1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2015 Joyent, Inc. All rights reserved.
26 * Copyright 2018 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/param.h>
30 #include <sys/errno.h>
31 #include <sys/vfs.h>
32 #include <sys/vnode.h>
33 #include <sys/cred.h>
34 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/kmem.h>
37 #include <sys/pathname.h>
38 #include <sys/utsname.h>
39 #include <sys/debug.h>
40 #include <sys/door.h>
41 #include <sys/sdt.h>
42 #include <sys/thread.h>
43 #include <sys/avl.h>
44
45 #include <rpc/types.h>
46 #include <rpc/auth.h>
47 #include <rpc/clnt.h>
48
49 #include <nfs/nfs.h>
50 #include <nfs/export.h>
51 #include <nfs/nfs_clnt.h>
52 #include <nfs/auth.h>
53
54 static struct kmem_cache *exi_cache_handle;
55 static void exi_cache_reclaim(void *);
56 static void exi_cache_reclaim_zone(nfs_globals_t *);
57 static void exi_cache_trim(struct exportinfo *exi);
58
59 extern pri_t minclsyspri;
60
61 /* NFS auth cache statistics */
62 volatile uint_t nfsauth_cache_hit;
63 volatile uint_t nfsauth_cache_miss;
64 volatile uint_t nfsauth_cache_refresh;
65 volatile uint_t nfsauth_cache_reclaim;
66 volatile uint_t exi_cache_auth_reclaim_failed;
67 volatile uint_t exi_cache_clnt_reclaim_failed;
68
69 /*
70 * The lifetime of an auth cache entry:
71 * ------------------------------------
72 *
73 * An auth cache entry is created with both the auth_time
74 * and auth_freshness times set to the current time.
75 *
76 * Upon every client access which results in a hit, the
77 * auth_time will be updated.
78 *
79 * If a client access determines that the auth_freshness
80 * indicates that the entry is STALE, then it will be
81 * refreshed. Note that this will explicitly reset
82 * auth_time.
83 *
84 * When the REFRESH successfully occurs, then the
85 * auth_freshness is updated.
86 *
87 * There are two ways for an entry to leave the cache:
88 *
89 * 1) Purged by an action on the export (remove or changed)
90 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
91 *
92 * For 2) we check the timeout value against auth_time.
93 */
94
95 /*
96 * Number of seconds until we mark for refresh an auth cache entry.
97 */
98 #define NFSAUTH_CACHE_REFRESH 600
99
100 /*
101 * Number of idle seconds until we yield to backpressure
102 * to trim a cache entry.
103 */
104 #define NFSAUTH_CACHE_TRIM 3600
105
106 /*
107 * While we could encapuslate the exi_list inside the
108 * exi structure, we can't do that for the auth_list.
109 * So, to keep things looking clean, we keep them both
110 * in these external lists.
111 */
112 typedef struct refreshq_exi_node {
113 struct exportinfo *ren_exi;
114 list_t ren_authlist;
115 list_node_t ren_node;
116 } refreshq_exi_node_t;
117
118 typedef struct refreshq_auth_node {
119 struct auth_cache *ran_auth;
120 char *ran_netid;
121 list_node_t ran_node;
122 } refreshq_auth_node_t;
123
124 /*
125 * Used to manipulate things on the refreshq_queue. Note that the refresh
126 * thread will effectively pop a node off of the queue, at which point it
127 * will no longer need to hold the mutex.
128 */
129 static kmutex_t refreshq_lock;
130 static list_t refreshq_queue;
131 static kcondvar_t refreshq_cv;
132
133 /*
134 * If there is ever a problem with loading the module, then nfsauth_fini()
135 * needs to be called to remove state. In that event, since the refreshq
136 * thread has been started, they need to work together to get rid of state.
137 */
138 typedef enum nfsauth_refreshq_thread_state {
139 REFRESHQ_THREAD_RUNNING,
140 REFRESHQ_THREAD_FINI_REQ,
141 REFRESHQ_THREAD_HALTED,
142 REFRESHQ_THREAD_NEED_CREATE
143 } nfsauth_refreshq_thread_state_t;
144
145 typedef struct nfsauth_globals {
146 kmutex_t mountd_lock;
147 door_handle_t mountd_dh;
148
149 /*
150 * Used to manipulate things on the refreshq_queue. Note that the
151 * refresh thread will effectively pop a node off of the queue,
152 * at which point it will no longer need to hold the mutex.
153 */
154 kmutex_t refreshq_lock;
155 list_t refreshq_queue;
156 kcondvar_t refreshq_cv;
157
158 /*
159 * A list_t would be overkill. These are auth_cache entries which are
160 * no longer linked to an exi. It should be the case that all of their
161 * states are NFS_AUTH_INVALID, i.e., the only way to be put on this
162 * list is iff their state indicated that they had been placed on the
163 * refreshq_queue.
164 *
165 * Note that while there is no link from the exi or back to the exi,
166 * the exi can not go away until these entries are harvested.
167 */
168 struct auth_cache *refreshq_dead_entries;
169 nfsauth_refreshq_thread_state_t refreshq_thread_state;
170
171 } nfsauth_globals_t;
172
173 static void nfsauth_free_node(struct auth_cache *);
174 static void nfsauth_refresh_thread(nfsauth_globals_t *);
175
176 static int nfsauth_cache_compar(const void *, const void *);
177
178 static nfsauth_globals_t *
179 nfsauth_get_zg(void)
180 {
181 nfs_globals_t *ng = nfs_srv_getzg();
182 nfsauth_globals_t *nag = ng->nfs_auth;
183 ASSERT(nag != NULL);
184 return (nag);
185 }
186
187 void
188 mountd_args(uint_t did)
189 {
190 nfsauth_globals_t *nag;
191
192 nag = nfsauth_get_zg();
193 mutex_enter(&nag->mountd_lock);
194 if (nag->mountd_dh != NULL)
195 door_ki_rele(nag->mountd_dh);
196 nag->mountd_dh = door_ki_lookup(did);
197 mutex_exit(&nag->mountd_lock);
198 }
199
200 void
201 nfsauth_init(void)
202 {
203 exi_cache_handle = kmem_cache_create("exi_cache_handle",
204 sizeof (struct auth_cache), 0, NULL, NULL,
205 exi_cache_reclaim, NULL, NULL, 0);
206 }
207
208 void
209 nfsauth_fini(void)
210 {
211 kmem_cache_destroy(exi_cache_handle);
212 }
213
214 void
215 nfsauth_zone_init(nfs_globals_t *ng)
216 {
217 nfsauth_globals_t *nag;
218
219 nag = kmem_zalloc(sizeof (*nag), KM_SLEEP);
220
221 /*
222 * mountd can be restarted by smf(5). We need to make sure
223 * the updated door handle will safely make it to mountd_dh.
