Print this page
    
11927 Log, or optionally panic, on zero-length kmem allocations
Reviewed by: Dan McDonald <danmcd@joyent.com>
Reviewed by: Jason King <jason.brian.king@gmail.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/os/kmem.c
          +++ new/usr/src/uts/common/os/kmem.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23   23   * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24   24   * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  25   25   * Copyright 2018, Joyent, Inc.
  26   26   */
  27   27  
  28   28  /*
  29   29   * Kernel memory allocator, as described in the following two papers and a
  30   30   * statement about the consolidator:
  31   31   *
  32   32   * Jeff Bonwick,
  33   33   * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  34   34   * Proceedings of the Summer 1994 Usenix Conference.
  35   35   * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  36   36   *
  37   37   * Jeff Bonwick and Jonathan Adams,
  38   38   * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  39   39   * Arbitrary Resources.
  40   40   * Proceedings of the 2001 Usenix Conference.
  41   41   * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  42   42   *
  43   43   * kmem Slab Consolidator Big Theory Statement:
  44   44   *
  45   45   * 1. Motivation
  46   46   *
  47   47   * As stated in Bonwick94, slabs provide the following advantages over other
  48   48   * allocation structures in terms of memory fragmentation:
  49   49   *
  50   50   *  - Internal fragmentation (per-buffer wasted space) is minimal.
  51   51   *  - Severe external fragmentation (unused buffers on the free list) is
  52   52   *    unlikely.
  53   53   *
  54   54   * Segregating objects by size eliminates one source of external fragmentation,
  55   55   * and according to Bonwick:
  56   56   *
  57   57   *   The other reason that slabs reduce external fragmentation is that all
  58   58   *   objects in a slab are of the same type, so they have the same lifetime
  59   59   *   distribution. The resulting segregation of short-lived and long-lived
  60   60   *   objects at slab granularity reduces the likelihood of an entire page being
  61   61   *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  62   62   *
  63   63   * While unlikely, severe external fragmentation remains possible. Clients that
  64   64   * allocate both short- and long-lived objects from the same cache cannot
  65   65   * anticipate the distribution of long-lived objects within the allocator's slab
  66   66   * implementation. Even a small percentage of long-lived objects distributed
  67   67   * randomly across many slabs can lead to a worst case scenario where the client
  68   68   * frees the majority of its objects and the system gets back almost none of the
  69   69   * slabs. Despite the client doing what it reasonably can to help the system
  70   70   * reclaim memory, the allocator cannot shake free enough slabs because of
  71   71   * lonely allocations stubbornly hanging on. Although the allocator is in a
  72   72   * position to diagnose the fragmentation, there is nothing that the allocator
  73   73   * by itself can do about it. It only takes a single allocated object to prevent
  74   74   * an entire slab from being reclaimed, and any object handed out by
  75   75   * kmem_cache_alloc() is by definition in the client's control. Conversely,
  76   76   * although the client is in a position to move a long-lived object, it has no
  77   77   * way of knowing if the object is causing fragmentation, and if so, where to
  78   78   * move it. A solution necessarily requires further cooperation between the
  79   79   * allocator and the client.
  80   80   *
  81   81   * 2. Move Callback
  82   82   *
  83   83   * The kmem slab consolidator therefore adds a move callback to the
  84   84   * allocator/client interface, improving worst-case external fragmentation in
  85   85   * kmem caches that supply a function to move objects from one memory location
  86   86   * to another. In a situation of low memory kmem attempts to consolidate all of
  87   87   * a cache's slabs at once; otherwise it works slowly to bring external
  88   88   * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  89   89   * thereby helping to avoid a low memory situation in the future.
  90   90   *
  91   91   * The callback has the following signature:
  92   92   *
  93   93   *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  94   94   *
  95   95   * It supplies the kmem client with two addresses: the allocated object that
  96   96   * kmem wants to move and a buffer selected by kmem for the client to use as the
  97   97   * copy destination. The callback is kmem's way of saying "Please get off of
  98   98   * this buffer and use this one instead." kmem knows where it wants to move the
  99   99   * object in order to best reduce fragmentation. All the client needs to know
 100  100   * about the second argument (void *new) is that it is an allocated, constructed
 101  101   * object ready to take the contents of the old object. When the move function
 102  102   * is called, the system is likely to be low on memory, and the new object
 103  103   * spares the client from having to worry about allocating memory for the
 104  104   * requested move. The third argument supplies the size of the object, in case a
 105  105   * single move function handles multiple caches whose objects differ only in
 106  106   * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 107  107   * user argument passed to the constructor, destructor, and reclaim functions is
 108  108   * also passed to the move callback.
 109  109   *
 110  110   * 2.1 Setting the Move Callback
 111  111   *
 112  112   * The client sets the move callback after creating the cache and before
 113  113   * allocating from it:
 114  114   *
 115  115   *      object_cache = kmem_cache_create(...);
 116  116   *      kmem_cache_set_move(object_cache, object_move);
 117  117   *
 118  118   * 2.2 Move Callback Return Values
 119  119   *
 120  120   * Only the client knows about its own data and when is a good time to move it.
 121  121   * The client is cooperating with kmem to return unused memory to the system,
 122  122   * and kmem respectfully accepts this help at the client's convenience. When
 123  123   * asked to move an object, the client can respond with any of the following:
 124  124   *
 125  125   *   typedef enum kmem_cbrc {
 126  126   *           KMEM_CBRC_YES,
 127  127   *           KMEM_CBRC_NO,
 128  128   *           KMEM_CBRC_LATER,
 129  129   *           KMEM_CBRC_DONT_NEED,
 130  130   *           KMEM_CBRC_DONT_KNOW
 131  131   *   } kmem_cbrc_t;
 132  132   *
 133  133   * The client must not explicitly kmem_cache_free() either of the objects passed
 134  134   * to the callback, since kmem wants to free them directly to the slab layer
 135  135   * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 136  136   * objects to free:
 137  137   *
 138  138   *       YES: (Did it) The client moved the object, so kmem frees the old one.
 139  139   *        NO: (Never) The client refused, so kmem frees the new object (the
 140  140   *            unused copy destination). kmem also marks the slab of the old
 141  141   *            object so as not to bother the client with further callbacks for
 142  142   *            that object as long as the slab remains on the partial slab list.
 143  143   *            (The system won't be getting the slab back as long as the
 144  144   *            immovable object holds it hostage, so there's no point in moving
 145  145   *            any of its objects.)
 146  146   *     LATER: The client is using the object and cannot move it now, so kmem
 147  147   *            frees the new object (the unused copy destination). kmem still
 148  148   *            attempts to move other objects off the slab, since it expects to
 149  149   *            succeed in clearing the slab in a later callback. The client
 150  150   *            should use LATER instead of NO if the object is likely to become
 151  151   *            movable very soon.
 152  152   * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 153  153   *            with the new object (the unused copy destination). This response
 154  154   *            is the client's opportunity to be a model citizen and give back as
 155  155   *            much as it can.
 156  156   * DONT_KNOW: The client does not know about the object because
 157  157   *            a) the client has just allocated the object and not yet put it
 158  158   *               wherever it expects to find known objects
 159  159   *            b) the client has removed the object from wherever it expects to
 160  160   *               find known objects and is about to free it, or
 161  161   *            c) the client has freed the object.
 162  162   *            In all these cases (a, b, and c) kmem frees the new object (the
 163  163   *            unused copy destination).  In the first case, the object is in
 164  164   *            use and the correct action is that for LATER; in the latter two
 165  165   *            cases, we know that the object is either freed or about to be
 166  166   *            freed, in which case it is either already in a magazine or about
 167  167   *            to be in one.  In these cases, we know that the object will either
 168  168   *            be reallocated and reused, or it will end up in a full magazine
 169  169   *            that will be reaped (thereby liberating the slab).  Because it
 170  170   *            is prohibitively expensive to differentiate these cases, and
 171  171   *            because the defrag code is executed when we're low on memory
 172  172   *            (thereby biasing the system to reclaim full magazines) we treat
 173  173   *            all DONT_KNOW cases as LATER and rely on cache reaping to
 174  174   *            generally clean up full magazines.  While we take the same action
 175  175   *            for these cases, we maintain their semantic distinction:  if
 176  176   *            defragmentation is not occurring, it is useful to know if this
 177  177   *            is due to objects in use (LATER) or objects in an unknown state
 178  178   *            of transition (DONT_KNOW).
 179  179   *
 180  180   * 2.3 Object States
 181  181   *
 182  182   * Neither kmem nor the client can be assumed to know the object's whereabouts
 183  183   * at the time of the callback. An object belonging to a kmem cache may be in
 184  184   * any of the following states:
 185  185   *
 186  186   * 1. Uninitialized on the slab
 187  187   * 2. Allocated from the slab but not constructed (still uninitialized)
 188  188   * 3. Allocated from the slab, constructed, but not yet ready for business
 189  189   *    (not in a valid state for the move callback)
 190  190   * 4. In use (valid and known to the client)
 191  191   * 5. About to be freed (no longer in a valid state for the move callback)
 192  192   * 6. Freed to a magazine (still constructed)
 193  193   * 7. Allocated from a magazine, not yet ready for business (not in a valid
 194  194   *    state for the move callback), and about to return to state #4
 195  195   * 8. Deconstructed on a magazine that is about to be freed
 196  196   * 9. Freed to the slab
 197  197   *
 198  198   * Since the move callback may be called at any time while the object is in any
 199  199   * of the above states (except state #1), the client needs a safe way to
 200  200   * determine whether or not it knows about the object. Specifically, the client
 201  201   * needs to know whether or not the object is in state #4, the only state in
 202  202   * which a move is valid. If the object is in any other state, the client should
 203  203   * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 204  204   * the object's fields.
 205  205   *
 206  206   * Note that although an object may be in state #4 when kmem initiates the move
 207  207   * request, the object may no longer be in that state by the time kmem actually
 208  208   * calls the move function. Not only does the client free objects
 209  209   * asynchronously, kmem itself puts move requests on a queue where thay are
 210  210   * pending until kmem processes them from another context. Also, objects freed
 211  211   * to a magazine appear allocated from the point of view of the slab layer, so
 212  212   * kmem may even initiate requests for objects in a state other than state #4.
 213  213   *
 214  214   * 2.3.1 Magazine Layer
 215  215   *
 216  216   * An important insight revealed by the states listed above is that the magazine
 217  217   * layer is populated only by kmem_cache_free(). Magazines of constructed
 218  218   * objects are never populated directly from the slab layer (which contains raw,
 219  219   * unconstructed objects). Whenever an allocation request cannot be satisfied
 220  220   * from the magazine layer, the magazines are bypassed and the request is
 221  221   * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 222  222   * the object constructor only when allocating from the slab layer, and only in
 223  223   * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 224  224   * the move callback. kmem does not preconstruct objects in anticipation of
 225  225   * kmem_cache_alloc().
 226  226   *
 227  227   * 2.3.2 Object Constructor and Destructor
 228  228   *
 229  229   * If the client supplies a destructor, it must be valid to call the destructor
 230  230   * on a newly created object (immediately after the constructor).
 231  231   *
 232  232   * 2.4 Recognizing Known Objects
 233  233   *
 234  234   * There is a simple test to determine safely whether or not the client knows
 235  235   * about a given object in the move callback. It relies on the fact that kmem
 236  236   * guarantees that the object of the move callback has only been touched by the
 237  237   * client itself or else by kmem. kmem does this by ensuring that none of the
 238  238   * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 239  239   * callback is pending. When the last object on a slab is freed, if there is a
 240  240   * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 241  241   * slabs on that list until all pending callbacks are completed. That way,
 242  242   * clients can be certain that the object of a move callback is in one of the
 243  243   * states listed above, making it possible to distinguish known objects (in
 244  244   * state #4) using the two low order bits of any pointer member (with the
 245  245   * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 246  246   * platforms).
 247  247   *
 248  248   * The test works as long as the client always transitions objects from state #4
 249  249   * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 250  250   * order bit of the client-designated pointer member. Since kmem only writes
 251  251   * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 252  252   * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 253  253   * guaranteed to set at least one of the two low order bits. Therefore, given an
 254  254   * object with a back pointer to a 'container_t *o_container', the client can
 255  255   * test
 256  256   *
 257  257   *      container_t *container = object->o_container;
 258  258   *      if ((uintptr_t)container & 0x3) {
 259  259   *              return (KMEM_CBRC_DONT_KNOW);
 260  260   *      }
 261  261   *
 262  262   * Typically, an object will have a pointer to some structure with a list or
 263  263   * hash where objects from the cache are kept while in use. Assuming that the
 264  264   * client has some way of knowing that the container structure is valid and will
 265  265   * not go away during the move, and assuming that the structure includes a lock
 266  266   * to protect whatever collection is used, then the client would continue as
 267  267   * follows:
 268  268   *
 269  269   *      // Ensure that the container structure does not go away.
 270  270   *      if (container_hold(container) == 0) {
 271  271   *              return (KMEM_CBRC_DONT_KNOW);
 272  272   *      }
 273  273   *      mutex_enter(&container->c_objects_lock);
 274  274   *      if (container != object->o_container) {
 275  275   *              mutex_exit(&container->c_objects_lock);
 276  276   *              container_rele(container);
 277  277   *              return (KMEM_CBRC_DONT_KNOW);
 278  278   *      }
 279  279   *
 280  280   * At this point the client knows that the object cannot be freed as long as
 281  281   * c_objects_lock is held. Note that after acquiring the lock, the client must
 282  282   * recheck the o_container pointer in case the object was removed just before
 283  283   * acquiring the lock.
 284  284   *
 285  285   * When the client is about to free an object, it must first remove that object
 286  286   * from the list, hash, or other structure where it is kept. At that time, to
 287  287   * mark the object so it can be distinguished from the remaining, known objects,
 288  288   * the client sets the designated low order bit:
 289  289   *
 290  290   *      mutex_enter(&container->c_objects_lock);
 291  291   *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 292  292   *      list_remove(&container->c_objects, object);
 293  293   *      mutex_exit(&container->c_objects_lock);
 294  294   *
 295  295   * In the common case, the object is freed to the magazine layer, where it may
 296  296   * be reused on a subsequent allocation without the overhead of calling the
 297  297   * constructor. While in the magazine it appears allocated from the point of
 298  298   * view of the slab layer, making it a candidate for the move callback. Most
 299  299   * objects unrecognized by the client in the move callback fall into this
 300  300   * category and are cheaply distinguished from known objects by the test
 301  301   * described earlier. Because searching magazines is prohibitively expensive
 302  302   * for kmem, clients that do not mark freed objects (and therefore return
 303  303   * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
 304  304   * efficacy reduced.
 305  305   *
 306  306   * Invalidating the designated pointer member before freeing the object marks
 307  307   * the object to be avoided in the callback, and conversely, assigning a valid
 308  308   * value to the designated pointer member after allocating the object makes the
 309  309   * object fair game for the callback:
 310  310   *
 311  311   *      ... allocate object ...
 312  312   *      ... set any initial state not set by the constructor ...
 313  313   *
 314  314   *      mutex_enter(&container->c_objects_lock);
 315  315   *      list_insert_tail(&container->c_objects, object);
 316  316   *      membar_producer();
 317  317   *      object->o_container = container;
 318  318   *      mutex_exit(&container->c_objects_lock);
 319  319   *
 320  320   * Note that everything else must be valid before setting o_container makes the
 321  321   * object fair game for the move callback. The membar_producer() call ensures
 322  322   * that all the object's state is written to memory before setting the pointer
 323  323   * that transitions the object from state #3 or #7 (allocated, constructed, not
 324  324   * yet in use) to state #4 (in use, valid). That's important because the move
 325  325   * function has to check the validity of the pointer before it can safely
 326  326   * acquire the lock protecting the collection where it expects to find known
 327  327   * objects.
 328  328   *
 329  329   * This method of distinguishing known objects observes the usual symmetry:
 330  330   * invalidating the designated pointer is the first thing the client does before
 331  331   * freeing the object, and setting the designated pointer is the last thing the
 332  332   * client does after allocating the object. Of course, the client is not
 333  333   * required to use this method. Fundamentally, how the client recognizes known
 334  334   * objects is completely up to the client, but this method is recommended as an
 335  335   * efficient and safe way to take advantage of the guarantees made by kmem. If
 336  336   * the entire object is arbitrary data without any markable bits from a suitable
 337  337   * pointer member, then the client must find some other method, such as
 338  338   * searching a hash table of known objects.
 339  339   *
 340  340   * 2.5 Preventing Objects From Moving
 341  341   *
 342  342   * Besides a way to distinguish known objects, the other thing that the client
 343  343   * needs is a strategy to ensure that an object will not move while the client
 344  344   * is actively using it. The details of satisfying this requirement tend to be
 345  345   * highly cache-specific. It might seem that the same rules that let a client
 346  346   * remove an object safely should also decide when an object can be moved
 347  347   * safely. However, any object state that makes a removal attempt invalid is
 348  348   * likely to be long-lasting for objects that the client does not expect to
 349  349   * remove. kmem knows nothing about the object state and is equally likely (from
 350  350   * the client's point of view) to request a move for any object in the cache,
 351  351   * whether prepared for removal or not. Even a low percentage of objects stuck
 352  352   * in place by unremovability will defeat the consolidator if the stuck objects
 353  353   * are the same long-lived allocations likely to hold slabs hostage.
 354  354   * Fundamentally, the consolidator is not aimed at common cases. Severe external
 355  355   * fragmentation is a worst case scenario manifested as sparsely allocated
 356  356   * slabs, by definition a low percentage of the cache's objects. When deciding
 357  357   * what makes an object movable, keep in mind the goal of the consolidator: to
 358  358   * bring worst-case external fragmentation within the limits guaranteed for
 359  359   * internal fragmentation. Removability is a poor criterion if it is likely to
 360  360   * exclude more than an insignificant percentage of objects for long periods of
 361  361   * time.
 362  362   *
 363  363   * A tricky general solution exists, and it has the advantage of letting you
 364  364   * move any object at almost any moment, practically eliminating the likelihood
 365  365   * that an object can hold a slab hostage. However, if there is a cache-specific
 366  366   * way to ensure that an object is not actively in use in the vast majority of
 367  367   * cases, a simpler solution that leverages this cache-specific knowledge is
 368  368   * preferred.
 369  369   *
 370  370   * 2.5.1 Cache-Specific Solution
 371  371   *
 372  372   * As an example of a cache-specific solution, the ZFS znode cache takes
 373  373   * advantage of the fact that the vast majority of znodes are only being
 374  374   * referenced from the DNLC. (A typical case might be a few hundred in active
 375  375   * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 376  376   * client has established that it recognizes the znode and can access its fields
 377  377   * safely (using the method described earlier), it then tests whether the znode
 378  378   * is referenced by anything other than the DNLC. If so, it assumes that the
 379  379   * znode may be in active use and is unsafe to move, so it drops its locks and
 380  380   * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 381  381   * else znodes are used, no change is needed to protect against the possibility
 382  382   * of the znode moving. The disadvantage is that it remains possible for an
 383  383   * application to hold a znode slab hostage with an open file descriptor.
 384  384   * However, this case ought to be rare and the consolidator has a way to deal
 385  385   * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 386  386   * object, kmem eventually stops believing it and treats the slab as if the
 387  387   * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 388  388   * then focus on getting it off of the partial slab list by allocating rather
 389  389   * than freeing all of its objects. (Either way of getting a slab off the
 390  390   * free list reduces fragmentation.)
 391  391   *
 392  392   * 2.5.2 General Solution
 393  393   *
 394  394   * The general solution, on the other hand, requires an explicit hold everywhere
 395  395   * the object is used to prevent it from moving. To keep the client locking
 396  396   * strategy as uncomplicated as possible, kmem guarantees the simplifying
 397  397   * assumption that move callbacks are sequential, even across multiple caches.
 398  398   * Internally, a global queue processed by a single thread supports all caches
 399  399   * implementing the callback function. No matter how many caches supply a move
 400  400   * function, the consolidator never moves more than one object at a time, so the
 401  401   * client does not have to worry about tricky lock ordering involving several
 402  402   * related objects from different kmem caches.
 403  403   *
 404  404   * The general solution implements the explicit hold as a read-write lock, which
 405  405   * allows multiple readers to access an object from the cache simultaneously
 406  406   * while a single writer is excluded from moving it. A single rwlock for the
 407  407   * entire cache would lock out all threads from using any of the cache's objects
 408  408   * even though only a single object is being moved, so to reduce contention,
 409  409   * the client can fan out the single rwlock into an array of rwlocks hashed by
 410  410   * the object address, making it probable that moving one object will not
 411  411   * prevent other threads from using a different object. The rwlock cannot be a
 412  412   * member of the object itself, because the possibility of the object moving
 413  413   * makes it unsafe to access any of the object's fields until the lock is
 414  414   * acquired.
 415  415   *
 416  416   * Assuming a small, fixed number of locks, it's possible that multiple objects
 417  417   * will hash to the same lock. A thread that needs to use multiple objects in
 418  418   * the same function may acquire the same lock multiple times. Since rwlocks are
 419  419   * reentrant for readers, and since there is never more than a single writer at
 420  420   * a time (assuming that the client acquires the lock as a writer only when
 421  421   * moving an object inside the callback), there would seem to be no problem.
 422  422   * However, a client locking multiple objects in the same function must handle
 423  423   * one case of potential deadlock: Assume that thread A needs to prevent both
 424  424   * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 425  425   * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 426  426   * same lock, that thread A will acquire the lock for object 1 as a reader
 427  427   * before thread B sets the lock's write-wanted bit, preventing thread A from
 428  428   * reacquiring the lock for object 2 as a reader. Unable to make forward
 429  429   * progress, thread A will never release the lock for object 1, resulting in
 430  430   * deadlock.
 431  431   *
 432  432   * There are two ways of avoiding the deadlock just described. The first is to
 433  433   * use rw_tryenter() rather than rw_enter() in the callback function when
 434  434   * attempting to acquire the lock as a writer. If tryenter discovers that the
 435  435   * same object (or another object hashed to the same lock) is already in use, it
 436  436   * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 437  437   * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 438  438   * since it allows a thread to acquire the lock as a reader in spite of a
 439  439   * waiting writer. This second approach insists on moving the object now, no
 440  440   * matter how many readers the move function must wait for in order to do so,
 441  441   * and could delay the completion of the callback indefinitely (blocking
 442  442   * callbacks to other clients). In practice, a less insistent callback using
 443  443   * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 444  444   * little reason to use anything else.
 445  445   *
 446  446   * Avoiding deadlock is not the only problem that an implementation using an
 447  447   * explicit hold needs to solve. Locking the object in the first place (to
 448  448   * prevent it from moving) remains a problem, since the object could move
 449  449   * between the time you obtain a pointer to the object and the time you acquire
 450  450   * the rwlock hashed to that pointer value. Therefore the client needs to
 451  451   * recheck the value of the pointer after acquiring the lock, drop the lock if
 452  452   * the value has changed, and try again. This requires a level of indirection:
 453  453   * something that points to the object rather than the object itself, that the
 454  454   * client can access safely while attempting to acquire the lock. (The object
 455  455   * itself cannot be referenced safely because it can move at any time.)
 456  456   * The following lock-acquisition function takes whatever is safe to reference
 457  457   * (arg), follows its pointer to the object (using function f), and tries as
 458  458   * often as necessary to acquire the hashed lock and verify that the object
 459  459   * still has not moved:
 460  460   *
 461  461   *      object_t *
 462  462   *      object_hold(object_f f, void *arg)
 463  463   *      {
 464  464   *              object_t *op;
 465  465   *
 466  466   *              op = f(arg);
 467  467   *              if (op == NULL) {
 468  468   *                      return (NULL);
 469  469   *              }
 470  470   *
 471  471   *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 472  472   *              while (op != f(arg)) {
 473  473   *                      rw_exit(OBJECT_RWLOCK(op));
 474  474   *                      op = f(arg);
 475  475   *                      if (op == NULL) {
 476  476   *                              break;
 477  477   *                      }
 478  478   *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 479  479   *              }
 480  480   *
 481  481   *              return (op);
 482  482   *      }
 483  483   *
 484  484   * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 485  485   * lock reacquisition loop, while necessary, almost never executes. The function
