Print this page
Revert "OS-8005 bhyve memory pressure needs to target ARC better (#354)"
This reverts commit a6033573eedd94118d2b9e65f45deca0bf4b42f7.
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/lib/libvmmapi/common/vmmapi.c
+++ new/usr/src/lib/libvmmapi/common/vmmapi.c
1 1 /*-
2 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 3 *
4 4 * Copyright (c) 2011 NetApp, Inc.
5 5 * All rights reserved.
6 6 *
7 7 * Redistribution and use in source and binary forms, with or without
8 8 * modification, are permitted provided that the following conditions
9 9 * are met:
10 10 * 1. Redistributions of source code must retain the above copyright
11 11 * notice, this list of conditions and the following disclaimer.
12 12 * 2. Redistributions in binary form must reproduce the above copyright
13 13 * notice, this list of conditions and the following disclaimer in the
14 14 * documentation and/or other materials provided with the distribution.
15 15 *
16 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 26 * SUCH DAMAGE.
27 27 *
28 28 * $FreeBSD$
29 29 */
30 30 /*
31 31 * This file and its contents are supplied under the terms of the
32 32 * Common Development and Distribution License ("CDDL"), version 1.0.
33 33 * You may only use this file in accordance with the terms of version
34 34 * 1.0 of the CDDL.
35 35 *
36 36 * A full copy of the text of the CDDL should have accompanied this
37 37 * source. A copy of the CDDL is also available via the Internet at
38 38 * http://www.illumos.org/license/CDDL.
39 39 *
40 40 * Copyright 2015 Pluribus Networks Inc.
41 41 * Copyright 2019 Joyent, Inc.
42 42 * Copyright 2020 Oxide Computer Company
43 43 */
44 44
45 45 #include <sys/cdefs.h>
46 46 __FBSDID("$FreeBSD$");
47 47
48 48 #include <sys/param.h>
49 49 #include <sys/sysctl.h>
50 50 #include <sys/ioctl.h>
51 51 #ifdef __FreeBSD__
52 52 #include <sys/linker.h>
53 53 #endif
54 54 #include <sys/mman.h>
55 55 #include <sys/module.h>
56 56 #include <sys/_iovec.h>
57 57 #include <sys/cpuset.h>
58 58
59 59 #include <x86/segments.h>
60 60 #include <machine/specialreg.h>
61 61
62 62 #include <errno.h>
63 63 #include <stdio.h>
64 64 #include <stdlib.h>
65 65 #include <assert.h>
66 66 #include <string.h>
67 67 #include <fcntl.h>
68 68 #include <unistd.h>
69 69
70 70 #include <libutil.h>
71 71
72 72 #include <machine/vmm.h>
73 73 #include <machine/vmm_dev.h>
74 74
75 75 #include "vmmapi.h"
76 76
77 77 #define MB (1024 * 1024UL)
78 78 #define GB (1024 * 1024 * 1024UL)
79 79
80 80 #ifndef __FreeBSD__
81 81 /* shim to no-op for now */
82 82 #define MAP_NOCORE 0
83 83 #define MAP_ALIGNED_SUPER 0
84 84
85 85 /* Rely on PROT_NONE for guard purposes */
86 86 #define MAP_GUARD (MAP_PRIVATE | MAP_ANON | MAP_NORESERVE)
87 87 #endif
88 88
89 89 /*
90 90 * Size of the guard region before and after the virtual address space
91 91 * mapping the guest physical memory. This must be a multiple of the
92 92 * superpage size for performance reasons.
93 93 */
94 94 #define VM_MMAP_GUARD_SIZE (4 * MB)
95 95
96 96 #define PROT_RW (PROT_READ | PROT_WRITE)
97 97 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC)
98 98
99 99 struct vmctx {
100 100 int fd;
101 101 uint32_t lowmem_limit;
102 102 int memflags;
103 103 size_t lowmem;
104 104 size_t highmem;
105 105 char *baseaddr;
106 106 char *name;
107 107 };
108 108
109 109 #ifdef __FreeBSD__
110 110 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
111 111 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
112 112 #else
113 113 #define CREATE(x) vm_do_ctl(VMM_CREATE_VM, (x))
114 114 #define DESTROY(x) vm_do_ctl(VMM_DESTROY_VM, (x))
115 115
116 116 static int
117 117 vm_do_ctl(int cmd, const char *name)
118 118 {
119 119 int ctl_fd;
120 120
121 121 ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR);
122 122 if (ctl_fd < 0) {
123 123 return (-1);
124 124 }
125 125
126 126 if (ioctl(ctl_fd, cmd, name) == -1) {
127 127 int err = errno;
128 128
129 129 /* Do not lose ioctl errno through the close(2) */
130 130 (void) close(ctl_fd);
131 131 errno = err;
132 132 return (-1);
133 133 }
134 134 (void) close(ctl_fd);
135 135
136 136 return (0);
137 137 }
138 138 #endif
139 139
140 140 static int
141 141 vm_device_open(const char *name)
142 142 {
143 143 int fd, len;
144 144 char *vmfile;
145 145
146 146 len = strlen("/dev/vmm/") + strlen(name) + 1;
147 147 vmfile = malloc(len);
148 148 assert(vmfile != NULL);
149 149 snprintf(vmfile, len, "/dev/vmm/%s", name);
150 150
151 151 /* Open the device file */
152 152 fd = open(vmfile, O_RDWR, 0);
153 153
154 154 free(vmfile);
155 155 return (fd);
156 156 }
157 157
158 158 int
159 159 vm_create(const char *name)
160 160 {
161 161 #ifdef __FreeBSD__
162 162 /* Try to load vmm(4) module before creating a guest. */
163 163 if (modfind("vmm") < 0)
164 164 kldload("vmm");
165 165 #endif
166 166 return (CREATE((char *)name));
167 167 }
168 168
169 169 struct vmctx *
170 170 vm_open(const char *name)
171 171 {
172 172 struct vmctx *vm;
173 173
174 174 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
175 175 assert(vm != NULL);
176 176
177 177 vm->fd = -1;
178 178 vm->memflags = 0;
179 179 vm->lowmem_limit = 3 * GB;
180 180 vm->name = (char *)(vm + 1);
181 181 strcpy(vm->name, name);
182 182
183 183 if ((vm->fd = vm_device_open(vm->name)) < 0)
184 184 goto err;
185 185
186 186 return (vm);
187 187 err:
188 188 free(vm);
189 189 return (NULL);
190 190 }
191 191
192 192 #ifndef __FreeBSD__
193 193 void
194 194 vm_close(struct vmctx *vm)
195 195 {
196 196 assert(vm != NULL);
197 197 assert(vm->fd >= 0);
198 198
199 199 (void) close(vm->fd);
200 200
201 201 free(vm);
202 202 }
203 203 #endif
204 204
205 205 void
206 206 vm_destroy(struct vmctx *vm)
207 207 {
208 208 assert(vm != NULL);
209 209
210 210 if (vm->fd >= 0)
211 211 close(vm->fd);
212 212 DESTROY(vm->name);
213 213
214 214 free(vm);
215 215 }
216 216
217 217 int
218 218 vm_parse_memsize(const char *optarg, size_t *ret_memsize)
219 219 {
220 220 char *endptr;
221 221 size_t optval;
222 222 int error;
223 223
224 224 optval = strtoul(optarg, &endptr, 0);
225 225 if (*optarg != '\0' && *endptr == '\0') {
226 226 /*
227 227 * For the sake of backward compatibility if the memory size
228 228 * specified on the command line is less than a megabyte then
229 229 * it is interpreted as being in units of MB.