224 */
225 mutex_init(&nag->mountd_lock, NULL, MUTEX_DEFAULT, NULL);
226 mutex_init(&nag->refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
227 list_create(&nag->refreshq_queue, sizeof (refreshq_exi_node_t),
228 offsetof(refreshq_exi_node_t, ren_node));
229 cv_init(&nag->refreshq_cv, NULL, CV_DEFAULT, NULL);
230 nag->refreshq_thread_state = REFRESHQ_THREAD_NEED_CREATE;
231
232 ng->nfs_auth = nag;
233 }
234
235 void
236 nfsauth_zone_shutdown(nfs_globals_t *ng)
237 {
238 refreshq_exi_node_t *ren;
239 nfsauth_globals_t *nag = ng->nfs_auth;
240
241 /* Prevent the nfsauth_refresh_thread from getting new work */
242 mutex_enter(&nag->refreshq_lock);
243 if (nag->refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
244 nag->refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
245 cv_broadcast(&nag->refreshq_cv);
246
247 /* Wait for nfsauth_refresh_thread() to exit */
248 while (nag->refreshq_thread_state != REFRESHQ_THREAD_HALTED)
249 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock);
250 }
251 mutex_exit(&nag->refreshq_lock);
252
253 /*
254 * Walk the exi_list and in turn, walk the auth_lists and free all
255 * lists. In addition, free INVALID auth_cache entries.
256 */
257 while ((ren = list_remove_head(&nag->refreshq_queue))) {
258 refreshq_auth_node_t *ran;
259
260 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) {
261 struct auth_cache *p = ran->ran_auth;
262 if (p->auth_state == NFS_AUTH_INVALID)
263 nfsauth_free_node(p);
264 strfree(ran->ran_netid);
265 kmem_free(ran, sizeof (*ran));
266 }
267
268 list_destroy(&ren->ren_authlist);
269 exi_rele(ren->ren_exi);
270 kmem_free(ren, sizeof (*ren));
271 }
272 }
273
274 void
275 nfsauth_zone_fini(nfs_globals_t *ng)
276 {
277 nfsauth_globals_t *nag = ng->nfs_auth;
278
279 ng->nfs_auth = NULL;
280
281 list_destroy(&nag->refreshq_queue);
282 cv_destroy(&nag->refreshq_cv);
283 mutex_destroy(&nag->refreshq_lock);
284 mutex_destroy(&nag->mountd_lock);
285 /* Extra cleanup. */
286 if (nag->mountd_dh != NULL)
287 door_ki_rele(nag->mountd_dh);
288 kmem_free(nag, sizeof (*nag));
289 }
290
291 /*
292 * Convert the address in a netbuf to
293 * a hash index for the auth_cache table.
294 */
295 static int
296 hash(struct netbuf *a)
297 {
298 int i, h = 0;
299
300 for (i = 0; i < a->len; i++)
301 h ^= a->buf[i];
302
303 return (h & (AUTH_TABLESIZE - 1));
304 }
305
306 /*
307 * Mask out the components of an
308 * address that do not identify
309 * a host. For socket addresses the
310 * masking gets rid of the port number.
311 */
312 static void
313 addrmask(struct netbuf *addr, struct netbuf *mask)
314 {
315 int i;
316
317 for (i = 0; i < addr->len; i++)
318 addr->buf[i] &= mask->buf[i];
319 }
320
321 /*
322 * nfsauth4_access is used for NFS V4 auth checking. Besides doing
323 * the common nfsauth_access(), it will check if the client can
324 * have a limited access to this vnode even if the security flavor
325 * used does not meet the policy.
326 */
327 int
328 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req,
329 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
330 {
331 int access;
332
333 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids);
334
335 /*
336 * There are cases that the server needs to allow the client
337 * to have a limited view.
338 *
339 * e.g.
340 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
341 * /export/home is shared as "sec=sys,rw"
342 *
343 * When the client mounts /export with sec=sys, the client
344 * would get a limited view with RO access on /export to see
345 * "home" only because the client is allowed to access
346 * /export/home with auth_sys.
347 */
348 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
349 /*
350 * Allow ro permission with LIMITED view if there is a
351 * sub-dir exported under vp.
352 */
353 if (has_visible(exi, vp))
354 return (NFSAUTH_LIMITED);
355 }
356
357 return (access);
358 }
359
360 static void
361 sys_log(const char *msg)
362 {
363 static time_t tstamp = 0;
364 time_t now;
365
366 /*
367 * msg is shown (at most) once per minute
368 */
369 now = gethrestime_sec();
370 if ((tstamp + 60) < now) {
371 tstamp = now;
372 cmn_err(CE_WARN, msg);
373 }
374 }
375
376 /*
377 * Callup to the mountd to get access information in the kernel.
378 */
379 static bool_t
380 nfsauth_retrieve(nfsauth_globals_t *nag, struct exportinfo *exi,
381 char *req_netid, int flavor, struct netbuf *addr, int *access,
382 cred_t *clnt_cred, uid_t *srv_uid, gid_t *srv_gid, uint_t *srv_gids_cnt,
383 gid_t **srv_gids)
384 {
385 varg_t varg = {0};
386 nfsauth_res_t res = {0};
387 XDR xdrs;
388 size_t absz;
389 caddr_t abuf;
390 int last = 0;
391 door_arg_t da;
392 door_info_t di;
393 door_handle_t dh;
394 uint_t ntries = 0;
395
396 /*
397 * No entry in the cache for this client/flavor
398 * so we need to call the nfsauth service in the
399 * mount daemon.
400 */
401
402 varg.vers = V_PROTO;
403 varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
404 varg.arg_u.arg.areq.req_client.n_len = addr->len;
405 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
406 varg.arg_u.arg.areq.req_netid = req_netid;
407 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
408 varg.arg_u.arg.areq.req_flavor = flavor;
409 varg.arg_u.arg.areq.req_clnt_uid = crgetuid(clnt_cred);
410 varg.arg_u.arg.areq.req_clnt_gid = crgetgid(clnt_cred);
411 varg.arg_u.arg.areq.req_clnt_gids.len = crgetngroups(clnt_cred);
412 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)crgetgroups(clnt_cred);
413
414 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
415
416 /*
417 * Setup the XDR stream for encoding the arguments. Notice that
418 * in addition to the args having variable fields (req_netid and
419 * req_path), the argument data structure is itself versioned,
420 * so we need to make sure we can size the arguments buffer
421 * appropriately to encode all the args. If we can't get sizing
422 * info _or_ properly encode the arguments, there's really no
423 * point in continuting, so we fail the request.