 486  486   * pointer f (used to obtain the object pointer from arg) has the following type
 487  487   * definition:
 488  488   *
 489  489   *      typedef object_t *(*object_f)(void *arg);
 490  490   *
 491  491   * An object_f implementation is likely to be as simple as accessing a structure
 492  492   * member:
 493  493   *
 494  494   *      object_t *
 495  495   *      s_object(void *arg)
 496  496   *      {
 497  497   *              something_t *sp = arg;
 498  498   *              return (sp->s_object);
 499  499   *      }
 500  500   *
 501  501   * The flexibility of a function pointer allows the path to the object to be
 502  502   * arbitrarily complex and also supports the notion that depending on where you
 503  503   * are using the object, you may need to get it from someplace different.
 504  504   *
 505  505   * The function that releases the explicit hold is simpler because it does not
 506  506   * have to worry about the object moving:
 507  507   *
 508  508   *      void
 509  509   *      object_rele(object_t *op)
 510  510   *      {
 511  511   *              rw_exit(OBJECT_RWLOCK(op));
 512  512   *      }
 513  513   *
 514  514   * The caller is spared these details so that obtaining and releasing an
 515  515   * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 516  516   * of object_hold() only needs to know that the returned object pointer is valid
 517  517   * if not NULL and that the object will not move until released.
 518  518   *
 519  519   * Although object_hold() prevents an object from moving, it does not prevent it
 520  520   * from being freed. The caller must take measures before calling object_hold()
 521  521   * (afterwards is too late) to ensure that the held object cannot be freed. The
 522  522   * caller must do so without accessing the unsafe object reference, so any lock
 523  523   * or reference count used to ensure the continued existence of the object must
 524  524   * live outside the object itself.
 525  525   *
 526  526   * Obtaining a new object is a special case where an explicit hold is impossible
 527  527   * for the caller. Any function that returns a newly allocated object (either as
 528  528   * a return value, or as an in-out paramter) must return it already held; after
 529  529   * the caller gets it is too late, since the object cannot be safely accessed
 530  530   * without the level of indirection described earlier. The following
 531  531   * object_alloc() example uses the same code shown earlier to transition a new
 532  532   * object into the state of being recognized (by the client) as a known object.
 533  533   * The function must acquire the hold (rw_enter) before that state transition
 534  534   * makes the object movable:
 535  535   *
 536  536   *      static object_t *
 537  537   *      object_alloc(container_t *container)
 538  538   *      {
 539  539   *              object_t *object = kmem_cache_alloc(object_cache, 0);
 540  540   *              ... set any initial state not set by the constructor ...
 541  541   *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 542  542   *              mutex_enter(&container->c_objects_lock);
 543  543   *              list_insert_tail(&container->c_objects, object);
 544  544   *              membar_producer();
 545  545   *              object->o_container = container;
 546  546   *              mutex_exit(&container->c_objects_lock);
 547  547   *              return (object);
 548  548   *      }
 549  549   *
 550  550   * Functions that implicitly acquire an object hold (any function that calls
 551  551   * object_alloc() to supply an object for the caller) need to be carefully noted
 552  552   * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 553  553   * prevent all objects hashed to the affected rwlocks from ever being moved.
 554  554   *
 555  555   * The pointer to a held object can be hashed to the holding rwlock even after
 556  556   * the object has been freed. Although it is possible to release the hold
 557  557   * after freeing the object, you may decide to release the hold implicitly in
 558  558   * whatever function frees the object, so as to release the hold as soon as
 559  559   * possible, and for the sake of symmetry with the function that implicitly
 560  560   * acquires the hold when it allocates the object. Here, object_free() releases
 561  561   * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 562  562   * matching pair with object_hold():
 563  563   *
 564  564   *      void
 565  565   *      object_free(object_t *object)
 566  566   *      {
 567  567   *              container_t *container;
 568  568   *
 569  569   *              ASSERT(object_held(object));
 570  570   *              container = object->o_container;
 571  571   *              mutex_enter(&container->c_objects_lock);
 572  572   *              object->o_container =
 573  573   *                  (void *)((uintptr_t)object->o_container | 0x1);
 574  574   *              list_remove(&container->c_objects, object);
 575  575   *              mutex_exit(&container->c_objects_lock);
 576  576   *              object_rele(object);
 577  577   *              kmem_cache_free(object_cache, object);
 578  578   *      }
 579  579   *
 580  580   * Note that object_free() cannot safely accept an object pointer as an argument
 581  581   * unless the object is already held. Any function that calls object_free()
 582  582   * needs to be carefully noted since it similarly forms a matching pair with
 583  583   * object_hold().
 584  584   *
 585  585   * To complete the picture, the following callback function implements the
 586  586   * general solution by moving objects only if they are currently unheld:
 587  587   *
 588  588   *      static kmem_cbrc_t
 589  589   *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 590  590   *      {
 591  591   *              object_t *op = buf, *np = newbuf;
 592  592   *              container_t *container;
 593  593   *
 594  594   *              container = op->o_container;
 595  595   *              if ((uintptr_t)container & 0x3) {
 596  596   *                      return (KMEM_CBRC_DONT_KNOW);
 597  597   *              }
 598  598   *
 599  599   *              // Ensure that the container structure does not go away.
 600  600   *              if (container_hold(container) == 0) {
 601  601   *                      return (KMEM_CBRC_DONT_KNOW);
 602  602   *              }
 603  603   *
 604  604   *              mutex_enter(&container->c_objects_lock);
 605  605   *              if (container != op->o_container) {
 606  606   *                      mutex_exit(&container->c_objects_lock);
 607  607   *                      container_rele(container);
 608  608   *                      return (KMEM_CBRC_DONT_KNOW);
 609  609   *              }
 610  610   *
 611  611   *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 612  612   *                      mutex_exit(&container->c_objects_lock);
 613  613   *                      container_rele(container);
 614  614   *                      return (KMEM_CBRC_LATER);
 615  615   *              }
 616  616   *
 617  617   *              object_move_impl(op, np); // critical section
 618  618   *              rw_exit(OBJECT_RWLOCK(op));
 619  619   *
 620  620   *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 621  621   *              list_link_replace(&op->o_link_node, &np->o_link_node);
 622  622   *              mutex_exit(&container->c_objects_lock);
 623  623   *              container_rele(container);
 624  624   *              return (KMEM_CBRC_YES);
 625  625   *      }
 626  626   *
 627  627   * Note that object_move() must invalidate the designated o_container pointer of
 628  628   * the old object in the same way that object_free() does, since kmem will free
 629  629   * the object in response to the KMEM_CBRC_YES return value.
 630  630   *
 631  631   * The lock order in object_move() differs from object_alloc(), which locks
 632  632   * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 633  633   * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 634  634   * not a problem. Holding the lock on the object list in the example above
 635  635   * through the entire callback not only prevents the object from going away, it
 636  636   * also allows you to lock the list elsewhere and know that none of its elements
 637  637   * will move during iteration.
 638  638   *
 639  639   * Adding an explicit hold everywhere an object from the cache is used is tricky
 640  640   * and involves much more change to client code than a cache-specific solution
 641  641   * that leverages existing state to decide whether or not an object is
 642  642   * movable. However, this approach has the advantage that no object remains
 643  643   * immovable for any significant length of time, making it extremely unlikely
 644  644   * that long-lived allocations can continue holding slabs hostage; and it works
 645  645   * for any cache.
 646  646   *
 647  647   * 3. Consolidator Implementation
 648  648   *
 649  649   * Once the client supplies a move function that a) recognizes known objects and
 650  650   * b) avoids moving objects that are actively in use, the remaining work is up
 651  651   * to the consolidator to decide which objects to move and when to issue
 652  652   * callbacks.
 653  653   *
 654  654   * The consolidator relies on the fact that a cache's slabs are ordered by
 655  655   * usage. Each slab has a fixed number of objects. Depending on the slab's
 656  656   * "color" (the offset of the first object from the beginning of the slab;
 657  657   * offsets are staggered to mitigate false sharing of cache lines) it is either
 658  658   * the maximum number of objects per slab determined at cache creation time or
 659  659   * else the number closest to the maximum that fits within the space remaining
 660  660   * after the initial offset. A completely allocated slab may contribute some
 661  661   * internal fragmentation (per-slab overhead) but no external fragmentation, so
 662  662   * it is of no interest to the consolidator. At the other extreme, slabs whose
 663  663   * objects have all been freed to the slab are released to the virtual memory
 664  664   * (VM) subsystem (objects freed to magazines are still allocated as far as the
 665  665   * slab is concerned). External fragmentation exists when there are slabs
 666  666   * somewhere between these extremes. A partial slab has at least one but not all
 667  667   * of its objects allocated. The more partial slabs, and the fewer allocated
 668  668   * objects on each of them, the higher the fragmentation. Hence the
 669  669   * consolidator's overall strategy is to reduce the number of partial slabs by
 670  670   * moving allocated objects from the least allocated slabs to the most allocated
 671  671   * slabs.
 672  672   *
 673  673   * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 674  674   * slabs are kept separately in an unordered list. Since the majority of slabs
 675  675   * tend to be completely allocated (a typical unfragmented cache may have
 676  676   * thousands of complete slabs and only a single partial slab), separating
 677  677   * complete slabs improves the efficiency of partial slab ordering, since the
 678  678   * complete slabs do not affect the depth or balance of the AVL tree. This
 679  679   * ordered sequence of partial slabs acts as a "free list" supplying objects for
 680  680   * allocation requests.
 681  681   *
 682  682   * Objects are always allocated from the first partial slab in the free list,
 683  683   * where the allocation is most likely to eliminate a partial slab (by
 684  684   * completely allocating it). Conversely, when a single object from a completely
 685  685   * allocated slab is freed to the slab, that slab is added to the front of the
 686  686   * free list. Since most free list activity involves highly allocated slabs
 687  687   * coming and going at the front of the list, slabs tend naturally toward the
 688  688   * ideal order: highly allocated at the front, sparsely allocated at the back.
 689  689   * Slabs with few allocated objects are likely to become completely free if they
 690  690   * keep a safe distance away from the front of the free list. Slab misorders
 691  691   * interfere with the natural tendency of slabs to become completely free or
 692  692   * completely allocated. For example, a slab with a single allocated object
 693  693   * needs only a single free to escape the cache; its natural desire is
 694  694   * frustrated when it finds itself at the front of the list where a second
 695  695   * allocation happens just before the free could have released it. Another slab
 696  696   * with all but one object allocated might have supplied the buffer instead, so
 697  697   * that both (as opposed to neither) of the slabs would have been taken off the
 698  698   * free list.
 699  699   *
 700  700   * Although slabs tend naturally toward the ideal order, misorders allowed by a
 701  701   * simple list implementation defeat the consolidator's strategy of merging
 702  702   * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 703  703   * needs another way to fix misorders to optimize its callback strategy. One
 704  704   * approach is to periodically scan a limited number of slabs, advancing a
 705  705   * marker to hold the current scan position, and to move extreme misorders to
 706  706   * the front or back of the free list and to the front or back of the current
 707  707   * scan range. By making consecutive scan ranges overlap by one slab, the least
 708  708   * allocated slab in the current range can be carried along from the end of one
 709  709   * scan to the start of the next.
 710  710   *
 711  711   * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 712  712   * task, however. Since most of the cache's activity is in the magazine layer,
 713  713   * and allocations from the slab layer represent only a startup cost, the
 714  714   * overhead of maintaining a balanced tree is not a significant concern compared
 715  715   * to the opportunity of reducing complexity by eliminating the partial slab
 716  716   * scanner just described. The overhead of an AVL tree is minimized by
 717  717   * maintaining only partial slabs in the tree and keeping completely allocated
 718  718   * slabs separately in a list. To avoid increasing the size of the slab
 719  719   * structure the AVL linkage pointers are reused for the slab's list linkage,
 720  720   * since the slab will always be either partial or complete, never stored both
 721  721   * ways at the same time. To further minimize the overhead of the AVL tree the
 722  722   * compare function that orders partial slabs by usage divides the range of
 723  723   * allocated object counts into bins such that counts within the same bin are
 724  724   * considered equal. Binning partial slabs makes it less likely that allocating
 725  725   * or freeing a single object will change the slab's order, requiring a tree
 726  726   * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 727  727   * requiring some rebalancing of the tree). Allocation counts closest to
 728  728   * completely free and completely allocated are left unbinned (finely sorted) to
 729  729   * better support the consolidator's strategy of merging slabs at either
 730  730   * extreme.
 731  731   *
 732  732   * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 733  733   *
 734  734   * The consolidator piggybacks on the kmem maintenance thread and is called on
 735  735   * the same interval as kmem_cache_update(), once per cache every fifteen
 736  736   * seconds. kmem maintains a running count of unallocated objects in the slab
 737  737   * layer (cache_bufslab). The consolidator checks whether that number exceeds
 738  738   * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 739  739   * there is a significant number of slabs in the cache (arbitrarily a minimum
 740  740   * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 741  741   * working set are included in the assessment, and magazines in the depot are
 742  742   * reaped if those objects would lift cache_bufslab above the fragmentation
 743  743   * threshold. Once the consolidator decides that a cache is fragmented, it looks
 744  744   * for a candidate slab to reclaim, starting at the end of the partial slab free
 745  745   * list and scanning backwards. At first the consolidator is choosy: only a slab
 746  746   * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 747  747   * single allocated object, regardless of percentage). If there is difficulty
 748  748   * finding a candidate slab, kmem raises the allocation threshold incrementally,
 749  749   * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 750  750   * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 751  751   * even in the worst case of every slab in the cache being almost 7/8 allocated.
 752  752   * The threshold can also be lowered incrementally when candidate slabs are easy
 753  753   * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 754  754   * is no longer fragmented.
 755  755   *
 756  756   * 3.2 Generating Callbacks
 757  757   *
 758  758   * Once an eligible slab is chosen, a callback is generated for every allocated
 759  759   * object on the slab, in the hope that the client will move everything off the
 760  760   * slab and make it reclaimable. Objects selected as move destinations are
 761  761   * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 762  762   * order (most allocated at the front, least allocated at the back) and a
 763  763   * cooperative client, the consolidator will succeed in removing slabs from both
 764  764   * ends of the free list, completely allocating on the one hand and completely
 765  765   * freeing on the other. Objects selected as move destinations are allocated in
 766  766   * the kmem maintenance thread where move requests are enqueued. A separate
 767  767   * callback thread removes pending callbacks from the queue and calls the
 768  768   * client. The separate thread ensures that client code (the move function) does
 769  769   * not interfere with internal kmem maintenance tasks. A map of pending
 770  770   * callbacks keyed by object address (the object to be moved) is checked to
 771  771   * ensure that duplicate callbacks are not generated for the same object.
 772  772   * Allocating the move destination (the object to move to) prevents subsequent
 773  773   * callbacks from selecting the same destination as an earlier pending callback.
 774  774   *
 775  775   * Move requests can also be generated by kmem_cache_reap() when the system is
 776  776   * desperate for memory and by kmem_cache_move_notify(), called by the client to
 777  777   * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 778  778   * The map of pending callbacks is protected by the same lock that protects the
 779  779   * slab layer.
 780  780   *
 781  781   * When the system is desperate for memory, kmem does not bother to determine
 782  782   * whether or not the cache exceeds the fragmentation threshold, but tries to
 783  783   * consolidate as many slabs as possible. Normally, the consolidator chews
 784  784   * slowly, one sparsely allocated slab at a time during each maintenance
 785  785   * interval that the cache is fragmented. When desperate, the consolidator
 786  786   * starts at the last partial slab and enqueues callbacks for every allocated
 787  787   * object on every partial slab, working backwards until it reaches the first
 788  788   * partial slab. The first partial slab, meanwhile, advances in pace with the
 789  789   * consolidator as allocations to supply move destinations for the enqueued
 790  790   * callbacks use up the highly allocated slabs at the front of the free list.
 791  791   * Ideally, the overgrown free list collapses like an accordion, starting at
 792  792   * both ends and ending at the center with a single partial slab.
 793  793   *
 794  794   * 3.3 Client Responses
 795  795   *
 796  796   * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 797  797   * marks the slab that supplied the stuck object non-reclaimable and moves it to
 798  798   * front of the free list. The slab remains marked as long as it remains on the
 799  799   * free list, and it appears more allocated to the partial slab compare function
 800  800   * than any unmarked slab, no matter how many of its objects are allocated.
 801  801   * Since even one immovable object ties up the entire slab, the goal is to
 802  802   * completely allocate any slab that cannot be completely freed. kmem does not
 803  803   * bother generating callbacks to move objects from a marked slab unless the
 804  804   * system is desperate.
 805  805   *
 806  806   * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 807  807   * slab. If the client responds LATER too many times, kmem disbelieves and
 808  808   * treats the response as a NO. The count is cleared when the slab is taken off
 809  809   * the partial slab list or when the client moves one of the slab's objects.
 810  810   *
 811  811   * 4. Observability
 812  812   *
 813  813   * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 814  814   * the ::kmem_slabs dcmd. For a complete description of the command, enter
 815  815   * '::help kmem_slabs' at the mdb prompt.
 816  816   */
 817  817  
 818  818  #include <sys/kmem_impl.h>
 819  819  #include <sys/vmem_impl.h>
 820  820  #include <sys/param.h>
 821  821  #include <sys/sysmacros.h>
 822  822  #include <sys/vm.h>
 823  823  #include <sys/proc.h>
 824  824  #include <sys/tuneable.h>
 825  825  #include <sys/systm.h>
 826  826  #include <sys/cmn_err.h>
 827  827  #include <sys/debug.h>
 828  828  #include <sys/sdt.h>
 829  829  #include <sys/mutex.h>
 830  830  #include <sys/bitmap.h>
 831  831  #include <sys/atomic.h>
 832  832  #include <sys/kobj.h>
 833  833  #include <sys/disp.h>
 834  834  #include <vm/seg_kmem.h>
 835  835  #include <sys/log.h>
 836  836  #include <sys/callb.h>
 837  837  #include <sys/taskq.h>
 838  838  #include <sys/modctl.h>
 839  839  #include <sys/reboot.h>
 840  840  #include <sys/id32.h>
 841  841  #include <sys/zone.h>
 842  842  #include <sys/netstack.h>
 843  843  #ifdef  DEBUG
 844  844  #include <sys/random.h>
 845  845  #endif
 846  846  
 847  847  extern void streams_msg_init(void);
 848  848  extern int segkp_fromheap;
 849  849  extern void segkp_cache_free(void);
 850  850  extern int callout_init_done;
 851  851  
 852  852  struct kmem_cache_kstat {
 853  853          kstat_named_t   kmc_buf_size;
 854  854          kstat_named_t   kmc_align;
 855  855          kstat_named_t   kmc_chunk_size;
 856  856          kstat_named_t   kmc_slab_size;
 857  857          kstat_named_t   kmc_alloc;
 858  858          kstat_named_t   kmc_alloc_fail;
 859  859          kstat_named_t   kmc_free;
 860  860          kstat_named_t   kmc_depot_alloc;
 861  861          kstat_named_t   kmc_depot_free;
 862  862          kstat_named_t   kmc_depot_contention;
 863  863          kstat_named_t   kmc_slab_alloc;
 864  864          kstat_named_t   kmc_slab_free;
 865  865          kstat_named_t   kmc_buf_constructed;
 866  866          kstat_named_t   kmc_buf_avail;
 867  867          kstat_named_t   kmc_buf_inuse;
 868  868          kstat_named_t   kmc_buf_total;
 869  869          kstat_named_t   kmc_buf_max;
 870  870          kstat_named_t   kmc_slab_create;
 871  871          kstat_named_t   kmc_slab_destroy;
 872  872          kstat_named_t   kmc_vmem_source;
 873  873          kstat_named_t   kmc_hash_size;
 874  874          kstat_named_t   kmc_hash_lookup_depth;
 875  875          kstat_named_t   kmc_hash_rescale;
 876  876          kstat_named_t   kmc_full_magazines;
 877  877          kstat_named_t   kmc_empty_magazines;
 878  878          kstat_named_t   kmc_magazine_size;
 879  879          kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 880  880          kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 881  881          kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 882  882          kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 883  883          kstat_named_t   kmc_move_yes;
 884  884          kstat_named_t   kmc_move_no;
 885  885          kstat_named_t   kmc_move_later;
 886  886          kstat_named_t   kmc_move_dont_need;
 887  887          kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 888  888          kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 889  889          kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 890  890          kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 891  891  } kmem_cache_kstat = {
 892  892          { "buf_size",           KSTAT_DATA_UINT64 },
 893  893          { "align",              KSTAT_DATA_UINT64 },
 894  894          { "chunk_size",         KSTAT_DATA_UINT64 },
 895  895          { "slab_size",          KSTAT_DATA_UINT64 },
 896  896          { "alloc",              KSTAT_DATA_UINT64 },
 897  897          { "alloc_fail",         KSTAT_DATA_UINT64 },
 898  898          { "free",               KSTAT_DATA_UINT64 },
 899  899          { "depot_alloc",        KSTAT_DATA_UINT64 },
 900  900          { "depot_free",         KSTAT_DATA_UINT64 },
 901  901          { "depot_contention",   KSTAT_DATA_UINT64 },
 902  902          { "slab_alloc",         KSTAT_DATA_UINT64 },
 903  903          { "slab_free",          KSTAT_DATA_UINT64 },
 904  904          { "buf_constructed",    KSTAT_DATA_UINT64 },
 905  905          { "buf_avail",          KSTAT_DATA_UINT64 },
 906  906          { "buf_inuse",          KSTAT_DATA_UINT64 },
 907  907          { "buf_total",          KSTAT_DATA_UINT64 },
 908  908          { "buf_max",            KSTAT_DATA_UINT64 },
 909  909          { "slab_create",        KSTAT_DATA_UINT64 },
 910  910          { "slab_destroy",       KSTAT_DATA_UINT64 },
 911  911          { "vmem_source",        KSTAT_DATA_UINT64 },
 912  912          { "hash_size",          KSTAT_DATA_UINT64 },
 913  913          { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 914  914          { "hash_rescale",       KSTAT_DATA_UINT64 },
 915  915          { "full_magazines",     KSTAT_DATA_UINT64 },
 916  916          { "empty_magazines",    KSTAT_DATA_UINT64 },
 917  917          { "magazine_size",      KSTAT_DATA_UINT64 },
 918  918          { "reap",               KSTAT_DATA_UINT64 },
 919  919          { "defrag",             KSTAT_DATA_UINT64 },
 920  920          { "scan",               KSTAT_DATA_UINT64 },
 921  921          { "move_callbacks",     KSTAT_DATA_UINT64 },
 922  922          { "move_yes",           KSTAT_DATA_UINT64 },
 923  923          { "move_no",            KSTAT_DATA_UINT64 },
 924  924          { "move_later",         KSTAT_DATA_UINT64 },
 925  925          { "move_dont_need",     KSTAT_DATA_UINT64 },
 926  926          { "move_dont_know",     KSTAT_DATA_UINT64 },
 927  927          { "move_hunt_found",    KSTAT_DATA_UINT64 },
 928  928          { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 929  929          { "move_reclaimable",   KSTAT_DATA_UINT64 },
 930  930  };
 931  931  
 932  932  static kmutex_t kmem_cache_kstat_lock;
 933  933  
 934  934  /*
 935  935   * The default set of caches to back kmem_alloc().
 936  936   * These sizes should be reevaluated periodically.
 937  937   *
 938  938   * We want allocations that are multiples of the coherency granularity
 939  939   * (64 bytes) to be satisfied from a cache which is a multiple of 64
 940  940   * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 941  941   * the next kmem_cache_size greater than or equal to it must be a
 942  942   * multiple of 64.
 943  943   *
 944  944   * We split the table into two sections:  size <= 4k and size > 4k.  This
 945  945   * saves a lot of space and cache footprint in our cache tables.
 946  946   */
 947  947  static const int kmem_alloc_sizes[] = {
 948  948          1 * 8,
 949  949          2 * 8,
 950  950          3 * 8,
 951  951          4 * 8,          5 * 8,          6 * 8,          7 * 8,
 952  952          4 * 16,         5 * 16,         6 * 16,         7 * 16,
 953  953          4 * 32,         5 * 32,         6 * 32,         7 * 32,
 954  954          4 * 64,         5 * 64,         6 * 64,         7 * 64,
 955  955          4 * 128,        5 * 128,        6 * 128,        7 * 128,
 956  956          P2ALIGN(8192 / 7, 64),
 957  957          P2ALIGN(8192 / 6, 64),
 958  958          P2ALIGN(8192 / 5, 64),
 959  959          P2ALIGN(8192 / 4, 64),
 960  960          P2ALIGN(8192 / 3, 64),
 961  961          P2ALIGN(8192 / 2, 64),
 962  962  };
 963  963  
 964  964  static const int kmem_big_alloc_sizes[] = {
 965  965          2 * 4096,       3 * 4096,
 966  966          2 * 8192,       3 * 8192,
 967  967          4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 968  968          8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 969  969          12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 970  970          16 * 8192
 971  971  };
 972  972  
 973  973  #define KMEM_MAXBUF             4096
 974  974  #define KMEM_BIG_MAXBUF_32BIT   32768
 975  975  #define KMEM_BIG_MAXBUF         131072
 976  976  
 977  977  #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 978  978  #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 979  979  
 980  980  static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 981  981  static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 982  982  
 983  983  #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 984  984  static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 985  985  
 986  986  static kmem_magtype_t kmem_magtype[] = {
 987  987          { 1,    8,      3200,   65536   },
 988  988          { 3,    16,     256,    32768   },
 989  989          { 7,    32,     64,     16384   },
 990  990          { 15,   64,     0,      8192    },
 991  991          { 31,   64,     0,      4096    },
 992  992          { 47,   64,     0,      2048    },
 993  993          { 63,   64,     0,      1024    },
 994  994          { 95,   64,     0,      512     },
 995  995          { 143,  64,     0,      0       },
 996  996  };
 997  997  
 998  998  static uint32_t kmem_reaping;
 999  999  static uint32_t kmem_reaping_idspace;
1000 1000  
1001 1001  /*
1002 1002   * kmem tunables
1003 1003   */
  