230 230 */
231 231 if (optval < MB)
232 232 optval *= MB;
233 233 *ret_memsize = optval;
234 234 error = 0;
235 235 } else
236 236 error = expand_number(optarg, ret_memsize);
237 237
238 238 return (error);
239 239 }
240 240
241 241 uint32_t
242 242 vm_get_lowmem_limit(struct vmctx *ctx)
243 243 {
244 244
245 245 return (ctx->lowmem_limit);
246 246 }
247 247
248 248 void
249 249 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
250 250 {
251 251
252 252 ctx->lowmem_limit = limit;
253 253 }
254 254
255 255 void
256 256 vm_set_memflags(struct vmctx *ctx, int flags)
257 257 {
258 258
259 259 ctx->memflags = flags;
260 260 }
261 261
262 262 int
263 263 vm_get_memflags(struct vmctx *ctx)
264 264 {
265 265
266 266 return (ctx->memflags);
267 267 }
268 268
269 269 /*
270 270 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
271 271 */
272 272 int
273 273 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
274 274 size_t len, int prot)
275 275 {
276 276 struct vm_memmap memmap;
277 277 int error, flags;
278 278
279 279 memmap.gpa = gpa;
280 280 memmap.segid = segid;
281 281 memmap.segoff = off;
282 282 memmap.len = len;
283 283 memmap.prot = prot;
284 284 memmap.flags = 0;
285 285
286 286 if (ctx->memflags & VM_MEM_F_WIRED)
287 287 memmap.flags |= VM_MEMMAP_F_WIRED;
288 288
289 289 /*
290 290 * If this mapping already exists then don't create it again. This
291 291 * is the common case for SYSMEM mappings created by bhyveload(8).
292 292 */
293 293 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
294 294 if (error == 0 && gpa == memmap.gpa) {
295 295 if (segid != memmap.segid || off != memmap.segoff ||
296 296 prot != memmap.prot || flags != memmap.flags) {
297 297 errno = EEXIST;
298 298 return (-1);
299 299 } else {
300 300 return (0);
301 301 }
302 302 }
303 303
304 304 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
305 305 return (error);
306 306 }
307 307
308 308 int
309 309 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
310 310 {
311 311 struct vm_munmap munmap;
312 312 int error;
313 313
314 314 munmap.gpa = gpa;
315 315 munmap.len = len;
316 316
317 317 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
318 318 return (error);
319 319 }
320 320
321 321 int
322 322 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
323 323 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
324 324 {
325 325 struct vm_memmap memmap;
326 326 int error;
327 327
328 328 bzero(&memmap, sizeof(struct vm_memmap));
329 329 memmap.gpa = *gpa;
330 330 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
331 331 if (error == 0) {
332 332 *gpa = memmap.gpa;
333 333 *segid = memmap.segid;
334 334 *segoff = memmap.segoff;
335 335 *len = memmap.len;
336 336 *prot = memmap.prot;
337 337 *flags = memmap.flags;
338 338 }
339 339 return (error);
340 340 }
341 341
342 342 /*
343 343 * Return 0 if the segments are identical and non-zero otherwise.
344 344 *
345 345 * This is slightly complicated by the fact that only device memory segments
346 346 * are named.
347 347 */
348 348 static int
349 349 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
350 350 {
351 351
352 352 if (len == len2) {
353 353 if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
354 354 return (0);
355 355 }
356 356 return (-1);
357 357 }
358 358
359 359 static int
360 360 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
361 361 {
362 362 struct vm_memseg memseg;
363 363 size_t n;
364 364 int error;
365 365
366 366 /*
367 367 * If the memory segment has already been created then just return.
368 368 * This is the usual case for the SYSMEM segment created by userspace
369 369 * loaders like bhyveload(8).
370 370 */
371 371 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
372 372 sizeof(memseg.name));
373 373 if (error)
374 374 return (error);
375 375
376 376 if (memseg.len != 0) {
377 377 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
378 378 errno = EINVAL;
379 379 return (-1);
380 380 } else {
381 381 return (0);
382 382 }
383 383 }
384 384
385 385 bzero(&memseg, sizeof(struct vm_memseg));
386 386 memseg.segid = segid;
387 387 memseg.len = len;
388 388 if (name != NULL) {
389 389 n = strlcpy(memseg.name, name, sizeof(memseg.name));
390 390 if (n >= sizeof(memseg.name)) {
391 391 errno = ENAMETOOLONG;
392 392 return (-1);
393 393 }
394 394 }
395 395
396 396 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
397 397 return (error);
398 398 }
399 399
400 400 int
401 401 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
402 402 size_t bufsize)
403 403 {
404 404 struct vm_memseg memseg;
405 405 size_t n;
406 406 int error;
407 407
408 408 memseg.segid = segid;
409 409 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
410 410 if (error == 0) {
411 411 *lenp = memseg.len;
412 412 n = strlcpy(namebuf, memseg.name, bufsize);
413 413 if (n >= bufsize) {
414 414 errno = ENAMETOOLONG;
415 415 error = -1;
416 416 }
417 417 }
418 418 return (error);
419 419 }
420 420
421 421 static int
422 422 #ifdef __FreeBSD__
423 423 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
424 424 #else
425 425 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
426 426 char *base)
427 427 #endif
428 428 {
429 429 char *ptr;
430 430 int error, flags;
431 431
432 432 /* Map 'len' bytes starting at 'gpa' in the guest address space */
433 433 #ifdef __FreeBSD__
434 434 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
435 435 #else
436 436 /*
437 437 * As we use two segments for lowmem/highmem the offset within the
438 438 * segment is 0 on illumos.
439 439 */
440 440 error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL);
441 441 #endif
442 442 if (error)
443 443 return (error);
444 444
445 445 flags = MAP_SHARED | MAP_FIXED;
446 446 if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
447 447 flags |= MAP_NOCORE;
448 448
449 449 /* mmap into the process address space on the host */
450 450 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
451 451 if (ptr == MAP_FAILED)
452 452 return (-1);
453 453
454 454 return (0);
455 455 }
456 456
457 457 int
458 458 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
459 459 {
460 460 size_t objsize, len;
461 461 vm_paddr_t gpa;
462 462 char *baseaddr, *ptr;
463 463 int error;
464 464
465 465 assert(vms == VM_MMAP_ALL);
466 466
467 467 /*
468 468 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
469 469 * create another 'highmem' segment above 4GB for the remainder.
470 470 */
471 471 if (memsize > ctx->lowmem_limit) {
472 472 ctx->lowmem = ctx->lowmem_limit;
473 473 ctx->highmem = memsize - ctx->lowmem_limit;
474 474 objsize = 4*GB + ctx->highmem;
475 475 } else {
476 476 ctx->lowmem = memsize;
477 477 ctx->highmem = 0;
478 478 objsize = ctx->lowmem;
479 479 }
480 480
481 481 #ifdef __FreeBSD__
482 482 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
483 483 if (error)
484 484 return (error);
485 485 #endif
486 486
487 487 /*
488 488 * Stake out a contiguous region covering the guest physical memory
489 489 * and the adjoining guard regions.