424 */
425 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) {
426 *access = NFSAUTH_DENIED;
427 return (FALSE);
428 }
429
430 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
431 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE);
432 if (!xdr_varg(&xdrs, &varg)) {
433 XDR_DESTROY(&xdrs);
434 goto fail;
435 }
436 XDR_DESTROY(&xdrs);
437
438 /*
439 * Prepare the door arguments
440 *
441 * We don't know the size of the message the daemon
442 * will pass back to us. By setting rbuf to NULL,
443 * we force the door code to allocate a buf of the
444 * appropriate size. We must set rsize > 0, however,
445 * else the door code acts as if no response was
446 * expected and doesn't pass the data to us.
447 */
448 da.data_ptr = (char *)abuf;
449 da.data_size = absz;
450 da.desc_ptr = NULL;
451 da.desc_num = 0;
452 da.rbuf = NULL;
453 da.rsize = 1;
454
455 retry:
456 mutex_enter(&nag->mountd_lock);
457 dh = nag->mountd_dh;
458 if (dh != NULL)
459 door_ki_hold(dh);
460 mutex_exit(&nag->mountd_lock);
461
462 if (dh == NULL) {
463 /*
464 * The rendezvous point has not been established yet!
465 * This could mean that either mountd(1m) has not yet
466 * been started or that _this_ routine nuked the door
467 * handle after receiving an EINTR for a REVOKED door.
468 *
469 * Returning NFSAUTH_DROP will cause the NFS client
470 * to retransmit the request, so let's try to be more
471 * rescillient and attempt for ntries before we bail.
472 */
473 if (++ntries % NFSAUTH_DR_TRYCNT) {
474 delay(hz);
475 goto retry;
476 }
477
478 kmem_free(abuf, absz);
479
480 sys_log("nfsauth: mountd has not established door");
481 *access = NFSAUTH_DROP;
482 return (FALSE);
483 }
484
485 ntries = 0;
486
487 /*
488 * Now that we've got what we need, place the call.
489 */
490 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
491 case 0: /* Success */
492 door_ki_rele(dh);
493
494 if (da.data_ptr == NULL && da.data_size == 0) {
495 /*
496 * The door_return that contained the data
497 * failed! We're here because of the 2nd
498 * door_return (w/o data) such that we can
499 * get control of the thread (and exit
500 * gracefully).
501 */
502 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
503 door_arg_t *, &da);
504 goto fail;
505 }
506
507 break;
508
509 case EAGAIN:
510 /*
511 * Server out of resources; back off for a bit
512 */
513 door_ki_rele(dh);
514 delay(hz);
515 goto retry;
516 /* NOTREACHED */
517
518 case EINTR:
519 if (!door_ki_info(dh, &di)) {
520 door_ki_rele(dh);
521
522 if (di.di_attributes & DOOR_REVOKED) {
523 /*
524 * The server barfed and revoked
525 * the (existing) door on us; we
526 * want to wait to give smf(5) a
527 * chance to restart mountd(1m)
528 * and establish a new door handle.
529 */
530 mutex_enter(&nag->mountd_lock);
531 if (dh == nag->mountd_dh) {
532 door_ki_rele(nag->mountd_dh);
533 nag->mountd_dh = NULL;
534 }
535 mutex_exit(&nag->mountd_lock);
536 delay(hz);
537 goto retry;
538 }
539 /*
540 * If the door was _not_ revoked on us,
541 * then more than likely we took an INTR,
542 * so we need to fail the operation.
543 */
544 goto fail;
545 }
546 /*
547 * The only failure that can occur from getting
548 * the door info is EINVAL, so we let the code
549 * below handle it.
550 */
551 /* FALLTHROUGH */
552
553 case EBADF:
554 case EINVAL:
555 default:
556 /*
557 * If we have a stale door handle, give smf a last
558 * chance to start it by sleeping for a little bit.
559 * If we're still hosed, we'll fail the call.
560 *
561 * Since we're going to reacquire the door handle
562 * upon the retry, we opt to sleep for a bit and
563 * _not_ to clear mountd_dh. If mountd restarted
564 * and was able to set mountd_dh, we should see
565 * the new instance; if not, we won't get caught
566 * up in the retry/DELAY loop.
567 */
568 door_ki_rele(dh);
569 if (!last) {
570 delay(hz);
571 last++;
572 goto retry;
573 }
574 sys_log("nfsauth: stale mountd door handle");
575 goto fail;
576 }
577
578 ASSERT(da.rbuf != NULL);
579
580 /*
581 * No door errors encountered; setup the XDR stream for decoding
582 * the results. If we fail to decode the results, we've got no
583 * other recourse than to fail the request.
584 */
585 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE);
586 if (!xdr_nfsauth_res(&xdrs, &res)) {
587 xdr_free(xdr_nfsauth_res, (char *)&res);
588 XDR_DESTROY(&xdrs);
589 kmem_free(da.rbuf, da.rsize);
590 goto fail;
591 }
592 XDR_DESTROY(&xdrs);
593 kmem_free(da.rbuf, da.rsize);
594
595 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
596 switch (res.stat) {
597 case NFSAUTH_DR_OKAY:
598 *access = res.ares.auth_perm;
599 *srv_uid = res.ares.auth_srv_uid;
600 *srv_gid = res.ares.auth_srv_gid;
601
602 if ((*srv_gids_cnt = res.ares.auth_srv_gids.len) != 0) {
603 *srv_gids = kmem_alloc(*srv_gids_cnt *
604 sizeof (gid_t), KM_SLEEP);
605 bcopy(res.ares.auth_srv_gids.val, *srv_gids,
606 *srv_gids_cnt * sizeof (gid_t));
607 } else {
608 *srv_gids = NULL;
609 }
610
611 break;
612
613 case NFSAUTH_DR_EFAIL:
614 case NFSAUTH_DR_DECERR:
615 case NFSAUTH_DR_BADCMD:
616 default:
617 xdr_free(xdr_nfsauth_res, (char *)&res);
618 fail:
619 *access = NFSAUTH_DENIED;
620 kmem_free(abuf, absz);
621 return (FALSE);
622 /* NOTREACHED */
623 }
624
625 xdr_free(xdr_nfsauth_res, (char *)&res);
626 kmem_free(abuf, absz);
627
628 return (TRUE);
629 }
630
631 static void
632 nfsauth_refresh_thread(nfsauth_globals_t *nag)
633 {
634 refreshq_exi_node_t *ren;
635 refreshq_auth_node_t *ran;
636
637 struct exportinfo *exi;
638
639 int access;
640 bool_t retrieval;
641
642 callb_cpr_t cprinfo;
643
644 CALLB_CPR_INIT(&cprinfo, &nag->refreshq_lock, callb_generic_cpr,
645 "nfsauth_refresh");
646
647 for (;;) {
648 mutex_enter(&nag->refreshq_lock);
649 if (nag->refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
650 /* Keep the hold on the lock! */
651 break;
652 }
653
654 ren = list_remove_head(&nag->refreshq_queue);
655 if (ren == NULL) {
656 CALLB_CPR_SAFE_BEGIN(&cprinfo);
657 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock);
658 CALLB_CPR_SAFE_END(&cprinfo, &nag->refreshq_lock);
659 mutex_exit(&nag->refreshq_lock);
660 continue;
661 }
662 mutex_exit(&nag->refreshq_lock);
663
664 exi = ren->ren_exi;
665 ASSERT(exi != NULL);
666
667 /*
668 * Since the ren was removed from the refreshq_queue above,
669 * this is the only thread aware about the ren existence, so we
670 * have the exclusive ownership of it and we do not need to
671 * protect it by any lock.
672 */
673 while ((ran = list_remove_head(&ren->ren_authlist))) {
674 uid_t uid;
675 gid_t gid;
676 uint_t ngids;
677 gid_t *gids;
678 struct auth_cache *p = ran->ran_auth;
679 char *netid = ran->ran_netid;
680
681 ASSERT(p != NULL);
682 ASSERT(netid != NULL);
683
684 kmem_free(ran, sizeof (refreshq_auth_node_t));
685
686 mutex_enter(&p->auth_lock);
687
688 /*
689 * Once the entry goes INVALID, it can not change
690 * state.
691 *
692 * No need to refresh entries also in a case we are
693 * just shutting down.
694 *
695 * In general, there is no need to hold the
696 * refreshq_lock to test the refreshq_thread_state. We
697 * do hold it at other places because there is some
698 * related thread synchronization (or some other tasks)
699 * close to the refreshq_thread_state check.
700 *
701 * The check for the refreshq_thread_state value here
702 * is purely advisory to allow the faster
703 * nfsauth_refresh_thread() shutdown. In a case we
704 * will miss such advisory, nothing catastrophic
705 * happens: we will just spin longer here before the
706 * shutdown.
707 */
708 if (p->auth_state == NFS_AUTH_INVALID ||
709 nag->refreshq_thread_state !=
710 REFRESHQ_THREAD_RUNNING) {
711 mutex_exit(&p->auth_lock);
712
713 if (p->auth_state == NFS_AUTH_INVALID)
714 nfsauth_free_node(p);
715
716 strfree(netid);
717
718 continue;
719 }
720
721 /*
722 * Make sure the state is valid. Note that once we
723 * change the state to NFS_AUTH_REFRESHING, no other
724 * thread will be able to work on this entry.
725 */
726 ASSERT(p->auth_state == NFS_AUTH_STALE);
727
728 p->auth_state = NFS_AUTH_REFRESHING;
729 mutex_exit(&p->auth_lock);
730
731 DTRACE_PROBE2(nfsauth__debug__cache__refresh,
732 struct exportinfo *, exi,
733 struct auth_cache *, p);
734
735 /*
736 * The first caching of the access rights
737 * is done with the netid pulled out of the
738 * request from the client. All subsequent
739 * users of the cache may or may not have
740 * the same netid. It doesn't matter. So
741 * when we refresh, we simply use the netid
742 * of the request which triggered the
743 * refresh attempt.
744 */
745 retrieval = nfsauth_retrieve(nag, exi, netid,
746 p->auth_flavor, &p->auth_clnt->authc_addr, &access,
747 p->auth_clnt_cred, &uid, &gid, &ngids, &gids);
748
749 /*
750 * This can only be set in one other place
751 * and the state has to be NFS_AUTH_FRESH.
752 */
753 strfree(netid);
754
755 mutex_enter(&p->auth_lock);
756 if (p->auth_state == NFS_AUTH_INVALID) {
757 mutex_exit(&p->auth_lock);
758 nfsauth_free_node(p);
759 if (retrieval == TRUE)
760 kmem_free(gids, ngids * sizeof (gid_t));
761 } else {
762 /*
763 * If we got an error, do not reset the
764 * time. This will cause the next access
765 * check for the client to reschedule this
766 * node.
767 */
768 if (retrieval == TRUE) {
769 p->auth_access = access;
770
771 p->auth_srv_uid = uid;
772 p->auth_srv_gid = gid;
773 kmem_free(p->auth_srv_gids,
774 p->auth_srv_ngids * sizeof (gid_t));
775 p->auth_srv_ngids = ngids;
776 p->auth_srv_gids = gids;
777
778 p->auth_freshness = gethrestime_sec();
779 }
780 p->auth_state = NFS_AUTH_FRESH;
781
782 cv_broadcast(&p->auth_cv);
783 mutex_exit(&p->auth_lock);
784 }
785 }
786
787 list_destroy(&ren->ren_authlist);
788 exi_rele(ren->ren_exi);
789 kmem_free(ren, sizeof (refreshq_exi_node_t));
790 }
791
792 nag->refreshq_thread_state = REFRESHQ_THREAD_HALTED;
793 cv_broadcast(&nag->refreshq_cv);
794 CALLB_CPR_EXIT(&cprinfo);
795 DTRACE_PROBE(nfsauth__nfsauth__refresh__thread__exit);
796 zthread_exit();
797 }
798
799 int
800 nfsauth_cache_clnt_compar(const void *v1, const void *v2)
801 {
802 int c;
803
804 const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1;
805 const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2;
806
807 if (a1->authc_addr.len < a2->authc_addr.len)
808 return (-1);
809 if (a1->authc_addr.len > a2->authc_addr.len)
810 return (1);
811
812 c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len);
813 if (c < 0)
814 return (-1);
815 if (c > 0)
816 return (1);
817
818 return (0);
819 }
820
821 static int
822 nfsauth_cache_compar(const void *v1, const void *v2)
823 {
824 int c;
825
826 const struct auth_cache *a1 = (const struct auth_cache *)v1;
827 const struct auth_cache *a2 = (const struct auth_cache *)v2;
828
829 if (a1->auth_flavor < a2->auth_flavor)
830 return (-1);
831 if (a1->auth_flavor > a2->auth_flavor)
832 return (1);
833
834 if (crgetuid(a1->auth_clnt_cred) < crgetuid(a2->auth_clnt_cred))
835 return (-1);
836 if (crgetuid(a1->auth_clnt_cred) > crgetuid(a2->auth_clnt_cred))
837 return (1);
838
839 if (crgetgid(a1->auth_clnt_cred) < crgetgid(a2->auth_clnt_cred))
840 return (-1);
841 if (crgetgid(a1->auth_clnt_cred) > crgetgid(a2->auth_clnt_cred))
842 return (1);
843
844 if (crgetngroups(a1->auth_clnt_cred) < crgetngroups(a2->auth_clnt_cred))
845 return (-1);
846 if (crgetngroups(a1->auth_clnt_cred) > crgetngroups(a2->auth_clnt_cred))
847 return (1);
848
849 c = memcmp(crgetgroups(a1->auth_clnt_cred),
850 crgetgroups(a2->auth_clnt_cred), crgetngroups(a1->auth_clnt_cred));
851 if (c < 0)
852 return (-1);
853 if (c > 0)
854 return (1);
855
856 return (0);
857 }
858
859 /*
860 * Get the access information from the cache or callup to the mountd
861 * to get and cache the access information in the kernel.
862 */
863 static int
864 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor,
865 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
866 {
867 nfsauth_globals_t *nag;
868 struct netbuf *taddrmask;
869 struct netbuf addr; /* temporary copy of client's address */
870 const struct netbuf *claddr;
871 avl_tree_t *tree;
872 struct auth_cache ac; /* used as a template for avl_find() */
873 struct auth_cache_clnt *c;
874 struct auth_cache_clnt acc; /* used as a template for avl_find() */
875 struct auth_cache *p = NULL;
876 int access;
877
878 uid_t tmpuid;
879 gid_t tmpgid;
880 uint_t tmpngids;
881 gid_t *tmpgids;
882
883 avl_index_t where; /* used for avl_find()/avl_insert() */
884
885 ASSERT(cr != NULL);
886
887 ASSERT3P(curzone->zone_id, ==, exi->exi_zoneid);
888 nag = nfsauth_get_zg();
889
890 /*
891 * Now check whether this client already
892 * has an entry for this flavor in the cache
893 * for this export.
894 * Get the caller's address, mask off the
895 * parts of the address that do not identify
896 * the host (port number, etc), and then hash
897 * it to find the chain of cache entries.
898 */
899
900 claddr = svc_getrpccaller(req->rq_xprt);
901 addr = *claddr;
902 if (claddr->len != 0) {
903 addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP);
904 bcopy(claddr->buf, addr.buf, claddr->len);
905 } else {
906 addr.buf = NULL;
907 }
908
909 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
910 ASSERT(taddrmask != NULL);
911 addrmask(&addr, taddrmask);
912
913 acc.authc_addr = addr;
914
915 tree = exi->exi_cache[hash(&addr)];
916
917 rw_enter(&exi->exi_cache_lock, RW_READER);
918 c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL);
919
920 if (c == NULL) {
921 struct auth_cache_clnt *nc;
922
923 rw_exit(&exi->exi_cache_lock);
924
925 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP_LAZY);
926 if (nc == NULL)
927 goto retrieve;
928
929 /*
930 * Initialize the new auth_cache_clnt
931 */
932 nc->authc_addr = addr;
933 nc->authc_addr.buf = kmem_alloc(addr.maxlen, KM_NOSLEEP_LAZY);
934 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) {
935 kmem_free(nc, sizeof (*nc));
936 goto retrieve;
937 }
938 bcopy(addr.buf, nc->authc_addr.buf, addr.len);
939 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL);
940 avl_create(&nc->authc_tree, nfsauth_cache_compar,
941 sizeof (struct auth_cache),
942 offsetof(struct auth_cache, auth_link));
943
944 rw_enter(&exi->exi_cache_lock, RW_WRITER);
945 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where);
946 if (c == NULL) {
947 avl_insert(tree, nc, where);
948 rw_downgrade(&exi->exi_cache_lock);
949 c = nc;
950 } else {
951 rw_downgrade(&exi->exi_cache_lock);
952
953 avl_destroy(&nc->authc_tree);
954 rw_destroy(&nc->authc_lock);
955 kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen);
956 kmem_free(nc, sizeof (*nc));
957 }
958 }
959
960 ASSERT(c != NULL);
961
962 rw_enter(&c->authc_lock, RW_READER);
963
964 ac.auth_flavor = flavor;
965 ac.auth_clnt_cred = cr;
966
967 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL);
968
969 if (p == NULL) {
970 struct auth_cache *np;
971
972 rw_exit(&c->authc_lock);
973
974 np = kmem_cache_alloc(exi_cache_handle, KM_NOSLEEP_LAZY);
975 if (np == NULL) {
976 rw_exit(&exi->exi_cache_lock);
977 goto retrieve;
978 }
979
980 /*
981 * Initialize the new auth_cache
982 */
983 np->auth_clnt = c;
984 np->auth_flavor = flavor;
985 np->auth_clnt_cred = crdup(cr);
986 np->auth_srv_ngids = 0;
987 np->auth_srv_gids = NULL;
988 np->auth_time = np->auth_freshness = gethrestime_sec();
989 np->auth_state = NFS_AUTH_NEW;
990 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL);
991 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL);
992
993 rw_enter(&c->authc_lock, RW_WRITER);
994 rw_exit(&exi->exi_cache_lock);
995
996 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where);
997 if (p == NULL) {
998 avl_insert(&c->authc_tree, np, where);
999 rw_downgrade(&c->authc_lock);
1000 p = np;
1001 } else {
1002 rw_downgrade(&c->authc_lock);
1003
1004 cv_destroy(&np->auth_cv);
1005 mutex_destroy(&np->auth_lock);
1006 crfree(np->auth_clnt_cred);
1007 kmem_cache_free(exi_cache_handle, np);
1008 }
1009 } else {
1010 rw_exit(&exi->exi_cache_lock);
1011 }
1012
1013 mutex_enter(&p->auth_lock);
1014 rw_exit(&c->authc_lock);
1015
1016 /*
1017 * If the entry is in the WAITING state then some other thread is just
1018 * retrieving the required info. The entry was either NEW, or the list
1019 * of client's supplemental groups is going to be changed (either by
1020 * this thread, or by some other thread). We need to wait until the
1021 * nfsauth_retrieve() is done.
1022 */
1023 while (p->auth_state == NFS_AUTH_WAITING)
1024 cv_wait(&p->auth_cv, &p->auth_lock);
1025
1026 /*
1027 * Here the entry cannot be in WAITING or INVALID state.
1028 */
1029 ASSERT(p->auth_state != NFS_AUTH_WAITING);
1030 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1031
1032 /*
1033 * If the cache entry is not valid yet, we need to retrieve the
1034 * info ourselves.
1035 */
1036 if (p->auth_state == NFS_AUTH_NEW) {
1037 bool_t res;
1038 /*
1039 * NFS_AUTH_NEW is the default output auth_state value in a
1040 * case we failed somewhere below.
1041 */
1042 auth_state_t state = NFS_AUTH_NEW;
1043
1044 p->auth_state = NFS_AUTH_WAITING;
1045 mutex_exit(&p->auth_lock);
1046 kmem_free(addr.buf, addr.maxlen);
1047 addr = p->auth_clnt->authc_addr;
1048
1049 atomic_inc_uint(&nfsauth_cache_miss);
1050
1051 res = nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt),
1052 flavor, &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids,
1053 &tmpgids);
1054
1055 p->auth_access = access;
1056 p->auth_time = p->auth_freshness = gethrestime_sec();
1057
1058 if (res == TRUE) {
1059 if (uid != NULL)
1060 *uid = tmpuid;
1061 if (gid != NULL)
1062 *gid = tmpgid;
1063 if (ngids != NULL && gids != NULL) {
1064 *ngids = tmpngids;
1065 *gids = tmpgids;
1066
1067 /*
1068 * We need a copy of gids for the
1069 * auth_cache entry
1070 */
1071 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t),
1072 KM_NOSLEEP_LAZY);
1073 if (tmpgids != NULL)
1074 bcopy(*gids, tmpgids,
1075 tmpngids * sizeof (gid_t));
1076 }
1077
1078 if (tmpgids != NULL || tmpngids == 0) {
1079 p->auth_srv_uid = tmpuid;
1080 p->auth_srv_gid = tmpgid;
1081 p->auth_srv_ngids = tmpngids;
1082 p->auth_srv_gids = tmpgids;
1083
1084 state = NFS_AUTH_FRESH;
1085 }
1086 }
1087
1088 /*
1089 * Set the auth_state and notify waiters.
1090 */
1091 mutex_enter(&p->auth_lock);
1092 p->auth_state = state;
1093 cv_broadcast(&p->auth_cv);
1094 mutex_exit(&p->auth_lock);
1095 } else {
1096 uint_t nach;
1097 time_t refresh;
1098
1099 refresh = gethrestime_sec() - p->auth_freshness;
1100
1101 p->auth_time = gethrestime_sec();
1102
1103 if (uid != NULL)
1104 *uid = p->auth_srv_uid;
1105 if (gid != NULL)
1106 *gid = p->auth_srv_gid;
1107 if (ngids != NULL && gids != NULL) {
1108 if ((*ngids = p->auth_srv_ngids) != 0) {
1109 size_t sz = *ngids * sizeof (gid_t);
1110 *gids = kmem_alloc(sz, KM_SLEEP);
1111 bcopy(p->auth_srv_gids, *gids, sz);
1112 } else {
1113 *gids = NULL;
1114 }
1115 }
1116
1117 access = p->auth_access;
1118
1119 if ((refresh > NFSAUTH_CACHE_REFRESH) &&
1120 p->auth_state == NFS_AUTH_FRESH) {
1121 refreshq_auth_node_t *ran;
1122 uint_t nacr;
1123
1124 p->auth_state = NFS_AUTH_STALE;
1125 mutex_exit(&p->auth_lock);
1126
1127 nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh);
1128 DTRACE_PROBE3(nfsauth__debug__cache__stale,
1129 struct exportinfo *, exi,
1130 struct auth_cache *, p,
1131 uint_t, nacr);
1132
1133 ran = kmem_alloc(sizeof (refreshq_auth_node_t),
1134 KM_SLEEP);
1135 ran->ran_auth = p;
1136 ran->ran_netid = strdup(svc_getnetid(req->rq_xprt));
1137
1138 mutex_enter(&nag->refreshq_lock);
1139
1140 if (nag->refreshq_thread_state ==
1141 REFRESHQ_THREAD_NEED_CREATE) {
1142 /* Launch nfsauth refresh thread */
1143 nag->refreshq_thread_state =
1144 REFRESHQ_THREAD_RUNNING;
1145 (void) zthread_create(NULL, 0,
1146 nfsauth_refresh_thread, nag, 0,
1147 minclsyspri);
1148 }
1149
1150 /*
1151 * We should not add a work queue item if the thread
1152 * is not accepting them.
1153 */
1154 if (nag->refreshq_thread_state ==
1155 REFRESHQ_THREAD_RUNNING) {
1156 refreshq_exi_node_t *ren;
1157
1158 /*
1159 * Is there an existing exi_list?
1160 */
1161 for (ren = list_head(&nag->refreshq_queue);
1162 ren != NULL;
1163 ren = list_next(&nag->refreshq_queue,
1164 ren)) {
1165 if (ren->ren_exi == exi) {
1166 list_insert_tail(
1167 &ren->ren_authlist, ran);
1168 break;
1169 }
1170 }
1171
1172 if (ren == NULL) {
1173 ren = kmem_alloc(
1174 sizeof (refreshq_exi_node_t),
1175 KM_SLEEP);
1176
1177 exi_hold(exi);
1178 ren->ren_exi = exi;
1179
1180 list_create(&ren->ren_authlist,
1181 sizeof (refreshq_auth_node_t),
1182 offsetof(refreshq_auth_node_t,
1183 ran_node));
1184
1185 list_insert_tail(&ren->ren_authlist,
1186 ran);
1187 list_insert_tail(&nag->refreshq_queue,
1188 ren);
1189 }
1190
1191 cv_broadcast(&nag->refreshq_cv);
1192 } else {
1193 strfree(ran->ran_netid);
1194 kmem_free(ran, sizeof (refreshq_auth_node_t));
1195 }
1196
1197 mutex_exit(&nag->refreshq_lock);
1198 } else {
1199 mutex_exit(&p->auth_lock);
1200 }
1201
1202 nach = atomic_inc_uint_nv(&nfsauth_cache_hit);
1203 DTRACE_PROBE2(nfsauth__debug__cache__hit,
1204 uint_t, nach,
1205 time_t, refresh);
1206
1207 kmem_free(addr.buf, addr.maxlen);
1208 }
1209
1210 return (access);
1211
1212 retrieve:
1213
1214 /*
1215 * Retrieve the required data without caching.
1216 */
1217
1218 ASSERT(p == NULL);
1219
1220 atomic_inc_uint(&nfsauth_cache_miss);
1221
1222 if (nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt), flavor,
1223 &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids)) {
1224 if (uid != NULL)
1225 *uid = tmpuid;
1226 if (gid != NULL)
1227 *gid = tmpgid;
1228 if (ngids != NULL && gids != NULL) {
1229 *ngids = tmpngids;
1230 *gids = tmpgids;
1231 } else {
1232 kmem_free(tmpgids, tmpngids * sizeof (gid_t));
1233 }
1234 }
1235
1236 kmem_free(addr.buf, addr.maxlen);
1237
1238 return (access);
1239 }
1240
1241 /*
1242 * Check if the requesting client has access to the filesystem with
1243 * a given nfs flavor number which is an explicitly shared flavor.
1244 */
1245 int
1246 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
1247 int flavor, int perm, cred_t *cr)
1248 {
1249 int access;
1250
1251 if (! (perm & M_4SEC_EXPORTED)) {
1252 return (NFSAUTH_DENIED);
1253 }
1254
1255 /*
1256 * Optimize if there are no lists
1257 */
1258 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) {
1259 perm &= ~M_4SEC_EXPORTED;
1260 if (perm == M_RO)
1261 return (NFSAUTH_RO);
1262 if (perm == M_RW)
1263 return (NFSAUTH_RW);
1264 }
1265
1266 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL,
1267 NULL);
1268
1269 return (access);
1270 }
1271
1272 int
1273 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr,
1274 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
1275 {
1276 int access, mapaccess;
1277 struct secinfo *sp;
1278 int i, flavor, perm;
1279 int authnone_entry = -1;
1280
1281 /*
1282 * By default root is mapped to anonymous user.
1283 * This might get overriden later in nfsauth_cache_get().
1284 */
1285 if (crgetuid(cr) == 0) {
1286 if (uid != NULL)
1287 *uid = exi->exi_export.ex_anon;
1288 if (gid != NULL)
1289 *gid = exi->exi_export.ex_anon;
1290 } else {
1291 if (uid != NULL)
1292 *uid = crgetuid(cr);
1293 if (gid != NULL)
1294 *gid = crgetgid(cr);
1295 }
1296
1297 if (ngids != NULL)
1298 *ngids = 0;
1299 if (gids != NULL)
1300 *gids = NULL;
1301
1302 /*
1303 * Get the nfs flavor number from xprt.
1304 */
1305 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1306
1307 /*
1308 * First check the access restrictions on the filesystem. If
1309 * there are no lists associated with this flavor then there's no
1310 * need to make an expensive call to the nfsauth service or to
1311 * cache anything.
1312 */
1313
1314 sp = exi->exi_export.ex_secinfo;
1315 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1316 if (flavor != sp[i].s_secinfo.sc_nfsnum) {
1317 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
1318 authnone_entry = i;
1319 continue;
1320 }
1321 break;
1322 }
1323
1324 mapaccess = 0;
1325
1326 if (i >= exi->exi_export.ex_seccnt) {
1327 /*
1328 * Flavor not found, but use AUTH_NONE if it exists
1329 */
1330 if (authnone_entry == -1)
1331 return (NFSAUTH_DENIED);
1332 flavor = AUTH_NONE;
1333 mapaccess = NFSAUTH_MAPNONE;
1334 i = authnone_entry;
1335 }
1336
1337 /*
1338 * If the flavor is in the ex_secinfo list, but not an explicitly
1339 * shared flavor by the user, it is a result of the nfsv4 server
1340 * namespace setup. We will grant an RO permission similar for
1341 * a pseudo node except that this node is a shared one.
1342 *
1343 * e.g. flavor in (flavor) indicates that it is not explictly
1344 * shared by the user:
1345 *
1346 * / (sys, krb5)
1347 * |
1348 * export #share -o sec=sys (krb5)
1349 * |
1350 * secure #share -o sec=krb5
1351 *
1352 * In this case, when a krb5 request coming in to access
1353 * /export, RO permission is granted.
1354 */
1355 if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1356 return (mapaccess | NFSAUTH_RO);
1357
1358 /*
1359 * Optimize if there are no lists.
1360 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1361 */
1362 perm = sp[i].s_flags;
1363 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS ||
1364 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) {
1365 perm &= ~M_4SEC_EXPORTED;
1366 if (perm == M_RO)
1367 return (mapaccess | NFSAUTH_RO);
1368 if (perm == M_RW)
1369 return (mapaccess | NFSAUTH_RW);
1370 }
1371
1372 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids);
1373
1374 /*
1375 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1376 * the supplemental groups.
1377 */
1378 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
1379 if (ngids != NULL && gids != NULL) {
1380 kmem_free(*gids, *ngids * sizeof (gid_t));
1381 *ngids = 0;
1382 *gids = NULL;
1383 }
1384 }
1385
1386 /*
1387 * Client's security flavor doesn't match with "ro" or
1388 * "rw" list. Try again using AUTH_NONE if present.
1389 */
1390 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1391 /*
1392 * Have we already encountered AUTH_NONE ?
1393 */
1394 if (authnone_entry != -1) {
1395 mapaccess = NFSAUTH_MAPNONE;
1396 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr,
1397 NULL, NULL, NULL, NULL);
1398 } else {
1399 /*
1400 * Check for AUTH_NONE presence.
1401 */
1402 for (; i < exi->exi_export.ex_seccnt; i++) {
1403 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1404 mapaccess = NFSAUTH_MAPNONE;
1405 access = nfsauth_cache_get(exi, req,
1406 AUTH_NONE, cr, NULL, NULL, NULL,
1407 NULL);
1408 break;
1409 }
1410 }
1411 }
1412 }
1413
1414 if (access & NFSAUTH_DENIED)
1415 access = NFSAUTH_DENIED;
1416
1417 return (access | mapaccess);
1418 }
1419
1420 static void
1421 nfsauth_free_clnt_node(struct auth_cache_clnt *p)
1422 {
1423 void *cookie = NULL;
1424 struct auth_cache *node;
1425
1426 while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL)
1427 nfsauth_free_node(node);
1428 avl_destroy(&p->authc_tree);
1429
1430 kmem_free(p->authc_addr.buf, p->authc_addr.maxlen);
1431 rw_destroy(&p->authc_lock);
1432
1433 kmem_free(p, sizeof (*p));
1434 }
1435
1436 static void
1437 nfsauth_free_node(struct auth_cache *p)
1438 {
1439 crfree(p->auth_clnt_cred);
1440 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t));
1441 mutex_destroy(&p->auth_lock);
1442 cv_destroy(&p->auth_cv);
1443 kmem_cache_free(exi_cache_handle, p);
1444 }
1445
1446 /*
1447 * Free the nfsauth cache for a given export
1448 */
1449 void
1450 nfsauth_cache_free(struct exportinfo *exi)
1451 {
1452 int i;
1453
1454 /*
1455 * The only way we got here was with an exi_rele, which means that no
1456 * auth cache entry is being refreshed.
1457 */
1458
1459 for (i = 0; i < AUTH_TABLESIZE; i++) {
1460 avl_tree_t *tree = exi->exi_cache[i];
1461 void *cookie = NULL;
1462 struct auth_cache_clnt *node;
1463
1464 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
1465 nfsauth_free_clnt_node(node);
1466 }
1467 }
1468
1469 /*
1470 * Called by the kernel memory allocator when memory is low.
1471 * Free unused cache entries. If that's not enough, the VM system
1472 * will call again for some more.
1473 *
1474 * This needs to operate on all zones, so we take a reader lock
1475 * on the list of zones and walk the list. This is OK here
1476 * becuase exi_cache_trim doesn't block or cause new objects
1477 * to be allocated (basically just frees lots of stuff).
1478 * Use care if nfssrv_globals_rwl is taken as reader in any
1479 * other cases because it will block nfs_server_zone_init
1480 * and nfs_server_zone_fini, which enter as writer.
1481 */
1482 /*ARGSUSED*/
1483 void
1484 exi_cache_reclaim(void *cdrarg)
1485 {
1486 nfs_globals_t *ng;
1487
1488 rw_enter(&nfssrv_globals_rwl, RW_READER);
1489
1490 ng = list_head(&nfssrv_globals_list);
1491 while (ng != NULL) {
1492 exi_cache_reclaim_zone(ng);
1493 ng = list_next(&nfssrv_globals_list, ng);
1494 }
1495
1496 rw_exit(&nfssrv_globals_rwl);
1497 }
1498
1499 static void
1500 exi_cache_reclaim_zone(nfs_globals_t *ng)
1501 {
1502 int i;
1503 struct exportinfo *exi;
1504 nfs_export_t *ne = ng->nfs_export;
1505
1506 rw_enter(&ne->exported_lock, RW_READER);
1507
1508 for (i = 0; i < EXPTABLESIZE; i++) {
1509 for (exi = ne->exptable[i]; exi; exi = exi->fid_hash.next)
1510 exi_cache_trim(exi);
1511 }
1512
1513 rw_exit(&ne->exported_lock);
1514
1515 atomic_inc_uint(&nfsauth_cache_reclaim);
1516 }
1517
1518 static void
1519 exi_cache_trim(struct exportinfo *exi)
1520 {
1521 struct auth_cache_clnt *c;
1522 struct auth_cache_clnt *nextc;
1523 struct auth_cache *p;
1524 struct auth_cache *next;
1525 int i;
1526 time_t stale_time;
1527 avl_tree_t *tree;
1528
1529 for (i = 0; i < AUTH_TABLESIZE; i++) {
1530 tree = exi->exi_cache[i];
1531 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1532 rw_enter(&exi->exi_cache_lock, RW_READER);
1533
1534 /*
1535 * Free entries that have not been
1536 * used for NFSAUTH_CACHE_TRIM seconds.
1537 */
1538 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) {
1539 /*
1540 * We are being called by the kmem subsystem to reclaim
1541 * memory so don't block if we can't get the lock.
1542 */
1543 if (rw_tryenter(&c->authc_lock, RW_WRITER) == 0) {
1544 exi_cache_auth_reclaim_failed++;
1545 rw_exit(&exi->exi_cache_lock);
1546 return;
1547 }
1548
1549 for (p = avl_first(&c->authc_tree); p != NULL;
1550 p = next) {
1551 next = AVL_NEXT(&c->authc_tree, p);
1552
1553 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1554
1555 mutex_enter(&p->auth_lock);
1556
1557 /*
1558 * We won't trim recently used and/or WAITING
1559 * entries.
1560 */
1561 if (p->auth_time > stale_time ||
1562 p->auth_state == NFS_AUTH_WAITING) {
1563 mutex_exit(&p->auth_lock);
1564 continue;
1565 }
1566
1567 DTRACE_PROBE1(nfsauth__debug__trim__state,
1568 auth_state_t, p->auth_state);
1569
1570 /*
1571 * STALE and REFRESHING entries needs to be
1572 * marked INVALID only because they are
1573 * referenced by some other structures or
1574 * threads. They will be freed later.
1575 */
1576 if (p->auth_state == NFS_AUTH_STALE ||
1577 p->auth_state == NFS_AUTH_REFRESHING) {
1578 p->auth_state = NFS_AUTH_INVALID;
1579 mutex_exit(&p->auth_lock);
1580
1581 avl_remove(&c->authc_tree, p);
1582 } else {
1583 mutex_exit(&p->auth_lock);
1584
1585 avl_remove(&c->authc_tree, p);
1586 nfsauth_free_node(p);
1587 }
1588 }
1589 rw_exit(&c->authc_lock);
1590 }
1591
1592 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) {
1593 rw_exit(&exi->exi_cache_lock);
1594 exi_cache_clnt_reclaim_failed++;
1595 continue;
1596 }
1597
1598 for (c = avl_first(tree); c != NULL; c = nextc) {
1599 nextc = AVL_NEXT(tree, c);
1600
1601 if (avl_is_empty(&c->authc_tree) == B_FALSE)
1602 continue;
1603
1604 avl_remove(tree, c);
1605
1606 nfsauth_free_clnt_node(c);
1607 }
1608
1609 rw_exit(&exi->exi_cache_lock);
1610 }
1611 }