    | 
      ↓ open down ↓ | 
    1003 lines elided | 
    
      ↑ open up ↑ | 
  
1004 1004  clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
1005 1005  int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
1006 1006  pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
1007 1007  int kmem_panic = 1;             /* whether to panic on error */
1008 1008  int kmem_logging = 1;           /* kmem_log_enter() override */
1009 1009  uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
1010 1010  size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011 1011  size_t kmem_content_log_size;   /* content log size [2% of memory] */
1012 1012  size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1013 1013  size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
     1014 +size_t kmem_zerosized_log_size; /* zero-sized log [4 pages per CPU] */
1014 1015  size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1015 1016  size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1016 1017  size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1017 1018  int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1018 1019  size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1019 1020  size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1020 1021  
     1022 +#ifdef DEBUG
     1023 +int kmem_warn_zerosized = 1;    /* whether to warn on zero-sized KM_SLEEP */
     1024 +#else
     1025 +int kmem_warn_zerosized = 0;    /* whether to warn on zero-sized KM_SLEEP */
     1026 +#endif
     1027 +
     1028 +int kmem_panic_zerosized = 0;   /* whether to panic on zero-sized KM_SLEEP */
     1029 +
1021 1030  #ifdef _LP64
1022 1031  size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1023 1032  #else
1024 1033  size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1025 1034  #endif
1026 1035  
1027 1036  #ifdef DEBUG
1028 1037  int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1029 1038  #else
1030 1039  int kmem_flags = 0;
1031 1040  #endif
1032 1041  int kmem_ready;
1033 1042  
1034 1043  static kmem_cache_t     *kmem_slab_cache;
1035 1044  static kmem_cache_t     *kmem_bufctl_cache;
1036 1045  static kmem_cache_t     *kmem_bufctl_audit_cache;
1037 1046  
1038 1047  static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1039 1048  static list_t           kmem_caches;
1040 1049  
1041 1050  static taskq_t          *kmem_taskq;
1042 1051  static kmutex_t         kmem_flags_lock;
1043 1052  static vmem_t           *kmem_metadata_arena;
  
    | 
      ↓ open down ↓ | 
    13 lines elided | 
    
      ↑ open up ↑ | 
  
1044 1053  static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1045 1054  static vmem_t           *kmem_cache_arena;
1046 1055  static vmem_t           *kmem_hash_arena;
1047 1056  static vmem_t           *kmem_log_arena;
1048 1057  static vmem_t           *kmem_oversize_arena;
1049 1058  static vmem_t           *kmem_va_arena;
1050 1059  static vmem_t           *kmem_default_arena;
1051 1060  static vmem_t           *kmem_firewall_va_arena;
1052 1061  static vmem_t           *kmem_firewall_arena;
1053 1062  
     1063 +static int              kmem_zerosized;         /* # of zero-sized allocs */
     1064 +
1054 1065  /*
1055 1066   * kmem slab consolidator thresholds (tunables)
1056 1067   */
1057 1068  size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1058 1069  size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1059 1070  size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1060 1071  /*
1061 1072   * Maximum number of slabs from which to move buffers during a single
1062 1073   * maintenance interval while the system is not low on memory.
1063 1074   */
1064 1075  size_t kmem_reclaim_max_slabs = 1;
1065 1076  /*
1066 1077   * Number of slabs to scan backwards from the end of the partial slab list
1067 1078   * when searching for buffers to relocate.
1068 1079   */
1069 1080  size_t kmem_reclaim_scan_range = 12;
1070 1081  
1071 1082  /* consolidator knobs */
1072 1083  boolean_t kmem_move_noreap;
1073 1084  boolean_t kmem_move_blocked;
1074 1085  boolean_t kmem_move_fulltilt;
1075 1086  boolean_t kmem_move_any_partial;
1076 1087  
1077 1088  #ifdef  DEBUG
1078 1089  /*
1079 1090   * kmem consolidator debug tunables:
1080 1091   * Ensure code coverage by occasionally running the consolidator even when the
1081 1092   * caches are not fragmented (they may never be). These intervals are mean time
1082 1093   * in cache maintenance intervals (kmem_cache_update).
1083 1094   */
1084 1095  uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1085 1096  uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1086 1097  #endif  /* DEBUG */
1087 1098  
1088 1099  static kmem_cache_t     *kmem_defrag_cache;
1089 1100  static kmem_cache_t     *kmem_move_cache;
1090 1101  static taskq_t          *kmem_move_taskq;
  
