1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
14 * Copyright (c) 2018, Joyent, Inc.
15 * Copyright 2017 Tegile Systems, Inc. All rights reserved.
16 * Copyright 2020 Ryan Zezeski
17 * Copyright 2020 RackTop Systems, Inc.
18 * Copyright 2021 Oxide Computer Company
19 */
20
21 /*
22 * For more information, please see the big theory statement in i40e_main.c.
23 */
24
25 #include "i40e_sw.h"
26
27 #define I40E_PROP_RX_DMA_THRESH "_rx_dma_threshold"
28 #define I40E_PROP_TX_DMA_THRESH "_tx_dma_threshold"
29 #define I40E_PROP_RX_ITR "_rx_intr_throttle"
30 #define I40E_PROP_TX_ITR "_tx_intr_throttle"
31 #define I40E_PROP_OTHER_ITR "_other_intr_throttle"
32
33 char *i40e_priv_props[] = {
34 I40E_PROP_RX_DMA_THRESH,
35 I40E_PROP_TX_DMA_THRESH,
36 I40E_PROP_RX_ITR,
37 I40E_PROP_TX_ITR,
38 I40E_PROP_OTHER_ITR,
39 NULL
40 };
41
42 static int
43 i40e_group_remove_mac(void *arg, const uint8_t *mac_addr)
44 {
45 i40e_rx_group_t *rxg = arg;
46 i40e_t *i40e = rxg->irg_i40e;
47 struct i40e_aqc_remove_macvlan_element_data filt;
48 struct i40e_hw *hw = &i40e->i40e_hw_space;
49 int ret, i, last;
50 i40e_uaddr_t *iua;
51
52 if (I40E_IS_MULTICAST(mac_addr))
53 return (EINVAL);
54
55 mutex_enter(&i40e->i40e_general_lock);
56
57 if (i40e->i40e_state & I40E_SUSPENDED) {
58 ret = ECANCELED;
59 goto done;
60 }
61
62 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt_used; i++) {
63 if (bcmp(mac_addr, i40e->i40e_uaddrs[i].iua_mac,
64 ETHERADDRL) == 0)
65 break;
66 }
67
68 if (i == i40e->i40e_resources.ifr_nmacfilt_used) {
69 ret = ENOENT;
70 goto done;
71 }
72
73 iua = &i40e->i40e_uaddrs[i];
74 ASSERT(i40e->i40e_resources.ifr_nmacfilt_used > 0);
75
76 bzero(&filt, sizeof (filt));
77 bcopy(mac_addr, filt.mac_addr, ETHERADDRL);
78 filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
79 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
80
81 if (i40e_aq_remove_macvlan(hw, iua->iua_vsi, &filt, 1, NULL) !=
82 I40E_SUCCESS) {
83 i40e_error(i40e, "failed to remove mac address "
84 "%2x:%2x:%2x:%2x:%2x:%2x from unicast filter: %d",
85 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
86 mac_addr[4], mac_addr[5], filt.error_code);
87 ret = EIO;
88 goto done;
89 }
90
91 last = i40e->i40e_resources.ifr_nmacfilt_used - 1;
92 if (i != last) {
93 i40e_uaddr_t *src = &i40e->i40e_uaddrs[last];
94 bcopy(src, iua, sizeof (i40e_uaddr_t));
95 }
96
97 /*
98 * Set the multicast bit in the last one to indicate to ourselves that
99 * it's invalid.
100 */
101 bzero(&i40e->i40e_uaddrs[last], sizeof (i40e_uaddr_t));
102 i40e->i40e_uaddrs[last].iua_mac[0] = 0x01;
103 i40e->i40e_resources.ifr_nmacfilt_used--;
104 ret = 0;
105 done:
106 mutex_exit(&i40e->i40e_general_lock);
107
108 return (ret);
109 }
110
111 static int
112 i40e_group_add_mac(void *arg, const uint8_t *mac_addr)
113 {
114 i40e_rx_group_t *rxg = arg;
115 i40e_t *i40e = rxg->irg_i40e;
116 struct i40e_hw *hw = &i40e->i40e_hw_space;
117 int i, ret;
118 i40e_uaddr_t *iua;
119 struct i40e_aqc_add_macvlan_element_data filt;
120
121 if (I40E_IS_MULTICAST(mac_addr))
122 return (EINVAL);
123
124 mutex_enter(&i40e->i40e_general_lock);
125 if (i40e->i40e_state & I40E_SUSPENDED) {
126 ret = ECANCELED;
127 goto done;
128 }
129
130 if (i40e->i40e_resources.ifr_nmacfilt ==
131 i40e->i40e_resources.ifr_nmacfilt_used) {
132 ret = ENOSPC;
133 goto done;
134 }
135
136 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt_used; i++) {
137 if (bcmp(mac_addr, i40e->i40e_uaddrs[i].iua_mac,
138 ETHERADDRL) == 0) {
139 ret = EEXIST;
140 goto done;
141 }
142 }
143
144 bzero(&filt, sizeof (filt));
145 bcopy(mac_addr, filt.mac_addr, ETHERADDRL);
146 filt.flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH |
147 I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
148
149 if ((ret = i40e_aq_add_macvlan(hw, rxg->irg_vsi_seid, &filt, 1,
150 NULL)) != I40E_SUCCESS) {
151 i40e_error(i40e, "failed to add mac address "
152 "%2x:%2x:%2x:%2x:%2x:%2x to unicast filter: %d",
153 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
154 mac_addr[4], mac_addr[5], ret);
155 ret = EIO;
156 goto done;
157 }
158
159 iua = &i40e->i40e_uaddrs[i40e->i40e_resources.ifr_nmacfilt_used];
160 bcopy(mac_addr, iua->iua_mac, ETHERADDRL);
161 iua->iua_vsi = rxg->irg_vsi_seid;
162 i40e->i40e_resources.ifr_nmacfilt_used++;
163 ASSERT(i40e->i40e_resources.ifr_nmacfilt_used <=
164 i40e->i40e_resources.ifr_nmacfilt);
165 ret = 0;
166 done:
167 mutex_exit(&i40e->i40e_general_lock);
168 return (ret);
169 }
170
171 static int
172 i40e_m_start(void *arg)
173 {
174 i40e_t *i40e = arg;
175 int rc = 0;
176
177 mutex_enter(&i40e->i40e_general_lock);
178 if (i40e->i40e_state & I40E_SUSPENDED) {
179 rc = ECANCELED;
180 goto done;
181 }
182
183 if (!i40e_start(i40e)) {
184 rc = EIO;
185 goto done;
186 }
187
188 atomic_or_32(&i40e->i40e_state, I40E_STARTED);
189 done:
190 mutex_exit(&i40e->i40e_general_lock);
191
192 return (rc);
193 }
194
195 static void
196 i40e_m_stop(void *arg)
197 {
198 i40e_t *i40e = arg;
199
200 mutex_enter(&i40e->i40e_general_lock);
201
202 if (i40e->i40e_state & I40E_SUSPENDED)
203 goto done;
204
205 atomic_and_32(&i40e->i40e_state, ~I40E_STARTED);
206 i40e_stop(i40e);
207 done:
208 mutex_exit(&i40e->i40e_general_lock);
209 }
210
211 /*
212 * Enable and disable promiscuous mode as requested. We have to toggle both
213 * unicast and multicast. Note that multicast may already be enabled due to the
214 * i40e_m_multicast may toggle it itself. See i40e_main.c for more information
215 * on this.
216 */
217 static int
218 i40e_m_promisc(void *arg, boolean_t on)
219 {
220 i40e_t *i40e = arg;
221 struct i40e_hw *hw = &i40e->i40e_hw_space;
222 int ret = 0, err = 0;
223
224 mutex_enter(&i40e->i40e_general_lock);
225 if (i40e->i40e_state & I40E_SUSPENDED) {
226 err = ECANCELED;
227 goto done;
228 }
229
230
231 ret = i40e_aq_set_vsi_unicast_promiscuous(hw, I40E_DEF_VSI_SEID(i40e),
232 on, NULL, B_TRUE);
233 if (ret != I40E_SUCCESS) {
234 i40e_error(i40e, "failed to %s unicast promiscuity on "
235 "the default VSI: %d", on == B_TRUE ? "enable" : "disable",
236 ret);
237 err = EIO;
238 goto done;
239 }
240
241 /*
242 * If we have a non-zero mcast_promisc_count, then it has already been
243 * enabled or we need to leave it that way and not touch it.
244 */
245 if (i40e->i40e_mcast_promisc_count > 0) {
246 i40e->i40e_promisc_on = on;
247 goto done;
248 }
249
250 ret = i40e_aq_set_vsi_multicast_promiscuous(hw, I40E_DEF_VSI_SEID(i40e),
251 on, NULL);
252 if (ret != I40E_SUCCESS) {
253 i40e_error(i40e, "failed to %s multicast promiscuity on "
254 "the default VSI: %d", on == B_TRUE ? "enable" : "disable",
255 ret);
256
257 /*
258 * Try our best to put us back into a state that MAC expects us
259 * to be in.
260 */
261 ret = i40e_aq_set_vsi_unicast_promiscuous(hw,
262 I40E_DEF_VSI_SEID(i40e), !on, NULL, B_TRUE);
263 if (ret != I40E_SUCCESS) {
264 i40e_error(i40e, "failed to %s unicast promiscuity on "
265 "the default VSI after toggling multicast failed: "
266 "%d", on == B_TRUE ? "disable" : "enable", ret);
267 }
268
269 err = EIO;
270 goto done;
271 } else {
272 i40e->i40e_promisc_on = on;
273 }
274
275 done:
276 mutex_exit(&i40e->i40e_general_lock);
277 return (err);
278 }
279
280 /*
281 * See the big theory statement in i40e_main.c for multicast address management.
282 */
283 static int
284 i40e_multicast_add(i40e_t *i40e, const uint8_t *multicast_address)
285 {
286 struct i40e_hw *hw = &i40e->i40e_hw_space;
287 struct i40e_aqc_add_macvlan_element_data filt;
288 i40e_maddr_t *mc;
289 int ret;
290
291 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
292
293 if (i40e->i40e_resources.ifr_nmcastfilt_used ==
294 i40e->i40e_resources.ifr_nmcastfilt) {
295 if (i40e->i40e_mcast_promisc_count == 0 &&
296 i40e->i40e_promisc_on == B_FALSE) {
297 ret = i40e_aq_set_vsi_multicast_promiscuous(hw,
298 I40E_DEF_VSI_SEID(i40e), B_TRUE, NULL);
299 if (ret != I40E_SUCCESS) {
300 i40e_error(i40e, "failed to enable multicast "
301 "promiscuous mode on VSI %d: %d",
302 I40E_DEF_VSI_SEID(i40e), ret);
303 return (EIO);
304 }
305 }
306 i40e->i40e_mcast_promisc_count++;
307 return (0);
308 }
309
310 mc = &i40e->i40e_maddrs[i40e->i40e_resources.ifr_nmcastfilt_used];
311 bzero(&filt, sizeof (filt));
312 bcopy(multicast_address, filt.mac_addr, ETHERADDRL);
313 filt.flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH |
314 I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
315
316 if ((ret = i40e_aq_add_macvlan(hw, I40E_DEF_VSI_SEID(i40e), &filt, 1,
317 NULL)) != I40E_SUCCESS) {
318 i40e_error(i40e, "failed to add mac address "
319 "%2x:%2x:%2x:%2x:%2x:%2x to multicast filter: %d",
320 multicast_address[0], multicast_address[1],
321 multicast_address[2], multicast_address[3],
322 multicast_address[4], multicast_address[5],
323 ret);
324 return (EIO);
325 }
326
327 bcopy(multicast_address, mc->ima_mac, ETHERADDRL);
328 i40e->i40e_resources.ifr_nmcastfilt_used++;
329 return (0);
330 }
331
332 /*
333 * See the big theory statement in i40e_main.c for multicast address management.
334 */
335 static int
336 i40e_multicast_remove(i40e_t *i40e, const uint8_t *multicast_address)
337 {
338 int i, ret;
339 struct i40e_hw *hw = &i40e->i40e_hw_space;
340
341 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
342
343 for (i = 0; i < i40e->i40e_resources.ifr_nmcastfilt_used; i++) {
344 struct i40e_aqc_remove_macvlan_element_data filt;
345 int last;
346
347 if (bcmp(multicast_address, i40e->i40e_maddrs[i].ima_mac,
348 ETHERADDRL) != 0) {
349 continue;
350 }
351
352 bzero(&filt, sizeof (filt));
353 bcopy(multicast_address, filt.mac_addr, ETHERADDRL);
354 filt.flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH |
355 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
356
357 if (i40e_aq_remove_macvlan(hw, I40E_DEF_VSI_SEID(i40e), &filt,
358 1, NULL) != I40E_SUCCESS) {
359 i40e_error(i40e, "failed to remove mac address "
360 "%2x:%2x:%2x:%2x:%2x:%2x from multicast "
361 "filter: %d",
362 multicast_address[0], multicast_address[1],
363 multicast_address[2], multicast_address[3],
364 multicast_address[4], multicast_address[5],
365 filt.error_code);
366 return (EIO);
367 }
368
369 last = i40e->i40e_resources.ifr_nmcastfilt_used - 1;
370 if (i != last) {
371 bcopy(&i40e->i40e_maddrs[last], &i40e->i40e_maddrs[i],
372 sizeof (i40e_maddr_t));
373 bzero(&i40e->i40e_maddrs[last], sizeof (i40e_maddr_t));
374 }
375
376 ASSERT(i40e->i40e_resources.ifr_nmcastfilt_used > 0);
377 i40e->i40e_resources.ifr_nmcastfilt_used--;
378 return (0);
379 }
380
381 if (i40e->i40e_mcast_promisc_count > 0) {
382 if (i40e->i40e_mcast_promisc_count == 1 &&
383 i40e->i40e_promisc_on == B_FALSE) {
384 ret = i40e_aq_set_vsi_multicast_promiscuous(hw,
385 I40E_DEF_VSI_SEID(i40e), B_FALSE, NULL);
386 if (ret != I40E_SUCCESS) {
387 i40e_error(i40e, "failed to disable "
388 "multicast promiscuous mode on VSI %d: %d",
389 I40E_DEF_VSI_SEID(i40e), ret);
390 return (EIO);
391 }
392 }
393 i40e->i40e_mcast_promisc_count--;
394
395 return (0);
396 }
397
398 return (ENOENT);
399 }
400
401 static int
402 i40e_m_multicast(void *arg, boolean_t add, const uint8_t *multicast_address)
403 {
404 i40e_t *i40e = arg;
405 int rc;
406
407 mutex_enter(&i40e->i40e_general_lock);
408
409 if (i40e->i40e_state & I40E_SUSPENDED) {
410 mutex_exit(&i40e->i40e_general_lock);
411 return (ECANCELED);
412 }
413
414 if (add == B_TRUE) {
415 rc = i40e_multicast_add(i40e, multicast_address);
416 } else {
417 rc = i40e_multicast_remove(i40e, multicast_address);
418 }
419
420 mutex_exit(&i40e->i40e_general_lock);
421 return (rc);
422 }
423
424 /* ARGSUSED */
425 static void
426 i40e_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
427 {
428 /*
429 * At this time, we don't support toggling i40e into loopback mode. It's
430 * questionable how much value this has when there's no clear way to
431 * toggle this behavior from a supported way in userland.
432 */
433 miocnak(q, mp, 0, EINVAL);
434 }
435
436 static int
437 i40e_ring_start(mac_ring_driver_t rh, uint64_t gen_num)
438 {
439 i40e_trqpair_t *itrq = (i40e_trqpair_t *)rh;
440 int rv;
441
442 if ((rv = i40e_setup_ring(itrq)) != 0)
443 return (rv);
444
445 /*
446 * GLDv3 requires we keep track of a generation number, as it uses
447 * that number to keep track of whether or not a ring is active.
448 */
449 mutex_enter(&itrq->itrq_rx_lock);
450 itrq->itrq_rxgen = gen_num;
451 mutex_exit(&itrq->itrq_rx_lock);
452 return (0);
453 }
454
455 static void
456 i40e_ring_stop(mac_ring_driver_t rh)
457 {
458 i40e_trqpair_t *itrq = (i40e_trqpair_t *)rh;
459
460 if (!i40e_shutdown_ring(itrq)) {
461 i40e_t *i40e = itrq->itrq_i40e;
462
463 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
464 i40e_error(i40e, "Failed to stop ring %u", itrq->itrq_index);
465 }
466 }
467
468 /* ARGSUSED */
469 static int
470 i40e_rx_ring_intr_enable(mac_intr_handle_t intrh)
471 {
472 i40e_trqpair_t *itrq = (i40e_trqpair_t *)intrh;
473
474 mutex_enter(&itrq->itrq_rx_lock);
475 ASSERT(itrq->itrq_intr_poll == B_TRUE);
476 i40e_intr_rx_queue_enable(itrq);
477 itrq->itrq_intr_poll = B_FALSE;
478 mutex_exit(&itrq->itrq_rx_lock);
479
480 return (0);
481 }
482
483 /* ARGSUSED */
484 static int
485 i40e_rx_ring_intr_disable(mac_intr_handle_t intrh)
486 {
487 i40e_trqpair_t *itrq = (i40e_trqpair_t *)intrh;
488
489 mutex_enter(&itrq->itrq_rx_lock);
490 i40e_intr_rx_queue_disable(itrq);
491 itrq->itrq_intr_poll = B_TRUE;
492 mutex_exit(&itrq->itrq_rx_lock);
493
494 return (0);
495 }
496
497 /* ARGSUSED */
498 static void
499 i40e_fill_tx_ring(void *arg, mac_ring_type_t rtype, const int group_index,
500 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
501 {
502 i40e_t *i40e = arg;
503 mac_intr_t *mintr = &infop->mri_intr;
504 i40e_trqpair_t *itrq = &(i40e->i40e_trqpairs[ring_index]);
505
506 /*
507 * Note the group index here is expected to be -1 due to the fact that
508 * we're not actually grouping things tx-wise at this time.
509 */
510 ASSERT(group_index == -1);
511 ASSERT(ring_index < i40e->i40e_num_trqpairs_per_vsi);
512
513 itrq->itrq_mactxring = rh;
514 infop->mri_driver = (mac_ring_driver_t)itrq;
515 infop->mri_start = NULL;
516 infop->mri_stop = NULL;
517 infop->mri_tx = i40e_ring_tx;
518 infop->mri_stat = i40e_tx_ring_stat;
519
520 /*
521 * We only provide the handle in cases where we have MSI-X interrupts,
522 * to indicate that we'd actually support retargetting.
523 */
524 if (i40e->i40e_intr_type & DDI_INTR_TYPE_MSIX) {
525 mintr->mi_ddi_handle =
526 i40e->i40e_intr_handles[itrq->itrq_tx_intrvec];
527 }
528 }
529
530 /* ARGSUSED */
531 static void
532 i40e_fill_rx_ring(void *arg, mac_ring_type_t rtype, const int group_index,
533 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
534 {
535 i40e_t *i40e = arg;
536 mac_intr_t *mintr = &infop->mri_intr;
537 uint_t trqpair_index;
538 i40e_trqpair_t *itrq;
539
540 /* This assumes static groups. */
541 ASSERT3S(group_index, >=, 0);
542 ASSERT3S(ring_index, >=, 0);
543 trqpair_index = (group_index * i40e->i40e_num_trqpairs_per_vsi) +
544 ring_index;
545 ASSERT3U(trqpair_index, <, i40e->i40e_num_trqpairs);
546 itrq = &i40e->i40e_trqpairs[trqpair_index];
547
548 itrq->itrq_macrxring = rh;
549 infop->mri_driver = (mac_ring_driver_t)itrq;
550 infop->mri_start = i40e_ring_start;
551 infop->mri_stop = i40e_ring_stop;
552 infop->mri_poll = i40e_ring_rx_poll;
553 infop->mri_stat = i40e_rx_ring_stat;
554 mintr->mi_handle = (mac_intr_handle_t)itrq;
555 mintr->mi_enable = i40e_rx_ring_intr_enable;
556 mintr->mi_disable = i40e_rx_ring_intr_disable;
557
558 /*
559 * We only provide the handle in cases where we have MSI-X interrupts,
560 * to indicate that we'd actually support retargetting.
561 */
562 if (i40e->i40e_intr_type & DDI_INTR_TYPE_MSIX) {
563 mintr->mi_ddi_handle =
564 i40e->i40e_intr_handles[itrq->itrq_rx_intrvec];
565 }
566 }
567
568 /* ARGSUSED */
569 static void
570 i40e_fill_rx_group(void *arg, mac_ring_type_t rtype, const int index,
571 mac_group_info_t *infop, mac_group_handle_t gh)
572 {
573 i40e_t *i40e = arg;
574 i40e_rx_group_t *rxg;
575
576 if (rtype != MAC_RING_TYPE_RX)
577 return;
578
579 rxg = &i40e->i40e_rx_groups[index];
580 rxg->irg_grp_hdl = gh;
581
582 infop->mgi_driver = (mac_group_driver_t)rxg;
583 infop->mgi_start = NULL;
584 infop->mgi_stop = NULL;
585 infop->mgi_addmac = i40e_group_add_mac;
586 infop->mgi_remmac = i40e_group_remove_mac;
587
588 ASSERT3U(i40e->i40e_num_rx_groups, <=, I40E_MAX_NUM_RX_GROUPS);
589 infop->mgi_count = i40e->i40e_num_trqpairs_per_vsi;
590 }
591
592 static int
593 i40e_transceiver_info(void *arg, uint_t id, mac_transceiver_info_t *infop)
594 {
595 boolean_t present, usable;
596 i40e_t *i40e = arg;
597
598 if (id != 0 || infop == NULL)
599 return (EINVAL);
600
601 mutex_enter(&i40e->i40e_general_lock);
602 switch (i40e->i40e_hw_space.phy.link_info.module_type[0]) {
603 case I40E_MODULE_TYPE_SFP:
604 case I40E_MODULE_TYPE_QSFP:
605 break;
606 default:
607 mutex_exit(&i40e->i40e_general_lock);
608 return (ENOTSUP);
609 }
610
611 present = !!(i40e->i40e_hw_space.phy.link_info.link_info &
612 I40E_AQ_MEDIA_AVAILABLE);
613 if (present) {
614 usable = !!(i40e->i40e_hw_space.phy.link_info.an_info &
615 I40E_AQ_QUALIFIED_MODULE);
616 } else {
617 usable = B_FALSE;
618 }
619 mutex_exit(&i40e->i40e_general_lock);
620
621 mac_transceiver_info_set_usable(infop, usable);
622 mac_transceiver_info_set_present(infop, present);
623
624 return (0);
625 }
626
627 static int
628 i40e_transceiver_read(void *arg, uint_t id, uint_t page, void *buf,
629 size_t nbytes, off_t offset, size_t *nread)
630 {
631 i40e_t *i40e = arg;
632 struct i40e_hw *hw = &i40e->i40e_hw_space;
633 uint8_t *buf8 = buf;
634 size_t i;
635
636 if (id != 0 || buf == NULL || nbytes == 0 || nread == NULL ||
637 (page != 0xa0 && page != 0xa2) || offset < 0)
638 return (EINVAL);
639
640 /*
641 * Both supported pages have a length of 256 bytes, ensure nothing asks
642 * us to go beyond that.
643 */
644 if (nbytes > 256 || offset >= 256 || (offset + nbytes > 256)) {
645 return (EINVAL);
646 }
647
648 mutex_enter(&i40e->i40e_general_lock);
649 switch (i40e->i40e_hw_space.phy.link_info.module_type[0]) {
650 case I40E_MODULE_TYPE_SFP:
651 case I40E_MODULE_TYPE_QSFP:
652 break;
653 default:
654 mutex_exit(&i40e->i40e_general_lock);
655 return (ENOTSUP);
656 }
657
658 /*
659 * Make sure we have a sufficiently new firmware version to run this
660 * command. This was introduced in firmware API 1.7. This is apparently
661 * only supported on the XL710 MAC, not the XL722.
662 */
663 if (hw->mac.type != I40E_MAC_XL710 || hw->aq.api_maj_ver != 1 ||
664 hw->aq.api_min_ver < 7) {
665 mutex_exit(&i40e->i40e_general_lock);
666 return (ENOTSUP);
667 }
668
669 for (i = 0; i < nbytes; i++, offset++) {
670 enum i40e_status_code status;
671 uint32_t val;
672
673 status = i40e_aq_get_phy_register(hw,
674 I40E_AQ_PHY_REG_ACCESS_EXTERNAL_MODULE, page, TRUE, offset,
675 &val, NULL);
676 if (status != I40E_SUCCESS) {
677 mutex_exit(&i40e->i40e_general_lock);
678 return (EIO);
679 }
680
681 buf8[i] = (uint8_t)val;
682 }
683
684 mutex_exit(&i40e->i40e_general_lock);
685 *nread = nbytes;
686
687 return (0);
688 }
689
690 static int
691 i40e_gld_led_set(void *arg, mac_led_mode_t mode, uint_t flags)
692 {
693 i40e_t *i40e = arg;
694 struct i40e_hw *hw = &i40e->i40e_hw_space;
695
696 if (flags != 0)
697 return (EINVAL);
698
699 if (mode != MAC_LED_DEFAULT &&
700 mode != MAC_LED_IDENT &&
701 mode != MAC_LED_OFF &&
702 mode != MAC_LED_ON)
703 return (ENOTSUP);
704
705 if (mode != MAC_LED_DEFAULT && !i40e->i40e_led_saved) {
706 i40e->i40e_led_status = i40e_led_get(hw);
707 i40e->i40e_led_saved = B_TRUE;
708 }
709
710 switch (mode) {
711 case MAC_LED_DEFAULT:
712 if (i40e->i40e_led_saved) {
713 i40e_led_set(hw, i40e->i40e_led_status, B_FALSE);
714 i40e->i40e_led_status = 0;
715 i40e->i40e_led_saved = B_FALSE;
716 }
717 break;
718 case MAC_LED_IDENT:
719 i40e_led_set(hw, 0xf, B_TRUE);
720 break;
721 case MAC_LED_OFF:
722 i40e_led_set(hw, 0x0, B_FALSE);
723 break;
724 case MAC_LED_ON:
725 i40e_led_set(hw, 0xf, B_FALSE);
726 break;
727 default:
728 return (ENOTSUP);
729 }
730
731 return (0);
732 }
733
734 static boolean_t
735 i40e_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
736 {
737 i40e_t *i40e = arg;
738 mac_capab_rings_t *cap_rings;
739 mac_capab_transceiver_t *mct;
740 mac_capab_led_t *mcl;
741
742 switch (cap) {
743 case MAC_CAPAB_HCKSUM: {
744 uint32_t *txflags = cap_data;
745
746 *txflags = 0;
747 if (i40e->i40e_tx_hcksum_enable == B_TRUE)
748 *txflags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM;
749 break;
750 }
751
752 case MAC_CAPAB_LSO: {
753 mac_capab_lso_t *cap_lso = cap_data;
754
755 if (i40e->i40e_tx_lso_enable == B_TRUE) {
756 cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4 |
757 LSO_TX_BASIC_TCP_IPV6;
758 cap_lso->lso_basic_tcp_ipv4.lso_max = I40E_LSO_MAXLEN;
759 cap_lso->lso_basic_tcp_ipv6.lso_max = I40E_LSO_MAXLEN;
760 } else {
761 return (B_FALSE);
762 }
763 break;
764 }
765
766 case MAC_CAPAB_RINGS:
767 cap_rings = cap_data;
768 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
769 switch (cap_rings->mr_type) {
770 case MAC_RING_TYPE_TX:
771 /*
772 * Note, saying we have no groups, but some
773 * number of rings indicates to MAC that it
774 * should create psuedo-groups with one for
775 * each TX ring. This may not be the long term
776 * behavior we want, but it'll work for now.
777 */
778 cap_rings->mr_gnum = 0;
779 cap_rings->mr_rnum = i40e->i40e_num_trqpairs_per_vsi;
780 cap_rings->mr_rget = i40e_fill_tx_ring;
781 cap_rings->mr_gget = NULL;
782 cap_rings->mr_gaddring = NULL;
783 cap_rings->mr_gremring = NULL;
784 break;
785 case MAC_RING_TYPE_RX:
786 cap_rings->mr_rnum = i40e->i40e_num_trqpairs;
787 cap_rings->mr_rget = i40e_fill_rx_ring;
788 cap_rings->mr_gnum = i40e->i40e_num_rx_groups;
789 cap_rings->mr_gget = i40e_fill_rx_group;
790 cap_rings->mr_gaddring = NULL;
791 cap_rings->mr_gremring = NULL;
792 break;
793 default:
794 return (B_FALSE);
795 }
796 break;
797 case MAC_CAPAB_TRANSCEIVER:
798 mct = cap_data;
799
800 /*
801 * Firmware doesn't have a great way of telling us in advance
802 * whether we'd expect a SFF transceiver. As such, we always
803 * advertise the support for this capability.
804 */
805 mct->mct_flags = 0;
806 mct->mct_ntransceivers = 1;
807 mct->mct_info = i40e_transceiver_info;
808 mct->mct_read = i40e_transceiver_read;
809
810 return (B_TRUE);
811 case MAC_CAPAB_LED:
812 mcl = cap_data;
813
814 mcl->mcl_flags = 0;
815 mcl->mcl_modes = MAC_LED_DEFAULT | MAC_LED_IDENT | MAC_LED_OFF |
816 MAC_LED_ON;
817 mcl->mcl_set = i40e_gld_led_set;
818 break;
819
820 default:
821 return (B_FALSE);
822 }
823
824 return (B_TRUE);
825 }
826
827 /* ARGSUSED */
828 static int
829 i40e_m_setprop_private(i40e_t *i40e, const char *pr_name, uint_t pr_valsize,
830 const void *pr_val)
831 {
832 int ret;
833 long val;
834 char *eptr;
835
836 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
837
838 if ((ret = ddi_strtol(pr_val, &eptr, 10, &val)) != 0 ||
839 *eptr != '\0') {
840 return (ret);
841 }
842
843 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) {
844 if (val < I40E_MIN_RX_DMA_THRESH ||
845 val > I40E_MAX_RX_DMA_THRESH) {
846 return (EINVAL);
847 }
848 i40e->i40e_rx_dma_min = (uint32_t)val;
849 return (0);
850 }
851
852 if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) {
853 if (val < I40E_MIN_TX_DMA_THRESH ||
854 val > I40E_MAX_TX_DMA_THRESH) {
855 return (EINVAL);
856 }
857 i40e->i40e_tx_dma_min = (uint32_t)val;
858 return (0);
859 }
860
861 if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) {
862 if (val < I40E_MIN_ITR ||
863 val > I40E_MAX_ITR) {
864 return (EINVAL);
865 }
866 i40e->i40e_rx_itr = (uint32_t)val;
867 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_RX, i40e->i40e_rx_itr);
868 return (0);
869 }
870
871 if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) {
872 if (val < I40E_MIN_ITR ||
873 val > I40E_MAX_ITR) {
874 return (EINVAL);
875 }
876 i40e->i40e_tx_itr = (uint32_t)val;
877 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_TX, i40e->i40e_tx_itr);
878 return (0);
879 }
880
881 if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) {
882 if (val < I40E_MIN_ITR ||
883 val > I40E_MAX_ITR) {
884 return (EINVAL);
885 }
886 i40e->i40e_tx_itr = (uint32_t)val;
887 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_OTHER,
888 i40e->i40e_other_itr);
889 return (0);
890 }
891
892 return (ENOTSUP);
893 }
894
895 static int
896 i40e_m_getprop_private(i40e_t *i40e, const char *pr_name, uint_t pr_valsize,
897 void *pr_val)
898 {
899 uint32_t val;
900
901 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
902
903 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) {
904 val = i40e->i40e_rx_dma_min;
905 } else if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) {
906 val = i40e->i40e_tx_dma_min;
907 } else if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) {
908 val = i40e->i40e_rx_itr;
909 } else if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) {
910 val = i40e->i40e_tx_itr;
911 } else if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) {
912 val = i40e->i40e_other_itr;
913 } else {
914 return (ENOTSUP);
915 }
916
917 if (snprintf(pr_val, pr_valsize, "%d", val) >= pr_valsize)
918 return (ERANGE);
919 return (0);
920 }
921
922 /*
923 * Annoyingly for private properties MAC seems to ignore default values that
924 * aren't strings. That means that we have to translate all of these into
925 * uint32_t's and instead we size the buffer to be large enough to hold a
926 * uint32_t.
927 */
928 /* ARGSUSED */
929 static void
930 i40e_m_propinfo_private(i40e_t *i40e, const char *pr_name,
931 mac_prop_info_handle_t prh)
932 {
933 char buf[64];
934 uint32_t def;
935
936 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) {
937 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
938 def = I40E_DEF_RX_DMA_THRESH;
939 mac_prop_info_set_range_uint32(prh,
940 I40E_MIN_RX_DMA_THRESH,
941 I40E_MAX_RX_DMA_THRESH);
942 } else if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) {
943 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
944 def = I40E_DEF_TX_DMA_THRESH;
945 mac_prop_info_set_range_uint32(prh,
946 I40E_MIN_TX_DMA_THRESH,
947 I40E_MAX_TX_DMA_THRESH);
948 } else if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) {
949 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
950 def = I40E_DEF_RX_ITR;
951 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR);
952 } else if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) {
953 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
954 def = I40E_DEF_TX_ITR;
955 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR);
956 } else if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) {
957 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
958 def = I40E_DEF_OTHER_ITR;
959 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR);
960 } else {
961 return;
962 }
963
964 (void) snprintf(buf, sizeof (buf), "%d", def);
965 mac_prop_info_set_default_str(prh, buf);
966 }
967
968 static int
969 i40e_update_fec(i40e_t *i40e, link_fec_t fec)
970 {
971 struct i40e_hw *hw = &i40e->i40e_hw_space;
972 struct i40e_aq_get_phy_abilities_resp abilities;
973 struct i40e_aq_set_phy_config config;
974 link_fec_t fec_requested;
975 int req_fec;
976
977 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
978
979 if (fec == i40e->i40e_fec_requested)
980 return (0);
981
982 fec_requested = fec;
983 if ((fec & LINK_FEC_AUTO) != 0) {
984 req_fec = I40E_AQ_SET_FEC_AUTO;
985 fec &= ~LINK_FEC_AUTO;
986 } else if ((fec & LINK_FEC_NONE) != 0) {
987 req_fec = 0;
988 fec &= ~LINK_FEC_NONE;
989 } else {
990 req_fec = 0;
991 if ((fec & LINK_FEC_BASE_R) != 0) {
992 req_fec |= I40E_AQ_SET_FEC_ABILITY_KR |
993 I40E_AQ_SET_FEC_REQUEST_KR;
994 fec &= ~LINK_FEC_BASE_R;
995 }
996 if ((fec & LINK_FEC_RS) != 0) {
997 req_fec |= I40E_AQ_SET_FEC_ABILITY_RS |
998 I40E_AQ_SET_FEC_REQUEST_RS;
999 fec &= ~LINK_FEC_RS;
1000 }
1001 if (req_fec == 0)
1002 return (EINVAL);
1003 }
1004
1005 /*
1006 * if fec is not zero now, then there is an invalid fec or
1007 * combination of settings.
1008 */
1009 if (fec != 0)
1010 return (EINVAL);
1011
1012 if (i40e_aq_get_phy_capabilities(hw, B_FALSE, B_FALSE, &abilities,
1013 NULL) != I40E_SUCCESS)
1014 return (EIO);
1015
1016 bzero(&config, sizeof (config));
1017 config.abilities = abilities.abilities;
1018 /* Restart the link */
1019 config.abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
1020 config.phy_type = abilities.phy_type;
1021 config.phy_type_ext = abilities.phy_type_ext;
1022 config.link_speed = abilities.link_speed;
1023 config.eee_capability = abilities.eee_capability;
1024 config.eeer = abilities.eeer_val;
1025 config.low_power_ctrl = abilities.d3_lpan;
1026 config.fec_config = req_fec & I40E_AQ_PHY_FEC_CONFIG_MASK;
1027 if (i40e_aq_set_phy_config(hw, &config, NULL) != I40E_SUCCESS)
1028 return (EIO);
1029
1030 if (i40e_update_link_info(hw) != I40E_SUCCESS)
1031 return (EIO);
1032
1033 i40e->i40e_fec_requested = fec_requested;
1034
1035 return (0);
1036 }
1037 static int
1038 i40e_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1039 uint_t pr_valsize, const void *pr_val)
1040 {
1041 uint32_t new_mtu;
1042 link_fec_t fec;
1043 i40e_t *i40e = arg;
1044 int ret = 0;
1045
1046 mutex_enter(&i40e->i40e_general_lock);
1047 if (i40e->i40e_state & I40E_SUSPENDED) {
1048 mutex_exit(&i40e->i40e_general_lock);
1049 return (ECANCELED);
1050 }
1051
1052 switch (pr_num) {
1053 /*
1054 * These properties are always read-only across every device.
1055 */
1056 case MAC_PROP_DUPLEX:
1057 case MAC_PROP_SPEED:
1058 case MAC_PROP_STATUS:
1059 case MAC_PROP_ADV_100FDX_CAP:
1060 case MAC_PROP_ADV_1000FDX_CAP:
1061 case MAC_PROP_ADV_2500FDX_CAP:
1062 case MAC_PROP_ADV_5000FDX_CAP:
1063 case MAC_PROP_ADV_10GFDX_CAP:
1064 case MAC_PROP_ADV_25GFDX_CAP:
1065 case MAC_PROP_ADV_40GFDX_CAP:
1066 ret = ENOTSUP;
1067 break;
1068 /*
1069 * These are read-only at this time as we don't support configuring
1070 * auto-negotiation. See the theory statement in i40e_main.c.
1071 */
1072 case MAC_PROP_EN_100FDX_CAP:
1073 case MAC_PROP_EN_1000FDX_CAP:
1074 case MAC_PROP_EN_2500FDX_CAP:
1075 case MAC_PROP_EN_5000FDX_CAP:
1076 case MAC_PROP_EN_10GFDX_CAP:
1077 case MAC_PROP_EN_25GFDX_CAP:
1078 case MAC_PROP_EN_40GFDX_CAP:
1079 case MAC_PROP_AUTONEG:
1080 case MAC_PROP_FLOWCTRL:
1081 ret = ENOTSUP;
1082 break;
1083
1084 case MAC_PROP_MTU:
1085 bcopy(pr_val, &new_mtu, sizeof (new_mtu));
1086 if (new_mtu == i40e->i40e_sdu)
1087 break;
1088
1089 if (new_mtu < I40E_MIN_MTU ||
1090 new_mtu > I40E_MAX_MTU) {
1091 ret = EINVAL;
1092 break;
1093 }
1094
1095 if (i40e->i40e_state & I40E_STARTED) {
1096 ret = EBUSY;
1097 break;
1098 }
1099
1100 ret = mac_maxsdu_update(i40e->i40e_mac_hdl, new_mtu);
1101 if (ret == 0) {
1102 i40e->i40e_sdu = new_mtu;
1103 i40e_update_mtu(i40e);
1104 }
1105 break;
1106
1107 case MAC_PROP_EN_FEC_CAP:
1108 bcopy(pr_val, &fec, sizeof (fec));
1109
1110 ret = i40e_update_fec(i40e, fec);
1111 break;
1112
1113 case MAC_PROP_PRIVATE:
1114 ret = i40e_m_setprop_private(i40e, pr_name, pr_valsize, pr_val);
1115 break;
1116 default:
1117 ret = ENOTSUP;
1118 break;
1119 }
1120
1121 mutex_exit(&i40e->i40e_general_lock);
1122 return (ret);
1123 }
1124
1125 static link_fec_t
1126 i40e_fec_to_linkfec(struct i40e_hw *hw)
1127 {
1128 struct i40e_link_status *ls = &hw->phy.link_info;
1129
1130 if ((ls->fec_info & I40E_AQ_CONFIG_FEC_KR_ENA) != 0)
1131 return (LINK_FEC_BASE_R);
1132
1133 if ((ls->fec_info & I40E_AQ_CONFIG_FEC_RS_ENA) != 0)
1134 return (LINK_FEC_RS);
1135
1136 return (LINK_FEC_NONE);
1137 }
1138
1139 static int
1140 i40e_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1141 uint_t pr_valsize, void *pr_val)
1142 {
1143 i40e_t *i40e = arg;
1144 uint64_t speed;
1145 int ret = 0;
1146 uint8_t *u8;
1147 link_flowctrl_t fctl;
1148
1149 mutex_enter(&i40e->i40e_general_lock);
1150
1151 switch (pr_num) {
1152 case MAC_PROP_DUPLEX:
1153 if (pr_valsize < sizeof (link_duplex_t)) {
1154 ret = EOVERFLOW;
1155 break;
1156 }
1157 bcopy(&i40e->i40e_link_duplex, pr_val, sizeof (link_duplex_t));
1158 break;
1159 case MAC_PROP_SPEED:
1160 if (pr_valsize < sizeof (uint64_t)) {
1161 ret = EOVERFLOW;
1162 break;
1163 }
1164 speed = i40e->i40e_link_speed * 1000000ULL;
1165 bcopy(&speed, pr_val, sizeof (speed));
1166 break;
1167 case MAC_PROP_STATUS:
1168 if (pr_valsize < sizeof (link_state_t)) {
1169 ret = EOVERFLOW;
1170 break;
1171 }
1172 bcopy(&i40e->i40e_link_state, pr_val, sizeof (link_state_t));
1173 break;
1174 case MAC_PROP_AUTONEG:
1175 if (pr_valsize < sizeof (uint8_t)) {
1176 ret = EOVERFLOW;
1177 break;
1178 }
1179 u8 = pr_val;
1180 *u8 = 1;
1181 break;
1182 case MAC_PROP_FLOWCTRL:
1183 /*
1184 * Because we don't currently support hardware flow control, we
1185 * just hardcode this to be none.
1186 */
1187 if (pr_valsize < sizeof (link_flowctrl_t)) {
1188 ret = EOVERFLOW;
1189 break;
1190 }
1191 fctl = LINK_FLOWCTRL_NONE;
1192 bcopy(&fctl, pr_val, sizeof (link_flowctrl_t));
1193 break;
1194 case MAC_PROP_MTU:
1195 if (pr_valsize < sizeof (uint32_t)) {
1196 ret = EOVERFLOW;
1197 break;
1198 }
1199 bcopy(&i40e->i40e_sdu, pr_val, sizeof (uint32_t));
1200 break;
1201 case MAC_PROP_ADV_FEC_CAP:
1202 if (pr_valsize < sizeof (link_fec_t)) {
1203 ret = EOVERFLOW;
1204 break;
1205 }
1206 *(link_fec_t *)pr_val =
1207 i40e_fec_to_linkfec(&i40e->i40e_hw_space);
1208 break;
1209 case MAC_PROP_EN_FEC_CAP:
1210 if (pr_valsize < sizeof (link_fec_t)) {
1211 ret = EOVERFLOW;
1212 break;
1213 }
1214 *(link_fec_t *)pr_val = i40e->i40e_fec_requested;
1215 break;
1216
1217 /*
1218 * Because we don't let users control the speeds we may auto-negotiate
1219 * to, the values of the ADV_ and EN_ will always be the same.
1220 */
1221 case MAC_PROP_ADV_100FDX_CAP:
1222 case MAC_PROP_EN_100FDX_CAP:
1223 if (pr_valsize < sizeof (uint8_t)) {
1224 ret = EOVERFLOW;
1225 break;
1226 }
1227 u8 = pr_val;
1228 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0;
1229 break;
1230 case MAC_PROP_ADV_1000FDX_CAP:
1231 case MAC_PROP_EN_1000FDX_CAP:
1232 if (pr_valsize < sizeof (uint8_t)) {
1233 ret = EOVERFLOW;
1234 break;
1235 }
1236 u8 = pr_val;
1237 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0;
1238 break;
1239 case MAC_PROP_ADV_2500FDX_CAP:
1240 case MAC_PROP_EN_2500FDX_CAP:
1241 if (pr_valsize < sizeof (uint8_t)) {
1242 ret = EOVERFLOW;
1243 break;
1244 }
1245 u8 = pr_val;
1246 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_2_5GB) != 0;
1247 break;
1248 case MAC_PROP_ADV_5000FDX_CAP:
1249 case MAC_PROP_EN_5000FDX_CAP:
1250 if (pr_valsize < sizeof (uint8_t)) {
1251 ret = EOVERFLOW;
1252 break;
1253 }
1254 u8 = pr_val;
1255 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_5GB) != 0;
1256 break;
1257 case MAC_PROP_ADV_10GFDX_CAP:
1258 case MAC_PROP_EN_10GFDX_CAP:
1259 if (pr_valsize < sizeof (uint8_t)) {
1260 ret = EOVERFLOW;
1261 break;
1262 }
1263 u8 = pr_val;
1264 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0;
1265 break;
1266 case MAC_PROP_ADV_25GFDX_CAP:
1267 case MAC_PROP_EN_25GFDX_CAP:
1268 if (pr_valsize < sizeof (uint8_t)) {
1269 ret = EOVERFLOW;
1270 break;
1271 }
1272 u8 = pr_val;
1273 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0;
1274 break;
1275 case MAC_PROP_ADV_40GFDX_CAP:
1276 case MAC_PROP_EN_40GFDX_CAP:
1277 if (pr_valsize < sizeof (uint8_t)) {
1278 ret = EOVERFLOW;
1279 break;
1280 }
1281 u8 = pr_val;
1282 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0;
1283 break;
1284 case MAC_PROP_PRIVATE:
1285 ret = i40e_m_getprop_private(i40e, pr_name, pr_valsize, pr_val);
1286 break;
1287 default:
1288 ret = ENOTSUP;
1289 break;
1290 }
1291
1292 mutex_exit(&i40e->i40e_general_lock);
1293
1294 return (ret);
1295 }
1296
1297 static void
1298 i40e_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1299 mac_prop_info_handle_t prh)
1300 {
1301 i40e_t *i40e = arg;
1302
1303 mutex_enter(&i40e->i40e_general_lock);
1304
1305 switch (pr_num) {
1306 case MAC_PROP_DUPLEX:
1307 case MAC_PROP_SPEED:
1308 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1309 break;
1310 case MAC_PROP_FLOWCTRL:
1311 /*
1312 * At the moment, the driver doesn't support flow control, hence
1313 * why this is set to read-only and none.
1314 */
1315 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1316 mac_prop_info_set_default_link_flowctrl(prh,
1317 LINK_FLOWCTRL_NONE);
1318 break;
1319 case MAC_PROP_MTU:
1320 mac_prop_info_set_range_uint32(prh, I40E_MIN_MTU, I40E_MAX_MTU);
1321 break;
1322 case MAC_PROP_ADV_FEC_CAP:
1323 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1324 if (i40e_is_25G_device(i40e->i40e_hw_space.device_id))
1325 mac_prop_info_set_default_fec(prh, LINK_FEC_AUTO);
1326 break;
1327 case MAC_PROP_EN_FEC_CAP:
1328 if (i40e_is_25G_device(i40e->i40e_hw_space.device_id)) {
1329 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
1330 mac_prop_info_set_default_fec(prh, LINK_FEC_AUTO);
1331 } else {
1332 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1333 }
1334 break;
1335
1336 /*
1337 * We set the defaults for these based upon the phy's ability to
1338 * support the speeds. Note, auto-negotiation is required for fiber,
1339 * hence it is read-only and always enabled. When we have access to
1340 * copper phys we can revisit this.
1341 */
1342 case MAC_PROP_AUTONEG:
1343 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1344 mac_prop_info_set_default_uint8(prh, 1);
1345 break;
1346 case MAC_PROP_ADV_100FDX_CAP:
1347 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1348 mac_prop_info_set_default_uint8(prh,
1349 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0);
1350 break;
1351 case MAC_PROP_EN_100FDX_CAP:
1352 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1353 mac_prop_info_set_default_uint8(prh,
1354 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0);
1355 break;
1356 case MAC_PROP_ADV_1000FDX_CAP:
1357 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1358 mac_prop_info_set_default_uint8(prh,
1359 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0);
1360 break;
1361 case MAC_PROP_EN_1000FDX_CAP:
1362 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1363 mac_prop_info_set_default_uint8(prh,
1364 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0);
1365 break;
1366 case MAC_PROP_ADV_10GFDX_CAP:
1367 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1368 mac_prop_info_set_default_uint8(prh,
1369 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0);
1370 break;
1371 case MAC_PROP_EN_10GFDX_CAP:
1372 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1373 mac_prop_info_set_default_uint8(prh,
1374 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0);
1375 break;
1376 case MAC_PROP_ADV_25GFDX_CAP:
1377 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1378 mac_prop_info_set_default_uint8(prh,
1379 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0);
1380 break;
1381 case MAC_PROP_EN_25GFDX_CAP:
1382 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1383 mac_prop_info_set_default_uint8(prh,
1384 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0);
1385 break;
1386 case MAC_PROP_ADV_40GFDX_CAP:
1387 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1388 mac_prop_info_set_default_uint8(prh,
1389 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0);
1390 break;
1391 case MAC_PROP_EN_40GFDX_CAP:
1392 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1393 mac_prop_info_set_default_uint8(prh,
1394 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0);
1395 break;
1396 case MAC_PROP_PRIVATE:
1397 i40e_m_propinfo_private(i40e, pr_name, prh);
1398 break;
1399 default:
1400 break;
1401 }
1402
1403 mutex_exit(&i40e->i40e_general_lock);
1404 }
1405
1406 #define I40E_M_CALLBACK_FLAGS \
1407 (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
1408
1409 static mac_callbacks_t i40e_m_callbacks = {
1410 I40E_M_CALLBACK_FLAGS,
1411 i40e_m_stat,
1412 i40e_m_start,
1413 i40e_m_stop,
1414 i40e_m_promisc,
1415 i40e_m_multicast,
1416 NULL,
1417 NULL,
1418 NULL,
1419 i40e_m_ioctl,
1420 i40e_m_getcapab,
1421 NULL,
1422 NULL,
1423 i40e_m_setprop,
1424 i40e_m_getprop,
1425 i40e_m_propinfo
1426 };
1427
1428 boolean_t
1429 i40e_register_mac(i40e_t *i40e)
1430 {
1431 struct i40e_hw *hw = &i40e->i40e_hw_space;
1432 int status;
1433 mac_register_t *mac = mac_alloc(MAC_VERSION);
1434
1435 if (mac == NULL)
1436 return (B_FALSE);
1437
1438 mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
1439 mac->m_driver = i40e;
1440 mac->m_dip = i40e->i40e_dip;
1441 mac->m_src_addr = hw->mac.addr;
1442 mac->m_callbacks = &i40e_m_callbacks;
1443 mac->m_min_sdu = 0;
1444 mac->m_max_sdu = i40e->i40e_sdu;
1445 mac->m_margin = VLAN_TAGSZ;
1446 mac->m_priv_props = i40e_priv_props;
1447 mac->m_v12n = MAC_VIRT_LEVEL1;
1448
1449 status = mac_register(mac, &i40e->i40e_mac_hdl);
1450 if (status != 0)
1451 i40e_error(i40e, "mac_register() returned %d", status);
1452 mac_free(mac);
1453
1454 return (status == 0);
1455 }