490 490 */
491 491 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
492 492 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
493 493 if (ptr == MAP_FAILED)
494 494 return (-1);
495 495
496 496 baseaddr = ptr + VM_MMAP_GUARD_SIZE;
497 497
498 498 #ifdef __FreeBSD__
499 499 if (ctx->highmem > 0) {
500 500 gpa = 4*GB;
501 501 len = ctx->highmem;
502 502 error = setup_memory_segment(ctx, gpa, len, baseaddr);
503 503 if (error)
504 504 return (error);
505 505 }
506 506
507 507 if (ctx->lowmem > 0) {
508 508 gpa = 0;
509 509 len = ctx->lowmem;
510 510 error = setup_memory_segment(ctx, gpa, len, baseaddr);
511 511 if (error)
512 512 return (error);
513 513 }
514 514 #else
515 515 if (ctx->highmem > 0) {
516 516 error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL);
517 517 if (error)
518 518 return (error);
519 519 gpa = 4*GB;
520 520 len = ctx->highmem;
521 521 error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr);
522 522 if (error)
523 523 return (error);
524 524 }
525 525
526 526 if (ctx->lowmem > 0) {
527 527 error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL);
528 528 if (error)
529 529 return (error);
530 530 gpa = 0;
531 531 len = ctx->lowmem;
532 532 error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr);
533 533 if (error)
534 534 return (error);
535 535 }
536 536 #endif
537 537
538 538 ctx->baseaddr = baseaddr;
539 539
540 540 return (0);
541 541 }
542 542
543 543 /*
544 544 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
545 545 * the lowmem or highmem regions.
546 546 *
547 547 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
548 548 * The instruction emulation code depends on this behavior.
549 549 */
550 550 void *
551 551 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
552 552 {
553 553
554 554 if (ctx->lowmem > 0) {
555 555 if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
556 556 gaddr + len <= ctx->lowmem)
557 557 return (ctx->baseaddr + gaddr);
558 558 }
559 559
560 560 if (ctx->highmem > 0) {
561 561 if (gaddr >= 4*GB) {
562 562 if (gaddr < 4*GB + ctx->highmem &&
563 563 len <= ctx->highmem &&
564 564 gaddr + len <= 4*GB + ctx->highmem)
565 565 return (ctx->baseaddr + gaddr);
566 566 }
567 567 }
568 568
569 569 return (NULL);
570 570 }
571 571
572 572 size_t
573 573 vm_get_lowmem_size(struct vmctx *ctx)
574 574 {
575 575
576 576 return (ctx->lowmem);
577 577 }
578 578
579 579 size_t
580 580 vm_get_highmem_size(struct vmctx *ctx)
581 581 {
582 582
583 583 return (ctx->highmem);
584 584 }
585 585
586 586 #ifndef __FreeBSD__
587 587 int
588 588 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff)
589 589 {
590 590 struct vm_devmem_offset vdo;
591 591 int error;
592 592
593 593 vdo.segid = segid;
594 594 error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo);
595 595 if (error == 0)
596 596 *mapoff = vdo.offset;
597 597
598 598 return (error);
599 599 }
600 600 #endif
601 601
602 602 void *
603 603 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
604 604 {
605 605 #ifdef __FreeBSD__
606 606 char pathname[MAXPATHLEN];
607 607 #endif
608 608 size_t len2;
609 609 char *base, *ptr;
610 610 int fd, error, flags;
611 611 off_t mapoff;
612 612
613 613 fd = -1;
614 614 ptr = MAP_FAILED;
615 615 if (name == NULL || strlen(name) == 0) {
616 616 errno = EINVAL;
617 617 goto done;
618 618 }
619 619
620 620 error = vm_alloc_memseg(ctx, segid, len, name);
621 621 if (error)
622 622 goto done;
623 623
624 624 #ifdef __FreeBSD__
625 625 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
626 626 strlcat(pathname, ctx->name, sizeof(pathname));
627 627 strlcat(pathname, ".", sizeof(pathname));
628 628 strlcat(pathname, name, sizeof(pathname));
629 629
630 630 fd = open(pathname, O_RDWR);
631 631 if (fd < 0)
632 632 goto done;
633 633 #else
634 634 if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0)
635 635 goto done;
636 636 #endif
637 637
638 638 /*
639 639 * Stake out a contiguous region covering the device memory and the
640 640 * adjoining guard regions.
641 641 */
642 642 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
643 643 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
644 644 0);
645 645 if (base == MAP_FAILED)
646 646 goto done;
647 647
648 648 flags = MAP_SHARED | MAP_FIXED;
649 649 if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
650 650 flags |= MAP_NOCORE;
651 651
652 652 #ifdef __FreeBSD__
653 653 /* mmap the devmem region in the host address space */
654 654 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
655 655 #else
656 656 /* mmap the devmem region in the host address space */
657 657 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd,
658 658 mapoff);
659 659 #endif
660 660 done:
661 661 if (fd >= 0)
662 662 close(fd);
663 663 return (ptr);
664 664 }
665 665
666 666 int
667 667 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
668 668 uint64_t base, uint32_t limit, uint32_t access)
669 669 {
670 670 int error;
671 671 struct vm_seg_desc vmsegdesc;
672 672
673 673 bzero(&vmsegdesc, sizeof(vmsegdesc));
674 674 vmsegdesc.cpuid = vcpu;
675 675 vmsegdesc.regnum = reg;
676 676 vmsegdesc.desc.base = base;
677 677 vmsegdesc.desc.limit = limit;
678 678 vmsegdesc.desc.access = access;
679 679
680 680 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
681 681 return (error);
682 682 }
683 683
684 684 int
685 685 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
686 686 uint64_t *base, uint32_t *limit, uint32_t *access)
687 687 {
688 688 int error;
689 689 struct vm_seg_desc vmsegdesc;
690 690
691 691 bzero(&vmsegdesc, sizeof(vmsegdesc));
692 692 vmsegdesc.cpuid = vcpu;
693 693 vmsegdesc.regnum = reg;
694 694
695 695 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
696 696 if (error == 0) {
697 697 *base = vmsegdesc.desc.base;
698 698 *limit = vmsegdesc.desc.limit;
699 699 *access = vmsegdesc.desc.access;
700 700 }
701 701 return (error);
702 702 }
703 703
704 704 int
705 705 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
706 706 {
707 707 int error;
708 708
709 709 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
710 710 &seg_desc->access);
711 711 return (error);
712 712 }
713 713
714 714 int
715 715 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
716 716 {
717 717 int error;
718 718 struct vm_register vmreg;
719 719
720 720 bzero(&vmreg, sizeof(vmreg));
721 721 vmreg.cpuid = vcpu;
722 722 vmreg.regnum = reg;
723 723 vmreg.regval = val;
724 724
725 725 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
726 726 return (error);
727 727 }
728 728
729 729 int
730 730 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
731 731 {
732 732 int error;
733 733 struct vm_register vmreg;
734 734
735 735 bzero(&vmreg, sizeof(vmreg));
736 736 vmreg.cpuid = vcpu;
737 737 vmreg.regnum = reg;
738 738
739 739 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
740 740 *ret_val = vmreg.regval;
741 741 return (error);
742 742 }
743 743
744 744 int
745 745 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
746 746 const int *regnums, uint64_t *regvals)
747 747 {
748 748 int error;
749 749 struct vm_register_set vmregset;
750 750
751 751 bzero(&vmregset, sizeof(vmregset));
752 752 vmregset.cpuid = vcpu;
753 753 vmregset.count = count;
754 754 vmregset.regnums = regnums;
755 755 vmregset.regvals = regvals;
756 756
757 757 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
758 758 return (error);
759 759 }
760 760
761 761 int
762 762 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
763 763 const int *regnums, uint64_t *regvals)
764 764 {
765 765 int error;
766 766 struct vm_register_set vmregset;
767 767
768 768 bzero(&vmregset, sizeof(vmregset));
769 769 vmregset.cpuid = vcpu;
770 770 vmregset.count = count;
771 771 vmregset.regnums = regnums;
772 772 vmregset.regvals = regvals;
773 773
774 774 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
775 775 return (error);
776 776 }
777 777
778 778 int
779 779 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry,
780 780 struct vm_exit *vm_exit)
781 781 {
782 782 struct vm_entry entry;
783 783
784 784 bcopy(vm_entry, &entry, sizeof (entry));
785 785 entry.cpuid = vcpu;
786 786 entry.exit_data = vm_exit;
787 787
788 788 return (ioctl(ctx->fd, VM_RUN, &entry));
789 789 }
790 790
791 791 int
792 792 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
793 793 {
794 794 struct vm_suspend vmsuspend;
795 795
796 796 bzero(&vmsuspend, sizeof(vmsuspend));
797 797 vmsuspend.how = how;
798 798 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
799 799 }
800 800
801 801 int
802 802 vm_reinit(struct vmctx *ctx)
803 803 {
804 804
805 805 return (ioctl(ctx->fd, VM_REINIT, 0));
806 806 }
807 807
808 808 int
809 809 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
810 810 uint32_t errcode, int restart_instruction)
811 811 {
812 812 struct vm_exception exc;
813 813
814 814 exc.cpuid = vcpu;
815 815 exc.vector = vector;
816 816 exc.error_code = errcode;
817 817 exc.error_code_valid = errcode_valid;
818 818 exc.restart_instruction = restart_instruction;
819 819
820 820 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
821 821 }
822 822
823 823 #ifndef __FreeBSD__
824 824 void
825 825 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
826 826 int errcode)
827 827 {
828 828 int error;
829 829 struct vm_exception exc;
830 830
831 831 exc.cpuid = vcpu;
832 832 exc.vector = vector;
833 833 exc.error_code = errcode;
834 834 exc.error_code_valid = errcode_valid;
835 835 exc.restart_instruction = 1;
836 836 error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc);
837 837
838 838 assert(error == 0);
839 839 }
840 840 #endif /* __FreeBSD__ */
841 841
842 842 int
843 843 vm_apicid2vcpu(struct vmctx *ctx, int apicid)
844 844 {
845 845 /*
846 846 * The apic id associated with the 'vcpu' has the same numerical value
847 847 * as the 'vcpu' itself.
848 848 */
849 849 return (apicid);
850 850 }
851 851
852 852 int
853 853 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
854 854 {
855 855 struct vm_lapic_irq vmirq;
856 856
857 857 bzero(&vmirq, sizeof(vmirq));
858 858 vmirq.cpuid = vcpu;
859 859 vmirq.vector = vector;
860 860
861 861 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
862 862 }
863 863
864 864 int
865 865 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
866 866 {
867 867 struct vm_lapic_irq vmirq;
868 868
869 869 bzero(&vmirq, sizeof(vmirq));
870 870 vmirq.cpuid = vcpu;
871 871 vmirq.vector = vector;
872 872
873 873 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
874 874 }
875 875
876 876 int
877 877 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
878 878 {
879 879 struct vm_lapic_msi vmmsi;
880 880
881 881 bzero(&vmmsi, sizeof(vmmsi));
882 882 vmmsi.addr = addr;
883 883 vmmsi.msg = msg;
884 884
885 885 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
886 886 }
887 887
888 888 int
889 889 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
890 890 {
891 891 struct vm_ioapic_irq ioapic_irq;
892 892
893 893 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
894 894 ioapic_irq.irq = irq;
895 895
896 896 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
897 897 }
898 898
899 899 int
900 900 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
901 901 {
902 902 struct vm_ioapic_irq ioapic_irq;
903 903
904 904 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
905 905 ioapic_irq.irq = irq;
906 906
907 907 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
908 908 }
909 909
910 910 int
911 911 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
912 912 {
913 913 struct vm_ioapic_irq ioapic_irq;
914 914
915 915 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
916 916 ioapic_irq.irq = irq;
917 917
918 918 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
919 919 }
920 920
921 921 int
922 922 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
923 923 {
924 924
925 925 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
926 926 }
927 927
928 928 int
929 929 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa,
930 930 bool write, int size, uint64_t *value)
931 931 {
932 932 struct vm_readwrite_kernemu_device irp = {
933 933 .vcpuid = vcpu,
934 934 .access_width = fls(size) - 1,
935 935 .gpa = gpa,
936 936 .value = write ? *value : ~0ul,
937 937 };
938 938 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
939 939 int rc;
940 940
941 941 rc = ioctl(ctx->fd, cmd, &irp);
942 942 if (rc == 0 && !write)
943 943 *value = irp.value;
944 944 return (rc);
945 945 }
946 946
947 947 int
948 948 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
949 949 {
950 950 struct vm_isa_irq isa_irq;
951 951
952 952 bzero(&isa_irq, sizeof(struct vm_isa_irq));
953 953 isa_irq.atpic_irq = atpic_irq;
954 954 isa_irq.ioapic_irq = ioapic_irq;
955 955
956 956 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
957 957 }
958 958
959 959 int
960 960 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
961 961 {
962 962 struct vm_isa_irq isa_irq;
963 963
964 964 bzero(&isa_irq, sizeof(struct vm_isa_irq));
965 965 isa_irq.atpic_irq = atpic_irq;
966 966 isa_irq.ioapic_irq = ioapic_irq;
967 967
968 968 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
969 969 }
970 970
971 971 int
972 972 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
973 973 {
974 974 struct vm_isa_irq isa_irq;
975 975
976 976 bzero(&isa_irq, sizeof(struct vm_isa_irq));
977 977 isa_irq.atpic_irq = atpic_irq;
978 978 isa_irq.ioapic_irq = ioapic_irq;
979 979
980 980 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
981 981 }
982 982
983 983 int
984 984 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
985 985 enum vm_intr_trigger trigger)
986 986 {
987 987 struct vm_isa_irq_trigger isa_irq_trigger;
988 988
989 989 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
990 990 isa_irq_trigger.atpic_irq = atpic_irq;
991 991 isa_irq_trigger.trigger = trigger;
992 992
993 993 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
994 994 }
995 995
996 996 int
997 997 vm_inject_nmi(struct vmctx *ctx, int vcpu)
998 998 {
999 999 struct vm_nmi vmnmi;
1000 1000
1001 1001 bzero(&vmnmi, sizeof(vmnmi));
1002 1002 vmnmi.cpuid = vcpu;
1003 1003
1004 1004 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
1005 1005 }
1006 1006
1007 1007 static const char *capstrmap[] = {
1008 1008 [VM_CAP_HALT_EXIT] = "hlt_exit",
1009 1009 [VM_CAP_MTRAP_EXIT] = "mtrap_exit",
1010 1010 [VM_CAP_PAUSE_EXIT] = "pause_exit",
1011 1011 #ifdef __FreeBSD__
1012 1012 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
1013 1013 #endif
1014 1014 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
1015 1015 [VM_CAP_BPT_EXIT] = "bpt_exit",
1016 1016 };
1017 1017
1018 1018 int
1019 1019 vm_capability_name2type(const char *capname)
1020 1020 {
1021 1021 int i;
1022 1022
1023 1023 for (i = 0; i < nitems(capstrmap); i++) {
1024 1024 if (strcmp(capstrmap[i], capname) == 0)
1025 1025 return (i);
1026 1026 }
1027 1027
1028 1028 return (-1);
1029 1029 }
1030 1030
1031 1031 const char *
1032 1032 vm_capability_type2name(int type)
1033 1033 {
1034 1034 if (type >= 0 && type < nitems(capstrmap))
1035 1035 return (capstrmap[type]);
1036 1036
1037 1037 return (NULL);
1038 1038 }
1039 1039
1040 1040 int
1041 1041 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
1042 1042 int *retval)
1043 1043 {
1044 1044 int error;
1045 1045 struct vm_capability vmcap;
1046 1046
1047 1047 bzero(&vmcap, sizeof(vmcap));
1048 1048 vmcap.cpuid = vcpu;
1049 1049 vmcap.captype = cap;
1050 1050
1051 1051 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
1052 1052 *retval = vmcap.capval;
1053 1053 return (error);
1054 1054 }
1055 1055
1056 1056 int
1057 1057 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
1058 1058 {
1059 1059 struct vm_capability vmcap;
1060 1060
1061 1061 bzero(&vmcap, sizeof(vmcap));
1062 1062 vmcap.cpuid = vcpu;
1063 1063 vmcap.captype = cap;
1064 1064 vmcap.capval = val;
1065 1065
1066 1066 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
1067 1067 }
1068 1068
1069 1069 #ifdef __FreeBSD__
1070 1070 int
1071 1071 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1072 1072 {
1073 1073 struct vm_pptdev pptdev;
1074 1074
1075 1075 bzero(&pptdev, sizeof(pptdev));
1076 1076 pptdev.bus = bus;
1077 1077 pptdev.slot = slot;
1078 1078 pptdev.func = func;
1079 1079
1080 1080 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1081 1081 }
1082 1082
1083 1083 int
1084 1084 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1085 1085 {
1086 1086 struct vm_pptdev pptdev;
1087 1087
1088 1088 bzero(&pptdev, sizeof(pptdev));