    | 
      ↓ open down ↓ | 
    27 lines elided | 
    
      ↑ open up ↑ | 
  
1091 1102  
1092 1103  static void kmem_cache_scan(kmem_cache_t *);
1093 1104  static void kmem_cache_defrag(kmem_cache_t *);
1094 1105  static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1095 1106  
1096 1107  
1097 1108  kmem_log_header_t       *kmem_transaction_log;
1098 1109  kmem_log_header_t       *kmem_content_log;
1099 1110  kmem_log_header_t       *kmem_failure_log;
1100 1111  kmem_log_header_t       *kmem_slab_log;
     1112 +kmem_log_header_t       *kmem_zerosized_log;
1101 1113  
1102 1114  static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1103 1115  
1104 1116  #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1105 1117          if ((count) > 0) {                                              \
1106 1118                  pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;    \
1107 1119                  pc_t *_e;                                               \
1108 1120                  /* memmove() the old entries down one notch */          \
1109 1121                  for (_e = &_s[(count) - 1]; _e > _s; _e--)              \
1110 1122                          *_e = *(_e - 1);                                \
1111 1123                  *_s = (uintptr_t)(caller);                              \
1112 1124          }
1113 1125  
1114 1126  #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1115 1127  #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1116 1128  #define KMERR_DUPFREE   2       /* freed a buffer twice */
1117 1129  #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1118 1130  #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1119 1131  #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1120 1132  #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1121 1133  #define KMERR_BADSIZE   7       /* alloc size != free size */
1122 1134  #define KMERR_BADBASE   8       /* buffer base address wrong */
1123 1135  
1124 1136  struct {
1125 1137          hrtime_t        kmp_timestamp;  /* timestamp of panic */
1126 1138          int             kmp_error;      /* type of kmem error */
1127 1139          void            *kmp_buffer;    /* buffer that induced panic */
1128 1140          void            *kmp_realbuf;   /* real start address for buffer */
1129 1141          kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1130 1142          kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1131 1143          kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1132 1144          kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1133 1145  } kmem_panic_info;
1134 1146  
1135 1147  
1136 1148  static void
1137 1149  copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1138 1150  {
1139 1151          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1140 1152          uint64_t *buf = buf_arg;
1141 1153  
1142 1154          while (buf < bufend)
1143 1155                  *buf++ = pattern;
1144 1156  }
1145 1157  
1146 1158  static void *
1147 1159  verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1148 1160  {
1149 1161          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1150 1162          uint64_t *buf;
1151 1163  
1152 1164          for (buf = buf_arg; buf < bufend; buf++)
1153 1165                  if (*buf != pattern)
1154 1166                          return (buf);
1155 1167          return (NULL);
1156 1168  }
1157 1169  
1158 1170  static void *
1159 1171  verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1160 1172  {
1161 1173          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162 1174          uint64_t *buf;
1163 1175  
1164 1176          for (buf = buf_arg; buf < bufend; buf++) {
1165 1177                  if (*buf != old) {
1166 1178                          copy_pattern(old, buf_arg,
1167 1179                              (char *)buf - (char *)buf_arg);
1168 1180                          return (buf);
1169 1181                  }
1170 1182                  *buf = new;
1171 1183          }
1172 1184  
1173 1185          return (NULL);
1174 1186  }
1175 1187  
1176 1188  static void
1177 1189  kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1178 1190  {
1179 1191          kmem_cache_t *cp;
1180 1192  
1181 1193          mutex_enter(&kmem_cache_lock);
1182 1194          for (cp = list_head(&kmem_caches); cp != NULL;
1183 1195              cp = list_next(&kmem_caches, cp))
1184 1196                  if (tq != NULL)
1185 1197                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1186 1198                              tqflag);
1187 1199                  else
1188 1200                          func(cp);
1189 1201          mutex_exit(&kmem_cache_lock);
1190 1202  }
1191 1203  
1192 1204  static void
1193 1205  kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1194 1206  {
1195 1207          kmem_cache_t *cp;
1196 1208  
1197 1209          mutex_enter(&kmem_cache_lock);
1198 1210          for (cp = list_head(&kmem_caches); cp != NULL;
1199 1211              cp = list_next(&kmem_caches, cp)) {
1200 1212                  if (!(cp->cache_cflags & KMC_IDENTIFIER))
1201 1213                          continue;
1202 1214                  if (tq != NULL)
1203 1215                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1204 1216                              tqflag);
1205 1217                  else
1206 1218                          func(cp);
1207 1219          }
1208 1220          mutex_exit(&kmem_cache_lock);
1209 1221  }
1210 1222  
1211 1223  /*
1212 1224   * Debugging support.  Given a buffer address, find its slab.
1213 1225   */
1214 1226  static kmem_slab_t *
1215 1227  kmem_findslab(kmem_cache_t *cp, void *buf)
1216 1228  {
1217 1229          kmem_slab_t *sp;
1218 1230  
1219 1231          mutex_enter(&cp->cache_lock);
1220 1232          for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1221 1233              sp = list_next(&cp->cache_complete_slabs, sp)) {
1222 1234                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1223 1235                          mutex_exit(&cp->cache_lock);
1224 1236                          return (sp);
1225 1237                  }
1226 1238          }
1227 1239          for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1228 1240              sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1229 1241                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1230 1242                          mutex_exit(&cp->cache_lock);
1231 1243                          return (sp);
1232 1244                  }
1233 1245          }
1234 1246          mutex_exit(&cp->cache_lock);
1235 1247  
1236 1248          return (NULL);
1237 1249  }
1238 1250  
1239 1251  static void
1240 1252  kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1241 1253  {
1242 1254          kmem_buftag_t *btp = NULL;
1243 1255          kmem_bufctl_t *bcp = NULL;
1244 1256          kmem_cache_t *cp = cparg;
1245 1257          kmem_slab_t *sp;
1246 1258          uint64_t *off;
1247 1259          void *buf = bufarg;
1248 1260  
1249 1261          kmem_logging = 0;       /* stop logging when a bad thing happens */
1250 1262  
1251 1263          kmem_panic_info.kmp_timestamp = gethrtime();
1252 1264  
1253 1265          sp = kmem_findslab(cp, buf);
1254 1266          if (sp == NULL) {
1255 1267                  for (cp = list_tail(&kmem_caches); cp != NULL;
1256 1268                      cp = list_prev(&kmem_caches, cp)) {
1257 1269                          if ((sp = kmem_findslab(cp, buf)) != NULL)
1258 1270                                  break;
1259 1271                  }
1260 1272          }
1261 1273  
1262 1274          if (sp == NULL) {
1263 1275                  cp = NULL;
1264 1276                  error = KMERR_BADADDR;
1265 1277          } else {
1266 1278                  if (cp != cparg)
1267 1279                          error = KMERR_BADCACHE;
1268 1280                  else
1269 1281                          buf = (char *)bufarg - ((uintptr_t)bufarg -
1270 1282                              (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1271 1283                  if (buf != bufarg)
1272 1284                          error = KMERR_BADBASE;
1273 1285                  if (cp->cache_flags & KMF_BUFTAG)
1274 1286                          btp = KMEM_BUFTAG(cp, buf);
1275 1287                  if (cp->cache_flags & KMF_HASH) {
1276 1288                          mutex_enter(&cp->cache_lock);
1277 1289                          for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1278 1290                                  if (bcp->bc_addr == buf)
1279 1291                                          break;
1280 1292                          mutex_exit(&cp->cache_lock);
1281 1293                          if (bcp == NULL && btp != NULL)
1282 1294                                  bcp = btp->bt_bufctl;
1283 1295                          if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1284 1296                              NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1285 1297                              bcp->bc_addr != buf) {
1286 1298                                  error = KMERR_BADBUFCTL;
1287 1299                                  bcp = NULL;
1288 1300                          }
1289 1301                  }
1290 1302          }
1291 1303  
1292 1304          kmem_panic_info.kmp_error = error;
1293 1305          kmem_panic_info.kmp_buffer = bufarg;
1294 1306          kmem_panic_info.kmp_realbuf = buf;
1295 1307          kmem_panic_info.kmp_cache = cparg;
1296 1308          kmem_panic_info.kmp_realcache = cp;
1297 1309          kmem_panic_info.kmp_slab = sp;
1298 1310          kmem_panic_info.kmp_bufctl = bcp;
1299 1311  
1300 1312          printf("kernel memory allocator: ");
1301 1313  
1302 1314          switch (error) {
1303 1315  
1304 1316          case KMERR_MODIFIED:
1305 1317                  printf("buffer modified after being freed\n");
1306 1318                  off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1307 1319                  if (off == NULL)        /* shouldn't happen */
1308 1320                          off = buf;
1309 1321                  printf("modification occurred at offset 0x%lx "
1310 1322                      "(0x%llx replaced by 0x%llx)\n",
1311 1323                      (uintptr_t)off - (uintptr_t)buf,
1312 1324                      (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1313 1325                  break;
1314 1326  
1315 1327          case KMERR_REDZONE:
1316 1328                  printf("redzone violation: write past end of buffer\n");
1317 1329                  break;
1318 1330  
1319 1331          case KMERR_BADADDR:
1320 1332                  printf("invalid free: buffer not in cache\n");
1321 1333                  break;
1322 1334  
1323 1335          case KMERR_DUPFREE:
1324 1336                  printf("duplicate free: buffer freed twice\n");
1325 1337                  break;
1326 1338  
1327 1339          case KMERR_BADBUFTAG:
1328 1340                  printf("boundary tag corrupted\n");
1329 1341                  printf("bcp ^ bxstat = %lx, should be %lx\n",
1330 1342                      (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1331 1343                      KMEM_BUFTAG_FREE);
1332 1344                  break;
1333 1345  
1334 1346          case KMERR_BADBUFCTL:
1335 1347                  printf("bufctl corrupted\n");
1336 1348                  break;
1337 1349  
1338 1350          case KMERR_BADCACHE:
1339 1351                  printf("buffer freed to wrong cache\n");
1340 1352                  printf("buffer was allocated from %s,\n", cp->cache_name);
1341 1353                  printf("caller attempting free to %s.\n", cparg->cache_name);
1342 1354                  break;
1343 1355  
1344 1356          case KMERR_BADSIZE:
1345 1357                  printf("bad free: free size (%u) != alloc size (%u)\n",
1346 1358                      KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1347 1359                      KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1348 1360                  break;
1349 1361  
1350 1362          case KMERR_BADBASE:
1351 1363                  printf("bad free: free address (%p) != alloc address (%p)\n",
1352 1364                      bufarg, buf);
1353 1365                  break;
1354 1366          }
1355 1367  
1356 1368          printf("buffer=%p  bufctl=%p  cache: %s\n",
1357 1369              bufarg, (void *)bcp, cparg->cache_name);
1358 1370  
1359 1371          if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1360 1372              error != KMERR_BADBUFCTL) {
1361 1373                  int d;
1362 1374                  timestruc_t ts;
1363 1375                  kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1364 1376  
1365 1377                  hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1366 1378                  printf("previous transaction on buffer %p:\n", buf);
1367 1379                  printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1368 1380                      (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1369 1381                      (void *)sp, cp->cache_name);
1370 1382                  for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1371 1383                          ulong_t off;
1372 1384                          char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1373 1385                          printf("%s+%lx\n", sym ? sym : "?", off);
1374 1386                  }
1375 1387          }
1376 1388          if (kmem_panic > 0)
1377 1389                  panic("kernel heap corruption detected");
1378 1390          if (kmem_panic == 0)
1379 1391                  debug_enter(NULL);
1380 1392          kmem_logging = 1;       /* resume logging */
1381 1393  }
1382 1394  
1383 1395  static kmem_log_header_t *
1384 1396  kmem_log_init(size_t logsize)
1385 1397  {
1386 1398          kmem_log_header_t *lhp;
1387 1399          int nchunks = 4 * max_ncpus;
1388 1400          size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1389 1401          int i;
1390 1402  
1391 1403          /*
1392 1404           * Make sure that lhp->lh_cpu[] is nicely aligned
1393 1405           * to prevent false sharing of cache lines.
1394 1406           */
1395 1407          lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1396 1408          lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1397 1409              NULL, NULL, VM_SLEEP);
1398 1410          bzero(lhp, lhsize);
1399 1411  
1400 1412          mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1401 1413          lhp->lh_nchunks = nchunks;
1402 1414          lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1403 1415          lhp->lh_base = vmem_alloc(kmem_log_arena,
1404 1416              lhp->lh_chunksize * nchunks, VM_SLEEP);
1405 1417          lhp->lh_free = vmem_alloc(kmem_log_arena,
1406 1418              nchunks * sizeof (int), VM_SLEEP);
1407 1419          bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1408 1420  
1409 1421          for (i = 0; i < max_ncpus; i++) {
1410 1422                  kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1411 1423                  mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1412 1424                  clhp->clh_chunk = i;
1413 1425          }
1414 1426  
1415 1427          for (i = max_ncpus; i < nchunks; i++)
1416 1428                  lhp->lh_free[i] = i;
1417 1429  
1418 1430          lhp->lh_head = max_ncpus;
1419 1431          lhp->lh_tail = 0;
1420 1432  
1421 1433          return (lhp);
1422 1434  }
1423 1435  
1424 1436  static void *
1425 1437  kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1426 1438  {
1427 1439          void *logspace;
1428 1440          kmem_cpu_log_header_t *clhp;
1429 1441  
1430 1442          if (lhp == NULL || kmem_logging == 0 || panicstr)
1431 1443                  return (NULL);
1432 1444  
1433 1445          clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1434 1446  
1435 1447          mutex_enter(&clhp->clh_lock);
1436 1448          clhp->clh_hits++;
1437 1449          if (size > clhp->clh_avail) {
1438 1450                  mutex_enter(&lhp->lh_lock);
1439 1451                  lhp->lh_hits++;
1440 1452                  lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1441 1453                  lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1442 1454                  clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1443 1455                  lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1444 1456                  clhp->clh_current = lhp->lh_base +
1445 1457                      clhp->clh_chunk * lhp->lh_chunksize;
1446 1458                  clhp->clh_avail = lhp->lh_chunksize;
1447 1459                  if (size > lhp->lh_chunksize)
1448 1460                          size = lhp->lh_chunksize;
1449 1461                  mutex_exit(&lhp->lh_lock);
1450 1462          }
1451 1463          logspace = clhp->clh_current;
1452 1464          clhp->clh_current += size;
1453 1465          clhp->clh_avail -= size;
1454 1466          bcopy(data, logspace, size);
1455 1467          mutex_exit(&clhp->clh_lock);
1456 1468          return (logspace);
1457 1469  }
1458 1470  
1459 1471  #define KMEM_AUDIT(lp, cp, bcp)                                         \
1460 1472  {                                                                       \
1461 1473          kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1462 1474          _bcp->bc_timestamp = gethrtime();                               \
1463 1475          _bcp->bc_thread = curthread;                                    \
1464 1476          _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);  \
1465 1477          _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));  \
1466 1478  }
1467 1479  
1468 1480  static void
1469 1481  kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1470 1482      kmem_slab_t *sp, void *addr)
1471 1483  {
1472 1484          kmem_bufctl_audit_t bca;
1473 1485  
1474 1486          bzero(&bca, sizeof (kmem_bufctl_audit_t));
1475 1487          bca.bc_addr = addr;
1476 1488          bca.bc_slab = sp;
1477 1489          bca.bc_cache = cp;
1478 1490          KMEM_AUDIT(lp, cp, &bca);
1479 1491  }
1480 1492  
1481 1493  /*
1482 1494   * Create a new slab for cache cp.
1483 1495   */
1484 1496  static kmem_slab_t *
1485 1497  kmem_slab_create(kmem_cache_t *cp, int kmflag)
1486 1498  {
1487 1499          size_t slabsize = cp->cache_slabsize;
1488 1500          size_t chunksize = cp->cache_chunksize;
1489 1501          int cache_flags = cp->cache_flags;
1490 1502          size_t color, chunks;
1491 1503          char *buf, *slab;
1492 1504          kmem_slab_t *sp;
1493 1505          kmem_bufctl_t *bcp;
1494 1506          vmem_t *vmp = cp->cache_arena;
1495 1507  
1496 1508          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1497 1509  
1498 1510          color = cp->cache_color + cp->cache_align;
1499 1511          if (color > cp->cache_maxcolor)
1500 1512                  color = cp->cache_mincolor;
1501 1513          cp->cache_color = color;
1502 1514  
1503 1515          slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1504 1516  
1505 1517          if (slab == NULL)
1506 1518                  goto vmem_alloc_failure;
1507 1519  
1508 1520          ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1509 1521  
1510 1522          /*
1511 1523           * Reverify what was already checked in kmem_cache_set_move(), since the
1512 1524           * consolidator depends (for correctness) on slabs being initialized
1513 1525           * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1514 1526           * clients to distinguish uninitialized memory from known objects).
1515 1527           */
1516 1528          ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1517 1529          if (!(cp->cache_cflags & KMC_NOTOUCH))
1518 1530                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1519 1531  
1520 1532          if (cache_flags & KMF_HASH) {
1521 1533                  if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1522 1534                          goto slab_alloc_failure;
1523 1535                  chunks = (slabsize - color) / chunksize;
1524 1536          } else {
1525 1537                  sp = KMEM_SLAB(cp, slab);
1526 1538                  chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1527 1539          }
1528 1540  
1529 1541          sp->slab_cache  = cp;
1530 1542          sp->slab_head   = NULL;
1531 1543          sp->slab_refcnt = 0;
1532 1544          sp->slab_base   = buf = slab + color;
1533 1545          sp->slab_chunks = chunks;
1534 1546          sp->slab_stuck_offset = (uint32_t)-1;
1535 1547          sp->slab_later_count = 0;
1536 1548          sp->slab_flags = 0;
1537 1549  
1538 1550          ASSERT(chunks > 0);
1539 1551          while (chunks-- != 0) {
1540 1552                  if (cache_flags & KMF_HASH) {
1541 1553                          bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1542 1554                          if (bcp == NULL)
1543 1555                                  goto bufctl_alloc_failure;
1544 1556                          if (cache_flags & KMF_AUDIT) {
1545 1557                                  kmem_bufctl_audit_t *bcap =
1546 1558                                      (kmem_bufctl_audit_t *)bcp;
1547 1559                                  bzero(bcap, sizeof (kmem_bufctl_audit_t));
1548 1560                                  bcap->bc_cache = cp;
1549 1561                          }
1550 1562                          bcp->bc_addr = buf;
1551 1563                          bcp->bc_slab = sp;
1552 1564                  } else {
1553 1565                          bcp = KMEM_BUFCTL(cp, buf);
1554 1566                  }
1555 1567                  if (cache_flags & KMF_BUFTAG) {
1556 1568                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1557 1569                          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1558 1570                          btp->bt_bufctl = bcp;
1559 1571                          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1560 1572                          if (cache_flags & KMF_DEADBEEF) {
1561 1573                                  copy_pattern(KMEM_FREE_PATTERN, buf,
1562 1574                                      cp->cache_verify);
1563 1575                          }
1564 1576                  }
1565 1577                  bcp->bc_next = sp->slab_head;
1566 1578                  sp->slab_head = bcp;
1567 1579                  buf += chunksize;
1568 1580          }
1569 1581  
1570 1582          kmem_log_event(kmem_slab_log, cp, sp, slab);
1571 1583  
1572 1584          return (sp);
1573 1585  
1574 1586  bufctl_alloc_failure:
1575 1587  
1576 1588          while ((bcp = sp->slab_head) != NULL) {
1577 1589                  sp->slab_head = bcp->bc_next;
1578 1590                  kmem_cache_free(cp->cache_bufctl_cache, bcp);
1579 1591          }
1580 1592          kmem_cache_free(kmem_slab_cache, sp);
1581 1593  
1582 1594  slab_alloc_failure:
1583 1595  
1584 1596          vmem_free(vmp, slab, slabsize);
1585 1597  
1586 1598  vmem_alloc_failure:
1587 1599  
1588 1600          kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1589 1601          atomic_inc_64(&cp->cache_alloc_fail);
1590 1602  
1591 1603          return (NULL);
1592 1604  }
1593 1605  
1594 1606  /*
1595 1607   * Destroy a slab.
1596 1608   */
1597 1609  static void
1598 1610  kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1599 1611  {
1600 1612          vmem_t *vmp = cp->cache_arena;
1601 1613          void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1602 1614  
1603 1615          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1604 1616          ASSERT(sp->slab_refcnt == 0);
1605 1617  
1606 1618          if (cp->cache_flags & KMF_HASH) {
1607 1619                  kmem_bufctl_t *bcp;
1608 1620                  while ((bcp = sp->slab_head) != NULL) {
1609 1621                          sp->slab_head = bcp->bc_next;
1610 1622                          kmem_cache_free(cp->cache_bufctl_cache, bcp);
1611 1623                  }
1612 1624                  kmem_cache_free(kmem_slab_cache, sp);
1613 1625          }
1614 1626          vmem_free(vmp, slab, cp->cache_slabsize);
1615 1627  }
1616 1628  
1617 1629  static void *
1618 1630  kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1619 1631  {
1620 1632          kmem_bufctl_t *bcp, **hash_bucket;
1621 1633          void *buf;
1622 1634          boolean_t new_slab = (sp->slab_refcnt == 0);
1623 1635  
1624 1636          ASSERT(MUTEX_HELD(&cp->cache_lock));
1625 1637          /*
1626 1638           * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1627 1639           * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1628 1640           * slab is newly created.
1629 1641           */
1630 1642          ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1631 1643              (sp == avl_first(&cp->cache_partial_slabs))));
1632 1644          ASSERT(sp->slab_cache == cp);
1633 1645  
1634 1646          cp->cache_slab_alloc++;
1635 1647          cp->cache_bufslab--;
1636 1648          sp->slab_refcnt++;
1637 1649  
1638 1650          bcp = sp->slab_head;
1639 1651          sp->slab_head = bcp->bc_next;
1640 1652  
1641 1653          if (cp->cache_flags & KMF_HASH) {
1642 1654                  /*
1643 1655                   * Add buffer to allocated-address hash table.
1644 1656                   */
1645 1657                  buf = bcp->bc_addr;
1646 1658                  hash_bucket = KMEM_HASH(cp, buf);
1647 1659                  bcp->bc_next = *hash_bucket;
1648 1660                  *hash_bucket = bcp;
1649 1661                  if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1650 1662                          KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1651 1663                  }
1652 1664          } else {
1653 1665                  buf = KMEM_BUF(cp, bcp);
1654 1666          }
1655 1667  
1656 1668          ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1657 1669  
1658 1670          if (sp->slab_head == NULL) {
1659 1671                  ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1660 1672                  if (new_slab) {
1661 1673                          ASSERT(sp->slab_chunks == 1);
1662 1674                  } else {
1663 1675                          ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1664 1676                          avl_remove(&cp->cache_partial_slabs, sp);
1665 1677                          sp->slab_later_count = 0; /* clear history */
1666 1678                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1667 1679                          sp->slab_stuck_offset = (uint32_t)-1;
1668 1680                  }
1669 1681                  list_insert_head(&cp->cache_complete_slabs, sp);
1670 1682                  cp->cache_complete_slab_count++;
1671 1683                  return (buf);
1672 1684          }
1673 1685  
1674 1686          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1675 1687          /*
1676 1688           * Peek to see if the magazine layer is enabled before
1677 1689           * we prefill.  We're not holding the cpu cache lock,
1678 1690           * so the peek could be wrong, but there's no harm in it.
1679 1691           */
1680 1692          if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1681 1693              (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1682 1694                  kmem_slab_prefill(cp, sp);
1683 1695                  return (buf);
1684 1696          }
1685 1697  
1686 1698          if (new_slab) {
1687 1699                  avl_add(&cp->cache_partial_slabs, sp);
1688 1700                  return (buf);
1689 1701          }
1690 1702  
1691 1703          /*
1692 1704           * The slab is now more allocated than it was, so the
1693 1705           * order remains unchanged.
1694 1706           */
1695 1707          ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1696 1708          return (buf);
1697 1709  }
1698 1710  
1699 1711  /*
1700 1712   * Allocate a raw (unconstructed) buffer from cp's slab layer.
1701 1713   */
1702 1714  static void *
1703 1715  kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1704 1716  {
1705 1717          kmem_slab_t *sp;
1706 1718          void *buf;
1707 1719          boolean_t test_destructor;
1708 1720  
1709 1721          mutex_enter(&cp->cache_lock);
1710 1722          test_destructor = (cp->cache_slab_alloc == 0);
1711 1723          sp = avl_first(&cp->cache_partial_slabs);
1712 1724          if (sp == NULL) {
1713 1725                  ASSERT(cp->cache_bufslab == 0);
1714 1726  
1715 1727                  /*
1716 1728                   * The freelist is empty.  Create a new slab.
1717 1729                   */
1718 1730                  mutex_exit(&cp->cache_lock);
1719 1731                  if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1720 1732                          return (NULL);
1721 1733                  }
1722 1734                  mutex_enter(&cp->cache_lock);
1723 1735                  cp->cache_slab_create++;
1724 1736                  if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1725 1737                          cp->cache_bufmax = cp->cache_buftotal;
1726 1738                  cp->cache_bufslab += sp->slab_chunks;
1727 1739          }
1728 1740  
1729 1741          buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1730 1742          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1731 1743              (cp->cache_complete_slab_count +
1732 1744              avl_numnodes(&cp->cache_partial_slabs) +
1733 1745              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1734 1746          mutex_exit(&cp->cache_lock);
1735 1747  
1736 1748          if (test_destructor && cp->cache_destructor != NULL) {
1737 1749                  /*
1738 1750                   * On the first kmem_slab_alloc(), assert that it is valid to
1739 1751                   * call the destructor on a newly constructed object without any
1740 1752                   * client involvement.
1741 1753                   */
1742 1754                  if ((cp->cache_constructor == NULL) ||
1743 1755                      cp->cache_constructor(buf, cp->cache_private,
1744 1756                      kmflag) == 0) {
1745 1757                          cp->cache_destructor(buf, cp->cache_private);
1746 1758                  }
1747 1759                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1748 1760                      cp->cache_bufsize);
1749 1761                  if (cp->cache_flags & KMF_DEADBEEF) {
1750 1762                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1751 1763                  }
1752 1764          }
1753 1765  
1754 1766          return (buf);
1755 1767  }
1756 1768  
1757 1769  static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1758 1770  
1759 1771  /*
1760 1772   * Free a raw (unconstructed) buffer to cp's slab layer.
1761 1773   */
1762 1774  static void
1763 1775  kmem_slab_free(kmem_cache_t *cp, void *buf)
1764 1776  {
1765 1777          kmem_slab_t *sp;
1766 1778          kmem_bufctl_t *bcp, **prev_bcpp;
1767 1779  
1768 1780          ASSERT(buf != NULL);
1769 1781  
1770 1782          mutex_enter(&cp->cache_lock);
1771 1783          cp->cache_slab_free++;
1772 1784  
1773 1785          if (cp->cache_flags & KMF_HASH) {
1774 1786                  /*
1775 1787                   * Look up buffer in allocated-address hash table.
1776 1788                   */
1777 1789                  prev_bcpp = KMEM_HASH(cp, buf);
1778 1790                  while ((bcp = *prev_bcpp) != NULL) {
1779 1791                          if (bcp->bc_addr == buf) {
1780 1792                                  *prev_bcpp = bcp->bc_next;
1781 1793                                  sp = bcp->bc_slab;
1782 1794                                  break;
1783 1795                          }
1784 1796                          cp->cache_lookup_depth++;
1785 1797                          prev_bcpp = &bcp->bc_next;
1786 1798                  }
1787 1799          } else {
1788 1800                  bcp = KMEM_BUFCTL(cp, buf);
1789 1801                  sp = KMEM_SLAB(cp, buf);
1790 1802          }
1791 1803  
1792 1804          if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1793 1805                  mutex_exit(&cp->cache_lock);
1794 1806                  kmem_error(KMERR_BADADDR, cp, buf);
1795 1807                  return;
1796 1808          }
1797 1809  
1798 1810          if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1799 1811                  /*
1800 1812                   * If this is the buffer that prevented the consolidator from
1801 1813                   * clearing the slab, we can reset the slab flags now that the
1802 1814                   * buffer is freed. (It makes sense to do this in
1803 1815                   * kmem_cache_free(), where the client gives up ownership of the
1804 1816                   * buffer, but on the hot path the test is too expensive.)
1805 1817                   */
1806 1818                  kmem_slab_move_yes(cp, sp, buf);
1807 1819          }
1808 1820  
1809 1821          if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1810 1822                  if (cp->cache_flags & KMF_CONTENTS)
1811 1823                          ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1812 1824                              kmem_log_enter(kmem_content_log, buf,
1813 1825                              cp->cache_contents);
1814 1826                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1815 1827          }
1816 1828  
1817 1829          bcp->bc_next = sp->slab_head;
1818 1830          sp->slab_head = bcp;
1819 1831  
1820 1832          cp->cache_bufslab++;
1821 1833          ASSERT(sp->slab_refcnt >= 1);
1822 1834  
1823 1835          if (--sp->slab_refcnt == 0) {
1824 1836                  /*
1825 1837                   * There are no outstanding allocations from this slab,
1826 1838                   * so we can reclaim the memory.
1827 1839                   */
1828 1840                  if (sp->slab_chunks == 1) {
1829 1841                          list_remove(&cp->cache_complete_slabs, sp);
1830 1842                          cp->cache_complete_slab_count--;
1831 1843                  } else {
1832 1844                          avl_remove(&cp->cache_partial_slabs, sp);
1833 1845                  }
1834 1846  
1835 1847                  cp->cache_buftotal -= sp->slab_chunks;
1836 1848                  cp->cache_bufslab -= sp->slab_chunks;
1837 1849                  /*
1838 1850                   * Defer releasing the slab to the virtual memory subsystem
1839 1851                   * while there is a pending move callback, since we guarantee
1840 1852                   * that buffers passed to the move callback have only been
1841 1853                   * touched by kmem or by the client itself. Since the memory
1842 1854                   * patterns baddcafe (uninitialized) and deadbeef (freed) both
1843 1855                   * set at least one of the two lowest order bits, the client can
1844 1856                   * test those bits in the move callback to determine whether or
1845 1857                   * not it knows about the buffer (assuming that the client also
1846 1858                   * sets one of those low order bits whenever it frees a buffer).
1847 1859                   */
1848 1860                  if (cp->cache_defrag == NULL ||
1849 1861                      (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1850 1862                      !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1851 1863                          cp->cache_slab_destroy++;
1852 1864                          mutex_exit(&cp->cache_lock);
1853 1865                          kmem_slab_destroy(cp, sp);
1854 1866                  } else {
1855 1867                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1856 1868                          /*
1857 1869                           * Slabs are inserted at both ends of the deadlist to
1858 1870                           * distinguish between slabs freed while move callbacks
1859 1871                           * are pending (list head) and a slab freed while the
1860 1872                           * lock is dropped in kmem_move_buffers() (list tail) so
1861 1873                           * that in both cases slab_destroy() is called from the
1862 1874                           * right context.
1863 1875                           */
1864 1876                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1865 1877                                  list_insert_tail(deadlist, sp);
1866 1878                          } else {
1867 1879                                  list_insert_head(deadlist, sp);
1868 1880                          }
1869 1881                          cp->cache_defrag->kmd_deadcount++;
1870 1882                          mutex_exit(&cp->cache_lock);
1871 1883                  }
1872 1884                  return;
1873 1885          }
1874 1886  
1875 1887          if (bcp->bc_next == NULL) {
1876 1888                  /* Transition the slab from completely allocated to partial. */
1877 1889                  ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1878 1890                  ASSERT(sp->slab_chunks > 1);
1879 1891                  list_remove(&cp->cache_complete_slabs, sp);
1880 1892                  cp->cache_complete_slab_count--;
1881 1893                  avl_add(&cp->cache_partial_slabs, sp);
1882 1894          } else {
1883 1895                  (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1884 1896          }
1885 1897  
1886 1898          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1887 1899              (cp->cache_complete_slab_count +
1888 1900              avl_numnodes(&cp->cache_partial_slabs) +
1889 1901              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1890 1902          mutex_exit(&cp->cache_lock);
1891 1903  }
1892 1904  
1893 1905  /*
1894 1906   * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1895 1907   */
1896 1908  static int
1897 1909  kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1898 1910      caddr_t caller)
1899 1911  {
1900 1912          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1901 1913          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1902 1914          uint32_t mtbf;
1903 1915  
1904 1916          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1905 1917                  kmem_error(KMERR_BADBUFTAG, cp, buf);
1906 1918                  return (-1);
1907 1919          }
1908 1920  
1909 1921          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1910 1922  
1911 1923          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1912 1924                  kmem_error(KMERR_BADBUFCTL, cp, buf);
1913 1925                  return (-1);
1914 1926          }
1915 1927  
1916 1928          if (cp->cache_flags & KMF_DEADBEEF) {
1917 1929                  if (!construct && (cp->cache_flags & KMF_LITE)) {
1918 1930                          if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1919 1931                                  kmem_error(KMERR_MODIFIED, cp, buf);
1920 1932                                  return (-1);
1921 1933                          }
1922 1934                          if (cp->cache_constructor != NULL)
1923 1935                                  *(uint64_t *)buf = btp->bt_redzone;
1924 1936                          else
1925 1937                                  *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1926 1938                  } else {
1927 1939                          construct = 1;
1928 1940                          if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1929 1941                              KMEM_UNINITIALIZED_PATTERN, buf,
1930 1942                              cp->cache_verify)) {
1931 1943                                  kmem_error(KMERR_MODIFIED, cp, buf);
1932 1944                                  return (-1);
1933 1945                          }
1934 1946                  }
1935 1947          }
1936 1948          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1937 1949  
1938 1950          if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1939 1951              gethrtime() % mtbf == 0 &&
1940 1952              (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1941 1953                  kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1942 1954                  if (!construct && cp->cache_destructor != NULL)
1943 1955                          cp->cache_destructor(buf, cp->cache_private);
1944 1956          } else {
1945 1957                  mtbf = 0;
1946 1958          }
1947 1959  
