers in the L2ARC
9745          *      asize           Aligned size of restored buffers in the L2ARC
9746          */
9747         ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
9748         ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
9749         ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
9750         ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
9751         ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
9752         ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
9753 }
9754 
9755 /*
9756  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
9757  * into a state indicating that it has been evicted to L2ARC.
9758  */
9759 static void
9760 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
9761 {
9762         arc_buf_hdr_t           *hdr, *exists;
9763         kmutex_t                *hash_lock;
9764         arc_buf_contents_t      type = L2BLK_GET_TYPE((le)->le_prop);
9765         uint64_t                asize;
9766 
9767         /*
9768          * Do all the allocation before grabbing any locks, this lets us
9769          * sleep if memory is full and we don't have to deal with failed
9770          * allocations.
9771          */
9772         hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
9773             dev, le->le_dva, le->le_daddr,
9774             L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
9775             L2BLK_GET_COMPRESS((le)->le_prop),
9776             L2BLK_GET_PROTECTED((le)->le_prop),
9777             L2BLK_GET_PREFETCH((le)->le_prop),
9778             L2BLK_GET_STATE((le)->le_prop));
9779         asize = vdev_psize_to_asize(dev->l2ad_vdev,
9780             L2BLK_GET_PSIZE((le)->le_prop));
9781 
9782         /*
9783          * vdev_space_update() has to be called before arc_hdr_destroy() to
9784          * avoid underflow since the latter also calls vdev_space_update().
9785          */
9786         l2arc_hdr_arcstats_increment(hdr);
9787         vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9788 
9789         mutex_enter(&dev->l2ad_mtx);
9790         list_insert_tail(&dev->l2ad_buflist, hdr);
9791         (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
9792         mutex_exit(&dev->l2ad_mtx);
9793 
9794         exists = buf_hash_insert(hdr, &hash_lock);
9795         if (exists) {
9796                 /* Buffer was already cached, no need to restore it. */
9797                 arc_hdr_destroy(hdr);
9798                 /*
9799                  * If the buffer is already cached, check whether it has
9800                  * L2ARC metadata. If not, enter them and update the flag.
9801                  * This is important is case of onlining a cache device, since
9802                  * we previously evicted all L2ARC metadata from ARC.
9803                  */
9804                 if (!HDR_HAS_L2HDR(exists)) {
9805                         arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
9806                         exists->b_l2hdr.b_dev = dev;
9807                         exists->b_l2hdr.b_daddr = le->le_daddr;
9808                         exists->b_l2hdr.b_arcs_state =
9809                             L2BLK_GET_STATE((le)->le_prop);
9810                         mutex_enter(&dev->l2ad_mtx);
9811                         list_insert_tail(&dev->l2ad_buflist, exists);
9812                         (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9813                             arc_hdr_size(exists), exists);
9814                         mutex_exit(&dev->l2ad_mtx);
9815                         l2arc_hdr_arcstats_increment(exists);
9816                         vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9817                 }
9818                 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
9819         }
9820 
9821         mutex_exit(hash_lock);
9822 }
9823 
9824 /*
9825  * Starts an asynchronous read IO to read a log block. This is used in log
9826  * block reconstruction to start reading the next block before we are done
9827  * decoding and reconstructing the current block, to keep the l2arc device
9828  * nice and hot with read IO to process.
9829  * The returned zio will contain newly allocated memory buffers for the IO
9830  * data which should then be freed by the caller once the zio is no longer
9831  * needed (i.e. due to it having completed). If you wish to abort this
9832  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
9833  * care of disposing of the allocated buffers correctly.
9834  */
9835 static zio_t *
9836 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
9837     l2arc_log_blk_phys_t *lb)
9838 {
9839         uint32_t                asize;
9840         zio_t                   *pio;
9841         l2arc_read_callback_t   *cb;
9842 
9843         /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9844         asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
9845         ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
9846 
9847         cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
9848         cb->l2rcb_abd = abd_get_from_buf(lb, asize);
9849         pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
9850             ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
9851             ZIO_FLAG_DONT_RETRY);
9852         (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
9853             cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9854             ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9855             ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
9856 
9857         return (pio);
9858 }
9859 
9860 /*
9861  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
9862  * buffers allocated for it.
9863  */
9864 static void
9865 l2arc_log_blk_fetch_abort(zio_t *zio)
9866 {
9867         (void) zio_wait(zio);
9868 }
9869 
9870 /*
9871  * Creates a zio to update the device header on an l2arc device.
9872  */
9873 static void
9874 l2arc_dev_hdr_update(l2arc_dev_t *dev)
9875 {
9876         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9877         const uint64_t          l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9878         abd_t                   *abd;
9879         int                     err;
9880 
9881         VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
9882 
9883         l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
9884         l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
9885         l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9886         l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
9887         l2dhdr->dh_log_entries = dev->l2ad_log_entries;
9888         l2dhdr->dh_evict = dev->l2ad_evict;
9889         l2dhdr->dh_start = dev->l2ad_start;
9890         l2dhdr->dh_end = dev->l2ad_end;
9891         l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
9892         l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
9893         l2dhdr->dh_flags = 0;
9894         if (dev->l2ad_first)
9895                 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
9896 
9897         abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9898 
9899         err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
9900             VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
9901             NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
9902 
9903         abd_put(abd);
9904 
9905         if (err != 0) {
9906                 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
9907                     "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9908         }
9909 }
9910 
9911 /*
9912  * Commits a log block to the L2ARC device. This routine is invoked from
9913  * l2arc_write_buffers when the log block fills up.
9914  * This function allocates some memory to temporarily hold the serialized
9915  * buffer to be written. This is then released in l2arc_write_done.
9916  */
9917 static void
9918 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
9919 {
9920         l2arc_log_blk_phys_t    *lb = &dev->l2ad_log_blk;
9921         l2arc_dev_hdr_phys_t    *l2dhdr = dev->l2ad_dev_hdr;
9922         uint64_t                psize, asize;
9923         zio_t                   *wzio;
9924         l2arc_lb_abd_buf_t      *abd_buf;
9925         uint8_t                 *tmpbuf;
9926         l2arc_lb_ptr_buf_t      *lb_ptr_buf;
9927 
9928         VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
9929 
9930         tmpbuf = zio_buf_alloc(sizeof (*lb));
9931         abd_buf = zio_buf_alloc(sizeof (*abd_buf));
9932         abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
9933         lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9934         lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
9935 
9936         /* link the buffer into the block chain */
9937         lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
9938         lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
9939 
9940         /*
9941          * l2arc_log_blk_commit() may be called multiple times during a single
9942          * l2arc_write_buffers() call. Save the allocated abd buffers in a list
9943          * so we can free them in l2arc_write_done() later on.
9944          */
9945         list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
9946 
9947         /* try to compress the buffer */
9948         psize = zio_compress_data(ZIO_COMPRESS_LZ4,
9949             abd_buf->abd, tmpbuf, sizeof (*lb));
9950 
9951         /* a log block is never entirely zero */
9952         ASSERT(psize != 0);
9953         asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
9954         ASSERT(asize <= sizeof (*lb));
9955 
9956         /*
9957          * Update the start log block pointer in the device header to point
9958          * to the log block we're about to write.
9959          */
9960         l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
9961         l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
9962         l2dhdr->dh_start_lbps[0].lbp_payload_asize =
9963             dev->l2ad_log_blk_payload_asize;
9964         l2dhdr->dh_start_lbps[0].lbp_payload_start =
9965             dev->l2ad_log_blk_payload_start;
9966         _NOTE(CONSTCOND)
9967         L2BLK_SET_LSIZE(
9968             (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
9969         L2BLK_SET_PSIZE(
9970             (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
9971         L2BLK_SET_CHECKSUM(
9972             (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9973             ZIO_CHECKSUM_FLETCHER_4);
9974         if (asize < sizeof (*lb)) {
9975                 /* compression succeeded */
9976                 bzero(tmpbuf + psize, asize - psize);
9977                 L2BLK_SET_COMPRESS(
9978                     (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9979                     ZIO_COMPRESS_LZ4);
9980         } else {
9981                 /* compression failed */
9982                 bcopy(lb, tmpbuf, sizeof (*lb));
9983                 L2BLK_SET_COMPRESS(
9984                     (&l2dhdr->dh_start_lbps[0])->lbp_prop,
9985                     ZIO_COMPRESS_OFF);
9986         }
9987 
9988         /* checksum what we're about to write */
9989         fletcher_4_native(tmpbuf, asize, NULL,
9990             &l2dhdr->dh_start_lbps[0].lbp_cksum);
9991 
9992         abd_put(abd_buf->abd);
9993 
9994         /* perform the write itself */
9995         abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
9996         abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
9997         wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
9998             asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
9999             ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10000         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10001         (void) zio_nowait(wzio);
10002 
10003         dev->l2ad_hand += asize;
10004         /*
10005          * Include the committed log block's pointer  in the list of pointers
10006          * to log blocks present in the L2ARC device.
10007          */
10008         bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
10009             sizeof (l2arc_log_blkptr_t));
10010         mutex_enter(&dev->l2ad_mtx);
10011         list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10012         ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10013         ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10014         zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10015         zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10016         mutex_exit(&dev->l2ad_mtx);
10017         vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10018 
10019         /* bump the kstats */
10020         ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10021         ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10022         ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10023         ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10024             dev->l2ad_log_blk_payload_asize / asize);
10025 
10026         /* start a new log block */
10027         dev->l2ad_log_ent_idx = 0;
10028         dev->l2ad_log_blk_payload_asize = 0;
10029         dev->l2ad_log_blk_payload_start = 0;
10030 }
10031 
10032 /*
10033  * Validates an L2ARC log block address to make sure that it can be read
10034  * from the provided L2ARC device.
10035  */
10036 boolean_t
10037 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10038 {
10039         /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10040         uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10041         uint64_t end = lbp->lbp_daddr + asize - 1;
10042         uint64_t start = lbp->lbp_payload_start;
10043         boolean_t evicted = B_FALSE;
10044 
10045         /* BEGIN CSTYLED */
10046         /*
10047          * A log block is valid if all of the following conditions are true:
10048          * - it fits entirely (including its payload) between l2ad_start and
10049          *   l2ad_end
10050          * - it has a valid size
10051          * - neither the log block itself nor part of its payload was evicted
10052          *   by l2arc_evict():
10053          *
10054          *              l2ad_hand          l2ad_evict
10055          *              |                        |      lbp_daddr
10056          *              |     start              |      |  end
10057          *              |     |                  |      |  |
10058          *              V     V                  V      V  V
10059          *   l2ad_start ============================================ l2ad_end
10060          *                    --------------------------||||
10061          *                              ^                ^
10062          *                              |               log block
10063          *                              payload
10064          */
10065         /* END CSTYLED */
10066         evicted =
10067             l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10068             l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10069             l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10070             l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10071 
10072         return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10073             asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10074             (!evicted || dev->l2ad_first));
10075 }
10076 
10077 /*
10078  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10079  * the device. The buffer being inserted must be present in L2ARC.
10080  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10081  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10082  */
10083 static boolean_t
10084 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10085 {
10086         l2arc_log_blk_phys_t    *lb = &dev->l2ad_log_blk;
10087         l2arc_log_ent_phys_t    *le;
10088 
10089         if (dev->l2ad_log_entries == 0)
10090                 return (B_FALSE);
10091 
10092         int index = dev->l2ad_log_ent_idx++;
10093 
10094         ASSERT3S(index, <, dev->l2ad_log_entries);
10095         ASSERT(HDR_HAS_L2HDR(hdr));
10096 
10097         le = &lb->lb_entries[index];
10098         bzero(le, sizeof (*le));
10099         le->le_dva = hdr->b_dva;
10100         le->le_birth = hdr->b_birth;
10101         le->le_daddr = hdr->b_l2hdr.b_daddr;
10102         if (index == 0)
10103                 dev->l2ad_log_blk_payload_start = le->le_daddr;
10104         L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10105         L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10106         L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10107         L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10108         L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10109         L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10110         L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
10111 
10112         dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10113             HDR_GET_PSIZE(hdr));
10114 
10115         return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10116 }
10117 
10118 /*
10119  * Checks whether a given L2ARC device address sits in a time-sequential
10120  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10121  * just do a range comparison, we need to handle the situation in which the
10122  * range wraps around the end of the L2ARC device. Arguments:
10123  *      bottom -- Lower end of the range to check (written to earlier).
10124  *      top    -- Upper end of the range to check (written to later).
10125  *      check  -- The address for which we want to determine if it sits in
10126  *                between the top and bottom.
10127  *
10128  * The 3-way conditional below represents the following cases:
10129  *
10130  *      bottom < top : Sequentially ordered case:
10131  *        <check>--------+-------------------+
10132  *                       |  (overlap here?)  |
10133  *       L2ARC dev       V                   V
10134  *       |---------------<bottom>============<top>--------------|
10135  *
10136  *      bottom > top: Looped-around case:
10137  *                            <check>--------+------------------+
10138  *                                           |  (overlap here?) |
10139  *       L2ARC dev                           V                  V
10140  *       |===============<top>---------------<bottom>===========|
10141  *       ^               ^
10142  *       |  (or here?)   |
10143  *       +---------------+---------<check>
10144  *
10145  *      top == bottom : Just a single address comparison.
10146  */
10147 boolean_t
10148 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10149 {
10150         if (bottom < top)
10151                 return (bottom <= check && check <= top);
10152         else if (bottom > top)
10153                 return (check <= top || bottom <= check);
10154         else
10155                 return (check == top);
10156 }