1089 1089 pptdev.bus = bus;
1090 1090 pptdev.slot = slot;
1091 1091 pptdev.func = func;
1092 1092
1093 1093 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1094 1094 }
1095 1095
1096 1096 int
1097 1097 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1098 1098 vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1099 1099 {
1100 1100 struct vm_pptdev_mmio pptmmio;
1101 1101
1102 1102 bzero(&pptmmio, sizeof(pptmmio));
1103 1103 pptmmio.bus = bus;
1104 1104 pptmmio.slot = slot;
1105 1105 pptmmio.func = func;
1106 1106 pptmmio.gpa = gpa;
1107 1107 pptmmio.len = len;
1108 1108 pptmmio.hpa = hpa;
1109 1109
1110 1110 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1111 1111 }
1112 1112
1113 1113 int
1114 1114 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1115 1115 vm_paddr_t gpa, size_t len)
1116 1116 {
1117 1117 struct vm_pptdev_mmio pptmmio;
1118 1118
1119 1119 bzero(&pptmmio, sizeof(pptmmio));
1120 1120 pptmmio.bus = bus;
1121 1121 pptmmio.slot = slot;
1122 1122 pptmmio.func = func;
1123 1123 pptmmio.gpa = gpa;
1124 1124 pptmmio.len = len;
1125 1125
1126 1126 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1127 1127 }
1128 1128
1129 1129 int
1130 1130 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1131 1131 uint64_t addr, uint64_t msg, int numvec)
1132 1132 {
1133 1133 struct vm_pptdev_msi pptmsi;
1134 1134
1135 1135 bzero(&pptmsi, sizeof(pptmsi));
1136 1136 pptmsi.vcpu = vcpu;
1137 1137 pptmsi.bus = bus;
1138 1138 pptmsi.slot = slot;
1139 1139 pptmsi.func = func;
1140 1140 pptmsi.msg = msg;
1141 1141 pptmsi.addr = addr;
1142 1142 pptmsi.numvec = numvec;
1143 1143
1144 1144 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1145 1145 }
1146 1146
1147 1147 int
1148 1148 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1149 1149 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1150 1150 {
1151 1151 struct vm_pptdev_msix pptmsix;
1152 1152
1153 1153 bzero(&pptmsix, sizeof(pptmsix));
1154 1154 pptmsix.vcpu = vcpu;
1155 1155 pptmsix.bus = bus;
1156 1156 pptmsix.slot = slot;
1157 1157 pptmsix.func = func;
1158 1158 pptmsix.idx = idx;
1159 1159 pptmsix.msg = msg;
1160 1160 pptmsix.addr = addr;
1161 1161 pptmsix.vector_control = vector_control;
1162 1162
1163 1163 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1164 1164 }
1165 1165
1166 1166 int
1167 1167 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func,
1168 1168 int *msi_limit, int *msix_limit)
1169 1169 {
1170 1170 struct vm_pptdev_limits pptlimits;
1171 1171 int error;
1172 1172
1173 1173 bzero(&pptlimits, sizeof (pptlimits));
1174 1174 pptlimits.bus = bus;
1175 1175 pptlimits.slot = slot;
1176 1176 pptlimits.func = func;
1177 1177
1178 1178 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1179 1179
1180 1180 *msi_limit = pptlimits.msi_limit;
1181 1181 *msix_limit = pptlimits.msix_limit;
1182 1182
1183 1183 return (error);
1184 1184 }
1185 1185
1186 1186 int
1187 1187 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func)
1188 1188 {
1189 1189 struct vm_pptdev ppt;
1190 1190
1191 1191 bzero(&ppt, sizeof(ppt));
1192 1192 ppt.bus = bus;
1193 1193 ppt.slot = slot;
1194 1194 ppt.func = func;
1195 1195
1196 1196 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt);
1197 1197 }
1198 1198
1199 1199 #else /* __FreeBSD__ */
1200 1200
1201 1201 int
1202 1202 vm_assign_pptdev(struct vmctx *ctx, int pptfd)
1203 1203 {
1204 1204 struct vm_pptdev pptdev;
1205 1205
1206 1206 pptdev.pptfd = pptfd;
1207 1207 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1208 1208 }
1209 1209
1210 1210 int
1211 1211 vm_unassign_pptdev(struct vmctx *ctx, int pptfd)
1212 1212 {
1213 1213 struct vm_pptdev pptdev;
1214 1214
1215 1215 pptdev.pptfd = pptfd;
1216 1216 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1217 1217 }
1218 1218
1219 1219 int
1220 1220 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len,
1221 1221 vm_paddr_t hpa)
1222 1222 {
1223 1223 struct vm_pptdev_mmio pptmmio;
1224 1224
1225 1225 pptmmio.pptfd = pptfd;
1226 1226 pptmmio.gpa = gpa;
1227 1227 pptmmio.len = len;
1228 1228 pptmmio.hpa = hpa;
1229 1229 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1230 1230 }
1231 1231
1232 1232 int
1233 1233 vm_unmap_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len)
1234 1234 {
1235 1235 struct vm_pptdev_mmio pptmmio;
1236 1236
1237 1237 bzero(&pptmmio, sizeof(pptmmio));
1238 1238 pptmmio.pptfd = pptfd;
1239 1239 pptmmio.gpa = gpa;
1240 1240 pptmmio.len = len;
1241 1241
1242 1242 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1243 1243 }
1244 1244
1245 1245 int
1246 1246 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr,
1247 1247 uint64_t msg, int numvec)
1248 1248 {
1249 1249 struct vm_pptdev_msi pptmsi;
1250 1250
1251 1251 pptmsi.vcpu = vcpu;
1252 1252 pptmsi.pptfd = pptfd;
1253 1253 pptmsi.msg = msg;
1254 1254 pptmsi.addr = addr;
1255 1255 pptmsi.numvec = numvec;
1256 1256 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1257 1257 }
1258 1258
1259 1259 int
1260 1260 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx,
1261 1261 uint64_t addr, uint64_t msg, uint32_t vector_control)
1262 1262 {
1263 1263 struct vm_pptdev_msix pptmsix;
1264 1264
1265 1265 pptmsix.vcpu = vcpu;
1266 1266 pptmsix.pptfd = pptfd;
1267 1267 pptmsix.idx = idx;
1268 1268 pptmsix.msg = msg;
1269 1269 pptmsix.addr = addr;
1270 1270 pptmsix.vector_control = vector_control;
1271 1271 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1272 1272 }
1273 1273
1274 1274 int
1275 1275 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit,
1276 1276 int *msix_limit)
1277 1277 {
1278 1278 struct vm_pptdev_limits pptlimits;
1279 1279 int error;
1280 1280
1281 1281 bzero(&pptlimits, sizeof (pptlimits));
1282 1282 pptlimits.pptfd = pptfd;
1283 1283 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1284 1284
1285 1285 *msi_limit = pptlimits.msi_limit;
1286 1286 *msix_limit = pptlimits.msix_limit;
1287 1287 return (error);
1288 1288 }
1289 1289
1290 1290 int
1291 1291 vm_disable_pptdev_msix(struct vmctx *ctx, int pptfd)
1292 1292 {
1293 1293 struct vm_pptdev pptdev;
1294 1294
1295 1295 pptdev.pptfd = pptfd;
1296 1296 return (ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &pptdev));
1297 1297 }
1298 1298 #endif /* __FreeBSD__ */
1299 1299
1300 1300 uint64_t *
1301 1301 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
1302 1302 int *ret_entries)
1303 1303 {
1304 1304 int error;
1305 1305
1306 1306 static struct vm_stats vmstats;
1307 1307
1308 1308 vmstats.cpuid = vcpu;
1309 1309
1310 1310 error = ioctl(ctx->fd, VM_STATS_IOC, &vmstats);
1311 1311 if (error == 0) {
1312 1312 if (ret_entries)
1313 1313 *ret_entries = vmstats.num_entries;
1314 1314 if (ret_tv)
1315 1315 *ret_tv = vmstats.tv;
1316 1316 return (vmstats.statbuf);
1317 1317 } else
1318 1318 return (NULL);
1319 1319 }
1320 1320
1321 1321 const char *
1322 1322 vm_get_stat_desc(struct vmctx *ctx, int index)
1323 1323 {
1324 1324 static struct vm_stat_desc statdesc;
1325 1325
1326 1326 statdesc.index = index;
1327 1327 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1328 1328 return (statdesc.desc);
1329 1329 else
1330 1330 return (NULL);
1331 1331 }
1332 1332
1333 1333 int
1334 1334 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
1335 1335 {
1336 1336 int error;
1337 1337 struct vm_x2apic x2apic;
1338 1338
1339 1339 bzero(&x2apic, sizeof(x2apic));
1340 1340 x2apic.cpuid = vcpu;
1341 1341
1342 1342 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
1343 1343 *state = x2apic.state;
1344 1344 return (error);
1345 1345 }
1346 1346
1347 1347 int
1348 1348 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
1349 1349 {
1350 1350 int error;
1351 1351 struct vm_x2apic x2apic;
1352 1352
1353 1353 bzero(&x2apic, sizeof(x2apic));
1354 1354 x2apic.cpuid = vcpu;
1355 1355 x2apic.state = state;
1356 1356
1357 1357 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
1358 1358
1359 1359 return (error);
1360 1360 }
1361 1361
1362 1362 #ifndef __FreeBSD__
1363 1363 int
1364 1364 vcpu_reset(struct vmctx *vmctx, int vcpu)
1365 1365 {
1366 1366 struct vm_vcpu_reset vvr;
1367 1367
1368 1368 vvr.vcpuid = vcpu;
1369 1369 vvr.kind = VRK_RESET;
1370 1370
1371 1371 return (ioctl(vmctx->fd, VM_RESET_CPU, &vvr));
1372 1372 }
1373 1373 #else /* __FreeBSD__ */
1374 1374 /*
1375 1375 * From Intel Vol 3a:
1376 1376 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1377 1377 */
1378 1378 int
1379 1379 vcpu_reset(struct vmctx *vmctx, int vcpu)
1380 1380 {
1381 1381 int error;
1382 1382 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1383 1383 uint32_t desc_access, desc_limit;
1384 1384 uint16_t sel;
1385 1385
1386 1386 zero = 0;
1387 1387
1388 1388 rflags = 0x2;
1389 1389 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1390 1390 if (error)
1391 1391 goto done;
1392 1392
1393 1393 rip = 0xfff0;
1394 1394 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1395 1395 goto done;
1396 1396
1397 1397 cr0 = CR0_NE;
1398 1398 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1399 1399 goto done;
1400 1400
1401 1401 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1402 1402 goto done;
1403 1403
1404 1404 cr4 = 0;
1405 1405 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1406 1406 goto done;
1407 1407
1408 1408 /*
1409 1409 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1410 1410 */
1411 1411 desc_base = 0xffff0000;
1412 1412 desc_limit = 0xffff;
1413 1413 desc_access = 0x0093;
1414 1414 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1415 1415 desc_base, desc_limit, desc_access);
1416 1416 if (error)
1417 1417 goto done;
1418 1418
1419 1419 sel = 0xf000;
1420 1420 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1421 1421 goto done;
1422 1422
1423 1423 /*
1424 1424 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1425 1425 */
1426 1426 desc_base = 0;
1427 1427 desc_limit = 0xffff;
1428 1428 desc_access = 0x0093;
1429 1429 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1430 1430 desc_base, desc_limit, desc_access);
1431 1431 if (error)
1432 1432 goto done;
1433 1433
1434 1434 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1435 1435 desc_base, desc_limit, desc_access);
1436 1436 if (error)
1437 1437 goto done;
1438 1438
1439 1439 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1440 1440 desc_base, desc_limit, desc_access);
1441 1441 if (error)
1442 1442 goto done;
1443 1443
1444 1444 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1445 1445 desc_base, desc_limit, desc_access);
1446 1446 if (error)
1447 1447 goto done;
1448 1448
1449 1449 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1450 1450 desc_base, desc_limit, desc_access);
1451 1451 if (error)
1452 1452 goto done;
1453 1453
1454 1454 sel = 0;
1455 1455 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1456 1456 goto done;
1457 1457 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1458 1458 goto done;
1459 1459 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1460 1460 goto done;
1461 1461 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1462 1462 goto done;
1463 1463 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1464 1464 goto done;
1465 1465
1466 1466 /* General purpose registers */
1467 1467 rdx = 0xf00;
1468 1468 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1469 1469 goto done;
1470 1470 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1471 1471 goto done;
1472 1472 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1473 1473 goto done;
1474 1474 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1475 1475 goto done;
1476 1476 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1477 1477 goto done;
1478 1478 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1479 1479 goto done;
1480 1480 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1481 1481 goto done;
1482 1482 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1483 1483 goto done;
1484 1484
1485 1485 /* GDTR, IDTR */
1486 1486 desc_base = 0;
1487 1487 desc_limit = 0xffff;
1488 1488 desc_access = 0;
1489 1489 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1490 1490 desc_base, desc_limit, desc_access);
1491 1491 if (error != 0)
1492 1492 goto done;
1493 1493
1494 1494 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1495 1495 desc_base, desc_limit, desc_access);
1496 1496 if (error != 0)
1497 1497 goto done;
1498 1498
1499 1499 /* TR */
1500 1500 desc_base = 0;
1501 1501 desc_limit = 0xffff;
1502 1502 desc_access = 0x0000008b;
1503 1503 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1504 1504 if (error)
1505 1505 goto done;
1506 1506
1507 1507 sel = 0;
1508 1508 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1509 1509 goto done;
1510 1510
1511 1511 /* LDTR */
1512 1512 desc_base = 0;
1513 1513 desc_limit = 0xffff;
1514 1514 desc_access = 0x00000082;
1515 1515 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1516 1516 desc_limit, desc_access);
1517 1517 if (error)
1518 1518 goto done;
1519 1519
1520 1520 sel = 0;
1521 1521 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1522 1522 goto done;
1523 1523
1524 1524 /* XXX cr2, debug registers */
1525 1525
1526 1526 error = 0;
1527 1527 done:
1528 1528 return (error);
1529 1529 }
1530 1530 #endif /* __FreeBSD__ */
1531 1531
1532 1532 int
1533 1533 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1534 1534 {
1535 1535 int error, i;
1536 1536 struct vm_gpa_pte gpapte;
1537 1537
1538 1538 bzero(&gpapte, sizeof(gpapte));