1948 1960          if (mtbf || (construct && cp->cache_constructor != NULL &&
1949 1961              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1950 1962                  atomic_inc_64(&cp->cache_alloc_fail);
1951 1963                  btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1952 1964                  if (cp->cache_flags & KMF_DEADBEEF)
1953 1965                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1954 1966                  kmem_slab_free(cp, buf);
1955 1967                  return (1);
1956 1968          }
1957 1969  
1958 1970          if (cp->cache_flags & KMF_AUDIT) {
1959 1971                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1960 1972          }
1961 1973  
1962 1974          if ((cp->cache_flags & KMF_LITE) &&
1963 1975              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1964 1976                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1965 1977          }
1966 1978  
1967 1979          return (0);
1968 1980  }
1969 1981  
1970 1982  static int
1971 1983  kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1972 1984  {
1973 1985          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1974 1986          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1975 1987          kmem_slab_t *sp;
1976 1988  
1977 1989          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1978 1990                  if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1979 1991                          kmem_error(KMERR_DUPFREE, cp, buf);
1980 1992                          return (-1);
1981 1993                  }
1982 1994                  sp = kmem_findslab(cp, buf);
1983 1995                  if (sp == NULL || sp->slab_cache != cp)
1984 1996                          kmem_error(KMERR_BADADDR, cp, buf);
1985 1997                  else
1986 1998                          kmem_error(KMERR_REDZONE, cp, buf);
1987 1999                  return (-1);
1988 2000          }
1989 2001  
1990 2002          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1991 2003  
1992 2004          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1993 2005                  kmem_error(KMERR_BADBUFCTL, cp, buf);
1994 2006                  return (-1);
1995 2007          }
1996 2008  
1997 2009          if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1998 2010                  kmem_error(KMERR_REDZONE, cp, buf);
1999 2011                  return (-1);
2000 2012          }
2001 2013  
2002 2014          if (cp->cache_flags & KMF_AUDIT) {
2003 2015                  if (cp->cache_flags & KMF_CONTENTS)
2004 2016                          bcp->bc_contents = kmem_log_enter(kmem_content_log,
2005 2017                              buf, cp->cache_contents);
2006 2018                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2007 2019          }
2008 2020  
2009 2021          if ((cp->cache_flags & KMF_LITE) &&
2010 2022              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2011 2023                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2012 2024          }
2013 2025  
2014 2026          if (cp->cache_flags & KMF_DEADBEEF) {
2015 2027                  if (cp->cache_flags & KMF_LITE)
2016 2028                          btp->bt_redzone = *(uint64_t *)buf;
2017 2029                  else if (cp->cache_destructor != NULL)
2018 2030                          cp->cache_destructor(buf, cp->cache_private);
2019 2031  
2020 2032                  copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2021 2033          }
2022 2034  
2023 2035          return (0);
2024 2036  }
2025 2037  
2026 2038  /*
2027 2039   * Free each object in magazine mp to cp's slab layer, and free mp itself.
2028 2040   */
2029 2041  static void
2030 2042  kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2031 2043  {
2032 2044          int round;
2033 2045  
2034 2046          ASSERT(!list_link_active(&cp->cache_link) ||
2035 2047              taskq_member(kmem_taskq, curthread));
2036 2048  
2037 2049          for (round = 0; round < nrounds; round++) {
2038 2050                  void *buf = mp->mag_round[round];
2039 2051  
2040 2052                  if (cp->cache_flags & KMF_DEADBEEF) {
2041 2053                          if (verify_pattern(KMEM_FREE_PATTERN, buf,
2042 2054                              cp->cache_verify) != NULL) {
2043 2055                                  kmem_error(KMERR_MODIFIED, cp, buf);
2044 2056                                  continue;
2045 2057                          }
2046 2058                          if ((cp->cache_flags & KMF_LITE) &&
2047 2059                              cp->cache_destructor != NULL) {
2048 2060                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2049 2061                                  *(uint64_t *)buf = btp->bt_redzone;
2050 2062                                  cp->cache_destructor(buf, cp->cache_private);
2051 2063                                  *(uint64_t *)buf = KMEM_FREE_PATTERN;
2052 2064                          }
2053 2065                  } else if (cp->cache_destructor != NULL) {
2054 2066                          cp->cache_destructor(buf, cp->cache_private);
2055 2067                  }
2056 2068  
2057 2069                  kmem_slab_free(cp, buf);
2058 2070          }
2059 2071          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2060 2072          kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2061 2073  }
2062 2074  
2063 2075  /*
2064 2076   * Allocate a magazine from the depot.
2065 2077   */
2066 2078  static kmem_magazine_t *
2067 2079  kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2068 2080  {
2069 2081          kmem_magazine_t *mp;
2070 2082  
2071 2083          /*
2072 2084           * If we can't get the depot lock without contention,
2073 2085           * update our contention count.  We use the depot
2074 2086           * contention rate to determine whether we need to
2075 2087           * increase the magazine size for better scalability.
2076 2088           */
2077 2089          if (!mutex_tryenter(&cp->cache_depot_lock)) {
2078 2090                  mutex_enter(&cp->cache_depot_lock);
2079 2091                  cp->cache_depot_contention++;
2080 2092          }
2081 2093  
2082 2094          if ((mp = mlp->ml_list) != NULL) {
2083 2095                  ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2084 2096                  mlp->ml_list = mp->mag_next;
2085 2097                  if (--mlp->ml_total < mlp->ml_min)
2086 2098                          mlp->ml_min = mlp->ml_total;
2087 2099                  mlp->ml_alloc++;
2088 2100          }
2089 2101  
2090 2102          mutex_exit(&cp->cache_depot_lock);
2091 2103  
2092 2104          return (mp);
2093 2105  }
2094 2106  
2095 2107  /*
2096 2108   * Free a magazine to the depot.
2097 2109   */
2098 2110  static void
2099 2111  kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2100 2112  {
2101 2113          mutex_enter(&cp->cache_depot_lock);
2102 2114          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2103 2115          mp->mag_next = mlp->ml_list;
2104 2116          mlp->ml_list = mp;
2105 2117          mlp->ml_total++;
2106 2118          mutex_exit(&cp->cache_depot_lock);
2107 2119  }
2108 2120  
2109 2121  /*
2110 2122   * Update the working set statistics for cp's depot.
2111 2123   */
2112 2124  static void
2113 2125  kmem_depot_ws_update(kmem_cache_t *cp)
2114 2126  {
2115 2127          mutex_enter(&cp->cache_depot_lock);
2116 2128          cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2117 2129          cp->cache_full.ml_min = cp->cache_full.ml_total;
2118 2130          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2119 2131          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2120 2132          mutex_exit(&cp->cache_depot_lock);
2121 2133  }
2122 2134  
2123 2135  /*
2124 2136   * Set the working set statistics for cp's depot to zero.  (Everything is
2125 2137   * eligible for reaping.)
2126 2138   */
2127 2139  static void
2128 2140  kmem_depot_ws_zero(kmem_cache_t *cp)
2129 2141  {
2130 2142          mutex_enter(&cp->cache_depot_lock);
2131 2143          cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2132 2144          cp->cache_full.ml_min = cp->cache_full.ml_total;
2133 2145          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2134 2146          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2135 2147          mutex_exit(&cp->cache_depot_lock);
2136 2148  }
2137 2149  
2138 2150  /*
2139 2151   * The number of bytes to reap before we call kpreempt(). The default (1MB)
2140 2152   * causes us to preempt reaping up to hundreds of times per second. Using a
2141 2153   * larger value (1GB) causes this to have virtually no effect.
2142 2154   */
2143 2155  size_t kmem_reap_preempt_bytes = 1024 * 1024;
2144 2156  
2145 2157  /*
2146 2158   * Reap all magazines that have fallen out of the depot's working set.
2147 2159   */
2148 2160  static void
2149 2161  kmem_depot_ws_reap(kmem_cache_t *cp)
2150 2162  {
2151 2163          size_t bytes = 0;
2152 2164          long reap;
2153 2165          kmem_magazine_t *mp;
2154 2166  
2155 2167          ASSERT(!list_link_active(&cp->cache_link) ||
2156 2168              taskq_member(kmem_taskq, curthread));
2157 2169  
2158 2170          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2159 2171          while (reap-- &&
2160 2172              (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2161 2173                  kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2162 2174                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2163 2175                  if (bytes > kmem_reap_preempt_bytes) {
2164 2176                          kpreempt(KPREEMPT_SYNC);
2165 2177                          bytes = 0;
2166 2178                  }
2167 2179          }
2168 2180  
2169 2181          reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2170 2182          while (reap-- &&
2171 2183              (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2172 2184                  kmem_magazine_destroy(cp, mp, 0);
2173 2185                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2174 2186                  if (bytes > kmem_reap_preempt_bytes) {
2175 2187                          kpreempt(KPREEMPT_SYNC);
2176 2188                          bytes = 0;
2177 2189                  }
2178 2190          }
2179 2191  }
2180 2192  
2181 2193  static void
2182 2194  kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2183 2195  {
2184 2196          ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2185 2197              (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2186 2198          ASSERT(ccp->cc_magsize > 0);
2187 2199  
2188 2200          ccp->cc_ploaded = ccp->cc_loaded;
2189 2201          ccp->cc_prounds = ccp->cc_rounds;
2190 2202          ccp->cc_loaded = mp;
2191 2203          ccp->cc_rounds = rounds;
2192 2204  }
2193 2205  
2194 2206  /*
2195 2207   * Intercept kmem alloc/free calls during crash dump in order to avoid
2196 2208   * changing kmem state while memory is being saved to the dump device.
2197 2209   * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2198 2210   * there are no locks because only one CPU calls kmem during a crash
2199 2211   * dump. To enable this feature, first create the associated vmem
2200 2212   * arena with VMC_DUMPSAFE.
2201 2213   */
2202 2214  static void *kmem_dump_start;   /* start of pre-reserved heap */
2203 2215  static void *kmem_dump_end;     /* end of heap area */
2204 2216  static void *kmem_dump_curr;    /* current free heap pointer */
2205 2217  static size_t kmem_dump_size;   /* size of heap area */
2206 2218  
2207 2219  /* append to each buf created in the pre-reserved heap */
2208 2220  typedef struct kmem_dumpctl {
2209 2221          void    *kdc_next;      /* cache dump free list linkage */
2210 2222  } kmem_dumpctl_t;
2211 2223  
2212 2224  #define KMEM_DUMPCTL(cp, buf)   \
2213 2225          ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2214 2226              sizeof (void *)))
2215 2227  
2216 2228  /* set non zero for full report */
2217 2229  uint_t kmem_dump_verbose = 0;
2218 2230  
2219 2231  /* stats for overize heap */
2220 2232  uint_t kmem_dump_oversize_allocs = 0;
2221 2233  uint_t kmem_dump_oversize_max = 0;
2222 2234  
2223 2235  static void
2224 2236  kmem_dumppr(char **pp, char *e, const char *format, ...)
2225 2237  {
2226 2238          char *p = *pp;
2227 2239  
2228 2240          if (p < e) {
2229 2241                  int n;
2230 2242                  va_list ap;
2231 2243  
2232 2244                  va_start(ap, format);
2233 2245                  n = vsnprintf(p, e - p, format, ap);
2234 2246                  va_end(ap);
2235 2247                  *pp = p + n;
2236 2248          }
2237 2249  }
2238 2250  
2239 2251  /*
2240 2252   * Called when dumpadm(1M) configures dump parameters.
2241 2253   */
2242 2254  void
2243 2255  kmem_dump_init(size_t size)
2244 2256  {
2245 2257          /* Our caller ensures size is always set. */
2246 2258          ASSERT3U(size, >, 0);
2247 2259  
2248 2260          if (kmem_dump_start != NULL)
2249 2261                  kmem_free(kmem_dump_start, kmem_dump_size);
2250 2262  
2251 2263          kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2252 2264          kmem_dump_size = size;
2253 2265          kmem_dump_curr = kmem_dump_start;
2254 2266          kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2255 2267          copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2256 2268  }
2257 2269  
2258 2270  /*
2259 2271   * Set flag for each kmem_cache_t if is safe to use alternate dump
2260 2272   * memory. Called just before panic crash dump starts. Set the flag
2261 2273   * for the calling CPU.
2262 2274   */
2263 2275  void
2264 2276  kmem_dump_begin(void)
2265 2277  {
2266 2278          kmem_cache_t *cp;
2267 2279  
2268 2280          ASSERT(panicstr != NULL);
2269 2281  
2270 2282          for (cp = list_head(&kmem_caches); cp != NULL;
2271 2283              cp = list_next(&kmem_caches, cp)) {
2272 2284                  kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2273 2285  
2274 2286                  if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2275 2287                          cp->cache_flags |= KMF_DUMPDIVERT;
2276 2288                          ccp->cc_flags |= KMF_DUMPDIVERT;
2277 2289                          ccp->cc_dump_rounds = ccp->cc_rounds;
2278 2290                          ccp->cc_dump_prounds = ccp->cc_prounds;
2279 2291                          ccp->cc_rounds = ccp->cc_prounds = -1;
2280 2292                  } else {
2281 2293                          cp->cache_flags |= KMF_DUMPUNSAFE;
2282 2294                          ccp->cc_flags |= KMF_DUMPUNSAFE;
2283 2295                  }
2284 2296          }
2285 2297  }
2286 2298  
2287 2299  /*
2288 2300   * finished dump intercept
2289 2301   * print any warnings on the console
2290 2302   * return verbose information to dumpsys() in the given buffer
2291 2303   */
2292 2304  size_t
2293 2305  kmem_dump_finish(char *buf, size_t size)
2294 2306  {
2295 2307          int percent = 0;
2296 2308          size_t used;
2297 2309          char *e = buf + size;
2298 2310          char *p = buf;
2299 2311  
2300 2312          if (kmem_dump_curr == kmem_dump_end) {
2301 2313                  cmn_err(CE_WARN, "exceeded kmem_dump space of %lu "
2302 2314                      "bytes: kmem state in dump may be inconsistent",
2303 2315                      kmem_dump_size);
2304 2316          }
2305 2317  
2306 2318          if (kmem_dump_verbose == 0)
2307 2319                  return (0);
2308 2320  
2309 2321          used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2310 2322          percent = (used * 100) / kmem_dump_size;
2311 2323  
2312 2324          kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2313 2325          kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2314 2326          kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2315 2327          kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2316 2328              kmem_dump_oversize_allocs);
2317 2329          kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2318 2330              kmem_dump_oversize_max);
2319 2331  
2320 2332          /* return buffer size used */
2321 2333          if (p < e)
2322 2334                  bzero(p, e - p);
2323 2335          return (p - buf);
2324 2336  }
2325 2337  
2326 2338  /*
2327 2339   * Allocate a constructed object from alternate dump memory.
2328 2340   */
2329 2341  void *
2330 2342  kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2331 2343  {
2332 2344          void *buf;
2333 2345          void *curr;
2334 2346          char *bufend;
2335 2347  
2336 2348          /* return a constructed object */
2337 2349          if ((buf = cp->cache_dump.kd_freelist) != NULL) {
2338 2350                  cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2339 2351                  return (buf);
2340 2352          }
2341 2353  
2342 2354          /* create a new constructed object */
2343 2355          curr = kmem_dump_curr;
2344 2356          buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2345 2357          bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2346 2358  
2347 2359          /* hat layer objects cannot cross a page boundary */
2348 2360          if (cp->cache_align < PAGESIZE) {
2349 2361                  char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2350 2362                  if (bufend > page) {
2351 2363                          bufend += page - (char *)buf;
2352 2364                          buf = (void *)page;
2353 2365                  }
2354 2366          }
2355 2367  
2356 2368          /* fall back to normal alloc if reserved area is used up */
2357 2369          if (bufend > (char *)kmem_dump_end) {
2358 2370                  kmem_dump_curr = kmem_dump_end;
2359 2371                  cp->cache_dump.kd_alloc_fails++;
2360 2372                  return (NULL);
2361 2373          }
2362 2374  
2363 2375          /*
2364 2376           * Must advance curr pointer before calling a constructor that
2365 2377           * may also allocate memory.
2366 2378           */
2367 2379          kmem_dump_curr = bufend;
2368 2380  
2369 2381          /* run constructor */
2370 2382          if (cp->cache_constructor != NULL &&
2371 2383              cp->cache_constructor(buf, cp->cache_private, kmflag)
2372 2384              != 0) {
2373 2385  #ifdef DEBUG
2374 2386                  printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2375 2387                      cp->cache_name, (void *)cp);
2376 2388  #endif
2377 2389                  /* reset curr pointer iff no allocs were done */
2378 2390                  if (kmem_dump_curr == bufend)
2379 2391                          kmem_dump_curr = curr;
2380 2392  
2381 2393                  cp->cache_dump.kd_alloc_fails++;
2382 2394                  /* fall back to normal alloc if the constructor fails */
2383 2395                  return (NULL);
2384 2396          }
2385 2397  
2386 2398          return (buf);
2387 2399  }
2388 2400  
2389 2401  /*
2390 2402   * Free a constructed object in alternate dump memory.
2391 2403   */
2392 2404  int
2393 2405  kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2394 2406  {
2395 2407          /* save constructed buffers for next time */
2396 2408          if ((char *)buf >= (char *)kmem_dump_start &&
2397 2409              (char *)buf < (char *)kmem_dump_end) {
2398 2410                  KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist;
2399 2411                  cp->cache_dump.kd_freelist = buf;
2400 2412                  return (0);
2401 2413          }
2402 2414  
2403 2415          /* just drop buffers that were allocated before dump started */
2404 2416          if (kmem_dump_curr < kmem_dump_end)
2405 2417                  return (0);
2406 2418  
2407 2419          /* fall back to normal free if reserved area is used up */
2408 2420          return (1);
2409 2421  }
2410 2422  
2411 2423  /*
2412 2424   * Allocate a constructed object from cache cp.
2413 2425   */
2414 2426  void *
2415 2427  kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2416 2428  {
2417 2429          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2418 2430          kmem_magazine_t *fmp;
2419 2431          void *buf;
2420 2432  
2421 2433          mutex_enter(&ccp->cc_lock);
2422 2434          for (;;) {
2423 2435                  /*
2424 2436                   * If there's an object available in the current CPU's
2425 2437                   * loaded magazine, just take it and return.
2426 2438                   */
2427 2439                  if (ccp->cc_rounds > 0) {
2428 2440                          buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2429 2441                          ccp->cc_alloc++;
2430 2442                          mutex_exit(&ccp->cc_lock);
2431 2443                          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2432 2444                                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2433 2445                                          ASSERT(!(ccp->cc_flags &
2434 2446                                              KMF_DUMPDIVERT));
2435 2447                                          cp->cache_dump.kd_unsafe++;
2436 2448                                  }
2437 2449                                  if ((ccp->cc_flags & KMF_BUFTAG) &&
2438 2450                                      kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2439 2451                                      caller()) != 0) {
2440 2452                                          if (kmflag & KM_NOSLEEP)
2441 2453                                                  return (NULL);
2442 2454                                          mutex_enter(&ccp->cc_lock);
2443 2455                                          continue;
2444 2456                                  }
2445 2457                          }
2446 2458                          return (buf);
2447 2459                  }
2448 2460  
2449 2461                  /*
2450 2462                   * The loaded magazine is empty.  If the previously loaded
2451 2463                   * magazine was full, exchange them and try again.
2452 2464                   */
2453 2465                  if (ccp->cc_prounds > 0) {
2454 2466                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2455 2467                          continue;
2456 2468                  }
2457 2469  
2458 2470                  /*
2459 2471                   * Return an alternate buffer at dump time to preserve
2460 2472                   * the heap.
2461 2473                   */
2462 2474                  if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2463 2475                          if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2464 2476                                  ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2465 2477                                  /* log it so that we can warn about it */
2466 2478                                  cp->cache_dump.kd_unsafe++;
2467 2479                          } else {
2468 2480                                  if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2469 2481                                      NULL) {
2470 2482                                          mutex_exit(&ccp->cc_lock);
2471 2483                                          return (buf);
2472 2484                                  }
2473 2485                                  break;          /* fall back to slab layer */
2474 2486                          }
2475 2487                  }
2476 2488  
2477 2489                  /*
2478 2490                   * If the magazine layer is disabled, break out now.
2479 2491                   */
2480 2492                  if (ccp->cc_magsize == 0)
2481 2493                          break;
2482 2494  
2483 2495                  /*
2484 2496                   * Try to get a full magazine from the depot.
2485 2497                   */
2486 2498                  fmp = kmem_depot_alloc(cp, &cp->cache_full);
2487 2499                  if (fmp != NULL) {
2488 2500                          if (ccp->cc_ploaded != NULL)
2489 2501                                  kmem_depot_free(cp, &cp->cache_empty,
2490 2502                                      ccp->cc_ploaded);
2491 2503                          kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2492 2504                          continue;
2493 2505                  }
2494 2506  
2495 2507                  /*
2496 2508                   * There are no full magazines in the depot,
2497 2509                   * so fall through to the slab layer.
2498 2510                   */
2499 2511                  break;
2500 2512          }
2501 2513          mutex_exit(&ccp->cc_lock);
2502 2514  
2503 2515          /*
2504 2516           * We couldn't allocate a constructed object from the magazine layer,
2505 2517           * so get a raw buffer from the slab layer and apply its constructor.
2506 2518           */
2507 2519          buf = kmem_slab_alloc(cp, kmflag);
2508 2520  
2509 2521          if (buf == NULL)
2510 2522                  return (NULL);
2511 2523  
2512 2524          if (cp->cache_flags & KMF_BUFTAG) {
2513 2525                  /*
2514 2526                   * Make kmem_cache_alloc_debug() apply the constructor for us.
2515 2527                   */
2516 2528                  int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2517 2529                  if (rc != 0) {
2518 2530                          if (kmflag & KM_NOSLEEP)
2519 2531                                  return (NULL);
2520 2532                          /*
2521 2533                           * kmem_cache_alloc_debug() detected corruption
2522 2534                           * but didn't panic (kmem_panic <= 0). We should not be
2523 2535                           * here because the constructor failed (indicated by a
2524 2536                           * return code of 1). Try again.
2525 2537                           */
2526 2538                          ASSERT(rc == -1);
2527 2539                          return (kmem_cache_alloc(cp, kmflag));
2528 2540                  }
2529 2541                  return (buf);
2530 2542          }
2531 2543  
2532 2544          if (cp->cache_constructor != NULL &&
2533 2545              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2534 2546                  atomic_inc_64(&cp->cache_alloc_fail);
2535 2547                  kmem_slab_free(cp, buf);
2536 2548                  return (NULL);
2537 2549          }
2538 2550  
2539 2551          return (buf);
2540 2552  }
2541 2553  
2542 2554  /*
2543 2555   * The freed argument tells whether or not kmem_cache_free_debug() has already
2544 2556   * been called so that we can avoid the duplicate free error. For example, a
2545 2557   * buffer on a magazine has already been freed by the client but is still
2546 2558   * constructed.
2547 2559   */
2548 2560  static void
2549 2561  kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2550 2562  {
2551 2563          if (!freed && (cp->cache_flags & KMF_BUFTAG))
2552 2564                  if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2553 2565                          return;
2554 2566  
2555 2567          /*
2556 2568           * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2557 2569           * kmem_cache_free_debug() will have already applied the destructor.
2558 2570           */
2559 2571          if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2560 2572              cp->cache_destructor != NULL) {
2561 2573                  if (cp->cache_flags & KMF_DEADBEEF) {   /* KMF_LITE implied */
2562 2574                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2563 2575                          *(uint64_t *)buf = btp->bt_redzone;
2564 2576                          cp->cache_destructor(buf, cp->cache_private);
2565 2577                          *(uint64_t *)buf = KMEM_FREE_PATTERN;
2566 2578                  } else {
2567 2579                          cp->cache_destructor(buf, cp->cache_private);
2568 2580                  }
2569 2581          }
2570 2582  
2571 2583          kmem_slab_free(cp, buf);
2572 2584  }
2573 2585  
2574 2586  /*
2575 2587   * Used when there's no room to free a buffer to the per-CPU cache.
2576 2588   * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2577 2589   * caller should try freeing to the per-CPU cache again.
2578 2590   * Note that we don't directly install the magazine in the cpu cache,
2579 2591   * since its state may have changed wildly while the lock was dropped.
2580 2592   */
2581 2593  static int
2582 2594  kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2583 2595  {
2584 2596          kmem_magazine_t *emp;
2585 2597          kmem_magtype_t *mtp;
2586 2598  
2587 2599          ASSERT(MUTEX_HELD(&ccp->cc_lock));
2588 2600          ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2589 2601              ((uint_t)ccp->cc_rounds == -1)) &&
2590 2602              ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2591 2603              ((uint_t)ccp->cc_prounds == -1)));
2592 2604  
2593 2605          emp = kmem_depot_alloc(cp, &cp->cache_empty);
2594 2606          if (emp != NULL) {
2595 2607                  if (ccp->cc_ploaded != NULL)
2596 2608                          kmem_depot_free(cp, &cp->cache_full,
2597 2609                              ccp->cc_ploaded);
2598 2610                  kmem_cpu_reload(ccp, emp, 0);
2599 2611                  return (1);
2600 2612          }
2601 2613          /*
2602 2614           * There are no empty magazines in the depot,
2603 2615           * so try to allocate a new one.  We must drop all locks
2604 2616           * across kmem_cache_alloc() because lower layers may
2605 2617           * attempt to allocate from this cache.
2606 2618           */
2607 2619          mtp = cp->cache_magtype;
2608 2620          mutex_exit(&ccp->cc_lock);
2609 2621          emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2610 2622          mutex_enter(&ccp->cc_lock);
2611 2623  
2612 2624          if (emp != NULL) {
2613 2625                  /*
2614 2626                   * We successfully allocated an empty magazine.
2615 2627                   * However, we had to drop ccp->cc_lock to do it,
2616 2628                   * so the cache's magazine size may have changed.
2617 2629                   * If so, free the magazine and try again.
2618 2630                   */
2619 2631                  if (ccp->cc_magsize != mtp->mt_magsize) {
2620 2632                          mutex_exit(&ccp->cc_lock);
2621 2633                          kmem_cache_free(mtp->mt_cache, emp);
2622 2634                          mutex_enter(&ccp->cc_lock);
2623 2635                          return (1);
2624 2636                  }
2625 2637  
2626 2638                  /*
2627 2639                   * We got a magazine of the right size.  Add it to
2628 2640                   * the depot and try the whole dance again.
2629 2641                   */
2630 2642                  kmem_depot_free(cp, &cp->cache_empty, emp);
2631 2643                  return (1);
2632 2644          }
2633 2645  
2634 2646          /*
2635 2647           * We couldn't allocate an empty magazine,
2636 2648           * so fall through to the slab layer.
2637 2649           */
2638 2650          return (0);
2639 2651  }
2640 2652  
2641 2653  /*
2642 2654   * Free a constructed object to cache cp.
2643 2655   */
2644 2656  void
2645 2657  kmem_cache_free(kmem_cache_t *cp, void *buf)
2646 2658  {
2647 2659          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2648 2660  
2649 2661          /*
2650 2662           * The client must not free either of the buffers passed to the move
2651 2663           * callback function.
2652 2664           */
2653 2665          ASSERT(cp->cache_defrag == NULL ||
2654 2666              cp->cache_defrag->kmd_thread != curthread ||
2655 2667              (buf != cp->cache_defrag->kmd_from_buf &&
2656 2668              buf != cp->cache_defrag->kmd_to_buf));
2657 2669  
2658 2670          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2659 2671                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2660 2672                          ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2661 2673                          /* log it so that we can warn about it */
2662 2674                          cp->cache_dump.kd_unsafe++;
2663 2675                  } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2664 2676                          return;
2665 2677                  }
2666 2678                  if (ccp->cc_flags & KMF_BUFTAG) {
2667 2679                          if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2668 2680                                  return;
2669 2681                  }
2670 2682          }
2671 2683  
2672 2684          mutex_enter(&ccp->cc_lock);
2673 2685          /*
2674 2686           * Any changes to this logic should be reflected in kmem_slab_prefill()
2675 2687           */
2676 2688          for (;;) {
2677 2689                  /*
2678 2690                   * If there's a slot available in the current CPU's
2679 2691                   * loaded magazine, just put the object there and return.
2680 2692                   */
2681 2693                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2682 2694                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2683 2695                          ccp->cc_free++;
2684 2696                          mutex_exit(&ccp->cc_lock);
2685 2697                          return;
2686 2698                  }
2687 2699  
2688 2700                  /*
2689 2701                   * The loaded magazine is full.  If the previously loaded
2690 2702                   * magazine was empty, exchange them and try again.
2691 2703                   */
2692 2704                  if (ccp->cc_prounds == 0) {
2693 2705                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2694 2706                          continue;
2695 2707                  }
2696 2708  
2697 2709                  /*
2698 2710                   * If the magazine layer is disabled, break out now.
2699 2711                   */
2700 2712                  if (ccp->cc_magsize == 0)
2701 2713                          break;
2702 2714  
2703 2715                  if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2704 2716                          /*
2705 2717                           * We couldn't free our constructed object to the
2706 2718                           * magazine layer, so apply its destructor and free it
2707 2719                           * to the slab layer.
2708 2720                           */
2709 2721                          break;
2710 2722                  }
2711 2723          }
2712 2724          mutex_exit(&ccp->cc_lock);
2713 2725          kmem_slab_free_constructed(cp, buf, B_TRUE);
2714 2726  }
2715 2727  
2716 2728  static void
2717 2729  kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2718 2730  {
2719 2731          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2720 2732          int cache_flags = cp->cache_flags;
2721 2733  
2722 2734          kmem_bufctl_t *next, *head;
2723 2735          size_t nbufs;
2724 2736  
2725 2737          /*
2726 2738           * Completely allocate the newly created slab and put the pre-allocated
2727 2739           * buffers in magazines. Any of the buffers that cannot be put in
2728 2740           * magazines must be returned to the slab.
2729 2741           */
2730 2742          ASSERT(MUTEX_HELD(&cp->cache_lock));
2731 2743          ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2732 2744          ASSERT(cp->cache_constructor == NULL);
2733 2745          ASSERT(sp->slab_cache == cp);
2734 2746          ASSERT(sp->slab_refcnt == 1);
2735 2747          ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2736 2748          ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2737 2749  
2738 2750          head = sp->slab_head;
2739 2751          nbufs = (sp->slab_chunks - sp->slab_refcnt);
2740 2752          sp->slab_head = NULL;
2741 2753          sp->slab_refcnt += nbufs;
2742 2754          cp->cache_bufslab -= nbufs;
2743 2755          cp->cache_slab_alloc += nbufs;
2744 2756          list_insert_head(&cp->cache_complete_slabs, sp);
2745 2757          cp->cache_complete_slab_count++;
2746 2758          mutex_exit(&cp->cache_lock);
2747 2759          mutex_enter(&ccp->cc_lock);
2748 2760  
2749 2761          while (head != NULL) {
2750 2762                  void *buf = KMEM_BUF(cp, head);
2751 2763                  /*
2752 2764                   * If there's a slot available in the current CPU's
2753 2765                   * loaded magazine, just put the object there and
2754 2766                   * continue.
2755 2767                   */
2756 2768                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2757 2769                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2758 2770                              buf;
2759 2771                          ccp->cc_free++;
2760 2772                          nbufs--;
2761 2773                          head = head->bc_next;
2762 2774                          continue;
2763 2775                  }
2764 2776  
2765 2777                  /*
2766 2778                   * The loaded magazine is full.  If the previously
2767 2779                   * loaded magazine was empty, exchange them and try
2768 2780                   * again.
2769 2781                   */
2770 2782                  if (ccp->cc_prounds == 0) {
2771 2783                          kmem_cpu_reload(ccp, ccp->cc_ploaded,
2772 2784                              ccp->cc_prounds);
2773 2785                          continue;
2774 2786                  }
2775 2787  
2776 2788                  /*
2777 2789                   * If the magazine layer is disabled, break out now.
2778 2790                   */
2779 2791  
2780 2792                  if (ccp->cc_magsize == 0) {
2781 2793                          break;
2782 2794                  }
2783 2795  
2784 2796                  if (!kmem_cpucache_magazine_alloc(ccp, cp))
2785 2797                          break;
2786 2798          }
2787 2799          mutex_exit(&ccp->cc_lock);
2788 2800          if (nbufs != 0) {
2789 2801                  ASSERT(head != NULL);
2790 2802  
2791 2803                  /*
2792 2804                   * If there was a failure, return remaining objects to
2793 2805                   * the slab
2794 2806                   */
2795 2807                  while (head != NULL) {
2796 2808                          ASSERT(nbufs != 0);
2797 2809                          next = head->bc_next;
2798 2810                          head->bc_next = NULL;
2799 2811                          kmem_slab_free(cp, KMEM_BUF(cp, head));
2800 2812                          head = next;
2801 2813                          nbufs--;
2802 2814                  }
2803 2815          }
2804 2816          ASSERT(head == NULL);
2805 2817          ASSERT(nbufs == 0);
2806 2818          mutex_enter(&cp->cache_lock);
2807 2819  }
2808 2820  
2809 2821  void *
2810 2822  kmem_zalloc(size_t size, int kmflag)
2811 2823  {
2812 2824          size_t index;
2813 2825          void *buf;
2814 2826  
2815 2827          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2816 2828                  kmem_cache_t *cp = kmem_alloc_table[index];
2817 2829                  buf = kmem_cache_alloc(cp, kmflag);
2818 2830                  if (buf != NULL) {
2819 2831                          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2820 2832                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2821 2833                                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2822 2834                                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2823 2835  
2824 2836                                  if (cp->cache_flags & KMF_LITE) {
2825 2837                                          KMEM_BUFTAG_LITE_ENTER(btp,
2826 2838                                              kmem_lite_count, caller());
2827 2839                                  }
2828 2840                          }
2829 2841                          bzero(buf, size);
2830 2842                  }
2831 2843          } else {
2832 2844                  buf = kmem_alloc(size, kmflag);
2833 2845                  if (buf != NULL)
2834 2846                          bzero(buf, size);
2835 2847          }
2836 2848          return (buf);
2837 2849  }
2838 2850  
2839 2851  void *
2840 2852  kmem_alloc(size_t size, int kmflag)
2841 2853  {
2842 2854          size_t index;
2843 2855          kmem_cache_t *cp;
2844 2856          void *buf;
2845 2857  
  
    | 
      ↓ open down ↓ | 
    1735 lines elided | 
    
      ↑ open up ↑ | 
  
2846 2858          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2847 2859                  cp = kmem_alloc_table[index];
2848 2860                  /* fall through to kmem_cache_alloc() */
2849 2861  
2850 2862          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2851 2863              kmem_big_alloc_table_max) {
2852 2864                  cp = kmem_big_alloc_table[index];
2853 2865                  /* fall through to kmem_cache_alloc() */
2854 2866  
2855 2867          } else {
2856      -                if (size == 0)
     2868 +                if (size == 0) {
     2869 +                        if (kmflag != KM_SLEEP && !(kmflag & KM_PANIC))
     2870 +                                return (NULL);
     2871 +
     2872 +                        /*
     2873 +                         * If this is a sleeping allocation or one that has
     2874 +                         * been specified to panic on allocation failure, we
     2875 +                         * consider it to be deprecated behavior to allocate
     2876 +                         * 0 bytes.  If we have been configured to panic under
     2877 +                         * this condition, we panic; if to warn, we warn -- and
     2878 +                         * regardless, we log to the kmem_zerosized_log that
     2879 +                         * that this condition has occurred (which gives us
     2880 +                         * enough information to be able to debug it).
     2881 +                         */
     2882 +                        if (kmem_panic && kmem_panic_zerosized)
     2883 +                                panic("attempted to kmem_alloc() size of 0");
     2884 +
     2885 +                        if (kmem_warn_zerosized) {
     2886 +                                cmn_err(CE_WARN, "kmem_alloc(): sleeping "
     2887 +                                    "allocation with size of 0; "
     2888 +                                    "see kmem_zerosized_log for details");
     2889 +                        }
     2890 +
     2891 +                        kmem_log_event(kmem_zerosized_log, NULL, NULL, NULL);
     2892 +
2857 2893                          return (NULL);
     2894 +                }
2858 2895  
2859 2896                  buf = vmem_alloc(kmem_oversize_arena, size,
2860 2897                      kmflag & KM_VMFLAGS);
2861 2898                  if (buf == NULL)
2862 2899                          kmem_log_event(kmem_failure_log, NULL, NULL,
2863 2900                              (void *)size);
2864 2901                  else if (KMEM_DUMP(kmem_slab_cache)) {
2865 2902                          /* stats for dump intercept */
2866 2903                          kmem_dump_oversize_allocs++;
2867 2904                          if (size > kmem_dump_oversize_max)
2868 2905                                  kmem_dump_oversize_max = size;
2869 2906                  }
2870 2907                  return (buf);
2871 2908          }
2872 2909  
2873 2910          buf = kmem_cache_alloc(cp, kmflag);
2874 2911          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2875 2912                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2876 2913                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2877 2914                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2878 2915  
2879 2916                  if (cp->cache_flags & KMF_LITE) {
2880 2917                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2881 2918                  }
2882 2919          }
2883 2920          return (buf);
2884 2921  }
2885 2922  
2886 2923  void
2887 2924  kmem_free(void *buf, size_t size)
2888 2925  {
2889 2926          size_t index;
2890 2927          kmem_cache_t *cp;
2891 2928  
2892 2929          if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2893 2930                  cp = kmem_alloc_table[index];
2894 2931                  /* fall through to kmem_cache_free() */
2895 2932  
2896 2933          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2897 2934              kmem_big_alloc_table_max) {
2898 2935                  cp = kmem_big_alloc_table[index];
2899 2936                  /* fall through to kmem_cache_free() */
2900 2937  
2901 2938          } else {
2902 2939                  EQUIV(buf == NULL, size == 0);
2903 2940                  if (buf == NULL && size == 0)
2904 2941                          return;
2905 2942                  vmem_free(kmem_oversize_arena, buf, size);
2906 2943                  return;
2907 2944          }
2908 2945  
2909 2946          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2910 2947                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2911 2948                  uint32_t *ip = (uint32_t *)btp;
2912 2949                  if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2913 2950                          if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2914 2951                                  kmem_error(KMERR_DUPFREE, cp, buf);
2915 2952                                  return;
2916 2953                          }
2917 2954                          if (KMEM_SIZE_VALID(ip[1])) {
2918 2955                                  ip[0] = KMEM_SIZE_ENCODE(size);
2919 2956                                  kmem_error(KMERR_BADSIZE, cp, buf);
2920 2957                          } else {
2921 2958                                  kmem_error(KMERR_REDZONE, cp, buf);
2922 2959                          }
2923 2960                          return;
2924 2961                  }
2925 2962                  if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2926 2963                          kmem_error(KMERR_REDZONE, cp, buf);
2927 2964                          return;
2928 2965                  }
2929 2966                  btp->bt_redzone = KMEM_REDZONE_PATTERN;
2930 2967                  if (cp->cache_flags & KMF_LITE) {
2931 2968                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2932 2969                              caller());
2933 2970                  }
2934 2971          }
2935 2972          kmem_cache_free(cp, buf);
2936 2973  }
2937 2974  
2938 2975  void *
2939 2976  kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2940 2977  {
2941 2978          size_t realsize = size + vmp->vm_quantum;
2942 2979          void *addr;
2943 2980  
2944 2981          /*
2945 2982           * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2946 2983           * vm_quantum will cause integer wraparound.  Check for this, and
2947 2984           * blow off the firewall page in this case.  Note that such a
2948 2985           * giant allocation (the entire kernel address space) can never
2949 2986           * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2950 2987           * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2951 2988           * corresponding check in kmem_firewall_va_free().
2952 2989           */
2953 2990          if (realsize < size)
2954 2991                  realsize = size;
2955 2992  
2956 2993          /*
2957 2994           * While boot still owns resource management, make sure that this
2958 2995           * redzone virtual address allocation is properly accounted for in
2959 2996           * OBPs "virtual-memory" "available" lists because we're
2960 2997           * effectively claiming them for a red zone.  If we don't do this,
2961 2998           * the available lists become too fragmented and too large for the
2962 2999           * current boot/kernel memory list interface.
2963 3000           */
2964 3001          addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
2965 3002  
2966 3003          if (addr != NULL && kvseg.s_base == NULL && realsize != size)
2967 3004                  (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
2968 3005  
2969 3006          return (addr);
2970 3007  }
2971 3008  
2972 3009  void
2973 3010  kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2974 3011  {
2975 3012          ASSERT((kvseg.s_base == NULL ?
2976 3013              va_to_pfn((char *)addr + size) :
2977 3014              hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
2978 3015  
2979 3016          vmem_free(vmp, addr, size + vmp->vm_quantum);
2980 3017  }
2981 3018  
2982 3019  /*
2983 3020   * Try to allocate at least `size' bytes of memory without sleeping or
2984 3021   * panicking. Return actual allocated size in `asize'. If allocation failed,
2985 3022   * try final allocation with sleep or panic allowed.
2986 3023   */
2987 3024  void *
2988 3025  kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
2989 3026  {
2990 3027          void *p;
2991 3028  
2992 3029          *asize = P2ROUNDUP(size, KMEM_ALIGN);
2993 3030          do {
2994 3031                  p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
2995 3032                  if (p != NULL)
2996 3033                          return (p);
2997 3034                  *asize += KMEM_ALIGN;
2998 3035          } while (*asize <= PAGESIZE);
2999 3036  
3000 3037          *asize = P2ROUNDUP(size, KMEM_ALIGN);
3001 3038          return (kmem_alloc(*asize, kmflag));
3002 3039  }
3003 3040  
3004 3041  /*
3005 3042   * Reclaim all unused memory from a cache.
3006 3043   */
3007 3044  static void
3008 3045  kmem_cache_reap(kmem_cache_t *cp)
3009 3046  {
3010 3047          ASSERT(taskq_member(kmem_taskq, curthread));
3011 3048          cp->cache_reap++;
3012 3049  
3013 3050          /*
3014 3051           * Ask the cache's owner to free some memory if possible.
3015 3052           * The idea is to handle things like the inode cache, which
3016 3053           * typically sits on a bunch of memory that it doesn't truly
3017 3054           * *need*.  Reclaim policy is entirely up to the owner; this
3018 3055           * callback is just an advisory plea for help.
3019 3056           */
3020 3057          if (cp->cache_reclaim != NULL) {
3021 3058                  long delta;
3022 3059  
3023 3060                  /*
3024 3061                   * Reclaimed memory should be reapable (not included in the
3025 3062                   * depot's working set).
3026 3063                   */
3027 3064                  delta = cp->cache_full.ml_total;
3028 3065                  cp->cache_reclaim(cp->cache_private);
3029 3066                  delta = cp->cache_full.ml_total - delta;
3030 3067                  if (delta > 0) {
3031 3068                          mutex_enter(&cp->cache_depot_lock);
3032 3069                          cp->cache_full.ml_reaplimit += delta;
3033 3070                          cp->cache_full.ml_min += delta;
3034 3071                          mutex_exit(&cp->cache_depot_lock);
3035 3072                  }
3036 3073          }
3037 3074  
3038 3075          kmem_depot_ws_reap(cp);
3039 3076  
3040 3077          if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3041 3078                  kmem_cache_defrag(cp);
3042 3079          }
3043 3080  }
3044 3081  
3045 3082  static void
3046 3083  kmem_reap_timeout(void *flag_arg)
3047 3084  {
3048 3085          uint32_t *flag = (uint32_t *)flag_arg;
3049 3086  
3050 3087          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3051 3088          *flag = 0;
3052 3089  }
3053 3090  
3054 3091  static void
3055 3092  kmem_reap_done(void *flag)
3056 3093  {
3057 3094          if (!callout_init_done) {
3058 3095                  /* can't schedule a timeout at this point */
3059 3096                  kmem_reap_timeout(flag);
3060 3097          } else {
3061 3098                  (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3062 3099          }
3063 3100  }
3064 3101  
3065 3102  static void
3066 3103  kmem_reap_start(void *flag)
3067 3104  {
3068 3105          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3069 3106  
3070 3107          if (flag == &kmem_reaping) {
3071 3108                  kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3072 3109                  /*
3073 3110                   * if we have segkp under heap, reap segkp cache.
3074 3111                   */
3075 3112                  if (segkp_fromheap)
3076 3113                          segkp_cache_free();
3077 3114          }
3078 3115          else
3079 3116                  kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3080 3117  
3081 3118          /*
3082 3119           * We use taskq_dispatch() to schedule a timeout to clear
3083 3120           * the flag so that kmem_reap() becomes self-throttling:
3084 3121           * we won't reap again until the current reap completes *and*
3085 3122           * at least kmem_reap_interval ticks have elapsed.
3086 3123           */
3087 3124          if (taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP) ==
3088 3125              TASKQID_INVALID)
3089 3126                  kmem_reap_done(flag);
3090 3127  }
3091 3128  
3092 3129  static void
3093 3130  kmem_reap_common(void *flag_arg)
3094 3131  {
3095 3132          uint32_t *flag = (uint32_t *)flag_arg;
3096 3133  
3097 3134          if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3098 3135              atomic_cas_32(flag, 0, 1) != 0)
3099 3136                  return;
3100 3137  
3101 3138          /*
3102 3139           * It may not be kosher to do memory allocation when a reap is called
3103 3140           * (for example, if vmem_populate() is in the call chain).  So we
3104 3141           * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3105 3142           * fails, we reset the flag, and the next reap will try again.
3106 3143           */
3107 3144          if (taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC) ==
3108 3145              TASKQID_INVALID)
3109 3146                  *flag = 0;
3110 3147  }
3111 3148  
3112 3149  /*
3113 3150   * Reclaim all unused memory from all caches.  Called from the VM system
3114 3151   * when memory gets tight.
3115 3152   */
3116 3153  void
3117 3154  kmem_reap(void)
3118 3155  {
3119 3156          kmem_reap_common(&kmem_reaping);
3120 3157  }
3121 3158  
3122 3159  /*
3123 3160   * Reclaim all unused memory from identifier arenas, called when a vmem
3124 3161   * arena not back by memory is exhausted.  Since reaping memory-backed caches
3125 3162   * cannot help with identifier exhaustion, we avoid both a large amount of
3126 3163   * work and unwanted side-effects from reclaim callbacks.
3127 3164   */
3128 3165  void
3129 3166  kmem_reap_idspace(void)
3130 3167  {
3131 3168          kmem_reap_common(&kmem_reaping_idspace);
3132 3169  }
3133 3170  
3134 3171  /*
3135 3172   * Purge all magazines from a cache and set its magazine limit to zero.
3136 3173   * All calls are serialized by the kmem_taskq lock, except for the final
3137 3174   * call from kmem_cache_destroy().
3138 3175   */
3139 3176  static void
3140 3177  kmem_cache_magazine_purge(kmem_cache_t *cp)
3141 3178  {
3142 3179          kmem_cpu_cache_t *ccp;
3143 3180          kmem_magazine_t *mp, *pmp;
3144 3181          int rounds, prounds, cpu_seqid;
3145 3182  
3146 3183          ASSERT(!list_link_active(&cp->cache_link) ||
3147 3184              taskq_member(kmem_taskq, curthread));
3148 3185          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3149 3186  
3150 3187          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3151 3188                  ccp = &cp->cache_cpu[cpu_seqid];
3152 3189  
3153 3190                  mutex_enter(&ccp->cc_lock);
3154 3191                  mp = ccp->cc_loaded;
3155 3192                  pmp = ccp->cc_ploaded;
3156 3193                  rounds = ccp->cc_rounds;
3157 3194                  prounds = ccp->cc_prounds;
3158 3195                  ccp->cc_loaded = NULL;
3159 3196                  ccp->cc_ploaded = NULL;
3160 3197                  ccp->cc_rounds = -1;
3161 3198                  ccp->cc_prounds = -1;
3162 3199                  ccp->cc_magsize = 0;
3163 3200                  mutex_exit(&ccp->cc_lock);
3164 3201  
3165 3202                  if (mp)
3166 3203                          kmem_magazine_destroy(cp, mp, rounds);
3167 3204                  if (pmp)
3168 3205                          kmem_magazine_destroy(cp, pmp, prounds);
3169 3206          }
3170 3207  
3171 3208          kmem_depot_ws_zero(cp);
3172 3209          kmem_depot_ws_reap(cp);
3173 3210  }
3174 3211  
3175 3212  /*
3176 3213   * Enable per-cpu magazines on a cache.
3177 3214   */
3178 3215  static void
3179 3216  kmem_cache_magazine_enable(kmem_cache_t *cp)
3180 3217  {
3181 3218          int cpu_seqid;
3182 3219  
3183 3220          if (cp->cache_flags & KMF_NOMAGAZINE)
3184 3221                  return;
3185 3222  
3186 3223          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3187 3224                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3188 3225                  mutex_enter(&ccp->cc_lock);
3189 3226                  ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3190 3227                  mutex_exit(&ccp->cc_lock);
3191 3228          }
3192 3229  
3193 3230  }
3194 3231  
3195 3232  /*
3196 3233   * Allow our caller to determine if there are running reaps.
3197 3234   *
3198 3235   * This call is very conservative and may return B_TRUE even when
3199 3236   * reaping activity isn't active. If it returns B_FALSE, then reaping
3200 3237   * activity is definitely inactive.
3201 3238   */
3202 3239  boolean_t
3203 3240  kmem_cache_reap_active(void)
3204 3241  {
3205 3242          return (!taskq_empty(kmem_taskq));
3206 3243  }
3207 3244  
3208 3245  /*
3209 3246   * Reap (almost) everything soon.
3210 3247   *
3211 3248   * Note: this does not wait for the reap-tasks to complete. Caller
3212 3249   * should use kmem_cache_reap_active() (above) and/or moderation to
3213 3250   * avoid scheduling too many reap-tasks.
3214 3251   */
3215 3252  void
3216 3253  kmem_cache_reap_soon(kmem_cache_t *cp)
3217 3254  {
3218 3255          ASSERT(list_link_active(&cp->cache_link));
3219 3256  
3220 3257          kmem_depot_ws_zero(cp);
3221 3258  
3222 3259          (void) taskq_dispatch(kmem_taskq,
3223 3260              (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3224 3261  }
3225 3262  
3226 3263  /*
3227 3264   * Recompute a cache's magazine size.  The trade-off is that larger magazines
3228 3265   * provide a higher transfer rate with the depot, while smaller magazines
3229 3266   * reduce memory consumption.  Magazine resizing is an expensive operation;
3230 3267   * it should not be done frequently.
3231 3268   *
3232 3269   * Changes to the magazine size are serialized by the kmem_taskq lock.
3233 3270   *
3234 3271   * Note: at present this only grows the magazine size.  It might be useful
3235 3272   * to allow shrinkage too.
3236 3273   */
3237 3274  static void
3238 3275  kmem_cache_magazine_resize(kmem_cache_t *cp)
3239 3276  {
3240 3277          kmem_magtype_t *mtp = cp->cache_magtype;
3241 3278  
3242 3279          ASSERT(taskq_member(kmem_taskq, curthread));
3243 3280  
3244 3281          if (cp->cache_chunksize < mtp->mt_maxbuf) {
3245 3282                  kmem_cache_magazine_purge(cp);
3246 3283                  mutex_enter(&cp->cache_depot_lock);
3247 3284                  cp->cache_magtype = ++mtp;
3248 3285                  cp->cache_depot_contention_prev =
3249 3286                      cp->cache_depot_contention + INT_MAX;
3250 3287                  mutex_exit(&cp->cache_depot_lock);
3251 3288                  kmem_cache_magazine_enable(cp);
3252 3289          }
3253 3290  }
3254 3291  
3255 3292  /*
3256 3293   * Rescale a cache's hash table, so that the table size is roughly the
3257 3294   * cache size.  We want the average lookup time to be extremely small.
3258 3295   */
3259 3296  static void
3260 3297  kmem_hash_rescale(kmem_cache_t *cp)
3261 3298  {
3262 3299          kmem_bufctl_t **old_table, **new_table, *bcp;
3263 3300          size_t old_size, new_size, h;
3264 3301  
3265 3302          ASSERT(taskq_member(kmem_taskq, curthread));
3266 3303  
3267 3304          new_size = MAX(KMEM_HASH_INITIAL,
3268 3305              1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3269 3306          old_size = cp->cache_hash_mask + 1;
3270 3307  
3271 3308          if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3272 3309                  return;
3273 3310  
3274 3311          new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3275 3312              VM_NOSLEEP);
3276 3313          if (new_table == NULL)
3277 3314                  return;
3278 3315          bzero(new_table, new_size * sizeof (void *));
3279 3316  
3280 3317          mutex_enter(&cp->cache_lock);
3281 3318  
3282 3319          old_size = cp->cache_hash_mask + 1;
3283 3320          old_table = cp->cache_hash_table;
3284 3321  
3285 3322          cp->cache_hash_mask = new_size - 1;
3286 3323          cp->cache_hash_table = new_table;
3287 3324          cp->cache_rescale++;
3288 3325  
3289 3326          for (h = 0; h < old_size; h++) {
3290 3327                  bcp = old_table[h];
3291 3328                  while (bcp != NULL) {
3292 3329                          void *addr = bcp->bc_addr;
3293 3330                          kmem_bufctl_t *next_bcp = bcp->bc_next;
3294 3331                          kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3295 3332                          bcp->bc_next = *hash_bucket;
3296 3333                          *hash_bucket = bcp;
3297 3334                          bcp = next_bcp;
3298 3335                  }
3299 3336          }
3300 3337  
3301 3338          mutex_exit(&cp->cache_lock);
3302 3339  
3303 3340          vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3304 3341  }
3305 3342  
3306 3343  /*
3307 3344   * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3308 3345   * update, magazine resizing, and slab consolidation.
3309 3346   */
3310 3347  static void
3311 3348  kmem_cache_update(kmem_cache_t *cp)
3312 3349  {
3313 3350          int need_hash_rescale = 0;
3314 3351          int need_magazine_resize = 0;
3315 3352  
3316 3353          ASSERT(MUTEX_HELD(&kmem_cache_lock));
3317 3354  
3318 3355          /*
3319 3356           * If the cache has become much larger or smaller than its hash table,
3320 3357           * fire off a request to rescale the hash table.
3321 3358           */
3322 3359          mutex_enter(&cp->cache_lock);
3323 3360  
3324 3361          if ((cp->cache_flags & KMF_HASH) &&
3325 3362              (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3326 3363              (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3327 3364              cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3328 3365                  need_hash_rescale = 1;
3329 3366  
3330 3367          mutex_exit(&cp->cache_lock);
3331 3368  
3332 3369          /*
3333 3370           * Update the depot working set statistics.
3334 3371           */
3335 3372          kmem_depot_ws_update(cp);
3336 3373  
3337 3374          /*
3338 3375           * If there's a lot of contention in the depot,
3339 3376           * increase the magazine size.
3340 3377           */
3341 3378          mutex_enter(&cp->cache_depot_lock);
3342 3379  
3343 3380          if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3344 3381              (int)(cp->cache_depot_contention -
3345 3382              cp->cache_depot_contention_prev) > kmem_depot_contention)
3346 3383                  need_magazine_resize = 1;
3347 3384  
3348 3385          cp->cache_depot_contention_prev = cp->cache_depot_contention;
3349 3386  
3350 3387          mutex_exit(&cp->cache_depot_lock);
3351 3388  
3352 3389          if (need_hash_rescale)
3353 3390                  (void) taskq_dispatch(kmem_taskq,
3354 3391                      (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3355 3392  
3356 3393          if (need_magazine_resize)
3357 3394                  (void) taskq_dispatch(kmem_taskq,
3358 3395                      (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3359 3396  
3360 3397          if (cp->cache_defrag != NULL)
3361 3398                  (void) taskq_dispatch(kmem_taskq,
3362 3399                      (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3363 3400  }
3364 3401  
3365 3402  static void kmem_update(void *);
3366 3403  
3367 3404  static void
3368 3405  kmem_update_timeout(void *dummy)
3369 3406  {
3370 3407          (void) timeout(kmem_update, dummy, kmem_reap_interval);
3371 3408  }
3372 3409  
3373 3410  static void
3374 3411  kmem_update(void *dummy)
3375 3412  {
3376 3413          kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3377 3414  
3378 3415          /*
3379 3416           * We use taskq_dispatch() to reschedule the timeout so that
3380 3417           * kmem_update() becomes self-throttling: it won't schedule
3381 3418           * new tasks until all previous tasks have completed.
3382 3419           */
3383 3420          if (taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)
3384 3421              == TASKQID_INVALID)
3385 3422                  kmem_update_timeout(NULL);
3386 3423  }
3387 3424  
3388 3425  static int
3389 3426  kmem_cache_kstat_update(kstat_t *ksp, int rw)
3390 3427  {
3391 3428          struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3392 3429          kmem_cache_t *cp = ksp->ks_private;
3393 3430          uint64_t cpu_buf_avail;
3394 3431          uint64_t buf_avail = 0;
3395 3432          int cpu_seqid;
3396 3433          long reap;
3397 3434  
3398 3435          ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3399 3436  
3400 3437          if (rw == KSTAT_WRITE)
3401 3438                  return (EACCES);
3402 3439  
3403 3440          mutex_enter(&cp->cache_lock);
3404 3441  
3405 3442          kmcp->kmc_alloc_fail.value.ui64         = cp->cache_alloc_fail;
3406 3443          kmcp->kmc_alloc.value.ui64              = cp->cache_slab_alloc;
3407 3444          kmcp->kmc_free.value.ui64               = cp->cache_slab_free;
3408 3445          kmcp->kmc_slab_alloc.value.ui64         = cp->cache_slab_alloc;
3409 3446          kmcp->kmc_slab_free.value.ui64          = cp->cache_slab_free;
3410 3447  
3411 3448          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3412 3449                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3413 3450  
3414 3451                  mutex_enter(&ccp->cc_lock);
3415 3452  
3416 3453                  cpu_buf_avail = 0;
3417 3454                  if (ccp->cc_rounds > 0)
3418 3455                          cpu_buf_avail += ccp->cc_rounds;
3419 3456                  if (ccp->cc_prounds > 0)
3420 3457                          cpu_buf_avail += ccp->cc_prounds;
3421 3458  
3422 3459                  kmcp->kmc_alloc.value.ui64      += ccp->cc_alloc;
3423 3460                  kmcp->kmc_free.value.ui64       += ccp->cc_free;
3424 3461                  buf_avail                       += cpu_buf_avail;
3425 3462  
3426 3463                  mutex_exit(&ccp->cc_lock);
3427 3464          }
3428 3465  
3429 3466          mutex_enter(&cp->cache_depot_lock);
3430 3467  
3431 3468          kmcp->kmc_depot_alloc.value.ui64        = cp->cache_full.ml_alloc;
3432 3469          kmcp->kmc_depot_free.value.ui64         = cp->cache_empty.ml_alloc;
3433 3470          kmcp->kmc_depot_contention.value.ui64   = cp->cache_depot_contention;
3434 3471          kmcp->kmc_full_magazines.value.ui64     = cp->cache_full.ml_total;
3435 3472          kmcp->kmc_empty_magazines.value.ui64    = cp->cache_empty.ml_total;
3436 3473          kmcp->kmc_magazine_size.value.ui64      =
3437 3474              (cp->cache_flags & KMF_NOMAGAZINE) ?
3438 3475              0 : cp->cache_magtype->mt_magsize;
3439 3476  
3440 3477          kmcp->kmc_alloc.value.ui64              += cp->cache_full.ml_alloc;
3441 3478          kmcp->kmc_free.value.ui64               += cp->cache_empty.ml_alloc;
3442 3479          buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3443 3480  
3444 3481          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3445 3482          reap = MIN(reap, cp->cache_full.ml_total);
3446 3483  
3447 3484          mutex_exit(&cp->cache_depot_lock);
3448 3485  
3449 3486          kmcp->kmc_buf_size.value.ui64   = cp->cache_bufsize;
3450 3487          kmcp->kmc_align.value.ui64      = cp->cache_align;
3451 3488          kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
3452 3489          kmcp->kmc_slab_size.value.ui64  = cp->cache_slabsize;
3453 3490          kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3454 3491          buf_avail += cp->cache_bufslab;
3455 3492          kmcp->kmc_buf_avail.value.ui64  = buf_avail;
3456 3493          kmcp->kmc_buf_inuse.value.ui64  = cp->cache_buftotal - buf_avail;
3457 3494          kmcp->kmc_buf_total.value.ui64  = cp->cache_buftotal;
3458 3495          kmcp->kmc_buf_max.value.ui64    = cp->cache_bufmax;
3459 3496          kmcp->kmc_slab_create.value.ui64        = cp->cache_slab_create;
3460 3497          kmcp->kmc_slab_destroy.value.ui64       = cp->cache_slab_destroy;
3461 3498          kmcp->kmc_hash_size.value.ui64  = (cp->cache_flags & KMF_HASH) ?
3462 3499              cp->cache_hash_mask + 1 : 0;
3463 3500          kmcp->kmc_hash_lookup_depth.value.ui64  = cp->cache_lookup_depth;
3464 3501          kmcp->kmc_hash_rescale.value.ui64       = cp->cache_rescale;
3465 3502          kmcp->kmc_vmem_source.value.ui64        = cp->cache_arena->vm_id;
3466 3503          kmcp->kmc_reap.value.ui64       = cp->cache_reap;
3467 3504  
3468 3505          if (cp->cache_defrag == NULL) {
3469 3506                  kmcp->kmc_move_callbacks.value.ui64     = 0;
3470 3507                  kmcp->kmc_move_yes.value.ui64           = 0;
3471 3508                  kmcp->kmc_move_no.value.ui64            = 0;
3472 3509                  kmcp->kmc_move_later.value.ui64         = 0;
3473 3510                  kmcp->kmc_move_dont_need.value.ui64     = 0;
3474 3511                  kmcp->kmc_move_dont_know.value.ui64     = 0;
3475 3512                  kmcp->kmc_move_hunt_found.value.ui64    = 0;
3476 3513                  kmcp->kmc_move_slabs_freed.value.ui64   = 0;
3477 3514                  kmcp->kmc_defrag.value.ui64             = 0;
3478 3515                  kmcp->kmc_scan.value.ui64               = 0;
3479 3516                  kmcp->kmc_move_reclaimable.value.ui64   = 0;
3480 3517          } else {
3481 3518                  int64_t reclaimable;
3482 3519  
3483 3520                  kmem_defrag_t *kd = cp->cache_defrag;
3484 3521                  kmcp->kmc_move_callbacks.value.ui64     = kd->kmd_callbacks;
3485 3522                  kmcp->kmc_move_yes.value.ui64           = kd->kmd_yes;
3486 3523                  kmcp->kmc_move_no.value.ui64            = kd->kmd_no;
3487 3524                  kmcp->kmc_move_later.value.ui64         = kd->kmd_later;
3488 3525                  kmcp->kmc_move_dont_need.value.ui64     = kd->kmd_dont_need;
3489 3526                  kmcp->kmc_move_dont_know.value.ui64     = kd->kmd_dont_know;
3490 3527                  kmcp->kmc_move_hunt_found.value.ui64    = 0;
3491 3528                  kmcp->kmc_move_slabs_freed.value.ui64   = kd->kmd_slabs_freed;
3492 3529                  kmcp->kmc_defrag.value.ui64             = kd->kmd_defrags;
3493 3530                  kmcp->kmc_scan.value.ui64               = kd->kmd_scans;
3494 3531  
3495 3532                  reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3496 3533                  reclaimable = MAX(reclaimable, 0);
3497 3534                  reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3498 3535                  kmcp->kmc_move_reclaimable.value.ui64   = reclaimable;
3499 3536          }
3500 3537  
3501 3538          mutex_exit(&cp->cache_lock);
3502 3539          return (0);
3503 3540  }
3504 3541  
3505 3542  /*
3506 3543   * Return a named statistic about a particular cache.
3507 3544   * This shouldn't be called very often, so it's currently designed for
3508 3545   * simplicity (leverages existing kstat support) rather than efficiency.
3509 3546   */
3510 3547  uint64_t
3511 3548  kmem_cache_stat(kmem_cache_t *cp, char *name)
3512 3549  {
3513 3550          int i;
3514 3551          kstat_t *ksp = cp->cache_kstat;
3515 3552          kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3516 3553          uint64_t value = 0;
3517 3554  
3518 3555          if (ksp != NULL) {
3519 3556                  mutex_enter(&kmem_cache_kstat_lock);
3520 3557                  (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3521 3558                  for (i = 0; i < ksp->ks_ndata; i++) {
3522 3559                          if (strcmp(knp[i].name, name) == 0) {
3523 3560                                  value = knp[i].value.ui64;
3524 3561                                  break;
3525 3562                          }
3526 3563                  }
3527 3564                  mutex_exit(&kmem_cache_kstat_lock);
3528 3565          }
3529 3566          return (value);
3530 3567  }
3531 3568  
3532 3569  /*
3533 3570   * Return an estimate of currently available kernel heap memory.
3534 3571   * On 32-bit systems, physical memory may exceed virtual memory,
3535 3572   * we just truncate the result at 1GB.
3536 3573   */
3537 3574  size_t
3538 3575  kmem_avail(void)
3539 3576  {
3540 3577          spgcnt_t rmem = availrmem - tune.t_minarmem;
3541 3578          spgcnt_t fmem = freemem - minfree;
3542 3579  
3543 3580          return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3544 3581              1 << (30 - PAGESHIFT))));
3545 3582  }
3546 3583  
3547 3584  /*
3548 3585   * Return the maximum amount of memory that is (in theory) allocatable
3549 3586   * from the heap. This may be used as an estimate only since there
3550 3587   * is no guarentee this space will still be available when an allocation
3551 3588   * request is made, nor that the space may be allocated in one big request
3552 3589   * due to kernel heap fragmentation.
3553 3590   */
3554 3591  size_t
3555 3592  kmem_maxavail(void)
3556 3593  {
3557 3594          spgcnt_t pmem = availrmem - tune.t_minarmem;
3558 3595          spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3559 3596  
3560 3597          return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3561 3598  }
3562 3599  
3563 3600  /*
3564 3601   * Indicate whether memory-intensive kmem debugging is enabled.
3565 3602   */
3566 3603  int
3567 3604  kmem_debugging(void)
3568 3605  {
3569 3606          return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3570 3607  }
3571 3608  
3572 3609  /* binning function, sorts finely at the two extremes */
3573 3610  #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3574 3611          ((((sp)->slab_refcnt <= (binshift)) ||                          \
3575 3612              (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))    \
3576 3613              ? -(sp)->slab_refcnt                                        \
3577 3614              : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3578 3615  
3579 3616  /*
3580 3617   * Minimizing the number of partial slabs on the freelist minimizes
3581 3618   * fragmentation (the ratio of unused buffers held by the slab layer). There are
3582 3619   * two ways to get a slab off of the freelist: 1) free all the buffers on the
3583 3620   * slab, and 2) allocate all the buffers on the slab. It follows that we want
3584 3621   * the most-used slabs at the front of the list where they have the best chance
3585 3622   * of being completely allocated, and the least-used slabs at a safe distance
3586 3623   * from the front to improve the odds that the few remaining buffers will all be
3587 3624   * freed before another allocation can tie up the slab. For that reason a slab
3588 3625   * with a higher slab_refcnt sorts less than than a slab with a lower
3589 3626   * slab_refcnt.
3590 3627   *
3591 3628   * However, if a slab has at least one buffer that is deemed unfreeable, we
3592 3629   * would rather have that slab at the front of the list regardless of
3593 3630   * slab_refcnt, since even one unfreeable buffer makes the entire slab
3594 3631   * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3595 3632   * callback, the slab is marked unfreeable for as long as it remains on the
3596 3633   * freelist.
3597 3634   */
3598 3635  static int
3599 3636  kmem_partial_slab_cmp(const void *p0, const void *p1)
3600 3637  {
3601 3638          const kmem_cache_t *cp;
3602 3639          const kmem_slab_t *s0 = p0;
3603 3640          const kmem_slab_t *s1 = p1;
3604 3641          int w0, w1;
3605 3642          size_t binshift;
3606 3643  
3607 3644          ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3608 3645          ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3609 3646          ASSERT(s0->slab_cache == s1->slab_cache);
3610 3647          cp = s1->slab_cache;
3611 3648          ASSERT(MUTEX_HELD(&cp->cache_lock));
3612 3649          binshift = cp->cache_partial_binshift;
3613 3650  
3614 3651          /* weight of first slab */
3615 3652          w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3616 3653          if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3617 3654                  w0 -= cp->cache_maxchunks;
3618 3655          }
3619 3656  
3620 3657          /* weight of second slab */
3621 3658          w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3622 3659          if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3623 3660                  w1 -= cp->cache_maxchunks;
3624 3661          }
3625 3662  
3626 3663          if (w0 < w1)
3627 3664                  return (-1);
3628 3665          if (w0 > w1)
3629 3666                  return (1);
3630 3667  
3631 3668          /* compare pointer values */
3632 3669          if ((uintptr_t)s0 < (uintptr_t)s1)
3633 3670                  return (-1);
3634 3671          if ((uintptr_t)s0 > (uintptr_t)s1)
3635 3672                  return (1);
3636 3673  
3637 3674          return (0);
3638 3675  }
3639 3676  
3640 3677  /*
3641 3678   * It must be valid to call the destructor (if any) on a newly created object.
3642 3679   * That is, the constructor (if any) must leave the object in a valid state for
3643 3680   * the destructor.
3644 3681   */
3645 3682  kmem_cache_t *
3646 3683  kmem_cache_create(
3647 3684          char *name,             /* descriptive name for this cache */
3648 3685          size_t bufsize,         /* size of the objects it manages */
3649 3686          size_t align,           /* required object alignment */
3650 3687          int (*constructor)(void *, void *, int), /* object constructor */
3651 3688          void (*destructor)(void *, void *),     /* object destructor */
3652 3689          void (*reclaim)(void *), /* memory reclaim callback */
3653 3690          void *private,          /* pass-thru arg for constr/destr/reclaim */
3654 3691          vmem_t *vmp,            /* vmem source for slab allocation */
3655 3692          int cflags)             /* cache creation flags */
3656 3693  {
3657 3694          int cpu_seqid;
3658 3695          size_t chunksize;
3659 3696          kmem_cache_t *cp;
3660 3697          kmem_magtype_t *mtp;
3661 3698          size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3662 3699  
3663 3700  #ifdef  DEBUG
3664 3701          /*
3665 3702           * Cache names should conform to the rules for valid C identifiers
3666 3703           */
3667 3704          if (!strident_valid(name)) {
3668 3705                  cmn_err(CE_CONT,
3669 3706                      "kmem_cache_create: '%s' is an invalid cache name\n"
3670 3707                      "cache names must conform to the rules for "
3671 3708                      "C identifiers\n", name);
3672 3709          }
3673 3710  #endif  /* DEBUG */
3674 3711  
3675 3712          if (vmp == NULL)
3676 3713                  vmp = kmem_default_arena;
3677 3714  
3678 3715          /*
3679 3716           * If this kmem cache has an identifier vmem arena as its source, mark
3680 3717           * it such to allow kmem_reap_idspace().
3681 3718           */
3682 3719          ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3683 3720          if (vmp->vm_cflags & VMC_IDENTIFIER)
3684 3721                  cflags |= KMC_IDENTIFIER;
3685 3722  
3686 3723          /*
3687 3724           * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3688 3725           * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3689 3726           * false sharing of per-CPU data.
3690 3727           */
3691 3728          cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3692 3729              P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3693 3730          bzero(cp, csize);
3694 3731          list_link_init(&cp->cache_link);
3695 3732  
3696 3733          if (align == 0)
3697 3734                  align = KMEM_ALIGN;
3698 3735  
3699 3736          /*
3700 3737           * If we're not at least KMEM_ALIGN aligned, we can't use free
3701 3738           * memory to hold bufctl information (because we can't safely
3702 3739           * perform word loads and stores on it).
3703 3740           */
3704 3741          if (align < KMEM_ALIGN)
3705 3742                  cflags |= KMC_NOTOUCH;
3706 3743  
3707 3744          if (!ISP2(align) || align > vmp->vm_quantum)
3708 3745                  panic("kmem_cache_create: bad alignment %lu", align);
3709 3746  
3710 3747          mutex_enter(&kmem_flags_lock);
3711 3748          if (kmem_flags & KMF_RANDOMIZE)
3712 3749                  kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3713 3750                      KMF_RANDOMIZE;
3714 3751          cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3715 3752          mutex_exit(&kmem_flags_lock);
3716 3753  
3717 3754          /*
3718 3755           * Make sure all the various flags are reasonable.
3719 3756           */
3720 3757          ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3721 3758  
3722 3759          if (cp->cache_flags & KMF_LITE) {
3723 3760                  if (bufsize >= kmem_lite_minsize &&
3724 3761                      align <= kmem_lite_maxalign &&
3725 3762                      P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3726 3763                          cp->cache_flags |= KMF_BUFTAG;
3727 3764                          cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3728 3765                  } else {
3729 3766                          cp->cache_flags &= ~KMF_DEBUG;
3730 3767                  }
3731 3768          }
3732 3769  
3733 3770          if (cp->cache_flags & KMF_DEADBEEF)
3734 3771                  cp->cache_flags |= KMF_REDZONE;
3735 3772  
3736 3773          if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3737 3774                  cp->cache_flags |= KMF_NOMAGAZINE;
3738 3775  
3739 3776          if (cflags & KMC_NODEBUG)
3740 3777                  cp->cache_flags &= ~KMF_DEBUG;
3741 3778  
3742 3779          if (cflags & KMC_NOTOUCH)
3743 3780                  cp->cache_flags &= ~KMF_TOUCH;
3744 3781  
3745 3782          if (cflags & KMC_PREFILL)
3746 3783                  cp->cache_flags |= KMF_PREFILL;
3747 3784  
3748 3785          if (cflags & KMC_NOHASH)
3749 3786                  cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3750 3787  
3751 3788          if (cflags & KMC_NOMAGAZINE)
3752 3789                  cp->cache_flags |= KMF_NOMAGAZINE;
3753 3790  
3754 3791          if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3755 3792                  cp->cache_flags |= KMF_REDZONE;
3756 3793  
3757 3794          if (!(cp->cache_flags & KMF_AUDIT))
3758 3795                  cp->cache_flags &= ~KMF_CONTENTS;
3759 3796  
3760 3797          if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3761 3798              !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3762 3799                  cp->cache_flags |= KMF_FIREWALL;
3763 3800  
3764 3801          if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3765 3802                  cp->cache_flags &= ~KMF_FIREWALL;
3766 3803  
3767 3804          if (cp->cache_flags & KMF_FIREWALL) {
3768 3805                  cp->cache_flags &= ~KMF_BUFTAG;
3769 3806                  cp->cache_flags |= KMF_NOMAGAZINE;
3770 3807                  ASSERT(vmp == kmem_default_arena);
3771 3808                  vmp = kmem_firewall_arena;
3772 3809          }
3773 3810  
3774 3811          /*
3775 3812           * Set cache properties.
3776 3813           */
3777 3814          (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3778 3815          strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3779 3816          cp->cache_bufsize = bufsize;
3780 3817          cp->cache_align = align;
3781 3818          cp->cache_constructor = constructor;
3782 3819          cp->cache_destructor = destructor;
3783 3820          cp->cache_reclaim = reclaim;
3784 3821          cp->cache_private = private;
3785 3822          cp->cache_arena = vmp;
3786 3823          cp->cache_cflags = cflags;
3787 3824  
3788 3825          /*
3789 3826           * Determine the chunk size.
3790 3827           */
3791 3828          chunksize = bufsize;
3792 3829  
3793 3830          if (align >= KMEM_ALIGN) {
3794 3831                  chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3795 3832                  cp->cache_bufctl = chunksize - KMEM_ALIGN;
3796 3833          }
3797 3834  
3798 3835          if (cp->cache_flags & KMF_BUFTAG) {
3799 3836                  cp->cache_bufctl = chunksize;
3800 3837                  cp->cache_buftag = chunksize;
3801 3838                  if (cp->cache_flags & KMF_LITE)
3802 3839                          chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3803 3840                  else
3804 3841                          chunksize += sizeof (kmem_buftag_t);
3805 3842          }
3806 3843  
3807 3844          if (cp->cache_flags & KMF_DEADBEEF) {
3808 3845                  cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3809 3846                  if (cp->cache_flags & KMF_LITE)
3810 3847                          cp->cache_verify = sizeof (uint64_t);
3811 3848          }
3812 3849  
3813 3850          cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3814 3851  
3815 3852          cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3816 3853  
3817 3854          /*
3818 3855           * Now that we know the chunk size, determine the optimal slab size.
3819 3856           */
3820 3857          if (vmp == kmem_firewall_arena) {
3821 3858                  cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3822 3859                  cp->cache_mincolor = cp->cache_slabsize - chunksize;
3823 3860                  cp->cache_maxcolor = cp->cache_mincolor;
3824 3861                  cp->cache_flags |= KMF_HASH;
3825 3862                  ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3826 3863          } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3827 3864              !(cp->cache_flags & KMF_AUDIT) &&
3828 3865              chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3829 3866                  cp->cache_slabsize = vmp->vm_quantum;
3830 3867                  cp->cache_mincolor = 0;
3831 3868                  cp->cache_maxcolor =
3832 3869                      (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3833 3870                  ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3834 3871                  ASSERT(!(cp->cache_flags & KMF_AUDIT));
3835 3872          } else {
3836 3873                  size_t chunks, bestfit, waste, slabsize;
3837 3874                  size_t minwaste = LONG_MAX;
3838 3875  
3839 3876                  for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3840 3877                          slabsize = P2ROUNDUP(chunksize * chunks,
3841 3878                              vmp->vm_quantum);
3842 3879                          chunks = slabsize / chunksize;
3843 3880                          waste = (slabsize % chunksize) / chunks;
3844 3881                          if (waste < minwaste) {
3845 3882                                  minwaste = waste;
3846 3883                                  bestfit = slabsize;
3847 3884                          }
3848 3885                  }
3849 3886                  if (cflags & KMC_QCACHE)
3850 3887                          bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3851 3888                  cp->cache_slabsize = bestfit;
3852 3889                  cp->cache_mincolor = 0;
3853 3890                  cp->cache_maxcolor = bestfit % chunksize;
3854 3891                  cp->cache_flags |= KMF_HASH;
3855 3892          }
3856 3893  
3857 3894          cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3858 3895          cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3859 3896  
3860 3897          /*
3861 3898           * Disallowing prefill when either the DEBUG or HASH flag is set or when
3862 3899           * there is a constructor avoids some tricky issues with debug setup
3863 3900           * that may be revisited later. We cannot allow prefill in a
3864 3901           * metadata cache because of potential recursion.
3865 3902           */
3866 3903          if (vmp == kmem_msb_arena ||
3867 3904              cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3868 3905              cp->cache_constructor != NULL)
3869 3906                  cp->cache_flags &= ~KMF_PREFILL;
3870 3907  
3871 3908          if (cp->cache_flags & KMF_HASH) {
3872 3909                  ASSERT(!(cflags & KMC_NOHASH));
3873 3910                  cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3874 3911                      kmem_bufctl_audit_cache : kmem_bufctl_cache;
3875 3912          }
3876 3913  
3877 3914          if (cp->cache_maxcolor >= vmp->vm_quantum)
3878 3915                  cp->cache_maxcolor = vmp->vm_quantum - 1;
3879 3916  
3880 3917          cp->cache_color = cp->cache_mincolor;
3881 3918  
3882 3919          /*
3883 3920           * Initialize the rest of the slab layer.
3884 3921           */
3885 3922          mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3886 3923  
3887 3924          avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3888 3925              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3889 3926          /* LINTED: E_TRUE_LOGICAL_EXPR */
3890 3927          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3891 3928          /* reuse partial slab AVL linkage for complete slab list linkage */
3892 3929          list_create(&cp->cache_complete_slabs,
3893 3930              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3894 3931  
3895 3932          if (cp->cache_flags & KMF_HASH) {
3896 3933                  cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3897 3934                      KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3898 3935                  bzero(cp->cache_hash_table,
3899 3936                      KMEM_HASH_INITIAL * sizeof (void *));
3900 3937                  cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3901 3938                  cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3902 3939          }
3903 3940  
3904 3941          /*
3905 3942           * Initialize the depot.
3906 3943           */
3907 3944          mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3908 3945  
3909 3946          for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3910 3947                  continue;
3911 3948  
3912 3949          cp->cache_magtype = mtp;
3913 3950  
3914 3951          /*
3915 3952           * Initialize the CPU layer.
3916 3953           */
3917 3954          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3918 3955                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3919 3956                  mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3920 3957                  ccp->cc_flags = cp->cache_flags;
3921 3958                  ccp->cc_rounds = -1;
3922 3959                  ccp->cc_prounds = -1;
3923 3960          }
3924 3961  
3925 3962          /*
3926 3963           * Create the cache's kstats.
3927 3964           */
3928 3965          if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3929 3966              "kmem_cache", KSTAT_TYPE_NAMED,
3930 3967              sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3931 3968              KSTAT_FLAG_VIRTUAL)) != NULL) {
3932 3969                  cp->cache_kstat->ks_data = &kmem_cache_kstat;
3933 3970                  cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3934 3971                  cp->cache_kstat->ks_private = cp;
3935 3972                  cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3936 3973                  kstat_install(cp->cache_kstat);
3937 3974          }
3938 3975  
3939 3976          /*
3940 3977           * Add the cache to the global list.  This makes it visible
3941 3978           * to kmem_update(), so the cache must be ready for business.
3942 3979           */
3943 3980          mutex_enter(&kmem_cache_lock);
3944 3981          list_insert_tail(&kmem_caches, cp);
3945 3982          mutex_exit(&kmem_cache_lock);
3946 3983  
3947 3984          if (kmem_ready)
3948 3985                  kmem_cache_magazine_enable(cp);
3949 3986  
3950 3987          return (cp);
3951 3988  }
3952 3989  
3953 3990  static int
3954 3991  kmem_move_cmp(const void *buf, const void *p)
3955 3992  {
3956 3993          const kmem_move_t *kmm = p;
3957 3994          uintptr_t v1 = (uintptr_t)buf;
3958 3995          uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3959 3996          return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3960 3997  }
3961 3998  
3962 3999  static void
3963 4000  kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3964 4001  {
3965 4002          kmd->kmd_reclaim_numer = 1;
3966 4003  }
3967 4004  
3968 4005  /*
3969 4006   * Initially, when choosing candidate slabs for buffers to move, we want to be
3970 4007   * very selective and take only slabs that are less than
3971 4008   * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3972 4009   * slabs, then we raise the allocation ceiling incrementally. The reclaim
3973 4010   * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3974 4011   * longer fragmented.
3975 4012   */
3976 4013  static void
3977 4014  kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3978 4015  {
3979 4016          if (direction > 0) {
3980 4017                  /* make it easier to find a candidate slab */
3981 4018                  if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3982 4019                          kmd->kmd_reclaim_numer++;
3983 4020                  }
3984 4021          } else {
3985 4022                  /* be more selective */
3986 4023                  if (kmd->kmd_reclaim_numer > 1) {
3987 4024                          kmd->kmd_reclaim_numer--;
3988 4025                  }
3989 4026          }
3990 4027  }
3991 4028  
3992 4029  void
3993 4030  kmem_cache_set_move(kmem_cache_t *cp,
3994 4031      kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3995 4032  {
3996 4033          kmem_defrag_t *defrag;
3997 4034  
3998 4035          ASSERT(move != NULL);
3999 4036          /*
4000 4037           * The consolidator does not support NOTOUCH caches because kmem cannot
4001 4038           * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4002 4039           * a low order bit usable by clients to distinguish uninitialized memory
4003 4040           * from known objects (see kmem_slab_create).
4004 4041           */
4005 4042          ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4006 4043          ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4007 4044  
4008 4045          /*
4009 4046           * We should not be holding anyone's cache lock when calling
4010 4047           * kmem_cache_alloc(), so allocate in all cases before acquiring the
4011 4048           * lock.
4012 4049           */
4013 4050          defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4014 4051  
4015 4052          mutex_enter(&cp->cache_lock);
4016 4053  
4017 4054          if (KMEM_IS_MOVABLE(cp)) {
4018 4055                  if (cp->cache_move == NULL) {
4019 4056                          ASSERT(cp->cache_slab_alloc == 0);
4020 4057  
4021 4058                          cp->cache_defrag = defrag;
4022 4059                          defrag = NULL; /* nothing to free */
4023 4060                          bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4024 4061                          avl_create(&cp->cache_defrag->kmd_moves_pending,
4025 4062                              kmem_move_cmp, sizeof (kmem_move_t),
4026 4063                              offsetof(kmem_move_t, kmm_entry));
4027 4064                          /* LINTED: E_TRUE_LOGICAL_EXPR */
4028 4065                          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4029 4066                          /* reuse the slab's AVL linkage for deadlist linkage */
4030 4067                          list_create(&cp->cache_defrag->kmd_deadlist,
4031 4068                              sizeof (kmem_slab_t),
4032 4069                              offsetof(kmem_slab_t, slab_link));
4033 4070                          kmem_reset_reclaim_threshold(cp->cache_defrag);
4034 4071                  }
4035 4072                  cp->cache_move = move;
4036 4073          }
4037 4074  
4038 4075          mutex_exit(&cp->cache_lock);
4039 4076  
4040 4077          if (defrag != NULL) {
4041 4078                  kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4042 4079          }
4043 4080  }
4044 4081  
4045 4082  void
4046 4083  kmem_cache_destroy(kmem_cache_t *cp)
4047 4084  {
4048 4085          int cpu_seqid;
4049 4086  
4050 4087          /*
4051 4088           * Remove the cache from the global cache list so that no one else
4052 4089           * can schedule tasks on its behalf, wait for any pending tasks to
4053 4090           * complete, purge the cache, and then destroy it.
4054 4091           */
4055 4092          mutex_enter(&kmem_cache_lock);
4056 4093          list_remove(&kmem_caches, cp);
4057 4094          mutex_exit(&kmem_cache_lock);
4058 4095  
4059 4096          if (kmem_taskq != NULL)
4060 4097                  taskq_wait(kmem_taskq);
4061 4098  
4062 4099          if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4063 4100                  taskq_wait(kmem_move_taskq);
4064 4101  
4065 4102          kmem_cache_magazine_purge(cp);
4066 4103  
4067 4104          mutex_enter(&cp->cache_lock);
4068 4105          if (cp->cache_buftotal != 0)
4069 4106                  cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4070 4107                      cp->cache_name, (void *)cp);
4071 4108          if (cp->cache_defrag != NULL) {
4072 4109                  avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4073 4110                  list_destroy(&cp->cache_defrag->kmd_deadlist);
4074 4111                  kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4075 4112                  cp->cache_defrag = NULL;
4076 4113          }
4077 4114          /*
4078 4115           * The cache is now dead.  There should be no further activity.  We
4079 4116           * enforce this by setting land mines in the constructor, destructor,
4080 4117           * reclaim, and move routines that induce a kernel text fault if
4081 4118           * invoked.
4082 4119           */
4083 4120          cp->cache_constructor = (int (*)(void *, void *, int))1;
4084 4121          cp->cache_destructor = (void (*)(void *, void *))2;
4085 4122          cp->cache_reclaim = (void (*)(void *))3;
4086 4123          cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4087 4124          mutex_exit(&cp->cache_lock);
4088 4125  
4089 4126          kstat_delete(cp->cache_kstat);
4090 4127  
4091 4128          if (cp->cache_hash_table != NULL)
4092 4129                  vmem_free(kmem_hash_arena, cp->cache_hash_table,
4093 4130                      (cp->cache_hash_mask + 1) * sizeof (void *));
4094 4131  
4095 4132          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4096 4133                  mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4097 4134  
4098 4135          mutex_destroy(&cp->cache_depot_lock);
4099 4136          mutex_destroy(&cp->cache_lock);
4100 4137  
4101 4138          vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4102 4139  }
4103 4140  
4104 4141  /*ARGSUSED*/
4105 4142  static int
4106 4143  kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4107 4144  {
4108 4145          ASSERT(MUTEX_HELD(&cpu_lock));
4109 4146          if (what == CPU_UNCONFIG) {
4110 4147                  kmem_cache_applyall(kmem_cache_magazine_purge,
4111 4148                      kmem_taskq, TQ_SLEEP);
4112 4149                  kmem_cache_applyall(kmem_cache_magazine_enable,
4113 4150                      kmem_taskq, TQ_SLEEP);
4114 4151          }
4115 4152          return (0);
4116 4153  }
4117 4154  
4118 4155  static void
4119 4156  kmem_alloc_caches_create(const int *array, size_t count,
4120 4157      kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4121 4158  {
4122 4159          char name[KMEM_CACHE_NAMELEN + 1];
4123 4160          size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4124 4161          size_t size = table_unit;
4125 4162          int i;
4126 4163  
4127 4164          for (i = 0; i < count; i++) {
4128 4165                  size_t cache_size = array[i];
4129 4166                  size_t align = KMEM_ALIGN;
4130 4167                  kmem_cache_t *cp;
4131 4168  
4132 4169                  /* if the table has an entry for maxbuf, we're done */
4133 4170                  if (size > maxbuf)
4134 4171                          break;
4135 4172  
4136 4173                  /* cache size must be a multiple of the table unit */
4137 4174                  ASSERT(P2PHASE(cache_size, table_unit) == 0);
4138 4175  
4139 4176                  /*
4140 4177                   * If they allocate a multiple of the coherency granularity,
4141 4178                   * they get a coherency-granularity-aligned address.
4142 4179                   */
4143 4180                  if (IS_P2ALIGNED(cache_size, 64))
4144 4181                          align = 64;
4145 4182                  if (IS_P2ALIGNED(cache_size, PAGESIZE))
4146 4183                          align = PAGESIZE;
4147 4184                  (void) snprintf(name, sizeof (name),
4148 4185                      "kmem_alloc_%lu", cache_size);
4149 4186                  cp = kmem_cache_create(name, cache_size, align,
4150 4187                      NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4151 4188  
4152 4189                  while (size <= cache_size) {
4153 4190                          alloc_table[(size - 1) >> shift] = cp;
4154 4191                          size += table_unit;
4155 4192                  }
4156 4193          }
4157 4194  
4158 4195          ASSERT(size > maxbuf);          /* i.e. maxbuf <= max(cache_size) */
4159 4196  }
4160 4197  
4161 4198  static void
4162 4199  kmem_cache_init(int pass, int use_large_pages)
4163 4200  {
4164 4201          int i;
4165 4202          size_t maxbuf;
4166 4203          kmem_magtype_t *mtp;
4167 4204  
4168 4205          for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4169 4206                  char name[KMEM_CACHE_NAMELEN + 1];
4170 4207  
4171 4208                  mtp = &kmem_magtype[i];
4172 4209                  (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4173 4210                  mtp->mt_cache = kmem_cache_create(name,
4174 4211                      (mtp->mt_magsize + 1) * sizeof (void *),
4175 4212                      mtp->mt_align, NULL, NULL, NULL, NULL,
4176 4213                      kmem_msb_arena, KMC_NOHASH);
4177 4214          }
4178 4215  
4179 4216          kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4180 4217              sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4181 4218              kmem_msb_arena, KMC_NOHASH);
4182 4219  
4183 4220          kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4184 4221              sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4185 4222              kmem_msb_arena, KMC_NOHASH);
4186 4223  
4187 4224          kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4188 4225              sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4189 4226              kmem_msb_arena, KMC_NOHASH);
4190 4227  
4191 4228          if (pass == 2) {
4192 4229                  kmem_va_arena = vmem_create("kmem_va",
4193 4230                      NULL, 0, PAGESIZE,
4194 4231                      vmem_alloc, vmem_free, heap_arena,
4195 4232                      8 * PAGESIZE, VM_SLEEP);
4196 4233  
4197 4234                  if (use_large_pages) {
4198 4235                          kmem_default_arena = vmem_xcreate("kmem_default",
4199 4236                              NULL, 0, PAGESIZE,
4200 4237                              segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4201 4238                              0, VMC_DUMPSAFE | VM_SLEEP);
4202 4239                  } else {
4203 4240                          kmem_default_arena = vmem_create("kmem_default",
4204 4241                              NULL, 0, PAGESIZE,
4205 4242                              segkmem_alloc, segkmem_free, kmem_va_arena,
4206 4243                              0, VMC_DUMPSAFE | VM_SLEEP);
4207 4244                  }
4208 4245  
4209 4246                  /* Figure out what our maximum cache size is */
4210 4247                  maxbuf = kmem_max_cached;
4211 4248                  if (maxbuf <= KMEM_MAXBUF) {
4212 4249                          maxbuf = 0;
4213 4250                          kmem_max_cached = KMEM_MAXBUF;
4214 4251                  } else {
4215 4252                          size_t size = 0;
4216 4253                          size_t max =
4217 4254                              sizeof (kmem_big_alloc_sizes) / sizeof (int);
4218 4255                          /*
4219 4256                           * Round maxbuf up to an existing cache size.  If maxbuf
4220 4257                           * is larger than the largest cache, we truncate it to
4221 4258                           * the largest cache's size.
4222 4259                           */
4223 4260                          for (i = 0; i < max; i++) {
4224 4261                                  size = kmem_big_alloc_sizes[i];
4225 4262                                  if (maxbuf <= size)
4226 4263                                          break;
4227 4264                          }
4228 4265                          kmem_max_cached = maxbuf = size;
4229 4266                  }
4230 4267  
4231 4268                  /*
4232 4269                   * The big alloc table may not be completely overwritten, so
4233 4270                   * we clear out any stale cache pointers from the first pass.
4234 4271                   */
4235 4272                  bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4236 4273          } else {
4237 4274                  /*
4238 4275                   * During the first pass, the kmem_alloc_* caches
4239 4276                   * are treated as metadata.
4240 4277                   */
4241 4278                  kmem_default_arena = kmem_msb_arena;
4242 4279                  maxbuf = KMEM_BIG_MAXBUF_32BIT;
4243 4280          }
4244 4281  
4245 4282          /*
4246 4283           * Set up the default caches to back kmem_alloc()
4247 4284           */
4248 4285          kmem_alloc_caches_create(
4249 4286              kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4250 4287              kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4251 4288  
4252 4289          kmem_alloc_caches_create(
4253 4290              kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4254 4291              kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4255 4292  
4256 4293          kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4257 4294  }
4258 4295  
4259 4296  void
4260 4297  kmem_init(void)
4261 4298  {
4262 4299          kmem_cache_t *cp;
4263 4300          int old_kmem_flags = kmem_flags;
4264 4301          int use_large_pages = 0;
4265 4302          size_t maxverify, minfirewall;
4266 4303  
4267 4304          kstat_init();
4268 4305  
4269 4306          /*
4270 4307           * Don't do firewalled allocations if the heap is less than 1TB
4271 4308           * (i.e. on a 32-bit kernel)
4272 4309           * The resulting VM_NEXTFIT allocations would create too much
4273 4310           * fragmentation in a small heap.
4274 4311           */
4275 4312  #if defined(_LP64)
4276 4313          maxverify = minfirewall = PAGESIZE / 2;
4277 4314  #else
4278 4315          maxverify = minfirewall = ULONG_MAX;
4279 4316  #endif
4280 4317  
4281 4318          /* LINTED */
4282 4319          ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4283 4320  
4284 4321          list_create(&kmem_caches, sizeof (kmem_cache_t),
4285 4322              offsetof(kmem_cache_t, cache_link));
4286 4323  
4287 4324          kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4288 4325              vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4289 4326              VM_SLEEP | VMC_NO_QCACHE);
4290 4327  
4291 4328          kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4292 4329              PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4293 4330              VMC_DUMPSAFE | VM_SLEEP);
4294 4331  
4295 4332          kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4296 4333              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4297 4334  
4298 4335          kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4299 4336              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4300 4337  
4301 4338          kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4302 4339              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4303 4340  
4304 4341          kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4305 4342              NULL, 0, PAGESIZE,
4306 4343              kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4307 4344              0, VM_SLEEP);
4308 4345  
4309 4346          kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4310 4347              segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4311 4348              VMC_DUMPSAFE | VM_SLEEP);
4312 4349  
4313 4350          /* temporary oversize arena for mod_read_system_file */
4314 4351          kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4315 4352              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4316 4353  
4317 4354          kmem_reap_interval = 15 * hz;
4318 4355  
4319 4356          /*
4320 4357           * Read /etc/system.  This is a chicken-and-egg problem because
4321 4358           * kmem_flags may be set in /etc/system, but mod_read_system_file()
4322 4359           * needs to use the allocator.  The simplest solution is to create
4323 4360           * all the standard kmem caches, read /etc/system, destroy all the
4324 4361           * caches we just created, and then create them all again in light
4325 4362           * of the (possibly) new kmem_flags and other kmem tunables.
4326 4363           */
4327 4364          kmem_cache_init(1, 0);
4328 4365  
4329 4366          mod_read_system_file(boothowto & RB_ASKNAME);
4330 4367  
4331 4368          while ((cp = list_tail(&kmem_caches)) != NULL)
4332 4369                  kmem_cache_destroy(cp);
4333 4370  
4334 4371          vmem_destroy(kmem_oversize_arena);
4335 4372  
4336 4373          if (old_kmem_flags & KMF_STICKY)
4337 4374                  kmem_flags = old_kmem_flags;
4338 4375  
4339 4376          if (!(kmem_flags & KMF_AUDIT))
4340 4377                  vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4341 4378  
4342 4379          if (kmem_maxverify == 0)
4343 4380                  kmem_maxverify = maxverify;
4344 4381  
4345 4382          if (kmem_minfirewall == 0)
4346 4383                  kmem_minfirewall = minfirewall;
4347 4384  
4348 4385          /*
4349 4386           * give segkmem a chance to figure out if we are using large pages
4350 4387           * for the kernel heap
4351 4388           */
4352 4389          use_large_pages = segkmem_lpsetup();
4353 4390  
4354 4391          /*
4355 4392           * To protect against corruption, we keep the actual number of callers
4356 4393           * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4357 4394           * to 16, since the overhead for small buffers quickly gets out of
4358 4395           * hand.
4359 4396           *
4360 4397           * The real limit would depend on the needs of the largest KMC_NOHASH
4361 4398           * cache.
4362 4399           */
4363 4400          kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4364 4401          kmem_lite_pcs = kmem_lite_count;
4365 4402  
4366 4403          /*
4367 4404           * Normally, we firewall oversized allocations when possible, but
4368 4405           * if we are using large pages for kernel memory, and we don't have
4369 4406           * any non-LITE debugging flags set, we want to allocate oversized
4370 4407           * buffers from large pages, and so skip the firewalling.
4371 4408           */
4372 4409          if (use_large_pages &&
4373 4410              ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4374 4411                  kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4375 4412                      PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4376 4413                      0, VMC_DUMPSAFE | VM_SLEEP);
4377 4414          } else {
4378 4415                  kmem_oversize_arena = vmem_create("kmem_oversize",
4379 4416                      NULL, 0, PAGESIZE,
4380 4417                      segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4381 4418                      kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4382 4419                      VM_SLEEP);
4383 4420          }
4384 4421  
4385 4422          kmem_cache_init(2, use_large_pages);
4386 4423  
4387 4424          if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4388 4425                  if (kmem_transaction_log_size == 0)
4389 4426                          kmem_transaction_log_size = kmem_maxavail() / 50;
  
    | 
      ↓ open down ↓ | 
    1522 lines elided | 
    
      ↑ open up ↑ | 
  
4390 4427                  kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4391 4428          }
4392 4429  
4393 4430          if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4394 4431                  if (kmem_content_log_size == 0)
4395 4432                          kmem_content_log_size = kmem_maxavail() / 50;
4396 4433                  kmem_content_log = kmem_log_init(kmem_content_log_size);
4397 4434          }
4398 4435  
4399 4436          kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4400      -
4401 4437          kmem_slab_log = kmem_log_init(kmem_slab_log_size);
     4438 +        kmem_zerosized_log = kmem_log_init(kmem_zerosized_log_size);
4402 4439  
4403 4440          /*
4404 4441           * Initialize STREAMS message caches so allocb() is available.
4405 4442           * This allows us to initialize the logging framework (cmn_err(9F),
4406 4443           * strlog(9F), etc) so we can start recording messages.
4407 4444           */
4408 4445          streams_msg_init();
4409 4446  
4410 4447          /*
4411 4448           * Initialize the ZSD framework in Zones so modules loaded henceforth
4412 4449           * can register their callbacks.
4413 4450           */
4414 4451          zone_zsd_init();
4415 4452  
4416 4453          log_init();
4417 4454          taskq_init();
4418 4455  
4419 4456          /*
4420 4457           * Warn about invalid or dangerous values of kmem_flags.
4421 4458           * Always warn about unsupported values.
4422 4459           */
4423 4460          if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4424 4461              KMF_CONTENTS | KMF_LITE)) != 0) ||
4425 4462              ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4426 4463                  cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4427 4464                      "See the Solaris Tunable Parameters Reference Manual.",
4428 4465                      kmem_flags);
4429 4466  
4430 4467  #ifdef DEBUG
4431 4468          if ((kmem_flags & KMF_DEBUG) == 0)
4432 4469                  cmn_err(CE_NOTE, "kmem debugging disabled.");
4433 4470  #else
4434 4471          /*
4435 4472           * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4436 4473           * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4437 4474           * if KMF_AUDIT is set). We should warn the user about the performance
4438 4475           * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4439 4476           * isn't set (since that disables AUDIT).
4440 4477           */
4441 4478          if (!(kmem_flags & KMF_LITE) &&
4442 4479              (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4443 4480                  cmn_err(CE_WARN, "High-overhead kmem debugging features "
4444 4481                      "enabled (kmem_flags = 0x%x).  Performance degradation "
4445 4482                      "and large memory overhead possible. See the Solaris "
4446 4483                      "Tunable Parameters Reference Manual.", kmem_flags);
4447 4484  #endif /* not DEBUG */
4448 4485  
4449 4486          kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4450 4487  
4451 4488          kmem_ready = 1;
4452 4489  
4453 4490          /*
4454 4491           * Initialize the platform-specific aligned/DMA memory allocator.
4455 4492           */
4456 4493          ka_init();
4457 4494  
4458 4495          /*
4459 4496           * Initialize 32-bit ID cache.
4460 4497           */
4461 4498          id32_init();
4462 4499  
4463 4500          /*
4464 4501           * Initialize the networking stack so modules loaded can
4465 4502           * register their callbacks.
4466 4503           */
4467 4504          netstack_init();
4468 4505  }
4469 4506  
4470 4507  static void
4471 4508  kmem_move_init(void)
4472 4509  {
4473 4510          kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4474 4511              sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4475 4512              kmem_msb_arena, KMC_NOHASH);
4476 4513          kmem_move_cache = kmem_cache_create("kmem_move_cache",
4477 4514              sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4478 4515              kmem_msb_arena, KMC_NOHASH);
4479 4516  
4480 4517          /*
4481 4518           * kmem guarantees that move callbacks are sequential and that even
4482 4519           * across multiple caches no two moves ever execute simultaneously.
4483 4520           * Move callbacks are processed on a separate taskq so that client code
4484 4521           * does not interfere with internal maintenance tasks.
4485 4522           */
4486 4523          kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4487 4524              minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4488 4525  }
4489 4526  
4490 4527  void
4491 4528  kmem_thread_init(void)
4492 4529  {
4493 4530          kmem_move_init();
4494 4531          kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4495 4532              300, INT_MAX, TASKQ_PREPOPULATE);
4496 4533  }
4497 4534  
4498 4535  void
4499 4536  kmem_mp_init(void)
4500 4537  {
4501 4538          mutex_enter(&cpu_lock);
4502 4539          register_cpu_setup_func(kmem_cpu_setup, NULL);
4503 4540          mutex_exit(&cpu_lock);
4504 4541  
4505 4542          kmem_update_timeout(NULL);
4506 4543  
4507 4544          taskq_mp_init();
4508 4545  }
4509 4546  
4510 4547  /*
4511 4548   * Return the slab of the allocated buffer, or NULL if the buffer is not
4512 4549   * allocated. This function may be called with a known slab address to determine
4513 4550   * whether or not the buffer is allocated, or with a NULL slab address to obtain
4514 4551   * an allocated buffer's slab.
4515 4552   */
4516 4553  static kmem_slab_t *
4517 4554  kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4518 4555  {
4519 4556          kmem_bufctl_t *bcp, *bufbcp;
4520 4557  
4521 4558          ASSERT(MUTEX_HELD(&cp->cache_lock));
4522 4559          ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4523 4560  
4524 4561          if (cp->cache_flags & KMF_HASH) {
4525 4562                  for (bcp = *KMEM_HASH(cp, buf);
4526 4563                      (bcp != NULL) && (bcp->bc_addr != buf);
4527 4564                      bcp = bcp->bc_next) {
4528 4565                          continue;
4529 4566                  }
4530 4567                  ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4531 4568                  return (bcp == NULL ? NULL : bcp->bc_slab);
4532 4569          }
4533 4570  
4534 4571          if (sp == NULL) {
4535 4572                  sp = KMEM_SLAB(cp, buf);
4536 4573          }
4537 4574          bufbcp = KMEM_BUFCTL(cp, buf);
4538 4575          for (bcp = sp->slab_head;
4539 4576              (bcp != NULL) && (bcp != bufbcp);
4540 4577              bcp = bcp->bc_next) {
4541 4578                  continue;
4542 4579          }
4543 4580          return (bcp == NULL ? sp : NULL);
4544 4581  }
4545 4582  
4546 4583  static boolean_t
4547 4584  kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4548 4585  {
4549 4586          long refcnt = sp->slab_refcnt;
4550 4587  
4551 4588          ASSERT(cp->cache_defrag != NULL);
4552 4589  
4553 4590          /*
4554 4591           * For code coverage we want to be able to move an object within the
4555 4592           * same slab (the only partial slab) even if allocating the destination
4556 4593           * buffer resulted in a completely allocated slab.
4557 4594           */
4558 4595          if (flags & KMM_DEBUG) {
4559 4596                  return ((flags & KMM_DESPERATE) ||
4560 4597                      ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4561 4598          }
4562 4599  
4563 4600          /* If we're desperate, we don't care if the client said NO. */
4564 4601          if (flags & KMM_DESPERATE) {
4565 4602                  return (refcnt < sp->slab_chunks); /* any partial */
4566 4603          }
4567 4604  
4568 4605          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4569 4606                  return (B_FALSE);
4570 4607          }
4571 4608  
4572 4609          if ((refcnt == 1) || kmem_move_any_partial) {
4573 4610                  return (refcnt < sp->slab_chunks);
4574 4611          }
4575 4612  
4576 4613          /*
4577 4614           * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4578 4615           * slabs with a progressively higher percentage of used buffers can be
4579 4616           * reclaimed until the cache as a whole is no longer fragmented.
4580 4617           *
4581 4618           *      sp->slab_refcnt   kmd_reclaim_numer
4582 4619           *      --------------- < ------------------
4583 4620           *      sp->slab_chunks   KMEM_VOID_FRACTION
4584 4621           */
4585 4622          return ((refcnt * KMEM_VOID_FRACTION) <
4586 4623              (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4587 4624  }
4588 4625  
4589 4626  /*
4590 4627   * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4591 4628   * or when the buffer is freed.
4592 4629   */
4593 4630  static void
4594 4631  kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4595 4632  {
4596 4633          ASSERT(MUTEX_HELD(&cp->cache_lock));
4597 4634          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4598 4635  
4599 4636          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4600 4637                  return;
4601 4638          }
4602 4639  
4603 4640          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4604 4641                  if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4605 4642                          avl_remove(&cp->cache_partial_slabs, sp);
4606 4643                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4607 4644                          sp->slab_stuck_offset = (uint32_t)-1;
4608 4645                          avl_add(&cp->cache_partial_slabs, sp);
4609 4646                  }
4610 4647          } else {
4611 4648                  sp->slab_later_count = 0;
4612 4649                  sp->slab_stuck_offset = (uint32_t)-1;
4613 4650          }
4614 4651  }
4615 4652  
4616 4653  static void
4617 4654  kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4618 4655  {
4619 4656          ASSERT(taskq_member(kmem_move_taskq, curthread));
4620 4657          ASSERT(MUTEX_HELD(&cp->cache_lock));
4621 4658          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4622 4659  
4623 4660          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4624 4661                  return;
4625 4662          }
4626 4663  
4627 4664          avl_remove(&cp->cache_partial_slabs, sp);
4628 4665          sp->slab_later_count = 0;
4629 4666          sp->slab_flags |= KMEM_SLAB_NOMOVE;
4630 4667          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4631 4668          avl_add(&cp->cache_partial_slabs, sp);
4632 4669  }
4633 4670  
4634 4671  static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4635 4672  
4636 4673  /*
4637 4674   * The move callback takes two buffer addresses, the buffer to be moved, and a
4638 4675   * newly allocated and constructed buffer selected by kmem as the destination.
4639 4676   * It also takes the size of the buffer and an optional user argument specified
4640 4677   * at cache creation time. kmem guarantees that the buffer to be moved has not
4641 4678   * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4642 4679   * guarantee the present whereabouts of the buffer to be moved, so it is up to
4643 4680   * the client to safely determine whether or not it is still using the buffer.
4644 4681   * The client must not free either of the buffers passed to the move callback,
4645 4682   * since kmem wants to free them directly to the slab layer. The client response
4646 4683   * tells kmem which of the two buffers to free:
4647 4684   *
4648 4685   * YES          kmem frees the old buffer (the move was successful)
4649 4686   * NO           kmem frees the new buffer, marks the slab of the old buffer
4650 4687   *              non-reclaimable to avoid bothering the client again
4651 4688   * LATER        kmem frees the new buffer, increments slab_later_count
4652 4689   * DONT_KNOW    kmem frees the new buffer
4653 4690   * DONT_NEED    kmem frees both the old buffer and the new buffer
4654 4691   *
4655 4692   * The pending callback argument now being processed contains both of the
4656 4693   * buffers (old and new) passed to the move callback function, the slab of the
4657 4694   * old buffer, and flags related to the move request, such as whether or not the
4658 4695   * system was desperate for memory.
4659 4696   *
4660 4697   * Slabs are not freed while there is a pending callback, but instead are kept
4661 4698   * on a deadlist, which is drained after the last callback completes. This means
4662 4699   * that slabs are safe to access until kmem_move_end(), no matter how many of
4663 4700   * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4664 4701   * zero for as long as the slab remains on the deadlist and until the slab is
4665 4702   * freed.
4666 4703   */
4667 4704  static void
4668 4705  kmem_move_buffer(kmem_move_t *callback)
4669 4706  {
4670 4707          kmem_cbrc_t response;
4671 4708          kmem_slab_t *sp = callback->kmm_from_slab;
4672 4709          kmem_cache_t *cp = sp->slab_cache;
4673 4710          boolean_t free_on_slab;
4674 4711  
4675 4712          ASSERT(taskq_member(kmem_move_taskq, curthread));
4676 4713          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4677 4714          ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4678 4715  
4679 4716          /*
4680 4717           * The number of allocated buffers on the slab may have changed since we
4681 4718           * last checked the slab's reclaimability (when the pending move was
4682 4719           * enqueued), or the client may have responded NO when asked to move
4683 4720           * another buffer on the same slab.
4684 4721           */
4685 4722          if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4686 4723                  kmem_slab_free(cp, callback->kmm_to_buf);
4687 4724                  kmem_move_end(cp, callback);
4688 4725                  return;
4689 4726          }
4690 4727  
4691 4728          /*
4692 4729           * Checking the slab layer is easy, so we might as well do that here
4693 4730           * in case we can avoid bothering the client.
4694 4731           */
4695 4732          mutex_enter(&cp->cache_lock);
4696 4733          free_on_slab = (kmem_slab_allocated(cp, sp,
4697 4734              callback->kmm_from_buf) == NULL);
4698 4735          mutex_exit(&cp->cache_lock);
4699 4736  
4700 4737          if (free_on_slab) {
4701 4738                  kmem_slab_free(cp, callback->kmm_to_buf);
4702 4739                  kmem_move_end(cp, callback);
4703 4740                  return;
4704 4741          }
4705 4742  
4706 4743          if (cp->cache_flags & KMF_BUFTAG) {
4707 4744                  /*
4708 4745                   * Make kmem_cache_alloc_debug() apply the constructor for us.
4709 4746                   */
4710 4747                  if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4711 4748                      KM_NOSLEEP, 1, caller()) != 0) {
4712 4749                          kmem_move_end(cp, callback);
4713 4750                          return;
4714 4751                  }
4715 4752          } else if (cp->cache_constructor != NULL &&
4716 4753              cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4717 4754              KM_NOSLEEP) != 0) {
4718 4755                  atomic_inc_64(&cp->cache_alloc_fail);
4719 4756                  kmem_slab_free(cp, callback->kmm_to_buf);
4720 4757                  kmem_move_end(cp, callback);
4721 4758                  return;
4722 4759          }
4723 4760  
4724 4761          cp->cache_defrag->kmd_callbacks++;
4725 4762          cp->cache_defrag->kmd_thread = curthread;
4726 4763          cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4727 4764          cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4728 4765          DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4729 4766              callback);
4730 4767  
4731 4768          response = cp->cache_move(callback->kmm_from_buf,
4732 4769              callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4733 4770  
4734 4771          DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4735 4772              callback, kmem_cbrc_t, response);
4736 4773          cp->cache_defrag->kmd_thread = NULL;
4737 4774          cp->cache_defrag->kmd_from_buf = NULL;
4738 4775          cp->cache_defrag->kmd_to_buf = NULL;
4739 4776  
4740 4777          if (response == KMEM_CBRC_YES) {
4741 4778                  cp->cache_defrag->kmd_yes++;
4742 4779                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4743 4780                  /* slab safe to access until kmem_move_end() */
4744 4781                  if (sp->slab_refcnt == 0)
4745 4782                          cp->cache_defrag->kmd_slabs_freed++;
4746 4783                  mutex_enter(&cp->cache_lock);
4747 4784                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4748 4785                  mutex_exit(&cp->cache_lock);
4749 4786                  kmem_move_end(cp, callback);
4750 4787                  return;
4751 4788          }
4752 4789  
4753 4790          switch (response) {
4754 4791          case KMEM_CBRC_NO:
4755 4792                  cp->cache_defrag->kmd_no++;
4756 4793                  mutex_enter(&cp->cache_lock);
4757 4794                  kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4758 4795                  mutex_exit(&cp->cache_lock);
4759 4796                  break;
4760 4797          case KMEM_CBRC_LATER:
4761 4798                  cp->cache_defrag->kmd_later++;
4762 4799                  mutex_enter(&cp->cache_lock);
4763 4800                  if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4764 4801                          mutex_exit(&cp->cache_lock);
4765 4802                          break;
4766 4803                  }
4767 4804  
4768 4805                  if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4769 4806                          kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4770 4807                  } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4771 4808                          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4772 4809                              callback->kmm_from_buf);
4773 4810                  }
4774 4811                  mutex_exit(&cp->cache_lock);
4775 4812                  break;
4776 4813          case KMEM_CBRC_DONT_NEED:
4777 4814                  cp->cache_defrag->kmd_dont_need++;
4778 4815                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4779 4816                  if (sp->slab_refcnt == 0)
4780 4817                          cp->cache_defrag->kmd_slabs_freed++;
4781 4818                  mutex_enter(&cp->cache_lock);
4782 4819                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4783 4820                  mutex_exit(&cp->cache_lock);
4784 4821                  break;
4785 4822          case KMEM_CBRC_DONT_KNOW:
4786 4823                  /*
4787 4824                   * If we don't know if we can move this buffer or not, we'll
4788 4825                   * just assume that we can't:  if the buffer is in fact free,
4789 4826                   * then it is sitting in one of the per-CPU magazines or in
4790 4827                   * a full magazine in the depot layer.  Either way, because
4791 4828                   * defrag is induced in the same logic that reaps a cache,
4792 4829                   * it's likely that full magazines will be returned to the
4793 4830                   * system soon (thereby accomplishing what we're trying to
4794 4831                   * accomplish here: return those magazines to their slabs).
4795 4832                   * Given this, any work that we might do now to locate a buffer
4796 4833                   * in a magazine is wasted (and expensive!) work; we bump
4797 4834                   * a counter in this case and otherwise assume that we can't
4798 4835                   * move it.
4799 4836                   */
4800 4837                  cp->cache_defrag->kmd_dont_know++;
4801 4838                  break;
4802 4839          default:
4803 4840                  panic("'%s' (%p) unexpected move callback response %d\n",
4804 4841                      cp->cache_name, (void *)cp, response);
4805 4842          }
4806 4843  
4807 4844          kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4808 4845          kmem_move_end(cp, callback);
4809 4846  }
4810 4847  
4811 4848  /* Return B_FALSE if there is insufficient memory for the move request. */
4812 4849  static boolean_t
4813 4850  kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4814 4851  {
4815 4852          void *to_buf;
4816 4853          avl_index_t index;
4817 4854          kmem_move_t *callback, *pending;
4818 4855          ulong_t n;
4819 4856  
4820 4857          ASSERT(taskq_member(kmem_taskq, curthread));
4821 4858          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4822 4859          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4823 4860  
4824 4861          callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4825 4862  
4826 4863          if (callback == NULL)
4827 4864                  return (B_FALSE);
4828 4865  
4829 4866          callback->kmm_from_slab = sp;
4830 4867          callback->kmm_from_buf = buf;
4831 4868          callback->kmm_flags = flags;
4832 4869  
4833 4870          mutex_enter(&cp->cache_lock);
4834 4871  
4835 4872          n = avl_numnodes(&cp->cache_partial_slabs);
4836 4873          if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4837 4874                  mutex_exit(&cp->cache_lock);
4838 4875                  kmem_cache_free(kmem_move_cache, callback);
4839 4876                  return (B_TRUE); /* there is no need for the move request */
4840 4877          }
4841 4878  
4842 4879          pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4843 4880          if (pending != NULL) {
4844 4881                  /*
4845 4882                   * If the move is already pending and we're desperate now,
4846 4883                   * update the move flags.
4847 4884                   */
4848 4885                  if (flags & KMM_DESPERATE) {
4849 4886                          pending->kmm_flags |= KMM_DESPERATE;
4850 4887                  }
4851 4888                  mutex_exit(&cp->cache_lock);
4852 4889                  kmem_cache_free(kmem_move_cache, callback);
4853 4890                  return (B_TRUE);
4854 4891          }
4855 4892  
4856 4893          to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4857 4894              B_FALSE);
4858 4895          callback->kmm_to_buf = to_buf;
4859 4896          avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4860 4897  
4861 4898          mutex_exit(&cp->cache_lock);
4862 4899  
4863 4900          if (taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4864 4901              callback, TQ_NOSLEEP) == TASKQID_INVALID) {
4865 4902                  mutex_enter(&cp->cache_lock);
4866 4903                  avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4867 4904                  mutex_exit(&cp->cache_lock);
4868 4905                  kmem_slab_free(cp, to_buf);
4869 4906                  kmem_cache_free(kmem_move_cache, callback);
4870 4907                  return (B_FALSE);
4871 4908          }
4872 4909  
4873 4910          return (B_TRUE);
4874 4911  }
4875 4912  
4876 4913  static void
4877 4914  kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4878 4915  {
4879 4916          avl_index_t index;
4880 4917  
4881 4918          ASSERT(cp->cache_defrag != NULL);
4882 4919          ASSERT(taskq_member(kmem_move_taskq, curthread));
4883 4920          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4884 4921  
4885 4922          mutex_enter(&cp->cache_lock);
4886 4923          VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4887 4924              callback->kmm_from_buf, &index) != NULL);
4888 4925          avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4889 4926          if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4890 4927                  list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4891 4928                  kmem_slab_t *sp;
4892 4929  
4893 4930                  /*
4894 4931                   * The last pending move completed. Release all slabs from the
4895 4932                   * front of the dead list except for any slab at the tail that
4896 4933                   * needs to be released from the context of kmem_move_buffers().
4897 4934                   * kmem deferred unmapping the buffers on these slabs in order
4898 4935                   * to guarantee that buffers passed to the move callback have
4899 4936                   * been touched only by kmem or by the client itself.
4900 4937                   */
4901 4938                  while ((sp = list_remove_head(deadlist)) != NULL) {
4902 4939                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4903 4940                                  list_insert_tail(deadlist, sp);
4904 4941                                  break;
4905 4942                          }
4906 4943                          cp->cache_defrag->kmd_deadcount--;
4907 4944                          cp->cache_slab_destroy++;
4908 4945                          mutex_exit(&cp->cache_lock);
4909 4946                          kmem_slab_destroy(cp, sp);
4910 4947                          mutex_enter(&cp->cache_lock);
4911 4948                  }
4912 4949          }
4913 4950          mutex_exit(&cp->cache_lock);
4914 4951          kmem_cache_free(kmem_move_cache, callback);
4915 4952  }
4916 4953  
4917 4954  /*
4918 4955   * Move buffers from least used slabs first by scanning backwards from the end
4919 4956   * of the partial slab list. Scan at most max_scan candidate slabs and move
4920 4957   * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4921 4958   * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4922 4959   * skip slabs with a ratio of allocated buffers at or above the current
4923 4960   * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4924 4961   * scan is aborted) so that the caller can adjust the reclaimability threshold
4925 4962   * depending on how many reclaimable slabs it finds.
4926 4963   *
4927 4964   * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4928 4965   * move request, since it is not valid for kmem_move_begin() to call
4929 4966   * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4930 4967   */
4931 4968  static int
4932 4969  kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4933 4970      int flags)
4934 4971  {
4935 4972          kmem_slab_t *sp;
4936 4973          void *buf;
4937 4974          int i, j; /* slab index, buffer index */
4938 4975          int s; /* reclaimable slabs */
4939 4976          int b; /* allocated (movable) buffers on reclaimable slab */
4940 4977          boolean_t success;
4941 4978          int refcnt;
4942 4979          int nomove;
4943 4980  
4944 4981          ASSERT(taskq_member(kmem_taskq, curthread));
4945 4982          ASSERT(MUTEX_HELD(&cp->cache_lock));
4946 4983          ASSERT(kmem_move_cache != NULL);
4947 4984          ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4948 4985          ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4949 4986              avl_numnodes(&cp->cache_partial_slabs) > 1);
4950 4987  
4951 4988          if (kmem_move_blocked) {
4952 4989                  return (0);
4953 4990          }
4954 4991  
4955 4992          if (kmem_move_fulltilt) {
4956 4993                  flags |= KMM_DESPERATE;
4957 4994          }
4958 4995  
4959 4996          if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4960 4997                  /*
4961 4998                   * Scan as many slabs as needed to find the desired number of
4962 4999                   * candidate slabs.
4963 5000                   */
4964 5001                  max_scan = (size_t)-1;
4965 5002          }
4966 5003  
4967 5004          if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4968 5005                  /* Find as many candidate slabs as possible. */
4969 5006                  max_slabs = (size_t)-1;
4970 5007          }
4971 5008  
4972 5009          sp = avl_last(&cp->cache_partial_slabs);
4973 5010          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
4974 5011          for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
4975 5012              ((sp != avl_first(&cp->cache_partial_slabs)) ||
4976 5013              (flags & KMM_DEBUG));
4977 5014              sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4978 5015  
4979 5016                  if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4980 5017                          continue;
4981 5018                  }
4982 5019                  s++;
4983 5020  
4984 5021                  /* Look for allocated buffers to move. */
4985 5022                  for (j = 0, b = 0, buf = sp->slab_base;
4986 5023                      (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4987 5024                      buf = (((char *)buf) + cp->cache_chunksize), j++) {
4988 5025  
4989 5026                          if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4990 5027                                  continue;
4991 5028                          }
4992 5029  
4993 5030                          b++;
4994 5031  
4995 5032                          /*
4996 5033                           * Prevent the slab from being destroyed while we drop
4997 5034                           * cache_lock and while the pending move is not yet
4998 5035                           * registered. Flag the pending move while
4999 5036                           * kmd_moves_pending may still be empty, since we can't
5000 5037                           * yet rely on a non-zero pending move count to prevent
5001 5038                           * the slab from being destroyed.
5002 5039                           */
5003 5040                          ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5004 5041                          sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5005 5042                          /*
5006 5043                           * Recheck refcnt and nomove after reacquiring the lock,
5007 5044                           * since these control the order of partial slabs, and
5008 5045                           * we want to know if we can pick up the scan where we
5009 5046                           * left off.
5010 5047                           */
5011 5048                          refcnt = sp->slab_refcnt;
5012 5049                          nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5013 5050                          mutex_exit(&cp->cache_lock);
5014 5051  
5015 5052                          success = kmem_move_begin(cp, sp, buf, flags);
5016 5053  
5017 5054                          /*
5018 5055                           * Now, before the lock is reacquired, kmem could
5019 5056                           * process all pending move requests and purge the
5020 5057                           * deadlist, so that upon reacquiring the lock, sp has
5021 5058                           * been remapped. Or, the client may free all the
5022 5059                           * objects on the slab while the pending moves are still
5023 5060                           * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5024 5061                           * flag causes the slab to be put at the end of the
5025 5062                           * deadlist and prevents it from being destroyed, since
5026 5063                           * we plan to destroy it here after reacquiring the
5027 5064                           * lock.
5028 5065                           */
5029 5066                          mutex_enter(&cp->cache_lock);
5030 5067                          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5031 5068                          sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5032 5069  
5033 5070                          if (sp->slab_refcnt == 0) {
5034 5071                                  list_t *deadlist =
5035 5072                                      &cp->cache_defrag->kmd_deadlist;
5036 5073                                  list_remove(deadlist, sp);
5037 5074  
5038 5075                                  if (!avl_is_empty(
5039 5076                                      &cp->cache_defrag->kmd_moves_pending)) {
5040 5077                                          /*
5041 5078                                           * A pending move makes it unsafe to
5042 5079                                           * destroy the slab, because even though
5043 5080                                           * the move is no longer needed, the
5044 5081                                           * context where that is determined
5045 5082                                           * requires the slab to exist.
5046 5083                                           * Fortunately, a pending move also
5047 5084                                           * means we don't need to destroy the
5048 5085                                           * slab here, since it will get
5049 5086                                           * destroyed along with any other slabs
5050 5087                                           * on the deadlist after the last
5051 5088                                           * pending move completes.
5052 5089                                           */
5053 5090                                          list_insert_head(deadlist, sp);
5054 5091                                          return (-1);
5055 5092                                  }
5056 5093  
5057 5094                                  /*
5058 5095                                   * Destroy the slab now if it was completely
5059 5096                                   * freed while we dropped cache_lock and there
5060 5097                                   * are no pending moves. Since slab_refcnt
5061 5098                                   * cannot change once it reaches zero, no new
5062 5099                                   * pending moves from that slab are possible.
5063 5100                                   */
5064 5101                                  cp->cache_defrag->kmd_deadcount--;
5065 5102                                  cp->cache_slab_destroy++;
5066 5103                                  mutex_exit(&cp->cache_lock);
5067 5104                                  kmem_slab_destroy(cp, sp);
5068 5105                                  mutex_enter(&cp->cache_lock);
5069 5106                                  /*
5070 5107                                   * Since we can't pick up the scan where we left
5071 5108                                   * off, abort the scan and say nothing about the
5072 5109                                   * number of reclaimable slabs.
5073 5110                                   */
5074 5111                                  return (-1);
5075 5112                          }
5076 5113  
5077 5114                          if (!success) {
5078 5115                                  /*
5079 5116                                   * Abort the scan if there is not enough memory
5080 5117                                   * for the request and say nothing about the
5081 5118                                   * number of reclaimable slabs.
5082 5119                                   */
5083 5120                                  return (-1);
5084 5121                          }
5085 5122  
5086 5123                          /*
5087 5124                           * The slab's position changed while the lock was
5088 5125                           * dropped, so we don't know where we are in the
5089 5126                           * sequence any more.
5090 5127                           */
5091 5128                          if (sp->slab_refcnt != refcnt) {
5092 5129                                  /*
5093 5130                                   * If this is a KMM_DEBUG move, the slab_refcnt
5094 5131                                   * may have changed because we allocated a
5095 5132                                   * destination buffer on the same slab. In that
5096 5133                                   * case, we're not interested in counting it.
5097 5134                                   */
5098 5135                                  return (-1);
5099 5136                          }
5100 5137                          if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5101 5138                                  return (-1);
5102 5139  
5103 5140                          /*
5104 5141                           * Generating a move request allocates a destination
5105 5142                           * buffer from the slab layer, bumping the first partial
5106 5143                           * slab if it is completely allocated. If the current
5107 5144                           * slab becomes the first partial slab as a result, we
5108 5145                           * can't continue to scan backwards.
5109 5146                           *
5110 5147                           * If this is a KMM_DEBUG move and we allocated the
5111 5148                           * destination buffer from the last partial slab, then
5112 5149                           * the buffer we're moving is on the same slab and our
5113 5150                           * slab_refcnt has changed, causing us to return before
5114 5151                           * reaching here if there are no partial slabs left.
5115 5152                           */
5116 5153                          ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5117 5154                          if (sp == avl_first(&cp->cache_partial_slabs)) {
5118 5155                                  /*
5119 5156                                   * We're not interested in a second KMM_DEBUG
5120 5157                                   * move.
5121 5158                                   */
5122 5159                                  goto end_scan;
5123 5160                          }
5124 5161                  }
5125 5162          }
5126 5163  end_scan:
5127 5164  
5128 5165          return (s);
5129 5166  }
5130 5167  
5131 5168  typedef struct kmem_move_notify_args {
5132 5169          kmem_cache_t *kmna_cache;
5133 5170          void *kmna_buf;
5134 5171  } kmem_move_notify_args_t;
5135 5172  
5136 5173  static void
5137 5174  kmem_cache_move_notify_task(void *arg)
5138 5175  {
5139 5176          kmem_move_notify_args_t *args = arg;
5140 5177          kmem_cache_t *cp = args->kmna_cache;
5141 5178          void *buf = args->kmna_buf;
5142 5179          kmem_slab_t *sp;
5143 5180  
5144 5181          ASSERT(taskq_member(kmem_taskq, curthread));
5145 5182          ASSERT(list_link_active(&cp->cache_link));
5146 5183  
5147 5184          kmem_free(args, sizeof (kmem_move_notify_args_t));
5148 5185          mutex_enter(&cp->cache_lock);
5149 5186          sp = kmem_slab_allocated(cp, NULL, buf);
5150 5187  
5151 5188          /* Ignore the notification if the buffer is no longer allocated. */
5152 5189          if (sp == NULL) {
5153 5190                  mutex_exit(&cp->cache_lock);
5154 5191                  return;
5155 5192          }
5156 5193  
5157 5194          /* Ignore the notification if there's no reason to move the buffer. */
5158 5195          if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5159 5196                  /*
5160 5197                   * So far the notification is not ignored. Ignore the
5161 5198                   * notification if the slab is not marked by an earlier refusal
5162 5199                   * to move a buffer.
5163 5200                   */
5164 5201                  if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5165 5202                      (sp->slab_later_count == 0)) {
5166 5203                          mutex_exit(&cp->cache_lock);
5167 5204                          return;
5168 5205                  }
5169 5206  
5170 5207                  kmem_slab_move_yes(cp, sp, buf);
5171 5208                  ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5172 5209                  sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5173 5210                  mutex_exit(&cp->cache_lock);
5174 5211                  /* see kmem_move_buffers() about dropping the lock */
5175 5212                  (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5176 5213                  mutex_enter(&cp->cache_lock);
5177 5214                  ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5178 5215                  sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5179 5216                  if (sp->slab_refcnt == 0) {
5180 5217                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5181 5218                          list_remove(deadlist, sp);
5182 5219  
5183 5220                          if (!avl_is_empty(
5184 5221                              &cp->cache_defrag->kmd_moves_pending)) {
5185 5222                                  list_insert_head(deadlist, sp);
5186 5223                                  mutex_exit(&cp->cache_lock);
5187 5224                                  return;
5188 5225                          }
5189 5226  
5190 5227                          cp->cache_defrag->kmd_deadcount--;
5191 5228                          cp->cache_slab_destroy++;
5192 5229                          mutex_exit(&cp->cache_lock);
5193 5230                          kmem_slab_destroy(cp, sp);
5194 5231                          return;
5195 5232                  }
5196 5233          } else {
5197 5234                  kmem_slab_move_yes(cp, sp, buf);
5198 5235          }
5199 5236          mutex_exit(&cp->cache_lock);
5200 5237  }
5201 5238  
5202 5239  void
5203 5240  kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5204 5241  {
5205 5242          kmem_move_notify_args_t *args;
5206 5243  
5207 5244          args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5208 5245          if (args != NULL) {
5209 5246                  args->kmna_cache = cp;
5210 5247                  args->kmna_buf = buf;
5211 5248                  if (taskq_dispatch(kmem_taskq,
5212 5249                      (task_func_t *)kmem_cache_move_notify_task, args,
5213 5250                      TQ_NOSLEEP) == TASKQID_INVALID)
5214 5251                          kmem_free(args, sizeof (kmem_move_notify_args_t));
5215 5252          }
5216 5253  }
5217 5254  
5218 5255  static void
5219 5256  kmem_cache_defrag(kmem_cache_t *cp)
5220 5257  {
5221 5258          size_t n;
5222 5259  
5223 5260          ASSERT(cp->cache_defrag != NULL);
5224 5261  
5225 5262          mutex_enter(&cp->cache_lock);
5226 5263          n = avl_numnodes(&cp->cache_partial_slabs);
5227 5264          if (n > 1) {
5228 5265                  /* kmem_move_buffers() drops and reacquires cache_lock */
5229 5266                  cp->cache_defrag->kmd_defrags++;
5230 5267                  (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5231 5268          }
5232 5269          mutex_exit(&cp->cache_lock);
5233 5270  }
5234 5271  
5235 5272  /* Is this cache above the fragmentation threshold? */
5236 5273  static boolean_t
5237 5274  kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5238 5275  {
5239 5276          /*
5240 5277           *      nfree           kmem_frag_numer
5241 5278           * ------------------ > ---------------
5242 5279           * cp->cache_buftotal   kmem_frag_denom
5243 5280           */
5244 5281          return ((nfree * kmem_frag_denom) >
5245 5282              (cp->cache_buftotal * kmem_frag_numer));
5246 5283  }
5247 5284  
5248 5285  static boolean_t
5249 5286  kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5250 5287  {
5251 5288          boolean_t fragmented;
5252 5289          uint64_t nfree;
5253 5290  
5254 5291          ASSERT(MUTEX_HELD(&cp->cache_lock));
5255 5292          *doreap = B_FALSE;
5256 5293  
5257 5294          if (kmem_move_fulltilt) {
5258 5295                  if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5259 5296                          return (B_TRUE);
5260 5297                  }
5261 5298          } else {
5262 5299                  if ((cp->cache_complete_slab_count + avl_numnodes(
5263 5300                      &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5264 5301                          return (B_FALSE);
5265 5302                  }
5266 5303          }
5267 5304  
5268 5305          nfree = cp->cache_bufslab;
5269 5306          fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5270 5307              kmem_cache_frag_threshold(cp, nfree));
5271 5308  
5272 5309          /*
5273 5310           * Free buffers in the magazine layer appear allocated from the point of
5274 5311           * view of the slab layer. We want to know if the slab layer would
5275 5312           * appear fragmented if we included free buffers from magazines that
5276 5313           * have fallen out of the working set.
5277 5314           */
5278 5315          if (!fragmented) {
5279 5316                  long reap;
5280 5317  
5281 5318                  mutex_enter(&cp->cache_depot_lock);
5282 5319                  reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5283 5320                  reap = MIN(reap, cp->cache_full.ml_total);
5284 5321                  mutex_exit(&cp->cache_depot_lock);
5285 5322  
5286 5323                  nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5287 5324                  if (kmem_cache_frag_threshold(cp, nfree)) {
5288 5325                          *doreap = B_TRUE;
5289 5326                  }
5290 5327          }
5291 5328  
5292 5329          return (fragmented);
5293 5330  }
5294 5331  
5295 5332  /* Called periodically from kmem_taskq */
5296 5333  static void
5297 5334  kmem_cache_scan(kmem_cache_t *cp)
5298 5335  {
5299 5336          boolean_t reap = B_FALSE;
5300 5337          kmem_defrag_t *kmd;
5301 5338  
5302 5339          ASSERT(taskq_member(kmem_taskq, curthread));
5303 5340  
5304 5341          mutex_enter(&cp->cache_lock);
5305 5342  
5306 5343          kmd = cp->cache_defrag;
5307 5344          if (kmd->kmd_consolidate > 0) {
5308 5345                  kmd->kmd_consolidate--;
5309 5346                  mutex_exit(&cp->cache_lock);
5310 5347                  kmem_cache_reap(cp);
5311 5348                  return;
5312 5349          }
5313 5350  
5314 5351          if (kmem_cache_is_fragmented(cp, &reap)) {
5315 5352                  size_t slabs_found;
5316 5353  
5317 5354                  /*
5318 5355                   * Consolidate reclaimable slabs from the end of the partial
5319 5356                   * slab list (scan at most kmem_reclaim_scan_range slabs to find
5320 5357                   * reclaimable slabs). Keep track of how many candidate slabs we
5321 5358                   * looked for and how many we actually found so we can adjust
5322 5359                   * the definition of a candidate slab if we're having trouble
5323 5360                   * finding them.
5324 5361                   *
5325 5362                   * kmem_move_buffers() drops and reacquires cache_lock.
5326 5363                   */
5327 5364                  kmd->kmd_scans++;
5328 5365                  slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5329 5366                      kmem_reclaim_max_slabs, 0);
5330 5367                  if (slabs_found >= 0) {
5331 5368                          kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5332 5369                          kmd->kmd_slabs_found += slabs_found;
5333 5370                  }
5334 5371  
5335 5372                  if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5336 5373                          kmd->kmd_tries = 0;
5337 5374  
5338 5375                          /*
5339 5376                           * If we had difficulty finding candidate slabs in
5340 5377                           * previous scans, adjust the threshold so that
5341 5378                           * candidates are easier to find.
5342 5379                           */
5343 5380                          if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5344 5381                                  kmem_adjust_reclaim_threshold(kmd, -1);
5345 5382                          } else if ((kmd->kmd_slabs_found * 2) <
5346 5383                              kmd->kmd_slabs_sought) {
5347 5384                                  kmem_adjust_reclaim_threshold(kmd, 1);
5348 5385                          }
5349 5386                          kmd->kmd_slabs_sought = 0;
5350 5387                          kmd->kmd_slabs_found = 0;
5351 5388                  }
5352 5389          } else {
5353 5390                  kmem_reset_reclaim_threshold(cp->cache_defrag);
5354 5391  #ifdef  DEBUG
5355 5392                  if (!avl_is_empty(&cp->cache_partial_slabs)) {
5356 5393                          /*
5357 5394                           * In a debug kernel we want the consolidator to
5358 5395                           * run occasionally even when there is plenty of
5359 5396                           * memory.
5360 5397                           */
5361 5398                          uint16_t debug_rand;
5362 5399  
5363 5400                          (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5364 5401                          if (!kmem_move_noreap &&
5365 5402                              ((debug_rand % kmem_mtb_reap) == 0)) {
5366 5403                                  mutex_exit(&cp->cache_lock);
5367 5404                                  kmem_cache_reap(cp);
5368 5405                                  return;
5369 5406                          } else if ((debug_rand % kmem_mtb_move) == 0) {
5370 5407                                  kmd->kmd_scans++;
5371 5408                                  (void) kmem_move_buffers(cp,
5372 5409                                      kmem_reclaim_scan_range, 1, KMM_DEBUG);
5373 5410                          }
5374 5411                  }
5375 5412  #endif  /* DEBUG */
5376 5413          }
5377 5414  
5378 5415          mutex_exit(&cp->cache_lock);
5379 5416  
5380 5417          if (reap)
5381 5418                  kmem_depot_ws_reap(cp);
5382 5419  }
  
    | 
      ↓ open down ↓ | 
    971 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX