1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright 2018, Joyent, Inc.
  26  */
  27 
  28 /*
  29  * Kernel memory allocator, as described in the following two papers and a
  30  * statement about the consolidator:
  31  *
  32  * Jeff Bonwick,
  33  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  34  * Proceedings of the Summer 1994 Usenix Conference.
  35  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  36  *
  37  * Jeff Bonwick and Jonathan Adams,
  38  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  39  * Arbitrary Resources.
  40  * Proceedings of the 2001 Usenix Conference.
  41  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  42  *
  43  * kmem Slab Consolidator Big Theory Statement:
  44  *
  45  * 1. Motivation
  46  *
  47  * As stated in Bonwick94, slabs provide the following advantages over other
  48  * allocation structures in terms of memory fragmentation:
  49  *
  50  *  - Internal fragmentation (per-buffer wasted space) is minimal.
  51  *  - Severe external fragmentation (unused buffers on the free list) is
  52  *    unlikely.
  53  *
  54  * Segregating objects by size eliminates one source of external fragmentation,
  55  * and according to Bonwick:
  56  *
  57  *   The other reason that slabs reduce external fragmentation is that all
  58  *   objects in a slab are of the same type, so they have the same lifetime
  59  *   distribution. The resulting segregation of short-lived and long-lived
  60  *   objects at slab granularity reduces the likelihood of an entire page being
  61  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  62  *
  63  * While unlikely, severe external fragmentation remains possible. Clients that
  64  * allocate both short- and long-lived objects from the same cache cannot
  65  * anticipate the distribution of long-lived objects within the allocator's slab
  66  * implementation. Even a small percentage of long-lived objects distributed
  67  * randomly across many slabs can lead to a worst case scenario where the client
  68  * frees the majority of its objects and the system gets back almost none of the
  69  * slabs. Despite the client doing what it reasonably can to help the system
  70  * reclaim memory, the allocator cannot shake free enough slabs because of
  71  * lonely allocations stubbornly hanging on. Although the allocator is in a
  72  * position to diagnose the fragmentation, there is nothing that the allocator
  73  * by itself can do about it. It only takes a single allocated object to prevent
  74  * an entire slab from being reclaimed, and any object handed out by
  75  * kmem_cache_alloc() is by definition in the client's control. Conversely,
  76  * although the client is in a position to move a long-lived object, it has no
  77  * way of knowing if the object is causing fragmentation, and if so, where to
  78  * move it. A solution necessarily requires further cooperation between the
  79  * allocator and the client.
  80  *
  81  * 2. Move Callback
  82  *
  83  * The kmem slab consolidator therefore adds a move callback to the
  84  * allocator/client interface, improving worst-case external fragmentation in
  85  * kmem caches that supply a function to move objects from one memory location
  86  * to another. In a situation of low memory kmem attempts to consolidate all of
  87  * a cache's slabs at once; otherwise it works slowly to bring external
  88  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  89  * thereby helping to avoid a low memory situation in the future.
  90  *
  91  * The callback has the following signature:
  92  *
  93  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  94  *
  95  * It supplies the kmem client with two addresses: the allocated object that
  96  * kmem wants to move and a buffer selected by kmem for the client to use as the
  97  * copy destination. The callback is kmem's way of saying "Please get off of
  98  * this buffer and use this one instead." kmem knows where it wants to move the
  99  * object in order to best reduce fragmentation. All the client needs to know
 100  * about the second argument (void *new) is that it is an allocated, constructed
 101  * object ready to take the contents of the old object. When the move function
 102  * is called, the system is likely to be low on memory, and the new object
 103  * spares the client from having to worry about allocating memory for the
 104  * requested move. The third argument supplies the size of the object, in case a
 105  * single move function handles multiple caches whose objects differ only in
 106  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 107  * user argument passed to the constructor, destructor, and reclaim functions is
 108  * also passed to the move callback.
 109  *
 110  * 2.1 Setting the Move Callback
 111  *
 112  * The client sets the move callback after creating the cache and before
 113  * allocating from it:
 114  *
 115  *      object_cache = kmem_cache_create(...);
 116  *      kmem_cache_set_move(object_cache, object_move);
 117  *
 118  * 2.2 Move Callback Return Values
 119  *
 120  * Only the client knows about its own data and when is a good time to move it.
 121  * The client is cooperating with kmem to return unused memory to the system,
 122  * and kmem respectfully accepts this help at the client's convenience. When
 123  * asked to move an object, the client can respond with any of the following:
 124  *
 125  *   typedef enum kmem_cbrc {
 126  *           KMEM_CBRC_YES,
 127  *           KMEM_CBRC_NO,
 128  *           KMEM_CBRC_LATER,
 129  *           KMEM_CBRC_DONT_NEED,
 130  *           KMEM_CBRC_DONT_KNOW
 131  *   } kmem_cbrc_t;
 132  *
 133  * The client must not explicitly kmem_cache_free() either of the objects passed
 134  * to the callback, since kmem wants to free them directly to the slab layer
 135  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 136  * objects to free:
 137  *
 138  *       YES: (Did it) The client moved the object, so kmem frees the old one.
 139  *        NO: (Never) The client refused, so kmem frees the new object (the
 140  *            unused copy destination). kmem also marks the slab of the old
 141  *            object so as not to bother the client with further callbacks for
 142  *            that object as long as the slab remains on the partial slab list.
 143  *            (The system won't be getting the slab back as long as the
 144  *            immovable object holds it hostage, so there's no point in moving
 145  *            any of its objects.)
 146  *     LATER: The client is using the object and cannot move it now, so kmem
 147  *            frees the new object (the unused copy destination). kmem still
 148  *            attempts to move other objects off the slab, since it expects to
 149  *            succeed in clearing the slab in a later callback. The client
 150  *            should use LATER instead of NO if the object is likely to become
 151  *            movable very soon.
 152  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 153  *            with the new object (the unused copy destination). This response
 154  *            is the client's opportunity to be a model citizen and give back as
 155  *            much as it can.
 156  * DONT_KNOW: The client does not know about the object because
 157  *            a) the client has just allocated the object and not yet put it
 158  *               wherever it expects to find known objects
 159  *            b) the client has removed the object from wherever it expects to
 160  *               find known objects and is about to free it, or
 161  *            c) the client has freed the object.
 162  *            In all these cases (a, b, and c) kmem frees the new object (the
 163  *            unused copy destination).  In the first case, the object is in
 164  *            use and the correct action is that for LATER; in the latter two
 165  *            cases, we know that the object is either freed or about to be
 166  *            freed, in which case it is either already in a magazine or about
 167  *            to be in one.  In these cases, we know that the object will either
 168  *            be reallocated and reused, or it will end up in a full magazine
 169  *            that will be reaped (thereby liberating the slab).  Because it
 170  *            is prohibitively expensive to differentiate these cases, and
 171  *            because the defrag code is executed when we're low on memory
 172  *            (thereby biasing the system to reclaim full magazines) we treat
 173  *            all DONT_KNOW cases as LATER and rely on cache reaping to
 174  *            generally clean up full magazines.  While we take the same action
 175  *            for these cases, we maintain their semantic distinction:  if
 176  *            defragmentation is not occurring, it is useful to know if this
 177  *            is due to objects in use (LATER) or objects in an unknown state
 178  *            of transition (DONT_KNOW).
 179  *
 180  * 2.3 Object States
 181  *
 182  * Neither kmem nor the client can be assumed to know the object's whereabouts
 183  * at the time of the callback. An object belonging to a kmem cache may be in
 184  * any of the following states:
 185  *
 186  * 1. Uninitialized on the slab
 187  * 2. Allocated from the slab but not constructed (still uninitialized)
 188  * 3. Allocated from the slab, constructed, but not yet ready for business
 189  *    (not in a valid state for the move callback)
 190  * 4. In use (valid and known to the client)
 191  * 5. About to be freed (no longer in a valid state for the move callback)
 192  * 6. Freed to a magazine (still constructed)
 193  * 7. Allocated from a magazine, not yet ready for business (not in a valid
 194  *    state for the move callback), and about to return to state #4
 195  * 8. Deconstructed on a magazine that is about to be freed
 196  * 9. Freed to the slab
 197  *
 198  * Since the move callback may be called at any time while the object is in any
 199  * of the above states (except state #1), the client needs a safe way to
 200  * determine whether or not it knows about the object. Specifically, the client
 201  * needs to know whether or not the object is in state #4, the only state in
 202  * which a move is valid. If the object is in any other state, the client should
 203  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 204  * the object's fields.
 205  *
 206  * Note that although an object may be in state #4 when kmem initiates the move
 207  * request, the object may no longer be in that state by the time kmem actually
 208  * calls the move function. Not only does the client free objects
 209  * asynchronously, kmem itself puts move requests on a queue where thay are
 210  * pending until kmem processes them from another context. Also, objects freed
 211  * to a magazine appear allocated from the point of view of the slab layer, so
 212  * kmem may even initiate requests for objects in a state other than state #4.
 213  *
 214  * 2.3.1 Magazine Layer
 215  *
 216  * An important insight revealed by the states listed above is that the magazine
 217  * layer is populated only by kmem_cache_free(). Magazines of constructed
 218  * objects are never populated directly from the slab layer (which contains raw,
 219  * unconstructed objects). Whenever an allocation request cannot be satisfied
 220  * from the magazine layer, the magazines are bypassed and the request is
 221  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 222  * the object constructor only when allocating from the slab layer, and only in
 223  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 224  * the move callback. kmem does not preconstruct objects in anticipation of
 225  * kmem_cache_alloc().
 226  *
 227  * 2.3.2 Object Constructor and Destructor
 228  *
 229  * If the client supplies a destructor, it must be valid to call the destructor
 230  * on a newly created object (immediately after the constructor).
 231  *
 232  * 2.4 Recognizing Known Objects
 233  *
 234  * There is a simple test to determine safely whether or not the client knows
 235  * about a given object in the move callback. It relies on the fact that kmem
 236  * guarantees that the object of the move callback has only been touched by the
 237  * client itself or else by kmem. kmem does this by ensuring that none of the
 238  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 239  * callback is pending. When the last object on a slab is freed, if there is a
 240  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 241  * slabs on that list until all pending callbacks are completed. That way,
 242  * clients can be certain that the object of a move callback is in one of the
 243  * states listed above, making it possible to distinguish known objects (in
 244  * state #4) using the two low order bits of any pointer member (with the
 245  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 246  * platforms).
 247  *
 248  * The test works as long as the client always transitions objects from state #4
 249  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 250  * order bit of the client-designated pointer member. Since kmem only writes
 251  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 252  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 253  * guaranteed to set at least one of the two low order bits. Therefore, given an
 254  * object with a back pointer to a 'container_t *o_container', the client can
 255  * test
 256  *
 257  *      container_t *container = object->o_container;
 258  *      if ((uintptr_t)container & 0x3) {
 259  *              return (KMEM_CBRC_DONT_KNOW);
 260  *      }
 261  *
 262  * Typically, an object will have a pointer to some structure with a list or
 263  * hash where objects from the cache are kept while in use. Assuming that the
 264  * client has some way of knowing that the container structure is valid and will
 265  * not go away during the move, and assuming that the structure includes a lock
 266  * to protect whatever collection is used, then the client would continue as
 267  * follows:
 268  *
 269  *      // Ensure that the container structure does not go away.
 270  *      if (container_hold(container) == 0) {
 271  *              return (KMEM_CBRC_DONT_KNOW);
 272  *      }
 273  *      mutex_enter(&container->c_objects_lock);
 274  *      if (container != object->o_container) {
 275  *              mutex_exit(&container->c_objects_lock);
 276  *              container_rele(container);
 277  *              return (KMEM_CBRC_DONT_KNOW);
 278  *      }
 279  *
 280  * At this point the client knows that the object cannot be freed as long as
 281  * c_objects_lock is held. Note that after acquiring the lock, the client must
 282  * recheck the o_container pointer in case the object was removed just before
 283  * acquiring the lock.
 284  *
 285  * When the client is about to free an object, it must first remove that object
 286  * from the list, hash, or other structure where it is kept. At that time, to
 287  * mark the object so it can be distinguished from the remaining, known objects,
 288  * the client sets the designated low order bit:
 289  *
 290  *      mutex_enter(&container->c_objects_lock);
 291  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 292  *      list_remove(&container->c_objects, object);
 293  *      mutex_exit(&container->c_objects_lock);
 294  *
 295  * In the common case, the object is freed to the magazine layer, where it may
 296  * be reused on a subsequent allocation without the overhead of calling the
 297  * constructor. While in the magazine it appears allocated from the point of
 298  * view of the slab layer, making it a candidate for the move callback. Most
 299  * objects unrecognized by the client in the move callback fall into this
 300  * category and are cheaply distinguished from known objects by the test
 301  * described earlier. Because searching magazines is prohibitively expensive
 302  * for kmem, clients that do not mark freed objects (and therefore return
 303  * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
 304  * efficacy reduced.
 305  *
 306  * Invalidating the designated pointer member before freeing the object marks
 307  * the object to be avoided in the callback, and conversely, assigning a valid
 308  * value to the designated pointer member after allocating the object makes the
 309  * object fair game for the callback:
 310  *
 311  *      ... allocate object ...
 312  *      ... set any initial state not set by the constructor ...
 313  *
 314  *      mutex_enter(&container->c_objects_lock);
 315  *      list_insert_tail(&container->c_objects, object);
 316  *      membar_producer();
 317  *      object->o_container = container;
 318  *      mutex_exit(&container->c_objects_lock);
 319  *
 320  * Note that everything else must be valid before setting o_container makes the
 321  * object fair game for the move callback. The membar_producer() call ensures
 322  * that all the object's state is written to memory before setting the pointer
 323  * that transitions the object from state #3 or #7 (allocated, constructed, not
 324  * yet in use) to state #4 (in use, valid). That's important because the move
 325  * function has to check the validity of the pointer before it can safely
 326  * acquire the lock protecting the collection where it expects to find known
 327  * objects.
 328  *
 329  * This method of distinguishing known objects observes the usual symmetry:
 330  * invalidating the designated pointer is the first thing the client does before
 331  * freeing the object, and setting the designated pointer is the last thing the
 332  * client does after allocating the object. Of course, the client is not
 333  * required to use this method. Fundamentally, how the client recognizes known
 334  * objects is completely up to the client, but this method is recommended as an
 335  * efficient and safe way to take advantage of the guarantees made by kmem. If
 336  * the entire object is arbitrary data without any markable bits from a suitable
 337  * pointer member, then the client must find some other method, such as
 338  * searching a hash table of known objects.
 339  *
 340  * 2.5 Preventing Objects From Moving
 341  *
 342  * Besides a way to distinguish known objects, the other thing that the client
 343  * needs is a strategy to ensure that an object will not move while the client
 344  * is actively using it. The details of satisfying this requirement tend to be
 345  * highly cache-specific. It might seem that the same rules that let a client
 346  * remove an object safely should also decide when an object can be moved
 347  * safely. However, any object state that makes a removal attempt invalid is
 348  * likely to be long-lasting for objects that the client does not expect to
 349  * remove. kmem knows nothing about the object state and is equally likely (from
 350  * the client's point of view) to request a move for any object in the cache,
 351  * whether prepared for removal or not. Even a low percentage of objects stuck
 352  * in place by unremovability will defeat the consolidator if the stuck objects
 353  * are the same long-lived allocations likely to hold slabs hostage.
 354  * Fundamentally, the consolidator is not aimed at common cases. Severe external
 355  * fragmentation is a worst case scenario manifested as sparsely allocated
 356  * slabs, by definition a low percentage of the cache's objects. When deciding
 357  * what makes an object movable, keep in mind the goal of the consolidator: to
 358  * bring worst-case external fragmentation within the limits guaranteed for
 359  * internal fragmentation. Removability is a poor criterion if it is likely to
 360  * exclude more than an insignificant percentage of objects for long periods of
 361  * time.
 362  *
 363  * A tricky general solution exists, and it has the advantage of letting you
 364  * move any object at almost any moment, practically eliminating the likelihood
 365  * that an object can hold a slab hostage. However, if there is a cache-specific
 366  * way to ensure that an object is not actively in use in the vast majority of
 367  * cases, a simpler solution that leverages this cache-specific knowledge is
 368  * preferred.
 369  *
 370  * 2.5.1 Cache-Specific Solution
 371  *
 372  * As an example of a cache-specific solution, the ZFS znode cache takes
 373  * advantage of the fact that the vast majority of znodes are only being
 374  * referenced from the DNLC. (A typical case might be a few hundred in active
 375  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 376  * client has established that it recognizes the znode and can access its fields
 377  * safely (using the method described earlier), it then tests whether the znode
 378  * is referenced by anything other than the DNLC. If so, it assumes that the
 379  * znode may be in active use and is unsafe to move, so it drops its locks and
 380  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 381  * else znodes are used, no change is needed to protect against the possibility
 382  * of the znode moving. The disadvantage is that it remains possible for an
 383  * application to hold a znode slab hostage with an open file descriptor.
 384  * However, this case ought to be rare and the consolidator has a way to deal
 385  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 386  * object, kmem eventually stops believing it and treats the slab as if the
 387  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 388  * then focus on getting it off of the partial slab list by allocating rather
 389  * than freeing all of its objects. (Either way of getting a slab off the
 390  * free list reduces fragmentation.)
 391  *
 392  * 2.5.2 General Solution
 393  *
 394  * The general solution, on the other hand, requires an explicit hold everywhere
 395  * the object is used to prevent it from moving. To keep the client locking
 396  * strategy as uncomplicated as possible, kmem guarantees the simplifying
 397  * assumption that move callbacks are sequential, even across multiple caches.
 398  * Internally, a global queue processed by a single thread supports all caches
 399  * implementing the callback function. No matter how many caches supply a move
 400  * function, the consolidator never moves more than one object at a time, so the
 401  * client does not have to worry about tricky lock ordering involving several
 402  * related objects from different kmem caches.
 403  *
 404  * The general solution implements the explicit hold as a read-write lock, which
 405  * allows multiple readers to access an object from the cache simultaneously
 406  * while a single writer is excluded from moving it. A single rwlock for the
 407  * entire cache would lock out all threads from using any of the cache's objects
 408  * even though only a single object is being moved, so to reduce contention,
 409  * the client can fan out the single rwlock into an array of rwlocks hashed by
 410  * the object address, making it probable that moving one object will not
 411  * prevent other threads from using a different object. The rwlock cannot be a
 412  * member of the object itself, because the possibility of the object moving
 413  * makes it unsafe to access any of the object's fields until the lock is
 414  * acquired.
 415  *
 416  * Assuming a small, fixed number of locks, it's possible that multiple objects
 417  * will hash to the same lock. A thread that needs to use multiple objects in
 418  * the same function may acquire the same lock multiple times. Since rwlocks are
 419  * reentrant for readers, and since there is never more than a single writer at
 420  * a time (assuming that the client acquires the lock as a writer only when
 421  * moving an object inside the callback), there would seem to be no problem.
 422  * However, a client locking multiple objects in the same function must handle
 423  * one case of potential deadlock: Assume that thread A needs to prevent both
 424  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 425  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 426  * same lock, that thread A will acquire the lock for object 1 as a reader
 427  * before thread B sets the lock's write-wanted bit, preventing thread A from
 428  * reacquiring the lock for object 2 as a reader. Unable to make forward
 429  * progress, thread A will never release the lock for object 1, resulting in
 430  * deadlock.
 431  *
 432  * There are two ways of avoiding the deadlock just described. The first is to
 433  * use rw_tryenter() rather than rw_enter() in the callback function when
 434  * attempting to acquire the lock as a writer. If tryenter discovers that the
 435  * same object (or another object hashed to the same lock) is already in use, it
 436  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 437  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 438  * since it allows a thread to acquire the lock as a reader in spite of a
 439  * waiting writer. This second approach insists on moving the object now, no
 440  * matter how many readers the move function must wait for in order to do so,
 441  * and could delay the completion of the callback indefinitely (blocking
 442  * callbacks to other clients). In practice, a less insistent callback using
 443  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 444  * little reason to use anything else.
 445  *
 446  * Avoiding deadlock is not the only problem that an implementation using an
 447  * explicit hold needs to solve. Locking the object in the first place (to
 448  * prevent it from moving) remains a problem, since the object could move
 449  * between the time you obtain a pointer to the object and the time you acquire
 450  * the rwlock hashed to that pointer value. Therefore the client needs to
 451  * recheck the value of the pointer after acquiring the lock, drop the lock if
 452  * the value has changed, and try again. This requires a level of indirection:
 453  * something that points to the object rather than the object itself, that the
 454  * client can access safely while attempting to acquire the lock. (The object
 455  * itself cannot be referenced safely because it can move at any time.)
 456  * The following lock-acquisition function takes whatever is safe to reference
 457  * (arg), follows its pointer to the object (using function f), and tries as
 458  * often as necessary to acquire the hashed lock and verify that the object
 459  * still has not moved:
 460  *
 461  *      object_t *
 462  *      object_hold(object_f f, void *arg)
 463  *      {
 464  *              object_t *op;
 465  *
 466  *              op = f(arg);
 467  *              if (op == NULL) {
 468  *                      return (NULL);
 469  *              }
 470  *
 471  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 472  *              while (op != f(arg)) {
 473  *                      rw_exit(OBJECT_RWLOCK(op));
 474  *                      op = f(arg);
 475  *                      if (op == NULL) {
 476  *                              break;
 477  *                      }
 478  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 479  *              }
 480  *
 481  *              return (op);
 482  *      }
 483  *
 484  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 485  * lock reacquisition loop, while necessary, almost never executes. The function
 486  * pointer f (used to obtain the object pointer from arg) has the following type
 487  * definition:
 488  *
 489  *      typedef object_t *(*object_f)(void *arg);
 490  *
 491  * An object_f implementation is likely to be as simple as accessing a structure
 492  * member:
 493  *
 494  *      object_t *
 495  *      s_object(void *arg)
 496  *      {
 497  *              something_t *sp = arg;
 498  *              return (sp->s_object);
 499  *      }
 500  *
 501  * The flexibility of a function pointer allows the path to the object to be
 502  * arbitrarily complex and also supports the notion that depending on where you
 503  * are using the object, you may need to get it from someplace different.
 504  *
 505  * The function that releases the explicit hold is simpler because it does not
 506  * have to worry about the object moving:
 507  *
 508  *      void
 509  *      object_rele(object_t *op)
 510  *      {
 511  *              rw_exit(OBJECT_RWLOCK(op));
 512  *      }
 513  *
 514  * The caller is spared these details so that obtaining and releasing an
 515  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 516  * of object_hold() only needs to know that the returned object pointer is valid
 517  * if not NULL and that the object will not move until released.
 518  *
 519  * Although object_hold() prevents an object from moving, it does not prevent it
 520  * from being freed. The caller must take measures before calling object_hold()
 521  * (afterwards is too late) to ensure that the held object cannot be freed. The
 522  * caller must do so without accessing the unsafe object reference, so any lock
 523  * or reference count used to ensure the continued existence of the object must
 524  * live outside the object itself.
 525  *
 526  * Obtaining a new object is a special case where an explicit hold is impossible
 527  * for the caller. Any function that returns a newly allocated object (either as
 528  * a return value, or as an in-out paramter) must return it already held; after
 529  * the caller gets it is too late, since the object cannot be safely accessed
 530  * without the level of indirection described earlier. The following
 531  * object_alloc() example uses the same code shown earlier to transition a new
 532  * object into the state of being recognized (by the client) as a known object.
 533  * The function must acquire the hold (rw_enter) before that state transition
 534  * makes the object movable:
 535  *
 536  *      static object_t *
 537  *      object_alloc(container_t *container)
 538  *      {
 539  *              object_t *object = kmem_cache_alloc(object_cache, 0);
 540  *              ... set any initial state not set by the constructor ...
 541  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 542  *              mutex_enter(&container->c_objects_lock);
 543  *              list_insert_tail(&container->c_objects, object);
 544  *              membar_producer();
 545  *              object->o_container = container;
 546  *              mutex_exit(&container->c_objects_lock);
 547  *              return (object);
 548  *      }
 549  *
 550  * Functions that implicitly acquire an object hold (any function that calls
 551  * object_alloc() to supply an object for the caller) need to be carefully noted
 552  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 553  * prevent all objects hashed to the affected rwlocks from ever being moved.
 554  *
 555  * The pointer to a held object can be hashed to the holding rwlock even after
 556  * the object has been freed. Although it is possible to release the hold
 557  * after freeing the object, you may decide to release the hold implicitly in
 558  * whatever function frees the object, so as to release the hold as soon as
 559  * possible, and for the sake of symmetry with the function that implicitly
 560  * acquires the hold when it allocates the object. Here, object_free() releases
 561  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 562  * matching pair with object_hold():
 563  *
 564  *      void
 565  *      object_free(object_t *object)
 566  *      {
 567  *              container_t *container;
 568  *
 569  *              ASSERT(object_held(object));
 570  *              container = object->o_container;
 571  *              mutex_enter(&container->c_objects_lock);
 572  *              object->o_container =
 573  *                  (void *)((uintptr_t)object->o_container | 0x1);
 574  *              list_remove(&container->c_objects, object);
 575  *              mutex_exit(&container->c_objects_lock);
 576  *              object_rele(object);
 577  *              kmem_cache_free(object_cache, object);
 578  *      }
 579  *
 580  * Note that object_free() cannot safely accept an object pointer as an argument
 581  * unless the object is already held. Any function that calls object_free()
 582  * needs to be carefully noted since it similarly forms a matching pair with
 583  * object_hold().
 584  *
 585  * To complete the picture, the following callback function implements the
 586  * general solution by moving objects only if they are currently unheld:
 587  *
 588  *      static kmem_cbrc_t
 589  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 590  *      {
 591  *              object_t *op = buf, *np = newbuf;
 592  *              container_t *container;
 593  *
 594  *              container = op->o_container;
 595  *              if ((uintptr_t)container & 0x3) {
 596  *                      return (KMEM_CBRC_DONT_KNOW);
 597  *              }
 598  *
 599  *              // Ensure that the container structure does not go away.
 600  *              if (container_hold(container) == 0) {
 601  *                      return (KMEM_CBRC_DONT_KNOW);
 602  *              }
 603  *
 604  *              mutex_enter(&container->c_objects_lock);
 605  *              if (container != op->o_container) {
 606  *                      mutex_exit(&container->c_objects_lock);
 607  *                      container_rele(container);
 608  *                      return (KMEM_CBRC_DONT_KNOW);
 609  *              }
 610  *
 611  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 612  *                      mutex_exit(&container->c_objects_lock);
 613  *                      container_rele(container);
 614  *                      return (KMEM_CBRC_LATER);
 615  *              }
 616  *
 617  *              object_move_impl(op, np); // critical section
 618  *              rw_exit(OBJECT_RWLOCK(op));
 619  *
 620  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 621  *              list_link_replace(&op->o_link_node, &np->o_link_node);
 622  *              mutex_exit(&container->c_objects_lock);
 623  *              container_rele(container);
 624  *              return (KMEM_CBRC_YES);
 625  *      }
 626  *
 627  * Note that object_move() must invalidate the designated o_container pointer of
 628  * the old object in the same way that object_free() does, since kmem will free
 629  * the object in response to the KMEM_CBRC_YES return value.
 630  *
 631  * The lock order in object_move() differs from object_alloc(), which locks
 632  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 633  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 634  * not a problem. Holding the lock on the object list in the example above
 635  * through the entire callback not only prevents the object from going away, it
 636  * also allows you to lock the list elsewhere and know that none of its elements
 637  * will move during iteration.
 638  *
 639  * Adding an explicit hold everywhere an object from the cache is used is tricky
 640  * and involves much more change to client code than a cache-specific solution
 641  * that leverages existing state to decide whether or not an object is
 642  * movable. However, this approach has the advantage that no object remains
 643  * immovable for any significant length of time, making it extremely unlikely
 644  * that long-lived allocations can continue holding slabs hostage; and it works
 645  * for any cache.
 646  *
 647  * 3. Consolidator Implementation
 648  *
 649  * Once the client supplies a move function that a) recognizes known objects and
 650  * b) avoids moving objects that are actively in use, the remaining work is up
 651  * to the consolidator to decide which objects to move and when to issue
 652  * callbacks.
 653  *
 654  * The consolidator relies on the fact that a cache's slabs are ordered by
 655  * usage. Each slab has a fixed number of objects. Depending on the slab's
 656  * "color" (the offset of the first object from the beginning of the slab;
 657  * offsets are staggered to mitigate false sharing of cache lines) it is either
 658  * the maximum number of objects per slab determined at cache creation time or
 659  * else the number closest to the maximum that fits within the space remaining
 660  * after the initial offset. A completely allocated slab may contribute some
 661  * internal fragmentation (per-slab overhead) but no external fragmentation, so
 662  * it is of no interest to the consolidator. At the other extreme, slabs whose
 663  * objects have all been freed to the slab are released to the virtual memory
 664  * (VM) subsystem (objects freed to magazines are still allocated as far as the
 665  * slab is concerned). External fragmentation exists when there are slabs
 666  * somewhere between these extremes. A partial slab has at least one but not all
 667  * of its objects allocated. The more partial slabs, and the fewer allocated
 668  * objects on each of them, the higher the fragmentation. Hence the
 669  * consolidator's overall strategy is to reduce the number of partial slabs by
 670  * moving allocated objects from the least allocated slabs to the most allocated
 671  * slabs.
 672  *
 673  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 674  * slabs are kept separately in an unordered list. Since the majority of slabs
 675  * tend to be completely allocated (a typical unfragmented cache may have
 676  * thousands of complete slabs and only a single partial slab), separating
 677  * complete slabs improves the efficiency of partial slab ordering, since the
 678  * complete slabs do not affect the depth or balance of the AVL tree. This
 679  * ordered sequence of partial slabs acts as a "free list" supplying objects for
 680  * allocation requests.
 681  *
 682  * Objects are always allocated from the first partial slab in the free list,
 683  * where the allocation is most likely to eliminate a partial slab (by
 684  * completely allocating it). Conversely, when a single object from a completely
 685  * allocated slab is freed to the slab, that slab is added to the front of the
 686  * free list. Since most free list activity involves highly allocated slabs
 687  * coming and going at the front of the list, slabs tend naturally toward the
 688  * ideal order: highly allocated at the front, sparsely allocated at the back.
 689  * Slabs with few allocated objects are likely to become completely free if they
 690  * keep a safe distance away from the front of the free list. Slab misorders
 691  * interfere with the natural tendency of slabs to become completely free or
 692  * completely allocated. For example, a slab with a single allocated object
 693  * needs only a single free to escape the cache; its natural desire is
 694  * frustrated when it finds itself at the front of the list where a second
 695  * allocation happens just before the free could have released it. Another slab
 696  * with all but one object allocated might have supplied the buffer instead, so
 697  * that both (as opposed to neither) of the slabs would have been taken off the
 698  * free list.
 699  *
 700  * Although slabs tend naturally toward the ideal order, misorders allowed by a
 701  * simple list implementation defeat the consolidator's strategy of merging
 702  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 703  * needs another way to fix misorders to optimize its callback strategy. One
 704  * approach is to periodically scan a limited number of slabs, advancing a
 705  * marker to hold the current scan position, and to move extreme misorders to
 706  * the front or back of the free list and to the front or back of the current
 707  * scan range. By making consecutive scan ranges overlap by one slab, the least
 708  * allocated slab in the current range can be carried along from the end of one
 709  * scan to the start of the next.
 710  *
 711  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 712  * task, however. Since most of the cache's activity is in the magazine layer,
 713  * and allocations from the slab layer represent only a startup cost, the
 714  * overhead of maintaining a balanced tree is not a significant concern compared
 715  * to the opportunity of reducing complexity by eliminating the partial slab
 716  * scanner just described. The overhead of an AVL tree is minimized by
 717  * maintaining only partial slabs in the tree and keeping completely allocated
 718  * slabs separately in a list. To avoid increasing the size of the slab
 719  * structure the AVL linkage pointers are reused for the slab's list linkage,
 720  * since the slab will always be either partial or complete, never stored both
 721  * ways at the same time. To further minimize the overhead of the AVL tree the
 722  * compare function that orders partial slabs by usage divides the range of
 723  * allocated object counts into bins such that counts within the same bin are
 724  * considered equal. Binning partial slabs makes it less likely that allocating
 725  * or freeing a single object will change the slab's order, requiring a tree
 726  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 727  * requiring some rebalancing of the tree). Allocation counts closest to
 728  * completely free and completely allocated are left unbinned (finely sorted) to
 729  * better support the consolidator's strategy of merging slabs at either
 730  * extreme.
 731  *
 732  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 733  *
 734  * The consolidator piggybacks on the kmem maintenance thread and is called on
 735  * the same interval as kmem_cache_update(), once per cache every fifteen
 736  * seconds. kmem maintains a running count of unallocated objects in the slab
 737  * layer (cache_bufslab). The consolidator checks whether that number exceeds
 738  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 739  * there is a significant number of slabs in the cache (arbitrarily a minimum
 740  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 741  * working set are included in the assessment, and magazines in the depot are
 742  * reaped if those objects would lift cache_bufslab above the fragmentation
 743  * threshold. Once the consolidator decides that a cache is fragmented, it looks
 744  * for a candidate slab to reclaim, starting at the end of the partial slab free
 745  * list and scanning backwards. At first the consolidator is choosy: only a slab
 746  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 747  * single allocated object, regardless of percentage). If there is difficulty
 748  * finding a candidate slab, kmem raises the allocation threshold incrementally,
 749  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 750  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 751  * even in the worst case of every slab in the cache being almost 7/8 allocated.
 752  * The threshold can also be lowered incrementally when candidate slabs are easy
 753  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 754  * is no longer fragmented.
 755  *
 756  * 3.2 Generating Callbacks
 757  *
 758  * Once an eligible slab is chosen, a callback is generated for every allocated
 759  * object on the slab, in the hope that the client will move everything off the
 760  * slab and make it reclaimable. Objects selected as move destinations are
 761  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 762  * order (most allocated at the front, least allocated at the back) and a
 763  * cooperative client, the consolidator will succeed in removing slabs from both
 764  * ends of the free list, completely allocating on the one hand and completely
 765  * freeing on the other. Objects selected as move destinations are allocated in
 766  * the kmem maintenance thread where move requests are enqueued. A separate
 767  * callback thread removes pending callbacks from the queue and calls the
 768  * client. The separate thread ensures that client code (the move function) does
 769  * not interfere with internal kmem maintenance tasks. A map of pending
 770  * callbacks keyed by object address (the object to be moved) is checked to
 771  * ensure that duplicate callbacks are not generated for the same object.
 772  * Allocating the move destination (the object to move to) prevents subsequent
 773  * callbacks from selecting the same destination as an earlier pending callback.
 774  *
 775  * Move requests can also be generated by kmem_cache_reap() when the system is
 776  * desperate for memory and by kmem_cache_move_notify(), called by the client to
 777  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 778  * The map of pending callbacks is protected by the same lock that protects the
 779  * slab layer.
 780  *
 781  * When the system is desperate for memory, kmem does not bother to determine
 782  * whether or not the cache exceeds the fragmentation threshold, but tries to
 783  * consolidate as many slabs as possible. Normally, the consolidator chews
 784  * slowly, one sparsely allocated slab at a time during each maintenance
 785  * interval that the cache is fragmented. When desperate, the consolidator
 786  * starts at the last partial slab and enqueues callbacks for every allocated
 787  * object on every partial slab, working backwards until it reaches the first
 788  * partial slab. The first partial slab, meanwhile, advances in pace with the
 789  * consolidator as allocations to supply move destinations for the enqueued
 790  * callbacks use up the highly allocated slabs at the front of the free list.
 791  * Ideally, the overgrown free list collapses like an accordion, starting at
 792  * both ends and ending at the center with a single partial slab.
 793  *
 794  * 3.3 Client Responses
 795  *
 796  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 797  * marks the slab that supplied the stuck object non-reclaimable and moves it to
 798  * front of the free list. The slab remains marked as long as it remains on the
 799  * free list, and it appears more allocated to the partial slab compare function
 800  * than any unmarked slab, no matter how many of its objects are allocated.
 801  * Since even one immovable object ties up the entire slab, the goal is to
 802  * completely allocate any slab that cannot be completely freed. kmem does not
 803  * bother generating callbacks to move objects from a marked slab unless the
 804  * system is desperate.
 805  *
 806  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 807  * slab. If the client responds LATER too many times, kmem disbelieves and
 808  * treats the response as a NO. The count is cleared when the slab is taken off
 809  * the partial slab list or when the client moves one of the slab's objects.
 810  *
 811  * 4. Observability
 812  *
 813  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 814  * the ::kmem_slabs dcmd. For a complete description of the command, enter
 815  * '::help kmem_slabs' at the mdb prompt.
 816  */
 817 
 818 #include <sys/kmem_impl.h>
 819 #include <sys/vmem_impl.h>
 820 #include <sys/param.h>
 821 #include <sys/sysmacros.h>
 822 #include <sys/vm.h>
 823 #include <sys/proc.h>
 824 #include <sys/tuneable.h>
 825 #include <sys/systm.h>
 826 #include <sys/cmn_err.h>
 827 #include <sys/debug.h>
 828 #include <sys/sdt.h>
 829 #include <sys/mutex.h>
 830 #include <sys/bitmap.h>
 831 #include <sys/atomic.h>
 832 #include <sys/kobj.h>
 833 #include <sys/disp.h>
 834 #include <vm/seg_kmem.h>
 835 #include <sys/log.h>
 836 #include <sys/callb.h>
 837 #include <sys/taskq.h>
 838 #include <sys/modctl.h>
 839 #include <sys/reboot.h>
 840 #include <sys/id32.h>
 841 #include <sys/zone.h>
 842 #include <sys/netstack.h>
 843 #ifdef  DEBUG
 844 #include <sys/random.h>
 845 #endif
 846 
 847 extern void streams_msg_init(void);
 848 extern int segkp_fromheap;
 849 extern void segkp_cache_free(void);
 850 extern int callout_init_done;
 851 
 852 struct kmem_cache_kstat {
 853         kstat_named_t   kmc_buf_size;
 854         kstat_named_t   kmc_align;
 855         kstat_named_t   kmc_chunk_size;
 856         kstat_named_t   kmc_slab_size;
 857         kstat_named_t   kmc_alloc;
 858         kstat_named_t   kmc_alloc_fail;
 859         kstat_named_t   kmc_free;
 860         kstat_named_t   kmc_depot_alloc;
 861         kstat_named_t   kmc_depot_free;
 862         kstat_named_t   kmc_depot_contention;
 863         kstat_named_t   kmc_slab_alloc;
 864         kstat_named_t   kmc_slab_free;
 865         kstat_named_t   kmc_buf_constructed;
 866         kstat_named_t   kmc_buf_avail;
 867         kstat_named_t   kmc_buf_inuse;
 868         kstat_named_t   kmc_buf_total;
 869         kstat_named_t   kmc_buf_max;
 870         kstat_named_t   kmc_slab_create;
 871         kstat_named_t   kmc_slab_destroy;
 872         kstat_named_t   kmc_vmem_source;
 873         kstat_named_t   kmc_hash_size;
 874         kstat_named_t   kmc_hash_lookup_depth;
 875         kstat_named_t   kmc_hash_rescale;
 876         kstat_named_t   kmc_full_magazines;
 877         kstat_named_t   kmc_empty_magazines;
 878         kstat_named_t   kmc_magazine_size;
 879         kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 880         kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 881         kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 882         kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 883         kstat_named_t   kmc_move_yes;
 884         kstat_named_t   kmc_move_no;
 885         kstat_named_t   kmc_move_later;
 886         kstat_named_t   kmc_move_dont_need;
 887         kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 888         kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 889         kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 890         kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 891 } kmem_cache_kstat = {
 892         { "buf_size",           KSTAT_DATA_UINT64 },
 893         { "align",              KSTAT_DATA_UINT64 },
 894         { "chunk_size",         KSTAT_DATA_UINT64 },
 895         { "slab_size",          KSTAT_DATA_UINT64 },
 896         { "alloc",              KSTAT_DATA_UINT64 },
 897         { "alloc_fail",         KSTAT_DATA_UINT64 },
 898         { "free",               KSTAT_DATA_UINT64 },
 899         { "depot_alloc",        KSTAT_DATA_UINT64 },
 900         { "depot_free",         KSTAT_DATA_UINT64 },
 901         { "depot_contention",   KSTAT_DATA_UINT64 },
 902         { "slab_alloc",         KSTAT_DATA_UINT64 },
 903         { "slab_free",          KSTAT_DATA_UINT64 },
 904         { "buf_constructed",    KSTAT_DATA_UINT64 },
 905         { "buf_avail",          KSTAT_DATA_UINT64 },
 906         { "buf_inuse",          KSTAT_DATA_UINT64 },
 907         { "buf_total",          KSTAT_DATA_UINT64 },
 908         { "buf_max",            KSTAT_DATA_UINT64 },
 909         { "slab_create",        KSTAT_DATA_UINT64 },
 910         { "slab_destroy",       KSTAT_DATA_UINT64 },
 911         { "vmem_source",        KSTAT_DATA_UINT64 },
 912         { "hash_size",          KSTAT_DATA_UINT64 },
 913         { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 914         { "hash_rescale",       KSTAT_DATA_UINT64 },
 915         { "full_magazines",     KSTAT_DATA_UINT64 },
 916         { "empty_magazines",    KSTAT_DATA_UINT64 },
 917         { "magazine_size",      KSTAT_DATA_UINT64 },
 918         { "reap",               KSTAT_DATA_UINT64 },
 919         { "defrag",             KSTAT_DATA_UINT64 },
 920         { "scan",               KSTAT_DATA_UINT64 },
 921         { "move_callbacks",     KSTAT_DATA_UINT64 },
 922         { "move_yes",           KSTAT_DATA_UINT64 },
 923         { "move_no",            KSTAT_DATA_UINT64 },
 924         { "move_later",         KSTAT_DATA_UINT64 },
 925         { "move_dont_need",     KSTAT_DATA_UINT64 },
 926         { "move_dont_know",     KSTAT_DATA_UINT64 },
 927         { "move_hunt_found",    KSTAT_DATA_UINT64 },
 928         { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 929         { "move_reclaimable",   KSTAT_DATA_UINT64 },
 930 };
 931 
 932 static kmutex_t kmem_cache_kstat_lock;
 933 
 934 /*
 935  * The default set of caches to back kmem_alloc().
 936  * These sizes should be reevaluated periodically.
 937  *
 938  * We want allocations that are multiples of the coherency granularity
 939  * (64 bytes) to be satisfied from a cache which is a multiple of 64
 940  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 941  * the next kmem_cache_size greater than or equal to it must be a
 942  * multiple of 64.
 943  *
 944  * We split the table into two sections:  size <= 4k and size > 4k.  This
 945  * saves a lot of space and cache footprint in our cache tables.
 946  */
 947 static const int kmem_alloc_sizes[] = {
 948         1 * 8,
 949         2 * 8,
 950         3 * 8,
 951         4 * 8,          5 * 8,          6 * 8,          7 * 8,
 952         4 * 16,         5 * 16,         6 * 16,         7 * 16,
 953         4 * 32,         5 * 32,         6 * 32,         7 * 32,
 954         4 * 64,         5 * 64,         6 * 64,         7 * 64,
 955         4 * 128,        5 * 128,        6 * 128,        7 * 128,
 956         P2ALIGN(8192 / 7, 64),
 957         P2ALIGN(8192 / 6, 64),
 958         P2ALIGN(8192 / 5, 64),
 959         P2ALIGN(8192 / 4, 64),
 960         P2ALIGN(8192 / 3, 64),
 961         P2ALIGN(8192 / 2, 64),
 962 };
 963 
 964 static const int kmem_big_alloc_sizes[] = {
 965         2 * 4096,       3 * 4096,
 966         2 * 8192,       3 * 8192,
 967         4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 968         8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 969         12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 970         16 * 8192
 971 };
 972 
 973 #define KMEM_MAXBUF             4096
 974 #define KMEM_BIG_MAXBUF_32BIT   32768
 975 #define KMEM_BIG_MAXBUF         131072
 976 
 977 #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 978 #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 979 
 980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 982 
 983 #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 984 static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 985 
 986 static kmem_magtype_t kmem_magtype[] = {
 987         { 1,    8,      3200,   65536   },
 988         { 3,    16,     256,    32768   },
 989         { 7,    32,     64,     16384   },
 990         { 15,   64,     0,      8192    },
 991         { 31,   64,     0,      4096    },
 992         { 47,   64,     0,      2048    },
 993         { 63,   64,     0,      1024    },
 994         { 95,   64,     0,      512     },
 995         { 143,  64,     0,      0       },
 996 };
 997 
 998 static uint32_t kmem_reaping;
 999 static uint32_t kmem_reaping_idspace;
1000 
1001 /*
1002  * kmem tunables
1003  */
1004 clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
1005 int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
1006 pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
1007 int kmem_panic = 1;             /* whether to panic on error */
1008 int kmem_logging = 1;           /* kmem_log_enter() override */
1009 uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011 size_t kmem_content_log_size;   /* content log size [2% of memory] */
1012 size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1013 size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1014 size_t kmem_zerosized_log_size; /* zero-sized log [4 pages per CPU] */
1015 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1016 size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1017 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1018 int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1019 size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1020 size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1021 
1022 #ifdef DEBUG
1023 int kmem_warn_zerosized = 1;    /* whether to warn on zero-sized KM_SLEEP */
1024 #else
1025 int kmem_warn_zerosized = 0;    /* whether to warn on zero-sized KM_SLEEP */
1026 #endif
1027 
1028 int kmem_panic_zerosized = 0;   /* whether to panic on zero-sized KM_SLEEP */
1029 
1030 #ifdef _LP64
1031 size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1032 #else
1033 size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1034 #endif
1035 
1036 #ifdef DEBUG
1037 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1038 #else
1039 int kmem_flags = 0;
1040 #endif
1041 int kmem_ready;
1042 
1043 static kmem_cache_t     *kmem_slab_cache;
1044 static kmem_cache_t     *kmem_bufctl_cache;
1045 static kmem_cache_t     *kmem_bufctl_audit_cache;
1046 
1047 static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1048 static list_t           kmem_caches;
1049 
1050 static taskq_t          *kmem_taskq;
1051 static kmutex_t         kmem_flags_lock;
1052 static vmem_t           *kmem_metadata_arena;
1053 static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1054 static vmem_t           *kmem_cache_arena;
1055 static vmem_t           *kmem_hash_arena;
1056 static vmem_t           *kmem_log_arena;
1057 static vmem_t           *kmem_oversize_arena;
1058 static vmem_t           *kmem_va_arena;
1059 static vmem_t           *kmem_default_arena;
1060 static vmem_t           *kmem_firewall_va_arena;
1061 static vmem_t           *kmem_firewall_arena;
1062 
1063 static int              kmem_zerosized;         /* # of zero-sized allocs */
1064 
1065 /*
1066  * kmem slab consolidator thresholds (tunables)
1067  */
1068 size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1069 size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1070 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1071 /*
1072  * Maximum number of slabs from which to move buffers during a single
1073  * maintenance interval while the system is not low on memory.
1074  */
1075 size_t kmem_reclaim_max_slabs = 1;
1076 /*
1077  * Number of slabs to scan backwards from the end of the partial slab list
1078  * when searching for buffers to relocate.
1079  */
1080 size_t kmem_reclaim_scan_range = 12;
1081 
1082 /* consolidator knobs */
1083 boolean_t kmem_move_noreap;
1084 boolean_t kmem_move_blocked;
1085 boolean_t kmem_move_fulltilt;
1086 boolean_t kmem_move_any_partial;
1087 
1088 #ifdef  DEBUG
1089 /*
1090  * kmem consolidator debug tunables:
1091  * Ensure code coverage by occasionally running the consolidator even when the
1092  * caches are not fragmented (they may never be). These intervals are mean time
1093  * in cache maintenance intervals (kmem_cache_update).
1094  */
1095 uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1096 uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1097 #endif  /* DEBUG */
1098 
1099 static kmem_cache_t     *kmem_defrag_cache;
1100 static kmem_cache_t     *kmem_move_cache;
1101 static taskq_t          *kmem_move_taskq;
1102 
1103 static void kmem_cache_scan(kmem_cache_t *);
1104 static void kmem_cache_defrag(kmem_cache_t *);
1105 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1106 
1107 
1108 kmem_log_header_t       *kmem_transaction_log;
1109 kmem_log_header_t       *kmem_content_log;
1110 kmem_log_header_t       *kmem_failure_log;
1111 kmem_log_header_t       *kmem_slab_log;
1112 kmem_log_header_t       *kmem_zerosized_log;
1113 
1114 static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1115 
1116 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1117         if ((count) > 0) {                                           \
1118                 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
1119                 pc_t *_e;                                               \
1120                 /* memmove() the old entries down one notch */          \
1121                 for (_e = &_s[(count) - 1]; _e > _s; _e--)               \
1122                         *_e = *(_e - 1);                                \
1123                 *_s = (uintptr_t)(caller);                              \
1124         }
1125 
1126 #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1127 #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1128 #define KMERR_DUPFREE   2       /* freed a buffer twice */
1129 #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1130 #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1131 #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1132 #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1133 #define KMERR_BADSIZE   7       /* alloc size != free size */
1134 #define KMERR_BADBASE   8       /* buffer base address wrong */
1135 
1136 struct {
1137         hrtime_t        kmp_timestamp;  /* timestamp of panic */
1138         int             kmp_error;      /* type of kmem error */
1139         void            *kmp_buffer;    /* buffer that induced panic */
1140         void            *kmp_realbuf;   /* real start address for buffer */
1141         kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1142         kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1143         kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1144         kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1145 } kmem_panic_info;
1146 
1147 
1148 static void
1149 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1150 {
1151         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1152         uint64_t *buf = buf_arg;
1153 
1154         while (buf < bufend)
1155                 *buf++ = pattern;
1156 }
1157 
1158 static void *
1159 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1160 {
1161         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162         uint64_t *buf;
1163 
1164         for (buf = buf_arg; buf < bufend; buf++)
1165                 if (*buf != pattern)
1166                         return (buf);
1167         return (NULL);
1168 }
1169 
1170 static void *
1171 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1172 {
1173         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1174         uint64_t *buf;
1175 
1176         for (buf = buf_arg; buf < bufend; buf++) {
1177                 if (*buf != old) {
1178                         copy_pattern(old, buf_arg,
1179                             (char *)buf - (char *)buf_arg);
1180                         return (buf);
1181                 }
1182                 *buf = new;
1183         }
1184 
1185         return (NULL);
1186 }
1187 
1188 static void
1189 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1190 {
1191         kmem_cache_t *cp;
1192 
1193         mutex_enter(&kmem_cache_lock);
1194         for (cp = list_head(&kmem_caches); cp != NULL;
1195             cp = list_next(&kmem_caches, cp))
1196                 if (tq != NULL)
1197                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1198                             tqflag);
1199                 else
1200                         func(cp);
1201         mutex_exit(&kmem_cache_lock);
1202 }
1203 
1204 static void
1205 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1206 {
1207         kmem_cache_t *cp;
1208 
1209         mutex_enter(&kmem_cache_lock);
1210         for (cp = list_head(&kmem_caches); cp != NULL;
1211             cp = list_next(&kmem_caches, cp)) {
1212                 if (!(cp->cache_cflags & KMC_IDENTIFIER))
1213                         continue;
1214                 if (tq != NULL)
1215                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1216                             tqflag);
1217                 else
1218                         func(cp);
1219         }
1220         mutex_exit(&kmem_cache_lock);
1221 }
1222 
1223 /*
1224  * Debugging support.  Given a buffer address, find its slab.
1225  */
1226 static kmem_slab_t *
1227 kmem_findslab(kmem_cache_t *cp, void *buf)
1228 {
1229         kmem_slab_t *sp;
1230 
1231         mutex_enter(&cp->cache_lock);
1232         for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1233             sp = list_next(&cp->cache_complete_slabs, sp)) {
1234                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1235                         mutex_exit(&cp->cache_lock);
1236                         return (sp);
1237                 }
1238         }
1239         for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1240             sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1241                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1242                         mutex_exit(&cp->cache_lock);
1243                         return (sp);
1244                 }
1245         }
1246         mutex_exit(&cp->cache_lock);
1247 
1248         return (NULL);
1249 }
1250 
1251 static void
1252 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1253 {
1254         kmem_buftag_t *btp = NULL;
1255         kmem_bufctl_t *bcp = NULL;
1256         kmem_cache_t *cp = cparg;
1257         kmem_slab_t *sp;
1258         uint64_t *off;
1259         void *buf = bufarg;
1260 
1261         kmem_logging = 0;       /* stop logging when a bad thing happens */
1262 
1263         kmem_panic_info.kmp_timestamp = gethrtime();
1264 
1265         sp = kmem_findslab(cp, buf);
1266         if (sp == NULL) {
1267                 for (cp = list_tail(&kmem_caches); cp != NULL;
1268                     cp = list_prev(&kmem_caches, cp)) {
1269                         if ((sp = kmem_findslab(cp, buf)) != NULL)
1270                                 break;
1271                 }
1272         }
1273 
1274         if (sp == NULL) {
1275                 cp = NULL;
1276                 error = KMERR_BADADDR;
1277         } else {
1278                 if (cp != cparg)
1279                         error = KMERR_BADCACHE;
1280                 else
1281                         buf = (char *)bufarg - ((uintptr_t)bufarg -
1282                             (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1283                 if (buf != bufarg)
1284                         error = KMERR_BADBASE;
1285                 if (cp->cache_flags & KMF_BUFTAG)
1286                         btp = KMEM_BUFTAG(cp, buf);
1287                 if (cp->cache_flags & KMF_HASH) {
1288                         mutex_enter(&cp->cache_lock);
1289                         for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1290                                 if (bcp->bc_addr == buf)
1291                                         break;
1292                         mutex_exit(&cp->cache_lock);
1293                         if (bcp == NULL && btp != NULL)
1294                                 bcp = btp->bt_bufctl;
1295                         if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1296                             NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1297                             bcp->bc_addr != buf) {
1298                                 error = KMERR_BADBUFCTL;
1299                                 bcp = NULL;
1300                         }
1301                 }
1302         }
1303 
1304         kmem_panic_info.kmp_error = error;
1305         kmem_panic_info.kmp_buffer = bufarg;
1306         kmem_panic_info.kmp_realbuf = buf;
1307         kmem_panic_info.kmp_cache = cparg;
1308         kmem_panic_info.kmp_realcache = cp;
1309         kmem_panic_info.kmp_slab = sp;
1310         kmem_panic_info.kmp_bufctl = bcp;
1311 
1312         printf("kernel memory allocator: ");
1313 
1314         switch (error) {
1315 
1316         case KMERR_MODIFIED:
1317                 printf("buffer modified after being freed\n");
1318                 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1319                 if (off == NULL)        /* shouldn't happen */
1320                         off = buf;
1321                 printf("modification occurred at offset 0x%lx "
1322                     "(0x%llx replaced by 0x%llx)\n",
1323                     (uintptr_t)off - (uintptr_t)buf,
1324                     (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1325                 break;
1326 
1327         case KMERR_REDZONE:
1328                 printf("redzone violation: write past end of buffer\n");
1329                 break;
1330 
1331         case KMERR_BADADDR:
1332                 printf("invalid free: buffer not in cache\n");
1333                 break;
1334 
1335         case KMERR_DUPFREE:
1336                 printf("duplicate free: buffer freed twice\n");
1337                 break;
1338 
1339         case KMERR_BADBUFTAG:
1340                 printf("boundary tag corrupted\n");
1341                 printf("bcp ^ bxstat = %lx, should be %lx\n",
1342                     (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1343                     KMEM_BUFTAG_FREE);
1344                 break;
1345 
1346         case KMERR_BADBUFCTL:
1347                 printf("bufctl corrupted\n");
1348                 break;
1349 
1350         case KMERR_BADCACHE:
1351                 printf("buffer freed to wrong cache\n");
1352                 printf("buffer was allocated from %s,\n", cp->cache_name);
1353                 printf("caller attempting free to %s.\n", cparg->cache_name);
1354                 break;
1355 
1356         case KMERR_BADSIZE:
1357                 printf("bad free: free size (%u) != alloc size (%u)\n",
1358                     KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1359                     KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1360                 break;
1361 
1362         case KMERR_BADBASE:
1363                 printf("bad free: free address (%p) != alloc address (%p)\n",
1364                     bufarg, buf);
1365                 break;
1366         }
1367 
1368         printf("buffer=%p  bufctl=%p  cache: %s\n",
1369             bufarg, (void *)bcp, cparg->cache_name);
1370 
1371         if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1372             error != KMERR_BADBUFCTL) {
1373                 int d;
1374                 timestruc_t ts;
1375                 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1376 
1377                 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1378                 printf("previous transaction on buffer %p:\n", buf);
1379                 printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1380                     (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1381                     (void *)sp, cp->cache_name);
1382                 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1383                         ulong_t off;
1384                         char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1385                         printf("%s+%lx\n", sym ? sym : "?", off);
1386                 }
1387         }
1388         if (kmem_panic > 0)
1389                 panic("kernel heap corruption detected");
1390         if (kmem_panic == 0)
1391                 debug_enter(NULL);
1392         kmem_logging = 1;       /* resume logging */
1393 }
1394 
1395 static kmem_log_header_t *
1396 kmem_log_init(size_t logsize)
1397 {
1398         kmem_log_header_t *lhp;
1399         int nchunks = 4 * max_ncpus;
1400         size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1401         int i;
1402 
1403         /*
1404          * Make sure that lhp->lh_cpu[] is nicely aligned
1405          * to prevent false sharing of cache lines.
1406          */
1407         lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1408         lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1409             NULL, NULL, VM_SLEEP);
1410         bzero(lhp, lhsize);
1411 
1412         mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1413         lhp->lh_nchunks = nchunks;
1414         lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1415         lhp->lh_base = vmem_alloc(kmem_log_arena,
1416             lhp->lh_chunksize * nchunks, VM_SLEEP);
1417         lhp->lh_free = vmem_alloc(kmem_log_arena,
1418             nchunks * sizeof (int), VM_SLEEP);
1419         bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1420 
1421         for (i = 0; i < max_ncpus; i++) {
1422                 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1423                 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1424                 clhp->clh_chunk = i;
1425         }
1426 
1427         for (i = max_ncpus; i < nchunks; i++)
1428                 lhp->lh_free[i] = i;
1429 
1430         lhp->lh_head = max_ncpus;
1431         lhp->lh_tail = 0;
1432 
1433         return (lhp);
1434 }
1435 
1436 static void *
1437 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1438 {
1439         void *logspace;
1440         kmem_cpu_log_header_t *clhp;
1441 
1442         if (lhp == NULL || kmem_logging == 0 || panicstr)
1443                 return (NULL);
1444 
1445         clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1446 
1447         mutex_enter(&clhp->clh_lock);
1448         clhp->clh_hits++;
1449         if (size > clhp->clh_avail) {
1450                 mutex_enter(&lhp->lh_lock);
1451                 lhp->lh_hits++;
1452                 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1453                 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1454                 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1455                 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1456                 clhp->clh_current = lhp->lh_base +
1457                     clhp->clh_chunk * lhp->lh_chunksize;
1458                 clhp->clh_avail = lhp->lh_chunksize;
1459                 if (size > lhp->lh_chunksize)
1460                         size = lhp->lh_chunksize;
1461                 mutex_exit(&lhp->lh_lock);
1462         }
1463         logspace = clhp->clh_current;
1464         clhp->clh_current += size;
1465         clhp->clh_avail -= size;
1466         bcopy(data, logspace, size);
1467         mutex_exit(&clhp->clh_lock);
1468         return (logspace);
1469 }
1470 
1471 #define KMEM_AUDIT(lp, cp, bcp)                                         \
1472 {                                                                       \
1473         kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1474         _bcp->bc_timestamp = gethrtime();                            \
1475         _bcp->bc_thread = curthread;                                 \
1476         _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);    \
1477         _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));       \
1478 }
1479 
1480 static void
1481 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1482     kmem_slab_t *sp, void *addr)
1483 {
1484         kmem_bufctl_audit_t bca;
1485 
1486         bzero(&bca, sizeof (kmem_bufctl_audit_t));
1487         bca.bc_addr = addr;
1488         bca.bc_slab = sp;
1489         bca.bc_cache = cp;
1490         KMEM_AUDIT(lp, cp, &bca);
1491 }
1492 
1493 /*
1494  * Create a new slab for cache cp.
1495  */
1496 static kmem_slab_t *
1497 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1498 {
1499         size_t slabsize = cp->cache_slabsize;
1500         size_t chunksize = cp->cache_chunksize;
1501         int cache_flags = cp->cache_flags;
1502         size_t color, chunks;
1503         char *buf, *slab;
1504         kmem_slab_t *sp;
1505         kmem_bufctl_t *bcp;
1506         vmem_t *vmp = cp->cache_arena;
1507 
1508         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1509 
1510         color = cp->cache_color + cp->cache_align;
1511         if (color > cp->cache_maxcolor)
1512                 color = cp->cache_mincolor;
1513         cp->cache_color = color;
1514 
1515         slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1516 
1517         if (slab == NULL)
1518                 goto vmem_alloc_failure;
1519 
1520         ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1521 
1522         /*
1523          * Reverify what was already checked in kmem_cache_set_move(), since the
1524          * consolidator depends (for correctness) on slabs being initialized
1525          * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1526          * clients to distinguish uninitialized memory from known objects).
1527          */
1528         ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1529         if (!(cp->cache_cflags & KMC_NOTOUCH))
1530                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1531 
1532         if (cache_flags & KMF_HASH) {
1533                 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1534                         goto slab_alloc_failure;
1535                 chunks = (slabsize - color) / chunksize;
1536         } else {
1537                 sp = KMEM_SLAB(cp, slab);
1538                 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1539         }
1540 
1541         sp->slab_cache       = cp;
1542         sp->slab_head        = NULL;
1543         sp->slab_refcnt      = 0;
1544         sp->slab_base        = buf = slab + color;
1545         sp->slab_chunks      = chunks;
1546         sp->slab_stuck_offset = (uint32_t)-1;
1547         sp->slab_later_count = 0;
1548         sp->slab_flags = 0;
1549 
1550         ASSERT(chunks > 0);
1551         while (chunks-- != 0) {
1552                 if (cache_flags & KMF_HASH) {
1553                         bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1554                         if (bcp == NULL)
1555                                 goto bufctl_alloc_failure;
1556                         if (cache_flags & KMF_AUDIT) {
1557                                 kmem_bufctl_audit_t *bcap =
1558                                     (kmem_bufctl_audit_t *)bcp;
1559                                 bzero(bcap, sizeof (kmem_bufctl_audit_t));
1560                                 bcap->bc_cache = cp;
1561                         }
1562                         bcp->bc_addr = buf;
1563                         bcp->bc_slab = sp;
1564                 } else {
1565                         bcp = KMEM_BUFCTL(cp, buf);
1566                 }
1567                 if (cache_flags & KMF_BUFTAG) {
1568                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1569                         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1570                         btp->bt_bufctl = bcp;
1571                         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1572                         if (cache_flags & KMF_DEADBEEF) {
1573                                 copy_pattern(KMEM_FREE_PATTERN, buf,
1574                                     cp->cache_verify);
1575                         }
1576                 }
1577                 bcp->bc_next = sp->slab_head;
1578                 sp->slab_head = bcp;
1579                 buf += chunksize;
1580         }
1581 
1582         kmem_log_event(kmem_slab_log, cp, sp, slab);
1583 
1584         return (sp);
1585 
1586 bufctl_alloc_failure:
1587 
1588         while ((bcp = sp->slab_head) != NULL) {
1589                 sp->slab_head = bcp->bc_next;
1590                 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1591         }
1592         kmem_cache_free(kmem_slab_cache, sp);
1593 
1594 slab_alloc_failure:
1595 
1596         vmem_free(vmp, slab, slabsize);
1597 
1598 vmem_alloc_failure:
1599 
1600         kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1601         atomic_inc_64(&cp->cache_alloc_fail);
1602 
1603         return (NULL);
1604 }
1605 
1606 /*
1607  * Destroy a slab.
1608  */
1609 static void
1610 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1611 {
1612         vmem_t *vmp = cp->cache_arena;
1613         void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1614 
1615         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1616         ASSERT(sp->slab_refcnt == 0);
1617 
1618         if (cp->cache_flags & KMF_HASH) {
1619                 kmem_bufctl_t *bcp;
1620                 while ((bcp = sp->slab_head) != NULL) {
1621                         sp->slab_head = bcp->bc_next;
1622                         kmem_cache_free(cp->cache_bufctl_cache, bcp);
1623                 }
1624                 kmem_cache_free(kmem_slab_cache, sp);
1625         }
1626         vmem_free(vmp, slab, cp->cache_slabsize);
1627 }
1628 
1629 static void *
1630 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1631 {
1632         kmem_bufctl_t *bcp, **hash_bucket;
1633         void *buf;
1634         boolean_t new_slab = (sp->slab_refcnt == 0);
1635 
1636         ASSERT(MUTEX_HELD(&cp->cache_lock));
1637         /*
1638          * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1639          * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1640          * slab is newly created.
1641          */
1642         ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1643             (sp == avl_first(&cp->cache_partial_slabs))));
1644         ASSERT(sp->slab_cache == cp);
1645 
1646         cp->cache_slab_alloc++;
1647         cp->cache_bufslab--;
1648         sp->slab_refcnt++;
1649 
1650         bcp = sp->slab_head;
1651         sp->slab_head = bcp->bc_next;
1652 
1653         if (cp->cache_flags & KMF_HASH) {
1654                 /*
1655                  * Add buffer to allocated-address hash table.
1656                  */
1657                 buf = bcp->bc_addr;
1658                 hash_bucket = KMEM_HASH(cp, buf);
1659                 bcp->bc_next = *hash_bucket;
1660                 *hash_bucket = bcp;
1661                 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1662                         KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1663                 }
1664         } else {
1665                 buf = KMEM_BUF(cp, bcp);
1666         }
1667 
1668         ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1669 
1670         if (sp->slab_head == NULL) {
1671                 ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1672                 if (new_slab) {
1673                         ASSERT(sp->slab_chunks == 1);
1674                 } else {
1675                         ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1676                         avl_remove(&cp->cache_partial_slabs, sp);
1677                         sp->slab_later_count = 0; /* clear history */
1678                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1679                         sp->slab_stuck_offset = (uint32_t)-1;
1680                 }
1681                 list_insert_head(&cp->cache_complete_slabs, sp);
1682                 cp->cache_complete_slab_count++;
1683                 return (buf);
1684         }
1685 
1686         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1687         /*
1688          * Peek to see if the magazine layer is enabled before
1689          * we prefill.  We're not holding the cpu cache lock,
1690          * so the peek could be wrong, but there's no harm in it.
1691          */
1692         if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1693             (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1694                 kmem_slab_prefill(cp, sp);
1695                 return (buf);
1696         }
1697 
1698         if (new_slab) {
1699                 avl_add(&cp->cache_partial_slabs, sp);
1700                 return (buf);
1701         }
1702 
1703         /*
1704          * The slab is now more allocated than it was, so the
1705          * order remains unchanged.
1706          */
1707         ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1708         return (buf);
1709 }
1710 
1711 /*
1712  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1713  */
1714 static void *
1715 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1716 {
1717         kmem_slab_t *sp;
1718         void *buf;
1719         boolean_t test_destructor;
1720 
1721         mutex_enter(&cp->cache_lock);
1722         test_destructor = (cp->cache_slab_alloc == 0);
1723         sp = avl_first(&cp->cache_partial_slabs);
1724         if (sp == NULL) {
1725                 ASSERT(cp->cache_bufslab == 0);
1726 
1727                 /*
1728                  * The freelist is empty.  Create a new slab.
1729                  */
1730                 mutex_exit(&cp->cache_lock);
1731                 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1732                         return (NULL);
1733                 }
1734                 mutex_enter(&cp->cache_lock);
1735                 cp->cache_slab_create++;
1736                 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1737                         cp->cache_bufmax = cp->cache_buftotal;
1738                 cp->cache_bufslab += sp->slab_chunks;
1739         }
1740 
1741         buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1742         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1743             (cp->cache_complete_slab_count +
1744             avl_numnodes(&cp->cache_partial_slabs) +
1745             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1746         mutex_exit(&cp->cache_lock);
1747 
1748         if (test_destructor && cp->cache_destructor != NULL) {
1749                 /*
1750                  * On the first kmem_slab_alloc(), assert that it is valid to
1751                  * call the destructor on a newly constructed object without any
1752                  * client involvement.
1753                  */
1754                 if ((cp->cache_constructor == NULL) ||
1755                     cp->cache_constructor(buf, cp->cache_private,
1756                     kmflag) == 0) {
1757                         cp->cache_destructor(buf, cp->cache_private);
1758                 }
1759                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1760                     cp->cache_bufsize);
1761                 if (cp->cache_flags & KMF_DEADBEEF) {
1762                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1763                 }
1764         }
1765 
1766         return (buf);
1767 }
1768 
1769 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1770 
1771 /*
1772  * Free a raw (unconstructed) buffer to cp's slab layer.
1773  */
1774 static void
1775 kmem_slab_free(kmem_cache_t *cp, void *buf)
1776 {
1777         kmem_slab_t *sp;
1778         kmem_bufctl_t *bcp, **prev_bcpp;
1779 
1780         ASSERT(buf != NULL);
1781 
1782         mutex_enter(&cp->cache_lock);
1783         cp->cache_slab_free++;
1784 
1785         if (cp->cache_flags & KMF_HASH) {
1786                 /*
1787                  * Look up buffer in allocated-address hash table.
1788                  */
1789                 prev_bcpp = KMEM_HASH(cp, buf);
1790                 while ((bcp = *prev_bcpp) != NULL) {
1791                         if (bcp->bc_addr == buf) {
1792                                 *prev_bcpp = bcp->bc_next;
1793                                 sp = bcp->bc_slab;
1794                                 break;
1795                         }
1796                         cp->cache_lookup_depth++;
1797                         prev_bcpp = &bcp->bc_next;
1798                 }
1799         } else {
1800                 bcp = KMEM_BUFCTL(cp, buf);
1801                 sp = KMEM_SLAB(cp, buf);
1802         }
1803 
1804         if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1805                 mutex_exit(&cp->cache_lock);
1806                 kmem_error(KMERR_BADADDR, cp, buf);
1807                 return;
1808         }
1809 
1810         if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1811                 /*
1812                  * If this is the buffer that prevented the consolidator from
1813                  * clearing the slab, we can reset the slab flags now that the
1814                  * buffer is freed. (It makes sense to do this in
1815                  * kmem_cache_free(), where the client gives up ownership of the
1816                  * buffer, but on the hot path the test is too expensive.)
1817                  */
1818                 kmem_slab_move_yes(cp, sp, buf);
1819         }
1820 
1821         if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1822                 if (cp->cache_flags & KMF_CONTENTS)
1823                         ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1824                             kmem_log_enter(kmem_content_log, buf,
1825                             cp->cache_contents);
1826                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1827         }
1828 
1829         bcp->bc_next = sp->slab_head;
1830         sp->slab_head = bcp;
1831 
1832         cp->cache_bufslab++;
1833         ASSERT(sp->slab_refcnt >= 1);
1834 
1835         if (--sp->slab_refcnt == 0) {
1836                 /*
1837                  * There are no outstanding allocations from this slab,
1838                  * so we can reclaim the memory.
1839                  */
1840                 if (sp->slab_chunks == 1) {
1841                         list_remove(&cp->cache_complete_slabs, sp);
1842                         cp->cache_complete_slab_count--;
1843                 } else {
1844                         avl_remove(&cp->cache_partial_slabs, sp);
1845                 }
1846 
1847                 cp->cache_buftotal -= sp->slab_chunks;
1848                 cp->cache_bufslab -= sp->slab_chunks;
1849                 /*
1850                  * Defer releasing the slab to the virtual memory subsystem
1851                  * while there is a pending move callback, since we guarantee
1852                  * that buffers passed to the move callback have only been
1853                  * touched by kmem or by the client itself. Since the memory
1854                  * patterns baddcafe (uninitialized) and deadbeef (freed) both
1855                  * set at least one of the two lowest order bits, the client can
1856                  * test those bits in the move callback to determine whether or
1857                  * not it knows about the buffer (assuming that the client also
1858                  * sets one of those low order bits whenever it frees a buffer).
1859                  */
1860                 if (cp->cache_defrag == NULL ||
1861                     (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1862                     !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1863                         cp->cache_slab_destroy++;
1864                         mutex_exit(&cp->cache_lock);
1865                         kmem_slab_destroy(cp, sp);
1866                 } else {
1867                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1868                         /*
1869                          * Slabs are inserted at both ends of the deadlist to
1870                          * distinguish between slabs freed while move callbacks
1871                          * are pending (list head) and a slab freed while the
1872                          * lock is dropped in kmem_move_buffers() (list tail) so
1873                          * that in both cases slab_destroy() is called from the
1874                          * right context.
1875                          */
1876                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1877                                 list_insert_tail(deadlist, sp);
1878                         } else {
1879                                 list_insert_head(deadlist, sp);
1880                         }
1881                         cp->cache_defrag->kmd_deadcount++;
1882                         mutex_exit(&cp->cache_lock);
1883                 }
1884                 return;
1885         }
1886 
1887         if (bcp->bc_next == NULL) {
1888                 /* Transition the slab from completely allocated to partial. */
1889                 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1890                 ASSERT(sp->slab_chunks > 1);
1891                 list_remove(&cp->cache_complete_slabs, sp);
1892                 cp->cache_complete_slab_count--;
1893                 avl_add(&cp->cache_partial_slabs, sp);
1894         } else {
1895                 (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1896         }
1897 
1898         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1899             (cp->cache_complete_slab_count +
1900             avl_numnodes(&cp->cache_partial_slabs) +
1901             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1902         mutex_exit(&cp->cache_lock);
1903 }
1904 
1905 /*
1906  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1907  */
1908 static int
1909 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1910     caddr_t caller)
1911 {
1912         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1913         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1914         uint32_t mtbf;
1915 
1916         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1917                 kmem_error(KMERR_BADBUFTAG, cp, buf);
1918                 return (-1);
1919         }
1920 
1921         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1922 
1923         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1924                 kmem_error(KMERR_BADBUFCTL, cp, buf);
1925                 return (-1);
1926         }
1927 
1928         if (cp->cache_flags & KMF_DEADBEEF) {
1929                 if (!construct && (cp->cache_flags & KMF_LITE)) {
1930                         if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1931                                 kmem_error(KMERR_MODIFIED, cp, buf);
1932                                 return (-1);
1933                         }
1934                         if (cp->cache_constructor != NULL)
1935                                 *(uint64_t *)buf = btp->bt_redzone;
1936                         else
1937                                 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1938                 } else {
1939                         construct = 1;
1940                         if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1941                             KMEM_UNINITIALIZED_PATTERN, buf,
1942                             cp->cache_verify)) {
1943                                 kmem_error(KMERR_MODIFIED, cp, buf);
1944                                 return (-1);
1945                         }
1946                 }
1947         }
1948         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1949 
1950         if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1951             gethrtime() % mtbf == 0 &&
1952             (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1953                 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1954                 if (!construct && cp->cache_destructor != NULL)
1955                         cp->cache_destructor(buf, cp->cache_private);
1956         } else {
1957                 mtbf = 0;
1958         }
1959 
1960         if (mtbf || (construct && cp->cache_constructor != NULL &&
1961             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1962                 atomic_inc_64(&cp->cache_alloc_fail);
1963                 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1964                 if (cp->cache_flags & KMF_DEADBEEF)
1965                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1966                 kmem_slab_free(cp, buf);
1967                 return (1);
1968         }
1969 
1970         if (cp->cache_flags & KMF_AUDIT) {
1971                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1972         }
1973 
1974         if ((cp->cache_flags & KMF_LITE) &&
1975             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1976                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1977         }
1978 
1979         return (0);
1980 }
1981 
1982 static int
1983 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1984 {
1985         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1986         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1987         kmem_slab_t *sp;
1988 
1989         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1990                 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1991                         kmem_error(KMERR_DUPFREE, cp, buf);
1992                         return (-1);
1993                 }
1994                 sp = kmem_findslab(cp, buf);
1995                 if (sp == NULL || sp->slab_cache != cp)
1996                         kmem_error(KMERR_BADADDR, cp, buf);
1997                 else
1998                         kmem_error(KMERR_REDZONE, cp, buf);
1999                 return (-1);
2000         }
2001 
2002         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2003 
2004         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
2005                 kmem_error(KMERR_BADBUFCTL, cp, buf);
2006                 return (-1);
2007         }
2008 
2009         if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
2010                 kmem_error(KMERR_REDZONE, cp, buf);
2011                 return (-1);
2012         }
2013 
2014         if (cp->cache_flags & KMF_AUDIT) {
2015                 if (cp->cache_flags & KMF_CONTENTS)
2016                         bcp->bc_contents = kmem_log_enter(kmem_content_log,
2017                             buf, cp->cache_contents);
2018                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2019         }
2020 
2021         if ((cp->cache_flags & KMF_LITE) &&
2022             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2023                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2024         }
2025 
2026         if (cp->cache_flags & KMF_DEADBEEF) {
2027                 if (cp->cache_flags & KMF_LITE)
2028                         btp->bt_redzone = *(uint64_t *)buf;
2029                 else if (cp->cache_destructor != NULL)
2030                         cp->cache_destructor(buf, cp->cache_private);
2031 
2032                 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2033         }
2034 
2035         return (0);
2036 }
2037 
2038 /*
2039  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2040  */
2041 static void
2042 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2043 {
2044         int round;
2045 
2046         ASSERT(!list_link_active(&cp->cache_link) ||
2047             taskq_member(kmem_taskq, curthread));
2048 
2049         for (round = 0; round < nrounds; round++) {
2050                 void *buf = mp->mag_round[round];
2051 
2052                 if (cp->cache_flags & KMF_DEADBEEF) {
2053                         if (verify_pattern(KMEM_FREE_PATTERN, buf,
2054                             cp->cache_verify) != NULL) {
2055                                 kmem_error(KMERR_MODIFIED, cp, buf);
2056                                 continue;
2057                         }
2058                         if ((cp->cache_flags & KMF_LITE) &&
2059                             cp->cache_destructor != NULL) {
2060                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2061                                 *(uint64_t *)buf = btp->bt_redzone;
2062                                 cp->cache_destructor(buf, cp->cache_private);
2063                                 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2064                         }
2065                 } else if (cp->cache_destructor != NULL) {
2066                         cp->cache_destructor(buf, cp->cache_private);
2067                 }
2068 
2069                 kmem_slab_free(cp, buf);
2070         }
2071         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2072         kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2073 }
2074 
2075 /*
2076  * Allocate a magazine from the depot.
2077  */
2078 static kmem_magazine_t *
2079 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2080 {
2081         kmem_magazine_t *mp;
2082 
2083         /*
2084          * If we can't get the depot lock without contention,
2085          * update our contention count.  We use the depot
2086          * contention rate to determine whether we need to
2087          * increase the magazine size for better scalability.
2088          */
2089         if (!mutex_tryenter(&cp->cache_depot_lock)) {
2090                 mutex_enter(&cp->cache_depot_lock);
2091                 cp->cache_depot_contention++;
2092         }
2093 
2094         if ((mp = mlp->ml_list) != NULL) {
2095                 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2096                 mlp->ml_list = mp->mag_next;
2097                 if (--mlp->ml_total < mlp->ml_min)
2098                         mlp->ml_min = mlp->ml_total;
2099                 mlp->ml_alloc++;
2100         }
2101 
2102         mutex_exit(&cp->cache_depot_lock);
2103 
2104         return (mp);
2105 }
2106 
2107 /*
2108  * Free a magazine to the depot.
2109  */
2110 static void
2111 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2112 {
2113         mutex_enter(&cp->cache_depot_lock);
2114         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2115         mp->mag_next = mlp->ml_list;
2116         mlp->ml_list = mp;
2117         mlp->ml_total++;
2118         mutex_exit(&cp->cache_depot_lock);
2119 }
2120 
2121 /*
2122  * Update the working set statistics for cp's depot.
2123  */
2124 static void
2125 kmem_depot_ws_update(kmem_cache_t *cp)
2126 {
2127         mutex_enter(&cp->cache_depot_lock);
2128         cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2129         cp->cache_full.ml_min = cp->cache_full.ml_total;
2130         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2131         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2132         mutex_exit(&cp->cache_depot_lock);
2133 }
2134 
2135 /*
2136  * Set the working set statistics for cp's depot to zero.  (Everything is
2137  * eligible for reaping.)
2138  */
2139 static void
2140 kmem_depot_ws_zero(kmem_cache_t *cp)
2141 {
2142         mutex_enter(&cp->cache_depot_lock);
2143         cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2144         cp->cache_full.ml_min = cp->cache_full.ml_total;
2145         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2146         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2147         mutex_exit(&cp->cache_depot_lock);
2148 }
2149 
2150 /*
2151  * The number of bytes to reap before we call kpreempt(). The default (1MB)
2152  * causes us to preempt reaping up to hundreds of times per second. Using a
2153  * larger value (1GB) causes this to have virtually no effect.
2154  */
2155 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2156 
2157 /*
2158  * Reap all magazines that have fallen out of the depot's working set.
2159  */
2160 static void
2161 kmem_depot_ws_reap(kmem_cache_t *cp)
2162 {
2163         size_t bytes = 0;
2164         long reap;
2165         kmem_magazine_t *mp;
2166 
2167         ASSERT(!list_link_active(&cp->cache_link) ||
2168             taskq_member(kmem_taskq, curthread));
2169 
2170         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2171         while (reap-- &&
2172             (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2173                 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2174                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2175                 if (bytes > kmem_reap_preempt_bytes) {
2176                         kpreempt(KPREEMPT_SYNC);
2177                         bytes = 0;
2178                 }
2179         }
2180 
2181         reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2182         while (reap-- &&
2183             (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2184                 kmem_magazine_destroy(cp, mp, 0);
2185                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2186                 if (bytes > kmem_reap_preempt_bytes) {
2187                         kpreempt(KPREEMPT_SYNC);
2188                         bytes = 0;
2189                 }
2190         }
2191 }
2192 
2193 static void
2194 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2195 {
2196         ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2197             (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2198         ASSERT(ccp->cc_magsize > 0);
2199 
2200         ccp->cc_ploaded = ccp->cc_loaded;
2201         ccp->cc_prounds = ccp->cc_rounds;
2202         ccp->cc_loaded = mp;
2203         ccp->cc_rounds = rounds;
2204 }
2205 
2206 /*
2207  * Intercept kmem alloc/free calls during crash dump in order to avoid
2208  * changing kmem state while memory is being saved to the dump device.
2209  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2210  * there are no locks because only one CPU calls kmem during a crash
2211  * dump. To enable this feature, first create the associated vmem
2212  * arena with VMC_DUMPSAFE.
2213  */
2214 static void *kmem_dump_start;   /* start of pre-reserved heap */
2215 static void *kmem_dump_end;     /* end of heap area */
2216 static void *kmem_dump_curr;    /* current free heap pointer */
2217 static size_t kmem_dump_size;   /* size of heap area */
2218 
2219 /* append to each buf created in the pre-reserved heap */
2220 typedef struct kmem_dumpctl {
2221         void    *kdc_next;      /* cache dump free list linkage */
2222 } kmem_dumpctl_t;
2223 
2224 #define KMEM_DUMPCTL(cp, buf)   \
2225         ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2226             sizeof (void *)))
2227 
2228 /* set non zero for full report */
2229 uint_t kmem_dump_verbose = 0;
2230 
2231 /* stats for overize heap */
2232 uint_t kmem_dump_oversize_allocs = 0;
2233 uint_t kmem_dump_oversize_max = 0;
2234 
2235 static void
2236 kmem_dumppr(char **pp, char *e, const char *format, ...)
2237 {
2238         char *p = *pp;
2239 
2240         if (p < e) {
2241                 int n;
2242                 va_list ap;
2243 
2244                 va_start(ap, format);
2245                 n = vsnprintf(p, e - p, format, ap);
2246                 va_end(ap);
2247                 *pp = p + n;
2248         }
2249 }
2250 
2251 /*
2252  * Called when dumpadm(1M) configures dump parameters.
2253  */
2254 void
2255 kmem_dump_init(size_t size)
2256 {
2257         /* Our caller ensures size is always set. */
2258         ASSERT3U(size, >, 0);
2259 
2260         if (kmem_dump_start != NULL)
2261                 kmem_free(kmem_dump_start, kmem_dump_size);
2262 
2263         kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2264         kmem_dump_size = size;
2265         kmem_dump_curr = kmem_dump_start;
2266         kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2267         copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2268 }
2269 
2270 /*
2271  * Set flag for each kmem_cache_t if is safe to use alternate dump
2272  * memory. Called just before panic crash dump starts. Set the flag
2273  * for the calling CPU.
2274  */
2275 void
2276 kmem_dump_begin(void)
2277 {
2278         kmem_cache_t *cp;
2279 
2280         ASSERT(panicstr != NULL);
2281 
2282         for (cp = list_head(&kmem_caches); cp != NULL;
2283             cp = list_next(&kmem_caches, cp)) {
2284                 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2285 
2286                 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2287                         cp->cache_flags |= KMF_DUMPDIVERT;
2288                         ccp->cc_flags |= KMF_DUMPDIVERT;
2289                         ccp->cc_dump_rounds = ccp->cc_rounds;
2290                         ccp->cc_dump_prounds = ccp->cc_prounds;
2291                         ccp->cc_rounds = ccp->cc_prounds = -1;
2292                 } else {
2293                         cp->cache_flags |= KMF_DUMPUNSAFE;
2294                         ccp->cc_flags |= KMF_DUMPUNSAFE;
2295                 }
2296         }
2297 }
2298 
2299 /*
2300  * finished dump intercept
2301  * print any warnings on the console
2302  * return verbose information to dumpsys() in the given buffer
2303  */
2304 size_t
2305 kmem_dump_finish(char *buf, size_t size)
2306 {
2307         int percent = 0;
2308         size_t used;
2309         char *e = buf + size;
2310         char *p = buf;
2311 
2312         if (kmem_dump_curr == kmem_dump_end) {
2313                 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu "
2314                     "bytes: kmem state in dump may be inconsistent",
2315                     kmem_dump_size);
2316         }
2317 
2318         if (kmem_dump_verbose == 0)
2319                 return (0);
2320 
2321         used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2322         percent = (used * 100) / kmem_dump_size;
2323 
2324         kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2325         kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2326         kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2327         kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2328             kmem_dump_oversize_allocs);
2329         kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2330             kmem_dump_oversize_max);
2331 
2332         /* return buffer size used */
2333         if (p < e)
2334                 bzero(p, e - p);
2335         return (p - buf);
2336 }
2337 
2338 /*
2339  * Allocate a constructed object from alternate dump memory.
2340  */
2341 void *
2342 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2343 {
2344         void *buf;
2345         void *curr;
2346         char *bufend;
2347 
2348         /* return a constructed object */
2349         if ((buf = cp->cache_dump.kd_freelist) != NULL) {
2350                 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2351                 return (buf);
2352         }
2353 
2354         /* create a new constructed object */
2355         curr = kmem_dump_curr;
2356         buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2357         bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2358 
2359         /* hat layer objects cannot cross a page boundary */
2360         if (cp->cache_align < PAGESIZE) {
2361                 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2362                 if (bufend > page) {
2363                         bufend += page - (char *)buf;
2364                         buf = (void *)page;
2365                 }
2366         }
2367 
2368         /* fall back to normal alloc if reserved area is used up */
2369         if (bufend > (char *)kmem_dump_end) {
2370                 kmem_dump_curr = kmem_dump_end;
2371                 cp->cache_dump.kd_alloc_fails++;
2372                 return (NULL);
2373         }
2374 
2375         /*
2376          * Must advance curr pointer before calling a constructor that
2377          * may also allocate memory.
2378          */
2379         kmem_dump_curr = bufend;
2380 
2381         /* run constructor */
2382         if (cp->cache_constructor != NULL &&
2383             cp->cache_constructor(buf, cp->cache_private, kmflag)
2384             != 0) {
2385 #ifdef DEBUG
2386                 printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2387                     cp->cache_name, (void *)cp);
2388 #endif
2389                 /* reset curr pointer iff no allocs were done */
2390                 if (kmem_dump_curr == bufend)
2391                         kmem_dump_curr = curr;
2392 
2393                 cp->cache_dump.kd_alloc_fails++;
2394                 /* fall back to normal alloc if the constructor fails */
2395                 return (NULL);
2396         }
2397 
2398         return (buf);
2399 }
2400 
2401 /*
2402  * Free a constructed object in alternate dump memory.
2403  */
2404 int
2405 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2406 {
2407         /* save constructed buffers for next time */
2408         if ((char *)buf >= (char *)kmem_dump_start &&
2409             (char *)buf < (char *)kmem_dump_end) {
2410                 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist;
2411                 cp->cache_dump.kd_freelist = buf;
2412                 return (0);
2413         }
2414 
2415         /* just drop buffers that were allocated before dump started */
2416         if (kmem_dump_curr < kmem_dump_end)
2417                 return (0);
2418 
2419         /* fall back to normal free if reserved area is used up */
2420         return (1);
2421 }
2422 
2423 /*
2424  * Allocate a constructed object from cache cp.
2425  */
2426 void *
2427 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2428 {
2429         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2430         kmem_magazine_t *fmp;
2431         void *buf;
2432 
2433         mutex_enter(&ccp->cc_lock);
2434         for (;;) {
2435                 /*
2436                  * If there's an object available in the current CPU's
2437                  * loaded magazine, just take it and return.
2438                  */
2439                 if (ccp->cc_rounds > 0) {
2440                         buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2441                         ccp->cc_alloc++;
2442                         mutex_exit(&ccp->cc_lock);
2443                         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2444                                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2445                                         ASSERT(!(ccp->cc_flags &
2446                                             KMF_DUMPDIVERT));
2447                                         cp->cache_dump.kd_unsafe++;
2448                                 }
2449                                 if ((ccp->cc_flags & KMF_BUFTAG) &&
2450                                     kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2451                                     caller()) != 0) {
2452                                         if (kmflag & KM_NOSLEEP)
2453                                                 return (NULL);
2454                                         mutex_enter(&ccp->cc_lock);
2455                                         continue;
2456                                 }
2457                         }
2458                         return (buf);
2459                 }
2460 
2461                 /*
2462                  * The loaded magazine is empty.  If the previously loaded
2463                  * magazine was full, exchange them and try again.
2464                  */
2465                 if (ccp->cc_prounds > 0) {
2466                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2467                         continue;
2468                 }
2469 
2470                 /*
2471                  * Return an alternate buffer at dump time to preserve
2472                  * the heap.
2473                  */
2474                 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2475                         if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2476                                 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2477                                 /* log it so that we can warn about it */
2478                                 cp->cache_dump.kd_unsafe++;
2479                         } else {
2480                                 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2481                                     NULL) {
2482                                         mutex_exit(&ccp->cc_lock);
2483                                         return (buf);
2484                                 }
2485                                 break;          /* fall back to slab layer */
2486                         }
2487                 }
2488 
2489                 /*
2490                  * If the magazine layer is disabled, break out now.
2491                  */
2492                 if (ccp->cc_magsize == 0)
2493                         break;
2494 
2495                 /*
2496                  * Try to get a full magazine from the depot.
2497                  */
2498                 fmp = kmem_depot_alloc(cp, &cp->cache_full);
2499                 if (fmp != NULL) {
2500                         if (ccp->cc_ploaded != NULL)
2501                                 kmem_depot_free(cp, &cp->cache_empty,
2502                                     ccp->cc_ploaded);
2503                         kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2504                         continue;
2505                 }
2506 
2507                 /*
2508                  * There are no full magazines in the depot,
2509                  * so fall through to the slab layer.
2510                  */
2511                 break;
2512         }
2513         mutex_exit(&ccp->cc_lock);
2514 
2515         /*
2516          * We couldn't allocate a constructed object from the magazine layer,
2517          * so get a raw buffer from the slab layer and apply its constructor.
2518          */
2519         buf = kmem_slab_alloc(cp, kmflag);
2520 
2521         if (buf == NULL)
2522                 return (NULL);
2523 
2524         if (cp->cache_flags & KMF_BUFTAG) {
2525                 /*
2526                  * Make kmem_cache_alloc_debug() apply the constructor for us.
2527                  */
2528                 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2529                 if (rc != 0) {
2530                         if (kmflag & KM_NOSLEEP)
2531                                 return (NULL);
2532                         /*
2533                          * kmem_cache_alloc_debug() detected corruption
2534                          * but didn't panic (kmem_panic <= 0). We should not be
2535                          * here because the constructor failed (indicated by a
2536                          * return code of 1). Try again.
2537                          */
2538                         ASSERT(rc == -1);
2539                         return (kmem_cache_alloc(cp, kmflag));
2540                 }
2541                 return (buf);
2542         }
2543 
2544         if (cp->cache_constructor != NULL &&
2545             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2546                 atomic_inc_64(&cp->cache_alloc_fail);
2547                 kmem_slab_free(cp, buf);
2548                 return (NULL);
2549         }
2550 
2551         return (buf);
2552 }
2553 
2554 /*
2555  * The freed argument tells whether or not kmem_cache_free_debug() has already
2556  * been called so that we can avoid the duplicate free error. For example, a
2557  * buffer on a magazine has already been freed by the client but is still
2558  * constructed.
2559  */
2560 static void
2561 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2562 {
2563         if (!freed && (cp->cache_flags & KMF_BUFTAG))
2564                 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2565                         return;
2566 
2567         /*
2568          * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2569          * kmem_cache_free_debug() will have already applied the destructor.
2570          */
2571         if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2572             cp->cache_destructor != NULL) {
2573                 if (cp->cache_flags & KMF_DEADBEEF) {    /* KMF_LITE implied */
2574                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2575                         *(uint64_t *)buf = btp->bt_redzone;
2576                         cp->cache_destructor(buf, cp->cache_private);
2577                         *(uint64_t *)buf = KMEM_FREE_PATTERN;
2578                 } else {
2579                         cp->cache_destructor(buf, cp->cache_private);
2580                 }
2581         }
2582 
2583         kmem_slab_free(cp, buf);
2584 }
2585 
2586 /*
2587  * Used when there's no room to free a buffer to the per-CPU cache.
2588  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2589  * caller should try freeing to the per-CPU cache again.
2590  * Note that we don't directly install the magazine in the cpu cache,
2591  * since its state may have changed wildly while the lock was dropped.
2592  */
2593 static int
2594 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2595 {
2596         kmem_magazine_t *emp;
2597         kmem_magtype_t *mtp;
2598 
2599         ASSERT(MUTEX_HELD(&ccp->cc_lock));
2600         ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2601             ((uint_t)ccp->cc_rounds == -1)) &&
2602             ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2603             ((uint_t)ccp->cc_prounds == -1)));
2604 
2605         emp = kmem_depot_alloc(cp, &cp->cache_empty);
2606         if (emp != NULL) {
2607                 if (ccp->cc_ploaded != NULL)
2608                         kmem_depot_free(cp, &cp->cache_full,
2609                             ccp->cc_ploaded);
2610                 kmem_cpu_reload(ccp, emp, 0);
2611                 return (1);
2612         }
2613         /*
2614          * There are no empty magazines in the depot,
2615          * so try to allocate a new one.  We must drop all locks
2616          * across kmem_cache_alloc() because lower layers may
2617          * attempt to allocate from this cache.
2618          */
2619         mtp = cp->cache_magtype;
2620         mutex_exit(&ccp->cc_lock);
2621         emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2622         mutex_enter(&ccp->cc_lock);
2623 
2624         if (emp != NULL) {
2625                 /*
2626                  * We successfully allocated an empty magazine.
2627                  * However, we had to drop ccp->cc_lock to do it,
2628                  * so the cache's magazine size may have changed.
2629                  * If so, free the magazine and try again.
2630                  */
2631                 if (ccp->cc_magsize != mtp->mt_magsize) {
2632                         mutex_exit(&ccp->cc_lock);
2633                         kmem_cache_free(mtp->mt_cache, emp);
2634                         mutex_enter(&ccp->cc_lock);
2635                         return (1);
2636                 }
2637 
2638                 /*
2639                  * We got a magazine of the right size.  Add it to
2640                  * the depot and try the whole dance again.
2641                  */
2642                 kmem_depot_free(cp, &cp->cache_empty, emp);
2643                 return (1);
2644         }
2645 
2646         /*
2647          * We couldn't allocate an empty magazine,
2648          * so fall through to the slab layer.
2649          */
2650         return (0);
2651 }
2652 
2653 /*
2654  * Free a constructed object to cache cp.
2655  */
2656 void
2657 kmem_cache_free(kmem_cache_t *cp, void *buf)
2658 {
2659         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2660 
2661         /*
2662          * The client must not free either of the buffers passed to the move
2663          * callback function.
2664          */
2665         ASSERT(cp->cache_defrag == NULL ||
2666             cp->cache_defrag->kmd_thread != curthread ||
2667             (buf != cp->cache_defrag->kmd_from_buf &&
2668             buf != cp->cache_defrag->kmd_to_buf));
2669 
2670         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2671                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2672                         ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2673                         /* log it so that we can warn about it */
2674                         cp->cache_dump.kd_unsafe++;
2675                 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2676                         return;
2677                 }
2678                 if (ccp->cc_flags & KMF_BUFTAG) {
2679                         if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2680                                 return;
2681                 }
2682         }
2683 
2684         mutex_enter(&ccp->cc_lock);
2685         /*
2686          * Any changes to this logic should be reflected in kmem_slab_prefill()
2687          */
2688         for (;;) {
2689                 /*
2690                  * If there's a slot available in the current CPU's
2691                  * loaded magazine, just put the object there and return.
2692                  */
2693                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2694                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2695                         ccp->cc_free++;
2696                         mutex_exit(&ccp->cc_lock);
2697                         return;
2698                 }
2699 
2700                 /*
2701                  * The loaded magazine is full.  If the previously loaded
2702                  * magazine was empty, exchange them and try again.
2703                  */
2704                 if (ccp->cc_prounds == 0) {
2705                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2706                         continue;
2707                 }
2708 
2709                 /*
2710                  * If the magazine layer is disabled, break out now.
2711                  */
2712                 if (ccp->cc_magsize == 0)
2713                         break;
2714 
2715                 if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2716                         /*
2717                          * We couldn't free our constructed object to the
2718                          * magazine layer, so apply its destructor and free it
2719                          * to the slab layer.
2720                          */
2721                         break;
2722                 }
2723         }
2724         mutex_exit(&ccp->cc_lock);
2725         kmem_slab_free_constructed(cp, buf, B_TRUE);
2726 }
2727 
2728 static void
2729 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2730 {
2731         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2732         int cache_flags = cp->cache_flags;
2733 
2734         kmem_bufctl_t *next, *head;
2735         size_t nbufs;
2736 
2737         /*
2738          * Completely allocate the newly created slab and put the pre-allocated
2739          * buffers in magazines. Any of the buffers that cannot be put in
2740          * magazines must be returned to the slab.
2741          */
2742         ASSERT(MUTEX_HELD(&cp->cache_lock));
2743         ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2744         ASSERT(cp->cache_constructor == NULL);
2745         ASSERT(sp->slab_cache == cp);
2746         ASSERT(sp->slab_refcnt == 1);
2747         ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2748         ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2749 
2750         head = sp->slab_head;
2751         nbufs = (sp->slab_chunks - sp->slab_refcnt);
2752         sp->slab_head = NULL;
2753         sp->slab_refcnt += nbufs;
2754         cp->cache_bufslab -= nbufs;
2755         cp->cache_slab_alloc += nbufs;
2756         list_insert_head(&cp->cache_complete_slabs, sp);
2757         cp->cache_complete_slab_count++;
2758         mutex_exit(&cp->cache_lock);
2759         mutex_enter(&ccp->cc_lock);
2760 
2761         while (head != NULL) {
2762                 void *buf = KMEM_BUF(cp, head);
2763                 /*
2764                  * If there's a slot available in the current CPU's
2765                  * loaded magazine, just put the object there and
2766                  * continue.
2767                  */
2768                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2769                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2770                             buf;
2771                         ccp->cc_free++;
2772                         nbufs--;
2773                         head = head->bc_next;
2774                         continue;
2775                 }
2776 
2777                 /*
2778                  * The loaded magazine is full.  If the previously
2779                  * loaded magazine was empty, exchange them and try
2780                  * again.
2781                  */
2782                 if (ccp->cc_prounds == 0) {
2783                         kmem_cpu_reload(ccp, ccp->cc_ploaded,
2784                             ccp->cc_prounds);
2785                         continue;
2786                 }
2787 
2788                 /*
2789                  * If the magazine layer is disabled, break out now.
2790                  */
2791 
2792                 if (ccp->cc_magsize == 0) {
2793                         break;
2794                 }
2795 
2796                 if (!kmem_cpucache_magazine_alloc(ccp, cp))
2797                         break;
2798         }
2799         mutex_exit(&ccp->cc_lock);
2800         if (nbufs != 0) {
2801                 ASSERT(head != NULL);
2802 
2803                 /*
2804                  * If there was a failure, return remaining objects to
2805                  * the slab
2806                  */
2807                 while (head != NULL) {
2808                         ASSERT(nbufs != 0);
2809                         next = head->bc_next;
2810                         head->bc_next = NULL;
2811                         kmem_slab_free(cp, KMEM_BUF(cp, head));
2812                         head = next;
2813                         nbufs--;
2814                 }
2815         }
2816         ASSERT(head == NULL);
2817         ASSERT(nbufs == 0);
2818         mutex_enter(&cp->cache_lock);
2819 }
2820 
2821 void *
2822 kmem_zalloc(size_t size, int kmflag)
2823 {
2824         size_t index;
2825         void *buf;
2826 
2827         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2828                 kmem_cache_t *cp = kmem_alloc_table[index];
2829                 buf = kmem_cache_alloc(cp, kmflag);
2830                 if (buf != NULL) {
2831                         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2832                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2833                                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2834                                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2835 
2836                                 if (cp->cache_flags & KMF_LITE) {
2837                                         KMEM_BUFTAG_LITE_ENTER(btp,
2838                                             kmem_lite_count, caller());
2839                                 }
2840                         }
2841                         bzero(buf, size);
2842                 }
2843         } else {
2844                 buf = kmem_alloc(size, kmflag);
2845                 if (buf != NULL)
2846                         bzero(buf, size);
2847         }
2848         return (buf);
2849 }
2850 
2851 void *
2852 kmem_alloc(size_t size, int kmflag)
2853 {
2854         size_t index;
2855         kmem_cache_t *cp;
2856         void *buf;
2857 
2858         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2859                 cp = kmem_alloc_table[index];
2860                 /* fall through to kmem_cache_alloc() */
2861 
2862         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2863             kmem_big_alloc_table_max) {
2864                 cp = kmem_big_alloc_table[index];
2865                 /* fall through to kmem_cache_alloc() */
2866 
2867         } else {
2868                 if (size == 0) {
2869                         if (kmflag != KM_SLEEP && !(kmflag & KM_PANIC))
2870                                 return (NULL);
2871 
2872                         /*
2873                          * If this is a sleeping allocation or one that has
2874                          * been specified to panic on allocation failure, we
2875                          * consider it to be deprecated behavior to allocate
2876                          * 0 bytes.  If we have been configured to panic under
2877                          * this condition, we panic; if to warn, we warn -- and
2878                          * regardless, we log to the kmem_zerosized_log that
2879                          * that this condition has occurred (which gives us
2880                          * enough information to be able to debug it).
2881                          */
2882                         if (kmem_panic && kmem_panic_zerosized)
2883                                 panic("attempted to kmem_alloc() size of 0");
2884 
2885                         if (kmem_warn_zerosized) {
2886                                 cmn_err(CE_WARN, "kmem_alloc(): sleeping "
2887                                     "allocation with size of 0; "
2888                                     "see kmem_zerosized_log for details");
2889                         }
2890 
2891                         kmem_log_event(kmem_zerosized_log, NULL, NULL, NULL);
2892 
2893                         return (NULL);
2894                 }
2895 
2896                 buf = vmem_alloc(kmem_oversize_arena, size,
2897                     kmflag & KM_VMFLAGS);
2898                 if (buf == NULL)
2899                         kmem_log_event(kmem_failure_log, NULL, NULL,
2900                             (void *)size);
2901                 else if (KMEM_DUMP(kmem_slab_cache)) {
2902                         /* stats for dump intercept */
2903                         kmem_dump_oversize_allocs++;
2904                         if (size > kmem_dump_oversize_max)
2905                                 kmem_dump_oversize_max = size;
2906                 }
2907                 return (buf);
2908         }
2909 
2910         buf = kmem_cache_alloc(cp, kmflag);
2911         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2912                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2913                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2914                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2915 
2916                 if (cp->cache_flags & KMF_LITE) {
2917                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2918                 }
2919         }
2920         return (buf);
2921 }
2922 
2923 void
2924 kmem_free(void *buf, size_t size)
2925 {
2926         size_t index;
2927         kmem_cache_t *cp;
2928 
2929         if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2930                 cp = kmem_alloc_table[index];
2931                 /* fall through to kmem_cache_free() */
2932 
2933         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2934             kmem_big_alloc_table_max) {
2935                 cp = kmem_big_alloc_table[index];
2936                 /* fall through to kmem_cache_free() */
2937 
2938         } else {
2939                 EQUIV(buf == NULL, size == 0);
2940                 if (buf == NULL && size == 0)
2941                         return;
2942                 vmem_free(kmem_oversize_arena, buf, size);
2943                 return;
2944         }
2945 
2946         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2947                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2948                 uint32_t *ip = (uint32_t *)btp;
2949                 if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2950                         if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2951                                 kmem_error(KMERR_DUPFREE, cp, buf);
2952                                 return;
2953                         }
2954                         if (KMEM_SIZE_VALID(ip[1])) {
2955                                 ip[0] = KMEM_SIZE_ENCODE(size);
2956                                 kmem_error(KMERR_BADSIZE, cp, buf);
2957                         } else {
2958                                 kmem_error(KMERR_REDZONE, cp, buf);
2959                         }
2960                         return;
2961                 }
2962                 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2963                         kmem_error(KMERR_REDZONE, cp, buf);
2964                         return;
2965                 }
2966                 btp->bt_redzone = KMEM_REDZONE_PATTERN;
2967                 if (cp->cache_flags & KMF_LITE) {
2968                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2969                             caller());
2970                 }
2971         }
2972         kmem_cache_free(cp, buf);
2973 }
2974 
2975 void *
2976 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2977 {
2978         size_t realsize = size + vmp->vm_quantum;
2979         void *addr;
2980 
2981         /*
2982          * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2983          * vm_quantum will cause integer wraparound.  Check for this, and
2984          * blow off the firewall page in this case.  Note that such a
2985          * giant allocation (the entire kernel address space) can never
2986          * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2987          * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2988          * corresponding check in kmem_firewall_va_free().
2989          */
2990         if (realsize < size)
2991                 realsize = size;
2992 
2993         /*
2994          * While boot still owns resource management, make sure that this
2995          * redzone virtual address allocation is properly accounted for in
2996          * OBPs "virtual-memory" "available" lists because we're
2997          * effectively claiming them for a red zone.  If we don't do this,
2998          * the available lists become too fragmented and too large for the
2999          * current boot/kernel memory list interface.
3000          */
3001         addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3002 
3003         if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3004                 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3005 
3006         return (addr);
3007 }
3008 
3009 void
3010 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3011 {
3012         ASSERT((kvseg.s_base == NULL ?
3013             va_to_pfn((char *)addr + size) :
3014             hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3015 
3016         vmem_free(vmp, addr, size + vmp->vm_quantum);
3017 }
3018 
3019 /*
3020  * Try to allocate at least `size' bytes of memory without sleeping or
3021  * panicking. Return actual allocated size in `asize'. If allocation failed,
3022  * try final allocation with sleep or panic allowed.
3023  */
3024 void *
3025 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3026 {
3027         void *p;
3028 
3029         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3030         do {
3031                 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3032                 if (p != NULL)
3033                         return (p);
3034                 *asize += KMEM_ALIGN;
3035         } while (*asize <= PAGESIZE);
3036 
3037         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3038         return (kmem_alloc(*asize, kmflag));
3039 }
3040 
3041 /*
3042  * Reclaim all unused memory from a cache.
3043  */
3044 static void
3045 kmem_cache_reap(kmem_cache_t *cp)
3046 {
3047         ASSERT(taskq_member(kmem_taskq, curthread));
3048         cp->cache_reap++;
3049 
3050         /*
3051          * Ask the cache's owner to free some memory if possible.
3052          * The idea is to handle things like the inode cache, which
3053          * typically sits on a bunch of memory that it doesn't truly
3054          * *need*.  Reclaim policy is entirely up to the owner; this
3055          * callback is just an advisory plea for help.
3056          */
3057         if (cp->cache_reclaim != NULL) {
3058                 long delta;
3059 
3060                 /*
3061                  * Reclaimed memory should be reapable (not included in the
3062                  * depot's working set).
3063                  */
3064                 delta = cp->cache_full.ml_total;
3065                 cp->cache_reclaim(cp->cache_private);
3066                 delta = cp->cache_full.ml_total - delta;
3067                 if (delta > 0) {
3068                         mutex_enter(&cp->cache_depot_lock);
3069                         cp->cache_full.ml_reaplimit += delta;
3070                         cp->cache_full.ml_min += delta;
3071                         mutex_exit(&cp->cache_depot_lock);
3072                 }
3073         }
3074 
3075         kmem_depot_ws_reap(cp);
3076 
3077         if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3078                 kmem_cache_defrag(cp);
3079         }
3080 }
3081 
3082 static void
3083 kmem_reap_timeout(void *flag_arg)
3084 {
3085         uint32_t *flag = (uint32_t *)flag_arg;
3086 
3087         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3088         *flag = 0;
3089 }
3090 
3091 static void
3092 kmem_reap_done(void *flag)
3093 {
3094         if (!callout_init_done) {
3095                 /* can't schedule a timeout at this point */
3096                 kmem_reap_timeout(flag);
3097         } else {
3098                 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3099         }
3100 }
3101 
3102 static void
3103 kmem_reap_start(void *flag)
3104 {
3105         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3106 
3107         if (flag == &kmem_reaping) {
3108                 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3109                 /*
3110                  * if we have segkp under heap, reap segkp cache.
3111                  */
3112                 if (segkp_fromheap)
3113                         segkp_cache_free();
3114         }
3115         else
3116                 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3117 
3118         /*
3119          * We use taskq_dispatch() to schedule a timeout to clear
3120          * the flag so that kmem_reap() becomes self-throttling:
3121          * we won't reap again until the current reap completes *and*
3122          * at least kmem_reap_interval ticks have elapsed.
3123          */
3124         if (taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP) ==
3125             TASKQID_INVALID)
3126                 kmem_reap_done(flag);
3127 }
3128 
3129 static void
3130 kmem_reap_common(void *flag_arg)
3131 {
3132         uint32_t *flag = (uint32_t *)flag_arg;
3133 
3134         if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3135             atomic_cas_32(flag, 0, 1) != 0)
3136                 return;
3137 
3138         /*
3139          * It may not be kosher to do memory allocation when a reap is called
3140          * (for example, if vmem_populate() is in the call chain).  So we
3141          * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3142          * fails, we reset the flag, and the next reap will try again.
3143          */
3144         if (taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC) ==
3145             TASKQID_INVALID)
3146                 *flag = 0;
3147 }
3148 
3149 /*
3150  * Reclaim all unused memory from all caches.  Called from the VM system
3151  * when memory gets tight.
3152  */
3153 void
3154 kmem_reap(void)
3155 {
3156         kmem_reap_common(&kmem_reaping);
3157 }
3158 
3159 /*
3160  * Reclaim all unused memory from identifier arenas, called when a vmem
3161  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3162  * cannot help with identifier exhaustion, we avoid both a large amount of
3163  * work and unwanted side-effects from reclaim callbacks.
3164  */
3165 void
3166 kmem_reap_idspace(void)
3167 {
3168         kmem_reap_common(&kmem_reaping_idspace);
3169 }
3170 
3171 /*
3172  * Purge all magazines from a cache and set its magazine limit to zero.
3173  * All calls are serialized by the kmem_taskq lock, except for the final
3174  * call from kmem_cache_destroy().
3175  */
3176 static void
3177 kmem_cache_magazine_purge(kmem_cache_t *cp)
3178 {
3179         kmem_cpu_cache_t *ccp;
3180         kmem_magazine_t *mp, *pmp;
3181         int rounds, prounds, cpu_seqid;
3182 
3183         ASSERT(!list_link_active(&cp->cache_link) ||
3184             taskq_member(kmem_taskq, curthread));
3185         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3186 
3187         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3188                 ccp = &cp->cache_cpu[cpu_seqid];
3189 
3190                 mutex_enter(&ccp->cc_lock);
3191                 mp = ccp->cc_loaded;
3192                 pmp = ccp->cc_ploaded;
3193                 rounds = ccp->cc_rounds;
3194                 prounds = ccp->cc_prounds;
3195                 ccp->cc_loaded = NULL;
3196                 ccp->cc_ploaded = NULL;
3197                 ccp->cc_rounds = -1;
3198                 ccp->cc_prounds = -1;
3199                 ccp->cc_magsize = 0;
3200                 mutex_exit(&ccp->cc_lock);
3201 
3202                 if (mp)
3203                         kmem_magazine_destroy(cp, mp, rounds);
3204                 if (pmp)
3205                         kmem_magazine_destroy(cp, pmp, prounds);
3206         }
3207 
3208         kmem_depot_ws_zero(cp);
3209         kmem_depot_ws_reap(cp);
3210 }
3211 
3212 /*
3213  * Enable per-cpu magazines on a cache.
3214  */
3215 static void
3216 kmem_cache_magazine_enable(kmem_cache_t *cp)
3217 {
3218         int cpu_seqid;
3219 
3220         if (cp->cache_flags & KMF_NOMAGAZINE)
3221                 return;
3222 
3223         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3224                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3225                 mutex_enter(&ccp->cc_lock);
3226                 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3227                 mutex_exit(&ccp->cc_lock);
3228         }
3229 
3230 }
3231 
3232 /*
3233  * Allow our caller to determine if there are running reaps.
3234  *
3235  * This call is very conservative and may return B_TRUE even when
3236  * reaping activity isn't active. If it returns B_FALSE, then reaping
3237  * activity is definitely inactive.
3238  */
3239 boolean_t
3240 kmem_cache_reap_active(void)
3241 {
3242         return (!taskq_empty(kmem_taskq));
3243 }
3244 
3245 /*
3246  * Reap (almost) everything soon.
3247  *
3248  * Note: this does not wait for the reap-tasks to complete. Caller
3249  * should use kmem_cache_reap_active() (above) and/or moderation to
3250  * avoid scheduling too many reap-tasks.
3251  */
3252 void
3253 kmem_cache_reap_soon(kmem_cache_t *cp)
3254 {
3255         ASSERT(list_link_active(&cp->cache_link));
3256 
3257         kmem_depot_ws_zero(cp);
3258 
3259         (void) taskq_dispatch(kmem_taskq,
3260             (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3261 }
3262 
3263 /*
3264  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3265  * provide a higher transfer rate with the depot, while smaller magazines
3266  * reduce memory consumption.  Magazine resizing is an expensive operation;
3267  * it should not be done frequently.
3268  *
3269  * Changes to the magazine size are serialized by the kmem_taskq lock.
3270  *
3271  * Note: at present this only grows the magazine size.  It might be useful
3272  * to allow shrinkage too.
3273  */
3274 static void
3275 kmem_cache_magazine_resize(kmem_cache_t *cp)
3276 {
3277         kmem_magtype_t *mtp = cp->cache_magtype;
3278 
3279         ASSERT(taskq_member(kmem_taskq, curthread));
3280 
3281         if (cp->cache_chunksize < mtp->mt_maxbuf) {
3282                 kmem_cache_magazine_purge(cp);
3283                 mutex_enter(&cp->cache_depot_lock);
3284                 cp->cache_magtype = ++mtp;
3285                 cp->cache_depot_contention_prev =
3286                     cp->cache_depot_contention + INT_MAX;
3287                 mutex_exit(&cp->cache_depot_lock);
3288                 kmem_cache_magazine_enable(cp);
3289         }
3290 }
3291 
3292 /*
3293  * Rescale a cache's hash table, so that the table size is roughly the
3294  * cache size.  We want the average lookup time to be extremely small.
3295  */
3296 static void
3297 kmem_hash_rescale(kmem_cache_t *cp)
3298 {
3299         kmem_bufctl_t **old_table, **new_table, *bcp;
3300         size_t old_size, new_size, h;
3301 
3302         ASSERT(taskq_member(kmem_taskq, curthread));
3303 
3304         new_size = MAX(KMEM_HASH_INITIAL,
3305             1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3306         old_size = cp->cache_hash_mask + 1;
3307 
3308         if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3309                 return;
3310 
3311         new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3312             VM_NOSLEEP);
3313         if (new_table == NULL)
3314                 return;
3315         bzero(new_table, new_size * sizeof (void *));
3316 
3317         mutex_enter(&cp->cache_lock);
3318 
3319         old_size = cp->cache_hash_mask + 1;
3320         old_table = cp->cache_hash_table;
3321 
3322         cp->cache_hash_mask = new_size - 1;
3323         cp->cache_hash_table = new_table;
3324         cp->cache_rescale++;
3325 
3326         for (h = 0; h < old_size; h++) {
3327                 bcp = old_table[h];
3328                 while (bcp != NULL) {
3329                         void *addr = bcp->bc_addr;
3330                         kmem_bufctl_t *next_bcp = bcp->bc_next;
3331                         kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3332                         bcp->bc_next = *hash_bucket;
3333                         *hash_bucket = bcp;
3334                         bcp = next_bcp;
3335                 }
3336         }
3337 
3338         mutex_exit(&cp->cache_lock);
3339 
3340         vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3341 }
3342 
3343 /*
3344  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3345  * update, magazine resizing, and slab consolidation.
3346  */
3347 static void
3348 kmem_cache_update(kmem_cache_t *cp)
3349 {
3350         int need_hash_rescale = 0;
3351         int need_magazine_resize = 0;
3352 
3353         ASSERT(MUTEX_HELD(&kmem_cache_lock));
3354 
3355         /*
3356          * If the cache has become much larger or smaller than its hash table,
3357          * fire off a request to rescale the hash table.
3358          */
3359         mutex_enter(&cp->cache_lock);
3360 
3361         if ((cp->cache_flags & KMF_HASH) &&
3362             (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3363             (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3364             cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3365                 need_hash_rescale = 1;
3366 
3367         mutex_exit(&cp->cache_lock);
3368 
3369         /*
3370          * Update the depot working set statistics.
3371          */
3372         kmem_depot_ws_update(cp);
3373 
3374         /*
3375          * If there's a lot of contention in the depot,
3376          * increase the magazine size.
3377          */
3378         mutex_enter(&cp->cache_depot_lock);
3379 
3380         if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3381             (int)(cp->cache_depot_contention -
3382             cp->cache_depot_contention_prev) > kmem_depot_contention)
3383                 need_magazine_resize = 1;
3384 
3385         cp->cache_depot_contention_prev = cp->cache_depot_contention;
3386 
3387         mutex_exit(&cp->cache_depot_lock);
3388 
3389         if (need_hash_rescale)
3390                 (void) taskq_dispatch(kmem_taskq,
3391                     (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3392 
3393         if (need_magazine_resize)
3394                 (void) taskq_dispatch(kmem_taskq,
3395                     (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3396 
3397         if (cp->cache_defrag != NULL)
3398                 (void) taskq_dispatch(kmem_taskq,
3399                     (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3400 }
3401 
3402 static void kmem_update(void *);
3403 
3404 static void
3405 kmem_update_timeout(void *dummy)
3406 {
3407         (void) timeout(kmem_update, dummy, kmem_reap_interval);
3408 }
3409 
3410 static void
3411 kmem_update(void *dummy)
3412 {
3413         kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3414 
3415         /*
3416          * We use taskq_dispatch() to reschedule the timeout so that
3417          * kmem_update() becomes self-throttling: it won't schedule
3418          * new tasks until all previous tasks have completed.
3419          */
3420         if (taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)
3421             == TASKQID_INVALID)
3422                 kmem_update_timeout(NULL);
3423 }
3424 
3425 static int
3426 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3427 {
3428         struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3429         kmem_cache_t *cp = ksp->ks_private;
3430         uint64_t cpu_buf_avail;
3431         uint64_t buf_avail = 0;
3432         int cpu_seqid;
3433         long reap;
3434 
3435         ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3436 
3437         if (rw == KSTAT_WRITE)
3438                 return (EACCES);
3439 
3440         mutex_enter(&cp->cache_lock);
3441 
3442         kmcp->kmc_alloc_fail.value.ui64              = cp->cache_alloc_fail;
3443         kmcp->kmc_alloc.value.ui64           = cp->cache_slab_alloc;
3444         kmcp->kmc_free.value.ui64            = cp->cache_slab_free;
3445         kmcp->kmc_slab_alloc.value.ui64              = cp->cache_slab_alloc;
3446         kmcp->kmc_slab_free.value.ui64               = cp->cache_slab_free;
3447 
3448         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3449                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3450 
3451                 mutex_enter(&ccp->cc_lock);
3452 
3453                 cpu_buf_avail = 0;
3454                 if (ccp->cc_rounds > 0)
3455                         cpu_buf_avail += ccp->cc_rounds;
3456                 if (ccp->cc_prounds > 0)
3457                         cpu_buf_avail += ccp->cc_prounds;
3458 
3459                 kmcp->kmc_alloc.value.ui64   += ccp->cc_alloc;
3460                 kmcp->kmc_free.value.ui64    += ccp->cc_free;
3461                 buf_avail                       += cpu_buf_avail;
3462 
3463                 mutex_exit(&ccp->cc_lock);
3464         }
3465 
3466         mutex_enter(&cp->cache_depot_lock);
3467 
3468         kmcp->kmc_depot_alloc.value.ui64     = cp->cache_full.ml_alloc;
3469         kmcp->kmc_depot_free.value.ui64              = cp->cache_empty.ml_alloc;
3470         kmcp->kmc_depot_contention.value.ui64        = cp->cache_depot_contention;
3471         kmcp->kmc_full_magazines.value.ui64  = cp->cache_full.ml_total;
3472         kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
3473         kmcp->kmc_magazine_size.value.ui64   =
3474             (cp->cache_flags & KMF_NOMAGAZINE) ?
3475             0 : cp->cache_magtype->mt_magsize;
3476 
3477         kmcp->kmc_alloc.value.ui64           += cp->cache_full.ml_alloc;
3478         kmcp->kmc_free.value.ui64            += cp->cache_empty.ml_alloc;
3479         buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3480 
3481         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3482         reap = MIN(reap, cp->cache_full.ml_total);
3483 
3484         mutex_exit(&cp->cache_depot_lock);
3485 
3486         kmcp->kmc_buf_size.value.ui64        = cp->cache_bufsize;
3487         kmcp->kmc_align.value.ui64   = cp->cache_align;
3488         kmcp->kmc_chunk_size.value.ui64      = cp->cache_chunksize;
3489         kmcp->kmc_slab_size.value.ui64       = cp->cache_slabsize;
3490         kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3491         buf_avail += cp->cache_bufslab;
3492         kmcp->kmc_buf_avail.value.ui64       = buf_avail;
3493         kmcp->kmc_buf_inuse.value.ui64       = cp->cache_buftotal - buf_avail;
3494         kmcp->kmc_buf_total.value.ui64       = cp->cache_buftotal;
3495         kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
3496         kmcp->kmc_slab_create.value.ui64     = cp->cache_slab_create;
3497         kmcp->kmc_slab_destroy.value.ui64    = cp->cache_slab_destroy;
3498         kmcp->kmc_hash_size.value.ui64       = (cp->cache_flags & KMF_HASH) ?
3499             cp->cache_hash_mask + 1 : 0;
3500         kmcp->kmc_hash_lookup_depth.value.ui64       = cp->cache_lookup_depth;
3501         kmcp->kmc_hash_rescale.value.ui64    = cp->cache_rescale;
3502         kmcp->kmc_vmem_source.value.ui64     = cp->cache_arena->vm_id;
3503         kmcp->kmc_reap.value.ui64    = cp->cache_reap;
3504 
3505         if (cp->cache_defrag == NULL) {
3506                 kmcp->kmc_move_callbacks.value.ui64  = 0;
3507                 kmcp->kmc_move_yes.value.ui64                = 0;
3508                 kmcp->kmc_move_no.value.ui64         = 0;
3509                 kmcp->kmc_move_later.value.ui64              = 0;
3510                 kmcp->kmc_move_dont_need.value.ui64  = 0;
3511                 kmcp->kmc_move_dont_know.value.ui64  = 0;
3512                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3513                 kmcp->kmc_move_slabs_freed.value.ui64        = 0;
3514                 kmcp->kmc_defrag.value.ui64          = 0;
3515                 kmcp->kmc_scan.value.ui64            = 0;
3516                 kmcp->kmc_move_reclaimable.value.ui64        = 0;
3517         } else {
3518                 int64_t reclaimable;
3519 
3520                 kmem_defrag_t *kd = cp->cache_defrag;
3521                 kmcp->kmc_move_callbacks.value.ui64  = kd->kmd_callbacks;
3522                 kmcp->kmc_move_yes.value.ui64                = kd->kmd_yes;
3523                 kmcp->kmc_move_no.value.ui64         = kd->kmd_no;
3524                 kmcp->kmc_move_later.value.ui64              = kd->kmd_later;
3525                 kmcp->kmc_move_dont_need.value.ui64  = kd->kmd_dont_need;
3526                 kmcp->kmc_move_dont_know.value.ui64  = kd->kmd_dont_know;
3527                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3528                 kmcp->kmc_move_slabs_freed.value.ui64        = kd->kmd_slabs_freed;
3529                 kmcp->kmc_defrag.value.ui64          = kd->kmd_defrags;
3530                 kmcp->kmc_scan.value.ui64            = kd->kmd_scans;
3531 
3532                 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3533                 reclaimable = MAX(reclaimable, 0);
3534                 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3535                 kmcp->kmc_move_reclaimable.value.ui64        = reclaimable;
3536         }
3537 
3538         mutex_exit(&cp->cache_lock);
3539         return (0);
3540 }
3541 
3542 /*
3543  * Return a named statistic about a particular cache.
3544  * This shouldn't be called very often, so it's currently designed for
3545  * simplicity (leverages existing kstat support) rather than efficiency.
3546  */
3547 uint64_t
3548 kmem_cache_stat(kmem_cache_t *cp, char *name)
3549 {
3550         int i;
3551         kstat_t *ksp = cp->cache_kstat;
3552         kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3553         uint64_t value = 0;
3554 
3555         if (ksp != NULL) {
3556                 mutex_enter(&kmem_cache_kstat_lock);
3557                 (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3558                 for (i = 0; i < ksp->ks_ndata; i++) {
3559                         if (strcmp(knp[i].name, name) == 0) {
3560                                 value = knp[i].value.ui64;
3561                                 break;
3562                         }
3563                 }
3564                 mutex_exit(&kmem_cache_kstat_lock);
3565         }
3566         return (value);
3567 }
3568 
3569 /*
3570  * Return an estimate of currently available kernel heap memory.
3571  * On 32-bit systems, physical memory may exceed virtual memory,
3572  * we just truncate the result at 1GB.
3573  */
3574 size_t
3575 kmem_avail(void)
3576 {
3577         spgcnt_t rmem = availrmem - tune.t_minarmem;
3578         spgcnt_t fmem = freemem - minfree;
3579 
3580         return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3581             1 << (30 - PAGESHIFT))));
3582 }
3583 
3584 /*
3585  * Return the maximum amount of memory that is (in theory) allocatable
3586  * from the heap. This may be used as an estimate only since there
3587  * is no guarentee this space will still be available when an allocation
3588  * request is made, nor that the space may be allocated in one big request
3589  * due to kernel heap fragmentation.
3590  */
3591 size_t
3592 kmem_maxavail(void)
3593 {
3594         spgcnt_t pmem = availrmem - tune.t_minarmem;
3595         spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3596 
3597         return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3598 }
3599 
3600 /*
3601  * Indicate whether memory-intensive kmem debugging is enabled.
3602  */
3603 int
3604 kmem_debugging(void)
3605 {
3606         return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3607 }
3608 
3609 /* binning function, sorts finely at the two extremes */
3610 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3611         ((((sp)->slab_refcnt <= (binshift)) ||                            \
3612             (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))   \
3613             ? -(sp)->slab_refcnt                                     \
3614             : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3615 
3616 /*
3617  * Minimizing the number of partial slabs on the freelist minimizes
3618  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3619  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3620  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3621  * the most-used slabs at the front of the list where they have the best chance
3622  * of being completely allocated, and the least-used slabs at a safe distance
3623  * from the front to improve the odds that the few remaining buffers will all be
3624  * freed before another allocation can tie up the slab. For that reason a slab
3625  * with a higher slab_refcnt sorts less than than a slab with a lower
3626  * slab_refcnt.
3627  *
3628  * However, if a slab has at least one buffer that is deemed unfreeable, we
3629  * would rather have that slab at the front of the list regardless of
3630  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3631  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3632  * callback, the slab is marked unfreeable for as long as it remains on the
3633  * freelist.
3634  */
3635 static int
3636 kmem_partial_slab_cmp(const void *p0, const void *p1)
3637 {
3638         const kmem_cache_t *cp;
3639         const kmem_slab_t *s0 = p0;
3640         const kmem_slab_t *s1 = p1;
3641         int w0, w1;
3642         size_t binshift;
3643 
3644         ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3645         ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3646         ASSERT(s0->slab_cache == s1->slab_cache);
3647         cp = s1->slab_cache;
3648         ASSERT(MUTEX_HELD(&cp->cache_lock));
3649         binshift = cp->cache_partial_binshift;
3650 
3651         /* weight of first slab */
3652         w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3653         if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3654                 w0 -= cp->cache_maxchunks;
3655         }
3656 
3657         /* weight of second slab */
3658         w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3659         if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3660                 w1 -= cp->cache_maxchunks;
3661         }
3662 
3663         if (w0 < w1)
3664                 return (-1);
3665         if (w0 > w1)
3666                 return (1);
3667 
3668         /* compare pointer values */
3669         if ((uintptr_t)s0 < (uintptr_t)s1)
3670                 return (-1);
3671         if ((uintptr_t)s0 > (uintptr_t)s1)
3672                 return (1);
3673 
3674         return (0);
3675 }
3676 
3677 /*
3678  * It must be valid to call the destructor (if any) on a newly created object.
3679  * That is, the constructor (if any) must leave the object in a valid state for
3680  * the destructor.
3681  */
3682 kmem_cache_t *
3683 kmem_cache_create(
3684         char *name,             /* descriptive name for this cache */
3685         size_t bufsize,         /* size of the objects it manages */
3686         size_t align,           /* required object alignment */
3687         int (*constructor)(void *, void *, int), /* object constructor */
3688         void (*destructor)(void *, void *),     /* object destructor */
3689         void (*reclaim)(void *), /* memory reclaim callback */
3690         void *private,          /* pass-thru arg for constr/destr/reclaim */
3691         vmem_t *vmp,            /* vmem source for slab allocation */
3692         int cflags)             /* cache creation flags */
3693 {
3694         int cpu_seqid;
3695         size_t chunksize;
3696         kmem_cache_t *cp;
3697         kmem_magtype_t *mtp;
3698         size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3699 
3700 #ifdef  DEBUG
3701         /*
3702          * Cache names should conform to the rules for valid C identifiers
3703          */
3704         if (!strident_valid(name)) {
3705                 cmn_err(CE_CONT,
3706                     "kmem_cache_create: '%s' is an invalid cache name\n"
3707                     "cache names must conform to the rules for "
3708                     "C identifiers\n", name);
3709         }
3710 #endif  /* DEBUG */
3711 
3712         if (vmp == NULL)
3713                 vmp = kmem_default_arena;
3714 
3715         /*
3716          * If this kmem cache has an identifier vmem arena as its source, mark
3717          * it such to allow kmem_reap_idspace().
3718          */
3719         ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3720         if (vmp->vm_cflags & VMC_IDENTIFIER)
3721                 cflags |= KMC_IDENTIFIER;
3722 
3723         /*
3724          * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3725          * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3726          * false sharing of per-CPU data.
3727          */
3728         cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3729             P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3730         bzero(cp, csize);
3731         list_link_init(&cp->cache_link);
3732 
3733         if (align == 0)
3734                 align = KMEM_ALIGN;
3735 
3736         /*
3737          * If we're not at least KMEM_ALIGN aligned, we can't use free
3738          * memory to hold bufctl information (because we can't safely
3739          * perform word loads and stores on it).
3740          */
3741         if (align < KMEM_ALIGN)
3742                 cflags |= KMC_NOTOUCH;
3743 
3744         if (!ISP2(align) || align > vmp->vm_quantum)
3745                 panic("kmem_cache_create: bad alignment %lu", align);
3746 
3747         mutex_enter(&kmem_flags_lock);
3748         if (kmem_flags & KMF_RANDOMIZE)
3749                 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3750                     KMF_RANDOMIZE;
3751         cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3752         mutex_exit(&kmem_flags_lock);
3753 
3754         /*
3755          * Make sure all the various flags are reasonable.
3756          */
3757         ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3758 
3759         if (cp->cache_flags & KMF_LITE) {
3760                 if (bufsize >= kmem_lite_minsize &&
3761                     align <= kmem_lite_maxalign &&
3762                     P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3763                         cp->cache_flags |= KMF_BUFTAG;
3764                         cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3765                 } else {
3766                         cp->cache_flags &= ~KMF_DEBUG;
3767                 }
3768         }
3769 
3770         if (cp->cache_flags & KMF_DEADBEEF)
3771                 cp->cache_flags |= KMF_REDZONE;
3772 
3773         if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3774                 cp->cache_flags |= KMF_NOMAGAZINE;
3775 
3776         if (cflags & KMC_NODEBUG)
3777                 cp->cache_flags &= ~KMF_DEBUG;
3778 
3779         if (cflags & KMC_NOTOUCH)
3780                 cp->cache_flags &= ~KMF_TOUCH;
3781 
3782         if (cflags & KMC_PREFILL)
3783                 cp->cache_flags |= KMF_PREFILL;
3784 
3785         if (cflags & KMC_NOHASH)
3786                 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3787 
3788         if (cflags & KMC_NOMAGAZINE)
3789                 cp->cache_flags |= KMF_NOMAGAZINE;
3790 
3791         if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3792                 cp->cache_flags |= KMF_REDZONE;
3793 
3794         if (!(cp->cache_flags & KMF_AUDIT))
3795                 cp->cache_flags &= ~KMF_CONTENTS;
3796 
3797         if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3798             !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3799                 cp->cache_flags |= KMF_FIREWALL;
3800 
3801         if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3802                 cp->cache_flags &= ~KMF_FIREWALL;
3803 
3804         if (cp->cache_flags & KMF_FIREWALL) {
3805                 cp->cache_flags &= ~KMF_BUFTAG;
3806                 cp->cache_flags |= KMF_NOMAGAZINE;
3807                 ASSERT(vmp == kmem_default_arena);
3808                 vmp = kmem_firewall_arena;
3809         }
3810 
3811         /*
3812          * Set cache properties.
3813          */
3814         (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3815         strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3816         cp->cache_bufsize = bufsize;
3817         cp->cache_align = align;
3818         cp->cache_constructor = constructor;
3819         cp->cache_destructor = destructor;
3820         cp->cache_reclaim = reclaim;
3821         cp->cache_private = private;
3822         cp->cache_arena = vmp;
3823         cp->cache_cflags = cflags;
3824 
3825         /*
3826          * Determine the chunk size.
3827          */
3828         chunksize = bufsize;
3829 
3830         if (align >= KMEM_ALIGN) {
3831                 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3832                 cp->cache_bufctl = chunksize - KMEM_ALIGN;
3833         }
3834 
3835         if (cp->cache_flags & KMF_BUFTAG) {
3836                 cp->cache_bufctl = chunksize;
3837                 cp->cache_buftag = chunksize;
3838                 if (cp->cache_flags & KMF_LITE)
3839                         chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3840                 else
3841                         chunksize += sizeof (kmem_buftag_t);
3842         }
3843 
3844         if (cp->cache_flags & KMF_DEADBEEF) {
3845                 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3846                 if (cp->cache_flags & KMF_LITE)
3847                         cp->cache_verify = sizeof (uint64_t);
3848         }
3849 
3850         cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3851 
3852         cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3853 
3854         /*
3855          * Now that we know the chunk size, determine the optimal slab size.
3856          */
3857         if (vmp == kmem_firewall_arena) {
3858                 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3859                 cp->cache_mincolor = cp->cache_slabsize - chunksize;
3860                 cp->cache_maxcolor = cp->cache_mincolor;
3861                 cp->cache_flags |= KMF_HASH;
3862                 ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3863         } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3864             !(cp->cache_flags & KMF_AUDIT) &&
3865             chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3866                 cp->cache_slabsize = vmp->vm_quantum;
3867                 cp->cache_mincolor = 0;
3868                 cp->cache_maxcolor =
3869                     (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3870                 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3871                 ASSERT(!(cp->cache_flags & KMF_AUDIT));
3872         } else {
3873                 size_t chunks, bestfit, waste, slabsize;
3874                 size_t minwaste = LONG_MAX;
3875 
3876                 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3877                         slabsize = P2ROUNDUP(chunksize * chunks,
3878                             vmp->vm_quantum);
3879                         chunks = slabsize / chunksize;
3880                         waste = (slabsize % chunksize) / chunks;
3881                         if (waste < minwaste) {
3882                                 minwaste = waste;
3883                                 bestfit = slabsize;
3884                         }
3885                 }
3886                 if (cflags & KMC_QCACHE)
3887                         bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3888                 cp->cache_slabsize = bestfit;
3889                 cp->cache_mincolor = 0;
3890                 cp->cache_maxcolor = bestfit % chunksize;
3891                 cp->cache_flags |= KMF_HASH;
3892         }
3893 
3894         cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3895         cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3896 
3897         /*
3898          * Disallowing prefill when either the DEBUG or HASH flag is set or when
3899          * there is a constructor avoids some tricky issues with debug setup
3900          * that may be revisited later. We cannot allow prefill in a
3901          * metadata cache because of potential recursion.
3902          */
3903         if (vmp == kmem_msb_arena ||
3904             cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3905             cp->cache_constructor != NULL)
3906                 cp->cache_flags &= ~KMF_PREFILL;
3907 
3908         if (cp->cache_flags & KMF_HASH) {
3909                 ASSERT(!(cflags & KMC_NOHASH));
3910                 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3911                     kmem_bufctl_audit_cache : kmem_bufctl_cache;
3912         }
3913 
3914         if (cp->cache_maxcolor >= vmp->vm_quantum)
3915                 cp->cache_maxcolor = vmp->vm_quantum - 1;
3916 
3917         cp->cache_color = cp->cache_mincolor;
3918 
3919         /*
3920          * Initialize the rest of the slab layer.
3921          */
3922         mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3923 
3924         avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3925             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3926         /* LINTED: E_TRUE_LOGICAL_EXPR */
3927         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3928         /* reuse partial slab AVL linkage for complete slab list linkage */
3929         list_create(&cp->cache_complete_slabs,
3930             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3931 
3932         if (cp->cache_flags & KMF_HASH) {
3933                 cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3934                     KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3935                 bzero(cp->cache_hash_table,
3936                     KMEM_HASH_INITIAL * sizeof (void *));
3937                 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3938                 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3939         }
3940 
3941         /*
3942          * Initialize the depot.
3943          */
3944         mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3945 
3946         for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3947                 continue;
3948 
3949         cp->cache_magtype = mtp;
3950 
3951         /*
3952          * Initialize the CPU layer.
3953          */
3954         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3955                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3956                 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3957                 ccp->cc_flags = cp->cache_flags;
3958                 ccp->cc_rounds = -1;
3959                 ccp->cc_prounds = -1;
3960         }
3961 
3962         /*
3963          * Create the cache's kstats.
3964          */
3965         if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3966             "kmem_cache", KSTAT_TYPE_NAMED,
3967             sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3968             KSTAT_FLAG_VIRTUAL)) != NULL) {
3969                 cp->cache_kstat->ks_data = &kmem_cache_kstat;
3970                 cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3971                 cp->cache_kstat->ks_private = cp;
3972                 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3973                 kstat_install(cp->cache_kstat);
3974         }
3975 
3976         /*
3977          * Add the cache to the global list.  This makes it visible
3978          * to kmem_update(), so the cache must be ready for business.
3979          */
3980         mutex_enter(&kmem_cache_lock);
3981         list_insert_tail(&kmem_caches, cp);
3982         mutex_exit(&kmem_cache_lock);
3983 
3984         if (kmem_ready)
3985                 kmem_cache_magazine_enable(cp);
3986 
3987         return (cp);
3988 }
3989 
3990 static int
3991 kmem_move_cmp(const void *buf, const void *p)
3992 {
3993         const kmem_move_t *kmm = p;
3994         uintptr_t v1 = (uintptr_t)buf;
3995         uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3996         return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3997 }
3998 
3999 static void
4000 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4001 {
4002         kmd->kmd_reclaim_numer = 1;
4003 }
4004 
4005 /*
4006  * Initially, when choosing candidate slabs for buffers to move, we want to be
4007  * very selective and take only slabs that are less than
4008  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4009  * slabs, then we raise the allocation ceiling incrementally. The reclaim
4010  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4011  * longer fragmented.
4012  */
4013 static void
4014 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4015 {
4016         if (direction > 0) {
4017                 /* make it easier to find a candidate slab */
4018                 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4019                         kmd->kmd_reclaim_numer++;
4020                 }
4021         } else {
4022                 /* be more selective */
4023                 if (kmd->kmd_reclaim_numer > 1) {
4024                         kmd->kmd_reclaim_numer--;
4025                 }
4026         }
4027 }
4028 
4029 void
4030 kmem_cache_set_move(kmem_cache_t *cp,
4031     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4032 {
4033         kmem_defrag_t *defrag;
4034 
4035         ASSERT(move != NULL);
4036         /*
4037          * The consolidator does not support NOTOUCH caches because kmem cannot
4038          * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4039          * a low order bit usable by clients to distinguish uninitialized memory
4040          * from known objects (see kmem_slab_create).
4041          */
4042         ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4043         ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4044 
4045         /*
4046          * We should not be holding anyone's cache lock when calling
4047          * kmem_cache_alloc(), so allocate in all cases before acquiring the
4048          * lock.
4049          */
4050         defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4051 
4052         mutex_enter(&cp->cache_lock);
4053 
4054         if (KMEM_IS_MOVABLE(cp)) {
4055                 if (cp->cache_move == NULL) {
4056                         ASSERT(cp->cache_slab_alloc == 0);
4057 
4058                         cp->cache_defrag = defrag;
4059                         defrag = NULL; /* nothing to free */
4060                         bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4061                         avl_create(&cp->cache_defrag->kmd_moves_pending,
4062                             kmem_move_cmp, sizeof (kmem_move_t),
4063                             offsetof(kmem_move_t, kmm_entry));
4064                         /* LINTED: E_TRUE_LOGICAL_EXPR */
4065                         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4066                         /* reuse the slab's AVL linkage for deadlist linkage */
4067                         list_create(&cp->cache_defrag->kmd_deadlist,
4068                             sizeof (kmem_slab_t),
4069                             offsetof(kmem_slab_t, slab_link));
4070                         kmem_reset_reclaim_threshold(cp->cache_defrag);
4071                 }
4072                 cp->cache_move = move;
4073         }
4074 
4075         mutex_exit(&cp->cache_lock);
4076 
4077         if (defrag != NULL) {
4078                 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4079         }
4080 }
4081 
4082 void
4083 kmem_cache_destroy(kmem_cache_t *cp)
4084 {
4085         int cpu_seqid;
4086 
4087         /*
4088          * Remove the cache from the global cache list so that no one else
4089          * can schedule tasks on its behalf, wait for any pending tasks to
4090          * complete, purge the cache, and then destroy it.
4091          */
4092         mutex_enter(&kmem_cache_lock);
4093         list_remove(&kmem_caches, cp);
4094         mutex_exit(&kmem_cache_lock);
4095 
4096         if (kmem_taskq != NULL)
4097                 taskq_wait(kmem_taskq);
4098 
4099         if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4100                 taskq_wait(kmem_move_taskq);
4101 
4102         kmem_cache_magazine_purge(cp);
4103 
4104         mutex_enter(&cp->cache_lock);
4105         if (cp->cache_buftotal != 0)
4106                 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4107                     cp->cache_name, (void *)cp);
4108         if (cp->cache_defrag != NULL) {
4109                 avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4110                 list_destroy(&cp->cache_defrag->kmd_deadlist);
4111                 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4112                 cp->cache_defrag = NULL;
4113         }
4114         /*
4115          * The cache is now dead.  There should be no further activity.  We
4116          * enforce this by setting land mines in the constructor, destructor,
4117          * reclaim, and move routines that induce a kernel text fault if
4118          * invoked.
4119          */
4120         cp->cache_constructor = (int (*)(void *, void *, int))1;
4121         cp->cache_destructor = (void (*)(void *, void *))2;
4122         cp->cache_reclaim = (void (*)(void *))3;
4123         cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4124         mutex_exit(&cp->cache_lock);
4125 
4126         kstat_delete(cp->cache_kstat);
4127 
4128         if (cp->cache_hash_table != NULL)
4129                 vmem_free(kmem_hash_arena, cp->cache_hash_table,
4130                     (cp->cache_hash_mask + 1) * sizeof (void *));
4131 
4132         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4133                 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4134 
4135         mutex_destroy(&cp->cache_depot_lock);
4136         mutex_destroy(&cp->cache_lock);
4137 
4138         vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4139 }
4140 
4141 /*ARGSUSED*/
4142 static int
4143 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4144 {
4145         ASSERT(MUTEX_HELD(&cpu_lock));
4146         if (what == CPU_UNCONFIG) {
4147                 kmem_cache_applyall(kmem_cache_magazine_purge,
4148                     kmem_taskq, TQ_SLEEP);
4149                 kmem_cache_applyall(kmem_cache_magazine_enable,
4150                     kmem_taskq, TQ_SLEEP);
4151         }
4152         return (0);
4153 }
4154 
4155 static void
4156 kmem_alloc_caches_create(const int *array, size_t count,
4157     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4158 {
4159         char name[KMEM_CACHE_NAMELEN + 1];
4160         size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4161         size_t size = table_unit;
4162         int i;
4163 
4164         for (i = 0; i < count; i++) {
4165                 size_t cache_size = array[i];
4166                 size_t align = KMEM_ALIGN;
4167                 kmem_cache_t *cp;
4168 
4169                 /* if the table has an entry for maxbuf, we're done */
4170                 if (size > maxbuf)
4171                         break;
4172 
4173                 /* cache size must be a multiple of the table unit */
4174                 ASSERT(P2PHASE(cache_size, table_unit) == 0);
4175 
4176                 /*
4177                  * If they allocate a multiple of the coherency granularity,
4178                  * they get a coherency-granularity-aligned address.
4179                  */
4180                 if (IS_P2ALIGNED(cache_size, 64))
4181                         align = 64;
4182                 if (IS_P2ALIGNED(cache_size, PAGESIZE))
4183                         align = PAGESIZE;
4184                 (void) snprintf(name, sizeof (name),
4185                     "kmem_alloc_%lu", cache_size);
4186                 cp = kmem_cache_create(name, cache_size, align,
4187                     NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4188 
4189                 while (size <= cache_size) {
4190                         alloc_table[(size - 1) >> shift] = cp;
4191                         size += table_unit;
4192                 }
4193         }
4194 
4195         ASSERT(size > maxbuf);               /* i.e. maxbuf <= max(cache_size) */
4196 }
4197 
4198 static void
4199 kmem_cache_init(int pass, int use_large_pages)
4200 {
4201         int i;
4202         size_t maxbuf;
4203         kmem_magtype_t *mtp;
4204 
4205         for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4206                 char name[KMEM_CACHE_NAMELEN + 1];
4207 
4208                 mtp = &kmem_magtype[i];
4209                 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4210                 mtp->mt_cache = kmem_cache_create(name,
4211                     (mtp->mt_magsize + 1) * sizeof (void *),
4212                     mtp->mt_align, NULL, NULL, NULL, NULL,
4213                     kmem_msb_arena, KMC_NOHASH);
4214         }
4215 
4216         kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4217             sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4218             kmem_msb_arena, KMC_NOHASH);
4219 
4220         kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4221             sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4222             kmem_msb_arena, KMC_NOHASH);
4223 
4224         kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4225             sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4226             kmem_msb_arena, KMC_NOHASH);
4227 
4228         if (pass == 2) {
4229                 kmem_va_arena = vmem_create("kmem_va",
4230                     NULL, 0, PAGESIZE,
4231                     vmem_alloc, vmem_free, heap_arena,
4232                     8 * PAGESIZE, VM_SLEEP);
4233 
4234                 if (use_large_pages) {
4235                         kmem_default_arena = vmem_xcreate("kmem_default",
4236                             NULL, 0, PAGESIZE,
4237                             segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4238                             0, VMC_DUMPSAFE | VM_SLEEP);
4239                 } else {
4240                         kmem_default_arena = vmem_create("kmem_default",
4241                             NULL, 0, PAGESIZE,
4242                             segkmem_alloc, segkmem_free, kmem_va_arena,
4243                             0, VMC_DUMPSAFE | VM_SLEEP);
4244                 }
4245 
4246                 /* Figure out what our maximum cache size is */
4247                 maxbuf = kmem_max_cached;
4248                 if (maxbuf <= KMEM_MAXBUF) {
4249                         maxbuf = 0;
4250                         kmem_max_cached = KMEM_MAXBUF;
4251                 } else {
4252                         size_t size = 0;
4253                         size_t max =
4254                             sizeof (kmem_big_alloc_sizes) / sizeof (int);
4255                         /*
4256                          * Round maxbuf up to an existing cache size.  If maxbuf
4257                          * is larger than the largest cache, we truncate it to
4258                          * the largest cache's size.
4259                          */
4260                         for (i = 0; i < max; i++) {
4261                                 size = kmem_big_alloc_sizes[i];
4262                                 if (maxbuf <= size)
4263                                         break;
4264                         }
4265                         kmem_max_cached = maxbuf = size;
4266                 }
4267 
4268                 /*
4269                  * The big alloc table may not be completely overwritten, so
4270                  * we clear out any stale cache pointers from the first pass.
4271                  */
4272                 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4273         } else {
4274                 /*
4275                  * During the first pass, the kmem_alloc_* caches
4276                  * are treated as metadata.
4277                  */
4278                 kmem_default_arena = kmem_msb_arena;
4279                 maxbuf = KMEM_BIG_MAXBUF_32BIT;
4280         }
4281 
4282         /*
4283          * Set up the default caches to back kmem_alloc()
4284          */
4285         kmem_alloc_caches_create(
4286             kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4287             kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4288 
4289         kmem_alloc_caches_create(
4290             kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4291             kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4292 
4293         kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4294 }
4295 
4296 void
4297 kmem_init(void)
4298 {
4299         kmem_cache_t *cp;
4300         int old_kmem_flags = kmem_flags;
4301         int use_large_pages = 0;
4302         size_t maxverify, minfirewall;
4303 
4304         kstat_init();
4305 
4306         /*
4307          * Don't do firewalled allocations if the heap is less than 1TB
4308          * (i.e. on a 32-bit kernel)
4309          * The resulting VM_NEXTFIT allocations would create too much
4310          * fragmentation in a small heap.
4311          */
4312 #if defined(_LP64)
4313         maxverify = minfirewall = PAGESIZE / 2;
4314 #else
4315         maxverify = minfirewall = ULONG_MAX;
4316 #endif
4317 
4318         /* LINTED */
4319         ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4320 
4321         list_create(&kmem_caches, sizeof (kmem_cache_t),
4322             offsetof(kmem_cache_t, cache_link));
4323 
4324         kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4325             vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4326             VM_SLEEP | VMC_NO_QCACHE);
4327 
4328         kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4329             PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4330             VMC_DUMPSAFE | VM_SLEEP);
4331 
4332         kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4333             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4334 
4335         kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4336             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4337 
4338         kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4339             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4340 
4341         kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4342             NULL, 0, PAGESIZE,
4343             kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4344             0, VM_SLEEP);
4345 
4346         kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4347             segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4348             VMC_DUMPSAFE | VM_SLEEP);
4349 
4350         /* temporary oversize arena for mod_read_system_file */
4351         kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4352             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4353 
4354         kmem_reap_interval = 15 * hz;
4355 
4356         /*
4357          * Read /etc/system.  This is a chicken-and-egg problem because
4358          * kmem_flags may be set in /etc/system, but mod_read_system_file()
4359          * needs to use the allocator.  The simplest solution is to create
4360          * all the standard kmem caches, read /etc/system, destroy all the
4361          * caches we just created, and then create them all again in light
4362          * of the (possibly) new kmem_flags and other kmem tunables.
4363          */
4364         kmem_cache_init(1, 0);
4365 
4366         mod_read_system_file(boothowto & RB_ASKNAME);
4367 
4368         while ((cp = list_tail(&kmem_caches)) != NULL)
4369                 kmem_cache_destroy(cp);
4370 
4371         vmem_destroy(kmem_oversize_arena);
4372 
4373         if (old_kmem_flags & KMF_STICKY)
4374                 kmem_flags = old_kmem_flags;
4375 
4376         if (!(kmem_flags & KMF_AUDIT))
4377                 vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4378 
4379         if (kmem_maxverify == 0)
4380                 kmem_maxverify = maxverify;
4381 
4382         if (kmem_minfirewall == 0)
4383                 kmem_minfirewall = minfirewall;
4384 
4385         /*
4386          * give segkmem a chance to figure out if we are using large pages
4387          * for the kernel heap
4388          */
4389         use_large_pages = segkmem_lpsetup();
4390 
4391         /*
4392          * To protect against corruption, we keep the actual number of callers
4393          * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4394          * to 16, since the overhead for small buffers quickly gets out of
4395          * hand.
4396          *
4397          * The real limit would depend on the needs of the largest KMC_NOHASH
4398          * cache.
4399          */
4400         kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4401         kmem_lite_pcs = kmem_lite_count;
4402 
4403         /*
4404          * Normally, we firewall oversized allocations when possible, but
4405          * if we are using large pages for kernel memory, and we don't have
4406          * any non-LITE debugging flags set, we want to allocate oversized
4407          * buffers from large pages, and so skip the firewalling.
4408          */
4409         if (use_large_pages &&
4410             ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4411                 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4412                     PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4413                     0, VMC_DUMPSAFE | VM_SLEEP);
4414         } else {
4415                 kmem_oversize_arena = vmem_create("kmem_oversize",
4416                     NULL, 0, PAGESIZE,
4417                     segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4418                     kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4419                     VM_SLEEP);
4420         }
4421 
4422         kmem_cache_init(2, use_large_pages);
4423 
4424         if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4425                 if (kmem_transaction_log_size == 0)
4426                         kmem_transaction_log_size = kmem_maxavail() / 50;
4427                 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4428         }
4429 
4430         if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4431                 if (kmem_content_log_size == 0)
4432                         kmem_content_log_size = kmem_maxavail() / 50;
4433                 kmem_content_log = kmem_log_init(kmem_content_log_size);
4434         }
4435 
4436         kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4437         kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4438         kmem_zerosized_log = kmem_log_init(kmem_zerosized_log_size);
4439 
4440         /*
4441          * Initialize STREAMS message caches so allocb() is available.
4442          * This allows us to initialize the logging framework (cmn_err(9F),
4443          * strlog(9F), etc) so we can start recording messages.
4444          */
4445         streams_msg_init();
4446 
4447         /*
4448          * Initialize the ZSD framework in Zones so modules loaded henceforth
4449          * can register their callbacks.
4450          */
4451         zone_zsd_init();
4452 
4453         log_init();
4454         taskq_init();
4455 
4456         /*
4457          * Warn about invalid or dangerous values of kmem_flags.
4458          * Always warn about unsupported values.
4459          */
4460         if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4461             KMF_CONTENTS | KMF_LITE)) != 0) ||
4462             ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4463                 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4464                     "See the Solaris Tunable Parameters Reference Manual.",
4465                     kmem_flags);
4466 
4467 #ifdef DEBUG
4468         if ((kmem_flags & KMF_DEBUG) == 0)
4469                 cmn_err(CE_NOTE, "kmem debugging disabled.");
4470 #else
4471         /*
4472          * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4473          * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4474          * if KMF_AUDIT is set). We should warn the user about the performance
4475          * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4476          * isn't set (since that disables AUDIT).
4477          */
4478         if (!(kmem_flags & KMF_LITE) &&
4479             (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4480                 cmn_err(CE_WARN, "High-overhead kmem debugging features "
4481                     "enabled (kmem_flags = 0x%x).  Performance degradation "
4482                     "and large memory overhead possible. See the Solaris "
4483                     "Tunable Parameters Reference Manual.", kmem_flags);
4484 #endif /* not DEBUG */
4485 
4486         kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4487 
4488         kmem_ready = 1;
4489 
4490         /*
4491          * Initialize the platform-specific aligned/DMA memory allocator.
4492          */
4493         ka_init();
4494 
4495         /*
4496          * Initialize 32-bit ID cache.
4497          */
4498         id32_init();
4499 
4500         /*
4501          * Initialize the networking stack so modules loaded can
4502          * register their callbacks.
4503          */
4504         netstack_init();
4505 }
4506 
4507 static void
4508 kmem_move_init(void)
4509 {
4510         kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4511             sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4512             kmem_msb_arena, KMC_NOHASH);
4513         kmem_move_cache = kmem_cache_create("kmem_move_cache",
4514             sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4515             kmem_msb_arena, KMC_NOHASH);
4516 
4517         /*
4518          * kmem guarantees that move callbacks are sequential and that even
4519          * across multiple caches no two moves ever execute simultaneously.
4520          * Move callbacks are processed on a separate taskq so that client code
4521          * does not interfere with internal maintenance tasks.
4522          */
4523         kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4524             minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4525 }
4526 
4527 void
4528 kmem_thread_init(void)
4529 {
4530         kmem_move_init();
4531         kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4532             300, INT_MAX, TASKQ_PREPOPULATE);
4533 }
4534 
4535 void
4536 kmem_mp_init(void)
4537 {
4538         mutex_enter(&cpu_lock);
4539         register_cpu_setup_func(kmem_cpu_setup, NULL);
4540         mutex_exit(&cpu_lock);
4541 
4542         kmem_update_timeout(NULL);
4543 
4544         taskq_mp_init();
4545 }
4546 
4547 /*
4548  * Return the slab of the allocated buffer, or NULL if the buffer is not
4549  * allocated. This function may be called with a known slab address to determine
4550  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4551  * an allocated buffer's slab.
4552  */
4553 static kmem_slab_t *
4554 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4555 {
4556         kmem_bufctl_t *bcp, *bufbcp;
4557 
4558         ASSERT(MUTEX_HELD(&cp->cache_lock));
4559         ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4560 
4561         if (cp->cache_flags & KMF_HASH) {
4562                 for (bcp = *KMEM_HASH(cp, buf);
4563                     (bcp != NULL) && (bcp->bc_addr != buf);
4564                     bcp = bcp->bc_next) {
4565                         continue;
4566                 }
4567                 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4568                 return (bcp == NULL ? NULL : bcp->bc_slab);
4569         }
4570 
4571         if (sp == NULL) {
4572                 sp = KMEM_SLAB(cp, buf);
4573         }
4574         bufbcp = KMEM_BUFCTL(cp, buf);
4575         for (bcp = sp->slab_head;
4576             (bcp != NULL) && (bcp != bufbcp);
4577             bcp = bcp->bc_next) {
4578                 continue;
4579         }
4580         return (bcp == NULL ? sp : NULL);
4581 }
4582 
4583 static boolean_t
4584 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4585 {
4586         long refcnt = sp->slab_refcnt;
4587 
4588         ASSERT(cp->cache_defrag != NULL);
4589 
4590         /*
4591          * For code coverage we want to be able to move an object within the
4592          * same slab (the only partial slab) even if allocating the destination
4593          * buffer resulted in a completely allocated slab.
4594          */
4595         if (flags & KMM_DEBUG) {
4596                 return ((flags & KMM_DESPERATE) ||
4597                     ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4598         }
4599 
4600         /* If we're desperate, we don't care if the client said NO. */
4601         if (flags & KMM_DESPERATE) {
4602                 return (refcnt < sp->slab_chunks); /* any partial */
4603         }
4604 
4605         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4606                 return (B_FALSE);
4607         }
4608 
4609         if ((refcnt == 1) || kmem_move_any_partial) {
4610                 return (refcnt < sp->slab_chunks);
4611         }
4612 
4613         /*
4614          * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4615          * slabs with a progressively higher percentage of used buffers can be
4616          * reclaimed until the cache as a whole is no longer fragmented.
4617          *
4618          *      sp->slab_refcnt   kmd_reclaim_numer
4619          *      --------------- < ------------------
4620          *      sp->slab_chunks   KMEM_VOID_FRACTION
4621          */
4622         return ((refcnt * KMEM_VOID_FRACTION) <
4623             (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4624 }
4625 
4626 /*
4627  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4628  * or when the buffer is freed.
4629  */
4630 static void
4631 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4632 {
4633         ASSERT(MUTEX_HELD(&cp->cache_lock));
4634         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4635 
4636         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4637                 return;
4638         }
4639 
4640         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4641                 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4642                         avl_remove(&cp->cache_partial_slabs, sp);
4643                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4644                         sp->slab_stuck_offset = (uint32_t)-1;
4645                         avl_add(&cp->cache_partial_slabs, sp);
4646                 }
4647         } else {
4648                 sp->slab_later_count = 0;
4649                 sp->slab_stuck_offset = (uint32_t)-1;
4650         }
4651 }
4652 
4653 static void
4654 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4655 {
4656         ASSERT(taskq_member(kmem_move_taskq, curthread));
4657         ASSERT(MUTEX_HELD(&cp->cache_lock));
4658         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4659 
4660         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4661                 return;
4662         }
4663 
4664         avl_remove(&cp->cache_partial_slabs, sp);
4665         sp->slab_later_count = 0;
4666         sp->slab_flags |= KMEM_SLAB_NOMOVE;
4667         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4668         avl_add(&cp->cache_partial_slabs, sp);
4669 }
4670 
4671 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4672 
4673 /*
4674  * The move callback takes two buffer addresses, the buffer to be moved, and a
4675  * newly allocated and constructed buffer selected by kmem as the destination.
4676  * It also takes the size of the buffer and an optional user argument specified
4677  * at cache creation time. kmem guarantees that the buffer to be moved has not
4678  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4679  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4680  * the client to safely determine whether or not it is still using the buffer.
4681  * The client must not free either of the buffers passed to the move callback,
4682  * since kmem wants to free them directly to the slab layer. The client response
4683  * tells kmem which of the two buffers to free:
4684  *
4685  * YES          kmem frees the old buffer (the move was successful)
4686  * NO           kmem frees the new buffer, marks the slab of the old buffer
4687  *              non-reclaimable to avoid bothering the client again
4688  * LATER        kmem frees the new buffer, increments slab_later_count
4689  * DONT_KNOW    kmem frees the new buffer
4690  * DONT_NEED    kmem frees both the old buffer and the new buffer
4691  *
4692  * The pending callback argument now being processed contains both of the
4693  * buffers (old and new) passed to the move callback function, the slab of the
4694  * old buffer, and flags related to the move request, such as whether or not the
4695  * system was desperate for memory.
4696  *
4697  * Slabs are not freed while there is a pending callback, but instead are kept
4698  * on a deadlist, which is drained after the last callback completes. This means
4699  * that slabs are safe to access until kmem_move_end(), no matter how many of
4700  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4701  * zero for as long as the slab remains on the deadlist and until the slab is
4702  * freed.
4703  */
4704 static void
4705 kmem_move_buffer(kmem_move_t *callback)
4706 {
4707         kmem_cbrc_t response;
4708         kmem_slab_t *sp = callback->kmm_from_slab;
4709         kmem_cache_t *cp = sp->slab_cache;
4710         boolean_t free_on_slab;
4711 
4712         ASSERT(taskq_member(kmem_move_taskq, curthread));
4713         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4714         ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4715 
4716         /*
4717          * The number of allocated buffers on the slab may have changed since we
4718          * last checked the slab's reclaimability (when the pending move was
4719          * enqueued), or the client may have responded NO when asked to move
4720          * another buffer on the same slab.
4721          */
4722         if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4723                 kmem_slab_free(cp, callback->kmm_to_buf);
4724                 kmem_move_end(cp, callback);
4725                 return;
4726         }
4727 
4728         /*
4729          * Checking the slab layer is easy, so we might as well do that here
4730          * in case we can avoid bothering the client.
4731          */
4732         mutex_enter(&cp->cache_lock);
4733         free_on_slab = (kmem_slab_allocated(cp, sp,
4734             callback->kmm_from_buf) == NULL);
4735         mutex_exit(&cp->cache_lock);
4736 
4737         if (free_on_slab) {
4738                 kmem_slab_free(cp, callback->kmm_to_buf);
4739                 kmem_move_end(cp, callback);
4740                 return;
4741         }
4742 
4743         if (cp->cache_flags & KMF_BUFTAG) {
4744                 /*
4745                  * Make kmem_cache_alloc_debug() apply the constructor for us.
4746                  */
4747                 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4748                     KM_NOSLEEP, 1, caller()) != 0) {
4749                         kmem_move_end(cp, callback);
4750                         return;
4751                 }
4752         } else if (cp->cache_constructor != NULL &&
4753             cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4754             KM_NOSLEEP) != 0) {
4755                 atomic_inc_64(&cp->cache_alloc_fail);
4756                 kmem_slab_free(cp, callback->kmm_to_buf);
4757                 kmem_move_end(cp, callback);
4758                 return;
4759         }
4760 
4761         cp->cache_defrag->kmd_callbacks++;
4762         cp->cache_defrag->kmd_thread = curthread;
4763         cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4764         cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4765         DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4766             callback);
4767 
4768         response = cp->cache_move(callback->kmm_from_buf,
4769             callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4770 
4771         DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4772             callback, kmem_cbrc_t, response);
4773         cp->cache_defrag->kmd_thread = NULL;
4774         cp->cache_defrag->kmd_from_buf = NULL;
4775         cp->cache_defrag->kmd_to_buf = NULL;
4776 
4777         if (response == KMEM_CBRC_YES) {
4778                 cp->cache_defrag->kmd_yes++;
4779                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4780                 /* slab safe to access until kmem_move_end() */
4781                 if (sp->slab_refcnt == 0)
4782                         cp->cache_defrag->kmd_slabs_freed++;
4783                 mutex_enter(&cp->cache_lock);
4784                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4785                 mutex_exit(&cp->cache_lock);
4786                 kmem_move_end(cp, callback);
4787                 return;
4788         }
4789 
4790         switch (response) {
4791         case KMEM_CBRC_NO:
4792                 cp->cache_defrag->kmd_no++;
4793                 mutex_enter(&cp->cache_lock);
4794                 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4795                 mutex_exit(&cp->cache_lock);
4796                 break;
4797         case KMEM_CBRC_LATER:
4798                 cp->cache_defrag->kmd_later++;
4799                 mutex_enter(&cp->cache_lock);
4800                 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4801                         mutex_exit(&cp->cache_lock);
4802                         break;
4803                 }
4804 
4805                 if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4806                         kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4807                 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4808                         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4809                             callback->kmm_from_buf);
4810                 }
4811                 mutex_exit(&cp->cache_lock);
4812                 break;
4813         case KMEM_CBRC_DONT_NEED:
4814                 cp->cache_defrag->kmd_dont_need++;
4815                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4816                 if (sp->slab_refcnt == 0)
4817                         cp->cache_defrag->kmd_slabs_freed++;
4818                 mutex_enter(&cp->cache_lock);
4819                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4820                 mutex_exit(&cp->cache_lock);
4821                 break;
4822         case KMEM_CBRC_DONT_KNOW:
4823                 /*
4824                  * If we don't know if we can move this buffer or not, we'll
4825                  * just assume that we can't:  if the buffer is in fact free,
4826                  * then it is sitting in one of the per-CPU magazines or in
4827                  * a full magazine in the depot layer.  Either way, because
4828                  * defrag is induced in the same logic that reaps a cache,
4829                  * it's likely that full magazines will be returned to the
4830                  * system soon (thereby accomplishing what we're trying to
4831                  * accomplish here: return those magazines to their slabs).
4832                  * Given this, any work that we might do now to locate a buffer
4833                  * in a magazine is wasted (and expensive!) work; we bump
4834                  * a counter in this case and otherwise assume that we can't
4835                  * move it.
4836                  */
4837                 cp->cache_defrag->kmd_dont_know++;
4838                 break;
4839         default:
4840                 panic("'%s' (%p) unexpected move callback response %d\n",
4841                     cp->cache_name, (void *)cp, response);
4842         }
4843 
4844         kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4845         kmem_move_end(cp, callback);
4846 }
4847 
4848 /* Return B_FALSE if there is insufficient memory for the move request. */
4849 static boolean_t
4850 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4851 {
4852         void *to_buf;
4853         avl_index_t index;
4854         kmem_move_t *callback, *pending;
4855         ulong_t n;
4856 
4857         ASSERT(taskq_member(kmem_taskq, curthread));
4858         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4859         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4860 
4861         callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4862 
4863         if (callback == NULL)
4864                 return (B_FALSE);
4865 
4866         callback->kmm_from_slab = sp;
4867         callback->kmm_from_buf = buf;
4868         callback->kmm_flags = flags;
4869 
4870         mutex_enter(&cp->cache_lock);
4871 
4872         n = avl_numnodes(&cp->cache_partial_slabs);
4873         if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4874                 mutex_exit(&cp->cache_lock);
4875                 kmem_cache_free(kmem_move_cache, callback);
4876                 return (B_TRUE); /* there is no need for the move request */
4877         }
4878 
4879         pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4880         if (pending != NULL) {
4881                 /*
4882                  * If the move is already pending and we're desperate now,
4883                  * update the move flags.
4884                  */
4885                 if (flags & KMM_DESPERATE) {
4886                         pending->kmm_flags |= KMM_DESPERATE;
4887                 }
4888                 mutex_exit(&cp->cache_lock);
4889                 kmem_cache_free(kmem_move_cache, callback);
4890                 return (B_TRUE);
4891         }
4892 
4893         to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4894             B_FALSE);
4895         callback->kmm_to_buf = to_buf;
4896         avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4897 
4898         mutex_exit(&cp->cache_lock);
4899 
4900         if (taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4901             callback, TQ_NOSLEEP) == TASKQID_INVALID) {
4902                 mutex_enter(&cp->cache_lock);
4903                 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4904                 mutex_exit(&cp->cache_lock);
4905                 kmem_slab_free(cp, to_buf);
4906                 kmem_cache_free(kmem_move_cache, callback);
4907                 return (B_FALSE);
4908         }
4909 
4910         return (B_TRUE);
4911 }
4912 
4913 static void
4914 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4915 {
4916         avl_index_t index;
4917 
4918         ASSERT(cp->cache_defrag != NULL);
4919         ASSERT(taskq_member(kmem_move_taskq, curthread));
4920         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4921 
4922         mutex_enter(&cp->cache_lock);
4923         VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4924             callback->kmm_from_buf, &index) != NULL);
4925         avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4926         if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4927                 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4928                 kmem_slab_t *sp;
4929 
4930                 /*
4931                  * The last pending move completed. Release all slabs from the
4932                  * front of the dead list except for any slab at the tail that
4933                  * needs to be released from the context of kmem_move_buffers().
4934                  * kmem deferred unmapping the buffers on these slabs in order
4935                  * to guarantee that buffers passed to the move callback have
4936                  * been touched only by kmem or by the client itself.
4937                  */
4938                 while ((sp = list_remove_head(deadlist)) != NULL) {
4939                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4940                                 list_insert_tail(deadlist, sp);
4941                                 break;
4942                         }
4943                         cp->cache_defrag->kmd_deadcount--;
4944                         cp->cache_slab_destroy++;
4945                         mutex_exit(&cp->cache_lock);
4946                         kmem_slab_destroy(cp, sp);
4947                         mutex_enter(&cp->cache_lock);
4948                 }
4949         }
4950         mutex_exit(&cp->cache_lock);
4951         kmem_cache_free(kmem_move_cache, callback);
4952 }
4953 
4954 /*
4955  * Move buffers from least used slabs first by scanning backwards from the end
4956  * of the partial slab list. Scan at most max_scan candidate slabs and move
4957  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4958  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4959  * skip slabs with a ratio of allocated buffers at or above the current
4960  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4961  * scan is aborted) so that the caller can adjust the reclaimability threshold
4962  * depending on how many reclaimable slabs it finds.
4963  *
4964  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4965  * move request, since it is not valid for kmem_move_begin() to call
4966  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4967  */
4968 static int
4969 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4970     int flags)
4971 {
4972         kmem_slab_t *sp;
4973         void *buf;
4974         int i, j; /* slab index, buffer index */
4975         int s; /* reclaimable slabs */
4976         int b; /* allocated (movable) buffers on reclaimable slab */
4977         boolean_t success;
4978         int refcnt;
4979         int nomove;
4980 
4981         ASSERT(taskq_member(kmem_taskq, curthread));
4982         ASSERT(MUTEX_HELD(&cp->cache_lock));
4983         ASSERT(kmem_move_cache != NULL);
4984         ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4985         ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4986             avl_numnodes(&cp->cache_partial_slabs) > 1);
4987 
4988         if (kmem_move_blocked) {
4989                 return (0);
4990         }
4991 
4992         if (kmem_move_fulltilt) {
4993                 flags |= KMM_DESPERATE;
4994         }
4995 
4996         if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4997                 /*
4998                  * Scan as many slabs as needed to find the desired number of
4999                  * candidate slabs.
5000                  */
5001                 max_scan = (size_t)-1;
5002         }
5003 
5004         if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5005                 /* Find as many candidate slabs as possible. */
5006                 max_slabs = (size_t)-1;
5007         }
5008 
5009         sp = avl_last(&cp->cache_partial_slabs);
5010         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5011         for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5012             ((sp != avl_first(&cp->cache_partial_slabs)) ||
5013             (flags & KMM_DEBUG));
5014             sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5015 
5016                 if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5017                         continue;
5018                 }
5019                 s++;
5020 
5021                 /* Look for allocated buffers to move. */
5022                 for (j = 0, b = 0, buf = sp->slab_base;
5023                     (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5024                     buf = (((char *)buf) + cp->cache_chunksize), j++) {
5025 
5026                         if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5027                                 continue;
5028                         }
5029 
5030                         b++;
5031 
5032                         /*
5033                          * Prevent the slab from being destroyed while we drop
5034                          * cache_lock and while the pending move is not yet
5035                          * registered. Flag the pending move while
5036                          * kmd_moves_pending may still be empty, since we can't
5037                          * yet rely on a non-zero pending move count to prevent
5038                          * the slab from being destroyed.
5039                          */
5040                         ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5041                         sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5042                         /*
5043                          * Recheck refcnt and nomove after reacquiring the lock,
5044                          * since these control the order of partial slabs, and
5045                          * we want to know if we can pick up the scan where we
5046                          * left off.
5047                          */
5048                         refcnt = sp->slab_refcnt;
5049                         nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5050                         mutex_exit(&cp->cache_lock);
5051 
5052                         success = kmem_move_begin(cp, sp, buf, flags);
5053 
5054                         /*
5055                          * Now, before the lock is reacquired, kmem could
5056                          * process all pending move requests and purge the
5057                          * deadlist, so that upon reacquiring the lock, sp has
5058                          * been remapped. Or, the client may free all the
5059                          * objects on the slab while the pending moves are still
5060                          * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5061                          * flag causes the slab to be put at the end of the
5062                          * deadlist and prevents it from being destroyed, since
5063                          * we plan to destroy it here after reacquiring the
5064                          * lock.
5065                          */
5066                         mutex_enter(&cp->cache_lock);
5067                         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5068                         sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5069 
5070                         if (sp->slab_refcnt == 0) {
5071                                 list_t *deadlist =
5072                                     &cp->cache_defrag->kmd_deadlist;
5073                                 list_remove(deadlist, sp);
5074 
5075                                 if (!avl_is_empty(
5076                                     &cp->cache_defrag->kmd_moves_pending)) {
5077                                         /*
5078                                          * A pending move makes it unsafe to
5079                                          * destroy the slab, because even though
5080                                          * the move is no longer needed, the
5081                                          * context where that is determined
5082                                          * requires the slab to exist.
5083                                          * Fortunately, a pending move also
5084                                          * means we don't need to destroy the
5085                                          * slab here, since it will get
5086                                          * destroyed along with any other slabs
5087                                          * on the deadlist after the last
5088                                          * pending move completes.
5089                                          */
5090                                         list_insert_head(deadlist, sp);
5091                                         return (-1);
5092                                 }
5093 
5094                                 /*
5095                                  * Destroy the slab now if it was completely
5096                                  * freed while we dropped cache_lock and there
5097                                  * are no pending moves. Since slab_refcnt
5098                                  * cannot change once it reaches zero, no new
5099                                  * pending moves from that slab are possible.
5100                                  */
5101                                 cp->cache_defrag->kmd_deadcount--;
5102                                 cp->cache_slab_destroy++;
5103                                 mutex_exit(&cp->cache_lock);
5104                                 kmem_slab_destroy(cp, sp);
5105                                 mutex_enter(&cp->cache_lock);
5106                                 /*
5107                                  * Since we can't pick up the scan where we left
5108                                  * off, abort the scan and say nothing about the
5109                                  * number of reclaimable slabs.
5110                                  */
5111                                 return (-1);
5112                         }
5113 
5114                         if (!success) {
5115                                 /*
5116                                  * Abort the scan if there is not enough memory
5117                                  * for the request and say nothing about the
5118                                  * number of reclaimable slabs.
5119                                  */
5120                                 return (-1);
5121                         }
5122 
5123                         /*
5124                          * The slab's position changed while the lock was
5125                          * dropped, so we don't know where we are in the
5126                          * sequence any more.
5127                          */
5128                         if (sp->slab_refcnt != refcnt) {
5129                                 /*
5130                                  * If this is a KMM_DEBUG move, the slab_refcnt
5131                                  * may have changed because we allocated a
5132                                  * destination buffer on the same slab. In that
5133                                  * case, we're not interested in counting it.
5134                                  */
5135                                 return (-1);
5136                         }
5137                         if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5138                                 return (-1);
5139 
5140                         /*
5141                          * Generating a move request allocates a destination
5142                          * buffer from the slab layer, bumping the first partial
5143                          * slab if it is completely allocated. If the current
5144                          * slab becomes the first partial slab as a result, we
5145                          * can't continue to scan backwards.
5146                          *
5147                          * If this is a KMM_DEBUG move and we allocated the
5148                          * destination buffer from the last partial slab, then
5149                          * the buffer we're moving is on the same slab and our
5150                          * slab_refcnt has changed, causing us to return before
5151                          * reaching here if there are no partial slabs left.
5152                          */
5153                         ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5154                         if (sp == avl_first(&cp->cache_partial_slabs)) {
5155                                 /*
5156                                  * We're not interested in a second KMM_DEBUG
5157                                  * move.
5158                                  */
5159                                 goto end_scan;
5160                         }
5161                 }
5162         }
5163 end_scan:
5164 
5165         return (s);
5166 }
5167 
5168 typedef struct kmem_move_notify_args {
5169         kmem_cache_t *kmna_cache;
5170         void *kmna_buf;
5171 } kmem_move_notify_args_t;
5172 
5173 static void
5174 kmem_cache_move_notify_task(void *arg)
5175 {
5176         kmem_move_notify_args_t *args = arg;
5177         kmem_cache_t *cp = args->kmna_cache;
5178         void *buf = args->kmna_buf;
5179         kmem_slab_t *sp;
5180 
5181         ASSERT(taskq_member(kmem_taskq, curthread));
5182         ASSERT(list_link_active(&cp->cache_link));
5183 
5184         kmem_free(args, sizeof (kmem_move_notify_args_t));
5185         mutex_enter(&cp->cache_lock);
5186         sp = kmem_slab_allocated(cp, NULL, buf);
5187 
5188         /* Ignore the notification if the buffer is no longer allocated. */
5189         if (sp == NULL) {
5190                 mutex_exit(&cp->cache_lock);
5191                 return;
5192         }
5193 
5194         /* Ignore the notification if there's no reason to move the buffer. */
5195         if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5196                 /*
5197                  * So far the notification is not ignored. Ignore the
5198                  * notification if the slab is not marked by an earlier refusal
5199                  * to move a buffer.
5200                  */
5201                 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5202                     (sp->slab_later_count == 0)) {
5203                         mutex_exit(&cp->cache_lock);
5204                         return;
5205                 }
5206 
5207                 kmem_slab_move_yes(cp, sp, buf);
5208                 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5209                 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5210                 mutex_exit(&cp->cache_lock);
5211                 /* see kmem_move_buffers() about dropping the lock */
5212                 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5213                 mutex_enter(&cp->cache_lock);
5214                 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5215                 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5216                 if (sp->slab_refcnt == 0) {
5217                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5218                         list_remove(deadlist, sp);
5219 
5220                         if (!avl_is_empty(
5221                             &cp->cache_defrag->kmd_moves_pending)) {
5222                                 list_insert_head(deadlist, sp);
5223                                 mutex_exit(&cp->cache_lock);
5224                                 return;
5225                         }
5226 
5227                         cp->cache_defrag->kmd_deadcount--;
5228                         cp->cache_slab_destroy++;
5229                         mutex_exit(&cp->cache_lock);
5230                         kmem_slab_destroy(cp, sp);
5231                         return;
5232                 }
5233         } else {
5234                 kmem_slab_move_yes(cp, sp, buf);
5235         }
5236         mutex_exit(&cp->cache_lock);
5237 }
5238 
5239 void
5240 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5241 {
5242         kmem_move_notify_args_t *args;
5243 
5244         args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5245         if (args != NULL) {
5246                 args->kmna_cache = cp;
5247                 args->kmna_buf = buf;
5248                 if (taskq_dispatch(kmem_taskq,
5249                     (task_func_t *)kmem_cache_move_notify_task, args,
5250                     TQ_NOSLEEP) == TASKQID_INVALID)
5251                         kmem_free(args, sizeof (kmem_move_notify_args_t));
5252         }
5253 }
5254 
5255 static void
5256 kmem_cache_defrag(kmem_cache_t *cp)
5257 {
5258         size_t n;
5259 
5260         ASSERT(cp->cache_defrag != NULL);
5261 
5262         mutex_enter(&cp->cache_lock);
5263         n = avl_numnodes(&cp->cache_partial_slabs);
5264         if (n > 1) {
5265                 /* kmem_move_buffers() drops and reacquires cache_lock */
5266                 cp->cache_defrag->kmd_defrags++;
5267                 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5268         }
5269         mutex_exit(&cp->cache_lock);
5270 }
5271 
5272 /* Is this cache above the fragmentation threshold? */
5273 static boolean_t
5274 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5275 {
5276         /*
5277          *      nfree           kmem_frag_numer
5278          * ------------------ > ---------------
5279          * cp->cache_buftotal        kmem_frag_denom
5280          */
5281         return ((nfree * kmem_frag_denom) >
5282             (cp->cache_buftotal * kmem_frag_numer));
5283 }
5284 
5285 static boolean_t
5286 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5287 {
5288         boolean_t fragmented;
5289         uint64_t nfree;
5290 
5291         ASSERT(MUTEX_HELD(&cp->cache_lock));
5292         *doreap = B_FALSE;
5293 
5294         if (kmem_move_fulltilt) {
5295                 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5296                         return (B_TRUE);
5297                 }
5298         } else {
5299                 if ((cp->cache_complete_slab_count + avl_numnodes(
5300                     &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5301                         return (B_FALSE);
5302                 }
5303         }
5304 
5305         nfree = cp->cache_bufslab;
5306         fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5307             kmem_cache_frag_threshold(cp, nfree));
5308 
5309         /*
5310          * Free buffers in the magazine layer appear allocated from the point of
5311          * view of the slab layer. We want to know if the slab layer would
5312          * appear fragmented if we included free buffers from magazines that
5313          * have fallen out of the working set.
5314          */
5315         if (!fragmented) {
5316                 long reap;
5317 
5318                 mutex_enter(&cp->cache_depot_lock);
5319                 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5320                 reap = MIN(reap, cp->cache_full.ml_total);
5321                 mutex_exit(&cp->cache_depot_lock);
5322 
5323                 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5324                 if (kmem_cache_frag_threshold(cp, nfree)) {
5325                         *doreap = B_TRUE;
5326                 }
5327         }
5328 
5329         return (fragmented);
5330 }
5331 
5332 /* Called periodically from kmem_taskq */
5333 static void
5334 kmem_cache_scan(kmem_cache_t *cp)
5335 {
5336         boolean_t reap = B_FALSE;
5337         kmem_defrag_t *kmd;
5338 
5339         ASSERT(taskq_member(kmem_taskq, curthread));
5340 
5341         mutex_enter(&cp->cache_lock);
5342 
5343         kmd = cp->cache_defrag;
5344         if (kmd->kmd_consolidate > 0) {
5345                 kmd->kmd_consolidate--;
5346                 mutex_exit(&cp->cache_lock);
5347                 kmem_cache_reap(cp);
5348                 return;
5349         }
5350 
5351         if (kmem_cache_is_fragmented(cp, &reap)) {
5352                 size_t slabs_found;
5353 
5354                 /*
5355                  * Consolidate reclaimable slabs from the end of the partial
5356                  * slab list (scan at most kmem_reclaim_scan_range slabs to find
5357                  * reclaimable slabs). Keep track of how many candidate slabs we
5358                  * looked for and how many we actually found so we can adjust
5359                  * the definition of a candidate slab if we're having trouble
5360                  * finding them.
5361                  *
5362                  * kmem_move_buffers() drops and reacquires cache_lock.
5363                  */
5364                 kmd->kmd_scans++;
5365                 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5366                     kmem_reclaim_max_slabs, 0);
5367                 if (slabs_found >= 0) {
5368                         kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5369                         kmd->kmd_slabs_found += slabs_found;
5370                 }
5371 
5372                 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5373                         kmd->kmd_tries = 0;
5374 
5375                         /*
5376                          * If we had difficulty finding candidate slabs in
5377                          * previous scans, adjust the threshold so that
5378                          * candidates are easier to find.
5379                          */
5380                         if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5381                                 kmem_adjust_reclaim_threshold(kmd, -1);
5382                         } else if ((kmd->kmd_slabs_found * 2) <
5383                             kmd->kmd_slabs_sought) {
5384                                 kmem_adjust_reclaim_threshold(kmd, 1);
5385                         }
5386                         kmd->kmd_slabs_sought = 0;
5387                         kmd->kmd_slabs_found = 0;
5388                 }
5389         } else {
5390                 kmem_reset_reclaim_threshold(cp->cache_defrag);
5391 #ifdef  DEBUG
5392                 if (!avl_is_empty(&cp->cache_partial_slabs)) {
5393                         /*
5394                          * In a debug kernel we want the consolidator to
5395                          * run occasionally even when there is plenty of
5396                          * memory.
5397                          */
5398                         uint16_t debug_rand;
5399 
5400                         (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5401                         if (!kmem_move_noreap &&
5402                             ((debug_rand % kmem_mtb_reap) == 0)) {
5403                                 mutex_exit(&cp->cache_lock);
5404                                 kmem_cache_reap(cp);
5405                                 return;
5406                         } else if ((debug_rand % kmem_mtb_move) == 0) {
5407                                 kmd->kmd_scans++;
5408                                 (void) kmem_move_buffers(cp,
5409                                     kmem_reclaim_scan_range, 1, KMM_DEBUG);
5410                         }
5411                 }
5412 #endif  /* DEBUG */
5413         }
5414 
5415         mutex_exit(&cp->cache_lock);
5416 
5417         if (reap)
5418                 kmem_depot_ws_reap(cp);
5419 }