1539 1539 gpapte.gpa = gpa;
1540 1540
1541 1541 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1542 1542
1543 1543 if (error == 0) {
1544 1544 *num = gpapte.ptenum;
1545 1545 for (i = 0; i < gpapte.ptenum; i++)
1546 1546 pte[i] = gpapte.pte[i];
1547 1547 }
1548 1548
1549 1549 return (error);
1550 1550 }
1551 1551
1552 1552 int
1553 1553 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1554 1554 {
1555 1555 int error;
1556 1556 struct vm_hpet_cap cap;
1557 1557
1558 1558 bzero(&cap, sizeof(struct vm_hpet_cap));
1559 1559 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1560 1560 if (capabilities != NULL)
1561 1561 *capabilities = cap.capabilities;
1562 1562 return (error);
1563 1563 }
1564 1564
1565 1565 int
1566 1566 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1567 1567 uint64_t gla, int prot, uint64_t *gpa, int *fault)
1568 1568 {
1569 1569 struct vm_gla2gpa gg;
1570 1570 int error;
1571 1571
1572 1572 bzero(&gg, sizeof(struct vm_gla2gpa));
1573 1573 gg.vcpuid = vcpu;
1574 1574 gg.prot = prot;
1575 1575 gg.gla = gla;
1576 1576 gg.paging = *paging;
1577 1577
1578 1578 error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1579 1579 if (error == 0) {
1580 1580 *fault = gg.fault;
1581 1581 *gpa = gg.gpa;
1582 1582 }
1583 1583 return (error);
1584 1584 }
1585 1585
1586 1586 int
1587 1587 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1588 1588 uint64_t gla, int prot, uint64_t *gpa, int *fault)
1589 1589 {
1590 1590 struct vm_gla2gpa gg;
1591 1591 int error;
1592 1592
1593 1593 bzero(&gg, sizeof(struct vm_gla2gpa));
1594 1594 gg.vcpuid = vcpu;
1595 1595 gg.prot = prot;
1596 1596 gg.gla = gla;
1597 1597 gg.paging = *paging;
1598 1598
1599 1599 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
1600 1600 if (error == 0) {
1601 1601 *fault = gg.fault;
1602 1602 *gpa = gg.gpa;
1603 1603 }
1604 1604 return (error);
1605 1605 }
1606 1606
1607 1607 #ifndef min
1608 1608 #define min(a,b) (((a) < (b)) ? (a) : (b))
1609 1609 #endif
1610 1610
1611 1611 int
1612 1612 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1613 1613 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1614 1614 int *fault)
1615 1615 {
1616 1616 void *va;
1617 1617 uint64_t gpa;
1618 1618 int error, i, n, off;
1619 1619
1620 1620 for (i = 0; i < iovcnt; i++) {
1621 1621 iov[i].iov_base = 0;
1622 1622 iov[i].iov_len = 0;
1623 1623 }
1624 1624
1625 1625 while (len) {
1626 1626 assert(iovcnt > 0);
1627 1627 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1628 1628 if (error || *fault)
1629 1629 return (error);
1630 1630
1631 1631 off = gpa & PAGE_MASK;
1632 1632 n = min(len, PAGE_SIZE - off);
1633 1633
1634 1634 va = vm_map_gpa(ctx, gpa, n);
1635 1635 if (va == NULL)
1636 1636 return (EFAULT);
1637 1637
1638 1638 iov->iov_base = va;
1639 1639 iov->iov_len = n;
1640 1640 iov++;
1641 1641 iovcnt--;
1642 1642
1643 1643 gla += n;
1644 1644 len -= n;
1645 1645 }
1646 1646 return (0);
1647 1647 }
1648 1648
1649 1649 void
1650 1650 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt)
1651 1651 {
1652 1652
1653 1653 return;
1654 1654 }
1655 1655
1656 1656 void
1657 1657 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len)
1658 1658 {
1659 1659 const char *src;
1660 1660 char *dst;
1661 1661 size_t n;
1662 1662
1663 1663 dst = vp;
1664 1664 while (len) {
1665 1665 assert(iov->iov_len);
1666 1666 n = min(len, iov->iov_len);
1667 1667 src = iov->iov_base;
1668 1668 bcopy(src, dst, n);
1669 1669
1670 1670 iov++;
1671 1671 dst += n;
1672 1672 len -= n;
1673 1673 }
1674 1674 }
1675 1675
1676 1676 void
1677 1677 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov,
1678 1678 size_t len)
1679 1679 {
1680 1680 const char *src;
1681 1681 char *dst;
1682 1682 size_t n;
1683 1683
1684 1684 src = vp;
1685 1685 while (len) {
1686 1686 assert(iov->iov_len);
1687 1687 n = min(len, iov->iov_len);
1688 1688 dst = iov->iov_base;
1689 1689 bcopy(src, dst, n);
1690 1690
1691 1691 iov++;
1692 1692 src += n;
1693 1693 len -= n;
1694 1694 }
1695 1695 }
1696 1696
1697 1697 static int
1698 1698 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1699 1699 {
1700 1700 struct vm_cpuset vm_cpuset;
1701 1701 int error;
1702 1702
1703 1703 bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1704 1704 vm_cpuset.which = which;
1705 1705 vm_cpuset.cpusetsize = sizeof(cpuset_t);
1706 1706 vm_cpuset.cpus = cpus;
1707 1707
1708 1708 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1709 1709 return (error);
1710 1710 }
1711 1711
1712 1712 int
1713 1713 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1714 1714 {
1715 1715
1716 1716 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1717 1717 }
1718 1718
1719 1719 int
1720 1720 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1721 1721 {
1722 1722
1723 1723 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1724 1724 }
1725 1725
1726 1726 int
1727 1727 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1728 1728 {
1729 1729
1730 1730 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1731 1731 }
1732 1732
1733 1733 int
1734 1734 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1735 1735 {
1736 1736 struct vm_activate_cpu ac;
1737 1737 int error;
1738 1738
1739 1739 bzero(&ac, sizeof(struct vm_activate_cpu));
1740 1740 ac.vcpuid = vcpu;
1741 1741 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1742 1742 return (error);
1743 1743 }
1744 1744
1745 1745 int
1746 1746 vm_suspend_cpu(struct vmctx *ctx, int vcpu)
1747 1747 {
1748 1748 struct vm_activate_cpu ac;
1749 1749 int error;
1750 1750
1751 1751 bzero(&ac, sizeof(struct vm_activate_cpu));
1752 1752 ac.vcpuid = vcpu;
1753 1753 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1754 1754 return (error);
1755 1755 }
1756 1756
1757 1757 int
1758 1758 vm_resume_cpu(struct vmctx *ctx, int vcpu)
1759 1759 {
1760 1760 struct vm_activate_cpu ac;
1761 1761 int error;
1762 1762
1763 1763 bzero(&ac, sizeof(struct vm_activate_cpu));
1764 1764 ac.vcpuid = vcpu;
1765 1765 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1766 1766 return (error);
1767 1767 }
1768 1768
1769 1769 int
1770 1770 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1771 1771 {
1772 1772 struct vm_intinfo vmii;
1773 1773 int error;
1774 1774
1775 1775 bzero(&vmii, sizeof(struct vm_intinfo));
1776 1776 vmii.vcpuid = vcpu;
1777 1777 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1778 1778 if (error == 0) {
1779 1779 *info1 = vmii.info1;
1780 1780 *info2 = vmii.info2;
1781 1781 }
1782 1782 return (error);
1783 1783 }
1784 1784
1785 1785 int
1786 1786 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1787 1787 {
1788 1788 struct vm_intinfo vmii;
1789 1789 int error;
1790 1790
1791 1791 bzero(&vmii, sizeof(struct vm_intinfo));
1792 1792 vmii.vcpuid = vcpu;
1793 1793 vmii.info1 = info1;
1794 1794 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1795 1795 return (error);
1796 1796 }
1797 1797
1798 1798 int
1799 1799 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1800 1800 {
1801 1801 struct vm_rtc_data rtcdata;
1802 1802 int error;
1803 1803
1804 1804 bzero(&rtcdata, sizeof(struct vm_rtc_data));
1805 1805 rtcdata.offset = offset;
1806 1806 rtcdata.value = value;
1807 1807 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1808 1808 return (error);
1809 1809 }
1810 1810
1811 1811 int
1812 1812 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1813 1813 {
1814 1814 struct vm_rtc_data rtcdata;
1815 1815 int error;
1816 1816
1817 1817 bzero(&rtcdata, sizeof(struct vm_rtc_data));
1818 1818 rtcdata.offset = offset;
1819 1819 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1820 1820 if (error == 0)
1821 1821 *retval = rtcdata.value;
1822 1822 return (error);
1823 1823 }
1824 1824
1825 1825 int
1826 1826 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1827 1827 {
1828 1828 struct vm_rtc_time rtctime;
1829 1829 int error;
1830 1830
1831 1831 bzero(&rtctime, sizeof(struct vm_rtc_time));
1832 1832 rtctime.secs = secs;
1833 1833 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1834 1834 return (error);
1835 1835 }
1836 1836
1837 1837 int
1838 1838 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1839 1839 {
1840 1840 struct vm_rtc_time rtctime;
1841 1841 int error;
1842 1842
1843 1843 bzero(&rtctime, sizeof(struct vm_rtc_time));
1844 1844 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1845 1845 if (error == 0)
1846 1846 *secs = rtctime.secs;
1847 1847 return (error);
1848 1848 }
1849 1849
1850 1850 int
1851 1851 vm_restart_instruction(void *arg, int vcpu)
1852 1852 {
1853 1853 struct vmctx *ctx = arg;
1854 1854
1855 1855 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1856 1856 }
1857 1857
1858 1858 int
1859 1859 vm_set_topology(struct vmctx *ctx,
1860 1860 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1861 1861 {
1862 1862 struct vm_cpu_topology topology;
1863 1863
1864 1864 bzero(&topology, sizeof (struct vm_cpu_topology));
1865 1865 topology.sockets = sockets;
1866 1866 topology.cores = cores;
1867 1867 topology.threads = threads;
1868 1868 topology.maxcpus = maxcpus;
1869 1869 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1870 1870 }
1871 1871
1872 1872 int
1873 1873 vm_get_topology(struct vmctx *ctx,
1874 1874 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1875 1875 {
1876 1876 struct vm_cpu_topology topology;
1877 1877 int error;
1878 1878
1879 1879 bzero(&topology, sizeof (struct vm_cpu_topology));
1880 1880 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1881 1881 if (error == 0) {
1882 1882 *sockets = topology.sockets;
1883 1883 *cores = topology.cores;
1884 1884 *threads = topology.threads;
1885 1885 *maxcpus = topology.maxcpus;
1886 1886 }
1887 1887 return (error);
1888 1888 }
1889 1889
1890 1890 int
1891 1891 vm_get_device_fd(struct vmctx *ctx)
1892 1892 {
1893 1893
1894 1894 return (ctx->fd);
1895 1895 }
1896 1896
1897 1897 #ifndef __FreeBSD__
1898 1898 int
1899 1899 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport)
1900 1900 {
1901 1901 return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport));
1902 1902 }
1903 1903
1904 1904 int
1905 1905 vm_wrlock_cycle(struct vmctx *ctx)
1906 1906 {
1907 1907 if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) {
1908 1908 return (errno);
1909 1909 }
1910 1910 return (0);
1911 1911 }
1912 1912
1913 1913 int
1914 1914 vm_get_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state *state,
1915 1915 uint8_t *sipi_vector)
1916 1916 {
1917 1917 struct vm_run_state data;
1918 1918
1919 1919 data.vcpuid = vcpu;
1920 1920 if (ioctl(ctx->fd, VM_GET_RUN_STATE, &data) != 0) {
1921 1921 return (errno);
1922 1922 }
1923 1923
1924 1924 *state = data.state;
1925 1925 *sipi_vector = data.sipi_vector;
1926 1926 return (0);
1927 1927 }
1928 1928
1929 1929 int
1930 1930 vm_set_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state state,
1931 1931 uint8_t sipi_vector)
1932 1932 {
1933 1933 struct vm_run_state data;
1934 1934
|
↓ open down ↓ |
1934 lines elided |
↑ open up ↑ |
1935 1935 data.vcpuid = vcpu;
1936 1936 data.state = state;
1937 1937 data.sipi_vector = sipi_vector;
1938 1938 if (ioctl(ctx->fd, VM_SET_RUN_STATE, &data) != 0) {
1939 1939 return (errno);
1940 1940 }
1941 1941
1942 1942 return (0);
1943 1943 }
1944 1944
1945 -int
1946 -vm_arc_resv(struct vmctx *ctx, size_t len)
1947 -{
1948 - if (ioctl(ctx->fd, VM_ARC_RESV, (uint64_t)len) != 0) {
1949 - return (errno);
1950 - }
1951 - return (0);
1952 -}
1953 1945 #endif /* __FreeBSD__ */
1954 1946
1955 1947 #ifdef __FreeBSD__
1956 1948 const cap_ioctl_t *
1957 1949 vm_get_ioctls(size_t *len)
1958 1950 {
1959 1951 cap_ioctl_t *cmds;
1960 1952 /* keep in sync with machine/vmm_dev.h */
1961 1953 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
1962 1954 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
1963 1955 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER,
1964 1956 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
1965 1957 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
1966 1958 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
1967 1959 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
1968 1960 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
1969 1961 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
1970 1962 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
1971 1963 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
1972 1964 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
1973 1965 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX,
1974 1966 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
1975 1967 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
1976 1968 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
1977 1969 VM_GLA2GPA_NOFAULT,
1978 1970 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
1979 1971 VM_SET_INTINFO, VM_GET_INTINFO,
1980 1972 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
1981 1973 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
1982 1974
1983 1975 if (len == NULL) {
1984 1976 cmds = malloc(sizeof(vm_ioctl_cmds));
1985 1977 if (cmds == NULL)
1986 1978 return (NULL);
1987 1979 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
1988 1980 return (cmds);
1989 1981 }
1990 1982
1991 1983 *len = nitems(vm_ioctl_cmds);
1992 1984 return (NULL);
1993 1985 }
1994 1986 #endif /* __FreeBSD__ */
|
↓ open down ↓ |
32 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX