1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/strsubr.h>
26 #include <sys/strsun.h>
27 #include <sys/param.h>
28 #include <sys/sysmacros.h>
29 #include <vm/seg_map.h>
30 #include <vm/seg_kpm.h>
31 #include <sys/condvar_impl.h>
32 #include <sys/sendfile.h>
33 #include <fs/sockfs/nl7c.h>
34 #include <fs/sockfs/nl7curi.h>
35 #include <fs/sockfs/socktpi_impl.h>
36
37 #include <inet/common.h>
38 #include <inet/ip.h>
39 #include <inet/ip6.h>
40 #include <inet/tcp.h>
41 #include <inet/led.h>
42 #include <inet/mi.h>
43
44 #include <inet/nca/ncadoorhdr.h>
45 #include <inet/nca/ncalogd.h>
46 #include <inet/nca/ncandd.h>
47
48 #include <sys/promif.h>
49
50 /*
51 * Some externs:
52 */
53
54 extern boolean_t nl7c_logd_enabled;
55 extern void nl7c_logd_log(uri_desc_t *, uri_desc_t *,
56 time_t, ipaddr_t);
57 extern boolean_t nl7c_close_addr(struct sonode *);
58 extern struct sonode *nl7c_addr2portso(void *);
59 extern uri_desc_t *nl7c_http_cond(uri_desc_t *, uri_desc_t *);
60
61 /*
62 * Various global tuneables:
63 */
64
65 clock_t nl7c_uri_ttl = -1; /* TTL in seconds (-1 == infinite) */
66
67 boolean_t nl7c_use_kmem = B_FALSE; /* Force use of kmem (no segmap) */
68
69 uint64_t nl7c_file_prefetch = 1; /* File cache prefetch pages */
70
71 uint64_t nl7c_uri_max = 0; /* Maximum bytes (0 == infinite) */
72 uint64_t nl7c_uri_bytes = 0; /* Bytes of kmem used by URIs */
73
74 /*
75 * Locals:
76 */
77
78 static int uri_rd_response(struct sonode *, uri_desc_t *,
79 uri_rd_t *, boolean_t);
80 static int uri_response(struct sonode *, uri_desc_t *);
81
82 /*
83 * HTTP scheme functions called from nl7chttp.c:
84 */
85
86 boolean_t nl7c_http_request(char **, char *, uri_desc_t *, struct sonode *);
87 boolean_t nl7c_http_response(char **, char *, uri_desc_t *, struct sonode *);
88 boolean_t nl7c_http_cmp(void *, void *);
89 mblk_t *nl7c_http_persist(struct sonode *);
90 void nl7c_http_free(void *arg);
91 void nl7c_http_init(void);
92
93 /*
94 * Counters that need to move to kstat and/or be removed:
95 */
96
97 volatile uint64_t nl7c_uri_request = 0;
98 volatile uint64_t nl7c_uri_hit = 0;
99 volatile uint64_t nl7c_uri_pass = 0;
100 volatile uint64_t nl7c_uri_miss = 0;
101 volatile uint64_t nl7c_uri_temp = 0;
102 volatile uint64_t nl7c_uri_more = 0;
103 volatile uint64_t nl7c_uri_data = 0;
104 volatile uint64_t nl7c_uri_sendfilev = 0;
105 volatile uint64_t nl7c_uri_reclaim_calls = 0;
106 volatile uint64_t nl7c_uri_reclaim_cnt = 0;
107 volatile uint64_t nl7c_uri_pass_urifail = 0;
108 volatile uint64_t nl7c_uri_pass_dupbfail = 0;
109 volatile uint64_t nl7c_uri_more_get = 0;
110 volatile uint64_t nl7c_uri_pass_method = 0;
111 volatile uint64_t nl7c_uri_pass_option = 0;
112 volatile uint64_t nl7c_uri_more_eol = 0;
113 volatile uint64_t nl7c_uri_more_http = 0;
114 volatile uint64_t nl7c_uri_pass_http = 0;
115 volatile uint64_t nl7c_uri_pass_addfail = 0;
116 volatile uint64_t nl7c_uri_pass_temp = 0;
117 volatile uint64_t nl7c_uri_expire = 0;
118 volatile uint64_t nl7c_uri_purge = 0;
119 volatile uint64_t nl7c_uri_NULL1 = 0;
120 volatile uint64_t nl7c_uri_NULL2 = 0;
121 volatile uint64_t nl7c_uri_close = 0;
122 volatile uint64_t nl7c_uri_temp_close = 0;
123 volatile uint64_t nl7c_uri_free = 0;
124 volatile uint64_t nl7c_uri_temp_free = 0;
125 volatile uint64_t nl7c_uri_temp_mk = 0;
126 volatile uint64_t nl7c_uri_rd_EAGAIN = 0;
127
128 /*
129 * Various kmem_cache_t's:
130 */
131
132 kmem_cache_t *nl7c_uri_kmc;
133 kmem_cache_t *nl7c_uri_rd_kmc;
134 static kmem_cache_t *uri_desb_kmc;
135 static kmem_cache_t *uri_segmap_kmc;
136
137 static void uri_kmc_reclaim(void *);
138
139 static void nl7c_uri_reclaim(void);
140
141 /*
142 * The URI hash is a dynamically sized A/B bucket hash, when the current
143 * hash's average bucket chain length exceeds URI_HASH_AVRG a new hash of
144 * the next P2Ps[] size is created.
145 *
146 * All lookups are done in the current hash then the new hash (if any),
147 * if there is a new has then when a current hash bucket chain is examined
148 * any uri_desc_t members will be migrated to the new hash and when the
149 * last uri_desc_t has been migrated then the new hash will become the
150 * current and the previous current hash will be freed leaving a single
151 * hash.
152 *
153 * uri_hash_t - hash bucket (chain) type, contained in the uri_hash_ab[]
154 * and can be accessed only after aquiring the uri_hash_access lock (for
155 * READER or WRITER) then acquiring the lock uri_hash_t.lock, the uri_hash_t
156 * and all linked uri_desc_t.hash members are protected. Note, a REF_HOLD()
157 * is placed on all uri_desc_t uri_hash_t list members.
158 *
159 * uri_hash_access - rwlock for all uri_hash_* variables, READER for read
160 * access and WRITER for write access. Note, WRITER is only required for
161 * hash geometry changes.
162 *
163 * uri_hash_which - which uri_hash_ab[] is the current hash.
164 *
165 * uri_hash_n[] - the P2Ps[] index for each uri_hash_ab[].
166 *
167 * uri_hash_sz[] - the size for each uri_hash_ab[].
168 *
169 * uri_hash_cnt[] - the total uri_desc_t members for each uri_hash_ab[].
170 *
171 * uri_hash_overflow[] - the uri_hash_cnt[] for each uri_hash_ab[] when
172 * a new uri_hash_ab[] needs to be created.
173 *
174 * uri_hash_ab[] - the uri_hash_t entries.
175 *
176 * uri_hash_lru[] - the last uri_hash_ab[] walked for lru reclaim.
177 */
178
179 typedef struct uri_hash_s {
180 struct uri_desc_s *list; /* List of uri_t(s) */
181 kmutex_t lock;
182 } uri_hash_t;
183
184 #define URI_HASH_AVRG 5 /* Desired average hash chain length */
185 #define URI_HASH_N_INIT 9 /* P2Ps[] initial index */
186
187 static krwlock_t uri_hash_access;
188 static uint32_t uri_hash_which = 0;
189 static uint32_t uri_hash_n[2] = {URI_HASH_N_INIT, 0};
190 static uint32_t uri_hash_sz[2] = {0, 0};
191 static uint32_t uri_hash_cnt[2] = {0, 0};
192 static uint32_t uri_hash_overflow[2] = {0, 0};
193 static uri_hash_t *uri_hash_ab[2] = {NULL, NULL};
194 static uri_hash_t *uri_hash_lru[2] = {NULL, NULL};
195
196 /*
197 * Primes for N of 3 - 24 where P is first prime less then (2^(N-1))+(2^(N-2))
198 * these primes have been foud to be useful for prime sized hash tables.
199 */
200
201 static const int P2Ps[] = {
202 0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067,
203 6143, 12281, 24571, 49139, 98299, 196597, 393209,
204 786431, 1572853, 3145721, 6291449, 12582893, 0};
205
206 /*
207 * Hash macros:
208 *
209 * H2A(char *cp, char *ep, char c) - convert the escaped octet (ASCII)
210 * hex multichar of the format "%HH" pointeded to by *cp to a char and
211 * return in c, *ep points to past end of (char *), on return *cp will
212 * point to the last char consumed.
213 *
214 * URI_HASH(unsigned hix, char *cp, char *ep) - hash the char(s) from
215 * *cp to *ep to the unsigned hix, cp nor ep are modified.
216 *
217 * URI_HASH_IX(unsigned hix, int which) - convert the hash value hix to
218 * a hash index 0 - (uri_hash_sz[which] - 1).
219 *
220 * URI_HASH_MIGRATE(from, hp, to) - migrate the uri_hash_t *hp list
221 * uri_desc_t members from hash from to hash to.
222 *
223 * URI_HASH_UNLINK(cur, new, hp, puri, uri) - unlink the uri_desc_t
224 * *uri which is a member of the uri_hash_t *hp list with a previous
225 * list member of *puri for the uri_hash_ab[] cur. After unlinking
226 * check for cur hash empty, if so make new cur. Note, as this macro
227 * can change a hash chain it needs to be run under hash_access as
228 * RW_WRITER, futher as it can change the new hash to cur any access
229 * to the hash state must be done after either dropping locks and
230 * starting over or making sure the global state is consistent after
231 * as before.
232 */
233
234 #define H2A(cp, ep, c) { \
235 int _h = 2; \
236 int _n = 0; \
237 char _hc; \
238 \
239 while (_h > 0 && ++(cp) < (ep)) { \
240 if (_h == 1) \
241 _n *= 0x10; \
242 _hc = *(cp); \
243 if (_hc >= '0' && _hc <= '9') \
244 _n += _hc - '0'; \
245 else if (_hc >= 'a' || _hc <= 'f') \
246 _n += _hc - 'W'; \
247 else if (_hc >= 'A' || _hc <= 'F') \
248 _n += _hc - '7'; \
249 _h--; \
250 } \
251 (c) = _n; \
252 }
253
254 #define URI_HASH(hv, cp, ep) { \
255 char *_s = (cp); \
256 char _c; \
257 \
258 while (_s < (ep)) { \
259 if ((_c = *_s) == '%') { \
260 H2A(_s, (ep), _c); \
261 } \
262 CHASH(hv, _c); \
263 _s++; \
264 } \
265 }
266
267 #define URI_HASH_IX(hix, which) (hix) = (hix) % (uri_hash_sz[(which)])
268
269 #define URI_HASH_MIGRATE(from, hp, to) { \
270 uri_desc_t *_nuri; \
271 uint32_t _nhix; \
272 uri_hash_t *_nhp; \
273 \
274 mutex_enter(&(hp)->lock); \
275 while ((_nuri = (hp)->list) != NULL) { \
276 (hp)->list = _nuri->hash; \
277 atomic_dec_32(&uri_hash_cnt[(from)]); \
278 atomic_inc_32(&uri_hash_cnt[(to)]); \
279 _nhix = _nuri->hvalue; \
280 URI_HASH_IX(_nhix, to); \
281 _nhp = &uri_hash_ab[(to)][_nhix]; \
282 mutex_enter(&_nhp->lock); \
283 _nuri->hash = _nhp->list; \
284 _nhp->list = _nuri; \
285 _nuri->hit = 0; \
286 mutex_exit(&_nhp->lock); \
287 } \
288 mutex_exit(&(hp)->lock); \
289 }
290
291 #define URI_HASH_UNLINK(cur, new, hp, puri, uri) { \
292 if ((puri) != NULL) { \
293 (puri)->hash = (uri)->hash; \
294 } else { \
295 (hp)->list = (uri)->hash; \
296 } \
297 if (atomic_dec_32_nv(&uri_hash_cnt[(cur)]) == 0 && \
298 uri_hash_ab[(new)] != NULL) { \
299 kmem_free(uri_hash_ab[cur], \
300 sizeof (uri_hash_t) * uri_hash_sz[cur]); \
301 uri_hash_ab[(cur)] = NULL; \
302 uri_hash_lru[(cur)] = NULL; \
303 uri_hash_which = (new); \
304 } else { \
305 uri_hash_lru[(cur)] = (hp); \
306 } \
307 }
308
309 void
310 nl7c_uri_init(void)
311 {
312 uint32_t cur = uri_hash_which;
313
314 rw_init(&uri_hash_access, NULL, RW_DEFAULT, NULL);
315
316 uri_hash_sz[cur] = P2Ps[URI_HASH_N_INIT];
317 uri_hash_overflow[cur] = P2Ps[URI_HASH_N_INIT] * URI_HASH_AVRG;
318 uri_hash_ab[cur] = kmem_zalloc(sizeof (uri_hash_t) * uri_hash_sz[cur],
319 KM_SLEEP);
320 uri_hash_lru[cur] = uri_hash_ab[cur];
321
322 nl7c_uri_kmc = kmem_cache_create("NL7C_uri_kmc", sizeof (uri_desc_t),
323 0, NULL, NULL, uri_kmc_reclaim, NULL, NULL, 0);
324
325 nl7c_uri_rd_kmc = kmem_cache_create("NL7C_uri_rd_kmc",
326 sizeof (uri_rd_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
327
328 uri_desb_kmc = kmem_cache_create("NL7C_uri_desb_kmc",
329 sizeof (uri_desb_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
330
331 uri_segmap_kmc = kmem_cache_create("NL7C_uri_segmap_kmc",
332 sizeof (uri_segmap_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
333
334 nl7c_http_init();
335 }
336
337 #define CV_SZ 16
338
339 void
340 nl7c_mi_report_hash(mblk_t *mp)
341 {
342 uri_hash_t *hp, *pend;
343 uri_desc_t *uri;
344 uint32_t cur;
345 uint32_t new;
346 int n, nz, tot;
347 uint32_t cv[CV_SZ + 1];
348
349 rw_enter(&uri_hash_access, RW_READER);
350 cur = uri_hash_which;
351 new = cur ? 0 : 1;
352 next:
353 for (n = 0; n <= CV_SZ; n++)
354 cv[n] = 0;
355 nz = 0;
356 tot = 0;
357 hp = &uri_hash_ab[cur][0];
358 pend = &uri_hash_ab[cur][uri_hash_sz[cur]];
359 while (hp < pend) {
360 n = 0;
361 for (uri = hp->list; uri != NULL; uri = uri->hash) {
362 n++;
363 }
364 tot += n;
365 if (n > 0)
366 nz++;
367 if (n > CV_SZ)
368 n = CV_SZ;
369 cv[n]++;
370 hp++;
371 }
372
373 (void) mi_mpprintf(mp, "\nHash=%s, Buckets=%d, "
374 "Avrg=%d\nCount by bucket:", cur != new ? "CUR" : "NEW",
375 uri_hash_sz[cur], nz != 0 ? ((tot * 10 + 5) / nz) / 10 : 0);
376 (void) mi_mpprintf(mp, "Free=%d", cv[0]);
377 for (n = 1; n < CV_SZ; n++) {
378 int pn = 0;
379 char pv[5];
380 char *pp = pv;
381
382 for (pn = n; pn < 1000; pn *= 10)
383 *pp++ = ' ';
384 *pp = 0;
385 (void) mi_mpprintf(mp, "%s%d=%d", pv, n, cv[n]);
386 }
387 (void) mi_mpprintf(mp, "Long=%d", cv[CV_SZ]);
388
389 if (cur != new && uri_hash_ab[new] != NULL) {
390 cur = new;
391 goto next;
392 }
393 rw_exit(&uri_hash_access);
394 }
395
396 void
397 nl7c_mi_report_uri(mblk_t *mp)
398 {
399 uri_hash_t *hp;
400 uri_desc_t *uri;
401 uint32_t cur;
402 uint32_t new;
403 int ix;
404 int ret;
405 char sc;
406
407 rw_enter(&uri_hash_access, RW_READER);
408 cur = uri_hash_which;
409 new = cur ? 0 : 1;
410 next:
411 for (ix = 0; ix < uri_hash_sz[cur]; ix++) {
412 hp = &uri_hash_ab[cur][ix];
413 mutex_enter(&hp->lock);
414 uri = hp->list;
415 while (uri != NULL) {
416 sc = *(uri->path.ep);
417 *(uri->path.ep) = 0;
418 ret = mi_mpprintf(mp, "%s: %d %d %d",
419 uri->path.cp, (int)uri->resplen,
420 (int)uri->respclen, (int)uri->count);
421 *(uri->path.ep) = sc;
422 if (ret == -1) break;
423 uri = uri->hash;
424 }
425 mutex_exit(&hp->lock);
426 if (ret == -1) break;
427 }
428 if (ret != -1 && cur != new && uri_hash_ab[new] != NULL) {
429 cur = new;
430 goto next;
431 }
432 rw_exit(&uri_hash_access);
433 }
434
435 /*
436 * The uri_desc_t ref_t inactive function called on the last REF_RELE(),
437 * free all resources contained in the uri_desc_t. Note, the uri_desc_t
438 * will be freed by REF_RELE() on return.
439 */
440
441 void
442 nl7c_uri_inactive(uri_desc_t *uri)
443 {
444 int64_t bytes = 0;
445
446 if (uri->tail) {
447 uri_rd_t *rdp = &uri->response;
448 uri_rd_t *free = NULL;
449
450 while (rdp) {
451 if (rdp->off == -1) {
452 bytes += rdp->sz;
453 kmem_free(rdp->data.kmem, rdp->sz);
454 } else {
455 VN_RELE(rdp->data.vnode);
456 }
457 rdp = rdp->next;
458 if (free != NULL) {
459 kmem_cache_free(nl7c_uri_rd_kmc, free);
460 }
461 free = rdp;
462 }
463 }
464 if (bytes) {
465 atomic_add_64(&nl7c_uri_bytes, -bytes);
466 }
467 if (uri->scheme != NULL) {
468 nl7c_http_free(uri->scheme);
469 }
470 if (uri->reqmp) {
471 freeb(uri->reqmp);
472 }
473 }
474
475 /*
476 * The reclaim is called by the kmem subsystem when kmem is running
477 * low. More work is needed to determine the best reclaim policy, for
478 * now we just manipulate the nl7c_uri_max global maximum bytes threshold
479 * value using a simple arithmetic backoff of the value every time this
480 * function is called then call uri_reclaim() to enforce it.
481 *
482 * Note, this value remains in place and enforced for all subsequent
483 * URI request/response processing.
484 *
485 * Note, nl7c_uri_max is currently initialized to 0 or infinite such that
486 * the first call here set it to the current uri_bytes value then backoff
487 * from there.
488 *
489 * XXX how do we determine when to increase nl7c_uri_max ???
490 */
491
492 /*ARGSUSED*/
493 static void
494 uri_kmc_reclaim(void *arg)
495 {
496 uint64_t new_max;
497
498 if ((new_max = nl7c_uri_max) == 0) {
499 /* Currently infinite, initialize to current bytes used */
500 nl7c_uri_max = nl7c_uri_bytes;
501 new_max = nl7c_uri_bytes;
502 }
503 if (new_max > 1) {
504 /* Lower max_bytes to 93% of current value */
505 new_max >>= 1; /* 50% */
506 new_max += (new_max >> 1); /* 75% */
507 new_max += (new_max >> 2); /* 93% */
508 if (new_max < nl7c_uri_max)
509 nl7c_uri_max = new_max;
510 else
511 nl7c_uri_max = 1;
512 }
513 nl7c_uri_reclaim();
514 }
515
516 /*
517 * Delete a uri_desc_t from the URI hash.
518 */
519
520 static void
521 uri_delete(uri_desc_t *del)
522 {
523 uint32_t hix;
524 uri_hash_t *hp;
525 uri_desc_t *uri;
526 uri_desc_t *puri;
527 uint32_t cur;
528 uint32_t new;
529
530 ASSERT(del->hash != URI_TEMP);
531 rw_enter(&uri_hash_access, RW_WRITER);
532 cur = uri_hash_which;
533 new = cur ? 0 : 1;
534 next:
535 puri = NULL;
536 hix = del->hvalue;
537 URI_HASH_IX(hix, cur);
538 hp = &uri_hash_ab[cur][hix];
539 for (uri = hp->list; uri != NULL; uri = uri->hash) {
540 if (uri != del) {
541 puri = uri;
542 continue;
543 }
544 /*
545 * Found the URI, unlink from the hash chain,
546 * drop locks, ref release it.
547 */
548 URI_HASH_UNLINK(cur, new, hp, puri, uri);
549 rw_exit(&uri_hash_access);
550 REF_RELE(uri);
551 return;
552 }
553 if (cur != new && uri_hash_ab[new] != NULL) {
554 /*
555 * Not found in current hash and have a new hash so
556 * check the new hash next.
557 */
558 cur = new;
559 goto next;
560 }
561 rw_exit(&uri_hash_access);
562 }
563
564 /*
565 * Add a uri_desc_t to the URI hash.
566 */
567
568 static void
569 uri_add(uri_desc_t *uri, krw_t rwlock, boolean_t nonblocking)
570 {
571 uint32_t hix;
572 uri_hash_t *hp;
573 uint32_t cur = uri_hash_which;
574 uint32_t new = cur ? 0 : 1;
575
576 /*
577 * Caller of uri_add() must hold the uri_hash_access rwlock.
578 */
579 ASSERT((rwlock == RW_READER && RW_READ_HELD(&uri_hash_access)) ||
580 (rwlock == RW_WRITER && RW_WRITE_HELD(&uri_hash_access)));
581 /*
582 * uri_add() always succeeds so add a hash ref to the URI now.
583 */
584 REF_HOLD(uri);
585 again:
586 hix = uri->hvalue;
587 URI_HASH_IX(hix, cur);
588 if (uri_hash_ab[new] == NULL &&
589 uri_hash_cnt[cur] < uri_hash_overflow[cur]) {
590 /*
591 * Easy case, no new hash and current hasn't overflowed,
592 * add URI to current hash and return.
593 *
594 * Note, the check for uri_hash_cnt[] above aren't done
595 * atomictally, i.e. multiple threads can be in this code
596 * as RW_READER and update the cnt[], this isn't a problem
597 * as the check is only advisory.
598 */
599 fast:
600 atomic_inc_32(&uri_hash_cnt[cur]);
601 hp = &uri_hash_ab[cur][hix];
602 mutex_enter(&hp->lock);
603 uri->hash = hp->list;
604 hp->list = uri;
605 mutex_exit(&hp->lock);
606 rw_exit(&uri_hash_access);
607 return;
608 }
609 if (uri_hash_ab[new] == NULL) {
610 /*
611 * Need a new a or b hash, if not already RW_WRITER
612 * try to upgrade our lock to writer.
613 */
614 if (rwlock != RW_WRITER && ! rw_tryupgrade(&uri_hash_access)) {
615 /*
616 * Upgrade failed, we can't simple exit and reenter
617 * the lock as after the exit and before the reenter
618 * the whole world can change so just wait for writer
619 * then do everything again.
620 */
621 if (nonblocking) {
622 /*
623 * Can't block, use fast-path above.
624 *
625 * XXX should have a background thread to
626 * handle new ab[] in this case so as to
627 * not overflow the cur hash to much.
628 */
629 goto fast;
630 }
631 rw_exit(&uri_hash_access);
632 rwlock = RW_WRITER;
633 rw_enter(&uri_hash_access, rwlock);
634 cur = uri_hash_which;
635 new = cur ? 0 : 1;
636 goto again;
637 }
638 rwlock = RW_WRITER;
639 if (uri_hash_ab[new] == NULL) {
640 /*
641 * Still need a new hash, allocate and initialize
642 * the new hash.
643 */
644 uri_hash_n[new] = uri_hash_n[cur] + 1;
645 if (uri_hash_n[new] == 0) {
646 /*
647 * No larger P2Ps[] value so use current,
648 * i.e. 2 of the largest are better than 1 ?
649 */
650 uri_hash_n[new] = uri_hash_n[cur];
651 cmn_err(CE_NOTE, "NL7C: hash index overflow");
652 }
653 uri_hash_sz[new] = P2Ps[uri_hash_n[new]];
654 ASSERT(uri_hash_cnt[new] == 0);
655 uri_hash_overflow[new] = uri_hash_sz[new] *
656 URI_HASH_AVRG;
657 uri_hash_ab[new] = kmem_zalloc(sizeof (uri_hash_t) *
658 uri_hash_sz[new], nonblocking ? KM_NOSLEEP :
659 KM_SLEEP);
660 if (uri_hash_ab[new] == NULL) {
661 /*
662 * Alloc failed, use fast-path above.
663 *
664 * XXX should have a background thread to
665 * handle new ab[] in this case so as to
666 * not overflow the cur hash to much.
667 */
668 goto fast;
669 }
670 uri_hash_lru[new] = uri_hash_ab[new];
671 }
672 }
673 /*
674 * Hashed against current hash so migrate any current hash chain
675 * members, if any.
676 *
677 * Note, the hash chain list can be checked for a non empty list
678 * outside of the hash chain list lock as the hash chain struct
679 * can't be destroyed while in the uri_hash_access rwlock, worst
680 * case is that a non empty list is found and after acquiring the
681 * lock another thread beats us to it (i.e. migrated the list).
682 */
683 hp = &uri_hash_ab[cur][hix];
684 if (hp->list != NULL) {
685 URI_HASH_MIGRATE(cur, hp, new);
686 }
687 /*
688 * If new hash has overflowed before current hash has been
689 * completely migrated then walk all current hash chains and
690 * migrate list members now.
691 */
692 if (atomic_inc_32_nv(&uri_hash_cnt[new]) >= uri_hash_overflow[new]) {
693 for (hix = 0; hix < uri_hash_sz[cur]; hix++) {
694 hp = &uri_hash_ab[cur][hix];
695 if (hp->list != NULL) {
696 URI_HASH_MIGRATE(cur, hp, new);
697 }
698 }
699 }
700 /*
701 * Add URI to new hash.
702 */
703 hix = uri->hvalue;
704 URI_HASH_IX(hix, new);
705 hp = &uri_hash_ab[new][hix];
706 mutex_enter(&hp->lock);
707 uri->hash = hp->list;
708 hp->list = uri;
709 mutex_exit(&hp->lock);
710 /*
711 * Last, check to see if last cur hash chain has been
712 * migrated, if so free cur hash and make new hash cur.
713 */
714 if (uri_hash_cnt[cur] == 0) {
715 /*
716 * If we don't already hold the uri_hash_access rwlock for
717 * RW_WRITE try to upgrade to RW_WRITE and if successful
718 * check again and to see if still need to do the free.
719 */
720 if ((rwlock == RW_WRITER || rw_tryupgrade(&uri_hash_access)) &&
721 uri_hash_cnt[cur] == 0 && uri_hash_ab[new] != 0) {
722 kmem_free(uri_hash_ab[cur],
723 sizeof (uri_hash_t) * uri_hash_sz[cur]);
724 uri_hash_ab[cur] = NULL;
725 uri_hash_lru[cur] = NULL;
726 uri_hash_which = new;
727 }
728 }
729 rw_exit(&uri_hash_access);
730 }
731
732 /*
733 * Lookup a uri_desc_t in the URI hash, if found free the request uri_desc_t
734 * and return the found uri_desc_t with a REF_HOLD() placed on it. Else, if
735 * add B_TRUE use the request URI to create a new hash entry. Else if add
736 * B_FALSE ...
737 */
738
739 static uri_desc_t *
740 uri_lookup(uri_desc_t *ruri, boolean_t add, boolean_t nonblocking)
741 {
742 uint32_t hix;
743 uri_hash_t *hp;
744 uri_desc_t *uri;
745 uri_desc_t *puri;
746 uint32_t cur;
747 uint32_t new;
748 char *rcp = ruri->path.cp;
749 char *rep = ruri->path.ep;
750
751 again:
752 rw_enter(&uri_hash_access, RW_READER);
753 cur = uri_hash_which;
754 new = cur ? 0 : 1;
755 nexthash:
756 puri = NULL;
757 hix = ruri->hvalue;
758 URI_HASH_IX(hix, cur);
759 hp = &uri_hash_ab[cur][hix];
760 mutex_enter(&hp->lock);
761 for (uri = hp->list; uri != NULL; uri = uri->hash) {
762 char *ap = uri->path.cp;
763 char *bp = rcp;
764 char a, b;
765
766 /* Compare paths */
767 while (bp < rep && ap < uri->path.ep) {
768 if ((a = *ap) == '%') {
769 /* Escaped hex multichar, convert it */
770 H2A(ap, uri->path.ep, a);
771 }
772 if ((b = *bp) == '%') {
773 /* Escaped hex multichar, convert it */
774 H2A(bp, rep, b);
775 }
776 if (a != b) {
777 /* Char's don't match */
778 goto nexturi;
779 }
780 ap++;
781 bp++;
782 }
783 if (bp != rep || ap != uri->path.ep) {
784 /* Not same length */
785 goto nexturi;
786 }
787 ap = uri->auth.cp;
788 bp = ruri->auth.cp;
789 if (ap != NULL) {
790 if (bp == NULL) {
791 /* URI has auth request URI doesn't */
792 goto nexturi;
793 }
794 while (bp < ruri->auth.ep && ap < uri->auth.ep) {
795 if ((a = *ap) == '%') {
796 /* Escaped hex multichar, convert it */
797 H2A(ap, uri->path.ep, a);
798 }
799 if ((b = *bp) == '%') {
800 /* Escaped hex multichar, convert it */
801 H2A(bp, rep, b);
802 }
803 if (a != b) {
804 /* Char's don't match */
805 goto nexturi;
806 }
807 ap++;
808 bp++;
809 }
810 if (bp != ruri->auth.ep || ap != uri->auth.ep) {
811 /* Not same length */
812 goto nexturi;
813 }
814 } else if (bp != NULL) {
815 /* URI doesn't have auth and request URI does */
816 goto nexturi;
817 }
818 /*
819 * Have a path/auth match so before any other processing
820 * of requested URI, check for expire or request no cache
821 * purge.
822 */
823 if (uri->expire >= 0 && uri->expire <= ddi_get_lbolt() ||
824 ruri->nocache) {
825 /*
826 * URI has expired or request specified to not use
827 * the cached version, unlink the URI from the hash
828 * chain, release all locks, release the hash ref
829 * on the URI, and last look it up again.
830 *
831 * Note, this will cause all variants of the named
832 * URI to be purged.
833 */
834 if (puri != NULL) {
835 puri->hash = uri->hash;
836 } else {
837 hp->list = uri->hash;
838 }
839 mutex_exit(&hp->lock);
840 atomic_dec_32(&uri_hash_cnt[cur]);
841 rw_exit(&uri_hash_access);
842 if (ruri->nocache)
843 nl7c_uri_purge++;
844 else
845 nl7c_uri_expire++;
846 REF_RELE(uri);
847 goto again;
848 }
849 if (uri->scheme != NULL) {
850 /*
851 * URI has scheme private qualifier(s), if request
852 * URI doesn't or if no match skip this URI.
853 */
854 if (ruri->scheme == NULL ||
855 ! nl7c_http_cmp(uri->scheme, ruri->scheme))
856 goto nexturi;
857 } else if (ruri->scheme != NULL) {
858 /*
859 * URI doesn't have scheme private qualifiers but
860 * request URI does, no match, skip this URI.
861 */
862 goto nexturi;
863 }
864 /*
865 * Have a match, ready URI for return, first put a reference
866 * hold on the URI, if this URI is currently being processed
867 * then have to wait for the processing to be completed and
868 * redo the lookup, else return it.
869 */
870 REF_HOLD(uri);
871 mutex_enter(&uri->proclock);
872 if (uri->proc != NULL) {
873 /* The URI is being processed, wait for completion */
874 mutex_exit(&hp->lock);
875 rw_exit(&uri_hash_access);
876 if (! nonblocking &&
877 cv_wait_sig(&uri->waiting, &uri->proclock)) {
878 /*
879 * URI has been processed but things may
880 * have changed while we were away so do
881 * most everything again.
882 */
883 mutex_exit(&uri->proclock);
884 REF_RELE(uri);
885 goto again;
886 } else {
887 /*
888 * A nonblocking socket or an interrupted
889 * cv_wait_sig() in the first case can't
890 * block waiting for the processing of the
891 * uri hash hit uri to complete, in both
892 * cases just return failure to lookup.
893 */
894 mutex_exit(&uri->proclock);
895 REF_RELE(uri);
896 return (NULL);
897 }
898 }
899 mutex_exit(&uri->proclock);
900 uri->hit++;
901 mutex_exit(&hp->lock);
902 rw_exit(&uri_hash_access);
903 return (uri);
904 nexturi:
905 puri = uri;
906 }
907 mutex_exit(&hp->lock);
908 if (cur != new && uri_hash_ab[new] != NULL) {
909 /*
910 * Not found in current hash and have a new hash so
911 * check the new hash next.
912 */
913 cur = new;
914 goto nexthash;
915 }
916 add:
917 if (! add) {
918 /* Lookup only so return failure */
919 rw_exit(&uri_hash_access);
920 return (NULL);
921 }
922 /*
923 * URI not hashed, finish intialization of the
924 * request URI, add it to the hash, return it.
925 */
926 ruri->hit = 0;
927 ruri->expire = -1;
928 ruri->response.sz = 0;
929 ruri->proc = (struct sonode *)~0;
930 cv_init(&ruri->waiting, NULL, CV_DEFAULT, NULL);
931 mutex_init(&ruri->proclock, NULL, MUTEX_DEFAULT, NULL);
932 uri_add(ruri, RW_READER, nonblocking);
933 /* uri_add() has done rw_exit(&uri_hash_access) */
934 return (ruri);
935 }
936
937 /*
938 * Reclaim URIs until max cache size threshold has been reached.
939 *
940 * A CLOCK based reclaim modified with a history (hit counter) counter.
941 */
942
943 static void
944 nl7c_uri_reclaim(void)
945 {
946 uri_hash_t *hp, *start, *pend;
947 uri_desc_t *uri;
948 uri_desc_t *puri;
949 uint32_t cur;
950 uint32_t new;
951
952 nl7c_uri_reclaim_calls++;
953 again:
954 rw_enter(&uri_hash_access, RW_WRITER);
955 cur = uri_hash_which;
956 new = cur ? 0 : 1;
957 next:
958 hp = uri_hash_lru[cur];
959 start = hp;
960 pend = &uri_hash_ab[cur][uri_hash_sz[cur]];
961 while (nl7c_uri_bytes > nl7c_uri_max) {
962 puri = NULL;
963 for (uri = hp->list; uri != NULL; uri = uri->hash) {
964 if (uri->hit != 0) {
965 /*
966 * Decrement URI activity counter and skip.
967 */
968 uri->hit--;
969 puri = uri;
970 continue;
971 }
972 if (uri->proc != NULL) {
973 /*
974 * Currently being processed by a socket, skip.
975 */
976 continue;
977 }
978 /*
979 * Found a candidate, no hit(s) since added or last
980 * reclaim pass, unlink from it's hash chain, update
981 * lru scan pointer, drop lock, ref release it.
982 */
983 URI_HASH_UNLINK(cur, new, hp, puri, uri);
984 if (cur == uri_hash_which) {
985 if (++hp == pend) {
986 /* Wrap pointer */
987 hp = uri_hash_ab[cur];
988 }
989 uri_hash_lru[cur] = hp;
990 }
991 rw_exit(&uri_hash_access);
992 REF_RELE(uri);
993 nl7c_uri_reclaim_cnt++;
994 goto again;
995 }
996 if (++hp == pend) {
997 /* Wrap pointer */
998 hp = uri_hash_ab[cur];
999 }
1000 if (hp == start) {
1001 if (cur != new && uri_hash_ab[new] != NULL) {
1002 /*
1003 * Done with the current hash and have a
1004 * new hash so check the new hash next.
1005 */
1006 cur = new;
1007 goto next;
1008 }
1009 }
1010 }
1011 rw_exit(&uri_hash_access);
1012 }
1013
1014 /*
1015 * Called for a socket which is being freed prior to close, e.g. errored.
1016 */
1017
1018 void
1019 nl7c_urifree(struct sonode *so)
1020 {
1021 sotpi_info_t *sti = SOTOTPI(so);
1022 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri;
1023
1024 sti->sti_nl7c_uri = NULL;
1025 if (uri->hash != URI_TEMP) {
1026 uri_delete(uri);
1027 mutex_enter(&uri->proclock);
1028 uri->proc = NULL;
1029 if (CV_HAS_WAITERS(&uri->waiting)) {
1030 cv_broadcast(&uri->waiting);
1031 }
1032 mutex_exit(&uri->proclock);
1033 nl7c_uri_free++;
1034 } else {
1035 /* No proclock as uri exclusively owned by so */
1036 uri->proc = NULL;
1037 nl7c_uri_temp_free++;
1038 }
1039 REF_RELE(uri);
1040 }
1041
1042 /*
1043 * ...
1044 *
1045 * < 0 need more data
1046 *
1047 * 0 parse complete
1048 *
1049 * > 0 parse error
1050 */
1051
1052 volatile uint64_t nl7c_resp_pfail = 0;
1053 volatile uint64_t nl7c_resp_ntemp = 0;
1054 volatile uint64_t nl7c_resp_pass = 0;
1055
1056 static int
1057 nl7c_resp_parse(struct sonode *so, uri_desc_t *uri, char *data, int sz)
1058 {
1059 if (! nl7c_http_response(&data, &data[sz], uri, so)) {
1060 if (data == NULL) {
1061 /* Parse fail */
1062 goto pfail;
1063 }
1064 /* More data */
1065 data = NULL;
1066 } else if (data == NULL) {
1067 goto pass;
1068 }
1069 if (uri->hash != URI_TEMP && uri->nocache) {
1070 /*
1071 * After response parse now no cache,
1072 * delete it from cache, wakeup any
1073 * waiters on this URI, make URI_TEMP.
1074 */
1075 uri_delete(uri);
1076 mutex_enter(&uri->proclock);
1077 if (CV_HAS_WAITERS(&uri->waiting)) {
1078 cv_broadcast(&uri->waiting);
1079 }
1080 mutex_exit(&uri->proclock);
1081 uri->hash = URI_TEMP;
1082 nl7c_uri_temp_mk++;
1083 }
1084 if (data == NULL) {
1085 /* More data needed */
1086 return (-1);
1087 }
1088 /* Success */
1089 return (0);
1090
1091 pfail:
1092 nl7c_resp_pfail++;
1093 return (EINVAL);
1094
1095 pass:
1096 nl7c_resp_pass++;
1097 return (ENOTSUP);
1098 }
1099
1100 /*
1101 * Called to sink application response data, the processing of the data
1102 * is the same for a cached or temp URI (i.e. a URI for which we aren't
1103 * going to cache the URI but want to parse it for detecting response
1104 * data end such that for a persistent connection we can parse the next
1105 * request).
1106 *
1107 * On return 0 is returned for sink success, > 0 on error, and < 0 on
1108 * no so URI (note, data not sinked).
1109 */
1110
1111 int
1112 nl7c_data(struct sonode *so, uio_t *uio)
1113 {
1114 sotpi_info_t *sti = SOTOTPI(so);
1115 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri;
1116 iovec_t *iov;
1117 int cnt;
1118 int sz = uio->uio_resid;
1119 char *data, *alloc;
1120 char *bp;
1121 uri_rd_t *rdp;
1122 boolean_t first;
1123 int error, perror;
1124
1125 nl7c_uri_data++;
1126
1127 if (uri == NULL) {
1128 /* Socket & NL7C out of sync, disable NL7C */
1129 sti->sti_nl7c_flags = 0;
1130 nl7c_uri_NULL1++;
1131 return (-1);
1132 }
1133
1134 if (sti->sti_nl7c_flags & NL7C_WAITWRITE) {
1135 sti->sti_nl7c_flags &= ~NL7C_WAITWRITE;
1136 first = B_TRUE;
1137 } else {
1138 first = B_FALSE;
1139 }
1140
1141 alloc = kmem_alloc(sz, KM_SLEEP);
1142 URI_RD_ADD(uri, rdp, sz, -1);
1143 if (rdp == NULL) {
1144 error = ENOMEM;
1145 goto fail;
1146 }
1147
1148 if (uri->hash != URI_TEMP && uri->count > nca_max_cache_size) {
1149 uri_delete(uri);
1150 uri->hash = URI_TEMP;
1151 }
1152 data = alloc;
1153 alloc = NULL;
1154 rdp->data.kmem = data;
1155 atomic_add_64(&nl7c_uri_bytes, sz);
1156
1157 bp = data;
1158 while (uio->uio_resid > 0) {
1159 iov = uio->uio_iov;
1160 if ((cnt = iov->iov_len) == 0) {
1161 goto next;
1162 }
1163 cnt = MIN(cnt, uio->uio_resid);
1164 error = xcopyin(iov->iov_base, bp, cnt);
1165 if (error)
1166 goto fail;
1167
1168 iov->iov_base += cnt;
1169 iov->iov_len -= cnt;
1170 uio->uio_resid -= cnt;
1171 uio->uio_loffset += cnt;
1172 bp += cnt;
1173 next:
1174 uio->uio_iov++;
1175 uio->uio_iovcnt--;
1176 }
1177
1178 /* Successfull sink of data, response parse the data */
1179 perror = nl7c_resp_parse(so, uri, data, sz);
1180
1181 /* Send the data out the connection */
1182 error = uri_rd_response(so, uri, rdp, first);
1183 if (error)
1184 goto fail;
1185
1186 /* Success */
1187 if (perror == 0 &&
1188 ((uri->respclen == URI_LEN_NOVALUE &&
1189 uri->resplen == URI_LEN_NOVALUE) ||
1190 uri->count >= uri->resplen)) {
1191 /*
1192 * No more data needed and no pending response
1193 * data or current data count >= response length
1194 * so close the URI processing for this so.
1195 */
1196 nl7c_close(so);
1197 if (! (sti->sti_nl7c_flags & NL7C_SOPERSIST)) {
1198 /* Not a persistent connection */
1199 sti->sti_nl7c_flags = 0;
1200 }
1201 }
1202
1203 return (0);
1204
1205 fail:
1206 if (alloc != NULL) {
1207 kmem_free(alloc, sz);
1208 }
1209 sti->sti_nl7c_flags = 0;
1210 nl7c_urifree(so);
1211
1212 return (error);
1213 }
1214
1215 /*
1216 * Called to read data from file "*fp" at offset "*off" of length "*len"
1217 * for a maximum of "*max_rem" bytes.
1218 *
1219 * On success a pointer to the kmem_alloc()ed file data is returned, "*off"
1220 * and "*len" are updated for the acutal number of bytes read and "*max_rem"
1221 * is updated with the number of bytes remaining to be read.
1222 *
1223 * Else, "NULL" is returned.
1224 */
1225
1226 static char *
1227 nl7c_readfile(file_t *fp, u_offset_t *off, int *len, int max, int *ret)
1228 {
1229 vnode_t *vp = fp->f_vnode;
1230 int flg = 0;
1231 size_t size = MIN(*len, max);
1232 char *data;
1233 int error;
1234 uio_t uio;
1235 iovec_t iov;
1236
1237 (void) VOP_RWLOCK(vp, flg, NULL);
1238
1239 if (*off > MAXOFFSET_T) {
1240 VOP_RWUNLOCK(vp, flg, NULL);
1241 *ret = EFBIG;
1242 return (NULL);
1243 }
1244
1245 if (*off + size > MAXOFFSET_T)
1246 size = (ssize32_t)(MAXOFFSET_T - *off);
1247
1248 data = kmem_alloc(size, KM_SLEEP);
1249
1250 iov.iov_base = data;
1251 iov.iov_len = size;
1252 uio.uio_loffset = *off;
1253 uio.uio_iov = &iov;
1254 uio.uio_iovcnt = 1;
1255 uio.uio_resid = size;
1256 uio.uio_segflg = UIO_SYSSPACE;
1257 uio.uio_llimit = MAXOFFSET_T;
1258 uio.uio_fmode = fp->f_flag;
1259
1260 error = VOP_READ(vp, &uio, fp->f_flag, fp->f_cred, NULL);
1261 VOP_RWUNLOCK(vp, flg, NULL);
1262 *ret = error;
1263 if (error) {
1264 kmem_free(data, size);
1265 return (NULL);
1266 }
1267 *len = size;
1268 *off += size;
1269 return (data);
1270 }
1271
1272 /*
1273 * Called to sink application response sendfilev, as with nl7c_data() above
1274 * all the data will be processed by NL7C unless there's an error.
1275 */
1276
1277 int
1278 nl7c_sendfilev(struct sonode *so, u_offset_t *fileoff, sendfilevec_t *sfvp,
1279 int sfvc, ssize_t *xfer)
1280 {
1281 sotpi_info_t *sti = SOTOTPI(so);
1282 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri;
1283 file_t *fp = NULL;
1284 vnode_t *vp = NULL;
1285 char *data = NULL;
1286 u_offset_t off;
1287 int len;
1288 int cnt;
1289 int total_count = 0;
1290 char *alloc;
1291 uri_rd_t *rdp;
1292 int max;
1293 int perror;
1294 int error = 0;
1295 boolean_t first = B_TRUE;
1296
1297 nl7c_uri_sendfilev++;
1298
1299 if (uri == NULL) {
1300 /* Socket & NL7C out of sync, disable NL7C */
1301 sti->sti_nl7c_flags = 0;
1302 nl7c_uri_NULL2++;
1303 return (0);
1304 }
1305
1306 if (sti->sti_nl7c_flags & NL7C_WAITWRITE)
1307 sti->sti_nl7c_flags &= ~NL7C_WAITWRITE;
1308
1309 while (sfvc-- > 0) {
1310 /*
1311 * off - the current sfv read file offset or user address.
1312 *
1313 * len - the current sfv length in bytes.
1314 *
1315 * cnt - number of bytes kmem_alloc()ed.
1316 *
1317 * alloc - the kmem_alloc()ed buffer of size "cnt".
1318 *
1319 * data - copy of "alloc" used for post alloc references.
1320 *
1321 * fp - the current sfv file_t pointer.
1322 *
1323 * vp - the current "*vp" vnode_t pointer.
1324 *
1325 * Note, for "data" and "fp" and "vp" a NULL value is used
1326 * when not allocated such that the common failure path "fail"
1327 * is used.
1328 */
1329 off = sfvp->sfv_off;
1330 len = sfvp->sfv_len;
1331 cnt = len;
1332
1333 if (len == 0) {
1334 sfvp++;
1335 continue;
1336 }
1337
1338 if (sfvp->sfv_fd == SFV_FD_SELF) {
1339 /*
1340 * User memory, copyin() all the bytes.
1341 */
1342 alloc = kmem_alloc(cnt, KM_SLEEP);
1343 error = xcopyin((caddr_t)(uintptr_t)off, alloc, cnt);
1344 if (error)
1345 goto fail;
1346 } else {
1347 /*
1348 * File descriptor, prefetch some bytes.
1349 */
1350 if ((fp = getf(sfvp->sfv_fd)) == NULL) {
1351 error = EBADF;
1352 goto fail;
1353 }
1354 if ((fp->f_flag & FREAD) == 0) {
1355 error = EACCES;
1356 goto fail;
1357 }
1358 vp = fp->f_vnode;
1359 if (vp->v_type != VREG) {
1360 error = EINVAL;
1361 goto fail;
1362 }
1363 VN_HOLD(vp);
1364
1365 /* Read max_rem bytes from file for prefetch */
1366 if (nl7c_use_kmem) {
1367 max = cnt;
1368 } else {
1369 max = MAXBSIZE * nl7c_file_prefetch;
1370 }
1371 alloc = nl7c_readfile(fp, &off, &cnt, max, &error);
1372 if (alloc == NULL)
1373 goto fail;
1374
1375 releasef(sfvp->sfv_fd);
1376 fp = NULL;
1377 }
1378 URI_RD_ADD(uri, rdp, cnt, -1);
1379 if (rdp == NULL) {
1380 error = ENOMEM;
1381 goto fail;
1382 }
1383 data = alloc;
1384 alloc = NULL;
1385 rdp->data.kmem = data;
1386 total_count += cnt;
1387 if (uri->hash != URI_TEMP && total_count > nca_max_cache_size) {
1388 uri_delete(uri);
1389 uri->hash = URI_TEMP;
1390 }
1391
1392 /* Response parse */
1393 perror = nl7c_resp_parse(so, uri, data, len);
1394
1395 /* Send kmem data out the connection */
1396 error = uri_rd_response(so, uri, rdp, first);
1397
1398 if (error)
1399 goto fail;
1400
1401 if (sfvp->sfv_fd != SFV_FD_SELF) {
1402 /*
1403 * File descriptor, if any bytes left save vnode_t.
1404 */
1405 if (len > cnt) {
1406 /* More file data so add it */
1407 URI_RD_ADD(uri, rdp, len - cnt, off);
1408 if (rdp == NULL) {
1409 error = ENOMEM;
1410 goto fail;
1411 }
1412 rdp->data.vnode = vp;
1413
1414 /* Send vnode data out the connection */
1415 error = uri_rd_response(so, uri, rdp, first);
1416 } else {
1417 /* All file data fit in the prefetch */
1418 VN_RELE(vp);
1419 }
1420 *fileoff += len;
1421 vp = NULL;
1422 }
1423 *xfer += len;
1424 sfvp++;
1425
1426 if (first)
1427 first = B_FALSE;
1428 }
1429 if (total_count > 0) {
1430 atomic_add_64(&nl7c_uri_bytes, total_count);
1431 }
1432 if (perror == 0 &&
1433 ((uri->respclen == URI_LEN_NOVALUE &&
1434 uri->resplen == URI_LEN_NOVALUE) ||
1435 uri->count >= uri->resplen)) {
1436 /*
1437 * No more data needed and no pending response
1438 * data or current data count >= response length
1439 * so close the URI processing for this so.
1440 */
1441 nl7c_close(so);
1442 if (! (sti->sti_nl7c_flags & NL7C_SOPERSIST)) {
1443 /* Not a persistent connection */
1444 sti->sti_nl7c_flags = 0;
1445 }
1446 }
1447
1448 return (0);
1449
1450 fail:
1451 if (error == EPIPE)
1452 tsignal(curthread, SIGPIPE);
1453
1454 if (alloc != NULL)
1455 kmem_free(data, len);
1456
1457 if (vp != NULL)
1458 VN_RELE(vp);
1459
1460 if (fp != NULL)
1461 releasef(sfvp->sfv_fd);
1462
1463 if (total_count > 0) {
1464 atomic_add_64(&nl7c_uri_bytes, total_count);
1465 }
1466
1467 sti->sti_nl7c_flags = 0;
1468 nl7c_urifree(so);
1469
1470 return (error);
1471 }
1472
1473 /*
1474 * Called for a socket which is closing or when an application has
1475 * completed sending all the response data (i.e. for a persistent
1476 * connection called once for each completed application response).
1477 */
1478
1479 void
1480 nl7c_close(struct sonode *so)
1481 {
1482 sotpi_info_t *sti = SOTOTPI(so);
1483 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri;
1484
1485 if (uri == NULL) {
1486 /*
1487 * No URI being processed so might be a listen()er
1488 * if so do any cleanup, else nothing more to do.
1489 */
1490 if (so->so_state & SS_ACCEPTCONN) {
1491 (void) nl7c_close_addr(so);
1492 }
1493 return;
1494 }
1495 sti->sti_nl7c_uri = NULL;
1496 if (uri->hash != URI_TEMP) {
1497 mutex_enter(&uri->proclock);
1498 uri->proc = NULL;
1499 if (CV_HAS_WAITERS(&uri->waiting)) {
1500 cv_broadcast(&uri->waiting);
1501 }
1502 mutex_exit(&uri->proclock);
1503 nl7c_uri_close++;
1504 } else {
1505 /* No proclock as uri exclusively owned by so */
1506 uri->proc = NULL;
1507 nl7c_uri_temp_close++;
1508 }
1509 REF_RELE(uri);
1510 if (nl7c_uri_max > 0 && nl7c_uri_bytes > nl7c_uri_max) {
1511 nl7c_uri_reclaim();
1512 }
1513 }
1514
1515 /*
1516 * The uri_segmap_t ref_t inactive function called on the last REF_RELE(),
1517 * release the segmap mapping. Note, the uri_segmap_t will be freed by
1518 * REF_RELE() on return.
1519 */
1520
1521 void
1522 uri_segmap_inactive(uri_segmap_t *smp)
1523 {
1524 if (!segmap_kpm) {
1525 (void) segmap_fault(kas.a_hat, segkmap, smp->base,
1526 smp->len, F_SOFTUNLOCK, S_OTHER);
1527 }
1528 (void) segmap_release(segkmap, smp->base, SM_DONTNEED);
1529 VN_RELE(smp->vp);
1530 }
1531
1532 /*
1533 * The call-back for desballoc()ed mblk_t's, if a segmap mapped mblk_t
1534 * release the reference, one per desballoc() of a segmap page, if a rd_t
1535 * mapped mblk_t release the reference, one per desballoc() of a uri_desc_t,
1536 * last kmem free the uri_desb_t.
1537 */
1538
1539 static void
1540 uri_desb_free(uri_desb_t *desb)
1541 {
1542 if (desb->segmap != NULL) {
1543 REF_RELE(desb->segmap);
1544 }
1545 REF_RELE(desb->uri);
1546 kmem_cache_free(uri_desb_kmc, desb);
1547 }
1548
1549 /*
1550 * Segmap map up to a page of a uri_rd_t file descriptor.
1551 */
1552
1553 uri_segmap_t *
1554 uri_segmap_map(uri_rd_t *rdp, int bytes)
1555 {
1556 uri_segmap_t *segmap = kmem_cache_alloc(uri_segmap_kmc, KM_SLEEP);
1557 int len = MIN(rdp->sz, MAXBSIZE);
1558
1559 if (len > bytes)
1560 len = bytes;
1561
1562 REF_INIT(segmap, 1, uri_segmap_inactive, uri_segmap_kmc);
1563 segmap->len = len;
1564 VN_HOLD(rdp->data.vnode);
1565 segmap->vp = rdp->data.vnode;
1566
1567 segmap->base = segmap_getmapflt(segkmap, segmap->vp, rdp->off, len,
1568 segmap_kpm ? SM_FAULT : 0, S_READ);
1569
1570 if (segmap_fault(kas.a_hat, segkmap, segmap->base, len,
1571 F_SOFTLOCK, S_READ) != 0) {
1572 REF_RELE(segmap);
1573 return (NULL);
1574 }
1575 return (segmap);
1576 }
1577
1578 /*
1579 * Chop up the kernel virtual memory area *data of size *sz bytes for
1580 * a maximum of *bytes bytes into an besballoc()ed mblk_t chain using
1581 * the given template uri_desb_t *temp of max_mblk bytes per.
1582 *
1583 * The values of *data, *sz, and *bytes are updated on return, the
1584 * mblk_t chain is returned.
1585 */
1586
1587 static mblk_t *
1588 uri_desb_chop(char **data, size_t *sz, int *bytes, uri_desb_t *temp,
1589 int max_mblk, char *eoh, mblk_t *persist)
1590 {
1591 char *ldata = *data;
1592 size_t lsz = *sz;
1593 int lbytes = bytes ? *bytes : lsz;
1594 uri_desb_t *desb;
1595 mblk_t *mp = NULL;
1596 mblk_t *nmp, *pmp = NULL;
1597 int msz;
1598
1599 if (lbytes == 0 && lsz == 0)
1600 return (NULL);
1601
1602 while (lbytes > 0 && lsz > 0) {
1603 msz = MIN(lbytes, max_mblk);
1604 msz = MIN(msz, lsz);
1605 if (persist && eoh >= ldata && eoh < &ldata[msz]) {
1606 msz = (eoh - ldata);
1607 pmp = persist;
1608 persist = NULL;
1609 if (msz == 0) {
1610 nmp = pmp;
1611 pmp = NULL;
1612 goto zero;
1613 }
1614 }
1615 desb = kmem_cache_alloc(uri_desb_kmc, KM_SLEEP);
1616 REF_HOLD(temp->uri);
1617 if (temp->segmap) {
1618 REF_HOLD(temp->segmap);
1619 }
1620 bcopy(temp, desb, sizeof (*desb));
1621 desb->frtn.free_arg = (caddr_t)desb;
1622 nmp = desballoc((uchar_t *)ldata, msz, BPRI_HI, &desb->frtn);
1623 if (nmp == NULL) {
1624 if (temp->segmap) {
1625 REF_RELE(temp->segmap);
1626 }
1627 REF_RELE(temp->uri);
1628 if (mp != NULL) {
1629 mp->b_next = NULL;
1630 freemsg(mp);
1631 }
1632 if (persist != NULL) {
1633 freeb(persist);
1634 }
1635 return (NULL);
1636 }
1637 nmp->b_wptr += msz;
1638 zero:
1639 if (mp != NULL) {
1640 mp->b_next->b_cont = nmp;
1641 } else {
1642 mp = nmp;
1643 }
1644 if (pmp != NULL) {
1645 nmp->b_cont = pmp;
1646 nmp = pmp;
1647 pmp = NULL;
1648 }
1649 mp->b_next = nmp;
1650 ldata += msz;
1651 lsz -= msz;
1652 lbytes -= msz;
1653 }
1654 *data = ldata;
1655 *sz = lsz;
1656 if (bytes)
1657 *bytes = lbytes;
1658 return (mp);
1659 }
1660
1661 /*
1662 * Experimential noqwait (i.e. no canput()/qwait() checks), just send
1663 * the entire mblk_t chain down without flow-control checks.
1664 */
1665
1666 static int
1667 kstrwritempnoqwait(struct vnode *vp, mblk_t *mp)
1668 {
1669 struct stdata *stp;
1670 int error = 0;
1671
1672 ASSERT(vp->v_stream);
1673 stp = vp->v_stream;
1674
1675 /* Fast check of flags before acquiring the lock */
1676 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
1677 mutex_enter(&stp->sd_lock);
1678 error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0);
1679 mutex_exit(&stp->sd_lock);
1680 if (error != 0) {
1681 if (!(stp->sd_flag & STPLEX) &&
1682 (stp->sd_wput_opt & SW_SIGPIPE)) {
1683 error = EPIPE;
1684 }
1685 return (error);
1686 }
1687 }
1688 putnext(stp->sd_wrq, mp);
1689 return (0);
1690 }
1691
1692 /*
1693 * Send the URI uri_desc_t *uri response uri_rd_t *rdp out the socket_t *so.
1694 */
1695
1696 static int
1697 uri_rd_response(struct sonode *so,
1698 uri_desc_t *uri,
1699 uri_rd_t *rdp,
1700 boolean_t first)
1701 {
1702 vnode_t *vp = SOTOV(so);
1703 int max_mblk = (int)vp->v_stream->sd_maxblk;
1704 int wsz;
1705 mblk_t *mp, *wmp, *persist;
1706 int write_bytes;
1707 uri_rd_t rd;
1708 uri_desb_t desb;
1709 uri_segmap_t *segmap = NULL;
1710 char *segmap_data;
1711 size_t segmap_sz;
1712 int error;
1713 int fflg = ((so->so_state & SS_NDELAY) ? FNDELAY : 0) |
1714 ((so->so_state & SS_NONBLOCK) ? FNONBLOCK : 0);
1715
1716
1717 /* Initialize template uri_desb_t */
1718 desb.frtn.free_func = uri_desb_free;
1719 desb.frtn.free_arg = NULL;
1720 desb.uri = uri;
1721
1722 /* Get a local copy of the rd_t */
1723 bcopy(rdp, &rd, sizeof (rd));
1724 do {
1725 if (first) {
1726 /*
1727 * For first kstrwrite() enough data to get
1728 * things going, note non blocking version of
1729 * kstrwrite() will be used below.
1730 */
1731 write_bytes = P2ROUNDUP((max_mblk * 4),
1732 MAXBSIZE * nl7c_file_prefetch);
1733 } else {
1734 if ((write_bytes = so->so_sndbuf) == 0)
1735 write_bytes = vp->v_stream->sd_qn_maxpsz;
1736 ASSERT(write_bytes > 0);
1737 write_bytes = P2ROUNDUP(write_bytes, MAXBSIZE);
1738 }
1739 /*
1740 * Chop up to a write_bytes worth of data.
1741 */
1742 wmp = NULL;
1743 wsz = write_bytes;
1744 do {
1745 if (rd.sz == 0)
1746 break;
1747 if (rd.off == -1) {
1748 if (uri->eoh >= rd.data.kmem &&
1749 uri->eoh < &rd.data.kmem[rd.sz]) {
1750 persist = nl7c_http_persist(so);
1751 } else {
1752 persist = NULL;
1753 }
1754 desb.segmap = NULL;
1755 mp = uri_desb_chop(&rd.data.kmem, &rd.sz,
1756 &wsz, &desb, max_mblk, uri->eoh, persist);
1757 if (mp == NULL) {
1758 error = ENOMEM;
1759 goto invalidate;
1760 }
1761 } else {
1762 if (segmap == NULL) {
1763 segmap = uri_segmap_map(&rd,
1764 write_bytes);
1765 if (segmap == NULL) {
1766 error = ENOMEM;
1767 goto invalidate;
1768 }
1769 desb.segmap = segmap;
1770 segmap_data = segmap->base;
1771 segmap_sz = segmap->len;
1772 }
1773 mp = uri_desb_chop(&segmap_data, &segmap_sz,
1774 &wsz, &desb, max_mblk, NULL, NULL);
1775 if (mp == NULL) {
1776 error = ENOMEM;
1777 goto invalidate;
1778 }
1779 if (segmap_sz == 0) {
1780 rd.sz -= segmap->len;
1781 rd.off += segmap->len;
1782 REF_RELE(segmap);
1783 segmap = NULL;
1784 }
1785 }
1786 if (wmp == NULL) {
1787 wmp = mp;
1788 } else {
1789 wmp->b_next->b_cont = mp;
1790 wmp->b_next = mp->b_next;
1791 mp->b_next = NULL;
1792 }
1793 } while (wsz > 0 && rd.sz > 0);
1794
1795 wmp->b_next = NULL;
1796 if (first) {
1797 /* First kstrwrite(), use noqwait */
1798 if ((error = kstrwritempnoqwait(vp, wmp)) != 0)
1799 goto invalidate;
1800 /*
1801 * For the rest of the kstrwrite()s use SO_SNDBUF
1802 * worth of data at a time, note these kstrwrite()s
1803 * may (will) block one or more times.
1804 */
1805 first = B_FALSE;
1806 } else {
1807 if ((error = kstrwritemp(vp, wmp, fflg)) != 0) {
1808 if (error == EAGAIN) {
1809 nl7c_uri_rd_EAGAIN++;
1810 if ((error =
1811 kstrwritempnoqwait(vp, wmp)) != 0)
1812 goto invalidate;
1813 } else
1814 goto invalidate;
1815 }
1816 }
1817 } while (rd.sz > 0);
1818
1819 return (0);
1820
1821 invalidate:
1822 if (segmap) {
1823 REF_RELE(segmap);
1824 }
1825 if (wmp)
1826 freemsg(wmp);
1827
1828 return (error);
1829 }
1830
1831 /*
1832 * Send the URI uri_desc_t *uri response out the socket_t *so.
1833 */
1834
1835 static int
1836 uri_response(struct sonode *so, uri_desc_t *uri)
1837 {
1838 uri_rd_t *rdp = &uri->response;
1839 boolean_t first = B_TRUE;
1840 int error;
1841
1842 while (rdp != NULL) {
1843 error = uri_rd_response(so, uri, rdp, first);
1844 if (error != 0) {
1845 goto invalidate;
1846 }
1847 first = B_FALSE;
1848 rdp = rdp->next;
1849 }
1850 return (0);
1851
1852 invalidate:
1853 if (uri->hash != URI_TEMP)
1854 uri_delete(uri);
1855 return (error);
1856 }
1857
1858 /*
1859 * The pchars[] array is indexed by a char to determine if it's a
1860 * valid URI path component chararcter where:
1861 *
1862 * pchar = unreserved | escaped |
1863 * ":" | "@" | "&" | "=" | "+" | "$" | ","
1864 *
1865 * unreserved = alphanum | mark
1866 *
1867 * alphanum = alpha | digit
1868 *
1869 * alpha = lowalpha | upalpha
1870 *
1871 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |
1872 * "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |
1873 * "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |
1874 * "y" | "z"
1875 *
1876 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |
1877 * "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |
1878 * "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |
1879 * "Y" | "Z"
1880 *
1881 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
1882 * "8" | "9"
1883 *
1884 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
1885 *
1886 * escaped = "%" hex hex
1887 * hex = digit | "A" | "B" | "C" | "D" | "E" | "F" |
1888 * "a" | "b" | "c" | "d" | "e" | "f"
1889 */
1890
1891 static char pchars[] = {
1892 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x07 */
1893 0, 0, 0, 0, 0, 0, 0, 0, /* 0x08 - 0x0F */
1894 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x17 */
1895 0, 0, 0, 0, 0, 0, 0, 0, /* 0x18 - 0x1F */
1896 0, 1, 0, 0, 1, 1, 1, 1, /* 0x20 - 0x27 */
1897 0, 0, 1, 1, 1, 1, 1, 1, /* 0x28 - 0x2F */
1898 1, 1, 1, 1, 1, 1, 1, 1, /* 0x30 - 0x37 */
1899 1, 1, 1, 0, 0, 1, 0, 0, /* 0x38 - 0x3F */
1900 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x47 */
1901 1, 1, 1, 1, 1, 1, 1, 1, /* 0x48 - 0x4F */
1902 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x57 */
1903 1, 1, 1, 0, 0, 0, 0, 1, /* 0x58 - 0x5F */
1904 0, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x67 */
1905 1, 1, 1, 1, 1, 1, 1, 1, /* 0x68 - 0x6F */
1906 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x77 */
1907 1, 1, 1, 0, 0, 0, 1, 0 /* 0x78 - 0x7F */
1908 };
1909
1910 #define PCHARS_MASK 0x7F
1911
1912 /*
1913 * This is the main L7 request message parse, we are called each time
1914 * new data is availble for a socket, each time a single buffer of the
1915 * entire message to date is given.
1916 *
1917 * Here we parse the request looking for the URI, parse it, and if a
1918 * supported scheme call the scheme parser to commplete the parse of any
1919 * headers which may further qualify the identity of the requested object
1920 * then lookup it up in the URI hash.
1921 *
1922 * Return B_TRUE for more processing.
1923 *
1924 * Note, at this time the parser supports the generic message format as
1925 * specified in RFC 822 with potentional limitations as specified in RFC
1926 * 2616 for HTTP messages.
1927 *
1928 * Note, the caller supports an mblk_t chain, for now the parser(s)
1929 * require the complete header in a single mblk_t. This is the common
1930 * case and certainly for high performance environments, if at a future
1931 * date mblk_t chains are important the parse can be reved to process
1932 * mblk_t chains.
1933 */
1934
1935 boolean_t
1936 nl7c_parse(struct sonode *so, boolean_t nonblocking, boolean_t *ret)
1937 {
1938 sotpi_info_t *sti = SOTOTPI(so);
1939 char *cp = (char *)sti->sti_nl7c_rcv_mp->b_rptr;
1940 char *ep = (char *)sti->sti_nl7c_rcv_mp->b_wptr;
1941 char *get = "GET ";
1942 char *post = "POST ";
1943 char c;
1944 char *uris;
1945 uri_desc_t *uri = NULL;
1946 uri_desc_t *ruri = NULL;
1947 mblk_t *reqmp;
1948 uint32_t hv = 0;
1949
1950 if ((reqmp = dupb(sti->sti_nl7c_rcv_mp)) == NULL) {
1951 nl7c_uri_pass_dupbfail++;
1952 goto pass;
1953 }
1954 /*
1955 * Allocate and initialize minimumal state for the request
1956 * uri_desc_t, in the cache hit case this uri_desc_t will
1957 * be freed.
1958 */
1959 uri = kmem_cache_alloc(nl7c_uri_kmc, KM_SLEEP);
1960 REF_INIT(uri, 1, nl7c_uri_inactive, nl7c_uri_kmc);
1961 uri->hash = NULL;
1962 uri->tail = NULL;
1963 uri->scheme = NULL;
1964 uri->count = 0;
1965 uri->reqmp = reqmp;
1966
1967 /*
1968 * Set request time to current time.
1969 */
1970 sti->sti_nl7c_rtime = gethrestime_sec();
1971
1972 /*
1973 * Parse the Request-Line for the URI.
1974 *
1975 * For backwards HTTP version compatable reasons skip any leading
1976 * CRLF (or CR or LF) line terminator(s) preceding Request-Line.
1977 */
1978 while (cp < ep && (*cp == '\r' || *cp == '\n')) {
1979 cp++;
1980 }
1981 while (cp < ep && *get == *cp) {
1982 get++;
1983 cp++;
1984 }
1985 if (*get != 0) {
1986 /* Note a "GET", check for "POST" */
1987 while (cp < ep && *post == *cp) {
1988 post++;
1989 cp++;
1990 }
1991 if (*post != 0) {
1992 if (cp == ep) {
1993 nl7c_uri_more_get++;
1994 goto more;
1995 }
1996 /* Not a "GET" or a "POST", just pass */
1997 nl7c_uri_pass_method++;
1998 goto pass;
1999 }
2000 /* "POST", don't cache but still may want to parse */
2001 uri->hash = URI_TEMP;
2002 }
2003 /*
2004 * Skip over URI path char(s) and save start and past end pointers.
2005 */
2006 uris = cp;
2007 while (cp < ep && (c = *cp) != ' ' && c != '\r') {
2008 if (c == '?') {
2009 /* Don't cache but still may want to parse */
2010 uri->hash = URI_TEMP;
2011 }
2012 CHASH(hv, c);
2013 cp++;
2014 }
2015 if (c != '\r' && cp == ep) {
2016 nl7c_uri_more_eol++;
2017 goto more;
2018 }
2019 /*
2020 * Request-Line URI parsed, pass the rest of the request on
2021 * to the the http scheme parse.
2022 */
2023 uri->path.cp = uris;
2024 uri->path.ep = cp;
2025 uri->hvalue = hv;
2026 if (! nl7c_http_request(&cp, ep, uri, so) || cp == NULL) {
2027 /*
2028 * Parse not successful or pass on request, the pointer
2029 * to the parse pointer "cp" is overloaded such that ! NULL
2030 * for more data and NULL for bad parse of request or pass.
2031 */
2032 if (cp != NULL) {
2033 nl7c_uri_more_http++;
2034 goto more;
2035 }
2036 nl7c_uri_pass_http++;
2037 goto pass;
2038 }
2039 if (uri->nocache) {
2040 uri->hash = URI_TEMP;
2041 (void) uri_lookup(uri, B_FALSE, nonblocking);
2042 } else if (uri->hash == URI_TEMP) {
2043 uri->nocache = B_TRUE;
2044 (void) uri_lookup(uri, B_FALSE, nonblocking);
2045 }
2046
2047 if (uri->hash == URI_TEMP) {
2048 if (sti->sti_nl7c_flags & NL7C_SOPERSIST) {
2049 /* Temporary URI so skip hash processing */
2050 nl7c_uri_request++;
2051 nl7c_uri_temp++;
2052 goto temp;
2053 }
2054 /* Not persistent so not interested in the response */
2055 nl7c_uri_pass_temp++;
2056 goto pass;
2057 }
2058 /*
2059 * Check the URI hash for a cached response, save the request
2060 * uri in case we need it below.
2061 */
2062 ruri = uri;
2063 if ((uri = uri_lookup(uri, B_TRUE, nonblocking)) == NULL) {
2064 /*
2065 * Failed to lookup due to nonblocking wait required,
2066 * interrupted cv_wait_sig(), KM_NOSLEEP memory alloc
2067 * failure, ... Just pass on this request.
2068 */
2069 nl7c_uri_pass_addfail++;
2070 goto pass;
2071 }
2072 nl7c_uri_request++;
2073 if (uri->response.sz > 0) {
2074 /*
2075 * We have the response cached, update recv mblk rptr
2076 * to reflect the data consumed in parse.
2077 */
2078 mblk_t *mp = sti->sti_nl7c_rcv_mp;
2079
2080 if (cp == (char *)mp->b_wptr) {
2081 sti->sti_nl7c_rcv_mp = mp->b_cont;
2082 mp->b_cont = NULL;
2083 freeb(mp);
2084 } else {
2085 mp->b_rptr = (unsigned char *)cp;
2086 }
2087 nl7c_uri_hit++;
2088 /* If logging enabled log request */
2089 if (nl7c_logd_enabled) {
2090 ipaddr_t faddr;
2091
2092 if (so->so_family == AF_INET) {
2093 /* Only support IPv4 addrs */
2094 faddr = ((struct sockaddr_in *)
2095 sti->sti_faddr_sa) ->sin_addr.s_addr;
2096 } else {
2097 faddr = 0;
2098 }
2099 /* XXX need to pass response type, e.g. 200, 304 */
2100 nl7c_logd_log(ruri, uri, sti->sti_nl7c_rtime, faddr);
2101 }
2102
2103 /* If conditional request check for substitute response */
2104 if (ruri->conditional) {
2105 uri = nl7c_http_cond(ruri, uri);
2106 }
2107
2108 /*
2109 * Release reference on request URI, send the response out
2110 * the socket, release reference on response uri, set the
2111 * *ret value to B_TRUE to indicate request was consumed
2112 * then return B_FALSE to indcate no more data needed.
2113 */
2114 REF_RELE(ruri);
2115 (void) uri_response(so, uri);
2116 REF_RELE(uri);
2117 *ret = B_TRUE;
2118 return (B_FALSE);
2119 }
2120 /*
2121 * Miss the cache, the request URI is in the cache waiting for
2122 * application write-side data to fill it.
2123 */
2124 nl7c_uri_miss++;
2125 temp:
2126 /*
2127 * A miss or temp URI for which response data is needed, link
2128 * uri to so and so to uri, set WAITWRITE in the so such that
2129 * read-side processing is suspended (so the next read() gets
2130 * the request data) until a write() is processed by NL7C.
2131 *
2132 * Note, sti->sti_nl7c_uri now owns the REF_INIT() ref.
2133 */
2134 uri->proc = so;
2135 sti->sti_nl7c_uri = uri;
2136 sti->sti_nl7c_flags |= NL7C_WAITWRITE;
2137 *ret = B_FALSE;
2138 return (B_FALSE);
2139
2140 more:
2141 /* More data is needed, note fragmented recv not supported */
2142 nl7c_uri_more++;
2143
2144 pass:
2145 /* Pass on this request */
2146 nl7c_uri_pass++;
2147 nl7c_uri_request++;
2148 if (ruri != NULL) {
2149 REF_RELE(ruri);
2150 }
2151 if (uri) {
2152 REF_RELE(uri);
2153 }
2154 sti->sti_nl7c_flags = 0;
2155 *ret = B_FALSE;
2156 return (B_FALSE);
2157 }